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Abstract

Unmanned aerial vehicle (UAV) communication has emerged as a prominent technology for emer-

gency communications (e.g., natural disaster) in Internet of Things (IoT) networks to enhance the ability

of disaster prediction, damage assessment, and rescue operations promptly. In this paper, a UAV is

deployed as a flying base station (BS) to collect data from time-constrained IoT devices and then

transfer the data to a ground gateway (GW). In general, the latency constraint at IoT users and the

limited storage capacity of UAV highly hinder practical applications of UAV-assisted IoT networks. In

this paper, full-duplex (FD) technique is adopted at the UAV to overcome these challenges. In addition,

half-duplex (HD) scheme for UAV-based relaying is also considered to provide a comparative study

between two modes (viz., FD and HD). Herein, a device is successfully served iff its data is collected by

UAV and conveyed to GW within the flight time. In this context, we aim at maximizing the number of

served IoT devices by jointly optimizing bandwidth and power allocation, as well as the UAV trajectory,

while satisfying the requested timeout (RT) requirement of each device and the UAV’s limited storage

capacity. The formulated optimization problem is troublesome to solve due to its non-convexity and

combinatorial nature. Toward appealing applications, we first relax binary variables into continuous

values and transform the original problem into a more computationally tractable form. By leveraging

inner approximation framework, we derive newly approximated functions for non-convex parts and then

develop a simple yet efficient iterative algorithm for its solutions. Next, we attempt to maximize the

total throughput subject to the number of served IoT devices. Finally, numerical results show that the

proposed algorithms significantly outperform benchmark approaches in terms of the number of served

IoT devices and the amount of collected data.

Index Terms

Emergency communications, full-duplex, information freshness, Internet-of-Things, timely data col-

lection, unmanned aerial vehicle (UAV).



I. INTRODUCTION

In 1999, the British technology pioneer Kevin Ashton introduced a concept of the Internet-of-Things

(IoT) to describe a system in which all devices with sensors are capable of connecting to each other [1].

IoT has the potential to significantly enhance the quality of human life such as smart home, health care,

wearable devices, agriculture, smart city, autonomous vehicles, and smart grid [2]. The number of IoT

connections of all types is estimated to reach almost 25 billions by 2025 [3]. However, the growing demand

for communications is becoming a great challenge for IoT networks due to limited spectral resources

at terrestrial base stations (BSs). Besides, BSs are deployed in fixed locations and antenna height to

serve a fix geographical area and resources cannot be rapidly shifted elsewhere, especially, in emergency

communications, whereas BSs are potentially isolated or damaged after a natural disaster, or when BSs

are unable to serve all users as they are overloaded during peak hours. This raises a question of how to

support the communication needs of a massive number of IoT devices with restricted resources without

compromising the network performance [4]. Fortunately, due to the high maneuverability and flexible

deployment, unmanned aerial vehicle (UAV) communications could become a promising technology to

overcome the above shortcomings [5]. Due to energy constraints, IoT devices are commonly unable to

propagate over a long distance. Thus, the UAV can fly closer to devices, harvest the IoT data, and then

transmit it to the BS/control center which is out of transmission range of these devices.

Extensive studies have been carried out to investigate UAV-assisted IoT communication networks [6]–

[10]. The work in [6] studied the joint optimal 3D deployment of UAVs, uplink (UL) power control, and

device association in an IoT network. Specifically, the authors proposed a new framework for efficiently

distributing UAVs to collect information in the UL from IoT users. In [7], the authors optimized the data

gathering efficiency of a UAV-assisted IoT network, subject to the power budget, the energy capacity, and

the total transmission time for IoT devices. Herein, a multi-antenna UAV was operated which followed a

circular trajectory and served IoT devices to create a virtual multi-input multi-output (MIMO) channel.

Reference [8] presented a robust central system orchestrator (SO) that was designed to provide value-

added IoT services (VAIoTS). Whereas the SO keeps the entire details about UAVs including their current

locations, flight missions, total energy budget, and their onboard IoT devices. To obtain an efficient

UAV selection mechanism corresponding to each task requirement, the authors proposed three solutions,

namely, energy-aware UAV, fair trade-off UAV, and delay-aware UAV selection. A novel UAV-aided IoT

communication network to provide energy-efficient data gathering and accurate 3D device positioning of

IoT devices was proposed in [9], whereas a UAV was deployed as an aerial anchor node and a flying



data collector. Particularly, UAVs could serve not only as aerial BSs but also as powerful IoT components

that are capable of communications, sensing, and data analysis while hovering in the air [10]. Note that

none of above-mentioned works in [6]–[10] take the crucial latency constraint into consideration.

Recently, the delay-sensitive data collection has attracted much attention from researchers [11]–[14].

For example, in the emergency case or during the natural disaster, the out-of-date gathering data may result

in unreliable controllable decisions, which may ultimately be disastrous [14]. For example, in mission-

critical IoT applications such as smart grids, factory automation (e.g., printing machines, packaging

machines, and process automation), and intelligent transport systems (e.g., road safety highway and

traffic efficiency) [15]. On the other hand, IoT devices often have limited storage capacity, and thus their

generated data need to be collected timely before it becomes worthless due to obsolete transmissions or

being overwritten by incoming data. Therefore, the UAV must reach the right place at the right time.

In [11], the authors proposed two UAV trajectories, namely, the Max-AoI-optimal and Ave-AoI-optimal

to efficiently collect data from ground sensor nodes under the impact of the age of information (AoI)

metric. Specifically, the Max-AoI-optimal and Ave-AoI-optimal trajectory planning are to minimize the

age of the oldest information and the average AoI of all sensor nodes, respectively. The work in [12]

studied the role of a UAV acting as a relay to minimize the average Peak AoI for a transmitter-receiver

link, which was accomplished via joint optimization of the UAV trajectory, energy spending, and the

service time allocations for packet transmissions. In [13], the authors designed the UAV trajectory to

minimize expired data packets in UAV-enabled wireless sensor networks (WSNs) and then applied the

reinforcement learning (RL) method for the solution, which enhances the time-effectiveness and path

design performance. The authors in [14] optimized the UAV trajectory as well as service bandwidth

allocation to maximize the total number of served ground IoT users, in which the UAV needed to collect

the data from users within their RT constraint. Different from [11]–[14], which only studied the aspect

of data collection on the UL channel, the works in [16] and [17] further studied the latency constraint

on the DL channel.

Despite noticeable achievements for data collection in UAV-assisted IoT networks [6]–[14], aforemen-

tioned works do not take the FD scheme into consideration. To efficiently exploit the radio spectrum, the

FD transmission was adopted in UAV communications [18]–[21]. By applying a circular trajectory and

decode-and-forward (DF) relaying strategy, the work [18] maximized instantaneous data rate with the

joint design of beam-forming and power allocation, under individual and sum-power constraint for the

source and relay users. In [19], the authors investigated the spectrum sharing planning problem for FD

UAV relaying systems with underlaid device-to-device (D2D) communications which aims to maximize



the sum throughput. The work in [20] maximized the energy efficiency (EE) by jointly optimizing

the UAV trajectory as well as the transmit and jamming powers of source and the UAV, respectively.

Besides, a new system model for UAV-enabled FD wireless-powered IoT networks was proposed in [21].

More specifically, three optimization problems, namely, the total-time minimization, the sum-throughput

maximization, and the total energy minimization problem were investigated.

Unlike previous studies such as [11]–[14], [16], [17] that only investigated the timely data exchange

on the UL or DL channel utilizing HD mode, this motivates us to propose a novel system model in UAV

relay-assisted IoT networks that further explores the impact of RT constraints for both the UL and DL

transmission. To the best of our knowledge, this is the first work that jointly considers total bandwidth,

transmission power, trajectory design, storage capacity, and latency constraint in UAV relay-assisted IoT

networks. To this end, we formulate and solve two optimization problems for the new system model,

and obtain some interesting observations, which would be useful for the system designers in realistic

scenarios. In summary, our contributions are as follows:

• We propose a novel model in UAV relay-assisted IoT networks which takes into account the latency

requirement for UL and DL channels to improve the freshness of information in emergency scenarios.

