Improvements to Deep-Learning-based Feasibility Prediction of
Switched Ethernet Network Configurations

Tieu Long Mai
University of Luxembourg
Esch-sur-Alzette, Luxembourg
long.mai@uni.lu

ABSTRACT

Graph neural network (GNN) is an advanced machine learning
model, which has been recently applied to encode Ethernet config-
urations as graphs and predict their feasibility in terms of meeting
deadlines constraints. Ensembles of GNN models have proven to be
robust to changes in the topology and traffic patterns with respect
to the training set. However, the moderate prediction accuracy of
the model, 79.3% at the lowest, hinders the application of GNN to
real-world problems.

This study proposes improvements to the base GNN model in
the construction of the training set and the structure of the model
itself. We first introduce new training sets that are more diverse in
terms of topologies and traffic patterns and focus on configurations
that are difficult to predict. We then enhance the GNN model with
more powerful activation functions, multiple channels and imple-
ment a technique called global pooling. The prediction accuracy of
ensemble of GNNs with a combination of the suggested improve-
ments increases significantly, up to 11.9% on the same 13 testing
sets. Importantly, these improvements increase only marginally
the time it takes to predict unseen configurations, i.e., the speedup
factor is still from 50 to 1125 compared to schedulability analysis,
which allows a far more extensive exploration of the design space.

KEYWORDS

Machine learning, Graph Neural Network, Schedulability analysis,
Design Space Exploration, Time-Sensitive Networking.
ACM Reference Format:

Tieu Long Mai and Nicolas Navet. 2021. Improvements to Deep-Learning-
based Feasibility Prediction of Switched Ethernet Network Configurations.

In 29th International Conference on Real-Time Networks and Systems (RINS’2021),

April 7-9, 2021, NANTES, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3453417.3453429

1 INTRODUCTION

Context. Ethernet is becoming the prominent wired high-speed
network technology, be it in the automotive, aerospace or industrial
domains. One of the reasons is that Ethernet has been constantly
evolving and adapting to successfully address the needs of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTINS 2021, April 7-9, 2021, NANTES, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9001-9/21/04. .. $15.00
https://doi.org/10.1145/3453417.3453429

Nicolas Navet
University of Luxembourg
Esch-sur-Alzette, Luxembourg
nicolas.navet@uni.lu

new systems being developed. In particular, the IEEE802.1 TSN TG
(Time Sensitive Networking Task Group), develops the technologies
to address QoS requirements pertaining to timing, reliability and
security. This work focuses on the basic timing requirement, which
is to ensure that communication latencies are below the deadlines
in any possible circumstances.

Deep learning in the design of critical systems. Two well identified
use-cases of deep-learning, and machine learning (ML) at large, in
the design of critical systems are 1) fast prediction techniques that
can replace, at the design-space-exploration stage of the design,
exact approaches, and 2) technology-agnostic configuration algo-
rithms, i.e. algorithms not relying on extensive domain knowledge.
This study proposes a contribution to the first use-case.

Previous works [18] have explored the use of Graph Neural
Network (or GNN for short, see [3]) to predict the feasibility of
priority-based TSN configurations. The interactions between flows,
links and queues at egress ports of the switches are embedded
into a graph neural network model. The GNN model is effectively
able to predict the feasibility of unseen TSN network configura-
tions and generalize to different topologies and traffic patterns. The
experimental evaluation on 13 independent sets of realistic auto-
motive TSN configurations clearly shows the advantage of GNN
over traditional ML algorithms: all sets achieve prediction accuracy
higher than 79% with a speedup factor above 70 times compared to
schedulability analysis.

Contributions of the paper. In this study, we improve upon [18] by
progressively introducing several enhancements. First, we build the
training set in such a way that, statistically, it contains more con-
figurations that are known hard to predict from prior experiments
in [18]. We also increase the size of the training set as classically
done to boost prediction accuracy, which comes with some draw-
backs discussed in the paper. We then improve the GNN model with
more expressive activation functions and a mechanism called global
pooling, and increase the size of the model e.g. with multiple chan-
nels, which leads to better performance. Importantly, the execution
overhead of these enhancements is modest since the speedup factor
remains from 50 to 1125 times compared to network-calculus based
schedulability analysis.

Organization of the paper. The remainder of this paper is or-
ganised as follows. Section 2 presents the TSN network model. In
Section 3, we describe the base GNN model that will serve as a basis
for comparison with the successive models. In Section 4, we intro-
duce an improved GNN model, that is trained with an enhanced
training set and that embeds advanced ML techniques. In Section 5,
we explore the interest of expanding the GNN model. The advan-
tages and drawbacks of a larger training set are also discussed in

https://doi.org/10.1145/3453417.3453429
https://doi.org/10.1145/3453417.3453429

RTNS’2021, April 7-9, 2021, NANTES, France

Tieu Long Mai and Nicolas Navet

Table 1: Characteristics of the four types of streams used in [18] to create the TSN networks belonging to the training set.
Frame sizes indicated here are data payload only. Each stream possesses one to three receivers. In this study, we re-use these
characteristics for the training in Experiment 0. In later experiments, more diversity is introduced in the training sets: propor-
tions are random in range 20% to 40%, size frame is chosen with a granularity of 1 byte and deadlines are chosen in a broader
range (from 40% to 100% of periods). The traffic patterns in the testing sets is specific to each case-study and remains the same

as in [18].

Command & Control

from 50 to 150 byte frames, with a step of 10 bytes
periods: one frame each [10,20]ms

deadlines constraints: 20ms

proportion: 20/100

Audio Streams

from 300 to 500 byte frames, with a step of 100 bytes
periods: one frame each 1ms

deadlines equal to 90% of periods

proportion: 20/100

Video Streams

either 1000 or 1500 byte frames with burst size in [15, 30]
period: one frame every 30ms

deadlines equal to 90% of periods

proportion: 30/100

Best effort Streams

from 100 to 1500 byte frames, with a step of 100 bytes
period randomly chosen in [100, 200, 250, 500, 750, 1000]ms
deadlines equal to 90% of periods

proportion: 30/100

this section. Relevant studies about the use of machine learning in
real-time systems and Ethernet networks are presented in Section 6.
Finally, Section 7 summarizes the main findings of the study and
highlights a number of possible research directions.

2 SYSTEM MODEL

We consider switched Ethernet networks comprising switches, full-
duplex links and end-nodes. The networks support unicast and
multicast communications. In the following, the term traffic flow
and traffic stream refer to a sequence of frames sent from one sender
to one or several receivers (i.e., unicast or multicast flows).

