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The possibility of discriminating the statistics of a thermal bath using indirect measurements per-
formed on quantum probes is presented. The scheme relies on the fact that, when weakly coupled
with the environment of interest, the transient evolution of the probe toward its final thermal config-
uration, is strongly affected by the fermionic or bosonic nature of the bath excitations. Using figures
of merit taken from quantum metrology such as the Holevo-Helstrom probability of error and the
Quantum Chernoff bound, we discuss how to achieve the greatest precision in this statistics tagging
procedure, analyzing different models of probes and different initial preparations and by optimizing
over the time of exposure of the probe.

I. INTRODUCTION

In equilibrium statistical mechanics, the intrinsic in-
distinguishability between identical particles gives rise
to the Bose-Einstein and Fermi-Dirac equilibrium dis-
tributions. These statistics found their earliest evi-
dences in matter physics, describing black body radia-
tion [1] and the behavior of electrons in solids [2] while
their link with the intrinsic angular momentum of el-
ementary particles stems as a crucial result of quan-
tum field theory [3, 4]. A standard tool to discern the
statistics of a quantum system is represented by two-
body correlations, experimentally accessible through
equilibrium response properties to weak external fields
[5]. For example, typical and exclusive signatures are
the Pauli hole in case of fermions [6] and bunching
and anti-bunching phenomena in case of bosons [7].
More in general, statistics tagging turns out to be worth
in all modern physics. For instance, in astrophysics,
methods to recognize the statistical distributions of
particles which are thermally radiated by black holes
have been developed [8] or, going beyond conventional
fermions and bosons, in the context of the fractional
quantum hall effect [9] interferometric measurements
[10] confirmed the existence of quasi-particles obeying
fractional exclusion statistics [11–13]. Finally, from a
technological point of view, a detailed characterization
of the environment surrounding a quantum system is
nowadays crucial to implement quantum information
protocols and, more generally, for quantum nanotech-
nology [14, 15]. Indeed, the interaction with the envi-
ronment leads to decoherence and dissipation on the
system, strongly degrading purely quantum resources
[15] or even, in other cases, promoting collective quan-
tum phenomena [16].

The characterization of measurement processes and
statistical inference methods applied to quantum sys-
tems is the core of quantum metrology [17–19]. The
estimation and the discrimination of environmental
properties can be achieved both via direct measure-
ments or indirectly, by extracting information from

Probe A
Bath B

fermionic bosonic

TLS γ nthγ
QHO γ/nth γ

Table I. Transition rates governing the dynamics of the
system-bath models for the four scenarios considered in the
paper: in this expressions γ is a constant that only depends
upon the interaction strength of the model, while nth de-
pends on β as in Eq. (1). Notice that for homogeneous settings
(TLS-fermions or QHO-bosons) the values of the rates are in-
dependent from the bath temperature. Furthermore since
nth ≥ 1 we observe that for the TLS probe the transition rate
associated with the bosonic bath is always larger than the cor-
responding fermionic value, while exactly the opposite oc-
curs for the QHO probe scenario. We also recognize that in
both the TLS and QHO configuration, the difference between
the transitions rates induced by the bosonic and fermionic
statistics increases with the temperature. Such gap nullify
instead in the zero-temperature limit (β→∞) where nth = 1:
accordingly under this conditions the dynamics of the model
is expected not to detect any difference in the bath statistics.

auxiliary systems. For instance, via putting a probe in
contact with a thermal environment and performing a
measure on such a probe, it is possible to extract infor-
mation about the temperature [20–23] and the spectral
properties [24, 25] of the environment itself. Follow-
ing this line of reasoning, we present a protocol aimed
to discriminate between fermionic and bosonic thermal
baths via indirect quantum state discrimination on an
auxiliary quantum probe A. More precisely in our con-
struction the tagging of the bath statistics is performed
by monitoring the state of A at a convenient finite time
evolution t̄ during the thermalization process it expe-
riences once put in weak-coupling thermal contact [26]
with the environment. The scheme ultimately relies on
the fact that, while the final configuration of A is not
necessarily influenced by the statistical nature of the
bath, the latter leaves residual imprintings on the tran-
sient of the thermalization process which can be picked
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up by proper measurements on the probe. A full char-
acterization of the ultimate discrimination efficiency
we can achieve using this technique will be presented
by studying a couple of paradigmatic examples where
A is assumed to be either a two level system (TLS) or a
quantum harmonic oscillator (QHO). It is worth stress-
ing that the resulting four scenarios describe situations
which are routinely encountered in experiments [27]
paving the way for a proof of principle implementa-
tions of our findings (at least): indeed a two level sys-
tem coupled to a bosonic bath (T LS−bosons) is paradig-
matic in quantum optics [28] and quantum computa-
tion [14]; a harmonic oscillator interacting with a bath
of other harmonic oscillators (QHO − bosons) can de-
scribe an open opto-mechanical resonator [29]; finally,
spin-baths are more rare but also feasible [30] if we
deal with a vibrational degree of freedom interacting
with two-level defects (QHO − f ermions) in quantum-
electromechanical systems [31, 32] or with the hyper-
fine interaction of an electron spin in a quantum dot
with the surrounding nuclear spins (T LS − f ermions)
[33–36].

