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Abstract 

Since Complex Problem Solving (CPS) skills represent a key competence for educational 

success, they are of great relevance for learning analytics. More specifically, CPS serves as a 

pertinent showcase for addressing a crucial existing gap contemporary education is facing, the 

gap between students’ ability to acquire and subsequently apply knowledge in uncertain 

situations, which are increasingly important in the 21st century. While the CPS process 

incorporates both the acquisition and application of knowledge, many earlier studies have 

focused on identifying the factors relevant for success in knowledge acquisition. Given the 

dearth of existing research on factors influencing a successful transition between both CPS 

phases, we investigated the rates of successful and unsuccessful knowledge transition over the 

course of nine CPS items in a sample of N = 1,151 students in 9th grade. Results showed that 

many participants were unable to transition their knowledge from the acquisition to the 

application phase, which was presumably due to an inefficient mental model transfer. 

Furthermore, the likelihood of students being ‘lost in transition’ was higher in difficult items. 

Implications are discussed in light of learning analytics, and particularly with regard to the 

factors to be taken into account by future CPS training programs. 

Keywords: complex problem solving, learning analytics, assessment, knowledge 

acquisition, knowledge application, mental models 
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Lost in Transition – Learning Analytics on the Transfer from Knowledge Acquisition to 

Knowledge Application in Complex Problem Solving 

One challenge of education in the 21st century is to ensure that students handle complex 

and uncertain situations properly. Importantly, this does not only entail the acquisition of 

knowledge about such a situation, but also its application in a broad range of increasingly 

complex contexts, in order to solve problems or to make proper decisions (Harris, Krajcik, 

Pellegrino, & DeBarger, 2019; Kurban, 2018; Laurillard, 2012). However, previous research 

indicates that the possession of knowledge alone does not guarantee that students are also able to 

put this knowledge into practice (Charland, Léger, Cronan, & Robert, 2016; Everwijn, Bomers, 

& Knubben, 1993). Thus, the scientific investigation of the mechanisms behind this transfer of 

knowledge from acquisition to application has become increasingly relevant in the field of 

learning analytics (e.g., Saqr. Fors, & Nouri, 2018), which has as one of its primary goals the 

collection and analysis of students’ data to improve their learning process and outcomes (e.g., 

Zhang, Meng, Ordóñez de Pablos, & Sun, 2019).  

In addition, scientific research in educational domains has uncovered a set of skills that 

are particularly relevant for the students of today. These skills are frequently summarized under 

the umbrella term ‘21st century skills’ (Adams et al., 2015; Trilling & Fadel, 2009). Mastering 

these skills can be seen as paramount for the initial educational and future work-related success 

of students (e.g., Kay & Greenhill, 2011).  

Given the established importance for students to improve their performance in various 

contemporary skills as well as their ability to not only acquire but also to apply knowledge in 

increasingly complex contexts, the question of how we can use the assessment of students’ 
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performance in a given 21st century skill to gain more insight into the knowledge transition 

process becomes crucial. In turn, being able to answer this question will provide important 

implications for future 21st century skill training programs for students, considering both the 

acquisition as well as the application of knowledge.  

In order to study the process of transition between knowledge acquisition and application 

in light of learning analytics in more detail, this study will focus on complex problem solving 

(CPS), which has been demonstrated to be a prominent 21st century skill predicting educational 

success (e.g., Schweizer, Wüstenberg, & Greiff, 2013). On the one hand, due to the ongoing 

advancement of digitalization, nowadays students are faced with an increasing number of 

dynamic and complex problem situations that call for more elaborate knowledge acquisition and 

application skills to be employed under increasingly complex conditions (Charland et al., 2016; 

Kolfschoten, Lukosch, Verbraeck, Valentin, & de Vreede, 2010; Laurillard, 2012). On the other 

hand, CPS is generally being assessed in a computer-based way (e.g., Greiff, Wüstenberg, & 

Avvisati, 2015) and has been included in the most recent cycles of the large-scale Programme for 

International Student Assessment (PISA; OECD, 2009; 2014), which reflects its relevance for 

contemporary education and for learning analytics. Importantly, the overarching CPS process 

stretches over two distinct phases with different individual requirements, knowledge acquisition 

and knowledge application, thereby reflecting the sequential demands of students in the 

educational contexts of today to initially acquire knowledge and subsequently put it into practice 

under increasingly complex conditions (e.g., Novick & Bassock, 2005). Therefore, this study 

used CPS as a showcase for addressing previously unanswered questions about knowledge 

transition. Thus, we will be leveraging computer-based student data to advance the knowledge 

about how a skill that is particularly relevant for education in the 21st century can be fostered. 
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We will now discuss the construct of CPS and its relevance in the 21st century, and, more 

importantly, how it represents the educational challenge of knowledge transition, as well as its 

assessment, while alluding to the potential role of mental models in CPS knowledge transition. 

1.1 Complex Problem Solving and Knowledge Transition 

One 21st century skill that has received considerable attention in recent educational 

research is CPS (Greiff et al., 2013; Herde, Wüstenberg, & Greiff, 2016; Schweizer, 

Wüstenberg, & Greiff, 2013). Complex problem solving can be defined as the ability to solve 

problems with dynamic, hidden, or intertwined features. Such problems can be encountered on 

any societal level, from those with global impact such as, for instance, climate change (e.g., 

Urry, 2008), to individual ones referring to the use of a new smartphone, moving to a new city, 

or entering high school (e.g., OECD, 2013). In addition, complex problems share several key 

aspects (Mayer & Wittrock, 2006; Stadler, Niepel, & Greiff, 2019). Firstly, a current state is 

differing from a desired goal state. In addition, several variables present in the problem space are 

interrelated (‘complexity’), which contain some opaque connections (‘intransparency’), and the 

solver is asked to pursue multiple goals simultaneously (‘polytely’). Furthermore, a complex 

problem encompasses the feature of variables being able to autonomously change over time 

(‘eigendynamics’, e.g., Buchner in Frensch & Funke, 1995).   

