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Abstract

Unmanned aerial vehicle (UAV) communication has emerged as a prominent technology for emer-
gency communications (e.g., natural disaster) in Internet of Things (IoT) networks to enhance the ability
of disaster prediction, damage assessment, and rescue operations promptly. In this paper, a UAV is
deployed as a flying base station (BS) to collect data from time-constrained IoT devices and then
transfer the data to a ground gateway (GW). In general, the latency constraint at IoT users and the
limited storage capacity of UAV highly hinder practical applications of UAV-assisted IoT networks. In
this paper, full-duplex (FD) technique is adopted at the UAV to overcome these challenges. In addition,
half-duplex (HD) scheme for UAV-based relaying is also considered to provide a comparative study
between two modes (viz., FD and HD). Herein, a device is successfully served iff its data is collected by
UAV and conveyed to GW within the flight time. In this context, we aim at maximizing the number of
served IoT devices by jointly optimizing bandwidth and power allocation, as well as the UAV trajectory,
while satisfying the requested timeout (RT) requirement of each device and the UAV’s limited storage
capacity. The formulated optimization problem is troublesome to solve due to its non-convexity and
combinatorial nature. Toward appealing applications, we first relax binary variables into continuous
values and transform the original problem into a more computationally tractable form. By leveraging
inner approximation framework, we derive newly approximated functions for non-convex parts and then
develop a simple yet efficient iterative algorithm for its solutions. Next, we attempt to maximize the
total throughput subject to the number of served IoT devices. Finally, numerical results show that the
proposed algorithms significantly outperform benchmark approaches in terms of the number of served

IoT devices and the amount of collected data.
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lection, unmanned aerial vehicle (UAV).



I. INTRODUCTION

In 1999, the British technology pioneer Kevin Ashton introduced a concept of the Internet-of-Things
(IoT) to describe a system in which all devices with sensors are capable of connecting to each other [1].
IoT has the potential to significantly enhance the quality of human life such as smart home, health care,
wearable devices, agriculture, smart city, autonomous vehicles, and smart grid [2]. The number of IoT
connections of all types is estimated to reach almost 25 billions by 2025 [3]. However, the growing demand
for communications is becoming a great challenge for IoT networks due to limited spectral resources
at terrestrial base stations (BSs). Besides, BSs are deployed in fixed locations and antenna height to
serve a fix geographical area and resources cannot be rapidly shifted elsewhere, especially, in emergency
communications, whereas BSs are potentially isolated or damaged after a natural disaster, or when BSs
are unable to serve all users as they are overloaded during peak hours. This raises a question of how to
support the communication needs of a massive number of [oT devices with restricted resources without
compromising the network performance [4]. Fortunately, due to the high maneuverability and flexible
deployment, unmanned aerial vehicle (UAV) communications could become a promising technology to
overcome the above shortcomings [5]. Due to energy constraints, IoT devices are commonly unable to
propagate over a long distance. Thus, the UAV can fly closer to devices, harvest the [oT data, and then
transmit it to the BS/control center which is out of transmission range of these devices.

Extensive studies have been carried out to investigate UAV-assisted IoT communication networks [6]—
[10]. The work in [6] studied the joint optimal 3D deployment of UAVs, uplink (UL) power control, and
device association in an IoT network. Specifically, the authors proposed a new framework for efficiently
distributing UAVs to collect information in the UL from 10T users. In [7], the authors optimized the data
gathering efficiency of a UAV-assisted [oT network, subject to the power budget, the energy capacity, and
the total transmission time for IoT devices. Herein, a multi-antenna UAV was operated which followed a
circular trajectory and served IoT devices to create a virtual multi-input multi-output (MIMO) channel.
Reference [8] presented a robust central system orchestrator (SO) that was designed to provide value-
added IoT services (VAIoTS). Whereas the SO keeps the entire details about UAVs including their current
locations, flight missions, total energy budget, and their onboard IoT devices. To obtain an efficient
UAV selection mechanism corresponding to each task requirement, the authors proposed three solutions,
namely, energy-aware UAV, fair trade-off UAV, and delay-aware UAV selection. A novel UAV-aided IoT
communication network to provide energy-efficient data gathering and accurate 3D device positioning of

IoT devices was proposed in [9], whereas a UAV was deployed as an aerial anchor node and a flying



data collector. Particularly, UAVs could serve not only as aerial BSs but also as powerful IoT components
that are capable of communications, sensing, and data analysis while hovering in the air [10]. Note that
none of above-mentioned works in [6]-[10] take the crucial latency constraint into consideration.

Recently, the delay-sensitive data collection has attracted much attention from researchers [11]-[14].
For example, in the emergency case or during the natural disaster, the out-of-date gathering data may result
in unreliable controllable decisions, which may ultimately be disastrous [14]. For example, in mission-
critical IoT applications such as smart grids, factory automation (e.g., printing machines, packaging
machines, and process automation), and intelligent transport systems (e.g., road safety highway and
traffic efficiency) [15]. On the other hand, IoT devices often have limited storage capacity, and thus their
generated data need to be collected timely before it becomes worthless due to obsolete transmissions or
being overwritten by incoming data. Therefore, the UAV must reach the right place at the right time.
In [11], the authors proposed two UAV trajectories, namely, the Max-Aol-optimal and Ave-Aol-optimal
to efficiently collect data from ground sensor nodes under the impact of the age of information (Aol)
metric. Specifically, the Max-Aol-optimal and Ave-Aol-optimal trajectory planning are to minimize the
age of the oldest information and the average Aol of all sensor nodes, respectively. The work in [12]
studied the role of a UAV acting as a relay to minimize the average Peak Aol for a transmitter-receiver
link, which was accomplished via joint optimization of the UAV trajectory, energy spending, and the
service time allocations for packet transmissions. In [13], the authors designed the UAV trajectory to
minimize expired data packets in UAV-enabled wireless sensor networks (WSNs) and then applied the
reinforcement learning (RL) method for the solution, which enhances the time-effectiveness and path
design performance. The authors in [14] optimized the UAV trajectory as well as service bandwidth
allocation to maximize the total number of served ground IoT users, in which the UAV needed to collect
the data from users within their RT constraint. Different from [11]-[14], which only studied the aspect
of data collection on the UL channel, the works in [16] and [17] further studied the latency constraint
on the DL channel.

Despite noticeable achievements for data collection in UAV-assisted IoT networks [6]-[14], aforemen-
tioned works do not take the FD scheme into consideration. To efficiently exploit the radio spectrum, the
FD transmission was adopted in UAV communications [18]-[21]. By applying a circular trajectory and
decode-and-forward (DF) relaying strategy, the work [18] maximized instantaneous data rate with the
joint design of beam-forming and power allocation, under individual and sum-power constraint for the
source and relay users. In [19], the authors investigated the spectrum sharing planning problem for FD

UAV relaying systems with underlaid device-to-device (D2D) communications which aims to maximize



the sum throughput. The work in [20] maximized the energy efficiency (EE) by jointly optimizing
the UAV trajectory as well as the transmit and jamming powers of source and the UAV, respectively.
Besides, a new system model for UAV-enabled FD wireless-powered IoT networks was proposed in [21].
More specifically, three optimization problems, namely, the total-time minimization, the sum-throughput
maximization, and the total energy minimization problem were investigated.