II. THE MODEL

Let B be a thermal bath characterized by a temper-
ature 1/β that for simplicity we assume to be known.
Our goal is to determine the statistical nature of the
excitations of B which is taken to be either bosonic or
fermionic. For this task we are allowed to initialize the
quantum probe A in some fiduciary state ρ(0), put it
into thermal coupling with B and then monitoring its
final state after some elapsed interaction time t. In
our analysis we shall describe the associated dynami-
cal evolution of A by assigning a Gorini-Kossakowski-
Sudarshan-Lindblad [37, 38] master equation (ME) de-
fined by the properties of B. Independently from our
choice of using a TLS probe or a QHO probe A, the
main feature that enables to distinguish between the
actions of a fermionic and a bosonic bath is the time
scale of the associated thermalization event. Indeed,
as follows from the standard Born-Markov-Secular mi-
croscopic derivation of the ME (see Appendix A for
details), the transition rate associated with a given en-
ergy level spacing ω0 of A can be expressed as shown
in Table I, with nth being the ratio between the as-
sociated Bose-Einstein (Nb(β) := 1/(eβω0 − 1)) and the
Fermi-Dirac (Nf (β) := 1/(eβω0 + 1)) occupations num-
bers, i.e. the quantity

nth :=Nb(β)/Nf (β) = coth[βω0/2] (1)

(in this work we set ~ = 1). Based on this observa-
tion we can hence translate the two possible choices for
B into two possible hypotheses ρb(t) and ρf (t) for the
density matrix ρ(t) at a certain time t, corresponding,
respectively, to the evolved state of A via the bosonic
and the fermionic thermal channels.

In general, the discrimination between two quantum
states involves a measurement process. If we choose
wisely the measurement and the successive inference
procedure, we will be able to discriminate between the
two hypotheses with the highest precision. A natural
quantifier of the effectiveness of such a method is given
by 1 − Pe, where Pe is the error probability, that is the
probability to guess incorrectly the state after reading
the measurement outcomes. In the two state discrimi-
nation problem Pe has been minimized over all the set
of possible measurements protocols by Helstrom and
Holevo [39, 40]. This optimal value quantifies how
much two quantum states, for instance our ρf (t) and
ρb(t), are distinguishable:

Pe,min(t) :=
1
2

(
1− 1

2
‖ρb(t)− ρf (t)‖1

)
, (2)

where ‖·‖1 denotes the trace norm. More generally if we
have N ≥ 1 identical probes at disposal, the discrimi-
nation process involves ρb(t)⊗N and ρf (t)⊗N while the
minimum probability of error satisfies

P
(N )
e,min(t) :=

1
2

(
1− 1

2
‖ρb(t)⊗N − ρf (t)⊗N ‖1

)
≤Q(t)N /2,

(3)
where Q(t) is minimum of the Chernoff function Qr (t),
i.e.

Q(t) = min
r∈[0,1]

Qr (t) , Qr (t) := tr
[
ρrb(t)ρ

1−r
f (t)

]
. (4)

The result (3) is known as Quantum Chernoff Bound
[41] and is asymptotically tight for N →∞ [42]. Both
the quantities defined in Eq. (4) and Eq. (2) provide
operationally well defined figures of merit for the pre-
cision in the discrimination between ρb(t) and ρf (t). In
what follows we shall analyze their dependence from
the initial state of the probe and perform a further min-
imization with respect to t to determine the best time
instant t̄ for the quantum state discrimination.