The importance of CPS skills have been uncovered by previous studies in several 

different domains, for instance with regard to supervisory ratings of job performance of adults 

(Mainert, Kretzschmar, Neubert, & Greiff, 2015). In addition, previous studies have particularly 

focused on eliciting the underlying CPS performance indicators in students. Importantly, CPS 

was discovered to be a significant predictor of educational success (Greiff et al., 2013; Schweizer 
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et al., 2013), thereby emphasizing its relevance for learning analytics. In addition, CPS 

inherently captures the increasingly important educational requirement for students to transition 

their knowledge in a complex context, as its overarching process generally spans over two 

subsequent phases, knowledge acquisition and knowledge application (Greiff et al., 2012; 

Novick & Bassock, 2005).  

In the knowledge acquisition phase, a participant is asked to generate knowledge about 

the existing variable relationships in a given problem space. Thus, the primary goal of this phase 

is to execute a thorough and fine-grained investigation of the problem space under no or very 

little time constraints (e.g., Greiff, Fischer, Stadler, & Wüstenberg, 2015). Simultaneously, 

acquired knowledge of the existing variable relationships in a given problem space is stored as 

cognitive representations in a mental model (Greiff et al., 2012; Halasz & Moran, 1983, Rickheit 

& Habel, 1999, Staggers & Norcio, 1993). The process of mental model building starts when a 

participant has entered the knowledge acquisition phase (i.e., by performing a first variable 

manipulation in order to detect whether a relationship between two or more variables is present), 

and is completed when the first phase is terminated (i.e., when the participant believes to have 

uncovered all existing variable relationships; Funke, 2012). 

Subsequently, in the knowledge application phase, solvers are required to put the 

previously acquired knowledge from their mental model into practice by performing efficient 

goal-directed variable manipulations in order to reach certain predefined goals (e.g., Funke, 

2001). Normally, this has to be accomplished under significant time constraints, such as a very 

limited number of rounds, before the automated termination of this phase (Greiff et al., 2012). 
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The two CPS phases can be empirically distinguished according to their different 

requirements for the solver (e.g., Greiff, Wüstenberg, & Funke, 2012). While during the 

knowledge acquisition phase, the participant is asked to generate knowledge by almost entirely 

unrestricted system exploration (i.e., engaging in trial and error), the demands change drastically 

upon entering the knowledge application phase. Suddenly, the primary goal has shifted to putting 

the previously acquired knowledge into practice under highly restricting circumstances. Due to 

this empirical distinction between knowledge acquisition and knowledge application being 

inherent in CPS, this skill represents a particularly suitable showcase reflecting the challenge of 

today’s education to help students to acquire and apply knowledge in increasingly complex 

situations (Charland et al., 2016; Laurillard, 2012).  

Importantly, the relevance of mental models for the knowledge application phase of CPS 

has already been shown in previous studies (Funke, 2001; Greiff et al., 2012). In addition, the 

article by Darabi, Nelson, and Seel (2009) describes the improved accuracy of students’ mental 

models in the context of learning complex skills after receiving supportive information, thereby 

indicating that mental models can be molded and adapted over different points in time; thus, 

making them a promising candidate for potentially exerting influence on knowledge transition in 

CPS. That is why we will critically evaluate the potential influence of mental models on a 

successful or unsuccessful transition between the two CPS phases in our study.  

 Furthermore, earlier studies are in general agreement about knowledge acquisition and 

knowledge application being distinct entities, yet significantly correlated (Funke, 2001; 

Wüstenberg, Greiff, & Funke, 2012). More specifically, the latent correlations between these two 

phases, as obtained by previous research, range from r = .14 to r = .94 (Bühner, Kröner, & 
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Ziegler, 2008; Greiff et al., 2012; 2013; Kröner, Plass, & Leutner, 2005; Neubert, Kretzschmar, 

Wüstenberg, & Greiff, 2014; Sonnleitner, Keller, Martin, & Brunner, 2013; Wirth, & Klieme, 

2003), indicating weak to strong relations between the two phases. However, this broad range of 

latent correlations is the result of using several CPS assessment tools with different approaches 

to measure knowledge acquisition and application (for an overview see Herde et al., 2016). 

Therefore, the selection of an assessment tool that captures the distinct nature of the two phases 

becomes crucial, in order to be able to draw valid inferences with regard to knowledge transition 

in CPS. 

1.2 Computer-Based Assessment of Complex Problem Solving 

Since the advent of computers as a vital tool for scientific research, CPS skills have been 

assessed mainly in a computer-based way by means of so-called microworlds (Funke, 1993; 

Funke, 2001; Gobert, Baker, & Wixon, 2015). While, generally, all of these assessment tools 

capture both phases of CPS, some of them measure knowledge acquisition and knowledge 

application simultaneously, thereby preventing a clear separation of the respective phases on the 

measurement level (Funke, 2001). Thus, we will use an assessment approach that clearly 

distinguishes between the acquisition and application of knowledge (Greiff et al., 2015), which is 

manifested by a participant receiving an individual performance score for each of the two phases 

in a given item (Greiff et al., 2012; Sonnleitner et al., 2012).  

One particular advantage of assessing students’ CPS skills via such computer-based 

microworlds is that several performance indicators are simultaneously being collected and stored 

in log files (see also Gobert et al., 2015; Gobert, Sao Pedro, Raziuddin, & Baker, 2013). This 

process generally happens without the participant being made explicitly aware of it (e.g., Adams 
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et al., 2015), and is sometimes referred to as stealth assessment (Shute, Wang, Greiff, Zhao, & 

Moore, 2016). These log files contain more information than mere success or failure of a student 

in a given microworld, such as, for instance, exactly where and when the participant made a 

mistake, and how close they ultimately were to achieving a particular goal in the knowledge 

application phase (e.g., Greiff et al., 2015). Generally, such thorough investigations of 

performance-related data provide a deep insight into how students approach complex problems, 

and are frequently performed in the context of learning analytics (Kim, Yoon, Jo, & Branch, 

2018; Lim et al., 2019; Nistor & Hernández-Garcíac, 2018). 