Unlike previous studies such as [11]-[14], [16], [17] that only investigated the timely data exchange
on the UL or DL channel utilizing HD mode, this motivates us to propose a novel system model in UAV
relay-assisted IoT networks that further explores the impact of RT constraints for both the UL and DL
transmission. To the best of our knowledge, this is the first work that jointly considers total bandwidth,
transmission power, trajectory design, storage capacity, and latency constraint in UAV relay-assisted [oT
networks. To this end, we formulate and solve two optimization problems for the new system model,
and obtain some interesting observations, which would be useful for the system designers in realistic

scenarios. In summary, our contributions are as follows:

o We propose a novel model in UAV relay-assisted loT networks which takes into account the latency
requirement for UL and DL channels to improve the freshness of information in emergency scenarios.
Moreover, the UAV-enabled FD relaying is exploited as an effective mean to overcome UAV’s limited
storage capacity. In addition, UAV-enabled HD relaying is also investigated to fully capitalize on the
benefits that UAV may bring to emergency communications in IoT networks5G wireless networks.

e« We formulate a generalized optimization problem to maximize the total number of served IoT
devices, subject to the UAV’s maximum speed constraint, total traveling time constant, maximum
transmit power at devices/UAV, limited cache size of UAV, and latency constraints for both UL and
DL. The formulation belongs to the difficult class of mixed-integer non-convex optimization problem,
which is generally NP-hard. We first relax binary variables into continuous ones and penalize the
objective by an entropy-based penalty function. We then develop an iterative computational procedure
for its solutions which guarantee convergence at least to local optimal. The key idea behind our
approach is derive newly approximated functions for non-convex parts by employing the inner
approximation (IA) framework [22].

« Inspired by the practical requirement in human safety measurements, The more the data is gathered,
the better the accurate prediction can be achieved. This motivates us to investigate the optimization
problem for maximizing the total collected throughput subject to a given number of served IoT

users.



Fig. 1.  System model: The ground base station (GBS) is assumed to be damaged/isolated after a natural disaster or it is
overloaded during peak hours. Therefore, the UAV is deployed as a flying BS to collect the data from IoT devices and then
transmit to GW.

o The effectiveness of the proposed schemes is revealed via numerical results, which show significant
improvements in both numbers of served 10T devices and the total amount of collected throughput as
compared with the benchmarks. More specifically, the Benchmark FD and Benchmark HD schemes
are respectively designed similar to the proposed FD-based and HD-based methods but with fixed

bandwidth allocation.

The rest of the paper is organized as follows. The system model and problem formulation are given in
Section II. The proposed iterative algorithm for FD is presented in Section III. While, Section IV devotes
for the HD scheme. Numerical results are illustrated in Section V, and Section VI concludes the paper.

Notation: Scalars and vectors are denoted by lower-case letters and boldface lower-case letters, respec-
tively. For a set /C, || denotes its cardinality. For a vector v, ||v||; and ||v|| denote its ¢; and Euclidean
(¢5) norm, respectively. R represents for the real matrix. R™ denotes the non-negative real numbers,
ie, Rt = {x € Rlz > 0}. 2 ~ CN(0,0?) represents circularly symmetric complex Gaussian random
variable with zero mean and variance o2. Finally, V f is the first derivative of a function f. E[z] denotes

the expected value of .
II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-aided cooperative wireless IoT network, where a UAV is deployed to assist the
existing terrestrial communication infrastructure in the case of adverse conditions or natural calamities,
as shown in Fig. 1. In emergency communications, the ground base station (GBS) is either partially or
completely damaged after a natural disaster, or in the case when the GBS is overloaded during the peak
hours due to its incapability of handling all the devices at the same time (e.g., a sporting event) [23].

The latter case has been recognized as one of the key scenarios that need to be effectively solved by
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Fig. 2. Illustration of the data transmission process of 2 IoT devices with N time intervals. The first IoT device with initial
data transmission time at Nstart,1 = 2, timeout at Mend,1 = 5. The second IoT device with initial data transmission time at
Nstart,2 = 9, timeout at nend,2 = 6. The UAV operates in the FD mode from time slots 5 to 6 since two devices utilize the

same sub-carrier.

fifth-generation (5G) wireless communication [23], [24]. Concretely, a UAV helps to relay data from a set
of K IoT devices (or GUs), denoted by K = {1,..., K}, to a GW. Each IoT device is equipped with a
single antenna and works in HD mode. Due to the SWAP (size, weight, and power) limitations, the UAYV,
acting as an on-demand relay, is equipped with one FD antenna which can be used for data transmission
and reception simultaneously. Specifically, the UAV can operate in FD or HD mode depending on the
system designer. It hovers over the considered area to effectively gather data from IoT devices and then
transmit to GW using UL and DL communication, respectively. Due to the limitation of the energy
budget, we restrain the total serving time of UAV as T'. We assume that each device is active at different
time instances ¢, where 0 < ¢t < T'. The location of device k is denoted as r;, € R?*! k € IC. We assume
that the locations of IoT devices together with their data sizes, the initial data transmission time (i.e.,
Ngtart,k With k € K), and latency requirement (i.e., Neng,; With & € K) are known to the UAV through
the control center.! Denote Ngtart,k aNd Nend,, by the initial data transmission time and timeout constraint
of the device k, respectively, for k£ € K. It is assumed that the UAV should collect data from device
k within nepq,; units of time. For simplicity, we assume that the UAV flies at a constant altitude of H
(meters), e.g., that is imposed by the regulatory authority for safety considerations. The location of UAV
projected on the ground is denoted as q(t) € R**! with 0 <t < T. Moreover, N = {1,..., N} denotes

a set of all time slots.

A. Ground-to-UAV Channel Model

For ease of exposition, the time horizon T is discretized into /N equally spaced time intervals, i.e.,

T = Né; with §; denotes the primary slot length. Note that the location of the UAV can be assumed

'The control center can take care of the corresponding computations and informs the UAV through separate signaling, without

affecting the performance of the considered framework [25].



to be approximately unchanged during each time slot compared to the distance from the UAV to loT
devices since d; is chosen sufficiently small. Then, the UAV trajectory ¢(t¢) during time horizon 7" can

be represented as (¢[n])?_, , where ¢[n] denotes the UAV’s horizontal location at n-th time interval. Let

n=1>

Vmax denote the maximum velocity of the UAV, then the UAV’s speed constraint can be presented as
llg[n] — gq[n — 1]|| < 64 = Vinaxdt,n =2, ..., N. (1)
For notation convenience, let us denote the k-th IoT device and UAV by k, and U, respectively.

Henceforth, 1k and 2k represent for the UL (i.e., K — U) and DL (i.e., U — GW), respectively. Then,

the time-dependence distance from k£ — U or U — GW (i.e., 1k or 2k), is given by

dixln] = /B2 + gln] — |2 € {1,2}, ¥n, k, @)
where r € {rk, qo}, with gy denotes the location of GW.

