
Using Domain-specific Corpora for Improved
Handling of Ambiguity in Requirements

Saad Ezzini∗§, Sallam Abualhaija∗§, Chetan Arora‡∗, Mehrdad Sabetzadeh†∗, Lionel C. Briand∗†
∗SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

‡Deakin University, Geelong, Australia
†School of Electrical Engineering and Computer Science, University of Ottawa, Canada

Email: {saad.ezzini, sallam.abualhaija}@uni.lu, chetan.arora@deakin.edu.au, {m.sabetzadeh, lbriand}@uottawa.ca

Abstract—Ambiguity in natural-language requirements is a
pervasive issue that has been studied by the requirements en-
gineering community for more than two decades. A fully manual
approach for addressing ambiguity in requirements is tedious
and time-consuming, and may further overlook unacknowledged
ambiguity – the situation where different stakeholders perceive
a requirement as unambiguous but, in reality, interpret the
requirement differently. In this paper, we propose an automated
approach that uses natural language processing for handling
ambiguity in requirements. Our approach is based on the au-
tomatic generation of a domain-specific corpus from Wikipedia.
Integrating domain knowledge, as we show in our evaluation,
leads to a significant positive improvement in the accuracy of
ambiguity detection and interpretation. We scope our work to
coordination ambiguity (CA) and prepositional-phrase attach-
ment ambiguity (PAA) because of the prevalence of these types
of ambiguity in natural-language requirements [1]. We evaluate
our approach on 20 industrial requirements documents. These
documents collectively contain more than 5000 requirements
from seven distinct application domains. Over this dataset, our
approach detects CA and PAA with an average precision of
≈80% and an average recall of ≈89% (≈90% for cases of unac-
knowledged ambiguity). The automatic interpretations that our
approach yields have an average accuracy of ≈85%. Compared
to baselines that use generic corpora, our approach, which uses
domain-specific corpora, has ≈33% better accuracy in ambiguity
detection and ≈16% better accuracy in interpretation.

Index Terms—Requirements Engineering, Natural-language
Requirements, Ambiguity, Natural Language Processing, Corpus
Generation, Wikipedia.

I. INTRODUCTION

Natural language (NL) is the de-facto medium for spec-
ifying requirements in industrial settings. A key advantage
of NL is that it facilitates shared understanding among dif-
ferent stakeholders who may have different backgrounds and
expertise [2]. Despite this advantage, NL requirements are
prone to a variety of quality issues, one of the most notable
of which is ambiguity [2], [3]. Ambiguity is an inherent
phenomenon in NL, occurring when a text segment is open
to multiple interpretations [4]. Ambiguity in requirements
can lead to misunderstandings and inconsistencies among the
stakeholders, and this can have a potential negative impact on
the overall success of a project [5].

Handling ambiguity in requirements is challenging due
to two main reasons. First, requirements specifications vary
across domains and thus use a domain-specific vocabulary [6].

§Joint First Authors

This has an impact on the likely interpretations of the require-
ments and consequently on what can be considered as am-
biguous. Second, ambiguity can be unacknowledged, meaning
that multiple readers, being unaware of such ambiguity, may
have different interpretations for the same requirement. In con-
trast to acknowledged ambiguity where the reader recognizes
ambiguity, unacknowledged ambiguity might lead to serious
problems due to unconscious misunderstandings [7]. A fully
manual analysis of ambiguity is expensive and also likely to
overlook unacknowledged ambiguity. There is therefore a need
for effective, automated ambiguity-handling approaches that
can help companies focus their often limited quality-assurance
budget on requirements that are more likely to be problematic.

Ambiguity has been widely studied in the requirements
engineering (RE) literature [3], [8]–[11]. Both manual ap-
proaches based on reviews and inspections [9], [12], and
automated approaches based on natural language processing
(NLP) [6], [7], [13], [14], have been proposed for detecting
ambiguity in requirements. Some recent works use domain-
specific corpora for detecting terms that are likely to be
ambiguous due to different meanings across domains [6], [15]–
[17]. Current research on ambiguity in RE, as we elaborate
later, has three main limitations. First, the research focuses
exclusively on detecting ambiguity and does not address
automated interpretation for requirements in which no genuine
ambiguity exists. The lack of automated interpretation im-
pedes further automated analysis, e.g., automated information
extraction from requirements [18], [19]. Second, existing
methods for detecting domain-specific ambiguity are restricted
to identifying merely words with different meanings across
domains, and further require the domain of interest to be
specified a priori. Finally, while the negative consequences of
unacknowledged ambiguity are known in the RE literature [7],
the question of how accurately unacknowledged ambiguity
can be detected through automated means has never been
investigated empirically.

Motivated by addressing the above limitations, we propose
an automated approach for improved ambiguity handling –
both ambiguity detection and interpretation – in NL require-
ments. Ambiguity detection is concerned with finding the
requirements that are genuinely ambiguous. Interpretation, in
contrast, is concerned with providing the most likely meaning
where the potential for ambiguity exists, but where there is
no ambiguity. Our approach incorporates domain knowledge

by automatically generating domain-specific corpora, without
any a-priori assumption about the domain. These corpora
alongside a set of structural patterns and heuristics are used
for handling ambiguity in requirements. In our evaluation,
we analyze the impact of domain knowledge on ambiguity
handling. We further assess how well our automated approach
can detect unacknowledged ambiguity in different domains.

Our work in this paper concentrates on coordination ambi-
guity and prepositional-phrase attachment ambiguity [3], [20],
[21], hereafter referred to as CA and PAA, respectively. Tar-
geting these (syntactic) ambiguity types is motivated by their
prevalence in NL requirements [1]. In our document collection,
as we will discuss later in the paper, out of 5156 requirements,
1098 (21%) are subject to CA analysis and 1328 (26%) to
PAA analysis. Within these, human annotators acknowledged
ambiguity or had different interpretations (unacknowledged
ambiguity) in ≈57% of the requirements.

Coordination is a structure that links together two sentence
elements (called conjuncts) using a coordinating conjunction
(e.g., “and” or “or”) [22]. CA can potentially occur when the
two conjuncts are preceded or followed by a modifier [21]. The
sentence could then be interpretable in two ways, depending
on whether only the conjunct next to the modifier is being
modified or both conjuncts are being modified [3]. Fig. 1
shows an example requirement, R1, with two potential inter-
pretations. The first interpretation, first read, hereafter, FR,
occurs when the modifier “LEO” (low-earth orbit) modifies
the two conjuncts “satellites” and “terminals” (Fig. 1 (a)). The
second interpretation, second read, hereafter, SR, occurs when
the modifier “LEO” modifies “satellites” only (Fig. 1 (b)).

(a)

(b)
R1. Service availability shall measure the outage of LEO satellites
and terminals.

R1. Service availability shall measure the outage of LEO satellites
and terminals.

First Read

Second Read

*LEO stands for low-earth orbit

Fig. 1. Example of Coordination Ambiguity (CA).

A prepositional-phrase (PP) attachment is a PP preceded by
a verb and a noun phrase [20]. Virtually all PP attachments
have the potential for PAA, because they could be interpretable
in two ways, depending on whether the PP is an adverbial
modifier (attached to the preceding verb) or a noun attribute
(attached to the preceding noun phrase). Fig. 2 shows an exam-
ple requirement, R2, with two potential interpretations due to
the presence of a PP attachment. The first interpretation, verb
attachment, hereafter, VA, occurs when the PP “with discrete
tags” is attached to the verb “categorize” (Fig. 2 (a)). The
second interpretation, noun attachment, hereafter, NA, occurs
when the PP is attached to the noun “outages” (Fig. 2 (b)).

R1 and R2 have the potential to suffer from CA and PAA,
respectively. The question is whether these are genuine ambi-
guities or merely situations that human experts can decisively
interpret with little room for divergent interpretations. Existing
techniques do not incorporate domain knowledge for providing
a likely interpretation of CA; instead, they rely on frequency-

(b)

(a) R2. The outage management platform shall provide administrators
with the ability to categorize outages with discrete tags.

R2. The outage management platform shall provide administrators
with the ability to categorize outages with discrete tags.

Noun Attachment

Verb Attachment

Fig. 2. Example of Prepositional-phrase Attachment Ambiguity (PAA).

based computations derived from a generic corpus [23]. For
example, using existing techniques, attempting to interpret
the coordination in R1 would yield FR. This interpretation
is incorrect; with domain knowledge, the coordination would
be interpreted as SR. As for the PP attachment in R2, existing
techniques are unable to provide an interpretation, although
the attachment is interpretable as VA with domain knowledge.
Contributions. We take steps toward addressing the limitations
outlined above. Our contributions are as follows:

(1) We propose an automated approach for handling CA
and PAA in NL requirements. Our approach uses an ensemble
of structural patterns and heuristics. Specifically, we match
requirements against a set of structural patterns, leveraging
and enhancing existing patterns in the literature. In tandem, we
attempt to interpret all requirements with coordination and PP-
attachment structures using heuristics that are based on seman-
tic, morphological and frequency information. Some of these
heuristics are novel; others are borrowed from the literature
and enhanced where necessary. By combining these patterns
and heuristics, we attempt to tell apart the requirements that
can be disambiguated via automated interpretation from the
requirements that are genuinely ambiguous.

(2) We devise a novel domain-specific corpus generator.
Without assuming any a-priori knowledge about the domain,
we first automatically extract keywords from an input require-
ments document. Our corpus generator then assembles a large
corpus of Wikipedia articles relevant to the terminology (and
thus the domain) of the given requirements document. This
automatically generated corpus is utilized for increasing the
accuracy of the heuristics that rely on frequency-based infor-
mation. For example, the occurrence of the word “capital” in
a requirements document within the aerospace domain differs
in frequency and co-occurring words from the same word
occurring in a requirements document within the financial
domain. Generating and using a domain-specific corpus for
ambiguity handling lies at the heart of our proposed approach.