Previous research has already leveraged the potential of log files in order to address 

several questions about student performance in the knowledge acquisition phase of CPS (Greiff 

et al., 2015; Greiff, Molnár, Martin, Zimmermann, & Csapó, 2018; Greiff, Niepel, Scherer, & 

Martin, 2016; Molnár & Csapó, 2018). However, so far, the findings have been exclusively 

based on a student’s score in the knowledge acquisition phase of CPS. This circumstance again 

highlights the necessity to extend our knowledge regarding the transition between knowledge 

acquisition and knowledge application in CPS, which will be done in the present study. 

1.3 The Present Study  

Taken together, the present study builds on several key findings of previous research. 

First, contemporary education aims at equipping students with the tools to successfully acquire 

and apply knowledge in increasingly complex contexts, which have proven to be two separate 

distinct processes, and CPS is a relevant showcase to investigate this transition of knowledge. 

Second, the two phases of knowledge acquisition and knowledge application are inherent in the 

process of CPS, and can be distinguished in the assessment of CPS performance. Third, earlier 
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studies have demonstrated the role of mental models in the knowledge acquisition phase of CPS, 

thereby making mental models a promising candidate for the differentiation between success and 

failure in the CPS knowledge transition of students.  

However, at the same time we have illustrated several existing research gaps that we wish 

to address by means of this study. To begin with, up to now, the large amount of studies dealing 

with CPS has almost exclusively focused on how students can become better at acquiring 

knowledge. Hence, research on the transition between acquiring and applying knowledge in CPS 

is scarce at best. In addition, while significant latent correlations between the two CPS phases 

have been reported by previous research, ours will be a pioneering study in providing an analysis 

across the two phases on the individual student level. Moreover, while the phenomenon of being 

‘lost in transition’ (i.e., being unable to apply previously acquired knowledge successfully) has 

been present in the educational context for several decades, we are still unsure about the actual 

magnitude of this phenomenon (i.e., how large is the proportion of students affected by it?) in 

CPS. Therefore, the goal of our study is to analyze the following two research questions (RQs):  

1. How many students who successfully solved the knowledge acquisition phase 

subsequently fail in the knowledge application phase (i.e., are ‘lost in transition’)? 

2. Why do students who successfully solve the knowledge acquisition phase fail to 

successfully solve the knowledge application phase? Some specific hypotheses 

will be discussed individually, i.e.,: 

a) Students generally fail to transfer their mental model from the knowledge 

acquisition over to the knowledge application phase 
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b) Students generally fail to transfer their mental model efficiently from the 

knowledge acquisition over to the knowledge application phase 

c) Students are able to retrieve their mental model correctly in simple items, but 

fail to retrieve their model correctly in more complex items 

2. Materials and Methods 

2.1 Sample Characteristics  

We analyzed the log files of a large-scale dataset of 9th grade students in Finland1. Their 

age ranged from 13 to 18 years (M = 15.70, SD = 0.44). Of all N = 1,369 respondents, 701 were 

female and 668 were male. Written informed consent was required from both the students as well 

as their parents before participation. After processing the files according to our inclusion and 

exclusion criteria (see paragraph 2.5 Filtering and Statistical Analysis for further information), 

the final sample size used for statistical analysis was N = 1,151. 

2.2 Measure 

 For the purpose of assessing students’ CPS performance, we used the computer-based 

MicroDYN approach (Greiff et al., 2012), which is based on an underlying linear structural 

equation (LSE) framework that was formally introduced by Funke (2001).  

Multiple independent complex problem environments are available in MicroDYN (see 

Figure 1 below for an example), each of which takes about five minutes to complete, when 

                                                           
1 Please note that the dataset the findings of the present study are based on has been used in earlier publications (e.g., 

Krkovic, Greiff, Kupiainen, Vainikainen, & Hautamäki, 2014; Wüstenberg, Stadler, Hautamäki, & Greiff, 2014; 

Stadler, Niepel, & Greiff, 2016; see also Vainikainen, 2014 for an overview of the assessment battery). However, no 

existing publication has used the data in order to investigate the transition of students between the knowledge 

acquisition and the knowledge application phase. Thus, the research questions addressed and results being reported 

in the present study are entirely unique to the present study. 
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incorporating both the knowledge acquisition as well as the knowledge application phase. While 

each MicroDYN item employs a different cover story and variable names used to ensure that 

participants are unable to solve it based on prior knowledge in a given domain, all of the items 

share the same underlying framework. Hence, they differ only in terms of the number variables 

present, the number of existing relations between the variables, and with regard to the presence 

or absence of an ‘eigendynamic’, and can therefore be distinguished according to complexity 

based on these individual characteristics. MicroDYN items can either be of low (two existing 

variable relations and no autonomous change in variables, i.e., ‘eigendynamics’), medium (more 

than two existing variable relations, no ‘eigendynamic’; see Figure 1 below), or high complexity 

(more than two existing variable relations and ‘eigendynamics’; Stadler, Niepel, & Greiff, 2016). 

In addition, the validity of the MicroDYN assessment tool has been verified by previous 

research, particularly in relation to other CPS measurement approaches (e.g., Greiff et al., 2015).  

Upon entering the first phase, knowledge acquisition (depicted on the left side of Figure 

1), the participant is able to explore the system without any constraints for 180 seconds. During 

this period, they are allowed to make as many input variable manipulations (‘Blue Chips’, 

‘Green Chips’, and ‘Red Chips’, see left part of the left side of Figure 1) in order to discover any 

effects on the output variables (‘Cards’, ‘Pawns’, and ‘Score’) as desired. At any time during this 

phase, the solver can draw arrows to indicate the connections between the respective variables 

(see bottom part of the left side of Figure 1), which serve as the key performance indicator in this 

first phase of CPS (see also paragraph 2.4 Scoring). Importantly, no arrows are shown to the 

participants at the beginning of the knowledge acquisition phase (i.e., the model is completely 

empty), and they are free to draw arrows between any input and output variables they personally 
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deem appropriate. At this point, the correct solution is not yet available to the solver, and they 

finish this phase without receiving feedback on their performance by simply clicking on “Done”. 