III. STATISTICAL TAGGING VIA TLS PROBE

Here we present a complete analysis of the problem
for the case where A is a TLS with local Hamiltonian
H = ω0σ+σ−, σ± being the associated ladder operators.
The corresponding ME induced by a bosonic/fermionic
environment is (Appendix A)

ρ̇q(t) = −i[H,ρq(t)] +γNq(β)
(
σ+ρq(t)σ− − 1

2 {σ−σ+,ρq(t)}
)

+γ[1 + sqNq(β)]
(
σ−ρq(t)σ+ − 1

2 {σ+σ−,ρq(t)}
)
, (5)

where q ∈ {b,f } and sb = 1 and sf = −1. In the Bloch co-

ordinates representation ρq(t) = 1
2 (1+ ~〈σ (t)〉q · ~σ ) an in-

tegration of Eq. (5) results in 〈σz(t)〉q = 〈σz(0)〉e−γn
(q)
th t +
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(1− 2Nf (β))(e−γn
(q)
th t − 1), and 〈σx(t)〉q = 〈σx(0)〉e−γn

(q)
th t/2,

where

n
(q)
th := nth + (1− sq)(1−nth)/2, (6)

is the TLS rate renormalization factor given in Table I,
and where 〈σx,z〉(0) are the initial conditions (〈σy(0)〉
being set equal to 0 exploiting the x − y symmetry of
the problem). At t = +∞, the probe thermalizes at
the equilibrium values 〈σz〉eq = 2Nf (β) − 1, 〈σx〉eq = 0
irrespectively from the bath statistics (i.e. ρb(∞) =
ρf (∞)), implying that the discrimination between the
bosonic and fermionic environments becomes impos-
sible. For this reason, the measurement time t̄ will be
finite and can be found by maximizing the trace dis-
tance between ρb(t) and ρf (t) according to Eq. (2). The
best discriminating strength is obtained by initializ-
ing A in the excited state of its local Hamiltonian (i.e.
〈σz(0)〉 = 1, 〈σx(0)〉 = 0) (see Appendix B for details). In-
tuitively, such input configuration is the farthest from
the equilibrium configuration, and this choice allows
the “faster” bosonic thermalizing probe to outdistance
on a longer track its fermionic counterpart, increas-
ing their distinguishability. In particular, plugging
〈σz(0)〉 = 1, and 〈σx(0)〉 = 0 we get ||ρb(t) − ρf (t)||1 =

(1 − 〈σz〉eq)(e−γn
(f )
th t − e−γn

(b)
th t) whose associated value of

Pe,min(t) is reported in Fig. 1(a) for different choices
of the bath temperatures. As anticipated in the limit
of large time t the error asymptotically approaches 1/2
indicating the failure of the tagging procedure. Min-
imum values for Pe,min(t) are instead obtained for an
optimal choice of t given by

t̄ = log(nth)/(2γNb(β)) = log(nth)/(γ(nth − 1)) , (7)

whose functional dependence upon β is reported in the
inset of the figure. As anticipated in the caption of
Table I the model exhibit no discrimination strength
at zero temperature where Pe,min(t) = 1/2, while better
discriminating strength is achieved at high tempera-
tures since in this case nth diverges, and so does the
gap between the bosonic and fermionic thermalization
rates. Analogous conclusions can be obtained also in
the case where we have N copies of the evolved state of
the probe. Here exploiting the results of Ref. [43] the
functional Qr (t) can be computed as

Qr (t) = [λrbλ
1−r
f + (1−λb)r (1−λf )1−r ]cos(θ2 )2

+[λrb(1−λf )1−r + (1−λb)rλ1−r
f ]sin(θ2 )2,

(8)

where λq is the greatest eigenvalue of ρq(t) and θ is the
angle between the Bloch vectors associated to ρf (t) and
ρb(t). By numerical optimization with respect to r the
resulting value of Q(t) are reported in Fig. 1(b), and
qualitatively provides the same insight we obtained
from the Helstrom probability analysis. Notice that
in both cases, we have crossing between curves asso-
ciated, meaning that if we wait too much (and lose the
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Figure 1. (Color online) Plots of the (a) Helstrom error
probability (2) and (b) the (rescaled) Chernoff quantity (4)
for the TLS probe case, initialized in the excited state, as
a function of the measurement time t. The three curves
represent three different bath temperatures: 1/(βω0) = 1.5
(black dotted line), 1/(βω0) = 5.5 (red dot-dashed line) and
1/(βω0) = 20.5 (blue dashed line). The inset in (a) shows γt̄
as function of 1/(βω0) for the Helstrom error probability.

opportunity of measuring in t̄) the discrimination be-
comes easier at low temperatures (this property will
not occur when probing with a QHO, as we will see
in the next section).