(3) We empirically evaluate our approach on 20 indus-
trial requirements documents. These documents collectively
contain 5156 requirements covering seven distinct application
domains. The ground truth for our evaluation was prepared by
two trained annotators (linguistics experts and non-authors).
Our results indicate that: (i) our approach detects CA and
PAA with a precision of ≈80% and recall of ≈89% (≈90%
for cases of unacknowledged ambiguity); (ii) the automatic
interpretations by our approach have an average accuracy
of ≈85%; and (iii) using domain-specific corpora leads to
substantial gains in accuracy for ambiguity handling, im-
proving detection by an average of ≈33% and interpretation
by an average of ≈16%. We have developed a tool, named

MAANA, which implements our approach for the domain-
specific handling of ambiguity. Specifically, MAANA detects
requirements that potentially contain CA or PAA. The tool and
the non-proprietary requirements we use in our evaluation are
publicly available at https://github.com/SNTSVV/MAANA.
Structure. Section II discusses and compares with related
work. Section III presents our approach. Section IV describes
our empirical evaluation. Section V addresses validity consid-
erations. Section VI concludes the paper.

II. RELATED WORK

We focus on handling CA and PAA in NL requirements.
Our approach, discussed in Section III, builds on and further
enhances the existing structural patterns and heuristics from
the RE and NLP literature for CA [23]–[33] and PAA [3],
[34], [35]. Our work, to our knowledge, is the first to bring
these patterns and heuristics together for handling CA and
PAA. Below, we position our work against the related work
on ambiguity handling in both the RE and NLP communities.

A. Ambiguity Handling in the RE Community

Ambiguity in requirements has been extensively studied
from different perspectives, including understanding the role
of ambiguity in RE [8], [36]–[38], analyzing the linguistic
causes of ambiguity [3], [39]–[41], and ambiguity preven-
tion [42]–[46]. Automated ambiguity detection solutions in RE
are mainly based on matching NL requirements against pre-
defined structural patterns using regular expressions, NLP, or
both [6]. Numerous approaches and tools have been proposed
to this end [10], [13], [30], [45], [47]–[52]. In addition to
these, some recent works attempt to detect lexical ambiguity
– the situation where a word has different meanings depend-
ing on the domain [40] – by integrating domain knowledge
from Wikipedia [6], [15]–[17].

CA detection has been investigated to some extent in the
RE literature. Chantree et al. [23] address CA detection
using structural patterns and frequency-based heuristics. Their
work has been extended over the years [27], [29], [53] with
additional heuristics [25], [31], and for anaphora ambiguity
detection [13], i.e., ambiguity due to multiple interpretations
of pronouns. Though considered a prevalent ambiguity type
in requirements [3], [8], [40], to our knowledge, automated
handling of PAA has not been previously studied in RE.

Our work differs from or enhances the above research in
several ways. First, none of the existing approaches address
the automated interpretation of (potentially ambiguous) coor-
dination structures. As for PAA, the topic has not been tackled
in RE before. Our approach handles both CA and PAA by
combining a broad range of structural patterns and heuristics.
Second, none of the existing approaches evaluate the detection
of unacknowledged ambiguity. We address this gap in our em-
pirical evaluation. Third, the existing automated methods for
domain-specific corpus generation from Wikipedia are limited
to a pre-defined set of domains. Our approach, in contrast, can
generate a corpus based on any given requirements document
without knowing the underlying domain in advance. Fourth

and finally, industrial evaluations of ambiguity handling in RE
are scarce. Our evaluation contributes to addressing this gap
by using a large industrial dataset.

B. Ambiguity Handling in the NLP Community

Syntactic ambiguity types, including CA and PAA, have
been studied for a long time by the NLP community [54]. In an
early work by Goldberg [24], CA is handled using conditional
probabilities of word co-occurrences. Pantel and Lin [55]
present an unsupervised corpus-based method for handling
PAA through a notion of contextual similarity. Agirre et
al. [34] improve the accuracy of PAA handling by integrating
semantic similarity with syntactic parsing. Calvo and Gel-
bukh [35] propose querying the web for word co-occurrence
frequencies and use these frequencies for more accurate PPA
handling. In a similar vein, Nakov and Hearst [26] use struc-
tural patterns alongside statistical co-occurrence frequencies
gathered from the web for handling CA and PAA.

In the context of ambiguity handling, the use of domain
knowledge in NLP is mostly directed at word sense dis-
ambiguation (WSD) in specific domains [56]. To this end,
Wikipedia is a commonly used source of domain knowl-
edge [57], [58]. Fragolli [59] derives from Wikipedia domain-
specific corpora as resources for WSD. Similarly, Gella et
al. [60] map manually defined topics in WordNet [61], [62] to
Wikipedia for generating domain-specific corpora that can in
turn be employed for WSD.

We are not aware of any work in the NLP community
that uses domain-specific corpora for handling either CA or
PAA. Instead, in the existing NLP technologies, e.g., syntax
parsing [63], the handling of syntactic ambiguity – CA and
PAA included – is tuned over generic texts such as news
articles. These technologies therefore do not provide accurate
results for CA and PAA in a domain-specific context. As we
show in Section IV, our approach, which incorporates domain
knowledge for handling CA and PAA, provides significant
improvements over NLP technologies tuned over generic texts.

III. APPROACH

Fig. 3 provides an overview of our approach, which is
composed of five steps. The input to the approach is an NL
requirements document, hereafter, RD. In step 1, we process
RD using an NLP pipeline. In this step, we further identify
two subsets of the requirements in RD, namely Sc and Sp .
These two subsets contain all the requirements with coordina-
tion structures and all the requirements with PP attachments,
respectively. In step 2, we match the requirements in Sc
and Sp against structural patterns that indicate potential CA
and PAA, respectively. In step 3, we generate a domain-
specific corpus for RD by crawling Wikipedia. Step 3 can be
bypassed if a representative corpus for RD’s domain already
exists (through earlier applications of our approach to other
requirements documents in the same domain). In step 4, we
apply a set of heuristics to determine likely interpretations for
the requirements in Sc and Sp . In step 5, we classify into
ambiguous and unambiguous the requirements in Sc and Sp

Ambiguous

Unambiguous

Preprocessing
1

Pattern
Matching

2

Application of
Heuristics

4

Ambiguity
Handling

5

Domain-specific
Corpus Generation

3

Final Output
NL Requirements
Document (RD)

Fig. 3. Approach Overview.

by combining the results of step 2 and step 4. We note that
steps 2 and 4 are independent (i.e., the output of neither step
is an input to the other). Step 2 is limited to a finite list of
CA and PAA structural patterns. As we will explain later in
this section, the heuristics in step 4, when compared to the
patterns in step 2, cover a wider spectrum of structures that
have the potential for CA and PAA. Combining results from
both steps leads to better handling of ambiguity. Below, we
elaborate each step of our approach. In the rest of this paper,
ambiguity refers to CA and PAA exclusively.

A. Preprocessing

The NLP pipeline we use for preprocessing RD is depicted
in Fig. 4. This pipeline is a sequence of five NLP modules.
The first module in the sequence, the Tokenizer, divides the
input text into tokens, such as words and punctuation marks.

RD

Tokenizer

POS Tagger

Lemmatizer

Sentence Splitter

Constituency
Parser

 Preprocessed
RD

Fig. 4. NLP Pipeline.

The Sentence Splitter splits the text
into sentences. The POS Tagger as-
signs to tokens part-of-speech (POS)
tags, such as noun, verb and adjective.
Next is the Lemmatizer, which iden-
tifies the canonical form (lemma) for
each token. For example, the lemma
for “bought” is “buy”. Finally, the Con-
stituency Parser identifies the struc-
tural units of sentences, e.g., noun
phrases, verb phrases and preposi-
tional phrases. The results of the NLP
pipeline are used in the next steps.

In this step (step 1), we further
identify the two requirements subsets,
Sc and Sp , that should be subject to
CA handling and PAA handling, re-
spectively. Sc is comprised of all the
requirements in RD that contain “or”, “and”, or both. We note
that only these two conjunctions can lead to CA [21], [23].
Sp is comprised of all the requirements in RD that contain a
PP attachment [20]. Requirements that contain a conjunction
of interest (i.e., “and” or “or”) as well as a PP attachment are
included in both Sc and Sp .

B. Pattern Matching

In this step, we analyze Sc and Sp to identify requirements
that are likely to be ambiguous due to their syntactic structure.
Table I lists our patterns for CA and PAA. Of these, 23 CA

TABLE I
PATTERNS FOR AMBIGUITY DETECTION (CA AND PAA).

n1, n2, nn: noun, v: verb, adv: adverb, adj: adjective, dt: determiner, p: preposition, /: or.
———

v dt/adj n1 p dt/adj n2 4
v dt/adj n1 p n2 3
v n1 p dt/adj n2 2

1 v n1 p n2

PA
A

dt/adj nn p v1 c v220

adj1 c adj2 adj nn

adv adj1 c adj2
adj1 c adj2 adv

21

23
22

v1 c v2 p dt/adj nn19

CA

nn n1 c n2 nn

n1 c n2 nn
nn n1 c n2

3

8

2

6

1

nn p n1 c n2

adj nn n1 c n2

7

n1 c n2 p nn

9

 v n1 c n2

4
5

adj n1 c n2

n1 c n2 v

v1 c v2 adv

n1 c n2 p dt/adj nn11

17

nn p v1 c v2
v1 c v2 p nn

12

v1 c v2 to v

13

adv v1 c v2

18

14

v1 c v2 nn

 v to v1 c v215
16

adj adj n1 c n2 10

dt n1 c dt n2 p nn

nn dt n1 c dt n2
nn p dt n1 c dt n2

24

26
25

adj nn dt n1 c dt n2

nn dt n1 c dt n2 nn
adj dt n1 c dt n2

27

29
28

v n n1 p n25
v dt adj n1 p n29

v n n1 p dt adj n28
v n n1 p dt/adj n27

6 v n1 p dt adj n2

v dt adj n1 p dt/adj n210

For CA: The two conjuncts are in bold and the modifier is underlined.
For PAA: The verb and first noun are in bold, and the second noun is underlined.

patterns and four PAA patterns come from the literature [3],
[24]–[27], [29], [30], [34]. The remaining patterns, shaded blue
in the table (i.e., CA patterns #24–29 and PAA patterns #5–
10) are novel. The novel patterns were derived by analyzing
a subset of the requirements in our dataset, as we will
precisely define in Section IV-C. Specifically, we analyzed the
ambiguous requirements in the tuning portion of our dataset.

