
Specifying Complex Missions for Aerial Robotics in
Dynamic Environments

Martin Molina1∗, Adrian Diaz-Moreno1, David Palacios1, Ramon A. Suarez-Fernandez2, Jose Luis Sanchez-Lopez2,
Carlos Sampedro2, Hriday Bavle2 and Pascual Campoy2

1Department of Artificial Intelligence, Technical University of Madrid, UPM, Spain
2Computer Vision Group, Centre for Automation and Robotics, CSIC-UPM, Spain

ABSTRACT

To specify missions in aerial robotics, many
existing applications follow an approach based
on a list of waypoints, which has been proven
to be useful and practical in professional do-
mains (agriculture of precision, creation of ter-
rain maps, etc.). However this approach has lim-
itations to be used in other problems such as
the one defined in the IMAV 2016 competition
(e.g., a search and rescue mission). In this paper
we describe a language to specify missions for
aerial robotics that tries to overcome such limi-
tations. This language has been designed as part
of a complete software framework and architec-
ture for aerial robotics called Aerostack. The pa-
per describes the result of experimental evalua-
tion in real flight and its adequacy for the IMAV
2016 competition.

1 INTRODUCTION

There are a number of available software applications that
allow operators to specify a mission for aerial vehicles us-
ing a ground control station. Examples of such applications
are 1: MP (Mission Planner), APM Planner 2, MAVProxy,
QgroundControl, and PC Ground Station (DJI). However, the
use of waypoint lists to specify a mission presents important
limitations [1, 2]. One of the most significant limitations is
that they are rigid descriptions that are not able to adapt to
mission circumstances. The specification is normally based
on a fixed list of waypoints that cannot change dynamically
(e.g., in the presence of dynamic obstacles). The specifica-
tion follows a main sequential workflow and it is difficult
to specify alternative flows (e.g., iterations, branches, con-
ditional waypoints, alternative flows).

In order to cope with these limitations, mission speci-
fication languages can follow more powerful planning ap-
proaches. For example, there are classical planning ap-

∗Email address: martin.molina@upm.es
1Mission Planner http://planner.ardupilot.org/planner/index.html,

APM Planner 2.0: http://planner.ardupilot.org/planner2/index.html,
MAVProxy: http://dronecode.github.io/MAVProxy/html/index.html,
QgroundControl: http://qgroundcontrol.io,
PC Ground Station: http://www.dji.com/es/product/pc-ground-station

proaches in artificial intelligence (e.g., with STRIPS-like op-
erators). However, to be used successfully in robotics, they
need to be adapted or combined with other solutions to re-
act efficiently to the environment changes, monitor mission
execution and integrate with reactive behaviors [3]. Some
practical planning solutions in robotics are task-based speci-
fications, Petri nets, or behavior-based specifications besides
others (rule-based reactive planners or finite state machines)

In this paper, we present the results of our recent research
work to create a language to specify complex missions for
aerial robotics, such as the IMAV 2016 indoor competition.
The goal of this mission is a search and rescue task with dif-
ferent sub-missions related to search and map an unknown
environment and transport objects to certain locations.

Our proposed solution has been inspired by the task-based
approach for planning but includes also a particular definition
of basic concepts (e.g., actions and skills) and it is combined
with an event-driven reactive planning approach, to facilitate
adaptation to changes of the environment. The solution has
been integrated as part of the software framework Aerostack
(www.aerostack.org).

The remainder of the paper is structured as follows. Sec-
tion 2 describes the characteristics of our proposed language.
Section 3 describes how to verify the specification. Section
4 presents how our planning system was implemented in the
software framework Aerostack. Finally, Section 5 describes
the results of the experimental evaluation based on real flights
and its ability to specify a mission for the IMAV 2016 com-
petition.

2 MISSION SPECIFICATION IN TML LANGUAGE

We designed the language called TML (Task-based Mis-
sion specification Language) using XML syntax to be read-
able by both humans and machines. TML provides a logical
level using more natural and intuitive conceptual notions that
avoids the need of specifying technical details at program-
ming level (e.g., what specific processes must be executed for
each goal or in which order they must be executed).

Example 1 shows a specification of a simple mission in
TML language. In this language, the mission is defined with
the tag <mission> and the attribute name and the body of the
mission is separated in two main parts: task tree and event
handlers.

1

www.aerostack.org


2.1 Task tree
TML uses the notion of task as a basic component to

structure a mission with a modular organization. For exam-
ple, in the case of the IMAV 2016 competition, tasks can iden-
tify the different parts of the global mission such as take off
from a moving platform, entering the building, pickup ob-
jects, etc. The mission is specified with a set of tasks or-
ganized in a task tree. Each task is specified using the tag
<task> and the attribute {name}.