2.1 Assumptions on the network

In this study, a number of assumptions about the networks are
made:

e The routing in the network is static, as it is the norm in
critical systems.

e There is no transmission errors and buffer overflows that
would lead to packet losses.

e Streams are either periodic, sporadic or sporadic with bursts
(e.g., video streams from cameras).

e An upper bound on the packet switching delay is known. It
is set to 1.3us in the experiments, which is in line with [28].

o The maximum size of frames belonging to a stream is known,
as required by the schedulability analysis.

e The network topology and links’ speed have been decided
before the communication needs are entirely known, as it is
typically the case in the aerospace and automotive domains.

2.2 Feasibility of TSN configurations

A configuration is a TSN network whose parameters have been all
set. A configuration is feasible if all timing constraints on the flows
are met, which are assumed here to be deadline constraints.

The configuration problem in TSN networks involves two main
sub-problems: 1) priority assignment: grouping streams into traffic
classes and setting the relative priorities of the classes, and, beyond
the priorities of the streams, 2) optionally selecting additional QoS
mechanisms: Frame Preemption [14], shaping with the Credit-Based
Shaper (CBS [12]), time-triggered transmission using the Time-
Aware Shaper (TAS [13]), etc.

This work focuses on priority assignment, which is the funda-
mental QoS mechanism. The Optimal Priority Assignment (OPA)
algorithm for mono-processor system [2] has been proven to be
optimal for many scheduling problems [5, 6]. Although OPA has
not been shown to be optimal with the network calculus-based
Worst-Case Traversal Time (WCTT) used in this study, preliminary
experiments suggest that it is still very effective. In the experiments,
to derive the feasible priority assignment of TSN configurations,
we rely on a variant of OPA called "Concise Priorities" !, available
in the RTaW-Pegase software [1].

2.3 Network Topology

The base experimental setup, denoted "experiment 0" in the follow-
ing (see 3.3), uses the same patterns for topology and traffic as used
in [18] for building the training set of the GNN model:
e Star topology: each network has a central switch and two to
five switches connected to the central switch.
e Each switch is connected to two to five end-nodes.

I"Concise Priorities" differs from OPA only in how unfeasible configurations are
handled, which is not relevant in the context of this work.

Improvements to Deep-Learning-based Feasibility Prediction of Switched Ethernet Network Configurations

o The speed of each link is either 100 or 1000Mbit/s.

o The characteristics of the traffic for the base training set are
shown in Table 1. This is a typical simplified automotive
traffic as used in [4, 21, 23, 26].

To allow for comparison, we re-use the exact same testing sets as
in [18] but the training sets may differ in terms of traffic character-
istics and shape of the topology. These differences are highlighted
where appropriate.

3 SUMMARY OF GRAPH NEURAL NETWORK

This section summarizes the graph neural network (GNN) model
for TSN proposed in [18] that is the base model in our study. Over
the successive experiments, we introduce several improvements to
the model but the encoding of TSN configurations and the learning
process remain identical.

3.1 The GNN model

Encoding of TSN configurations. The GNN model considers a TSN
configuration as structured data comprised of physical and logical
components that affect the feasibility. These are the flows, links and
egress queues in the switches, which are connected by the topology
and routing. A configuration is encoded as a graph made up of
nodes and connections between them. To each node in the graph is
associated a vector called the embedding that captures some if its
characteristics, while the whole graph is characterized by a global
attribute, which is a vector of the same size as the embeddings. The
initialization of embeddings is as follows:

e Each traffic flow, be it unicast or multicast, is encoded by
one node with the initial embedding capturing the packet
payload size, burstiness, transmission period, and deadline.

o the two directions in a bi-directional link between a switch
and an end-node are represented by two separate nodes
whose initial embeddings are the link speed.

o Any waiting queue at an egress port of a switch corresponds
to a node with the initial embedding set of 0 to indicate that
it is empty when generating the configuration.

o The initial values of the global attribute is set to 0.

An example of TSN configuration is shown in Figure 1(a) and the
graph that encodes this configuration is in Figure 1(b). A connection
matrix contains the connections, i.e., non-directed edges between
nodes, in the graph. The matrix is initialized with 0s, while the
elements set to 1 indicate the existence of connections between
a queue and a link, a queue and a flow, and a link and a flow. As
a special case, to know the direction of a flow, the flow and the
link connected to the flow’s source end-node is marked by the
value 2 in the matrix. It is worth noting that the values in the
connection matrix are permanent for a TSN configuration, while
the embeddings of nodes and the global attribute are updated during
the learning process described in the following.

GNN model structure. The inputs of the GNN model are the em-
beddings initialized with the raw features of the topology and traffic,
and the output is a prediction about the feasibility of the configura-
tion. The GNN model is depicted in Figure 2(a) as a collection of
consecutive layers. Each layer in the base model is comprised of

a channel, which has two neural networks (NNs). The first NN f,
takes the embeddings and the global attribute from the previous

RTNS’2021, April 7-9, 2021, NANTES, France

layer and updates the embeddings with a learning algorithm. The
second NN f;, uses the aggregation (i.e. the mean is used as in [3])
of all embeddings (a single vector) as input and produces the global
attribute of that layer.

It has to be noted that for each layer, there is only one neural net-
work f, that processes each embedding independently. The global
attribute of the last layer is then taken as input by another neural
network fp,eq that predicts the feasibility of the configuration. The
output of this final neural network is the prediction expressed in
terms of a probability.

(a) A topology with 3 end-nodes and 2 switches. lfll denotes the link from switch S1
to end-node E1.

flLE1>S1>E2

S1>S2>E3
f2:E2>S1>E1
f3:E3>S2>S12EL—

1->E2
- Ielﬂ
/ -

[

R

(b) Adding three flows f1 and f3 (multicast), and f2 (unicast). Yellow is used for
links, blue for queues and green for flows.

Figure 1: Encoding a TSN configuration as a graph.

The base GNN model depicted in Figure 2(a) was first proposed
in [18]. It features three layers each with a single channel. The four
neural networks involved (one for each layer and a final one for
the actual feasibility prediction) share the same structure: they are
fully-connected feed-forward networks and possess three layers 2.