Moreover, the UAV-enabled FD relaying is exploited as an effective mean to overcome UAV’s limited

storage capacity. In addition, UAV-enabled HD relaying is also investigated to fully capitalize on the

benefits that UAV may bring to emergency communications in IoT networks5G wireless networks.

• We formulate a generalized optimization problem to maximize the total number of served IoT

devices, subject to the UAV’s maximum speed constraint, total traveling time constant, maximum

transmit power at devices/UAV, limited cache size of UAV, and latency constraints for both UL and

DL. The formulation belongs to the difficult class of mixed-integer non-convex optimization problem,

which is generally NP-hard. We first relax binary variables into continuous ones and penalize the

objective by an entropy-based penalty function. We then develop an iterative computational procedure

for its solutions which guarantee convergence at least to local optimal. The key idea behind our

approach is derive newly approximated functions for non-convex parts by employing the inner

approximation (IA) framework [22].

• Inspired by the practical requirement in human safety measurements, The more the data is gathered,

the better the accurate prediction can be achieved. This motivates us to investigate the optimization

problem for maximizing the total collected throughput subject to a given number of served IoT

users.
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Fig. 1. System model: The ground base station (GBS) is assumed to be damaged/isolated after a natural disaster or it is

overloaded during peak hours. Therefore, the UAV is deployed as a flying BS to collect the data from IoT devices and then

transmit to GW.

• The effectiveness of the proposed schemes is revealed via numerical results, which show significant

improvements in both numbers of served IoT devices and the total amount of collected throughput as

compared with the benchmarks. More specifically, the Benchmark FD and Benchmark HD schemes

are respectively designed similar to the proposed FD-based and HD-based methods but with fixed

bandwidth allocation.

The rest of the paper is organized as follows. The system model and problem formulation are given in

Section II. The proposed iterative algorithm for FD is presented in Section III.While, Section IV devotes

for the HD scheme. Numerical results are illustrated in Section V, and Section VI concludes the paper.

Notation: Scalars and vectors are denoted by lower-case letters and boldface lower-case letters, respec-

tively. For a set K, |K| denotes its cardinality. For a vector v, ‖v‖1 and ‖v‖ denote its `1 and Euclidean

(`2) norm, respectively. R represents for the real matrix. R+ denotes the non-negative real numbers,

i.e., R+ = {x ∈ R|x ≥ 0}. x ∼ CN (0, σ2) represents circularly symmetric complex Gaussian random

variable with zero mean and variance σ2. Finally, Of is the first derivative of a function f . E[x] denotes

the expected value of x.
II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-aided cooperative wireless IoT network, where a UAV is deployed to assist the

existing terrestrial communication infrastructure in the case of adverse conditions or natural calamities,

as shown in Fig. 1. In emergency communications, the ground base station (GBS) is either partially or

completely damaged after a natural disaster, or in the case when the GBS is overloaded during the peak

hours due to its incapability of handling all the devices at the same time (e.g., a sporting event) [23].

The latter case has been recognized as one of the key scenarios that need to be effectively solved by
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Fig. 2. Illustration of the data transmission process of 2 IoT devices with N time intervals. The first IoT device with initial

data transmission time at nstart,1 = 2, timeout at nend,1 = 5. The second IoT device with initial data transmission time at

nstart,2 = 3, timeout at nend,2 = 6. The UAV operates in the FD mode from time slots 5 to 6 since two devices utilize the

same sub-carrier.

fifth-generation (5G) wireless communication [23], [24]. Concretely, a UAV helps to relay data from a set

of K IoT devices (or GUs), denoted by K , {1, . . . ,K}, to a GW. Each IoT device is equipped with a

single antenna and works in HD mode. Due to the SWAP (size, weight, and power) limitations, the UAV,

acting as an on-demand relay, is equipped with one FD antenna which can be used for data transmission

and reception simultaneously. Specifically, the UAV can operate in FD or HD mode depending on the

system designer. It hovers over the considered area to effectively gather data from IoT devices and then

transmit to GW using UL and DL communication, respectively. Due to the limitation of the energy

budget, we restrain the total serving time of UAV as T . We assume that each device is active at different

time instances t, where 0 ≤ t ≤ T . The location of device k is denoted as rk ∈ R2×1, k ∈ K. We assume

that the locations of IoT devices together with their data sizes, the initial data transmission time (i.e.,

nstart,k with k ∈ K), and latency requirement (i.e., nend,k with k ∈ K) are known to the UAV through

the control center.1 Denote nstart,k and nend,k by the initial data transmission time and timeout constraint

of the device k, respectively, for k ∈ K. It is assumed that the UAV should collect data from device

k within nend,k units of time. For simplicity, we assume that the UAV flies at a constant altitude of H

(meters), e.g., that is imposed by the regulatory authority for safety considerations. The location of UAV

projected on the ground is denoted as q(t) ∈ R2×1, with 0 ≤ t ≤ T . Moreover, N = {1, . . . , N} denotes

a set of all time slots.

A. Ground-to-UAV Channel Model

For ease of exposition, the time horizon T is discretized into N equally spaced time intervals, i.e.,

T = Nδt with δt denotes the primary slot length. Note that the location of the UAV can be assumed

1The control center can take care of the corresponding computations and informs the UAV through separate signaling, without

affecting the performance of the considered framework [25].



to be approximately unchanged during each time slot compared to the distance from the UAV to IoT

devices since δt is chosen sufficiently small. Then, the UAV trajectory q(t) during time horizon T can

be represented as (q[n])Nn=1 , where q[n] denotes the UAV’s horizontal location at n-th time interval. Let

Vmax denote the maximum velocity of the UAV, then the UAV’s speed constraint can be presented as

‖q[n]− q[n− 1]‖ ≤ δd = Vmaxδt, n = 2, ..., N. (1)

For notation convenience, let us denote the k-th IoT device and UAV by k, and U, respectively.

Henceforth, 1k and 2k represent for the UL (i.e., k → U) and DL (i.e., U→ GW), respectively. Then,

the time-dependence distance from k → U or U→ GW (i.e., 1k or 2k), is given by

dik[n] =

√
H2 + ‖q[n]− r‖2, i ∈ {1, 2}, ∀n, k, (2)

where r ∈ {rk, q0}, with q0 denotes the location of GW.

In realistic scenarios, the devices are located in different environments, e.g., rural, urban, suburban,

etc. Thus, a generalized channel model consisting of both the line-of-sight (LOS) and non-line-of-sight

(NLOS) channel elements is considered. In this work, we consider a practical channel model that takes

into account both large-scale and small-scale fading channels [26]. Specifically, the channel coefficient

at the n-th time slot, hik[n], can be written as [14], [27]

hik[n] =
√
ωik[n]h̃ik[n], (3)

where ωik[n] represents for the large-scale fading effects and h̃ik[n] accounts for Rician small-scale fading

coefficient. Specifically, ωik[n] can be modeled as

ωik[n] = ω0d
−α
ik [n], (4)

where ω0 is the average channel power gain at the reference distance d = 1 meter, and α > 2 is the path

loss exponent for Rician fading channel [14]. Then, the small scale fading h̃ik[n] with expected value

E
[
|h̃ik[n]|2

]
= 1, is given by

h̃ik[n] =

√
G

1 +G
h̄ik[n] +

√
1

1 +G
ĥik[n], (5)

where G is the Rician factor; h̄ik[n] and ĥik[n] ∼ CN (0, 1) denote the deterministic LoS and the NLoS

component (Rayleigh fading) during time slot n, respectively.

Due to the coexistence of the UL and DL channels using the same frequency at n-th time slot, the

self-interference (SI) can occur at the UAV. Without loss of generality, when the UAV finishes receiving



all the data from device k, then the transmission from UAV to GW can be conducted.2

Let us denote by x1k[n] and x2k[n] the data symbols with unit power (i.e., E
[
|x1k[n]|2

]
= 1 and

E
[
|x2k[n]|2

]
= 1) sent k → U and U→ GW at time slot n, respectively. We consider the transmission

process for relaying the data of device k which consists of two phases: the UL from device k to UAV

and the DL from UAV to GW. As a result, the received signals at the UAV and GW are respectively

given by
y1k[n] = (

√
p1k[n]h1k[n]x1k[n] +

√
ρRSIgU[n]

∑
k∗∈K\k

√
p2k∗ [n]x2k∗ [n] + n0), (6)

y2k[n] =
√
p2k[n]h2k[n]x2k[n] + n0, (7)

where RSI represents for residual self-interference term, ρRSI ∈ [0, 1) is the RSI suppression (SiS)

level after interference cancellations [28]–[31], n0 ∼ CN (0, σ2) denotes the additive white Gaussian

noise (AWGN); p1k[n] and p2k[n] are the transmit power of the device k and UAV on the UL and DL to

transmit the data of device k at time slot n; gU[n] denotes the fading loop channel at UAV which interferes

the UL reception due to the concurrent downlink transmission. Specifically, gU[n] can be specified as a

Rician distribution with a small factor [32], [33].