IV. STATISTICAL TAGGING VIA QHO PROBE

Assume next the probe A to be a QHO of Hamilto-
nian H =ω0a

†a, evolving via the ME

ρ̇q(t) = −i[H,ρq(t)] +γ[1 + sqNq(β)]
(
aρq(t)a† − 1

2 {a
†a,ρq(t)}

)
+γNq(β)

(
a†ρq(t)a− 1

2 {aa
†,ρq(t)}

)
, (9)
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where sq andNq(β) are defined as in Eq. (5). An explicit
integration of Eq. (9) can be easily obtained in the case
of Gaussian input states [44–46] having vehemently
pursued experimental realizations (see e.g. [47, 48]),
which can be expressed as displaced, squeezed thermal
states of the form

ρ(0) =D†(ξξξ0)S†(χ0)
e−β0H

Z(β0)
S(χ0)D(ξξξ0) , (10)

Z(β0) := Tr[e−β0H ] being a normalization factor. The
dynamics of these inputs is completely determined
by the first and second momenta of the system an-
nihilation and creation operators which, by direct
integration, yield the following expressions 〈a(t)〉 =

〈a(0)〉e−
γ
2 /n

(q)
th te−iω0t , 〈a2(t)〉 = 〈a2(0)〉e−γ/n

(q)
th te−2iω0t , and

〈a†a(t)〉 = 〈a†a(0)〉e−γ/n
(q)
th t + Nb(β)(1 − e−γ/n

(q)
th t), which

exhibits a transition rate renormalization factor 1/n(q)
th

that is the inverse of the one observed for TLS model
as anticipated in Table I. We immediately notice that
once more at zero temperature (nth = 1) the probe dy-
namics is insensitive to the bath statistics (as it was
also clear from Eq. (9)). The same occurs for generic
β in the asymptotic limit t → ∞ where, indepen-
dently of the initial state and of the statistics of the
bath the system obtains an average number of pho-
tons 〈a†a(∞)〉 = Nb(β) and the coherences disappear:
〈a(∞)〉 = 〈a2(∞)〉 = 0 . As a measure of distinguisha-
bility of the associated ρb(t) and ρf (t) counterparts of
the input (10) we utilize the quantum Chernoff quan-
tity (4) for which a convenient formula for Gaussian
states is known [43, 44, 49]. A detailed account of this
calculation is presented in Appendix C: the obtained
results are summarized in Fig. 2 for different choices
of the input parameters. In particular in panel (a) we
plot the value of Q(t) for the case in which ρ(0) is the
ground state of the QHO (i.e. ξξξ0 = 0, χ0 = 0, and
β0 → ∞): as in the TLS case we notice that the dis-
crimination efficiency gets depressed in the asymptotic
limit of sufficiently large evolution times t, reaching a
maximum value for intermediate values of the parame-
ter. The performances gets also affected by the value of
the bath temperature, with higher sensitivity being at-
tained for large values of 1/β (i.e. large values ofNb(β)).
In Fig. 2(b) instead we give a comparison of the perfor-
mances obtained for different choices of possible input
states (coherent state, thermal state, squeezed ground
state) characterized by an identical value of the initial
average number of photons 〈a†a(0)〉 = 1. As the plot
shows, all cases exhibit the same functional depen-
dence observed for the ground state input. Nonetheless
introducing the initial energy via displacement leads to
the lowest error probability, while squeezing is effec-
tive for it to be attained in short time. We also remark
that in the absence of the input energy limitation, Q(t)
can be brought to reach arbitrarily small values be-
cause of the possibility of injecting arbitrarily large ini-
tial energy into the system (clearly an analogous effect
cannot be found when probing the bath with a TLS due

to the limited Hilbert space of the latter). As a final ob-
servation we notice that closed analytical expressions
that capture the above behaviours can be obtained
in the special case where the initial state ρ(0) is not
squeezed and has a temperature that is identical to the
bath temperature (β0 = β). It turns out that with this
choices the resulting expression forQr (t) is particularly

compact Qr (t) = exp
{
− |δδδ(t)|2

2 [1 + 2Nb(β)−Nb(β)fr ]
}
,

with fr :=
(
1 + 1

Nb(β)

)r
+

(
1 + 1

Nb(β)

)1−r
and δδδ(t) :=

ξξξ0

(
e−

γ
2 t − e−

γ
2 t/nth

)
. In this case the minimum of Qr (t)

can be easily shown to be attained for r = 1/2. As a
result we get

Q(t) = exp
{
−1

2

[√
Nb(β) + 1−

√
Nb(β)

]2
|δδδ(t)|2

}
, (11)

which can now be optimized with respect to t leading
to the analytical expression that mimics the one ob-
served in the TLS analysis,

t̄ = ln(nth)/(γNf (β)) = 2nth log(nth)/(γ(nth − 1)) . (12)

Feeding this into Eq. (11) the resulting expression can
now be optimized with respect to the bath tempera-
ture β, giving Nb(βbest) ≈ 1.96 corresponding to val-
ues t̄βbest

≈ 4/γ and Q(t̄βbest
) = exp(−κ |ξξξ0|2) with κ ≈

0.0145.