The learning algorithm. The GNN is trained with a set of TSN
configurations with labels, i.e., the feasibility of the configurations.
At each layer in the GNN model, the embedding of each node in
the graph is updated with the information aggregated (i.e., the sum)
from the other connected nodes and the global attribute provided
by the previous layer. The neural networks in the GNN model will
synthesize features that consider the interferences between flows,
the expected delays on links and queues, and the interactions be-
tween flows, links and queues. After each mini-batch of 32 training
21t should be noted that the term layer has two distinct meanings depending on the

context: layers in the GNN model, which are consecutive blocks of the model, and
layers in a neural network.

RTNS’2021, April 7-9, 2021, NANTES, France

GNN layer —single channel

Tieu Long Mai and Nicolas Navet

Glcbal attribute

Feasmle
— > >
(a) Base GNN model.
2 channels Global attributes
GNN layer [1 — |
[| :
Pooling
fooe,
—P> » —>
S Non-feasible
Pooling
(b) Global pooling.
GNN layer — 4 channels 2 channels Global attributes
[| [1
Pooling
Footrs,
—_— e — > —

[]

Non-feasible

Pooling

(c) Multiple channels

Figure 2: Improvement of the base GNN model (a): global pooling layer (b), and multiple channels (c).

samples, all neural networks in the base model are updated to min-
imize the difference between predictions and true labels. As it has
been shown effective to enhance the robustness of the prediction
in [18], the final prediction is obtained from an ensemble of 32 GNN
models trained individually.

3.2 Training and testing sets

The base training set contains 10000 TSN configurations with ran-
dom star-shaped topologies, while the traffic is generated with the
patterns in Table 1. All training configurations are labeled by the
feasibility derived from a network-calculus based schedulability
analysis, which is considered as 100% accurate.

There are overall 13 testing sets re-used from [18] for the sake of
comparison. Three sets contain configurations with random topolo-
gies and 10 sets with specific topologies. The random topologies are
star-shaped while the others are either ring, backbone or "dumbell”
topologies. The non-random topologies come from studies with
automotive OEMs: Renault topology in [25], FACE topology from
Renault group as well in [26], Volvo topology in [21] and a early

prototype TSN network from Daimler [24]. Finally, some topolo-
gies are modified, yet realistic, versions of the OEMs’ topologies. It
should be noted that all training and testing sets do not contain any
overloaded configurations, i.e., configurations that have at least one
link whose load is larger than 1. Overloaded configurations have
been discarded since they are with certainty non-feasible.

The goal of having multiple test sets is to check whether the
GNN model is able to generalize to a wide range of topologies
and traffic, i.e., that it is able to predict the feasibility of unseen
configurations significantly different from the ones in the training
set. Further information about the testing sets can be found in [18].

3.3 Experiment 0: The base GNN model

The first experimental setup considered, Experiment 0, is very sim-
ilar to the one in [18]. The GNN model has 3 layers with single-
channel and the length of the embedding vector is 16, as it was
shown to best value during the development of the model [18].
The identity neuron activation function is used. We introduce two
changes compared to [18]. First, the maximum number of nodes in

Improvements to Deep-Learning-based Feasibility Prediction of Switched Ethernet Network Configurations

o,
90.0 — Sl
//‘ - / °
/ \ \I -
8751 o Vs \ Hoge-- A
= e A L .
2 850 e i
T Pt N/
© & N
S e2s \ .
" %
s 80.0 'Y
¥}
5 715
L
-
75.0
—-@- Base model
7254 -&- E11
-&- E21
1 2 3 4 5 6 7 8 9 10 11 12 13

Testing set

Figure 3: Experiment 1 (E11) and Experiment 2 (E21) use two
different training sets that are not star topologies, unlike the
training set of the base model. This leads to an improvement
of the performance in some testing sets but is detrimental in
star topologies (i.e. test sets #1 to #5).

the graph is reduced from 500 to 350 to decrease the training time
and allow for an efficient parallelisation given memory constraints
on GPUs. All in all, less than <1% of the training samples with more
than 350 nodes are discarded. Second, we train the models over
20 epochs and all training samples are used at each epoch unlike
in [18] where random sampling is used.

4 IMPROVING THE TRAINING SET AND THE
GNN MODEL

In this section, we try to enhance the overall performance with
incremental changes in the training set and the model. These new
experiments are motivated by insights gained into the training data
and recent advances in the field of deep-learning.

4.1 Experiments 1 and 2: Improving the
training set

The experiments in [18] show that the GNN model has a low predic-
tion accuracy on several testing sets with non star-shaped network
topologies presumably because all samples in the training set were
star-shaped. Therefore, to introduce more diversity, this experiment
denoted as experiment 1, or E11 for short (meaning experiment 1 -
step 1), introduces two changes in the training set: the topologies
are totally random in terms of shapes, and the packet payload sizes
and deadline constraints are chosen at random in a broad range
(see Table 1).

We also observe that the wrong predictions of the GNN model
mostly happen on a certain range of traffic intensity. Typically,
when the load is such that above 40% of the configurations are
overloaded (i.e., the load of one link is above 1), the configurations
are almost all non-feasible, which the GNN model is able to pre-
dict correctly. On the other hand, when no randomly generated
configurations are overloaded, the problem is easier as well for the
GNN as, by far, most configurations will be feasible. Therefore, we
introduce in Experiment 21 (E21) a focused training set that is based
on the random data set in E11 but focuses on the region between 0
and 40% of overloaded configurations. Precisely, two third of the
training samples are taken at random in this interval.

RTNS’2021, April 7-9, 2021, NANTES, France

The GNN model in E11 and E21 has the same hyper-parameter
setup as the base GNN model. The results are shown in Figure 3. In
the figure, the red curve with dots is the base model, the blue curve
with triangles is the result of E11, and the green line with diamonds
is the result of E21. Compared to the base model with star-based
topology, the training set with random topology (E11) improves the
prediction accuracy in some testing sets that are not star-shaped
(#6, #9 and #11). With the focused training set (E21), the prediction
accuracy is better than with the random data set (E11) in general.
However, the focused training set lower the performance of the
GNN model in many testing sets made up of star-shaped networks.

Since the star and focused training set have advantages and
drawbacks, we use both in the next experiments.

4.2 Experiments 3, 4 and 5: Improving the GNN
models

Experiment 3: Using a more expressive neuron activation function.

Although the identity activation function facilitates the training
of the GNN model, it hinders the learning of complex non-linear

relationships in the graph. In experiment 3 comprising E31 and
E32, we use a more expressive neuron activation function for all
the neural networks. In the development of the model, we have
tested several non-linear activation functions namely sigmoid, tanh,
Exponential Linear Unit (ELU), and Scaled Exponential Linear Unit
(SELU). The sigmoid and tanh functions do not allow the training
to converge, while the SELU function shows a performance that is
similar to the ELU function. In all following experiments, we use
the simpler ELU activation functions.