To deal with the issues involved in limited resources and the self-interference at the UAV, we consider

the resources allocation (i.e., bandwidth and transmit power) for bold the UL and DL. Thus, the achievable

rate (bits/s) of links from k → U and U → GW to transmit the data of device k at time slot n are

respectively given as
r1k[n] = a1k[n]B log2 (1 + Γ1k) , (8)

r2k[n] = a2k[n]B log2 (1 + Γ2k) , (9)

where Γ1k , p1k[n]|h̃1k[n]|2ω0

(H2+‖q[n]−rk‖2)
α/2

(
φRSI

∑
k∗∈K\k

p2k∗ [n]+σ2

) , Γ2k , p2k[n]|h̃2k[n]|2ω0

(H2+‖q[n]−q0‖2)
α/2

σ2
, φRSI , ρRSI|gU[n]|2,

σ2 denotes the noise power of the AWGN; B denotes the total bandwidth in hertz (Hz) of the system;

a1k[n]B and a2k[n]B are the total bandwidth allocated for the UL and DL to transmit data of k-th

device during time slot n, respectively. Herein, a1k[n] and a2k[n] represent for the spectrum allocation

for devices and the UAV, respectively. In practice, for a large number of resources, a1k[n] and a2k[n] are

2In this work, we adopt a DF relaying technique, thus, the UAV needs to complete receiving all the data from device k before

relaying to GW to guarantee the data encoding properly. Moreover, a sufficiently large time period is assumed to carry out the

data transfer as well as the decoding process at the UAV.



approximately continuous between 0 and 1. Thus, the bandwidth allocation should satisfy:∑
k∈K

aik[n] ≤ 1,∀n, (10)

0 ≤ aik[n] ≤ 1,∀k, n, (11)

where i ∈ {1, 2}.

Based on (8)-(9), the throughput (in bits) received on the UL and DL to transmit the data of device k

during time slot n, can respectively be written as

C1k[n] = δtR1k[n], (12)

C2k[n] = δtR2k[n], (13)

where
R1k[n] =

 r1k[n], if n ∈ T1k,

0, otherwise,
(14)

R2k[n] =

 r2k[n], if n ∈ T2k,

0, otherwise.
(15)

Herein, T1k , {nstart,k, . . . , nend,k}, T2k , {nend,k + 1, . . . , N}; (14) means that the UAV only can

collect the data from device k during time period T1k. Otherwise, the data transmission rate is treated as

zero. Specifically, the UAV only transmits the data of device k to GW iff it finishes the data collection

process for that device, in (15). Moreover, the total throughput over N time slots received on the UL

and DL are denoted as C1k =
∑

n∈T1k
δtR1k[n] and C2k =

∑
n∈T2k

δtR2k[n], respectively.

Let Sk denotes the data size (in bits) needed to transmit from device k to GW. Then, we have the RT

constraint for transmitting the data of device k on the UL and DL are expressed as, respectively

λk
Sk
R1k

≤ (nend,k − nstart,k)δt,∀k, (16)

λk
Sk
R2k

≤ (N − nend,k)δt, ∀k, (17)

where R1k =
∑

n∈T1k
R1k[n], R2k =

∑
n∈T2k

R2k[n]; (16) means that the device k must transmit the data

to the UAV before the timeout constraint, i.e., nend,k; (17) implies that the data transmission process to

transmit the data of device k from U→ GW is performed during the serving time of the UAV.3

B. Caching Model

The UAV has a cache with storage capacity of C. Due to the limited cache size of the UAV, it can

utilize FD mode to release the storage and improve the network throughput.

3We consider the system model in which the UAV does not transmit the data during taking off and landing [34]. Thus, the

data transmission process only occurs when UAV is flying in the sky.



Considering the storage limitation, the total number of files cached at the UAV should not exceed its

available storage capacity, i.e., ∑
k∈K

(
n∑
l=1

C1k[l]−
n−1∑
l=1

C2k[l]

)
≤ C, (18)

where
n∑
l=1

C1k[l] , λkSk −
N∑

l=n+1

C1k[l].

Note that, in order to spend a part of storage capacity for future use, i.e., a free cache size to store

new data streams, the amount of data stored at the UAV is calculated as the size of files collected from

all devices till (n)-th time slot minus files transmitted to GW till (n− 1)-th time slot as in (18).

C. Problem Formulation

In this section, we aim to maximize the total number of served IoT devices by jointly optimizing the

UAV trajectory q[n], the allocation of resources (i.e., bandwidth and transmit power assigned for UL

and DL), and take into account the storage limitation, under the assumption that the locations, initial

transmission time, and the timeout constraint of all the IoT devices are known a priori.

To provide assistance to the mathematical problem formulation, we introduce a new binary variable

λk as

λk =

 1,Device k is successfully served by the UAV,

0, otherwise.
(19)

Definition 1: The value of λk should be equal to one iff the data intended for the k-th device is

collected by the UAV, while additionally guaranteeing its successful reception at the GW.

Let us denote q = {q[n], ∀n}, a = {a1k[n], a2k[n], k ∈ K, n ∈ N}, p = {p1k[n], p2k[n], k ∈ K, n ∈

N}, λ = {λk, k ∈ K}. Based on the above developments, the problem for maximizing the number of

served IoT devices can be mathematically formulated as follows

PFD : max
q,a,p,λ

‖λ‖1 (20a)

s.t. λk ∈ {0, 1}, ∀k, n, (20b)
δt min(R1k, R2k) ≥ λkSk, ∀k, (20c)∑
k∈K

δtR2k ≥
∑
k∈K

λkSk,∀k, (20d)

λk
Sk
R1k

≤ (nend,k − nstart,k)δt,∀k, (20e)

λk
Sk
R2k

≤ (N − nend,k)δt, ∀k, (20f)

∑
k∈K

(
λkSk −

N∑
l=n+1

δtR1k[l]−
n−1∑
l=1

δtR2k[l]

)
≤ C,∀n, (20g)∑

k∈K
aik[n] ≤ 1,∀n, (20h)

0 ≤ aik[n] ≤ 1,∀k, n, (20i)



q[1] = qI , q[N ] = qF , (20j)

‖q[n]− q[n− 1]‖ ≤ δd, n = 2, . . . , N, (20k)

0 ≤ p1k[n] ≤ Pmax
k [n],∀k, n, (20l)

0 ≤
∑
k∈K

p2k[n] ≤ Pmax
U [n],∀n, (20m)

where constraint (20c) means that each IoT device need to upload the amount of data Sk. At the last

time slot, constraint (20d) ensures that the device k is successfully served iff all the data uploaded on

the UL is transmitted on the DL. Constraint (20j) explains for the beginning and ending locations of

the UAV, with qI and qF ∈ R2×1 denote the beginning and ending locations of UAV projected onto the

horizontal plane, respectively; (20k) signifies the maximum speed constraint of the UAV; constraints (20l)

and (20m) imply that the total transmit power of device k and the UAV is limited by their maximum

power budgets Pmax
k [n] and Pmax

U [n], respectively.

The problem PFD is a mixed integer non-linear program (MINLP), which is NP-hard. Moreover, the

binary constraint (20b) and the non-convex constraints (20c) to (20g) introduces intractability. Therefore,

it is cumbersome to find a direct solution of PFD. However, a suitable solution (local or global optimal)

may be obtained by employing adequate relaxations to PFD. In this regard, we provide a transformation

mechanism for PFD, followed by its corresponding solution in the succeeding section.

III. PROPOSED ITERATIVE ALGORITHM FOR SOLVING PFD

This section provides an iterative algorithm based on the IA method to solve the design problem.