In realistic scenarios, the devices are located in different environments, e.g., rural, urban, suburban,
etc. Thus, a generalized channel model consisting of both the line-of-sight (LOS) and non-line-of-sight
(NLOS) channel elements is considered. In this work, we consider a practical channel model that takes
into account both large-scale and small-scale fading channels [26]. Specifically, the channel coefficient

at the n-th time slot, h;;[n], can be written as [14], [27]

n] = v/wir[n]hix[n], 3)

where w;i,[n] represents for the large-scale fading effects and hik [n] accounts for Rician small-scale fading

coefficient. Specifically, w;i[n] can be modeled as
wik[n] = wody”[n], )

where wy is the average channel power gain at the reference distance d = 1 meter, and « > 2 is the path

loss exponent for Rician fading channel [14]. Then, the small scale fading ﬁzk[n] with expected value

E [|i~zzk[n]]2} =1, is given by
G -
=y gl \/1+G )

where G is the Rician factor; h,[n] and hx[n] ~ CA(0,1) denote the deterministic LoS and the NLoS
component (Rayleigh fading) during time slot n, respectively.
Due to the coexistence of the UL and DL channels using the same frequency at n-th time slot, the

self-interference (SI) can occur at the UAV. Without loss of generality, when the UAV finishes receiving



all the data from device k, then the transmission from UAV to GW can be conducted.?

Let us denote by z1[n] and zox[n] the data symbols with unit power (i.e., E [|z14[n]|?] = 1 and
E [|zox[n][?] = 1) sent k — U and U — GW at time slot n, respectively. We consider the transmission
process for relaying the data of device k& which consists of two phases: the UL from device k£ to UAV
and the DL from UAV to GW. As a result, the received signals at the UAV and GW are respectively

given by

yie[n] = (Vpuk[nlhak[n]zikn PRSTguln] > /pak- [nlzake [n] + no), (6)

k eX\k

yor[n] = v/ par[n]hog[n)zok[n] + no, (N

where RSI represents for residual self-interference term, p®S! € [0,1) is the RSI suppression (SiS)
level after interference cancellations [28]-[31], ng ~ CN (0,02) denotes the additive white Gaussian
noise (AWGN); p1x[n] and poi[n] are the transmit power of the device k& and UAV on the UL and DL to
transmit the data of device & at time slot n; gy[n] denotes the fading loop channel at UAV which interferes
the UL reception due to the concurrent downlink transmission. Specifically, gy[n| can be specified as a
Rician distribution with a small factor [32], [33].

To deal with the issues involved in limited resources and the self-interference at the UAV, we consider
the resources allocation (i.e., bandwidth and transmit power) for bold the UL and DL. Thus, the achievable
rate (bits/s) of links from £k — U and U — GW to transmit the data of device k£ at time slot n are

respectively given as

r1k[n] = aix[n]Blogy (1 4+ T'y), ()
rok[n] = agk[n]|Blogy (1 4 Tay), 9)
where I'yy. 2 p1[n]|hik[n]|?wo Ty 2 (Hikﬂ[n[ﬂﬁk[]“)i% . ¢RSI a pRSI‘gU[n”z’
(H2+lgln)—re]|?)™"* | pRs1 Z}:C\ Pak+ [n]+0? ani=qo g
k*e k

o2 denotes the noise power of the AWGN; B denotes the total bandwidth in hertz (Hz) of the system;
a1x[n]|B and agx[n|B are the total bandwidth allocated for the UL and DL to transmit data of k-th
device during time slot n, respectively. Herein, ajx[n] and agx[n] represent for the spectrum allocation

for devices and the UAYV, respectively. In practice, for a large number of resources, ay;[n] and agx[n] are

*In this work, we adopt a DF relaying technique, thus, the UAV needs to complete receiving all the data from device k before
relaying to GW to guarantee the data encoding properly. Moreover, a sufficiently large time period is assumed to carry out the

data transfer as well as the decoding process at the UAV.



approximately continuous between 0 and 1. Thus, the bandwidth allocation should satisfy:

Zaik[n] <1,VYn, (10)
ke
0 < aj[n] <1,Vk,n, (11)

where i € {1,2}.
Based on (8)-(9), the throughput (in bits) received on the UL and DL to transmit the data of device k

during time slot n, can respectively be written as

Cik[n] = 0¢Rig[n], (12)
Co[n] = 0¢Ro[n], (13)
where rign],if n € Ti,
Rig[n] = (14)
0, otherwise,
rok[n], if n € Tox,
Rap[n] = (15)
0, otherwise.

Herein, Tix = {Nstart ks - - -> Nend k }» T2k = {Nendk + 1,...,N}; (14) means that the UAV only can
collect the data from device k during time period 7T1;. Otherwise, the data transmission rate is treated as
zero. Specifically, the UAV only transmits the data of device k to GW iff it finishes the data collection
process for that device, in (15). Moreover, the total throughput over N time slots received on the UL
and DL are denoted as C1, = Y. 0;Rix[n] and Cop = > 0, Rox[n], respectively.

nETi n€Tap

Let S}, denotes the data size (in bits) needed to transmit from device k to GW. Then, we have the RT

constraint for transmitting the data of device k£ on the UL and DL are expressed as, respectively

S,
)\kRik < (nend,k - nstart,k)5t>Vka (16)
1k
M2 < (N = e )00, V., am
Rog
where Ry = >, Rik[n], Ror = >, Rog[n]; (16) means that the device k& must transmit the data
n€Tik n€Tay

to the UAV before the timeout constraint, i.e., 7end k3 (17) implies that the data transmission process to
transmit the data of device k from U — GW is performed during the serving time of the UAV.?
B. Caching Model

The UAV has a cache with storage capacity of C. Due to the limited cache size of the UAY, it can

utilize FD mode to release the storage and improve the network throughput.

3We consider the system model in which the UAV does not transmit the data during taking off and landing [34]. Thus, the

data transmission process only occurs when UAV is flying in the sky.



Considering the storage limitation, the total number of files cached at the UAV should not exceed its

available storage capacity, i.e.,

n n—1
> (z Cuelll =D CQk[l]) <C, (18)
=1

kek \l=1

where zn: Cii[l] & M\Sk — fj Ciill].
I=1 I=n+1

Note that, in order to spend a part of storage capacity for future use, i.e., a free cache size to store
new data streams, the amount of data stored at the UAV is calculated as the size of files collected from
all devices till (n)-th time slot minus files transmitted to GW till (n — 1)-th time slot as in (18).
C. Problem Formulation

In this section, we aim to maximize the total number of served 10T devices by jointly optimizing the
UAV trajectory g[n], the allocation of resources (i.e., bandwidth and transmit power assigned for UL
and DL), and take into account the storage limitation, under the assumption that the locations, initial
transmission time, and the timeout constraint of all the IoT devices are known a priori.