92.5 A ~ T I
L7 \‘ L 1\ Il‘ RN
90.0 - DNV \ N 5 SN
— K g \ o AN
X / ~. p \ 14
= / ~ -1 \ I A
. 87.5 / o ’Q‘ 200 2N TN
9 o ’ FEY P et SN IS RS
@ S~y . 2 VN S P AN i ey
5 . HE N VAV T A Nl T
3 85.0 AN AV R A ¥ v/
® kA ! v NN LY
< AN i VNS s / \
S 825 N ! Ve /! A
S A ! \ / \ S
5 1 7
3 b Y 1 \ K Y
£ 200 \ ' Vo v
-@- base model AN ,' 1 ll
1
7759 -k- E21 AN H v
\ \
E31 A I
75.01 -m- E32 S~

1 2 3 4
Testing set

Figure 4: Experiment 3 (E31 and E32) evaluates the influence
of using ELU activation function. E31 is the base model but
using ELU. E32 is equivalent to E31 but trained with the fo-
cused training set. E21 (focused training set, not using ELU)
is shown for comparison purpose. E31 and E32 outperform
the models without ELU except on test cases #6, #9 and #11.

The experimental results are shown in Figure 4. The red curve
with dots is the base model (identity function and star topology
training set). The orange curve with diamonds (E31) is the base
model that uses ELU activation function. The blue curve with trian-
gles (E21) and green line with squares (E32) show the results of the
model trained on the focused training set but respectively using
identity and ELU activation functions. Overall, the models using

RTNS’2021, April 7-9, 2021, NANTES, France

Tieu Long Mai and Nicolas Navet

Table 2: Summary of all experimental conditions. 19! and 49! mean global pooling at the last layer and resp. 1 and 4 channels.
Exp. and Abbr. resp. mean Experiment and Abbreviation. Imp. and Ext. resp. mean Improved and Expanded model. Abbre-
viations E31 and E32 correspond to Experiment 3 at step 1 and step 2. This naming convention is also applied to the other

experiments.
‘ GNN model ‘ Training
Exp. A Acti- # chan- Emb. . # - Traini
Xp bbr. # nodes c.tl # layers chan fnb # iters sam: raining
vation nels size ples set
Exp.0 | Base | 350 identity 3 1 16 | 20 10000 Star-shaped
Exp. 1 ‘ E11 ‘ - - - - - ‘ - - Random
Exp. 2 ‘ E21 ‘ - - - - - ‘ - - Focused
E31 - ELU - - - - - Star-shaped
Exp.3 E32 - ELU - - - - - Focused
E41 - - - 19! - - - Star-shaped
Exp. 4
P E42 - - - 19! - - - Focused
E51 - - - 49! - - - Star-shaped
Exp. 5 E52 - - - 49! - - - Focused
Imp. 350 ELU 3 19! 16 20 10000 focused
E61 - - - - - 50 - focused
E62 - - 5 - - 20 - -
Exp. 6 E63 - - 3 - 32 - - -
E64 - - 3 - 32 50 - -
Ext. 350 ELU 3 19! 32 50 10000 Focused
Exp. 7 E71 - - - - 16 20 20000 -
P E72 - - = - 32 50 - -

ELU provide a clear boost in prediction accuracy. Nonetheless, the
ELU activation function is detrimental on testing set #9 and #11.

This experiment also shows the benefit of the focused training
set as E32 outperforms or matches E31 on all test cases.

Experiment 4: Using neural network with global pooling. The GNN
model, shown in Figure 2(a), learns the relationships between the
components of the graph and aggregates them into a global attribute.
This vector, whose size must be equal to the size of the embeddings,
is provided as input to a neural network that predicts the feasibility
of the configuration. This raises the question of whether the final
neural network is essential or whether it could be replaced by a
global pooling layer, a technique commonly used in Convolutional
Neural Networks (CNN), as shown in Figure 2(b). Here average
pooling is used, which means taking the average of the global
attribute vector. There are two global attributes generated by two
channels of the third layer, which are two independent sets of neural
networks sharing the same input from the previous layer. The global
average pooling layer provides two values corresponding to the
prediction of feasible and non-feasible probability. It should be
noted that the GNN model does not decide which value is feasible
and non-feasible probability, it only tries to predict the true label
provided in a predefined order [feasible, non-feasible].

The experimental results of using global pooling are shown in

Figure 5, with a comparison to Experiment 3. The red curve with
dots (E31) and orange curve with diamonds (E41) are the GNN

model trained with the star topology, respectively without and
with the global pooling layer. The blue curve with triangles (E32)
and green curve with squares (E42) are the GNN model trained with
the focused training set, while only E42 uses the global pooling
layer. The results with the global pooling layer almost overlap the
results without using it, which suggests that removing the final
neural network and replacing it with the global pooling layer does
not affect the performance of the model overall. In the rest of the
experiments we will always use global pooling as it reduces the
overall complexity of the GNN model’s structure by removing the
final neural network used for prediction, therefore facilitating the
development and maintenance of the model.

Experiment 5: Using multiple channels. In this experiment, we
exploit the same approach as in the previous experiments by intro-
ducing multiple channels but this time at the two first layers of the
GNN model. For each layer, the number of channels is increased
from one to four, as illustrated in Figure 2(c). The purpose is to
answer the question of whether with multiple channels, the GNN
model would be able to explore the graph with more perspectives.
As in Experiment 4, each channel in a layer is an independent set
of neural networks: one neural network f;, to update embeddings
of nodes in the graphs, and one neural network f;, to update the
global attribute. All channels in the same layer share the same input
provided by the previous layer.

Improvements to Deep-Learning-based Feasibility Prediction of Switched Ethernet Network Configurations

95 A ___.5
N J——
455 S3y, /ﬁ“-'?
::\3“/ l“ ,/7 &

90 R NN A
9 Y 7,
< N
>
%) NN/
© \Y
3 851 L4
I+
®
c
8
S
@ 80
-

-@- E41

-k- E42

75 A E51
—-m- E52
1 2 3 4 5 6 7 8 9 10 11 12 13
Testing set

Figure 6: Experiment 5 evaluates the influence of using mul-
tiple channels at the first two layers of the GNN model as
done for E51 (star topology training set) and E52 (focused
training set). E41 and E42 that use a single channel and the
same two different training sets are shown for comparison.