A. Tractable Formulation for (20)

In this section, we intend to make the problem PFD more tractable, we first relax the binary variables

of (20b) into continuous values. As a result, we obtain the following optimization problem

PFD
relaxed : max

q,a,p,λ
‖λ‖1 (21a)

s.t. 0 ≤ λk ≤ 1, ∀k, (21b)
(20c) to (20m) in PFD. (21c)

Such a relaxation implies that the objective values of PFD
relaxed serves as an upper bound for that of PFD.

Note that PFD
relaxed is difficult to solve due to the non-convex constraints in (20c) to (20g). Noticeably, all

these non-convex constraints are dependent on either r1k[n] or r2k[n]. In this context, we introduce slack

variables z1k[n] and z2k[n] such that
(
H2 + ‖q[n]− rk‖2

)
≤ (z1k[n])2/α and

(
H2 + ‖q[n]− q0‖2

)
≤

(z2k[n])2/α, respectively, where α > 2 for Rician fading channel [14], [35], [36], by which the (8) and

(9) can be rewritten as



r1k[n] ≥ a1k[n]B log2

(
1 +

p1k[n]|h̃1k[n]|2ω0

z1k[n](φRSI
∑

k∗∈K\k
p2k∗ [n] + σ2)

)
, (22)

r2k[n] ≥ rlb
2k[n] , a2k[n]B log2

(
1 +

p2k[n]|h̃2k[n]|2ω0

z2k[n]σ2

)
. (23)

Herein, we note that the expression in (22) may still need some transformation to ensure tractability.

Therefore, we first introduce a slack variable t1k[n] as a soft interference plus noise for user k during

time slot n, which yields

(φRSI
∑

k∗∈K\k

p2k∗ [n] + σ2) ≤ t1k[n]. (24)

Then, the (22) is lower bounded by
rlb

1k[n] = a1k[n]B log2

(
1 +

p1k[n]|h̃1k[n]|2ω0

z1k[n]t1k[n]

)
. (25)

By substituting (23) and (25) into (12), (13), (14), and (15), we obtain C lb
1k[n], C lb

2k[n], Rlb
1k[n], and Rlb

2k[n],

respectively. Moreover, we have Rlb
1k =

∑
n∈T1k

Rlb
1k[n], Rlb

2k =
∑

n∈T2k
R2k[n]. Next, the total throughput

over N time slots received on the UL and DL can be rewritten as C lb
1k =

∑
n∈T1k

δtR1k[n] and C lb
2k =∑

n∈T2k
δtR2k[n], respectively. Let us denote z = {z1k[n], z2k[n], n ∈ N , k ∈ K}, t = {t1k[n], k ∈ K, n ∈

N}. Then, the problem PFD
relaxed can be reformulated as

PFD
relaxed,1 : max

q,a,p,λ,z,t
‖λ‖1 (26a)

s.t. (21b), (20h)− (20m), (26b)(
H2 + ‖q[n]− rk‖2

)
≤ (z1k[n])2/α ,∀k, n,(

H2 + ‖q[n]− q0‖2
)
≤ (z2k[n])2/α ,∀n, (26c)

(φRSI
∑

k∗∈K\k

p2k∗ [n] + σ2) ≤ t1k[n],∀k, n, (26d)

λk
Sk

Rlb
1k

≤ (nend,k − nstart,k)δt,∀k, (26e)

λk
Sk

Rlb
2k

≤ (N − nend,k)δt, ∀k, (26f)

δt min(Rlb
1k, R

lb
2k) ≥ λkSk,∀k, (26g)∑

k∈K
δtR

lb
2k ≥

∑
k∈K

λkSk,∀k ∈ K, (26h)

∑
k∈K

(
λkSk −

N∑
l=n+1

δtR1k[l]−
n−1∑
l=1

δtR2k[l]

)
≤ C,∀k, n. (26i)

It is noteworthy that PFD
relaxed,1 is a much simpler form in comparison to PFD, but the possibility of

a direct solution still seem unviable. This is due to the fact that joint computations of the optimization

parameters (related to (26e)-(26i)) introduces non-convexity to the problem. However, it is still possible

to solve the problem in an iterative manner, with alternating optimization of the involved parameters. In

the following, we discuss the above-mentioned approach in detail.



B. Proposed IA-based Algorithm

In this section, we transform (26) into a convex form. Specifically, the proposed algorithm is mainly

based on the IA method [22] under which the non-convex parts are completely exposed.

Approximation of rlb
1k[n] and rlb

2k[n]: Before proceeding further, we can express rlb
1k[n] and rlb

2k[n] as

rlb
1k[n] = a1k[n]Φ1k[n], (27)

rlb
2k[n] = a2k[n]Φ2k[n], (28)

where
Φ1k[n] = B log2

(
1 +

p1k[n]|h̃1k[n]|2ω0

z1k[n]t1k[n]

)
, (29)

Φ2k[n] = B log2

(
1 +

p2k[n]|h̃2k[n]|2ω0

z2k[n]σ2

)
. (30)

To reformulate (29) and (30) into tractable forms, we introduce the following lemmas:

Lemma 1: Consider a concave function h(x, y) ,
√
xy, x ≥ 0, y ≥ 0. Its upper bound at given

points x(j) and y(j) can be given by [28, Appendix B], [37]

h(x, y) ≤
√
x(j)

2
√
y(j)

y +

√
y(j)

2
√
x(j)

x. (31)

Lemma 2: Consider a function h1(x, y, z) , ln
(

1 + x
yz

)
and h2(x, z) , ln

(
1 + x

z

)
. The lower bound

of h1(x, y, z) and h2(x, z) at given point x(j), y(j), and z(j) which are expressed as

h1(x, y, z) ≥ ln

(
1 +

x(j)

y(j)z(j)

)
− x(j)

y(j)z(j)
+ 2

√
x(j)
√
x

y(j)z(j)
−
x(j)

(
x+ y(j)

2z(j) z
2 + z(j)

2y(j) y
2
)

y(j)z(j)
(
x(j) + y(j)z(j)

) , (32)

h2(x, z) ≥ ln

(
1 +

x(j)

z(j)

)
− x(j)

z(j)
+ 2

√
x(j)
√
x

z(j)
− x(j) (x+ z)

z(j)
(
x(j) + z(j)

) . (33)

Proof: See Appendix A.

Based on lemmas 1 and 2, Φ1k[n] and Φ1k[n] are lower bounded by

Φ1k[n] ≥ Φ̄1k[n] , B
(
A1 +A2

(
p1k[n]

)
−A3

(
p1k[n], t1k[n], z1k[n]

))
, (34)

Φ2k[n] ≥ Φ̄2k[n] , B
(
C1 + C2

(
p2k[n]

)
− C3

(
p2k[n], z2k[n]

))
, (35)

where A1, A2, A3, C1, C2, and C3 are defined in Appendix B.

By introducing slack variables Φlb
1k[n] and Φlb

1k[n], we have
Φ̄1k[n] ≥ Φlb

1k[n], (36)

Φ̄2k[n] ≥ Φlb
2k[n]. (37)

Consequently, rlb
1k[n] and rlb

2k[n] are converted to the following constraints:
rlb

1k[n] ≥ r̄lb
1k[n] = a1k[n]Φlb

1k[n], (38)

rlb
2k[n] ≥ r̄lb

2k[n] = a2k[n]Φlb
2k[n]. (39)



Besides that, since a1k[n]Φlb
1k[n] and a2k[n]Φlb

2k[n] are non-convex functions. To deal with these

constraints, we substitute a1k[n]Φlb
1k[n] and a2k[n]Φlb

2k[n] by equivalent Difference of Convex (DC)

functions 0.25
[
(a1k[n]+Φlb

1k[n])2−(a1k[n]−Φlb
1k[n])2

]
and 0.25

[
(a2k[n]+Φlb

2k[n])2−(a2k[n]−Φlb
2k[n])2

]
,

respectively. Then, we apply the first-order Taylor approximation to approximate the convex functions

(a1k[n]+Φ1k[n])2 and (a2k[n]+Φ2k[n])2 at the (j+1)-th iteration, respectively. Hence, functions r̄lb
1k[n]

and r̄lb
2k[n] in (38) and (39) are respectively represented by

a1k[n]Φlb
1k[n] ≥

(
a

(j)
1k [n] + Φ

lb,(j)
1k [n]