We match the patterns against the requirements in Sc and
Sp . For pattern matching, the unit of analysis is a text segment,
which is the part of a requirement that matches a given
structural pattern from Table I. A pattern suggesting CA
matches a segment that contains a conjunction (denoted as c)
linking two conjuncts (marked in bold) with a modifier (un-
derlined). For example, the matching segment in R1 (Fig. 1)
corresponds to pattern#1 for CA, where LEO is the modifier
and the conjunction and joins the two conjuncts satellites and
terminals. We recall from Section I that CA occurs when
it is unclear whether a modifier is attached to both conjuncts
(FR) or only to the closest conjunct (SR). A pattern suggesting
PAA matches a segment with a verb (v) followed by a first
noun (n1) – both marked in bold – followed by a PP which
consists of a preposition (denoted as p) and a second noun
(n2 – underlined). For example, the matching segment in R2
(Fig. 2), “categorize outages with discrete tags”, corresponds
to pattern#2 for PAA. Again, we recall from Section I that
PAA occurs when it is unclear whether the PP in question is
an adverbial modifier attached to v (VA) or a noun attribute
attached to n1 (NA).

Step 2 identifies the segments (from the requirements in Sc
and Sp) that match any of the patterns in Table I. The matched
segments are passed on to step 5.

C. Domain-specific Corpus Generation

This step attempts to capture the domain knowledge un-
derlying the input requirements document (RD) by crawling
Wikipedia. Fig. 5 shows the sub-steps for generating a domain-
specific corpus. We elaborate these (sub-)steps next.
Extract Keywords. Step 3.1 builds on an existing automated
requirements glossary extraction approach by Arora et al. [64].

Wikipedia
Articles

Query
Wikipedia

Extract
Keywords

3.1

Domain-specific Corpus Generation3

Wikipedia

3.2

Fig. 5. Domain-specific Corpus Generation.

We begin by (automatically) extracting the list of glossary
terms from RD, and thereafter select the top-K most frequent
keywords from the list. The optimal value of K is tuned
in Section IV-D. For example, the keywords extracted from
R1 (Fig. 1) include “LEO”, “LEO satellites”, “satellites”, and
“terminals”. These keywords are used in the next step.
Query Wikipedia. Step 3.2 implements a query engine for
identifying Wikipedia articles that are relevant to the keywords
resulting from step 3.1. These articles form the basis of
our domain-specific corpus. We begin by retrieving matching
Wikipedia articles for each keyword. An article is considered a
match if the keyword in question contains (or is contained in)
the title of the Wikipedia article. For instance, the Wikipedia
article titled “satellite navigation” is a match for the keyword
“satellite-based navigation”. If the above condition is not met,
no matching Wikipedia article is retrieved.

Next, we broaden the domain information captured in our
corpus by taking advantage of the hierarchical category struc-
ture of Wikipedia [57]. In Wikipedia’s hierarchy, each category
can contain articles and nested sub-categories. For a matching
article, we retrieve all the articles in the same category and
all the articles in the descendant sub-categories. For example,
the “satellite navigation” article, as shown in Fig. 6, is clas-
sified under an identically named Wikipedia category (https://
en.wikipedia.org/wiki/Category:Satellite navigation; accessed
17/8/2020). We retrieve all articles in this category and in all its
descendants (e.g., one descendant being “Geocaching”). Doing
so increases topic coherence [65], meaning that the articles
included in the corpus are all indeed relevant to the domain
under analysis.

Next, to make our domain-specific corpus applicable to
other requirements documents from the same domain, we
attempt to increase the coverage of our corpus. In particular,
we consider the categories in the Wikipedia category graph
that are directly connected to the category of the matching
article. For instance, the category “navigation” in Fig. 6
is directly connected to “satellite navigation”; we therefore
include articles listed under “navigation” and its descendant
sub-categories.

We note that, during the creation of a corpus, we consider
only the categories whose number of articles is below a
threshold (α); this is both to keep the computation time
reasonable and to avoid including large and generic categories
in the corpus. We discuss the tuning of α in Section IV-D.
The result of this step (step 3.2) is a body of raw text from
Wikipedia articles. This extracted body of text is our domain-
specific corpus, hereafter denoted as D.

This category has the following 3 sub-categories:

A

Category:Satellite navigation

G

Automotive navigation systems (8 P)

Geocaching (7 P*)

L
Location-based software (3 C, 31 P)

Pages in category “Satellite navigation”

The following 5 pages are in this category:
Satellite navigation

A
Automatic Vehicle location

C
Comparison of satellite navigation software

D
Satellite navigation device
Dilution of precision (navigation)

Categories: Radio navigation | Navigation | Satellites

Matching
article

Category

Number of
sub-categories

& pages

Sub-category with 7 articles

Directly
connected
 category

* We refer to a page in Wikipedia (P) as article

Fig. 6. Example of Category Structure in Wikipedia.

D. Application of Heuristics

Step 4 attempts to provide likely interpretations for the re-
quirements in Sc and Sp . We use six heuristics, denoted as C1–
C6, for interpreting coordination structures and four heuristics,
denoted as P1–P4, for interpreting PP-attachment structures.
Out of these ten heuristics, eight (C1–C5 for CA [23], [31]–
[33] and P1–P3 for PAA [34], [35]) are borrowed from the
literature. The other two (C6 and P4) are novel, but based on
a very intuitive idea: applying constituency parsing, which has
coordination and PP-attachment interpretation built into it.

Similar to step 2 (Section III-B), we operate at a segment
level. Compared to the patterns in step 2, heuristics cover
a wider spectrum of segments that have the potential to be
ambiguous. The heuristics are triggered by the presence of
any coordination structure (an “and” / “or” conjunction, two
conjuncts and a modifier) and any PP-attachment structure (a
verb, a noun and a PP). For example, had R2 (Fig. 2) contained
an extra adjective “categorize outages with standard discrete
tags”, R2 would not have been detected by the patterns of
Table I, but would have been picked up by the heuristics and
attempted for interpretation.

Several heuristics in our approach are corpus-based, i.e.,
require information about the co-occurrence frequencies of the
words. We therefore transform the Wikipedia articles from
step 3 to an n-grams table with n ranging from 1 to 5. We
set the upper limit to 5, motivated by the use of 5-grams in
Google’s well-known Web1T database [66]; this database is
utilized in a wide variety of NLP applications [67]–[69].

TABLE II
EXCERPT OF 5-GRAMS TABLE.

2-
gr

am
s

3-
gr

am
s

Un
ig

ra
m

s

1284navigation system

satellite orbit 234

CountWords

360070system

satellite 21013

orbit 26599

navigation 11610

138satellite navigation system

low earth orbit 724

…

…

4-
gr

am
s

8
satellite power system
concept development
LEO sun synchronous

receiver satellites
8

…

…
5-

gr
am

s

89
global navigation
satellite system

geosynchronous satellite
launch vehicle

27

Table II shows a (very
small) excerpt of a 5-grams
table generated for the satellite
domain. The frequencies used
by the heuristics are the
normalized values of the co-
occurrence counts listed in the 5-
grams table [70]. For example,
the co-occurrence frequency of
“satellite orbit” is computed as
234/(21013 + 26599) ≈ 0.005.

Heuristics for CA. A segment
in Sc contains a conjunction
(c), two conjuncts (conjunct1
and conjunct2), and a modifier
(mod). CA heuristics attempt to
interpret a segment in Sc as ei-
ther FR or SR. If a heuristic cannot interpret a segment,
it returns a designated value, not interpretable (NI). As we
explain below, four of the CA heuristics (C1 and C3–C5) require
pre-defined thresholds, denoted as θi. These thresholds come
from the existing literature. We tune the thresholds empirically
in Section IV-D. To illustrate the heuristics in this section,
we already use the tuned θi values: θ1 = 0.01, θ3 = 0.12,
θ4 = 3.45, and θ5 = 3.

(C1) Coordination frequency computes the co-occurrence
frequency of conjunct1 and conjunct2 in our domain-specific
corpus (D). We consider the co-occurrence frequency of the
conjuncts irrespective of their order. For example, for R1,
we consider, among other possible combinations, the co-
occurrence frequency of “terminals and satellites” and “satel-
lites or terminals”. The intuition is that if the two conjuncts
co-occur frequently in D, they can be regarded as one syntactic
unit and thus are both modified (by mod), in turn favoring
FR. C1 returns FR if the resulting frequency is greater than a
threshold (θ1) and NI otherwise. In R1, C1 returns FR.

(C2) Collocation frequency compares the co-occurrence
frequency of conjunct1 and mod against the frequency of
conjunct2 and mod. Collocation is a recurrent combination
of two consecutive words in a large corpus [71]. For example,
the words “red” and “wine” would be considered collocated,
while “great” and “wine” would not. The intuition is that a
collocation of the mod and the conjunct closer to it is likely to
indicate a syntactic unit, thus favoring SR. Using collocations,
“red wine and cheese” can be interpreted as SR while “great
wine and cheese” would not be interpretable (NI). C2 returns
SR if the collocation frequency of mod and the closer conjunct
is greater than that of mod and the farther conjunct, and NI
otherwise. In R1, C2 returns SR.