95.01 .
4 A='=:E.§’
i T
92.5 & / \:‘ ;rw;.‘
Shg 7 N s :
900 ¥ 7\\\‘7 /
8 W
87.5 \ /S
3 85.01
b
c
S 825
g
g
S 80.0
&
-e- E31
7757 -a- E32
E41
7501 m- E42
1 2 3 4 5 6 7 8 9 10 11 12 13

Testing set

Figure 5: Experiment 4 evaluates the influence of using a
global pooling layer, as implemented in E41 trained with
star topologies and E42 trained with the focused training set.
E31 and E32 from Experiment 3 are shown for comparison
purpose. The use of global pooling does not lead to signif-
icant changes in accuracy but simplifies the GNN model’s
structure as the final neural network is suppressed.

The experimental results are shown in Figure 6. The red curve
with dots (E41) is the GNN model trained with the star topologies
and using a single channel, while the orange curve with diamonds
(E51) is identical to E41 but with multiple channels. The blue curve
with triangles (E42) and the green curve with squares (E52) are the
results with the focused training set, respectively without and with
multiple channels. The use of multiple channels does not lead to
noticeable improvements, on the contrary a slight loss in accuracy
is usually observed, while it requires additional training time. In
the following experiments, all GNN models have a single channel
at their first two layers.

In summary of this Section, Experiments 3 and 4 have shown
the positive effect of the ELU activation function and the global
pooling layer on the GNN model, resp. in terms of accuracy and
reduced complexity. On the other hand, the approach with multiple
channels does not bring benefits as observed in Experiment 5. In
all these experiments, the GNN model trained with the focused

RTNS’2021, April 7-9, 2021, NANTES, France

training set outperforms the model trained with star topologies
only. As a result, we define an improved model that includes ELU
activation, global pooling, and is trained with the focused training
set.

5 EXPANDING THE GNN MODEL AND THE
TRAINING SET

The improved model, as derived in Section 4 does not increase
the size of the GNN model, on the contrary since the final neural
network has been suppressed. This section explores the possibility
of improving the prediction accuracy with a larger GNN model and
a larger training set.

5.1 Experiment 6: Expanding the GNN model

Based on the improved model, Experiment 6 progressively intro-
duces modifications to the GNN model and the training step:
e E61 increases the number of training epochs from 20 to 50.
e E62 increases the number of layers in the GNN model from
3to 5.
e E63 expands the size of the embeddings from 16 to 32 to
allow the neural network to capture more information.
e E64 combines the expansion in size of the embeddings and
an increase in the number of training epochs.

The results are shown in Figure 7. An increase in the number
of training iterations (E61) from 20 to 50 yields a positive impact
on the overall performance. In contrast, adding more layers in the
GNN model (E62) is detrimental to the prediction accuracy®. An
increase of the embedding size from 16 to 32 (E63) also enhances the
generalization ability of the model. A combination of more training
iterations and larger embeddings (E64), i.e. what we will call the
expanded model in this following, brings the most benefits.

5.2 Experiment 7: Expanding the training set

We now explore the possibility to improve the performance by
enlarging the training set. The number of training samples in the
focused training set is increased from 10000 to 20000. The expanded
training set is used to train the improved GNN model and the ex-
panded GNN model separately. The questions we want to answer
is whether 1) the GNN model is able to take advantage of a larger
training set and, if yes, 2) whether the improvements to the GNN
model introduced in the previous section are actually needed with
the larger training set.

The results of the experiment are shown in Figure 8. In E71, the
improved model trained over the expanded training set (the orange
line with diamonds) yields an improvement in generalization ability:
indeed, there is no testing set that has a prediction accuracy lower
than 84.4%. This result is consistent with many other studies in the
field of machine learning, e.g. [10], that show the benefits of larger
training sets.

In E72, the expanded GNN model trained with 20000 samples
has a high prediction accuracy in all testing sets except testing set
#13 with Volvo topology. On the one hand, a combination of both
3The reason is that additional layers make a phenomenon called gradient vanishing
more severe here and training the GNN model becomes more difficult (it may take

much longer or even fail). A popular approach to mitigate this problem is the residual
network, which is out of the scope of this study.

RTNS’2021, April 7-9, 2021, NANTES, France Tieu Long Mai and Nicolas Navet

Table 3: Summary of the experimental results obtained with the different GNN models in terms of prediction accuracy ex-

pressed in %. Baseline is the feasibility ratio of the samples in the testing sets as derived by schedulability analysis.

Base GNN Improved | Expanded | Expansion of training set
Testing sets | Baseline GNN GNN Improved Expanded
model
model model model model
Testing set 1 57.9 86.9 91.0 92.3 91.4 92.6
Testing set 2 53.9 85.6 90.2 91.5 90.7 90.0
Testing set 3 47.5 90.0 94.3 95.4 93.3 94.6
Testing set 4 62.2 89.5 93.7 94.5 93.0 94.4
Testing set 5 73.3 87.2 91.7 91.0 90.5 89.0
Testing set 6 36.0 88.2 89.0 88.7 90.5 91.8
Testing set 7 51.4 82.5 92.6 93.6 93.4 94.5
Testing set 8 41.6 87.6 92.1 95.3 93.3 94.0
Testing set 9 22.7 79.5 81.9 81.1 84.4 87.1
Testing set 10 39.1 88.7 91.9 92.7 91.7 92.0
Testing set 11 22.0 82.3 83.8 83.9 86.0 88.1
Testing set 12 48.0 90.7 92.9 93.9 92.7 93.7
Testing set 13 57.8 89.4 89.4 ‘ 88.9 91.2 82.2

% Py that its performances do not drop too low, which is important in
r2~S83 .
9% Il SR practice.
/,/,/ R 8
5921 Eii_ g RY RN
g B \ J N\ 96 1
3 90 Y N N
e ’»: 4/ \=
3 % 941
© 88
S = 92
& -@- improved model 1 990
84 -k- E61 4 3
E62 i S a8 !
g2 -m- E63 5) \
E64 Z o | ! | \
T T T T r T T T T r r r T 34 Voo \ \
1 2 3 4 5 6 7 8 9 10 11 12 13 [“ " \ l‘
Testing set 84 { —®- improved model *) ‘ \
-&- expanded model ‘”7 \
82 E71 ‘." [}
- . . . -m- E72 1
Figure 7: Experiment 6 evaluates the influence of scaling up —_— ,
1 2 3 4 5 6 7 8 9 10 11 12 13

the size of the GNN model: increasing the number of train-
ing epochs from 20 to 50 (E61), increasing the number of lay-
ers in the GNN model from 3 to 5, E63 (E62), expanding the
size of the embeddings from 16 to 32 (E63) and combining
the expansion in the embeddings’ size and the increase in
the number of training epochs (E64).