)2
4

+

(
a

(j)
1k [n] + Φ

lb,(j)
1k [n]

)
2

×
(
a1k[n]− a(j)

1k [n] + Φlb
1k[n]− Φ

lb,(j)
1k [n]

)
−
(
a1k[n]− Φlb

1k[n]
)2

4
, r̃lb

1k[n], (40)

a2k[n]Φlb
2k[n] ≥

(
a

(j)
2k [n] + Φ

lb,(j)
2k [n]

)2
4

+

(
a

(j)
2k [n] + Φ

lb,(j)
1k [n]

)
2

×
(
a2k[n]− a(j)

2k [n] + Φlb
2k[n]− Φ

lb,(j)
2k [n]

)
−
(
a2k[n]− Φlb

2k[n]
)2

4
, r̃lb

2k[n]. (41)

To convexify (26e)-(26i), we introduce the slack variables r̂lb
1k[n] and r̂lb

2k[n], the constraints (40) and

(41) are innerly approximated by the following convex constraints:

r̃lb
1k[n] ≥ r̂lb

1k[n], (42)
r̃lb

2k[n] ≥ r̂lb
2k[n]. (43)

As a result, substituting r̂lb
1k[n] and r̂lb

2k[n] into (12), (13), (14), and (15), we obtain Ĉ lb
1k[n], Ĉ lb

2k[n],

R̂lb
1k[n], and R̂lb

2k[n], respectively. Moreover, we have R̂lb
1k =

∑
n∈T1k

R̂lb
1k[n], R̂lb

2k =
∑

n∈T2k
R̂lb

2k[n]. Next, the

total throughput over N time slots received on the UL and DL can be rewritten as Ĉ lb
1k =

∑
n∈T1k

δtR̂
lb
1k[n]

and Ĉ lb
2k =

∑
n∈T2k

δtR̂
lb
2k[n], respectively. Let us denote Φ = {Φlb

1k[n],Φlb
2k[n], ∀k, n} and r = {r̂lb

1k[n],

r̂lb
2k[n],∀k, n}. Bearing all the above developments in mind, we solve the following approximate convex

program at the (j + 1)-th iteration:
Pconvex : max

q,a,p,λ,z,t,Φ,r,
‖λ‖1 (44a)

s.t. (20h)− (20m), (21b), (26c), (42), (43), (44b)

λk
Sk

R̂lb
1k

≤ (nend,k − nstart,k)δt,∀k, (44c)

λk
Sk

R̂lb
2k

≤ (N − nend,k)δt, ∀k, (44d)

δt min
(
R̂lb

1k, R̂
lb
2k

)
≥ λkSk,∀k, (44e)

K∑
k=1

δtR̂
lb
2k ≥

K∑
k=1

λkSk, (44f)

∑
k∈K

(
λkSk −

N∑
l=n+1

δtR̂
lb
1k[l]−

n−1∑
l=1

δtR̂
lb
2k[l]

)
≤ C,∀k, n. (44g)



Algorithm 1: Proposed IA-based Iterative Algorithm to Solve (20)

Initialization: Set j := 0 and generate an initial feasible point Ψ(0) for all constraints in (48).
1: repeat
2: Solve (48) to obtain the optimal solution Ψ? , (q?,a?,p?,λ?, z?, t?,Φ?, r?).
3: Update q(j+1) := q?,a(j+1) := a?,p(j+1) := p?,λ(j+1) := λ?, z(j+1) := z?, t(j+1) := t?.
4: Set j := j + 1.

5: until Convergence

It is observed that problem Pconvex is convex since the objective and all constraints are convex, i.e.,

linear or quadratic constraints. Thus, it can be solved by using the standard convex optimization methods

[38]. However, since the binary variable λ is relaxed to continuous values between 0 and 1 as in (21b),

which does not necessarily guarantee that each value of λk converges to 0 or 1. This motivates us to

enforce a penalty function P(λk) , λk ln(λk) + (1− λk) ln(1− λk), which is convex for λk ≥ 0 [39].

Hence, the penalized reformulation of Pconvex with penalty parameter κ ∈ R+ is expressed as,

PFD
penalty : max

q,a,p,λ,z,t,Φ,r,

∑
k∈K

(
λk + κP(λk)

)
(45a)

s.t. (44a)− (44g). (45b)
Particularly, the objective function in PFD

penalty is a difference of concave function, i.e., f(λk) =∑
k∈K

(
λk −

(
− κP(λk

))
with convex constraints. Thus, the problem PFD

penalty is a DC Programming

Problem (DCP). In order to make PFD
penalty become a convex problem, we replace P(λk) in the objective

function by its first order Taylor approximation at (j + 1)-th iteration:

P̂(λk) , κ
(
P(λ

(j)
k ) + OP(λ

(j)
k )
(
λk − λ

(j)
k

))
, (46)

where
OP(λ

(j)
k ) = ln(λ

(j)
k )− ln(1− λ(j)

k ). (47)

Motivated from above discussions, we propose an IA-based algorithm to solve problem (20) sum-

marized in Algorithm 1. At the (j + 1)-th iteration, it solves the following convex program (which is

obtained by replacing convex part and ignoring the constant terms in the objective):

PFD
penalty,1 :max

Ψ

∑
k∈K

(
λk + κλkOP(λ

(j)
k )
)

(48a)

s.t. (45b), (48b)
where Ψ , {q,a,p,λ, z, t,Φ, r} which correspondingly provides Ψ(j) , {q(j),a(j),p(j),λ(j), z(j),

t(j),Φ(j), r(j)} as the optimal solution for (48) at iteration j. To ensure the feasibility of (48) in the

first run, a suitable starting point Ψ0 should be initialized. Then, the optimal solution is obtained by

successively solving (48) and updating the involved variables until satisfying the convergence condition

(discussed below in detail). Finally, a pseudo-code for solving (48) is summarized in Algorithm 1.



C. Convergence and Complexity Analysis:

1) Convergence Analysis: For the sake of notational convenience, let us define the feasible set χ(j)

of (48) at the initiation stage of the (j + 1)-th iteration

χ(j) , {Ψ(j)|s.t. (44a)-(44g) are feasible }. (49)

Proposition 1: The proposed Algorithm 1 yields a sequence of improved solutions converging to at

least a local optimal.

Proof: To be self-contained, we briefly give the convergence analysis as follow. First, we recall that

the approximate functions presented in Section III satisfy properties of the IA algorithm given in [22].

This means that the solutions for solving (48) would result in the sequences of non-decreasing objective

values, i.e., f (j+1)(λk) ≥ f (j)(λk) [37, Lemma 2.2]. Moreover, the value of f (j)(λk) is closed and

bounded due to the IA method and the power constraints (20l) and (20m). Thus, the iterative solutions of

the proposed convex programs towards the Karush-Kuhn-Tucker (KKT) point are monotonically improved

and converge to at least a locally optimum.

2) Complexity Analysis: We now provide the worst-case complexity analysis for each iteration

in Algorithm 1. Since the problem (48) is convex, several solvers employing the interior point method

may be applied to solve it. Thus, the number of Newton steps, denoted as Ns, is adopted to measure the

worst-case complexity to obtain the solutions. Concretely, Ns can be given as [40]:

Ns ∼
√

problem size, (50)

where the problem size is the total number of optimization variables. More specifically, the convex prob-

lem (48) involves 5N(1+3K)+K scalar real variables. As a result, the per-iteration complexity required

to solve (48) is
√

5N(1 + 3K) +K. It results in the overall complexity of Ni

√
5N(1 + 3K) +K, where

Ni is the number of iterations to reach a locally optimal solution.

D. Throughput Maximization:

In an emergency case or during a natural disaster, data needs to be collected promptly for assessment

of the current situation in a given area. The more data is gathered, the more accurate prediction one could

achieve. This motivates us to present a new problem which maximizes the total amount of collected data

with a given number of served IoT devices subjected to certain quality-of-service (QoS) constraints

PFD
rate : max

q,a,p,λ

∑
k∈K

δtmin(R1k, R2k) (51a)

s.t. ‖λ‖1 ≥ λthresh, (51b)
(20b)− (20m), (51c)

where constraint (51c) means that the total number of served IoT devices must be greater than or equal
to a predefined threshold value, i.e., λthresh.