(C3) Distributional similarity measures the contextual sim-
ilarity of conjunct1 and conjunct2 [72], i.e., how frequently
the conjuncts appear in similar contexts. For example, in the
context of requirements documents about satellite systems, the
terms “satellite” and “navigation” have a higher distributional

similarity than “satellite” and “investment”. The intuition
is that conjuncts with high distributional similarity can be
regarded as one unit, thus favoring FR. C3 returns FR if the
distributional similarity of the conjuncts is greater than θ3, and
NI otherwise. In R1, C3 returns NI.

(C4) Semantic similarity measures the similarity between
conjunct1 and conjunct2 based on their meanings in WordNet.
The intuition is that conjuncts with high semantic similarity
can be regarded as one unit, thus favoring FR. C4 returns FR
if the semantic similarity is greater than θ4, and NI otherwise.
In R1, C4 returns FR.

(C5) Suffix matching examines the number of shared trailing
characters (suffixes) of conjunct1 and conjunct2. For example,
“installation and configuration” share five trailing characters.
Suffixes are used to change the meaning (e.g., “-able” in
noticeable) or grammatical property (e.g., “-ed” in closed) of
a given word [73]. Hence, matching suffixes provides a cue
about how words are semantically or syntactically related [33].
The intuition is that conjuncts with the same number of trailing
characters are likely to be a single unit, thus favoring FR. C5
returns FR if the conjuncts share trailing characters greater
than θ5, and NI otherwise. In R1, C5 returns NI.

(C6) Coordination syntactic analysis is based on applying
constituency parsing to the requirement in which the (coordi-
nation) segment of interest appears and then obtaining (from
the parse tree) the interpretation of the parser for the segment.
C6 returns FR or SR as per the parsing results, and NI if the
parser fails to parse the requirement. In R1, C6 returns FR.

Heuristics for PAA. A segment in Sp contains a verb (v) and a
following noun (n1), followed by a preposition (p) and another
noun (n2). PAA heuristics attempt to interpret a segment as
either VA or NA, as explained below. If a heuristic cannot
interpret a segment, it returns not interpretable (NI).

(P1) Preposition co-occurrence frequency compares the
frequency of p occurring with v against p occurring with n1.
The intuition is that, based on the co-occurrence frequency
of v (or n1) and p, PP can be regarded as an adverbial
modifier leading to VA or a noun attribute leading to NA. For
example, in the segment “provide user with a valid option”,
the preposition “with” frequently follows the verb “provide”,
thus leading to a VA interpretation. Precisely, P1 returns VA if
the co-occurrence frequency of v and p is strictly larger than
that of n1 and p. P1 returns NA if the converse is true. If there
is a tie between the frequencies, e.g., when the frequencies are
zero due to v, n1 or p being absent from the corpus, P1 returns
NI. In R2, P1 returns NA.

(P2) Prepositional-phrase (PP) co-occurrence frequency
has a similar definition and intuition to P1, the only difference
being that we consider the entire PP (i.e., p and n2) instead of
just p. For example, consider the segment “provide [...]” used
for illustrating P1. P2 would return VA because the PP “with
a valid option” has a higher co-occurrence frequency with v
(“provide”) than with n1 (“user”). P2’s precise definition is
easy to extrapolate from the definition of P1 and is omitted
for space. In R2, P2 returns NA.

(P3) Semantic-class enrichment utilizes the semantic
classes in WordNet that group words with similar meanings.
For example, WordNet puts “scissors” and “knife” under the
same semantic class, namely “tool”. P3 is applied after all
the segments in Sp have been already processed by P1 and
P2. Specifically, P3 attempts to find an interpretation for the
segments that have been deemed as NI by both P1 and P2.
For any such segment X , P3 checks whether there is some
segment Y in Sp which has been interpreted as VA or NA (by
either P1 or P2) and which shares a semantic class with X .
By sharing a semantic class, we mean that X and Y contain
nouns or verbs that fall under the same WordNet semantic
class. If Y has been interpreted as VA (respectively, NA) and
X shares a verb class (respectively, a noun class) with Y , then
P3 interprets X as VA (respectively, NA).
The intuition is as follows: segments that contain words
with similar meanings are likely to have the same interpre-
tation [34]. For instance, a segment X: “offer operator with a
valid option” is interpreted as VA by P3 if there is a segment
Y: “provide user with a valid option” already interpreted as VA
by P2. This is because the verbs “provide” and “offer” have
the same WordNet semantic class: “possession”.

(P4) Attachment syntactic analysis has the same intuition
and definition as C6, except that it applies to a PP-attachment
segment. P4 returns VA or NA, as per the parsing results. P4

returns NI if the parser fails. In R2, P2 returns VA.

Combination of Heuristics. To produce a single interpretation
for each segment, we combine through voting the results
of the heuristics for each ambiguity type (C1 – C6 for CA
and P1–P4 for PAA). We consider two voting methods:
majority voting and weighted voting [74]. In majority voting,
all heuristics contribute equally and the resulting interpretation
is based on the majority. In weighted voting, the contribution
of each heuristic is weighted differently. The weights are tuned
in Section IV-D. In R1, majority voting yields FR, while
weighted voting (using the tuned weights of Section IV-D)
yields SR. We compare the accuracy of both voting methods
in Section IV.

Step 4 partitions Sc and Sp into two subsets each: the
first subset contains the interpretable segments (FR or SR for
segments in Sc , and VA or NA for segments in Sp); the second
subset contains the segments that are not interpretable. These
subsets are passed on to step 5 for ambiguity handling.

E. Handling Ambiguity

In this final step, we classify into ambiguous and unam-
biguous the segments in Sc and Sp . This classification is based
on the results of steps 2 and 4 in our approach (see Fig. 3).
A segment X is classified as ambiguous if either of the
following two conditions is met: (a) X matches some pattern
in step 2, or (b) X is deemed as not interpretable (NI) in step 4.
Any segment that is not classified as ambiguous would be
unambiguous. We say that a requirement is ambiguous if it has
some ambiguous segment; otherwise, we say the requirement
is unambiguous. Our empirical evaluation, discussed next, is at
a segment level (rather than a requirement level), because each

requirement may contain multiple segments that are subject to
ambiguity analysis.

IV. EVALUATION

In this section, we empirically evaluate our approach.

A. Research Questions (RQs)

Our evaluation addresses four research questions:
RQ1. What configuration of our approach yields the most
accurate results for ambiguity handling? Our approach can
be configured in a number of alternative ways; the alternatives
arise from the choices available for the selection of patterns
(Section III-B), the use of default versus optimal thresholds
for CA heuristics (Section III-D), and the voting method for
combining the heuristics (Section III-D). RQ1 identifies the
configuration that produces the best overall results.
RQ2. How effective is our approach at detecting unacknowl-
edged ambiguity? As discussed in Section I, unconscious
misunderstandings may occur due to unacknowledged ambi-
guity. Using the best configuration from RQ1, RQ2 assesses
the effectiveness of our approach in automatically detecting
unacknowledged ambiguity.
RQ3. How accurate are the interpretations provided by
our approach? While the exact interpretation of a segment
found by our approach (FR or SR for segments in Sc , and
VA or NA for segments in Sp) has no bearing on how we
tell apart unambiguous cases from ambiguous ones, we want
the interpretations to be as correct as possible. A correct
interpretation is important both for reducing manual work (in
case the analysts choose to vet the automatic interpretations),
and also for ensuring that any subsequent automated analysis
over the requirements, e.g., automated information extraction,
will produce high-quality results. RQ3 examines the accuracy
of the interpretations provided by our approach.
RQ4. Does our approach run in practical time? RQ4 studies
whether the execution time of our approach is practical.

B. Implementation

We have implemented our approach (Fig. 3) in Java. The
implementation has ≈8500 lines of code excluding comments.
The NLP pipeline of step 1 is implemented using DKPro [75].
For implementing step 3, we use the English Wikipedia dump§

timestamped 01/11/2018. We access the data in this dump us-
ing the JWPL library [76]. In step 4, we transform the raw text
of Wikipedia articles into an n-grams table using the JWEB1T
library [77]; this enables us to compute our interpretation
heuristics more efficiently. We use Stanford Parser [78] to
obtain the parse trees required by heuristics C6 and P4. For C4,
we compute semantic similarity using the Resnik measure [79]
as implemented by the WS4J library [80]. For implementation
availability, please see the footnote on page 2.

C. Data Collection

Our data collection has human experts examine and annotate
potential CA and PAA in industrial requirements. We collected

§https://dumps.wikimedia.org/backup-index.html

TABLE III
DATA COLLECTION RESULTS.

Sc

Sp

TotalDomain

A
er

os
p

ac
e

A
u

to
m

at
iv

e

D
ef

en
se

D
ig

it
al

iz
at

io
n

M
ed

ic
in

e

S
at

el
li
te

S
ec

u
ri

ty

5156284Total Requirements 701 1899101510 1421420
203 3 12RDs 45 2

154171 10919 19Unacknowledged 487015
370Acknowledged 36 0 7021 178 164

250416Segments 150664 3382 39 352
29449 28164295Requirements 265 10983

128133 105233 20Unambiguous 649228

36131 555Unacknowledged 517115 77 174
298 105 05117 14Acknowledged 278

172156 130106 10Unambiguous 6414522

47 20388Segments 312 81360 1474266
23844353 1328Requirements 19272 333 69

our data from 20 requirements documents (RDs) written in
English covering seven different application domains. Data
collection was performed by two third-party annotators (non-
authors) with expertise in linguistics. The first annotator, Anna
(pseudonym), has a Masters degree in Multilingualism. Anna
had previously completed a three-month internship in RE. The
second annotator, Nora (pseudonym), has a Masters degree in
IT Quality Management. Nora has a professional certificate
in English translation. Both annotators underwent a half-day
training on ambiguity in RE. The two annotators produced
their annotations over a six-month span, during which they
declared a total of ≈130 and ≈165 hours, respectively.