1 <mission name="Mission example">
2 <task name="Initial take off">
3 <action name="TAKE_OFF"/>
4 </task>
5 <task name="Navigate avoiding obstacles">
6 <skill name="RECOGNIZE_VISUAL_MARKERS"/>
7 <skill name="AVOID_OBSTACLES"/>
8 <task name="Stabilize at origin">
9 <action name="STABILIZE"/>

10 </task>
11 <task name="Go to destination">
12 <action name="GO_TO_POINT">
13 <argument name="point"
14 value="(3.0,4.0,1.5)"/>
15 </action>
16 </task>
17 </task>
18 <task name="Final landing">
19 <action name="LAND"/>
20 </task>
21 <event_handling>
22 <event name="Land command recognized">
23 <condition parameter="visualMarker"
24 comparison="equal" value="3"/>
25 <action name="LAND"/>
26 <termination mode="ABORT_MISSION"/>
27 </event>
28 </event_handling>
29 </mission>

Example 1: Mission specification in TML language.

We use the concept of action to express an elementary
goal that the aerial robot is able to achieve by itself, using its
own actuators. An illustrative set of actions related to IMAV
2016 competition is the following: take off, go to a point,
move forwards, explore space, pick up item, drop item, rotate
yaw, and land.

To represent a particular robot’s ability we use the concept
of skill. An illustrative set of skills related to IMAV 2016
competition is the following: avoid obstacles, self locate by
markers, recognize buckets and recognize items. Skills can be
active or inactive in a particular robot. In general, skills have
influence in the behavior of actions. Thus, we can understand
skills as global modifiers for sets of actions.

The notion of skill is useful as an intuitive concept to help
operators express more easily what complex abilities should
be active, without considering low-level technical details. In-
ternally, a skill is automatically supported by a set of running
processes. Thus, the activation of skills is associated to the
increase of resource consumption (memory space, processing
time, battery charge) so it is important to deactivate unneces-
sary skills when it is possible.

In TML, the body of a terminal task (i.e., a task that
is a terminal node in the task tree) must specify an action

Action Description
FLIP The vehicle performs a flip in a certain direction (argu-

ment direction with the values {front, back, right, left}).
The direction by default is to the front.

GO TO POINT The vehicle moves to a given point. The point can be
expressed using absolute coordinates (argument point)
or coordinates relative to the vehicle (argument relative
point).

LAND The vehicle descends vertically (through the z axis) until
it touches the ground. It is assumed that the ground is
static.

ROTATE YAW The vehicle rotates the yaw a number of degrees (argu-
ment angle).

STABILIZE The vehicle tries to cancel all the perturbations and tur-
bulences that may affect its system such as movement
speeds and attitude speeds.

TAKE OFF The vehicle takes off from its current location to the de-
fault altitude. If the vehicle is flying, this action is ig-
nored.

WAIT The vehicle waits on the air for a specified number of
seconds (argument time).

Table 1: List of actions (partial) used in TML language.

with the tag <action> and the attribute {name}. An ac-
tion can include optionally arguments. Arguments use the
tag <argument> and the attributes {name, value}. The body
of a terminal task can also specify several skills to be active
with the tag <skill> and the attribute {name}.

The body of a non-terminal task can include skills that are
active during the task execution. The body of a non-terminal
task does not include actions. Instead, the body includes one
or several simpler tasks that are executed in sequence.

The linear sequence of task execution can be modi-
fied with repetitions and conditioned executions. The tag
<repeat> and the attribute {times} is used to repeat a
task several times. The tag <condition> and the attributes
{parameter, comparison, value} are used to establish a condi-
tion to execute a task. The allowable values for the attribute
comparison are {equal, less than, less than or equal to, greater
than, greater than or equal to, not equal to}. Example 2 illus-
trates the use of these tags.

1 <task name="Flip and move if green">
2 <task name="Flip three times">
3 <repeat times="3"/>
4 <action name="FLIP"/>
5 </task>
6 <task name="Move if green">
7 <condition parameter="observed color"
8 comparison="equal" value="green"/>
9 <action name="GO_TO_POINT">

10 <argument name="point"
11 value="(3.0, 4.2, 1.5)"/>
12 </action>
13 </task>
14 </task>

Example 2: Task body with conditions in TML language.

2.2 Event Handlers
We have combined the task-based solution with reactive

planning to provide more adaptability to changes of the en-
vironment. To represent conditions about the world state, we
use the concept of event. An event is the occurrence of a
significant change in the state of the external environment or



the state of the own robot. Events can be related to normal
situations (e.g., the detection of a specific visual marker) or
abnormal/undesired situations (time out, discharged battery,
etc.).