Subsequently, the participant directly enters the second phase, knowledge application 

(shown on the right side of Figure 1). Now, specific target goals for the output variables are 

being presented (see right part of the right side of Figure 1), which should be reached in no more 

than four steps by, again, freely manipulating the input variables. In this phase, achieving these 

target goals represents the key indicator of performance (see also paragraph 2.4 Scoring). During 

the entire knowledge application phase, all existing variable relations are being shown to the 

participant (i.e., the correct model, irrespective of which arrows were drawn by the solver in the 

previous phase; see bottom part of the right side of Figure 1). 

 

Figure 1. Screenshot from the knowledge acquisition phase (left part) and the knowledge 

application phase (right part) of the MicroDYN item ‘Game’, an item of medium complexity 

with three variable relations and without ‘eigendynamic’. 

2.3 Procedure 
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In total, the participants solved nine MicroDYN items on individual school computers 

over a testing period of approx. 45 minutes. The individual items were presented to the students 

in a fixed, predefined order. Firstly, the participants received an instruction video about how to 

interact with MicroDYN. Afterwards, they were asked to solve the first five items (three of them 

being of low and two of medium complexity), followed by an instruction video for 

‘eigendynamics’ (i.e., the ability of variables to change autonomously). Then, the participants 

received four additional items to solve (one of which being of medium, and three of high 

complexity).  

2.4 Scoring 

 For each respective phase of a given MicroDYN item, the participants received a score 

based on their performance. In the knowledge acquisition phase, a participant who managed to 

draw all arrows indicating the existing relations between input and output variables correctly 

received a score of ‘1’ for success. If one or more arrows were missing, or in case the participant 

drew incorrect arrows, he or she received a ‘0’ indicating failure. For the subsequent knowledge 

application phase, a participant was assigned to one of the following categories, depending on 

her or his performance: Category 1 (no target reached, no target approximation), Category 2 (no 

target reached, target approximation), Category 3 (one target reached, no approximation on the 

second target), Category 4 (one target reached, approximation on the second target), or Category 

5 (all targets reached; i.e., overall success). Approximation was coded as reduction in the 

distance of the achieved value of an output variable from the target goal value of that particular 

output variable, compared to its initial value at the beginning of the knowledge application 

phase.  
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 The nine MicroDYN items the students worked on can be grouped according to their 

respective complexity following the argumentation by Stadler and colleagues (2016), which 

considered both the number of relations and the presence of ‘eigendynamics’ in a system as 

determinants of item complexity. Thus, the three items, which contain only two variable relations 

(i.e., ‘Lemonade’, ‘Drawing’, and ‘Cat’), can be considered as relatively easy items. In addition, 

the three items with more than two variable relations but without ‘eigendynamic’ (i.e., ‘Moped’, 

‘Game’, and ‘Handball’), can be assigned to the category of medium complexity. Finally, the 

three items in which both more than two variable relations and an ‘eigendynamic’ is present (i.e., 

‘Gardening’, ‘Spaceship’, and ‘Aid’), can be regarded as most complex items.  

2.5 Filtering and Grouping  

Firstly, we removed all participants from our dataset who did not interact with the system 

in the knowledge application phase (i.e., those who did not perform a single variable 

manipulation until the second phase was terminated) for all respective items. Therefore, N = 218 

participants were excluded from the beginning, since they did try to successfully solve the 

knowledge application phase in any of the nine given items. This was done to prevent a possible 

classification of these participants in the ‘failure’ category for knowledge application. 

Secondly, the participants can generally be grouped according to their performance in 

both respective phases (see Figure 2 below). More specifically, a participant who succeeds in the 

knowledge acquisition phase, can either also complete the knowledge application phase 

successfully (Group A), or fail in the knowledge application phase (Group B). In contrast, 

someone who fails in the knowledge acquisition phase can either succeed (Group C) or fail in the 
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knowledge application phase (Group D).  

 

Figure 2. Decision Tree with all possible categories participants can be assigned to in a 

given MicroDYN item. 

 

 For our analyses, we were particularly interested in the students who succeed in the 

knowledge acquisition phase but not knowledge application phase (i.e., Group B), in order to 

contrast these students to the ones who succeed in both phases (i.e., Group A). Therefore, we 

created a grouping variable to include only the students in Groups A and B of each respective 

MicroDYN item in our subsequent analyses. 

2.6 Statistical Analysis  

Since the number of variable relations as well as the presence or absence of an 

‘eigendynamic’ particularly contribute to the complexity of an item (Stadler et al., 2016), we 
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included these two factors in a Generalized Linear Mixed Model (GLMM; e.g., Baayen, 

Davidson, & Bates, 2008) analysis that was conducted in order to address the third hypothesis 

(i.e., part ‘C’) of RQ2. In order to address our question of how the complexity of an item 

influences the probability of a student being ‘lost in transition’, we firstly created a subset of the 

data selecting only the participants who succeeded in the knowledge acquisition phase of each 

given item for further analysis. This was done in order to ensure that for each item only those 

students who met the specifically relevant condition for being able to be ‘lost in transition’ in the 

first place where included in subsequent calculations, which is, to have mastered the knowledge 

acquisition phase successfully. Thereafter, we specified a GLMM incorporating the variables 

number of relations and ‘eigendynamic’ as fixed effects while simultaneously controlling for the 

variables participant and item in labelling them as random effects with varying intercepts. The 

dichotomous variable knowledge application score was used as dependent variable. Thus, our 

specified model can formally be defined as Yij = βo +  b0p + b0i +  β1R +  β2E. In this 

equation, Yij denotes the logit of the probability of a successful knowledge application score. 

Additionally, βo denotes the general intercept, while β1R and β2E reflect the two fixed item 

complexity characteristics number of relations and ‘eigendynamic’. Lastly, the two varying 

intercepts for ability and item are controlled for in b0p and b0i, respectively. 

In order to perform the statistical analyses, the 25th version of the ‘Statistical Package for 

the Social Sciences’ (SPSS) software (IBM, 2017) was used for data transformation and 

grouping. We also used version 0.11.1 of JASP (JASP Team, 2019) for investigating RQs 1, 2a 

and 2b. In addition, version 4.0.0 of R (R Core Team, 2020) and the package lme4 (Bates, 

Maechler, Bolker, & Walker, 2015) were used for the GLMM analysis (RQ 2c). 