The annotators were then tasked with independently label-
ing with FR or SR all the (“and”/“or”) coordination segments
in Sc and labeling with VA or NA all the PP-attachment
segments in Sp . The annotators were specifically instructed
to ascribe an interpretation to a segment only when they
were confident about their interpretation. When in doubt, the
annotators labeled the segment in question as ambiguous.
An “agreement” between annotators is observed for segment
X, when both of them either find X ambiguous or interpret
X the same way. Any other situation is a “disagreement”.
Using Cohen’s kappa metric (κ) [81], we obtain an inter-rater
agreement of 0.37, suggesting “fair agreement”. To examine
the sources of disagreement, we further analyze the cases
where X is deemed ambiguous (i.e., acknowledged ambiguity).
For these cases, we obtain κ = 0.78 (“substantial agreement”),
indicating that most disagreements are due to different inter-
pretations (i.e., unacknowledged ambiguity). As stated earlier
in the paper, unacknowledged ambiguity is believed to be
prevalent in requirements [3], [23]. The analysis, discussed
above, provides empirical evidence for this belief.

We constructed our ground truth as follows: (i) any seg-
ment labeled as ambiguous by at least one annotator is a
case of acknowledged ambiguity, (ii) any segment labeled
with different interpretations by the annotators is a case of
unacknowledged ambiguity, and (iii) any segment labeled with
the same interpretation by both annotators is unambiguous. We
motivate our definitions of acknowledged and unacknowledged

ambiguity by considering what might happen during a manual
inspection where a team would typically be involved. If a
segment is ambiguous enough for someone (not necessarily
everyone) to raise a concern, then this segment is likely to be
further discussed by the team (acknowledged). The situation is
different for unacknowledged ambiguity. In reality and under
time pressure, the analysts are unlikely to spell out their inter-
pretations when they feel there is no ambiguity. Consequently,
the disagreement remains hidden (unacknowledged).

Table III provides overall statistics about our data collection,
showing for each domain, the number of RDs, the total number
of requirements, and the number of requirements and segments
in Sc and Sp . The table further lists the number of ambiguous
segments (grouped into acknowledged and unacknowledged)
and the number of unambiguous segments. We observe from
Table III that out of the total of 2980 segments analyzed by
the annotators, 57% are ambiguous and the remaining 43%
are unambiguous. In the ambiguous segments, the proportion
of segments with unacknowledged ambiguity (1042/1690 ≈
62%) is significantly higher than the proportion of segments
with acknowledged ambiguity (648/1690 ≈ 38%). We note
that repeated segments constitute a relatively small fraction
of the ground truth: ≈9% (137/1506) for CA and ≈8%
(116/1474) for PAA. These repetitions are not disproportion-
ately concentrated in one group. More precisely, in the case
of CA, 44 repetitions are unambiguous, 48 are acknowledged,
and 45 are unacknowledged. For PAA, 39 repetitions are
unambiguous, 35 are acknowledged, and 42 are unacknowl-
edged. Since there is no disproportionate concentration of
occurrences, repetitions have no major bearing on our findings.

We set aside ≈20% of our ground truth for parameter
tuning, as we will discuss in Section IV-D. We refer to this
subset of the ground truth as T . The remaining ≈80% of the
ground truth is referred to as E. We use E for answering all
the RQs, except RQ4 which is answered over T ∪ E. The
tuning set, T , consists of six RDs from six domains with a
total of 550 requirements and representing 26% and 21% of
the coordination and PP-attachment segments, respectively. We
selected one RD from each domain; this was done in a way
that the selected document would be as close as possible to
containing ≈20% of the requirements we had in each domain.
We did not select for tuning any documents from the domain
of medicine, since we had only one RD from this domain.

D. Parameter Tuning

Tuning involves two groups of parameters: parameters for
generating a domain-specific corpus (Section III-C) and pa-
rameters associated with the heuristics (Section III-D). Both
groups of parameters are tuned with the goal of maximizing
the overall accuracy of the interpretation heuristics. Note that
tuning is performed exclusively over T (see Section IV-C).
Parameters for Corpus Generation. Generating a domain-
specific corpus requires tuning the maximum number of key-
words (K) to select from an input RD and the maximum
number of articles (α) in a given category in Wikipedia. For
each RD in T , we generate a domain-specific corpus. To tune

K, we experiment with five values at regular intervals between
50–250. Values of K outside this range are undesirable as they
result in a corpus that is either too small (for K < 50) or too
large (for K > 250). A suitably large corpus is necessary for
accurately estimating the co-occurrence frequencies of words
in a specific domain [70]. Building and using a corpus that
is too large would be time-consuming and, more importantly,
would defeat the goal of being domain-specific. Using a corpus
that is too small would simply be ineffective. For tuning α, we
experiment with values in the range of 50–1000 in intervals
of 50. Larger categories (i.e., α > 1000) are too generic, and
smaller ones (with α < 50) are already covered by α > 50, as
α is the upper bound for the number of articles in a category.
For optimizing K and α, we use grid search [82]. The resulting
optimal values are K = 100 and α = 250.
Parameters for Heuristics. Applying the interpretation heuris-
tics requires tuning four thresholds θ1, θ3–θ5 respectively for
heuristics C1, C3–C5. For using the weighted voting method,
we further need to tune the weights of all the heuristics.

We note that the thresholds for the heuristics have been
introduced and tuned in the existing literature, albeit for
generic texts [23], [31], [32]. We re-tune these thresholds
to better capture co-occurrence frequencies in the context of
requirements. The threshold values from the existing literature
are hereafter referred to as default. We experiment with 1000
regular intervals in the range of 0.01–10 for tuning θ1, θ3
and θ4. To tune θ5, we investigate suffixes of lengths 1 to 5,
e.g., the suffix “-ation” has a length of five. We use random
search [82] to optimize the thresholds because the search space
is too large for grid search. The resulting optimal thresholds
are θ1 = 0.01, θ3 = 0.12, θ4 = 3.45, and θ5 = 3.

For determining the weights of the heuristics, we first apply
each heuristic individually on T . The weight of a given heuris-
tic is determined by its success in providing interpretations for
the segments. In our experiments, the weights of heuristics in
descending order for CA are 0.038 for C5, 0.019 for C2, 0.012
for C1, 0.005 for C4, 0.005 for C6 and 0.003 for C3, and the
weights for PAA are 0.08 for P1, 0.05 for P2 and 0.03 for P4.
P3 is not a standalone heuristic and is thus not weighted. These
weights reflect the contribution of the heuristics, in weighted
voting, to produce a final interpretation for a segment.

E. Evaluation Procedure

We answer our RQs through the following experiments.
EXPI. This experiment answers RQ1. We determine the
optimal configuration for ambiguity handling by comparing
the output of our approach against E. For evaluating the
configurations, we define a true positive (TP) as a detected
ambiguous segment, a true negative (TN) as an unambiguous
segment marked as such, a false positive (FP) as a misclas-
sified unambiguous segment, and a false negative (FN) as a
misclassified ambiguous segment. We compute Accuracy (A)
as (TP + TN)/(TP + TN + FP + FN), Precision (P) as
TP/(TP + FP), and Recall (R) as TP/(TP + FN).

We consider eight alternative configurations for our ap-
proach, denoted as V1–V8. These alternatives are induced by

three binary decisions. The first decision is whether to use the
collected or the enhanced patterns in step 2 of our approach
(see Table I). The second decision is whether in step 4 we
should use for the thresholds the default or the optimal values
(from Section IV-D). And, the third decision is whether the
method for combining the heuristics is majority or weighted
voting (see Section III-D). To analyze the impact of using
domain-specific corpora, we compare our approach against
baselines, denoted as B1–B8, with similar configurations but
using a generic corpus: the British National Corpus [83].

To run EXPI, we first need to generate seven corpora, one
for each application domain in our ground truth (see Table III).
Six of these corpora are reused from Section IV-D. The last
one – for the domain of medicine – is generated based on the
single RD we have in our dataset for this domain. Except for
the domain of medicine, EXPI provides an implicit assessment
of how reusable a domain-specific corpus is, being generated
from one RD and reused for other RDs from the same domain.
EXPII. This experiment answers RQ2. Given the optimal
configuration of our approach from EXPI, EXPII assesses how
well our approach can detect unacknowledged ambiguity in
different domains. In EXPII, we compute Recall (R) similar
to EXPI, but limiting the evaluation to only the segments with
unacknowledged ambiguity in E. The corpora used in EXPII
are the same as those in EXPI.
EXPIII. This experiment answers RQ3. We evaluate the
interpretations provided by our approach for the segments
classified as unambiguous (FR or SR for segments in Sc ,
and VA or NA for segments in Sp). Specifically, EXPIII
compares the interpretations produced by our approach against
the interpretations of unambiguous segments in E, reporting
the ratio of the correctly interpreted segments (i.e., Accuracy).
The corpora used in EXPIII are the same as those in EXPI
and EXPII. We further compare our approach against Stanford
Parser [78] – one of the commonly used tools for interpreting
syntactic ambiguity [84].
EXPIV. This experiment answers RQ4 by running the best
configuration from RQ1 over T ∪E. The experiment is done
on a laptop with a 2.3 GHz CPU and 16GB of memory.

F. Answers to the RQs

RQ1. Table IV shows the results of EXPI (on E). To determine
the optimal configuration of our approach, we investigate
among all configurations the factors that cause the most
variation in accuracy. We do so by performing regression tree
analysis (tree not shown) [85]. The most influential factor for
both CA and PAA, as per regression tree analysis, is the choice
of domain-specific versus generic corpus. The configurations
that use a domain-specific corpus, V1–V8, have an average
gain in accuracy of ≈33% over the configurations that use a
generic corpus, B1–B8. This observation clearly highlights the
importance of domain knowledge in ambiguity handling.