To provide assistance to the mathematical problem formulation, we introduce a new binary variable

AL as
y 1, Device k is successfully served by the UAV,
A = (19)
0, otherwise.
Definition 1: The value of )\; should be equal to one iff the data intended for the k-th device is
collected by the UAV, while additionally guaranteeing its successful reception at the GW.
Let us denote q = {¢[n],Vn}, a = {aix[n], azk[n], k € K;n € N}, p = {pun], pax[n]. k € K,n €
N}, A= {), k € K}. Based on the above developments, the problem for maximizing the number of

served IoT devices can be mathematically formulated as follows

PP max  [|A[] (20a)
q9,3,p,A
st. Ap € {0,1},Vk, n, (20b)
0 min(Ryy, Rox) > Sk, VK, (20c)
> GtRok = Y Sk, Vk, (20d)
ke kek
)\kRik < (nend,k - nstart,k)5t7Vka (206)
1k
Sk
)\ki < (N - nend7k)(5t7Vk> (20f)
Roy;
N n—1
> (Aksk — Y SRyl =) 5tR2k[l]> < C,Vn, (202)
ke l=n+1 =1
> ailn] < 1,vn, (20h)
k

ex



q(1] = q1,4[N] = qr, (20j)

lg[n] —g[n —1]|| < é4,n=2,...,N, (20k)

0 < p1k[n] < PP [n],Vk,n, (201)

0< Z pax[n] < PG [n], Vn, (20m)
kex

where constraint (20c) means that each [oT device need to upload the amount of data Sj. At the last
time slot, constraint (20d) ensures that the device k is successfully served iff all the data uploaded on
the UL is transmitted on the DL. Constraint (20j) explains for the beginning and ending locations of
the UAV, with g7 and qr € R?*! denote the beginning and ending locations of UAV projected onto the
horizontal plane, respectively; (20k) signifies the maximum speed constraint of the UAV; constraints (201)
and (20m) imply that the total transmit power of device k£ and the UAV is limited by their maximum
power budgets P;"**[n| and P}***[n], respectively.

The problem PP is a mixed integer non-linear program (MINLP), which is NP-hard. Moreover, the
binary constraint (20b) and the non-convex constraints (20c) to (20g) introduces intractability. Therefore,
it is cumbersome to find a direct solution of P¥P. However, a suitable solution (local or global optimal)
may be obtained by employing adequate relaxations to P¥P. In this regard, we provide a transformation

mechanism for PP, followed by its corresponding solution in the succeeding section.

III. PROPOSED ITERATIVE ALGORITHM FOR SOLVING P¥P

This section provides an iterative algorithm based on the IA method to solve the design problem.
A. Tractable Formulation for (20)
In this section, we intend to make the problem PFD more tractable, we first relax the binary variables

of (20b) into continuous values. As a result, we obtain the following optimization problem

Pretaed : max [ A} (21a)
s.t. 0< )\, <1,Vk, (21b)
(20¢) to (20m) in PP, (21c)

q serves as an upper bound for that of PFD,

Such a relaxation implies that the objective values of Pigxe

Note that PrFegxed is difficult to solve due to the non-convex constraints in (20c) to (20g). Noticeably, all
these non-convex constraints are dependent on either r1;[n] or 79 [n]. In this context, we introduce slack
variables z15[n] and 29x[n] such that (H? + [|g[n] — r||*) < (21x[n])¥* and (H? + |lq[n] — 0l%) <
(2o [n])Q/ @, respectively, where o > 2 for Rician fading channel [14], [35], [36], by which the (8) and

(9) can be rewritten as



pi[n] |7k [n]]*wo
rik[n] = aixn] Blog, (1 + 2k (ORST S poje[n] + 02))’ (22)
ke e\ k
b4 pak[n]| ok [n] 2wy
raln] 2 rihln] £ anln]Blogy (14 P "8 L) 23)

Herein, we note that the expression in (22) may still need some transformation to ensure tractability.
Therefore, we first introduce a slack variable ¢1;[n] as a soft interference plus noise for user &k during

time slot n, which yields
(@' D" pareln] + 0®) < tax[n]. (24)
k*€l\k
Then, the (22) is lower bounded by
> [n] = aix[n] Blog, (1 +

pu[]lhug[n]Pwo >
z1k[n]t1k[n]
By substituting (23) and (25) into (12), (13), (14), and (15), we obtain C1; [n], CR2 [n], R, [n], and R [n],

(25)

respectively. Moreover, we have RI5 = Y RI°[n], R> = > Rox[n]. Next, the total throughput
over N time slots received on the UL agcengL can be rewrittgrffls; Clb = 3 8§ Rign] and CP =

> O¢Rog[n], respectively. Let us denote z = {zx[n], zox[n],n € N,k € K?,gt—lk: {tik[n],k € K,n €
.T/L\i fkThen, the problem PP . can be reformulated as

relaxed
Pretuxed,1 - max_— [IA]l; (26a)
q,a,p,A\,z,t
s.t. (21b), (20h) — (20m), (26b)
H? + |lgln] = &) < (2x[n))”® , Yk, m,
H? + |lgln] — qol|*) < (2a4[n])*/*, ¥m, (26¢)
@ " poeln] + 0?) < tag[n), Yk, n, (26d)
k*ek\k
)\kRT’:) < (nend,k - nstart,k)5t7Vk7 (266)
1k
Sk
Moy < (N = Nend k)0, VE, (26f)
R b
2k
6; min(RY, R%) > ApSk, VE, (26g)
D SRE > ASk,VE €K, (26h)
ke ke
N n—1
> (AkSk — ) &Ryl - Z5tR2k[l]> < C,Vk,n. (261)
ke l=n+1 =1
It is noteworthy that Pigxed’l is a much simpler form in comparison to P¥P, but the possibility of

a direct solution still seem unviable. This is due to the fact that joint computations of the optimization
parameters (related to (26e)-(261)) introduces non-convexity to the problem. However, it is still possible
to solve the problem in an iterative manner, with alternating optimization of the involved parameters. In

the following, we discuss the above-mentioned approach in detail.



B. Proposed IA-based Algorithm

In this section, we transform (26) into a convex form. Specifically, the proposed algorithm is mainly
based on the IA method [22] under which the non-convex parts are completely exposed.

Approximation of ' [n] and rif [n]: Before proceeding further, we can express 1> [n] and rif [n] as

rixln] = ai[n]®1x[n, 27)
roxn] = age[n]®ax[n], (28)
h 7 2
e ®qx[n] = Blogy | 1+ pu [l ln] P , (29)
z1k[n]tix[n]
7 2
®ox[n] = Blog, (1 + 2 2’“[2]2%“]?2” UJO) : (30)

To reformulate (29) and (30) into tractable forms, we introduce the following lemmas:
Lemma 1: Consider a concave function h(x,y) = \/zy, > 0, y > 0. Its upper bound at given

points z(9) and 39) can be given by [28, Appendix B], [37]

AV (] w/y(j)
h . 31
@9) < S Y T e Gb

Lemma 2: Consider a function hy(z,y,2) = In (1 + i) and hy(z,z) £ 1In (14 £). The lower bound

of hy(x,y,z) and hy(z, z) at given point zU), yU), and 2U) which are expressed as

. . j ) 2D 9
) O Vaoyz 2V (2t EeE + ey
hl(:v,y,z)>1n<1+ v .)— v gVeive ( M T ) (32)
y() z(9) y() 2() y() z(9) yNz0) (200) 4 y(@) ()
€) () Vai)/z @ (2 + 2)
x x zU)\/x 2V (x4 2
ha(2, ) 2 In (1 + z(ﬁ) OO T 0 @0 4 200) (33)
Proof: See Appendix A. [ |
Based on lemmas 1 and 2, ®1x[n] and ®1[n| are lower bounded by
Dixln] > ®iiln] 2 B( A1 + Az (pxln]) — As(pue[n], tailn, z1eln)) ), (34)
Dapln] > Boxfn] 2 B(Cr + Ca(pax[n]) — Cs(paslnl, 2anln]) ), (35)
where Ay, As, Ag, C1,Cs, and C3 are defined in Appendix B.
By introducing slack variables ®! [n] and ®\ [n], we have
®1y,[n] > @ [n], (36)
o [n] > @4 [n)]. 37)