V. CONCLUSIONS

We studied how to tag the quantum statistics of a
thermal bath in an indirect way, using an auxiliary
probe, a quantum measurement scheme and referring
to experimentally realizable models [14, 28–36]. Upon
optimizing over the initial state of the probe, such dis-
crimination turns out to be feasible during the time
transient, i.e. before thermalization. The efficiency
of the discrimination relies on the fact that in hetero-
geneous settings - TLS/bosonic bath, QHO/fermionic
bath - the temperature renormalizes the thermalization
rates. This approach can lead to significant advances in
the problem of the statistics tagging, which is central in
several fields [8, 10–13]. Generalization of the present
analysis include the possibility of using more sophis-
ticated techniques (such as Choi-Jamiolkowski or dia-
mond norm discrimination procedures [50, 51]) aimed
to directly tag the generators associated with different
bath statistic without focusing on special input states
of the probe. As a further development we also notice
that, with some minor variations, the method proposed
can be easily adapted to the discrimination of non con-
ventional statistics interpolating between fermions and
bosons.

We finally conclude by stressing that the proposed
scheme can clearly be considered as a subroutine to be
used in conjunction with other already existing probe-
mediated quantum metrology schemes to provide a
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Figure 2. (Color online) (a): Plot of the (rescaled) Cher-
noff quantity (4) of the QHO model associated with the
ground state input for 1/(βω0) = 1.5 (black dotted line),
1/(βω0) = 5.5 (red dot-dashed line) and 1/(βω0) = 10.5 (blue
dashed line). The inset shows the associated γt̄ as function
of 1/(βω0) . (b): Plot of Q(t)/2 for different choices of the ini-
tial Gaussian state for fixed initial mean excitation number
〈a†a(0)〉 = 1 (for 1/(βω0) = 10.5): coherent state (green full
line), thermal state (black dot-dashed line), squeezed ground
state (red dashed line).

complete reconstruction of the bath properties that, be-
side statistical characterization of its excitations, will
include also other relevant quantities like the temper-
ature or bare thermalization rate.

Appendix A: Balance law and temperature dependent
rates

In what follows we shall adopt a compact nota-
tion that allows us to treat uniformly the four possi-
ble scenarios, TLS-bosons, TLS-fermions, QHO-bosons,
and QHO-fermions. For this purpose we introduce a

system annihilation operator ζp where the subscript
p ∈ {TLS, QHO} refer to the two possible species of
probes, assuming that ζp=QHO = a and ζp=TLS = σ− .
With this choice we can now describe the coupling be-
tween A and its environment B by assigning the micro-
scopic HamiltonianHAB =H+HB+HI characterized by
the following components

H =ω0ζ
†
pζp , (A1)

HB =
∑
k

ωkc
†
q(k)cq(k) , (A2)

HI =
∑
k

γk[c
†
q(k) + cq(k)](ζp + ζ†p) , (A3)

where the environmental modes c†q(k) and cq(k) can
be either of bosonic (q = b) or of fermionic nature
(q = f ). Following the Born-Markov-Secular micro-
scopic derivation for a thermal environment [26], the
Lindblad equation for the four cases of interest can be
written in a unified form as [27]

ρ̇q(t) = −i[H,ρq] +γNq(β)
(
ζ†pρq(t)ζp − 1

2 {ζpζ
†
p,ρq(t)}

)
+γ[1 + sqNq(β)]

(
ζpρq(t)ζ†p − 1

2 {ζ
†
pζp,ρq(t)}

)
, (A4)

with γ being the bare dissipation rate and with Nq(β)
being the bath mean excitation number correspond-
ing to the frequency ω0 – the input state of B being
assumed to be thermal with inverse temperature β.
Equation (A4) implies the following balance equation
for the mean excitation number 〈ζ†pζp(t)〉:

d
dt
〈ζ†pζp(t)〉 = −γ

(
Nq(β)/Np(β)

)
〈ζ†pζp(t)〉+γNq(β) ,

(A5)
where we can recognize the characteristic rate γp−q =
γNq(β)/Np(β) from which the result of Table I follows
automatically.

To comment Eq. (A5), let’s consider a thermal charg-
ing, i.e. a system initially in its ground state gets
excited by a finite temperature thermal bath, finally
reaching the bath temperature 1/β. A TLS interact-
ing with a bosonic environment, realizes a situation
in which the great amount of excitation contained in
each QHO cannot be hosted by the TLS. This unbal-
ance results in an increase of the charging rate. The
opposite is expected to occur when a QHO interacts
with a fermionic bath: increasing temperature is ex-
pected to decrease the charging rate. Finally, such ef-
fect must disappear at low temperature where the dif-
ference between the energy spectra is irrelevant, be-
cause Nb(β) ∼Nf (β) ∼ e−βω0 for β→∞.