a larger model and training set improves the generalization of the
expanded GNN model, as 12 testing sets out of 13 have a prediction
accuracy higher than 87.1%. On the other hand, the larger model
can learn more from a larger training set, which is a drawback to
testing set #13 as it has a very distinctive traffic pattern, namely
AVB-shaped streams, that does not appear in any sample of the
training set. Actually, the GNN model should be extended to capture
the characteristics of the streams in terms of whether they are AVB
streams or not. It is worth noting that except for the special case
of testing set #13, the expanded GNN model trained with more
training samples (i.e., E72) is better than trained with less training

samples (i.e., expanded model). Although E72 may be slightly less
accurate for some testing sets, it is more consistent in the sense

Testing set

Figure 8: Experiment 7 evaluates the influence of larger
training sets made up of 20000 samples instead of 10000,
which are used to train the improved GNN model (E71) and
the expanded GNN model (E72). A larger training set allows
both models to generalize significantly better (e.g., test sets
#9 and#11). The special case of test case #13 is discussed in
§5.3

5.3 Summary of the experimental results

Table 3 presents the prediction accuracy of the GNN models exper-
imented in this study. The baseline is the prediction accuracy of a
trivial model that invariably predicts feasible for all testing config-
urations. While the base GNN model has a prediction accuracy in
the range [79.5%, 90.7%], the improved and expanded GNN models
range between [84.4%, 93.3%] and [82.2%, 94.6%] respectively. The
improvement of the GNN models by comparison with the base
model is summarized in Figure 9.

Improvements to Deep-Learning-based Feasibility Prediction of Switched Ethernet Network Configurations

mmm total predictions
wrong predictions

300

250

200

150

100

50

Number of predictions over 1000 data

0 T T T T
0 5 10 15 20 25 30

Number of GNN models predicting feasible over 32 models

(a) The improved model.

= total predictions
wrong predictions

Number of predictions over 1000 data

0 5 10 15 20 25
Number of GNN models predicting feasible over 32 models

(b) The expanded model.

= total predictions
wrong predictions

Number of predictions over 1000 data

0 5 10 15 20 25
Number of GNN models predicting feasible over 32 models

(c) The improved model with expanded training set.

mmm total predictions
wrong predictions

Number of predictions over 1000 data

5 10 15 20 25
Number of GNN models predicting feasible over 32 models

(d) The expanded model with expanded training set.

Figure 10: Test-case #13 (Volvo topology): Histogram of the
number of GNN models predicting feasible (among the 32
models in the ensemble of GNN models) for each of the 1000
test configurations. The bins 0 and 32 correspond to the case
where all GNNs in the ensemble return the same prediction.

It is noteworthy that although the GNN models are trained with
random topologies in the focused training set, they still improve
the prediction accuracy on the testing sets that have star topology,
i.e., testing set #1 to #5. There is a steep increase in the prediction
accuracy for testing set #7 (Renault topology) with more than 10%
improvement in all four models. In general, the prediction accuracy
of all testing sets increases considerably with the exception of
testing set #13.

RTNS’2021, April 7-9, 2021, NANTES, France

The more training data, the more a machine learning model will
learn about it and becomes specialized and efficient on data similar
to the one is the training set. The consequence is that on unseen
data very dissimilar to the training set an expressive model may be
outperformed by simpler models, models trained with less data or
models trained for a shorter duration. The decrease in the prediction
accuracy of testing set #13 suggests to us that this phenomenon
may be happening.

125

l<::"'“~-mr-___,‘~
,._--‘i“-—*"‘—---o«‘:::,.\\

<
25 - N

—-@- improved model
—&- expanded model
improved model with expanded training set “
expanded model with expanded training set u

Change in prediction accuracy (%)

1 2 3 4 5 6 7 8 9 10 11 12 13
Testing set

Figure 9: Variations in prediction accuracy (%) of the differ-
ent GNN models compared to the base model.

We further analyze the predictions for testing set #13 in Figure 9.
For each testing configuration, we count the number of GNN mod-
els that predict "feasible” among the ensemble of 32 models. Ideally,
when a configuration is feasible, the prediction of all 32 models
should be "feasible" and the bin 32 is incremented by one. We ob-
serve that the larger the model, the larger the training set, the more
spread the empirical distributions in Figure 9. This suggests that big-
ger models necessitate ensemble techniques because there is a high
risk that an individual model is wrong. It also suggests that larger
number of models in the ensemble could lead to better accuracy,
at the expense of execution times. An hybrid approach explored
in [16] for conventional ML algorithms is to rely on schedulability
analysis when the uncertainty is too high, which could be mea-
sured here by the proportion of GNN models returning conflicting
predictions.

5.4 Execution times of training and testing

All experiments in this study have been conducted on the High-
Performance Computing (HPC) cluster [30] of the University of
Luxembourg. The predictions are obtained with ensembles of 32
GNNg, trained in parallel on 32 GPUs (NVIDIA V100).

The training, evaluation and test configurations have been gen-
erated with a Java program using the library of the RTaW-Pegase

3.7.5 software [1] on Java JDK-13. The labels (i.e., the feasibility
of the configurations) have been derived with the version of the

OPA algorithm available in the Pegase library. RTaW-Pegase im-
plements a network-calculus based schedulability, which takes on
average 470ms for a 500-stream TSN configuration (see measure-
ments in [22]).

The execution time of the GNN models on a testing set with
1000 TSN configurations is shown in Table 4. The execution of a

RTNS’2021, April 7-9, 2021, NANTES, France

Tieu Long Mai and Nicolas Navet

Table 4: Testing times of the GNN models by comparison with schedulability analysis. The first row gives the testing times (i.e.,
absolute values) of 1000 configurations on a single GPU, which is at most 32 seconds. It is important to note that the execution
time of schedulability analysis depends on the complexity of the configurations, while a GNN model predicts the feasibility
of any configuration in almost constant time. The speedup factor of the GNN models over schedulability analysis is given in
the first column of the second row. The first value is the smallest speedup factor, while the second value is the largest speedup
factor, as observed over the entire 13 testing sets. The rest of the cells shows the speedup factor with respect to the base GNN

model (i.e, value 1.0).