Consequently, 1% [n] and 73 [n] are converted to the following constraints:
mu]>r[]—ammwﬁ[] (38)

rar[n] > moy[n] = ag[n] @5 [n). (39)



Besides that, since ajx[n|®h[n] and agy[n]® [n] are non-convex functions. To deal with these
constraints, we substitute a;,[n]®![n] and agx[n]®L [n] by equivalent Difference of Convex (DC)
functions 0.25[(a1x[n]+ @, [n])2 — (a1x[n] — @1, [n])?] and 0.25[(agk[n]+ @5 [n])% — (ask[n] — @5 [n])?],
respectively. Then, we apply the first-order Taylor approximation to approximate the convex functions
(a1k[n] + ®1x[n])? and (agk[n] + Pa[n])? at the (j + 1)-th iteration, respectively. Hence, functions 712, [n]
and 75.[n] in (38) and (39) are respectively represented by

(4) 1b, (4) 2 (4) 1b, () )
(alk[ ]+©1k [n]) n (alk[ ]+(I) [ ]) % (alk[ ]_agjk)[ ]—|—<I>11k}€[n] _(I)llk;(ﬁ[n])

aip[n]@3[n] >

4 2
2
_ (a1x[n] —4‘1’112[”}) 2 b ), (40)
aDiy b, (1) 1,,1) 2 aDry b,y ,
o] D[] > (agy [n ]+f2k [n]) n (agy | ]"';)m [n]) « (a%[n] 7a§k)[ |+ o] - @12‘2(])@])

To convexify (26e)-(26i), we introduce the slack variables 712 [n] and 73 [n], the constraints (40) and

(41) are innerly approximated by the following convex constraints:

0 [n] > 5[], (42)
o[n] > Py ln]. 43)

As a result, substituting 7 [n] and 73 [n] into (12), (13), (14), and (15), we obtain @i‘};[n] ég,;[n],
Rlﬁc [n], and Rlﬁc[ ], respectively. Moreover, we have le = > }Ailb AR ﬁlﬁc = > ]/3:12% [n]. Next, the

n€Tik nETzk
total throughput over N time slots received on the UL and DL can be rewritten as Cl b= > 5tR1112, [n]
n€Tik
and Cg,’g = > 6,5R12'7;€[n], respectively. Let us denote ® = {® [n], ® [n],Vk,n} and r = {78 [n],

n€Tay
%‘}’C[ ], Vk,n}. Bearing all the above developments in mind, we solve the following approximate convex

program at the (j + 1)-th iteration:

Peonvex :q’an\l’az)’i’@’r’ HA H 1 (442)

s.t. (20h) — (20m), (21b), (26c¢), (42), (43), (44b)
S,
)\k/\ill:) S (nend,k - nstart,k)(staka (440)
1k
Sk
A —=— ﬁlb = (N - nend,k)6t7Vk7 (44d)
2k
Ot mln(le, Rlﬁ) > A Sk, Vk, (44e)
Z §;RY > Z Ak Sk, (44f)
k=1 k=1

N n—1
> ()\kSk — > GR%G[ - Za@i[ﬂ) < C,Vk,n. (44g)
=1

ke l=n+1



Algorithm 1: Proposed IA-based Iterative Algorithm to Solve (20)

Initialization: Set j := 0 and generate an initial feasible point ¥(?) for all constraints in (48).

1: repeat
2: Solve (48) to obtain the optimal solution ¥* £ (q ar*, p*, A" 2h DT rF).
3. Update qUHY) .= g*,alt)) .= a* pUtD .= )\(J+1) = A%, z(]+1) = 2% tU+D) .= ¢~

4. Setj:=j5+1.
5: until Convergence

It is observed that problem P.onvex iS convex since the objective and all constraints are convex, i.e.,
linear or quadratic constraints. Thus, it can be solved by using the standard convex optimization methods
[38]. However, since the binary variable ) is relaxed to continuous values between 0 and 1 as in (21b),
which does not necessarily guarantee that each value of \; converges to O or 1. This motivates us to
enforce a penalty function P(\g) = A\ In(Ax) + (1 — A) In(1 — \x.), which is convex for A\, > 0 [39].

Hence, the penalized reformulation of Peopvex With penalty parameter x € R is expressed as,

Ppenalty a a,pg\l,az),{t,é,r, l%’; (Ak + K‘P(/\k)) (45a)
s.t. (44a) — (449). (45b)
Particularly, the objective function in Ppenalty is a difference of concave function, i.e., f(A\;) =
> ()\k — ( — /{P(Ak)) with convex constraints. Thus, the problem Ppenalty is a DC Programming
kek
Problem (DCP). In order to make Ppenalty become a convex problem, we replace P(\y) in the objective
function by its first order Taylor approximation at (j + 1)-th iteration:
B(\) 2 /i(IP’()\(])) + PO (A A,@)), (46)
where ) ) )
VP(A’) =In(A’) —In(1 = A;"). 47

Motivated from above discussions, we propose an IA-based algorithm to solve problem (20) sum-
marized in Algorithm 1. At the (j + 1)-th iteration, it solves the following convex program (which is

obtained by replacing convex part and ignoring the constant terms in the objective):

nglalty,l :m\IEIiX Z ()\k + K&)\kV[P()\](gj)» (482)
kex
s.t. (45b), (48b)

where ¥ £ {q,a,p,\,z,t,®,r} which correspondingly provides WU £ {q() al) p) A0) z0)
t() <I’(3 J)} as the optimal solution for (48) at iteration j. To ensure the feasibility of (48) in the
first run, a suitable starting point W should be initialized. Then, the optimal solution is obtained by
successively solving (48) and updating the involved variables until satisfying the convergence condition

(discussed below in detail). Finally, a pseudo-code for solving (48) is summarized in Algorithm 1.



C. Convergence and Complexity Analysis:

1) Convergence Analysis: For the sake of notational convenience, let us define the feasible set y(7)

of (48) at the initiation stage of the (j + 1)-th iteration
Y £ {w0)|st. (44a)-(44g) are feasible }. (49)
Proposition 1: The proposed Algorithm 1 yields a sequence of improved solutions converging to at

least a local optimal.

Proof: To be self-contained, we briefly give the convergence analysis as follow. First, we recall that
the approximate functions presented in Section III satisfy properties of the IA algorithm given in [22].
This means that the solutions for solving (48) would result in the sequences of non-decreasing objective
values, ie., fUtD(\;) > fU)(\) [37, Lemma 2.2]. Moreover, the value of f)();) is closed and
bounded due to the IA method and the power constraints (201) and (20m). Thus, the iterative solutions of
the proposed convex programs towards the Karush-Kuhn-Tucker (KKT) point are monotonically improved
and converge to at least a locally optimum. [ ]
2) Complexity Analysis: We now provide the worst-case complexity analysis for each iteration
in Algorithm 1. Since the problem (48) is convex, several solvers employing the interior point method
may be applied to solve it. Thus, the number of Newton steps, denoted as N, is adopted to measure the

worst-case complexity to obtain the solutions. Concretely, Ng can be given as [40]:
Ng ~ y/problem size, (50)

where the problem size is the total number of optimization variables. More specifically, the convex prob-

lem (48) involves 5N (1+3K )+ K scalar real variables. As a result, the per-iteration complexity required

to solve (48) is /5N (1 + 3K) + K. It results in the overall complexity of N;1/5N (1 + 3K) + K, where

N; is the number of iterations to reach a locally optimal solution.