Algorithm 2: Proposed IA-based Iterative Algorithm to Solve (52)

Initialization: Set j := 0 and generate an initial feasible point Ψ(0) for all constraints in (52).
1: repeat
2: Solve (52) to obtain the optimal solution Ψ? , (q?,a?,p?,λ?, z?, t?,Φ?, r?).
3: Update q(j+1) := q?,a(j+1) := a?,p(j+1) := p?,λ(j+1) := λ?, z(j+1) := z?, t(j+1) := t?.
4: Set j := j + 1.

5: until Convergence

Similar to PFD, the problem PFD
rate is also a MINLP, which is NP-hard. Fortunately, by applying the

relaxation method as in Section III, (51) is rewritten as

PFD
rate,convex :max

Ψ

∑
k∈K

δtmin(R̂1k, R̂2k) (52a)

s.t. (45b), (51c), (52b)

where R̂1k , R̂lb
1k + κλkOP(λ

(j)
k ), R̂2k , R̂lb

2k + κλkOP(λ
(j)
k ), with R̂lb

1k and R̂lb
2k can be obtained as in

Section III-B.
Consequently, the solution of problem PFD

rate,convex can be found by successively solving a simpler

convex program, as summarized in Algorithm 2.

IV. HALF DUPLEX MODE SCHEME

A. Maximizing the Number of Served IoT devices:

In order to stress the benefits of our proposed method using FD mode, we will describe again about

problem by considering HD mode at UAV in this section. Then, (6) can be rewritten as

yHD
1k [n] = a1k[n](

√
p1k[n]h1k[n]x1k[n] + n0). (53)

In (53), the UAV apply HD mode, thus, it utilizes different frequencies on the UL and DL during time

slot n. Consequently, the RSI is disappear compared to that of (6). Thus, the achievable rate (bits/s) of

links from k → U and U→ GW to transmit the data of device k at time slot n are given as

rHD
1k [n] = a1k[n]B log2

1 +
p1k[n]|h̃1k[n]|2ω0(

H2 + ‖q[n]− rk‖2
)α/2

σ2

 , (54)

rHD
2k [n] = a2k[n]B log2

1 +
p2k[n]|h̃2k[n]|2ω0(

H2 + ‖q[n]− rk‖2
)α/2

σ2

 . (55)

By replacing (54) into the equations (12), (13), (14), and (15), we obtain CHD
1k [n], CHD

2k [n] = C2k[n],

RHD
1k [n], and RHD

2k [n] = R2k[n], respectively. Then, we reformulate the problem of maximizing the total

number of served IoT devices as follows

PHD : max
q,a,p,λ

‖λ‖1 (56a)

s.t. (20b), (20d), (20f), (20h)− (20m), in PFD, (56b)



δt min(RHD
1k , R2k) ≥ λkSk,∀k, (56c)

λk
Sk
R1k

≤ (nend,k − nstart,k)δt, ∀k, (56d)∑
k∈K

(
λkSk −

N∑
l=n+1

δtR1k[l]−
n−1∑
l=1

δtR2k[l]

)
≤ C,∀n. (56e)

The problem PHD is non-convex because the binary constraint (20b) and other non-convex constraints

(20d), (20f), (56c), (56d), and (56e). In order to seek a suitable solution, we first relax the binary constraint

(20b) as in (26b). Then, by introducing zHD
1k [n] and zHD

2k [n] such that
(
H2 + ‖q[n]− rk‖2

)
≤ (zHD

1k [n])2/α

and
(
H2 + ‖q[n]− q0‖2

)
≤ (zHD

2k [n])2/α, respectively, with α > 2 for Rician fading channel [14], [35],

[36], by which the (54) and (55) can be expressed as

rHD
1k [n] = a1k[n]B log2

(
1 +

p1k[n]|h̃1k[n]|2ω0

zHD
1k [n]σ2

)
, (57)

rHD
2k [n] = a2k[n]B log2

(
1 +

p2k[n]|h̃2k[n]|2ω0

zHD
2k [n]σ2

)
. (58)

It is easy to see that the rHD
1k [n] and rHD

2k [n] are totally the same as rlb
2k[n] in (23). Thus, we can apply

the IA method for rlb
2k[n] in Section III to rHD

1k [n] and rHD
2k [n]. As a result, rHD

1k [n] and rHD
2k [n] can be

rewritten as
rHD

1k [n] = a1k[n]ΦHD
1k [n], (59)

rHD
2k [n] = a2k[n]ΦHD

2k [n], (60)

where
ΦHD

1k [n] = B log2

(
1 +

p1k[n]|h̃1k[n]|2ω0

zHD
1k [n]t1k[n]

)
, (61)

ΦHD
2k [n] = B log2

(
1 +

p2k[n]|h̃2k[n]|2ω0

zHD
2k [n]σ2

)
. (62)

Similar to (35), Φ1k[n] and Φ1k[n] are lower bounded by

ΦHD
1k [n] ≥ Φ̄HD

1k [n], (63)

ΦHD
2k [n] ≥ Φ̄HD

2k [n], (64)

where Φ̄HD
1k [n] and Φ̄HD

1k [n] can be calculated as Φ̄2k[n], see Appendix B.
As in (38) and (39), it follows that

rHD
1k [n] ≥ rHD,lb

1k [n] = a1k[n]ΦHD,lb
1k [n], (65)

rHD
2k [n] ≥ rHD,lb

2k [n] = a2k[n]ΦHD,lb
2k [n], (66)

where ΦHD,lb
1k [n] and ΦHD,lb

2k [n] are new slack variables which are lower bound of Φ̄HD
1k [n] and Φ̄HD

2k [n],

respectively. Then, we apply the first order Taylor approximation for a1k[n]ΦHD,lb
1k [n] and a2k[n]ΦHD,lb

2k [n],

it yields to



Algorithm 3: Proposed IA-based Iterative Algorithm to Solve (71)

Initialization: Set j := 0 and generate an initial feasible point Ψ(0) for all constraints in (71).
1: repeat
2: Solve (71) to obtain the optimal solution Ψ? , (q?,a?,p?,λ?, z?,Φ?, r?).
3: Update q(j+1) := q?,a(j+1) := a?,p(j+1) := p?,λ(j+1) := λ?, z(j+1) := z?.

4: until Convergence

rHD,lb
1k [n] ≥ r̄HD,lb

1k [n], (67)

rHD,lb
2k [n] ≥ r̄HD,lb

2k [n], (68)

where r̄HD,lb
1k [n] and r̄HD,lb

2k [n] can be represented as in RHS of (40) and (41), respectively.

In turn, by introducing slack variables r̂HD,lb
1k [n] and r̂HD,lb

2k [n], the constraints (67) and (68) are innerly

approximated by the following convex constraints:

r̄HD,lb
1k [n] ≥ r̂HD,lb

1k [n], (69)

r̄HD,lb
2k [n] ≥ r̂HD,lb

2k [n]. (70)

In Algorithm 3, we propose an Iterative algorithm to solve the problem (56). At the j-th iteration, it

solves the following convex program:

PHD
convex :max

Ψ

∑
k∈K

(
λk + κλkOP(λ

(j)
k )
)

(71a)

s.t. (20b), (20d), (20f), (20h)− (20m), (69), (70), (71b)

δt min(R̄HD,lb
1k , R̄HD,lb

2k ) ≥ λkSk, ∀k, (71c)

λk
Sk

R̄HD,lb
1k

≤ (nend,k − nstart,k)δt, ∀k, (71d)

∑
k∈K

(
λkSk −

N∑
l=n+1

δtR̄
HD,lb
1k [l]−

n−1∑
l=1

δtR̄
HD,lb
2k [l]

)
≤ C,∀n. (71e)

Specifically, similar to (45), we adopt the penalty function in the objective to guarantee the convergence

of λk value to either 0 or 1, ∀k ∈ K.

1) Complexity Analysis: : The convex problem (71) involves 3N(1+4K)+K scalar real variables.