Schedula Base GNN Improved | Expanded ‘ Expanded training set
Testing time -bility GNN GNN Improved Expanded
. model
analysis model model model model
single GPU - 0m21s 0m24s 0m32s 0m24s 0m32s
Relative time 77/ 1715 1.0 1.14 1.52 1.14 1.52

GNN model does not depend on the size of the configurations, as
the maximum number of nodes in the graph is always assumed *.
The execution time needed to encode TSN configurations as graphs
is ignored since it is in the milliseconds order and since this step
can be executed in parallel.

The base GNN model performs the best in terms of testing time
with 0m21s for 1000 samples, but the more sophisticated GNN
models do not lead to a considerable increase in execution time in
absolute value (less than 11 seconds). An expansion of the GNN
model has a modest effect on the execution time while the improve-
ment on the prediction accuracy is significant as discussed in §5.2
and §5.1. Overall the speedup factor of using GNN models over
conventional schedulability analysis ranges from 50 to 1715.

6 RELATED WORKS

Machine learning for networking. Machine learning techniques [10,
11] have already been used in wide range of applications includ-
ing networking [31]. For instance, ML is used in [32] to create
application-specific variants of the TCP protocol, and in [27] to
improve the prediction of the TCP round-trip time. Deep learning
is utilized for dynamic packet routing in [19] and evolutionary
algorithms are used in [15] to balance workload on edge servers.

Recently, GNN has been shown to be a powerful tool to encode
graph-based relationships in networks. Important contributions in
that line of work have been done by Geyer et al., which for instance
use GNN to predict the throughput of TCP flows [7], and, in [9], to
create routing protocols used in network management. The GNN
model is also applied to Software-Defined Networking [29] and
to predict the interference between flows in Network Calculus
analysis [8].

ML for Ethernet TSN network design. Conventional ML algo-
rithms have been applied to predict whether a TSN configuration
is feasible [16, 17, 22]. Although these studies show positive results
for four distinct QoS mechanisms, they have an important limita-
tion: prediction in only efficient on the specific topologies used for
the training. These conventional ML algorithms do not generalize
well beyond the training set.

A recent work [18] uses GNN to encode TSN networks as graphs.
This GNN model, which is referred to as the base model in this paper,

10

4 As classically done in neural networks, zero-padding is used for empty nodes.
can effectively predict the feasibility of a wide range of network

topologies that are not part of the training set. An ensemble of 32
GNN models has been shown effective at reducing the risk of wrong
predictions. This paper is a follow-up work of [18] that explores
the possibility of improving the prediction accuracy with better
training sets and more sophisticated GNN models.

7 CONCLUSION AND FUTURE WORK

This study is a contribution towards making the graph neural net-
work model more practical for the verification of Ethernet TSN net-
works by improving its prediction accuracy. A practical advantage
of deep learning is that the feature engineering step is automated
and no domain expertise is required. In that regard, the same model
could potentially be efficient in other areas of real-time computing.

In this paper we first introduce a new training set that goes
beyond star topologies with more diverse traffic patterns. Over
successive experiments, more advanced techniques have been in-
troduced: more powerful activation functions, multiple channels,
global pooling and increased embeddings’ size. A combination of
some of these techniques proves to have a strong positive effect on
the performance of GNN, with an accuracy higher than 90% on 10
out of 13 testing sets, and never less than 80%. The drawback is a
limited increase in the execution time of the prediction on unseen
configurations, while the structure and learning process of the GNN
remain identical. Recent studies [20, 33] suggest that some machine
learning techniques such as manual batch normalization and focal
loss can help with the calibration of deep learning models. Adapting
and integrating these potential improvements in the GNN model
for feasibility prediction is our ongoing work.

In our experiments, the use of ensemble GNN models provides a
speedup factor ranging from 50 to 1715 compared to schedulability
analysis. Such speed-up factors open new possibilities for design
space exploration like the development of "near-interactive" design
tools that would enable designers to observe in real-time the effects
of their choices. In design space exploration the risk of configura-
tions deemed feasible while they are not is avoided, as long as the
retained solutions, the ones presented to the designer, are verified
by conventional schedulability analysis.

Improvements to Deep-Learning-based Feasibility Prediction of Switched Ethernet Network Configurations

REFERENCES

(1]

(2]
(3]

[14

[15]

[16]

[17]

[18]

RealTime at Work. [n.d.].
mated Configuration of communication networks.
https://www.realtimeatwork.com/software/rtaw-pegase.
N.C. Audsley. 2001. On priority assignment in fixed priority scheduling. Inform.
Process. Lett. 79, 1 (2001), 39-44.

P.W. Battaglia,].B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M.
Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. 2018. Re-
lational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 (2018).

O. Creighton, N. Navet, P. Keller, and J. Migge. 2020. Towards Computer-Aided,
Iterative TSN-and Ethernet-based E/E Architecture Design. In 2020 IEEE Standards
Association (IEEE-SA) Ethernet & IP @ Automotive Technology Day. Munich. http:
//hdlhandle.net/10993/44490

RI. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns. 2016. A Review of
Priority Assignment in Real-Time Systems. J. Syst. Archit. 65, C (April 2016),
64-82. https://doi.org/10.1016/j.sysarc.2016.04.002

RI Davis and N. Navet. 2012. Controller area network (CAN) schedulability
analysis for messages with arbitrary deadlines in FIFO and work-conserving
queues. In 9th IEEE International Workshop on Factory Communication Systems.
33-42.

F. Geyer. 2017. Performance evaluation of network topologies using graph-
based deep learning. In Proceedings of the 11th EAI International Conference on
Performance Evaluation Methodologies and Tools. 20-27.

F. Geyer and S. Bondorf. 2019. DeepTMA: predicting effective contention models
for network calculus using graph neural networks. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. IEEE, 1009-1017.

F. Geyer and G. Carle. 2018. Learning and generating distributed routing protocols
using graph-based deep learning. In Proceedings of the 2018 Workshop on Big Data
Analytics and Machine Learning for Data Communication Networks. 40—45.

1. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep learning. MIT press.

T. Hastie, R. Tibshirani, and J. Friedman. 2009. The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media.
IEEE. 2009. IEEE Standard for Local and Metropolitan Area Networks — Virtual
Bridged Local Area Networks Amendment 12 Forwarding and Queuing Enhance-
ments for Time-Sensitive Streams (Std 802.1Qav-2009 ed.).