D. Throughput Maximization:

In an emergency case or during a natural disaster, data needs to be collected promptly for assessment
of the current situation in a given area. The more data is gathered, the more accurate prediction one could
achieve. This motivates us to present a new problem which maximizes the total amount of collected data

with a given number of served IoT devices subjected to certain quality-of-service (QoS) constraints

Pl : max Z d¢min (R, Roy) (51a)
B kek

s.t. [[All; = Athresh, (51b)
(20b) — (20m), (51c)

where constraint (51c) means that the total number of served IoT devices must be greater than or equal
to a predefined threshold value, i.e., Athresh-



Algorithm 2: Proposed IA-based Iterative Algorithm to Solve (52)

Initialization: Set j := 0 and generate an initial feasible point ¥(?) for all constraints in (52).

1: repeat
2: Solve (52) to obtain the optimal solution ¥* £ (q ar*, p*, A" 2h DT rF).
3. Update qUHY) .= g*,alt)) .= a* pUtD .= )\(J+1) = A%, z(]+1) = 2% tU+D) .= ¢~

4. Setj:=j5+1.
5: until Convergence

Similar to PP, the problem PEP. is also a MINLP, which is NP-hard. Fortunately, by applying the

relaxation method as in Section III, (51) is rewritten as

7)rate ,convex m\IE}X Z 6tmin(§1k7 EQk) (52&)
kel
s.t. (45b),(51c), (52b)

where le = R %+ IQAkVP()\( )) ng = Rlzk, + Ii)\kV]P)(/\( )) with le and le can be obtained as in

Section I1I-B.

Consequently, the solution of problem PLD

rate,convex Can be found by successively solving a simpler

convex program, as summarized in Algorithm 2.

IV. HALF DUPLEX MODE SCHEME
A. Maximizing the Number of Served loT devices:

In order to stress the benefits of our proposed method using FD mode, we will describe again about
problem by considering HD mode at UAV in this section. Then, (6) can be rewritten as

yie [n] = axe[n](v/pre[n]haen]zin] + no). (53)

In (53), the UAV apply HD mode, thus, it utilizes different frequencies on the UL and DL during time

slot n. Consequently, the RSI is disappear compared to that of (6). Thus, the achievable rate (bits/s) of

links from £ — U and U — GW to transmit the data of device k at time slot n are given as

n]|hign]|2w
rip [n] = a1x[n]Blogy | 1+ pi[n] |k ”2 (;/2 7 54)
(12 + gl = i)™ o2
n]|hopn]|%w
o [n] = ag[n]Blogy | 1+ p2k[n]|hax[n]Fwo (55)

9 a/2
(£2 + llaln) = rel?) " 02
By replacing (54) into the equations (12), (13), (14), and (15), we obtain C1P[n], CIIP[n] = Coy[n],
RHD[n), and REP[n] = Rox[n], respectively. Then, we reformulate the problem of maximizing the total

number of served IoT devices as follows
PHD:Inm& Al (56a)

L,

s.t. (20b), (20d), (20f), (20h) — (20m), in PP, (56b)



6 min(RIP . Rop) > M\ S, VE, (56¢)

S

Mg < (end b = Patart )01, VK, (56d)
k N n—1

> <)\kSk — ) Ryl - Z5tR2k[”> < C,vn. (56¢)

ke l=n+1 =1

The problem PHD is non-convex because the binary constraint (20b) and other non-convex constraints
(20d), (20f), (56¢), (56d), and (56¢). In order to seek a suitable solution, we first relax the binary constraint
(20b) as in (26b). Then, by introducing 2P [n] and 2P [n] such that (H 2+ lq[n] — Tk||2) < (28P[n])?/«
and (H 2+ llqln] — qol| ) (251P[n])?/@, respectively, with > 2 for Rician fading channel [14], [35],
[36], by which the (54) and (55) can be expressed as

h n 2w
T%WﬂzamwBb&<l+“k ‘1U’°> (57)
h
B2 [n] = agx[n)Blog, (Hp”“ '2’“ ) (58)

It is easy to see that the 7P [n] and riIP[n] are totally the same as 1. [n] in (23). Thus, we can apply

the IA method for 7l [n] in Section III to riiP[n] and riP[n]. As a result, 75P[n] and 75P[n] can be

rewritten as

rip [n] = ak[n] @30 [nl, (59)
o (0] = azi[n] @5 [n], (60)

where 7 2

hak[n]|*wo

®!P[n] = Blog | 4 Pueln ” L : 61)

2,
OUD[n] = Blog, [ 14 P2:" I]JQQ’“["” 0. (62)

2oy, [n]o
Similar to (35), ®1x[n] and ®1x[n] are lower bounded by

o1y [n] > @11 [n], (63)
o0 [n] > Bhy’[n], (64)

where ®11P[n] and ®1P[n] can be calculated as ®oy[n], see Appendix B
As in (38) and (39), it follows that

riCln] = ri P[] = awln)@y ), (65)
rai ) = 0] = age[n] @y, [n), (66)
where <I>HD lb[ ] and <I>12{kD’lb [n] are new slack variables which are lower bound of ®1P[n] and ®XP[n],

respectively. Then, we apply the first order Taylor approximation for a; [n]@lka’lb [n] and agy [n]fbgll? rp),

it yields to



Algorithm 3: Proposed IA-based Iterative Algorithm to Solve (71)

Initialization: Set j := 0 and generate an initial feasible point ¥(?) for all constraints in (71).

1: repeat
2: Solve (71) to obtain the optimal solution ¥* £ (q a*, p*, N5, 25, @, r )
3: Update q(]+1) = q*va(j'f'l) — a*,p(j"!‘l) = )\(J"‘l) — )\* z(]-‘rl) P
4: until Convergence
,HD.Ib _HD,Ib
r (0] =y 0] (67)
HkD (] > 77;{]{:D,1lo[n]’ (68)
where F{IkD’lb [n] and fng’lb [n] can be represented as in RHS of (40) and (41), respectively.
In turn, by introducing slack variables ??kD ] and ?ng ®[p], the constraints (67) and (68) are innerly
approximated by the following convex constraints:
ﬁ{kD,lb [n] > ﬁkD,Ib nl, (69)
o 1] > T ). (70)

In Algorithm 3, we propose an Iterative algorithm to solve the problem (56). At the j-th iteration, it

solves the following convex program:

pib max Z ()\k + /f)\kVIP’()\( ))) (71a)
ke
s.t. (20b), (20d), (20f), (20h) — (20m), (69), (70), (71b)
& min(RyD™, REP™Y > A Sy, VE, (71¢)
S
Me =75 < (Mendk — Nstart k)01, VK, (71d)
le
n—1
> ()\kSk - Z s Ry — ZatREvalb[zO < C,Vn. (71e)
ke l=n+1 =1

Specifically, similar to (45), we adopt the penalty function in the objective to guarantee the convergence
of A\ value to either O or 1, Vk € K.

1) Complexity Analysis: : The convex problem (71) involves 3N (14 4K)+ K scalar real variables.

As a result, the per-iteration complexity required to solve (71) is \/ 3N(1+4K)+ K. It results in the

overall complexity is /V; \/ 3N(1+4K) + K, with N; is the number of iterations to reach a local solution.