LOST IN TRANSITION  18 
 
 

  
 

3. Results 

3.1 RQ1: How many students who solved the knowledge acquisition phase fail in the 

knowledge application phase? 

Our first RQ addresses the question to what extent the problem of being ‘lost in 

transition’ is generally occurring. Therefore, we analyzed the relative frequencies of students 

who, after successfully solving the knowledge acquisition phase, did not manage to perform 

successfully in the knowledge application phase. The results of this analysis can be seen in 

Figure 3 below, indicating that, across all nine MicroDYN items, a significant proportion of 

students fell into this group (previously labelled as ‘Group B’, see Figure 2 above). More 

specifically, on average across all items, 42.05% of students who succeeded in the first, failed in 

the second phase. In addition, when grouping the percentages according to item complexity, the 

phenomenon affected on average 23.68% of students in easy items, 70.43% of students in items 

with medium complexity, and 32.02% of students in the most complex items with 

‘eigendynamics’, respectively.  
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Figure 3. Relative frequency of students who are successful in the first (knowledge 

acquisition) but fail in the second (knowledge application) phase of CPS, for each respective 

MicroDYN item completed. 

3.2 RQ2: Why Do Students Who Successfully Solve the Knowledge Acquisition Phase Fail to 

Successfully Solve the Knowledge Application Phase? – The Evaluation of Three Hypotheses 

3.2.1 Hypothesis RQ2a: Students generally fail to transfer their mental model from the 

knowledge acquisition over to the knowledge application phase  

 The first potential explanation for the observed phenomenon is that students generally are 

unable to transfer the mental model they constructed during the knowledge acquisition phase 

over to the knowledge application phase. This would mean that they not only are unable to reach 

all target goals, but also that they do not manage to approximate or reach parts of the given target 

goals. That is why we analyzed the relative frequencies of students in a more fine-grained 
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manner, by grouping them according to the five different categories consisting of participants 

who, in the knowledge application phase, 1) neither approximated nor reached a single target 

goal, 2) did not reach but approximated one target goal, 3) reached one target goal but did not 

approximate the additional target goal(s), 4) reached one target goal and approximated the 

additional target goal(s), and those who 5) reached all target goals (cf. paragraph 2.3 above).  

For this hypothesis, the students in Category 1 are particularly relevant. The results for 

this category for each respective MicroDYN item can be seen in Figure 4 below (indicated by the 

red part of each item-based bar), indicating that, on average across all nine MicroDYN items, 

4.47% of the students fell into Category 1. Hence, only a minority of students who failed in the 

application phase did not reach or at least approximate one goal. In other words, over 95% of 

students were able to transfer “some” knowledge from the acquisition phase over to the 

knowledge application phase. That is why we consider the possibility that students were 

generally unable to transfer their mental model as unlikely. 

3.2.2 Hypothesis RQ2b: Students generally fail to transfer their mental model efficiently from the 

knowledge acquisition over to the knowledge application phase   

 Therefore, it is possible that students generally are able to transfer their mental model 

from the first over to the second phase of CPS, yet, that this transfer is not efficient. Under the 

given circumstances, we defined efficiency as the ability to reach the target goals of a respective 

MicroDYN item within the predefined four steps. Thus, while students might be unable to reach 

all target goals within this limited amount of steps, some indicators that they can transfer at least 

a partly correct mental model can be investigated. These indicators are that students either reach 

one of multiple target goals, or that they at least approximate one of the target goals.  
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In order to analyze this hypothesis, we also relied on the grouping of the students mentioned 

above, this time with a particular emphasis on the students in Categories 2, 3 and 4, respectively 

(depicted in the orange, yellow, and light green bars of each completed item in Figure 4 below). 

Results showed that, on average across all nine items, 20.35% of students were part of Category 

2, while 1.64% of participants fell in Category 3, and 15.77% were classified as being in 

Category 4; thus, arriving at a cumulated percentage of 37.76% of students who fell in one of 

these three categories. As also previously concluded in RQ2a, these outcomes indicate that some 

knowledge has been transferred from the knowledge acquisition to the application phase, but that 

students were unable to apply their knowledge efficiently to solve an item in a predefined, 

restricted number of steps. Now that we have, as indicated throughout the results section, 

obtained evidence in favor of this hypothesis, the question why students are unable to transfer 

their mental model efficiently from the first to the second phase leads to the possibility of item 

complexity playing a role, which will be discussed in the subsequent hypothesis below.   

3.2.3 Hypothesis RQ2c: Students are able to retrieve their mental model correctly in simple 

items, but fail to retrieve their mental model correctly in more complex items   

Since we know that the MicroDYN items used in this study can be distinguished 

according to their complexity by means of the number of existing variable relations and the 

presence or absence of an ‘eigendynamic’, we hypothesized that these factors might play a key 

role for the accuracy of the mental model transfer of students. In other words, we were expecting 

that determinants of item complexity (i.e., number of relations and presence of ‘eigendynamic’) 

play a critical role in transferring knowledge from the acquisition phase to the application phase.
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Figure 4. Relative frequencies of students in the respective five categories according to their performance in the knowledge 

application phase of CPS across all nine MicroDYN items.
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In order to test this hypothesis, our Generalized Linear Mixed Model (GLMM) included 

number of relations and ‘eigendynamic’ as fixed effects, and participant and item as effects with 

random intercepts. With this procedure, we were able to test whether the number of relations or 

the presence of ‘eigendynamics’ exerted a significant influence on participants solving the 

acquisition but not the application phase while simultaneously controlling for participant and 

item. Overall, results of the GLMM analysis showed that while the presence or absence of an 

‘eigendynamic’ did not appear to be statistically significant  (𝛽2𝐸 = .58, p = .11), the number of 

relations present in an item significantly predicted (𝛽1𝑅 = -2.44, p < .001) how a student who 

completed the first phase of CPS successfully, scored in the subsequent second phase of CPS. In 

other words, the more relations between variables are present in an item, the less likely are 

students who completed the knowledge acquisition phase successfully to also be successful in 

the knowledge application phase. The results are summarized in Table 1 below. We can conclude 

that these outcomes support our hypothesis H2c, since one of the two complexity predictors 

proved to exert significant influence on our dependent variable. More specifically, in items with 

fewer variable relations, participants were more likely to succeed in the knowledge application 

phase.
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4. Discussion 

The overarching aim of this study was twofold. To begin with, we wanted to uncover the 

magnitude of what we call the ‘lost in transition’ phenomenon, which refers to the case that a 

participant successfully explores the hidden variable relations in the knowledge acquisition 

phase, but fails in reaching the predefined target goals in the following knowledge application 

Table 1.  Results of the Generalized Linear Mixed Model (GLMM) investigating the effects 

of the number of relations and ‘eigendynamic’ for the score in the knowledge application 

phase when controlling for participant and item. 