Among V1–V8, using enhanced patterns has a considerable
impact on detecting CA. Compared to the configurations with
collected patterns (V1–V4), the configurations with enhanced
patterns (V5–V8) lead to an average gain of ≈6% in accuracy

TABLE IV
RESULTS OF AMBIGUITY HANDLING (RQ1).

V8

V4

V1

V6

V5

V2

V3

V7

CA PAA

 Accuracy (A), Precision (P) and Recall (R) in percentage (%)

D
om

ai
n-

S
pe

ci
fi

c
C

or
pu

s
B

ri
ti

sh
 N

at
io

na
l C

or
pu

s

47.5 53.349.9optimal 59.6weightedenhanced 63.851.6

50.9enhanced 52.946.7majority 59.663.3optimal 49.4

46.248.8weighted 57.2enhanced 50.360.8default 43.7

45.860.4enhanced 42.9majority 50.0 57.2default 48.2

weighted 49.8collected 53.543.946.8 55.942.1optimal

collected optimal 46.0 49.3 53.141.3 55.943.6majority

collected 43.238.4default 50.2 53.546.240.9weighted

collected 42.537.6default 49.9 53.545.740.6majority

B7

B6

B5

B4

B3

B2

B1

B8

84.0

66.6

A (%)

75.6

87.776.4

79.8

78.0

majority

enhanced

default

82.7

76.9

A (%)

87.9

76.7

optimal

collected 77.8

79.1

optimal

Thresholds P (%)

optimal

80.5

weighted

78.6

majority 81.1

80.3

77.5

78.578.9

optimal

collected

Patterns

90.1

majority

weighted

84.6

86.4

82.2

69.5

default

default

enhanced

78.4 84.0

Voting R (%)

default

collected

90.1

76.9

R (%)

71.6

76.3

70.8

74.5

66.9

weighted

82.282.5

82.0

69.9

P (%)

87.7enhanced

86.4

87.6

81.3

majority

collected

81.5

75.3

weighted 84.9

78.9

79.8

82.2

enhanced

TABLE V
UNACKNOWLEDGED AMBIGUITY DETECTION USING V8 (RQ2).

TP, FN: number of true positives and false negatives, R: Recall in percentage (%)

11 1 121 4
4120 14117 32

4 6
4617 28 19

2 0 0
0

37
412

39
268

87.5 88.489.4 100 - 87.3

91.6 80.0 92.194.4 88.8
FN
TP

FN
TP

R (%)

R (%)
26

1583

25 2
145 13

84.7 86.6

88.293.2 91.8

SummaryDomain

A
er
os
p
ac
e

A
u
to
m
at
iv
e

D
ef
en

se

D
ig
it
al
iz
at
io
n

M
ed

ic
in
e

S
at
el
li
te

S
ec
u
ri
ty

C
A

PA
A

and ≈18% in recall for a minor ≈2% drop in precision. Com-
pared to collected patterns, enhanced patterns do not improve
the detection of PAA, but do not perform any worse either.
Thus, we choose the enhanced patterns over the collected ones.

With respect to the thresholds for the heuristics, the con-
figurations with optimal thresholds (V7–V8) outperform those
with default thresholds (V5–V6) by 3.7% in terms of accuracy.
Noting that our parameter tuning used documents from six
different application domains, we believe that the optimal
thresholds are more suitable in an RE context than the default
ones based on generic texts. We note that, overall, the accuracy
of ambiguity handling shows little sensitivity to the choice
of voting method. However, as highlighted in Table IV, V8
(weighted voting) is slightly more accurate than V7 (majority
voting). For the subsequent RQs, we select V8 as the best-
performing configuration of our approach with enhanced
patterns, optimal thresholds and weighted voting.

To be able to perform a thorough error analysis (Sec-
tion IV-G), we run V8 on the entire dataset (T ∪E). This yields
a precision and recall of 80.1% and 89.3% for CA, and 81.6%
and 90.2% for PAA, respectively. We observe that, for each
metric, the overall results are only marginally (≈1%) better
than what was reported over E. This provides confidence that
our tuning (Section IV-D) did not overfit.

RQ2. The results of EXPII, obtained from running V8 (the
best configuration from RQ1) on E are shown in Table V.
Overall, our approach detects unacknowledged ambiguity with
an average recall of 87.3% for CA and 91.8% for PAA.

Our error analysis (Section IV-G) examines missed cases of
unacknowledged ambiguity in the entire dataset (T ∪E). Over
the entire dataset, V8 detects unacknowledged ambiguity with
an average recall of 87.8% for CA and 92.6% for PAA.
RQ3. The interpretations provided by V8 for the segments in
Sc and Sp (when restricted to E) have an average accuracy of
85.2% and 84.4%, respectively. The accuracy of the approach
on the entire dataset is marginally higher (by an average of
≈1%). We examine interpretations errors in Section IV-G.

Applying the Stanford Parser to Sc and Sp (when restricted
to E) yields interpretations with an average accuracy of 65.7%
and 72.6%, respectively. In an RE context and in comparison
to the Stanford Parser, the integration of domain knowledge
increases the interpretation accuracy of coordination and PP-
attachment structures by an average of ≈16%.
RQ4. Executing steps 1 and 2 of our approach (Fig. 3) takes
≈0.2 milliseconds per requirement. Step 3 is performed only
when a suitable corpus is absent, i.e., when no corpus has
been generated before for the domain of a given RD, or when
the domain of the RD is difficult to ascertain. Across the
seven corpora we generated for answering RQ1-3, the average
execution time was ≈58 minutes (standard deviation: ≈21
minutes). To be able to generate corpora, there is a one-time
overhead of ≈3 hours; this is to set up a query engine over
Wikipedia (see step 3.2 in Section III-C). Once set up, this
query engine does not have to be rebuilt, unless one wants
to switch to a different edition of Wikipedia. With a corpus
at hand, execution time is dominated by the computation of
the frequencies required by the heuristics of step 4. This on
average takes ≈6.8 seconds for a requirement in Sc and ≈1.5
seconds for one in Sp . Processing the requirements in Sc takes
longer because there are more corpus-based heuristics for CA
than PAA. Non-corpus-based heuristics take negligible time.

Excluding corpus generation, the largest document in our
dataset took ≈51 minutes to process. This document had 492
requirements with 392 coordination and 245 PP-attachment
segments. Such an execution time is practical for offline (e.g.,
overnight) processing. With regard to using our approach
interactively, we observe that, at any point in time, an analyst
likely works on only a small part of a large document. For
interactive use, ambiguity handling can be localized to the
document fraction (e.g., page) that the analyst is reviewing.

G. Error Analysis

In this section, we analyze the root causes of the errors
made by our approach (V8) on the entire dataset (T ∪ E).
Errors in RQ1 and RQ2. Out of 1690 segments (Table III),
our approach missed 192 ambiguous segments, of which 100
are unacknowledged. These errors can be explained as follows.

1) Coverage of patterns: 169 segments do not match any
pattern in Table I. For example, the segment “register the

microservice in the operations server” matches no PAA pat-
tern. One can avoid such errors by expanding the pattern set.
However, our experiments indicate that doing so comes at the
cost of a large number of FPs and is thus not worthwhile.

2) NLP errors: 23 segments are missed due to mistakes
by the NLP pipeline (Fig. 4). For example, “support” in the
segment “[can] support doctors in the ICU” is erroneously
tagged as a noun; this results in the segment to not match any
of our patterns. Such NLP mistakes are hard to avoid [86].
Errors in RQ3. We found two causes for interpretation errors.

1) Interpretation errors by the heuristics: 74 segments fall
under this class of errors, having to do with situations where
the combination of heuristics provide a wrong interpretation
or return not interpretable (NI) where there is indeed an
interpretation. For example, for the segment “pulse width and
duration” the resulting interpretation is SR, although it should
be FR. One can try to address individual interpretation errors
by adjusting the weights of the heuristics. However, doing so
will have a negative overall impact by causing other errors.

2) Document-specific abbreviations: 58 segments are mis-
interpreted due to abbreviations. An abbreviation that is spe-
cific to a document can mislead frequency computations if the
abbreviation has a homonym or is not found in the corpus at
all. For example, “MOC” in “MOC operator and component”
stands for “MOnitoring and Control” in one of our RDs
from the satellite domain. This abbreviation, however, matches
“Mars Orbiter Camera” in the corpus that we generate for this
domain. Such mismatches can be reduced through abbreviation
disambiguation [87]. We leave this for future work.

H. Discussion about Usefulness

As shown by Table III, ambiguity was acknowledged by the
annotators in only 38% of the cases. The remaining 62% were
unacknowledged. In practice, even if the analysts perform a
manual review, under time pressure and outside an evaluation
setting, they will likely only examine what at least one analyst
finds to be ambiguous and thus miss out on the cases where
they unconsciously disagree about the interpretation.

We believe that the main benefit of our automated approach
is in bringing ≈90% of the cases of unacknowledged ambigu-
ity to the attention of the analysts (see RQ2). This is achieved
while maintaining a high overall precision (≈80%), meaning
that the analysts will spend a small fraction of their manual
effort over false positives. While user studies remain essential
for establishing usefulness, our good accuracy results suggest
that our approach has the potential to be helpful in practice.

V. VALIDITY CONSIDERATIONS

Internal Validity. Bias is a potential threat to the internal va-
lidity of our evaluation. To mitigate this threat, the authors had
no involvement in the annotation activities. Instead, two third-
party annotators, who had no knowledge of our technical ap-
proach, independently annotated the dataset. Further, we made
a strict separation between the data used for defining patterns
and tuning, and the data used for assessing effectiveness.