As a result, the per-iteration complexity required to solve (71) is
√

3N(1 + 4K) +K. It results in the

overall complexity is Ni

√
3N(1 + 4K) +K, with Ni is the number of iterations to reach a local solution.

Remark 1: It is noteworthy that any feasible solution for (71) is also a feasible solution of problem

(48) but not vice versa because the result obtained for (48) is the upper bound for the one in (71). It

can be explained by the fact that the problem (71) only considers HD mode at UAV to mitigate the

interference which also restricts the spectrum efficiency. The more spectrum allocation of the downlink



Algorithm 4: Proposed IA-based Iterative Algorithm to Solve (72)

Initialization: Set j := 0 and generate an initial feasible point Ψ(0) for all constraints in (72).
1: repeat
2: Solve (72) to obtain the optimal solution Ψ? , (q?,a?,p?,λ?, z?,Φ?, r?).
3: Update q(j+1) := q?,a(j+1) := a?,p(j+1) := p?,λ(j+1) := λ?, z(j+1) := z?.
4: Set j := j + 1.

5: until Convergence
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Fig. 3. Percentage of served devices vs. network size.

from U→ GW is, the more successfully served IoT devices can be retrieved. This remark will be taken

up further in the simulation results.

B. Throughput Maximization:

In this section, we reuse all the slack variable definitions as introduced in Sections III-D and IV-A.

By following the same steps presented in Section III-D, we obtain the following tractable optimization

problem

PHD
rate :max

Ψ

∑
k∈K

δtmin(R̄HD
1k , R̄

HD
2k ) (72a)

s.t. (71b), (71c), (71d), (71e), (51c), (72b)

where R̄HD
1k , R̄HD,lb

1k + κλkOP(λ
(j)
k ), R̄HD

2k , R̄HD,lb
2k + κλkOP(λ

(j)
k ), while R̄HD,lb

1k and R̄HD,lb
2k can be

obtained as in Section IV. Due to the convexity of problem PHD
rate, the solution of problem PHD

rate can be

iteratively obtained as in Algorithm 4.

V. NUMERICAL RESULTS

In this section, we present the numerical results to evaluate the proposed joint bandwidth allocation and

transmit power for the devices/UAV as well as the UAV trajectory design in UAV-assisted IoT networks.
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Fig. 4. Percentage of served devices vs. cache size with different QoS requirement.
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Fig. 5. Percentage of served devices vs. cache size with different range of ηend,k.

We consider a system with K IoT devices that are randomly distributed in a horizontal plane,i.e, 500

meters x 500 meters. We assume that the GW, the start location, and end location of the UAV are located

at (0, 500 meters), qI = [300 meters, 200 meters], and qF = [100 meters, 0], respectively. The UAV

flight altitude is invariant at H = 100 meters [41]. The total bandwidth is B = 10 MHz. The transmit

power budget of the UAV and IoT devices is respectively set as Pmax
U = 20 dBm and Pmax

k = 15

dBm. Other parameters are set as follows: path loss exponent α = 2.3, σ2 = −110 dBm, ω0 = -40

dB, Sk = 30 Mbits, Rician factor G = 12 dB, the maximum collection time deadline for each device k

nend,k is uniformly distributed between nmin
end,k and nmax

end,k. To show the superiority of our designs, we

compare proposed methods with benchmark schemes. Herein, the Benchmark FD and Benchmark HD are

respectively implemented similar to Algorithms 1 and 2 with fixed values of a, i.e., a1k[n] = a1k[n] = B
K .
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Fig. 8. Percentage of served devices vs. number of IoT devices.

A. Maximizing the Number of Served IoT devices:

Fig. 3 evaluates the percentage of served devices versus network size, i.e., x (meters), with K = 20,

while the UAV’s horizontal area is calculated as: area = x2 (m2). As illustrated, the larger network size

is, the fewer devices can be successfully served. The reason is because the IoT devices are distributed

in a larger area. Thus, providing more speed is required to fulfill the GUs’ latency requirement, but the

Vmax is limited. Furthermore, by increasing total traveling time N also improves the performance. It is

due to the fact that the UAV has more time to exchange information with the IoT devices and GW. It

is also shown that the proposed FD method significantly improves the number of served IoT devices

compared with the HD method for all values of x (meter). Because in FD mode, the UAV transfers data

of device k to ground gateway right after it finishes gathering data of that IoT device. While in HD

mode, the UAV only operates in the downlink transmission when it completes the data acquisition for

all users on the uplink to prevent RSI at the UAV. Consequently, FD scheme has a higher probability of

satisfying the GUs’ RT. Besides, the Benchmark FD and Benchmark HD schemes can be considered as
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Fig. 10. Total achievable throughput vs. different network sizes.

lower bounds of FD and HD, respectively. Our proposed algorithms utilize the spectrum more efficiently

in comparison to the benchmark schemes with fixed bandwidth allocation. Particularly, in Fig. 3(b), with

x = 1000 and N = 60, the performance of HD is found to be better than the Benchmark FD scheme.

It is because the effectiveness of using bandwidth allocation in proposed designs. The results show the

superiority of the proposed algorithms over the benchmark schemes.

In Fig. 4, we investigate the performance with different rthresh requirements, where K = 20, Sk ranging

from 5 to 30 Mbits, nmin
end,k = 50 time slots, nmax

end,k = 60 time slots, and N = 70 time slots. Specifically,

the QoS is defined as the minimum rate threshold at the UAV/GW to successfully decode the signal,

i.e., r1k,thresh[n] and r2k,thresh[n]. For simplicity, we assume that r1k,thresh[n] = r2k,thresh[n] = rthresh.

It is observed that the more the minimum rate threshold is required, the fewer users that the system can

serve. This is due to the fact that the UAV tends to get closer or spend more time around an IoT device

to gain a higher rate requirement. It leads to the UAV having less chance of serving more devices due to
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Fig. 11. Total achievable throughput vs. different cache sizes.

limited flight time and requested timeout constraint at each user. Another observation is that for a larger

cache size, the number of served users is increasing. It is due to the fact that the UAV has more capacity

to store incoming data. Thus, the UAV can serve more users before offloading information to the GW.

Similar to Fig. 3, our proposed FD and HD algorithms achieve much better percentage of served IoT

devices compared to the Benchmark FD and HD schemes, respectively. Particularly, the performances

of the benchmark schemes stay unaltered with the increasing of rthresh. This is because of the fixed

bandwidth allocation for each time slot n in these algorithms. This additionally leads to the fluctuation

of data transmission rate values with low variance during time slot n, i.e., r1k[n] and r2k[n]. Thus,

when the rthresh value is still lower than the average rate of the Benchmark FD and Benchmark HD,

the performance is insignificantly influenced. However, if rthresh is large enough, the performance of

benchmark schemes will drastically affected.

Fig. 5 shows the impact of different value of ηend,k on our system, with N = 80, K = 20. It is observed

that the percentage of served users increases corresponding to ηend,k ∈ [70, 75], [65, 70], [60, 65], [55, 60],

respectively. It can be explained on the basis of the constraint (20c), which describes the condition for a

successfully served user. Since the total gathering throughput is proportional to the time duration allocated

for UL/DL. When the time for UL from IoT devices to UAV is large enough, the number of served users

significantly depends on the time allocation for DL from UAV to GW. Furthermore, the time period for

DL is calculated as N − ηmin
end,k and N − ηmax

end,k for FD and HD schemes, respectively. We see that the

period of time allocated for DL in FD scheme is higher than that in HD scheme such that the performance

of FD is outperform the HD one. Specifically, the total number of served users obtained from HD can

be equaled to the FD method when the value of N − ηmax
end,k is large enough. For instance, in Figs. 5(a)

and 5(b), both proposed methods can serve the maximum number of IoT devices when ηend,k ∈ [55, 60]



and C ≥ 600. In this scenario, the UAV should work in HD mode for simplicity of operation in realistic

implementation.