 
Score Knowledge Application Phase 

Fixed Effects β  SE Z p 

Number of relations -2.44 0.40 -4.13 <0.001*** 

‘Eigendynamic’ 0.58 0.67 1.62 0.11 

Random Effects Intercept Variance SD 
  

Participant 2.34 1.53 
 

Item 0.67 0.82 
 

Marginal R2  0.19 
  

Conditional R2 0.58 
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phase (i.e., Group B as shown in Figure 2), in the particular showcase of CPS. In addition, we 

wanted to investigate potential reasons for why such a large group of students is affected by this 

phenomenon. We will now discuss the results with regard to their implications, particularly in 

light of their relevance for the factors to be taken into account by upcoming training programs of 

CPS.  

4.1 The Magnitude of the ‘Lost in Transition’ Phenomenon in Complex Problem Solving 

Our initial analysis revealed that, in our large-scale dataset, on average almost one in two 

students (i.e., 42.05%) was unable to reach all target goals in the second phase of CPS, after she 

or he had initially explored all variable connections successfully. Given the generally high latent 

correlations between the two phases of CPS (e.g., Herde et al., 2016), it comes as a surprise that 

so many students experience this situation.  

Still, we wish to acknowledge that differences in percentages of students affected were 

present when distinguishing item complexity. In easy items, fewer students fell into this Group 

B, namely only about one in four (i.e., 23.68%). However, as soon as item complexity 

augmented, so did the percentages of students in this group. For items with more variable 

relations but without ‘eigendynamics’ (medium complexity), 70.43% of students were affected. 

When it comes to the most complex items with a simultaneously high number of variable 

relations and ‘eigendynamics’, about one in three students (i.e., 32.02%) was affected. One 

particular outlier, as can be seen in Figure 3, was found in the ‘Gardening’ item, which was the 

first item with ‘eigendynamic’ the students were confronted with. Therefore, while the 

comparatively low percentage of students being ‘lost in transition’ for this item (i.e., 3.03%) may 

come unexpectedly, it can be traced back to the fact that very few students solved the knowledge 
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acquisition phase successfully in the first place, namely only 66 (i.e., 6.76% of all) participants. 

For the two subsequent items containing ‘eigendynamics’, 41.79% and 51.24% of students 

experienced the phenomenon, respectively. 

Overall, we are able to recognize a trend that over the course of increasing item 

complexity, more students tend to fall into Group B, while the rates drop slightly when the 

students attempt the items with ‘eigendynamics’. This might happen due to the students already 

having familiarized themselves with the way MicroDYN assesses their CPS skills by the time 

these types of items are introduced. Given these generally high rates of students experiencing 

success in phase one and failure in phase two of CPS, we have identified a formerly unknown 

performance gap in CPS, which requires further investigation in order to find potential reasons 

for its occurrence.   

4.2 Possible Explanations Why the ‘Lost in Transition’ Phenomenon Occurs 

 We analyzed three hypotheses (RQs2a, b, and c) for the occurrence of the 

aforementioned performance gap between the two phases of CPS. Each of these hypotheses will 

be evaluated individually below, before discussing the overarching implications of our findings.  

Firstly, we hypothesized that the students in Group B are generally unable to transfer the 

mental model they created successfully in the knowledge acquisition phase, over to the 

knowledge application phase. As already indicated by the results, although there is a proportion 

of students who did not manage to approximate a single target goal, this proportion was rather 

small, with an average of 4.47% of students across all nine items. Taken together, while we can 

acknowledge that some students may have been unable to translate their mental model in 
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general, it is by far not the majority. Therefore, we are able to conclude that this explanation is 

an unlikely underlying driving force for the performance gap between the two phases of CPS. 

Secondly, we investigated the possibility that the participants are generally able to 

transfer their mental model from the first to the second phase of CPS; however, that this transfer 

is not carried out with sufficient efficiency in order to reach all target goals. As we can infer 

based on the results, a largely higher proportion of students (37.76% on average across all nine 

items) was able to reach or at least approximate one of the target goals, indicating that a transfer 

of the mental model was present to some extent. Thus, it can be concluded that the efficiency of 

the mental model transfer represents a key factor for the performance gap between knowledge 

acquisition and knowledge application. In order to find out more about the circumstances under 

which students are more or less efficient in transferring their mental model, we investigated the 

following third hypothesis. 

Thirdly, based on previous research, we hypothesized that the efficiency of the mental 

model transfer depends on the complexity of a given MicroDYN item (Stadler et al., 2016). With 

regard to item complexity, we analyzed whether the number of relations and/or the presence of 

an ‘eigendynamic’ in an item had significant impact on a student experiencing the ‘lost in 

transition’ phenomenon. The results with regard to the third hypothesis carry several 

implications. Firstly, they show that the more relations were present in an item, the higher the 

probability that a student who successfully completed the knowledge acquisition phase did not 

succeed in the subsequent knowledge application phase. Secondly, the presence of 

‘eigendynamics’ did not produce a significant effect. On the one hand, this finding represents a 

contrast to earlier research that has found ‘eigendynamics’ to play a significant role for CPS 
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success (e.g., Stadler et al., 2016). On the other hand, these findings are exclusively based on 

success in the knowledge acquisition phase. Given the different requirements of the two distinct 

phases, our results are in line with previous studies that were unable to identify the presence of 

‘eigendynamics’ as important predictor of item difficulty in the knowledge application phase 

(Greiff, Krkovic, & Nagy, 2014).  