Other considerations about speed effects arising
from coupling a system with a bounded spectrum and
a system with an unbounded spectrum can be found in
[32, 52, 53].
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Appendix B: Details on TLS states

The equation of motion for the TLS is obtained by
considering ζp=T LS = σ− in Eq. (A5), obtaining

d
dt
〈σ+σ−(t)〉q = −γ

Nq(β)

Nf (β)
〈σ+σ−(t)〉q +γNf (β), (B1)

from which we immediately get

d
dt
〈σz(t)〉q = −γn(q)

th (〈σz(t)〉q − 2Nf (β) + 1), (B2)

with n(q)
th as defined in the main text. Accordingly the

population of the TLS is always expected to equilibrate
to Nf (β), while the thermalization rates depend on the
nature of the external bath. On the contrary for the
coherence terms from (A4) we get

d
dt
〈σx(t)〉q = −

γn
(q)
th

2
〈σx(t)〉q, (B3)

which can be easily integrated. The Helstrom error
probability (see Eq. (2)) depends on the trace distance
between ρb(t) and ρf (t) that for a two level system
reads

||ρb(t)− ρf (t)||1

=
√

(〈σx(t)〉b − 〈σx(t)〉f )2 + (〈σz(t)〉b − 〈σz(t)〉f )2, (B4)

where we supposed, without loss of generality, the y-
component of the Bloch vector to be 0 during all the
process. In comparison, the less straightforward equa-
tion (8) holds for the Chernoff quantity in the TLS case.

a. Minimization of the trace norm in a TLS

From the analysis of the previous section the square
of the trace norm for the bath tagging problem can be
written as

‖ρb(t)− ρf (t)‖21 (B5)

= (1− 〈σz(0)〉2)f (t) + (〈σz(0)〉 − 〈σz〉eq)2g(t) ,

where we defined f (t) := (e
−γn(f )

th t

2 − e−
γn

(b)
th t

2 )2, g(t) :=

(e−γn
(f )
th t − e−γn

(b)
th t)2, 〈σz〉eq := 2Nf (β) − 1 and used that,

for an initial pure preparation, 〈σx(0)〉2 = 1 − 〈σz(0)〉2.
The expression (B5) is parabolic in 〈σz(0)〉 and can be
written in standard form as

Y (〈σz(0)〉, t) = 〈σz(0)〉2(g(t)− f (t))

−2〈σz(0)〉〈σz〉eqg(t) + f (t) + 〈σz〉2eqg(t).
(B6)

Since we are interested in the maxima of Y (〈σz(0)〉, t)
in the interval −1 ≤ 〈σz(0)〉 ≤ 1 there are three possible
candidates, i.e. the vertex of the parabola and the two
values at the extrema Y (−1, t) and Y (1, t).

The following two conditions are necessary for the
vertex to be an acceptable maximum

1. The concavity of the parabola has to be negative,
that happens, from the (B6), when g(t)− f (t) ≤ 0;

2. The abscissa of the vertex corresponds to a phys-
ical state, i.e. lies in the [−1,1] interval. More

explicitly we have −1 ≤ g(t)〈σz〉eq
g(t)−f (t) ≤ 1.

Notice that since g(t)〈σz〉eq ≤ 0 and the first condition
provides g(t) − f (t) ≤ 0 the constraint on the abscissa
of the vertex can be simplified to g(t)〈σz〉eq ≥ g(t)− f (t)
that provides a stricter condition in respect to g(t) −
f (t) ≤ 0. Explicitly solving the inequality g(t)〈σz〉eq ≥
g(t) − f (t) we find that it holds for t ≥ t∗, with t∗ such
that

e
−γn(f )

th t
∗

2 + e−
γn

(b)
th t
∗

2 = 1/
√

2− 2Nf (β). (B7)