In Fig. 6, we investigate the effect of service amount on the system performance, where K = 20,

nmin
end,k = 60 time slots, nmax

end,k = 70 time slots, with N = 80 time slots. As inferred from the results,

the FD algorithm significantly improves the percentage of the served IoT devices compared with the HD

algorithm for all values of cache size. Specifically, at Sk = 30 Mbits and C = 600 Mbits, the FD scheme

can serve 95% of users in the network while the HD imposes 60% of the served users. Moreover, the

performance is degraded by increasing the packet size Sk due to the restriction of available resources

assigned for the IoT device/UAV, i.e., Pmax
U , Pmax

k , Vmax, and B. Besides, when the value of cache size

is sufficiently large, the successfully served users of all schemes converges to the saturation value. Since

the performance is dependent not only on the cache size but also on the resources budget (i.e., bandwidth,

power) as well as requested timeout at each device.

Fig. 7 presents the results corresponding to the percentage of served GUs versus Pmax
U with variable

cache size, while nmin
end,k = 65 time slots, nmax

end,k = 70 time slots, and N = 80 time slots. As illustrated,

the number of served users is enhanced by increasing the power budget, i.e., Pmax
U . Moreover, the FD

scheme provides a better result in comparison with the HD scheme when Pmax
U is small, e.g., Pmax

U < 21

dBm with C = 300 Mbits. Nevertheless, the HD method can obtain the same number of served users as

the FD method when Pmax
U value is large, e.g., Pmax

U ≥ 21 dBm with C = 300 Mbits. This is because

the FD mode suffers a residual self-interference together with AWGN which significantly increase the

noise power at UAV compared to that of HD. Moreover, the RSI is in linear proportion to the Pmax
U

as in (8) Thus, when Pmax
U is large, the UAV should operate in HD mode since the FD mode requires

extra energy which may exceed the system energy budget. It is due to the fact that in FD mode the UAV

starts transmit data to GW earlier than in HD mode which is highlighted in Fig. 5. This leads to a higher

energy consumption at the UAV when it manoeuvers in the FD mode.

Fig. 8 illustrates the percentage of served devices versus number of IoT devices with different cache

sizes, where H = 50 meters, B = 10 MHz, N = 80, nmin
end,k = 65 time slots, nmax

end,k = 70 time slots, C =

600 Mbits. As the same with Figs. 3 to 9, the percentage of served devices of FD method outperforms

the HD scheme. Furthermore, the percentage of served users is reduced by increasing the number of IoT

users in the same network area. It is because the restriction of resources (i.e., bandwidth and transmit

power allocated for UL and DL) and Vmax while more devices are considered. Besides, the percentage

of served users will enlarge (as expected) with growing the storage capacity at the UAV or decreasing

the packet sizes, as in Figs. 8(a) and 8(b), respectively. Nevertheless, the performance is unchanged for



the HD method with Sk = 10 Mbits in Figs. 8(a). It can be explained by the fact that, with C = 300 and

Sk = 10 Mbits, the HD scheme can support up to 30 users but it only serves a lower number of devices

due to the limited serving time. Furthermore, one can observe that the UAV serves a lower number of

IoT devices with a larger service amount Sk. This is expected since the UAV needs to spend more time

and resources to compensate the increase of Sk which is in contradiction with the bandwidth, transmit

power, and time limitation.

Fig. 9 presents the percentage of served devices as a function of maximum power budget at each IoT

user with different data size, i.e., Pmax
k . We observe that the performance of the HD scheme is inferior

to the FD scheme for various values of Pmax
k with a large number of devices, e.g., K ≥ 20. This is due

to the fact that the total allocation time for the DL in HD is lower than that in the FD scheme. Notably,

both methods can achieve the same performance when the number of users is small, e.g., K ≤ 10.

Therefore, the UAV should work in HD mode when the network size is small, e.g., K ≤ 10, in order to

reap maximal gains.

B. Throughput Maximization:

Herein, we present the corresponding results for the problem of maximizing the total achieved through-

put as in Sections III-D and IV-B. In Fig. 10, the total achieved throughput is presented as a function of

network sizes, with K = 20, Sk is ranging from 5 to 30 Mbits, and N = 70 time slots. We observe that the

proposed algorithms significantly improve the throughput performance in comparison with the considered

references, for all values of network sizes, i.e., x (meters). Concretely, at B = 10 Mbits and x = 500 meters,

the FD algorithm can serve all the devices and the HD algorithm achieves less than 23.56%. Whereas

the Benchmark FD and Benchmark HD repsectively impose 67.02% and 15.71% of total data amount.

Moreover, all schemes achieve better performance with the increasing of total bandwidth. It is because

the higher the bandwidth allocation is, the larger the transmission can be achieved. Particularly, one

interesting outcome is that the HD is even better than Benchmark FD which emphasizes the preeminence

of the proposed algorithms as compared to the references. It is due to the benefits of optimizing bandwidth

allocation.

In Fig. 11, we study the influence of the total traveling time versus the total amount of gathering data,

with K = 20, Sk ranging from 5 to 30 Mbits. It is observed that the more traveling time is assigned,

the higher amount of data can be successfully served. Because the UAV has more time to exchange the

information with IoT devices or the GW. This leads to the UAV having more chance of gathering the

data. Moreover, all schemes approach their respective saturation point with the increasing values of C,

e.g., when C ≥ 400 Mbits for the FD algorithm. Particularly, at N = 70, the HD scheme can obtain the



same performance as FD one. We conclude that when the total traveling time is sufficient large, the UAV

should operate at HD mode for simplicity and reduce the abundant power consumption in comparison

to the FD mode.

VI. CONCLUSION

We investigated the resource allocation and trajectory design for UAV-assisted FD IoT networks

with emergency communication system, which take into consideration the latency requirements from

concerned IoT devices and the limited storage capacity of the UAV. In this context, we formulated

the analytical problem to maximize the total number of served IoT devices via joint optimization of

the UAV trajectory, allocated bandwidth, as well as the transmission power for the devices and UAV,

while satisfying the requested timeout constraints and storage capacity. Due to the non-convexity of the

formulated problem, we transformed the original problem into a tractable form which is then solved using

an iterative algorithm having a polynomial computational complexity per iteration. Besides, pertaining

to the realistic requirements for improving the estimation accuracy in a natural disaster or emergency

scenario, we proposed an additional optimization problem in order to maximize the total collected data

while the threshold of minimum number of served IoT devices is guaranteed. We illustrated via numerical

results that the proposed designs outperform the benchmark schemes in terms of both total number of

served users and the amount of collected data. Particularly, when the RT from all IoT devices is not

stringent or in the case of small network size, the UAV should operate in the HD mode for a simple

implementation.

APPENDIX A: PROOF OF LEMMA 2

As in [30, Eq. (20)], we have

h1(x, y, z) ≥ ln

(
1 +

x(j)

y(j)z(j)

)
− x(j)

y(j)z(j)
+ 2

√
x(j)
√
x

y(j)z(j)
− x(j) (x+ yz)

y(j)z(j)
(
x(j) + y(j)z(j)

) , (A.1)

h2(x, z) ≥ ln

(
1 +

x(j)

z(j)

)
− x(j)

z(j)
+ 2

√
x(j)
√
x

z(j)
− x(j) (x+ z)

z(j)
(
x(j) + z(j)

) . (A.2)

By applying (31), the upper bound of yz in (A.1) is given by

yz ≤ y(j)

2z(j)
z2 +

z(j)

2y(j)
y2, (A.3)

with x ≥ 0, y ≥ 0, z ≥ 0, x(j) ≥ 0, y(j) ≥ 0, z(j) ≥ 0.

Then, replacing (A.3) into (A.1), we obtain (32) and (33). The Lemma 2 is hence proved.



APPENDIX B

From (A.3), the upper bound of zk[n]t1k[n] in rlb
1k[n] is:

zk[n]t1k[n] ≤ (z1k[n]t1k[n])ub ,
z

(j)
1k [n] (t1k[n])2

2t
(j)
1k [n]

+
t
(j)
1k [n] (z1k[n])2

2z
(j)
1k [n]

. (B.1)

By making use of (32), (33), and (B.1), the lower bound of Φ1k[n] and Φ2k[n] are, respectively

Φ1k[n] ≥ Φ̄1k[n]

, B
(
A1 +A2

(
p1k[n]

)
−A3

(
p1k[n], t1k[n], z1k[n]

))
, (B.2)

Φ2k[n] ≥ Φ̄2k[n]

, B
(
C1 + C2

(
p2k[n]

)
− C3

(
p2k[n], z2k[n]

))
, (B.3)

where

A1 , log2
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p
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