IEEE. 2016. IEEE Standard for Local and Metropolitan Area Networks — Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic (IEEE
Std 802.1Qbv-2015 ed.).

IEEE. 2016. IEEE Standard for Local and Metropolitan Area Networks — Bridges and
Bridged Networks — Amendment 26: Frame Preemption (IEEE Std 802.1Qbu-2016
ed.).

T.L. Mai, N.N. Dao, and M. Park. 2018. Real-time task assignment approach
leveraging reinforcement learning with evolution strategies for long-term latency
minimization in fog computing. Sensors 18, 9 (2018), 2830.

T.L. Mai, N. Navet, and J. Migge. 2019. A hybrid machine learning and schedula-
bility analysis method for the verification of TSN networks. In 2019 15th IEEE
International Workshop on Factory Communication Systems (WFCS). IEEE, 1-8.
T.L. Mai, N. Navet, and J. Migge. 2019. On the use of supervised machine learning
for assessing schedulability: application to Ethernet TSN. In Proceedings of the
27th International Conference on Real-Time Networks and Systems. 143-153.
Tieu Long Mai and Nicolas Navet. 2020. Deep Learning to Predict the Feasibility
of Priority-Based Ethernet Network Configurations. Technical Report. University

RTaW-Pegase: Modeling, Simulation and auto-
Retrieved 2019/01/24,

11

[19]

[20

[21

~
&,

[23

[24

[25

[26

[28

[29

[30

(32]

[33

RTNS’2021, April 7-9, 2021, NANTES, France

of Luxembourg. submitted to ACM TECS.

B. Mao, Z.M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and K. Mizutani.
2017. Routing or computing? The paradigm shift towards intelligent computer
network packet transmission based on deep learning. IEEE Trans. Comput. 66, 11
(2017), 1946-1960

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip HS
Torr, and Puneet K Dokania. 2020. Calibrating Deep Neural Networks using
Focal Loss. arXiv preprint arXiv:2002.09437 (2020).

N. Navet, H.H. Bengtsson, and J. Migge. 2020. Early-stage Bottleneck Identifica-
tion and Removal in TSN Networks. In Automotive Ethernet Congress. Munich.
http://hdl.handle.net/10993/46282

N. Navet, T.L. Mai, and J. Migge. 2019. Using machine learning to speed up the
design space exploration of Ethernet TSN networks. Technical Report. University
of Luxembourg. http://hdlLhandle.net/10993/38604

N. Navet, J. Migge, J. Villanueva, and M. Boyer. 2018. Pre-shaping Bursty Trans-
missions under IEEE802.1Q as a Simple and Efficient QoS Mechanism. SAE Int. J.
Passeng. Cars — Electron. Electr. Syst. 11 (04 2018). https://doi.org/10.4271/2018-
01-0756

N. Navet, J. Seyler, and J. Migge. 2015. Timing verification of real-time automotive
Ethernet networks: what can we expect from simulation?. In the SAE World
Congress 2015, "Safety-Critical Systems" Session. Detroit, USA.

N. Navet, J. Villanueva, and J. Migge. 2018. Automating QoS protocols selection
and configuration for automotive Ethernet networks. In SAE World Congress

Experience (WCX018), session “Vehicle Networks and Communication (Part 2 of 2)”.
Detroit, USA.

N. Navet, J. Villanueva, and J. Migge. 2019. Early-stage topological and technolog-
ical choices for TSN-based communication architectures. In 2019 IEEE Standards
Association (IEEE-SA) Ethernet & IP @ Automotive Technology Day. Detroit, Mi.
http://hdL.handle.net/10993/40623

B.A.A. Nunes, K. Veenstra, W. Ballenthin, S. Lukin, and K. Obraczka. 2014. A
machine learning framework for TCP round-trip time estimation. EURASIP
Journal on Wireless Communications and Networking 2014, 1 (2014), 47.

Plexxi. 2016. Latency in Ethernet Switches. Retrieved 2019/04/25,
http://www.plexxi.com/wp-content/uploads/2016/01/Latency-in-Ethernet-
Switches.pdf.

K. Rusek, J. Suarez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-Aparicio.
2019. Unveiling the potential of Graph Neural Networks for network modeling
and optimization in SDN. In Proceedings of the 2019 ACM Symposium on SDN
Research. 140-151.

Sébastien Varrette, Pascal Bouvry, Hyacinthe Cartiaux, and Fotis Georgatos.
2014. Management of an academic HPC cluster: The UL experience. In 2014
International Conference on High Performance Computing & Simulation (HPCS).
IEEE, 959-967.

M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. 2018. Machine Learning for
Networking: Workflow, Advances and Opportunities. IEEE Network 32, 2 (March
2018), 92-99. https://doi.org/10.1109/MNET.2017.1700200

K. Winstein and H. Balakrishnan. 2013. TCP Ex Machina: Computer-generated
congestion control. ACM SIGCOMM Computer Communication Review 43, 4,
123-134.

Marvin Zhang, Henrik Marklund, Abhishek Gupta, Sergey Levine, and Chelsea
Finn. 2020. Adaptive Risk Minimization: A Meta-Learning Approach for Tackling
Group Shift. arXiv preprint arXiv:2007.02931 (2020).

http://hdl.handle.net/10993/44490
http://hdl.handle.net/10993/44490
https://doi.org/10.1016/j.sysarc.2016.04.002
http://hdl.handle.net/10993/46282
http://hdl.handle.net/10993/38604
https://doi.org/10.4271/2018-01-0756
https://doi.org/10.4271/2018-01-0756
http://hdl.handle.net/10993/40623
https://doi.org/10.1109/MNET.2017.1700200

	Abstract
	1 Introduction
	2 System model
	2.1 Assumptions on the network
	2.2 Feasibility of TSN configurations
	2.3 Network Topology

	3 Summary of graph neural network
	3.1 The GNN model
	3.2 Training and testing sets
	3.3 Experiment 0: The base GNN model

	4 Improving the training set and the GNN model
	4.1 Experiments 1 and 2: Improving the training set
	4.2 Experiments 3, 4 and 5: Improving the GNN models

	5 Expanding the GNN model and the training set
	5.1 Experiment 6: Expanding the GNN model
	5.2 Experiment 7: Expanding the training set
	5.3 Summary of the experimental results
	5.4 Execution times of training and testing

	6 Related works
	7 Conclusion and future work
	References