Construct Validity. An individual requirement can potentially
have multiple instances of CA or PAA. To ensure that this
possibility is properly reflected in our metrics, we defined
accuracy, precision and recall at the level of segments rather
than whole requirements.
External Validity. Our evaluation builds on 20 industrial
requirements documents, covering seven different domains.
The promising results obtained across these domains provide
a measure of confidence about the generalizability of our
approach. This confidence is further strengthened by the fact
that our approach can adapt itself to new domains via the
(automatic) generation of domain-specific corpora. Due to this
characteristic, we are optimistic that our approach will be able
to achieve comparable results in other domains. That said, fu-
ture case studies would help further improve external validity.

VI. CONCLUSION

In this paper, we proposed an automated approach for
improving the handling of coordination ambiguity (CA) and
prepositional-phrase attachment ambiguity (PAA). The main
novelty of our approach is in automatically extracting domain-
specific corpora from Wikipedia and utilizing them for in-
creasing the accuracy of CA and PAA handling in require-
ments documents. We conducted a large-scale evaluation of
our approach using more than 5000 industrial requirements
from seven different application domains. Our results indicate
that our approach can detect CA and PAA with an average
precision of ≈80% and an average recall of ≈89%. The results
further indicate that employing domain-specific corpora has a
substantial positive impact on the accuracy of CA and PAA
handling. Specifically, over our dataset, we observed a ≈33%
improvement in accuracy when compared against baselines
that use generic corpora. While our work is motivated by
improving the quality of systems and software requirements,
our technical solution is also novel from an NLP standpoint.
Our solution thus has the potential to be useful over other types
of textual documents within and beyond software engineering.

In future work, we would like to integrate our ambiguity
handling approach with automated techniques for extracting
structured information from requirements specifications. The
motivation for doing so is to increase the quality of information
extraction by more accurately interpreting coordination and
prepositional-phrase structures. Another direction we would
like to explore in the future is to use deep learning to
complement or as an alternative to our current approach.
Acknowledgement. This work has received funding from Lux-
embourg’s National Research Fund (FNR) under the grant
BRIDGES18/IS/12632261 and from NSERC of Canada under
the Discovery, Discovery Accelerator and CRC programs. We
are grateful to the research and development team at QRA
Corp. (Canada) for very valuable insights and assistance.

REFERENCES

[1] F. de Bruijn and H. Dekkers, “Ambiguity in natural language software
requirements: A case study,” in Proceedings of the 16th Working Con-
ference on Requirements Engineering: Foundation for Software Quality
(REFSQ’10), 2010.

[2] K. Pohl, Requirements Engineering, 1st ed. Springer, 2010.
[3] D. Berry, E. Kamsties, and M. Krieger, “From contract drafting to

software specification: Linguistic sources of ambiguity, a handbook,”
2003. [Online]. Available: http://se.uwaterloo.ca/∼dberry/handbook/
ambiguityHandbook.pdf

[4] S. Piantadosi, H. Tily, and E. Gibson, “The communicative function of
ambiguity in language,” Cognition, vol. 122, no. 3, 2012.

[5] K. Pohl and C. Rupp, Requirements Engineering Fundamentals, 1st ed.
Rocky Nook, 2011.

[6] A. Ferrari and A. Esuli, “An NLP approach for cross-domain ambiguity
detection in requirements engineering,” Automated Software Engineer-
ing, vol. 26, no. 3, 2019.

[7] F. Chantree, B. Nuseibeh, A. de Roeck, and A. Willis, “Identifying
nocuous ambiguities in natural language requirements,” in Proceedings
of the 14th IEEE International Requirements Engineering Conference
(RE’06), 2006.

[8] V. Gervasi, A. Ferrari, D. Zowghi, and P. Spoletini, “Ambiguity in
requirements engineering: Towards a unifying framework,” in From Soft-
ware Engineering to Formal Methods and Tools, and Back. Springer,
2019.

[9] E. Kamsties, D. Berry, and B. Paech, “Detecting ambiguities in require-
ments documents using inspections,” in Proceedings of the 1st Workshop
on Inspection in Software Engineering (WISE’01), 2001.

[10] N. Kiyavitskaya, N. Zeni, L. Mich, and D. Berry, “Requirements for
tools for ambiguity identification and measurement in natural language
requirements specifications,” Requirements Engineering, vol. 13, no. 3,
2008.

[11] F. Dalpiaz, I. Schalk, and G. Lucassen, “Pinpointing ambiguity and in-
completeness in requirements engineering via information visualization
and NLP,” in Proceedings of the 24th Working Conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ’18), 2018.

[12] P. Spoletini, A. Ferrari, M. Bano, D. Zowghi, and S. Gnesi, “Interview
review: An empirical study on detecting ambiguities in requirements
elicitation interviews,” in Proceedings of the 24th Working Confer-
ence on Requirements Engineering: Foundation for Software Quality
(REFSQ’18), 2018.

[13] H. Yang, A. de Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,
“Analysing anaphoric ambiguity in natural language requirements,”
Requirements Engineering, vol. 16, no. 3, 2011.

[14] F. Dalpiaz, D. Dell’Anna, F. Aydemir, and S. Cevikol, “Requirements
classification with interpretable machine learning and dependency pars-
ing,” in Proceedings of the 27th IEEE International Requirements
Engineering Conference (RE’19), 2019.

[15] S. Mishra and A. Sharma, “On the use of word embeddings for
identifying domain specific ambiguities in requirements,” in Proceedings
of the 27th IEEE International Requirements Engineering Conference
Workshops (REW’19), 2019.

[16] D. Toews and L. Van Holland, “Determining domain-specific differences
of polysemous words using context information.” in Proceedings of the
25th Working Conference on Requirements Engineering: Foundation and
Software Quality Workshops (REFSQW’19), 2019.

[17] V. Jain, R. Malhotra, S. Jain, and N. Tanwar, “Cross-domain ambiguity
detection using linear transformation of word embedding spaces,” in Pro-
ceedings of the 26th Working Conference on Requirements Engineering:
Foundation and Software Quality Workshops (REFSQW’20), 2020.

[18] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Extracting domain
models from natural-language requirements: approach and industrial
evaluation,” in Proceedings of the ACM/IEEE 19th International Con-
ference on Model Driven Engineering Languages and Systems (MOD-
ELS’16), 2016.

[19] A. Sleimi, N. Sannier, M. Sabetzadeh, L. Briand, and J. Dann, “Au-
tomated extraction of semantic legal metadata using natural language
processing,” in Proceedings of the 26th IEEE International Requirements
Engineering Conference (RE’18), 2018.

[20] C. Schütze, “PP attachment and argumenthood,” MIT working papers in
linguistics, vol. 26, no. 95, 1995.

[21] P. Engelhardt and F. Ferreira, “Processing coordination ambiguity,”
Language and Speech, vol. 53, no. 4, 2010.

[22] B. Strang, Modern English Structure, 2nd ed. Edward Arnold, 1968.
[23] F. Chantree, A. Kilgarriff, A. De Roeck, and A. Willis, “Disambiguating

coordinations using word distribution information,” in Proceedings of the
5th International Conference on Recent Advances in Natural Language
Processing (RANLP’05), 2005.

[24] M. Goldberg, “An unsupervised model for statistically determining co-
ordinate phrase attachment,” in Proceedings of the 37th annual meeting
of the Association for Computational Linguistics (ACL’99), 1999.

[25] P. Resnik, “Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural lan-
guage,” Journal of Artificial Intelligence Research, vol. 11, no. 1, 1999.

[26] P. Nakov and M. Hearst, “Using the web as an implicit training set:
application to structural ambiguity resolution,” in Proceedings of the 5th
conference on Human Language Technology and Empirical Methods in
Natural Language Processing (HLT’05), 2005.

[27] A. De Roeck, “Detecting dangerous coordination ambiguities using word
distribution,” in Proceedings of the 6th International Conference on
Recent Advances in Natural Language Processing (RANLP’07), 2007.

[28] S. Tjong and D. Berry, “Can rules of inferences resolve coordination am-
biguity in natural language requirements specification?” in Proceedings
of the 13th Workshop on Requirements Engineering (WER’08), 2008.

[29] H. Yang, A. Willis, A. De Roeck, and B. Nuseibeh, “Automatic detection
of nocuous coordination ambiguities in natural language requirements,”
in Proceedings of the 10th IEEE/ACM international conference on
Automated software engineering (ASE’10), 2010.

[30] S. Tjong and D. Berry, “The design of SREE—a prototype potential
ambiguity finder for requirements specifications and lessons learned,”
in Proceedings of the 19th Working Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ’13), 2013.

[31] A. Kilgarriff, “Thesauruses for natural language processing,” in Pro-
ceedings of the 1st International Conference on Natural Language
Processing and Knowledge Engineering (NLPKE’03), 2003.

[32] H. Yang, A. De Roeck, A. Willis, and B. Nuseibeh, “A methodology
for automatic identification of nocuous ambiguity,” in Proceedings
of the 23rd International Conference on Computational Linguistics
(COLING’10), 2010.

[33] A. Okumura and K. Muraki, “Symmetric pattern matching analysis for
English coordinate structures,” in Proceedings of the 4th Conference on
Applied Natural Language Processing (ANLP’94), 1994.

[34] E. Agirre, T. Baldwin, and D. Martı́nez, “Improving parsing and PP
attachment performance with sense information,” in Proceedings of the
46th Annual Meeting of the Association for Computational Linguistics
(ACL’08), 2008.

[35] H. Calvo and A. Gelbukh, “Improving prepositional phrase attachment
disambiguation using the web as corpus,” in Proceedings of the 8th
Iberoamerican Congress on Progress in Pattern Recognition, Speech
and Image Analysis (CIARP’03), 2003.