Remark 1: It is noteworthy that any feasible solution for (71) is also a feasible solution of problem
(48) but not vice versa because the result obtained for (48) is the upper bound for the one in (71). It
can be explained by the fact that the problem (71) only considers HD mode at UAV to mitigate the

interference which also restricts the spectrum efficiency. The more spectrum allocation of the downlink



Algorithm 4: Proposed IA-based Iterative Algorithm to Solve (72)
Initialization: Set j := 0 and generate an initial feasible point ¥(?) for all constraints in (72).
1: repeat
2: Solve (72) to obtain the optimal solution ¥* £ (q*, a*, p*, A*, z*, ®*, r )
3 Update qUtD := g*,altD) .= a* pUtD) .= p* AUHD .= x* 2 (]+1) = 2*
4: Setj:=j+1.
5: until Convergence

100

—8—FD
= & -Benchmark FD
—h—HD
= -Benchmark HD

—8—FD
= & -Benchmark FD
——HD 1
= -Benchmark HD

Percentage of Served loT Devives
Percentage of Served loT Devives

| | | | | o
400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
x (meter) X (meter)

() N=70 (b) N =60

Fig. 3. Percentage of served devices vs. network size.

from U — GW is, the more successfully served IoT devices can be retrieved. This remark will be taken

up further in the simulation results.

B. Throughput Maximization:

In this section, we reuse all the slack variable definitions as introduced in Sections III-D and IV-A.

By following the same steps presented in Section III-D, we obtain the following tractable optimization

problem
Prate m\g‘x Z 5tmin(R11{kD? ngD) (723)
kel
s.t. (71b),(71c),(71d), (71e), (51c), (72b)

where RIP £ RHD by m\kv]P’()\(])) RID £ RHD Py kA VIP’()\( )) while RHD > and RHD > can be
obtained as in Section IV. Due to the convexity of problem P10 the solution of problem P! can be
iteratively obtained as in Algorithm 4.
V. NUMERICAL RESULTS
In this section, we present the numerical results to evaluate the proposed joint bandwidth allocation and

transmit power for the devices/UAV as well as the UAV trajectory design in UAV-assisted [oT networks.
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We consider a system with K IoT devices that are randomly distributed in a horizontal plane,i.e, 500
meters X 500 meters. We assume that the GW, the start location, and end location of the UAV are located
at (0, 500 meters), g = [300 meters, 200 meters], and gr = [100 meters, 0], respectively. The UAV
flight altitude is invariant at H = 100 meters [41]. The total bandwidth is B = 10 MHz. The transmit
power budget of the UAV and IoT devices is respectively set as Pjj** = 20 dBm and P"** = 15
dBm. Other parameters are set as follows: path loss exponent o = 2.3, 02> = —110 dBm, wy = -40
dB, S = 30 Mbits, Rician factor G = 12 dB, the maximum collection time deadline for each device k
Nend,k 1 uniformly distributed between ngrlllgk and ngi,. To show the superiority of our designs, we

compare proposed methods with benchmark schemes. Herein, the Benchmark FD and Benchmark HD are

respectively implemented similar to Algorithms 1 and 2 with fixed values of a, i.e., ai[n] = ai[n] = £.
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A. Maximizing the Number of Served IoT devices:

Fig. 3 evaluates the percentage of served devices versus network size, i.e., x (meters), with K = 20,
while the UAV’s horizontal area is calculated as: area = x? (m?). As illustrated, the larger network size
is, the fewer devices can be successfully served. The reason is because the IoT devices are distributed
in a larger area. Thus, providing more speed is required to fulfill the GUs’ latency requirement, but the
Viax 1s limited. Furthermore, by increasing total traveling time N also improves the performance. It is
due to the fact that the UAV has more time to exchange information with the IoT devices and GW. It
is also shown that the proposed FD method significantly improves the number of served IoT devices
compared with the HD method for all values of = (meter). Because in FD mode, the UAV transfers data
of device k to ground gateway right after it finishes gathering data of that IoT device. While in HD
mode, the UAV only operates in the downlink transmission when it completes the data acquisition for
all users on the uplink to prevent RSI at the UAV. Consequently, FD scheme has a higher probability of
satisfying the GUs’ RT. Besides, the Benchmark FD and Benchmark HD schemes can be considered as
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lower bounds of FD and HD, respectively. Our proposed algorithms utilize the spectrum more efficiently
in comparison to the benchmark schemes with fixed bandwidth allocation. Particularly, in Fig. 3(b), with
z = 1000 and N = 60, the performance of HD is found to be better than the Benchmark FD scheme.
It is because the effectiveness of using bandwidth allocation in proposed designs. The results show the
superiority of the proposed algorithms over the benchmark schemes.

In Fig. 4, we investigate the performance with different rysh requirements, where K = 20, Sy, ranging
from 5 to 30 Mbits, ng;‘gk = 50 time slots, ngﬂfk = 60 time slots, and N = 70 time slots. Specifically,
the QoS is defined as the minimum rate threshold at the UAV/GW to successfully decode the signal,
i.e., 71k thresh|[1] and 7oy thresh[n]. For simplicity, we assume that 71y thresh [2] = 72k thresh [2] = T'thresh-
It is observed that the more the minimum rate threshold is required, the fewer users that the system can

serve. This is due to the fact that the UAV tends to get closer or spend more time around an [oT device

to gain a higher rate requirement. It leads to the UAV having less chance of serving more devices due to
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Fig. 11. Total achievable throughput vs. different cache sizes.

limited flight time and requested timeout constraint at each user. Another observation is that for a larger
cache size, the number of served users is increasing. It is due to the fact that the UAV has more capacity
to store incoming data. Thus, the UAV can serve more users before offloading information to the GW.
Similar to Fig. 3, our proposed FD and HD algorithms achieve much better percentage of served IoT
devices compared to the Benchmark FD and HD schemes, respectively. Particularly, the performances
of the benchmark schemes stay unaltered with the increasing of rin.sh. This is because of the fixed
bandwidth allocation for each time slot n in these algorithms. This additionally leads to the fluctuation
of data transmission rate values with low variance during time slot n, i.e., r1x[n] and rox[n]. Thus,
when the r¢esn Value is still lower than the average rate of the Benchmark FD and Benchmark HD,
the performance is insignificantly influenced. However, if 76 1S large enough, the performance of
benchmark schemes will drastically affected.