It remains to compare Y (−1, t) and Y (1, t) when t < t∗

(i.e. the region in which the maximum is located at
the boundaries), with the ordinate of the vertex V (t) =
f (t)−〈σz〉2eq

f (t)g(t)
g(t)−f (t) computed in the part of the domain

for which t ≥ t∗. For this sake we notice that for t = t∗

the ordinate of the vertex is exactly equal (by defini-
tion) to Y (1, t∗) and that V (t) is a decreasing function
of t in the region of interest i.e. V (t) ≤ V (t∗) ∀t ≥ t∗.
With this last argument we conclude that for all val-
ues of t the function V (t) is upper bounded by Y (1, t∗),
proving in that way that the vertex is not the absolute
maximum, that therefore lies whether in 〈σz(0)〉 = 1 or
〈σz(0)〉 = −1. Is easy to show, again studying the prop-
erties of the parabolic function (B5), that the value in
〈σz(0)〉 = 1 is always greater than its opposite 〈σz(0)〉 =
−1, indeed Y (1, t)−Y (−1, t) = −4g(t)〈σz〉eq ≥ 0. Thus we
can plug 〈σz(0)〉 = 1 in the Eq. (B5) obtaining

Y (1, t) = (1− 〈σz〉eq)2g(t), (B8)

that is exactly the square of the right hand side of the
expression reported in the main text and can be now
studied as a function of the single parameter t. De-
riving this last equation and finding the root we ob-
tain Eq. (7) that represents a local maximum in t, since
Y (1, t) is positive and nullifies at the extrema of the
time domain (before starting the process and after a
complete thermalization the two hypotheses are indis-
tinguishable).

Appendix C: Details on Gaussian states

The most general single-mode Gaussian state can be
expressed as a squeezed-displaced-thermal state of the
form

ρG(β,ξξξ,χ) :=D†(ξξξ)S†(χ)
e−βH

tr
[
e−βH

]S(χ)D(ξξξ) . (C1)

In the above expression β ≥ 0 defined the inverse tem-
perature of the state, while the complex parameter χ
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and the 2-D real vector ξξξ = (ξ1,ξ2)T define the squeez-
ing and the displacement operators respectively, i.e.

S(χ) = exp
[1

2

(
χ∗a2 −χa†2

)]
, (C2)

D(ξξξ) = exp[−i(ξ2x − ξ1y)] , (C3)

with the operators x = (a+a†)/
√

2 and y = (a−a†)/(
√

2i)
being the canonical quadratures of the model.

a. Displacement and squeezing

The displacement operator D(ξξξ) of Eq. (C3) sets the
first moments of the state (C1). Its action on the canon-
ical variables is the following

D(ξξξ) rrr D†(ξξξ) = rrr +ξξξ , (C4)

with rrr :=
(
x
y

)
.

The squeezing operator defined in Eq. (C2) trans-
forms the ladder operators a and a† as follows [46, 54]:

S(χ) aaa S†(χ) = SA(χ) aaa , (C5)

SA(χ) :=
(

cosh(|χ|) ei2φ sinh(|χ|)
e−i2φ sinh(|χ|) cosh(|χ|)

)
, (C6)

where aaa :=
(
a
a†

)
and with 2φ being the phase of χ, i.e

χ = |χ|ei2φ. Alternatively this can also be expressed as

S(χ) rrr S†(χ) = S(χ) rrr , (C7)

where now

S(χ) = (C8)(
cosh(|χ|) + sinh(|χ|)cos(2φ) sinh(|χ|)sin(2φ)

sinh(|χ|)sin(2φ) cosh(|χ|)− sinh(|χ|)cos(2φ)

)
,

the matrices S(χ) and SA(χ) being related via the trans-
formation

S(χ) =USA(χ)U† , (C9)

with U being the unitary matrix

U = 1/
√

2
(

1 1
−i i

)
. (C10)

b. First and second moments of the Gaussian state

Define the vector

AAA = 〈aaa〉 =
(
〈a〉
〈a†〉

)
, (C11)

and the matrix

σA =
(

2〈a2〉 − 2〈a〉2 2〈a†a〉+ 1− 2|〈a〉|2

2〈a†a〉+ 1− 2|〈a〉|2
[
2〈a2〉 − 2〈a〉2

]∗ )
,

where 〈...〉 represents the expectation value computed
on the Gaussian state of Eq. (C1). From these expres-
sions one can then easily retrieve the canonical first
moments

RRR = 〈rrr〉 =
(
〈x〉
〈y〉

)
, (C12)

and the (real-symmetric) covariance matrix

σij = 〈{ri − 〈ri〉, rj − 〈rj〉}〉 , (C13)

Indeed one has

RRR(t) =UAAA(t) , σ (t) =UσA(t)UT , (C14)

with U as in Eq. (C10). From the above analysis it fol-
lows that the moments of a Gaussian state (C1) hold

RRR = ξξξ , σ = νβS(χ)ST (χ) , (C15)

with

νβ = 2Nb(β) + 1 = coth(βω0/2) . (C16)