[36] M. B. Hosseini, R. Slavin, T. Breaux, X. Wang, and J. Niu, “Disam-
biguating requirements through syntax-driven semantic analysis of in-
formation types,” in Proceedings of the 26th Working Conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ’20),
2020.

[37] U. Shah and D. Jinwala, “Resolving ambiguities in natural language
software requirements: A comprehensive survey,” SIGSOFT Software
Engineering Notes, vol. 40, no. 5, 2015.

[38] C. Ribeiro and D. Berry, “The prevalence and severity of persistent
ambiguity in software requirements specifications: Is a special effort
needed to find them?” Science of Computer Programming, vol. 195,
2020.

[39] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “The linguistic approach
to the natural language requirements quality: Benefit of the use of an
automatic tool,” in Proceedings of the 26th Annual NASA Goddard
Software Engineering Workshop (SEW’01), 2001.

[40] E. Kamsties and B. Peach, “Taming ambiguity in natural language
requirements,” in Proceedings of the 13th International Conference on
Software and Systems Engineering and Applications (ICSSEA’00), 2000.

[41] A. Massey, R. Rutledge, A. Anton, and P. Swire, “Identifying and
classifying ambiguity for regulatory requirements,” in Proceedings of
the 22nd IEEE International Requirements Engineering Conference
(RE’14), 2014.

[42] L. Mich, “NL-OOPS: From natural language to object oriented require-
ments using the natural language processing system LOLITA,” Natural
Language Engineering, vol. 2, no. 2, 1996.

[43] V. Ambriola and V. Gervasi, “On the systematic analysis of natural
language requirements with CIRCE,” Automated Software Engineering,
vol. 13, no. 1, 2006.

[44] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (EARS),” in Proceedings of the 17th IEEE
International Requirements Engineering Conference (RE’09), 2009.

[45] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated
checking of conformance to requirements templates using natural lan-
guage processing,” IEEE Transactions on Software Engineering, vol. 41,
no. 10, 2015.

[46] D. Rodriguez, D. Carver, and A. Mahmoud, “An efficient wikipedia-
based approach for better understanding of natural language text related
to user requirements,” in Proceedings of the 39th IEEE Aerospace
Conference (AeroConf’18), 2018.

[47] B. Gleich, O. Creighton, and L. Kof, “Ambiguity detection: Towards a
tool explaining ambiguity sources,” in Proceedings of the 16th Working
Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ’10), 2010.

[48] H. Femmer, D. Méndez Fernández, S. Wagner, and S. Eder, “Rapid
quality assurance with requirements smells,” Journal of Systems and
Software, vol. 123, 2017.

[49] B. Rosadini, A. Ferrari, G. Gori, A. Fantechi, S. Gnesi, I. Trotta, and
S. Bacherini, “Using NLP to detect requirements defects: An industrial
experience in the railway domain,” in Proceedings of the 23rd Working
Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ’17), 2017.

[50] A. Ferrari, G. Gori, B. Rosadini, I. Trotta, S. Bacherini, A. Fantechi,
and S. Gnesi, “Detecting requirements defects with NLP patterns:
An industrial experience in the railway domain,” Empirical Software
Engineering, vol. 23, no. 6, 2018.

[51] G. Lami, M. Fusani, and G. Trentanni, “QuARS: A pioneer tool for NL
requirement analysis,” in From Software Engineering to Formal Methods
and Tools, and Back. Springer, 2019.

[52] F. Dalpiaz, I. van der Schalk, S. Brinkkemper, F. Aydemir, and G. Lu-
cassen, “Detecting terminological ambiguity in user stories: Tool and
experimentation,” Information and Software Technology, vol. 110, 2019.

[53] A. Willis, F. Chantree, and A. De Roeck, “Automatic identification of
nocuous ambiguity,” Research on Language and Computation, vol. 6,
no. 3-4, 2008.

[54] K. Church and R. Patil, Coping with Syntactic Ambiguity or How to Put
the Block in the Box on the Table, 1st ed. MIT Press, 1982.

[55] P. Pantel and D. Lin, “An unsupervised approach to prepositional phrase
attachment using contextually similar words,” in Proceedings of the 38th
Annual Meeting on Association for Computational Linguistics (ACL’00),
2000.

[56] E. Agirre, O. de Lacalle, C. Fellbaum, A. Marchetti, A. Toral, and
P. Vossen, “SemEval-2010 task 17: all-words word sense disambiguation
on a specific domain,” in Proceedings of the 5th Workshop on Semantic
Evaluations: Recent Achievements and Future Directions (SEW’10),
2010.

[57] M. Strube and S. Ponzetto, “WikiRelate! computing semantic relatedness
using Wikipedia,” in Proceedings of the 21st national conference on
Artificial intelligence (AAAI’06), 2006.

[58] E. Gabrilovich, S. Markovitch et al., “Computing semantic relatedness
using wikipedia-based explicit semantic analysis.” in Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI’07),
2007.

[59] A. Fogarolli, “Word sense disambiguation based on Wikipedia link
structure,” in Proceedings of the 3rd IEEE International Conference on
Semantic Computing (ICSC’09), 2009.

[60] S. Gella, C. Strapparava, and V. Nastase, “Mapping WordNet domains,
WordNet topics and Wikipedia categories to generate multilingual
domain specific resources,” in Proceedings of the 9th International
Conference on Language Resources and Evaluation (LREC’14), 2014.

[61] G. Miller, “WordNet: A lexical database for English,” Communications
of the ACM, vol. 38, no. 11, 1995.

[62] C. Fellbaum, WordNet: An Electronic Lexical Database, 1st ed. The
MIT Press, 1998.

[63] D. Chen and C. Manning, “A fast and accurate dependency parser using
neural networks,” in Proceedings of the 18th Conference on Empirical
Methods in Natural Language Processing (EMNLP’14), 2014.

[64] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated extrac-
tion and clustering of requirements glossary terms,” IEEE Transactions
on Software Engineering, vol. 43, no. 10, 2017.

[65] D. Newman, J. Lau, K. Grieser, and T. Baldwin, “Automatic evaluation
of topic coherence,” in Proceedings of the 8th annual conference of the
North American chapter of the association for computational linguistics:
Human language technologies (NAACL-HLT’10), 2010.

[66] S. Evert, “Google web 1T 5-grams made easy (but not for the com-
puter),” in Proceedings of the 8th annual conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT’10) and the 6th Web as
Corpus Workshop (WAC’10), 2010.

[67] C. Biemann, F. Bildhauer, S. Evert, D. Goldhahn, U. Quasthoff,
R. Schäfer, J. Simon, L. Swiezinski, and T. Zesch, “Scalable construction
of high-quality web corpora.” Journal for Language Technology and
Computational Linguistics, vol. 28, no. 2, 2013.

[68] T. Yen, J. Wu, J. Chang, J. Boisson, and J. Chang, “WriteAhead: Mining
grammar patterns in corpora for assisted writing,” in Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language
Processing, Proceedings of System Demonstrations (ACL-IJCNLP’15),
2015.

[69] T. Hawker, “USYD: WSD and lexical substitution using the Web1T
corpus,” in Proceedings of the 4th International Workshop on Semantic
Evaluations (SemEval’07), 2007.

[70] D. Jurafsky and J. Martin, Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 2nd ed. Prentice Hall, 2009.

[71] C. Manning and H. Schütze, Foundations of statistical natural language
processing, 1st ed. MIT press, 1999.

[72] G. Dinu and M. Lapata, “Measuring distributional similarity in context,”
in Proceedings of the 14th Conference on Empirical Methods in Natural
Language Processing (EMNLP’10), 2010.

[73] L. J. Brinton, The structure of modern English: A linguistic introduction.
John Benjamins Publishing, 2000.

[74] I. Witten, E. Frank, M. Hall, and C. Pal, Data Mining: Practical Machine
Learning Tools and Techniques, 4th ed. Elsevier, 2011.

[75] R. Eckart de Castilho and I. Gurevych, “A broad-coverage collection
of portable NLP components for building shareable analysis pipelines,”
in Proceedings of the Workshop on Open Infrastructures and Analysis
Frameworks for HLT (OIAF4HLT’14), 2014.

[76] T. Zesch, C. Müller, and I. Gurevych, “Extracting lexical semantic
knowledge from Wikipedia and Wiktionary,” in Proceedings of the
6th International Conference on Language Resources and Evaluation
(LREC’08), 2008.

[77] C. Giuliano, “jWeb1T: A library for searching the web 1T 5-
gram corpus,” last accessed: August 2020. [Online]. Available:
http://hlt.fbk.eu/en/technology/jWeb1t

[78] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu, “Fast and accurate
shift-reduce constituent parsing,” in Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (ACL’13),
2013.

[79] P. Resnik, “Using information content to evaluate semantic similarity in
a taxonomy,” in Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI’95), 1995.

[80] H. Shima, “WS4J WordNet similarity for java,” last accessed: August
2020. [Online]. Available: https://code.google.com/archive/p/ws4j/

[81] J. R. Landis and G. G. Koch, “An application of hierarchical kappa-
type statistics in the assessment of majority agreement among multiple
observers,” Biometrics, vol. 33, no. 2, 1977.

[82] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. 1, 2012.

[83] G. Leech, “100 million words of English,” English Today, vol. 9, no. 1,
1993.

[84] J. Hirschberg and C. Manning, “Advances in natural language process-
ing,” Science, vol. 349, no. 6245, 2015.

[85] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification And
Regression Trees, 1st ed. Routledge, 1984.

[86] Y. Tian and D. Lo, “A comparative study on the effectiveness of part-of-
speech tagging techniques on bug reports,” in Proceedings of the 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER’15), 2015.

[87] J. Charbonnier and C. Wartena, “Using word embeddings for unsuper-
vised acronym disambiguation,” in Proceedings of the 27th International
Conference on Computational Linguistics (COLING’18), 2018.