Overall, the two predictors explained 19% of the variance in our dependent variable, 

while the full GLMM was able to explain 58% of the variance in the knowledge application 

score when also taking participant and item as random effects into account. Therefore, we can 

conclude that the efficiency of a student’s mental model transfer from the first to the second 

phase of CPS largely depends on the number of relations that are present in an item; thus, 

supporting this hypothesis. In items with fewer relations, students are more likely to be able to 

efficiently transfer their mental model, and to reach all target goals.  

4.3 Main Implications With Regard to Learning Analytics 

Several main implications can be inferred from our results. First and foremost, despite the 

generally high latent correlations between the knowledge acquisition and the knowledge 

application phase of CPS obtained in previous studies, the previously unknown ‘lost in 

transition’ phenomenon affects a great proportion of students. Therefore, it is crucial to openly 

communicate the existence of this problem in order to adapt future CPS training programs 

accordingly, which might also help students for their overarching educational success.  

When carefully considering the requirements of each of the two respective CPS phases, 

however, our findings do not come as a great surprise. The focus of the knowledge acquisition 

phase lies in the almost unrestrained discovery of the relations between the input and output 
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variables by means of systematic variation, sometimes also referred to manipulating one input 

variable at a time, or the ‘VOTAT’ strategy (e.g., Schwichow, Croker, Zimmermann, Höffler, & 

Härtig, 2016; Tschirgi, 1980). Subsequently, the requirements drastically shift to the goal-

directed manipulation of the input variables within only four attempts that can be made. Thus, 

allowing a participant to make only four variable manipulations and simultaneously imposing 

multiple target goals that have to be reached, renders his or her carefully constructed 

methodology of working on such a microworld impossible to use in this second phase of CPS. 

For instance, the previously useful VOTAT strategy is suddenly obstructive instead of beneficial 

for success, and the student needs to recognize the impact of such a rigorous shift in demands for 

his or her modus operandi immediately. However, if the participant takes one or two variable 

manipulations before noticing this shift, it might already too late to reach the target goals. 

Therefore, the cognitive flexibility of students to immediately adapt their mental model to this 

new situation and understand the implications of the changed task demands before interacting 

with the system, may determine their ability to succeed in the knowledge application phase 

(Canas, Quesada, Antolí, & Fajardo, 2003; Krems, 1995). As such, metacognitive aspects such 

as planning, monitoring and reflecting of and on how a complex problem should be/is being 

tackled should become a hallmark of future CPS training programs (McLoughlin & 

Hollingworth, 2002; Rudolph, Niepel, Greiff, Goldhammer, & Kröner, 2017), instead of only 

focusing on teaching students a particular strategy such as VOTAT (e.g., Wüstenberg, Stadler, 

Hautamäki, & Greiff, 2014).  

More generally, when investigating the way people learn new and complex skills, 

Anderson (1982) proposes a framework, which distinguishes between declarative and procedural 

knowledge, arguing for the necessity of breaking down its individual steps in order to be able to 
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transfer knowledge from declaration to procedure successfully when trying to learn a new 

cognitive skill. Such a ‘knowledge compilation’ (p. 2) process closely resembles the 

aforementioned metacognitive aspects of monitoring and reflecting in CPS (Gott, Lajoie, & 

Lesgold, 1991; Rudolph et al., 2017). Similarly, the importance of such a metacognitive aspects 

in reflecting on previous and refining one’s future steps recently has been shown to play an 

important role when engaging in problem solving (Anderson & Fincham, 2014), game-based 

learning (Taub, Azevedo, Bradbury, & Mudrick, 2020), and in video gaming research 

(Anderson, Betts, Bothell, Hope, & Lebiere, 2019). For CPS, this may translate to the crucial 

aspect of a student being able not only to show that they know how given variables are 

connected, but also to use this knowledge to achieve certain goals. This way, the relevance for 

such metacognitive skills to be addressed in future CPS training programs is highlighted once 

more. 

While previous research has already intended to train the CPS competence in students, 

results have often failed to show the desired outcomes of helping students to improve their 

performance in knowledge acquisition and knowledge application simultaneously. For instance, 

in a CPS training study by Kretzschmar and Süß (2015), participants were assigned to a 

‘learning-by-doing’ training program, in which they were confronted with several different CPS 

microworlds, to improve their CPS performance. Results showed that, while performance 

improved with regard to exploration of a given system, the training did not have any beneficial 

effect on the students being able to apply the previously gained knowledge in order to reach the 

given target goals. Similarly, previous research has revealed that knowledge about a particular 

strategy is an insufficient predictor for actual CPS performance (e.g., Wüstenberg et al., 2014). 
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 Overall, the results of our study point towards the necessity for future CPS training 

programs to take metacognitive factors into account, since these factors apparently play a 

predominant role for success in both phases of CPS. However, how can this be done properly in 

order to prevent the ‘lost in transition’ phenomenon? Some suggestions have been made in 

previous studies. For instance, directly instructing students in how to work on a specific complex 

problem has shown to outperform allowing students to freely explore a system while providing 

only marginal guidance (Kluge, 2008). However, as described by Paas and Van Merriënboer 

(1994), it is important to also consider the participants’ cognitive constraints. Two potentially 

useful approaches that have been successful in the past have used similar mechanisms. The first 

approach employs a hierarchical model, which differentiates the existing goals and orders them 

according to their importance for a given task, and then continues to provide suitable strategies to 

reach each goal, and lower-order competencies eliciting these strategies (Frederiksen & White, 

1989). This approach leads to separate task components being trained before students are 

confronted with the entire task. With regard to CPS, students could be provided with or asked to 

generate such a goal hierarchy for each respective phase, in order to be able to immediately 

know what is expected of them at any moment during a CPS task. The second approach by 

Gopher, Weil, and Siegel (1989) is termed emphasis-manipulation approach and focuses on 

different subcomponents of a given task, which are trained separately after one another, leading 

to greater flexibility in how a task can be completed (e.g., by adaptively identifying the 

subcomponent that is relevant at a given point in time). This could be achieved in CPS for 

instance by initially having participants working on the knowledge acquisition exclusively, in 

order to understand which strategies are beneficial. After having mastered this task, participants 

would then be trained for the knowledge application phase accordingly, before having to work 
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on an item including both phases. In addition, more recent approaches have emphasized the 

benefit of thinking aloud protocols (e.g., Barrett et al., 2013), and of deliberately planning which 

variable manipulation to perform next (Eichmann, Goldhammer, Greiff, Pucite, & Naumann, 

2019). Ideally, several of these methodological approaches to provide scaffolding for students 

could be combined in a training program, for example, by providing them with individual 

trainings pieces targeted at specific strategies for each respective phase as well as how to 

properly plan, monitor, and evaluate how one approaches a complex problem. 