Equation (C15) is better understood once it is written
as

σ = S(χ)σβS
T (χ) , σβ = νβ12 , (C17)

where σβ is the covariance matrix of the thermal state

e−βH /tr
[
e−βH

]
. Furthermore exploiting the fact that

det[Sr,φ] = det[STr,φ] = 1 , (C18)

one can extract the inverse temperature β of the state
ρG using the following relation

νβ =
√

det[σ ] . (C19)

Another quantity of interest – see Fig. (2) (b) — is the
mean excitation number of a Gaussian state, whose ex-
pression in terms of the parameters (β, ξξξ, χ) reads as
[55]

〈a†a〉 =
1
2
{cosh(2|χ|)[2Nb(β) + 1] + |ξξξ |2 − 1} . (C20)

c. Dynamical Evolution

The ME we are considering in Eq. (9) induces a Gaus-
sian mapping, meaning that it transforms Gaussian
states into other Gaussian states: namely the time evo-
lution from time 0 to time t simply maps

ρG(β0,ξξξ0,χ0)→ ρG(βq(t),ξξξq(t),χq(t)),

where q ∈ {b,f } is again the bath label. To retrieve the
explicit temporal dependence of the quantities βq(t),
ξξξq(t), χq(t) from the dynamical expression for the first
and second moments of the ladder operators one can
follow the same path we have detailed in the previous
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0 5 10 15
γt

0.6

0.8

1

( ω
−

1
0

)
βb(t)

βf (t)

β

Figure 3. (Color online) Inverse temperatures (in units 1/ω0)
of the two Gaussian states as function of time: βb(t) (blue full
line), βf (t) (red dashed line), choosing the ground-state (i.e.
β0→∞) as initial state and Nb(β) = 1 .

section to link β,ξξξ,χ to RRR and σ . Finally, the same ma-
chinery can be used to relate the initial conditions to
the parameters of the input state, giving

〈a(0)〉 = A1(0) , (C21)

〈a2(0)〉 =
1
2
σA11(0) +A1(0)2 , (C22)

〈a†a(0)〉 =
1
2

[σA12(0)− 1] + |A1(0)|2 , (C23)

with

AAA(0) =U†ξξξ0 , (C24)

σA(0) = νβ0
U†Sχ0

S
T
χ0
U ∗ (C25)

and eventually one can monitor the initial mean excita-
tion number by applying Eq. (C20) to the initial state.

As an application of this approach in Fig. 3 we report
the values of βb(t) and βf (t) obtained by solving Eq. (9):
in both cases we notice that the dynamics send asymp-
totically the system temperature 1/βq(t) — initially be-
ing 1/β0 — to the bath temperature 1/β, but with dif-
ferent rates, the slowest being the fermionic one.

d. The quantum Chernoff quantity

Let now ρq(t) the Gaussian state (C1) of parameters
βq(t),ξξξq(t),χq(t) describing the evolution of the den-
sity matrix (10) under the action of the ME (9) associ-
ated with the q ∈ {b,f } environment scenario. Follow-
ing Ref. [43] we can compute the value of the Chernoff
quantity Qr (t) (4) via the expression

Qr (t) =
2Nβb ,r Nβf ,1−r e

−δδδT [σ̃b(r)+σ̃f (1−r)]−1
δδδ√

det
[
σ̃b(r) + σ̃f (1− r)

] , (C26)

where δδδ = ξξξb−ξξξf is the difference between the first mo-

ments of the two states; νβq = coth(βqω0/2) =
√

det[σq] ;

Nβq ,r = (1−e−βqω0 )r

1−e−βqω0r
; σ̃q(r) =

νrβq
νβq

σq and σq is the covari-

ance matrix [45].
When the initial state has zero squeezing (χ0 = 0)

Eq. (C26) assumes the simplified form

Q(r, t) =
2Nβb ,r Nβf ,1−r
νβbr + νβf (1−r)

e
− |δδδ|2
νβbr

+νβf (1−r) , (C27)

with

|δδδ|2 = |ξξξ0|2
(
e−

γ
2 t − e−

γ
2 t/nth

)2
,

νβqr = 2 1
[1/Nb(βq)+1]r−1

+ 1 ,

Nβq ,r = 1
[1+Nb(βq)]r−[Nb(βq)]r

,

Nb(βq) =Nb(β0)e−γ/n
(q)
th t +Nb(β)

(
1− e−γ/n

(q)
th t

)
.

(C28)

Notice that if we take initial state of the probe to be the
ground state, i.e. ξξξ0 = 0 and β0→∞, the first moments

vanish, i.e. δδδ(t) = 0, and Nb(βq) = Nb(β)
(
1− e−γ/n

(q)
th t

)
.

For β = β0 instead the above expression reduces to the
one reported in the main text.
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