Fig. 5 shows the impact of different value of 7enq x on our system, with N = 80, K = 20. It is observed
that the percentage of served users increases corresponding to 7enqd 1 € [70, 75], [65, 70], [60, 65], [55, 60],
respectively. It can be explained on the basis of the constraint (20c), which describes the condition for a
successfully served user. Since the total gathering throughput is proportional to the time duration allocated
for UL/DL. When the time for UL from IoT devices to UAV is large enough, the number of served users
significantly depends on the time allocation for DL from UAV to GW. Furthermore, the time period for
DL is calculated as N — ngﬁlﬁ"k and N — ng o for FD and HD schemes, respectively. We see that the
period of time allocated for DL in FD scheme is higher than that in HD scheme such that the performance
of FD is outperform the HD one. Specifically, the total number of served users obtained from HD can
be equaled to the FD method when the value of N — 7 %% is large enough. For instance, in Figs. 5(a)

and 5(b), both proposed methods can serve the maximum number of IoT devices when 7enq 1 € [55, 60]



and C' > 600. In this scenario, the UAV should work in HD mode for simplicity of operation in realistic
implementation.
In Fig. 6, we investigate the effect of service amount on the system performance, where K = 20,

min
end,

max

n end,

i = 60 time slots, n7%%, = 70 time slots, with N = 80 time slots. As inferred from the results,
the FD algorithm significantly improves the percentage of the served IoT devices compared with the HD
algorithm for all values of cache size. Specifically, at S = 30 Mbits and C' = 600 Mbits, the FD scheme
can serve 95% of users in the network while the HD imposes 60% of the served users. Moreover, the
performance is degraded by increasing the packet size Sy due to the restriction of available resources
assigned for the IoT device/UAV, i.e., P, P, Vinax, and B. Besides, when the value of cache size
is sufficiently large, the successfully served users of all schemes converges to the saturation value. Since
the performance is dependent not only on the cache size but also on the resources budget (i.e., bandwidth,
power) as well as requested timeout at each device.

Fig. 7 presents the results corresponding to the percentage of served GUs versus Pjj** with variable
cache size, while nglig’k = 65 time slots, ng’;ladxk = 70 time slots, and N = 80 time slots. As illustrated,
the number of served users is enhanced by increasing the power budget, i.e., P;7**. Moreover, the FD
scheme provides a better result in comparison with the HD scheme when Pj** is small, e.g., Pjj** < 21
dBm with C = 300 Mbits. Nevertheless, the HD method can obtain the same number of served users as
the FD method when Pj/'** value is large, e.g., P > 21 dBm with C' = 300 Mbits. This is because
the FD mode suffers a residual self-interference together with AWGN which significantly increase the
noise power at UAV compared to that of HD. Moreover, the RSI is in linear proportion to the Pj**
as in (8) Thus, when P;;** is large, the UAV should operate in HD mode since the FD mode requires
extra energy which may exceed the system energy budget. It is due to the fact that in FD mode the UAV
starts transmit data to GW earlier than in HD mode which is highlighted in Fig. 5. This leads to a higher
energy consumption at the UAV when it manoeuvers in the FD mode.

Fig. 8 illustrates the percentage of served devices versus number of 10T devices with different cache
sizes, where H = 50 meters, B = 10 MHz, N = 80, ng;fg’k = 65 time slots, ng, = 70 time slots, C' =
600 Mbits. As the same with Figs. 3 to 9, the percentage of served devices of FD method outperforms
the HD scheme. Furthermore, the percentage of served users is reduced by increasing the number of IoT
users in the same network area. It is because the restriction of resources (i.e., bandwidth and transmit
power allocated for UL and DL) and V,,x while more devices are considered. Besides, the percentage
of served users will enlarge (as expected) with growing the storage capacity at the UAV or decreasing

the packet sizes, as in Figs. 8(a) and 8(b), respectively. Nevertheless, the performance is unchanged for



the HD method with S;, = 10 Mbits in Figs. 8(a). It can be explained by the fact that, with C' = 300 and
S = 10 Mbits, the HD scheme can support up to 30 users but it only serves a lower number of devices
due to the limited serving time. Furthermore, one can observe that the UAV serves a lower number of
IoT devices with a larger service amount Si. This is expected since the UAV needs to spend more time
and resources to compensate the increase of Sy which is in contradiction with the bandwidth, transmit
power, and time limitation.

Fig. 9 presents the percentage of served devices as a function of maximum power budget at each IoT
user with different data size, i.e., P;"**. We observe that the performance of the HD scheme is inferior
to the FD scheme for various values of P;"** with a large number of devices, e.g., K > 20. This is due
to the fact that the total allocation time for the DL in HD is lower than that in the FD scheme. Notably,
both methods can achieve the same performance when the number of users is small, e.g., K < 10.
Therefore, the UAV should work in HD mode when the network size is small, e.g., K < 10, in order to
reap maximal gains.

B. Throughput Maximization:

Herein, we present the corresponding results for the problem of maximizing the total achieved through-
put as in Sections III-D and IV-B. In Fig. 10, the total achieved throughput is presented as a function of
network sizes, with K = 20, .Sy, is ranging from 5 to 30 Mbits, and N = 70 time slots. We observe that the
proposed algorithms significantly improve the throughput performance in comparison with the considered
references, for all values of network sizes, i.e., x (meters). Concretely, at B = 10 Mbits and x = 500 meters,
the FD algorithm can serve all the devices and the HD algorithm achieves less than 23.56%. Whereas
the Benchmark FD and Benchmark HD repsectively impose 67.02% and 15.71% of total data amount.
Moreover, all schemes achieve better performance with the increasing of total bandwidth. It is because
the higher the bandwidth allocation is, the larger the transmission can be achieved. Particularly, one
interesting outcome is that the HD is even better than Benchmark FD which emphasizes the preeminence
of the proposed algorithms as compared to the references. It is due to the benefits of optimizing bandwidth
allocation.

In Fig. 11, we study the influence of the total traveling time versus the total amount of gathering data,
with K = 20, Si ranging from 5 to 30 Mbits. It is observed that the more traveling time is assigned,
the higher amount of data can be successfully served. Because the UAV has more time to exchange the
information with IoT devices or the GW. This leads to the UAV having more chance of gathering the
data. Moreover, all schemes approach their respective saturation point with the increasing values of C,

e.g., when C > 400 Mbits for the FD algorithm. Particularly, at N = 70, the HD scheme can obtain the



same performance as FD one. We conclude that when the total traveling time is sufficient large, the UAV
should operate at HD mode for simplicity and reduce the abundant power consumption in comparison

to the FD mode.

VI. CONCLUSION

We investigated the resource allocation and trajectory design for UAV-assisted FD IoT networks
with emergency communication system, which take into consideration the latency requirements from
concerned IoT devices and the limited storage capacity of the UAV. In this context, we formulated
the analytical problem to maximize the total number of served IoT devices via joint optimization of
the UAV trajectory, allocated bandwidth, as well as the transmission power for the devices and UAV,
while satisfying the requested timeout constraints and storage capacity. Due to the non-convexity of the
formulated problem, we transformed the original problem into a tractable form which is then solved using
an iterative algorithm having a polynomial computational complexity per iteration. Besides, pertaining
to the realistic requirements for improving the estimation accuracy in a natural disaster or emergency
scenario, we proposed an additional optimization problem in order to maximize the total collected data
while the threshold of minimum number of served IoT devices is guaranteed. We illustrated via numerical
results that the proposed designs outperform the benchmark schemes in terms of both total number of
served users and the amount of collected data. Particularly, when the RT from all IoT devices is not
stringent or in the case of small network size, the UAV should operate in the HD mode for a simple

implementation.

APPENDIX A: PROOF OF LEMMA 2

As in [30, Eq. (20)], we have
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By applying (31), the upper bound of yz in (A.1l) is given by
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withx >0,y >0, 2 >0, ) >0, y(j) >0, 2 > 0.

Then, replacing (A.3) into (A.1), we obtain (32) and (33). The Lemma 2 is hence proved.



APPENDIX B

From (A.3), the upper bound of z;[n|tix[n] in vl [n] is:
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By making use of (32), (33), and (B.1), the lower bound of ®qx[n| and ®o[n] are, respectively

P1x[n] > y[n]
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