In sum, many different ways have been proposed to foster metacognitive aspects in CPS, 

which have been shown to be relevant not only for improving success in CPS performance in 

general, but also seem to be a promising candidate for avoiding the ‘lost in translation’ 

phenomenon in the future. In addition, future CPS training programs that are more fine-grained 

and consider multiple key elements of the CPS process will allow students to become better 

complex problem solvers, which, in turn, will increase the chances of them succeeding along 

their educational paths.  

However, the described phenomenon is not exclusively linked to learning analytics in 

CPS. In a broader context, transferring learned knowledge from one phase or step to another is 

an integral part of nearly every learning situation including transversal competencies, such as 

collaborative problem solving (Graesser et al., 2018; Herborn, Stadler, Mustafić, & Greiff, 

2018), scientific inquiry (Chen & Klahr, 1999), or dynamic decision making (Karakul & Qudrat-

Ullah, 2008). The aim of this study was to shed light on the ‘lost in transition’ phenomenon in a 

specific context, in which the two phases knowledge acquisition and knowledge application are 

clearly separated and, therefore, the phenomenon can be observed under “clean” conditions. 
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Future studies now need to, firstly, further investigate why this phenomenon occurs, by either 

leveraging the potential of even more fine-grained process data as in the present study (Greiff et 

al., 2018; Molnár & Csapó, 2018; Stadler, Fischer, & Greiff, 2019), or by combining 

correlational and experimental approaches in order to determine the cognitive factors underlying 

the phenomenon (e.g., Krieger, Zimmer, Greiff, Spinath, & Becker, 2019). Secondly, future 

research should try to generalize this phenomenon to other tasks and domains, and, thirdly, build 

and adapt cognitive models on how transferring knowledge should be assessed, addressed, and 

taught in order to ensure efficient learning for students, and get closer to filling the crucial 

performance gap between knowledge acquisition and knowledge application in educational 

contexts. 

4.4 Limitations  

Some limitations of the present study have to be acknowledged. Firstly, our results are 

based on a single dataset of students from a single country. However, the students worked on 

multiple instead of only one CPS item, and the sample was carefully selected and is 

representative of the Finnish student population regarding its demographic and socioeconomic 

characteristics (Vainikainen, 2014). Still, investigations with different datasets provide an 

interesting avenue for future research to obtain more information on the ‘lost in transition’ 

phenomenon, and its magnitude and relevance for students in different countries and at different 

ages. 

Secondly, the students only worked on items from a single type of microworld, namely 

MicroDYN. Thus, the question arises if our results are generalizable also to other types of CPS 

assessments that clearly distinguish between the two phases of knowledge acquisition and 
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knowledge application, such as Space Shuttle (Wirth & Funke, 2005), the Genetics Lab 

(Sonnleitner et al., 2013), or Multiflux (Bühner et al., 2008). As already outlined above, future 

studies should therefore aim at replicating our analyses with data from different CPS assessment 

tools but also from other domains, in order to cross validate the existence of the ‘lost in 

transition’ phenomenon.  

Thirdly, while we believe that the MicroDYN framework fitted well for the purpose of 

our study, its inherent clear separation of the two CPS phases represents a feature with limited 

transferability to problem solving in the real world. In real world problem solving, people usually 

acquire and apply knowledge simultaneously, and also more frequently alternate between these 

two phases (e.g., Sarathy, 2018). Therefore, the investigation of the ‘lost in transition’ 

phenomenon should be extended to assessment tools in which the two phases are more 

intertwined as it occurs in natural settings. However, we believe to have established a pertinent 

showcase of the ‘lost in transition’ phenomenon by means of evaluating it with the current 

approach, since it remains unclear how these two phases can be reliably separated in real life 

settings.  

5. Conclusion 

The primary aim of this study was to uncover the magnitude of the ‘lost in transition’ 

phenomenon, referring to the case that a participant who successfully acquires knowledge fails to 

subsequently apply this knowledge, in CPS. In addition, we discussed some potential reasons for 

why this phenomenon arises. Overall, we can conclude that a significant amount of students 

experiences being ‘lost in transition’, and that the probability of this phenomenon occurring 

particularly depends on the number of variable relations present in an item. Moreover, most 
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students are able to at least approximate or reach one of the target goals, indicating that, instead 

of a general mental model transfer error being the primary cause, it is rather the absent efficiency 

of this transfer representing the driving force for the occurrence of this phenomenon.  

In closing, we have provided a new and important viewpoint to the process and research 

of CPS in being the first study analyzing the transition between its two phases on an individual 

instead of a latent level. Several implications are targeted at the role of CPS in light of learning 

analytics. In particular, we have paved the way for several underlying facets of the overarching 

CPS process to be included in future educational training programs, by making explicit 

implementation suggestions. Primarily, these include equipping students with the strategic and 

metacognitive tools (e.g., cognitive flexibility, planning, monitoring, and evaluating) for 

performing successfully in each distinct phase, thereby minimizing the possibility to experience 

being ‘lost in transition’ in the future. In addition, our findings aid the educational endeavor to 

make students better overall complex problem solvers, which simultaneously carries several 

potential benefits for their scholastic performance, and represents a suitable means to help them 

overcome the performance gap between knowledge acquisition and knowledge application.  
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