In TML, the mission specification includes a section for
event handlers defined with the tag <event handling> to de-
scribe what to do in the presence of events. Event handlers are
similar to condition-action rules, a typical representation used
in reactive planners. Events are defined with the tag <event>
and the attribute {name}. Each event includes a list of condi-
tions (in conjunctive form), a list of actions to be done and an
ending step defined with the tag <termination> and the at-
tribute {mode}. Events can use a particular type of condition
with the attribute {currentTask}. This is useful to express that
the event happens while a particular task is being executing.
Example 3 illustrates this case in TML language.

1 <event name="take off failure">
2 <condition currentTask="initial take off"/>
3 <condition parameter="action confirmation"
4 comparison="equal" value="failure"/>
5 <termination mode="ABORT_MISSION"/>
6 </event>

Example 3: Event declaration in TML language.

The task tree and the event handlers are integrated during the
execution time in the following way:

1. The interpreter navigates in the task tree following
a depth-first control strategy. When the interpreter
reaches a terminal node of the tree, it requests the
execution of the corresponding action with the active
skills. The order of this control strategy can be modi-
fied by the user with repetition and condition sentences.

2. While the interpreter waits until a requested action fin-
ishes, it verifies the conditions of event handlers. If an
event handler verifies its condition, it can request addi-
tional skills to be active, can request additional actions
to be done or can change the normal execution flow
(abort mission, abort task, jump to task, etc.).

3 VERIFICATION OF THE MISSION SPECIFICATION

The text in TML language written by the operator must
be automatically analyzed to verify that it does not include
errors generated by mistakes or misunderstood concepts. This
is important to guarantee a robust operation avoiding system
crashes. In general, the verification of a mission specification
can include two types of analysis:

• Language validation. This corresponds to the lexical,
syntax and semantic validation of the mission specifi-
cation according to the grammar defined for the TML
language.

• Physical feasibility verification. This verification
checks if the specified mission can be performed in
practice considering constraints of the physical world.
This validates, for example, that a point to reach is not

too close to an obstacle or that the distance to cover is
not too long for the remaining battery.

The verification of physical feasibility is a complex task with
different dimensions. It includes (1) the individual verifi-
cation of the feasibility of each particular action, (2) the
contextual verification to check the feasibility of an action or
a skill in relation to other skills and actions that occur at the
same time (3) the temporal verification of the complete mis-
sion taking into account the temporal evolution of the whole
set of actions and skills.

The relative time when the verification is performed is
another significant distinction. The verification can be done
before the mission starts. For example, it is possible to verify
in advance that a certain spatial point is too far to be reached,
considering the maximum charge of battery. On the other
hand, the verification can be done during the mission exe-
cution, considering unexpected changes in the environment
such as the moving obstacles, bad illumination, etc.

We designed a solution to verify the physical feasibility
using a computational model with a constraint-based repre-
sentation. This model uses variables, parameters, functions
and constraints. Variables {xi} represent the dynamic val-
ues of physical references and magnitudes (e.g., destination
point, current charge of battery, etc.). Parameters {ki} rep-
resent constant values for physical magnitudes related to the
performance of the robot such as maximum speed, battery
consumption rate of the vehicle, etc. Parameters can be di-
vided into vehicle-independent parameters (general for any
kind of vehicle) or vehicle-specific for each category of ve-
hicle. Functions represent spatio-temporal and motion func-

Function Description
Distance(x1, x2) Distance from point x1 to point x2

DistanceBattery(x1, x2) Maximum distance covered with battery
charge x1 and consumption rate x2

DistanceObstacle(x1) Distance from point x1 to the closest obstacle
Length(x1) Length of trajectory x1

Speed(x1, x2, x3) Required speed to departure now from point
x1 and arrive at point x2 at time x3

Trajectory(x1, x2) Trajectory from point x1 to point x2 (gener-
ated by a trajectory planner)

Table 2: Example functions used in the verification model.

tions (see Table 2) such as the length of a trajectory, distance
to the closest obstacle, maximum distance covered with cer-
tain battery charge, required speed to reach a point at certain
time, etc.

Constraints {ci} are conditions about the physical world
that must be satisfied. Examples of these conditions are: the
destination point must be safe from obstacles, there must be
enough battery for the movement, and the destination point
must be reachable at an acceptable speed. The previous con-
ditions are represented with the following three constraints
(with functions, variables and parameters):

c1: DistanceObstacle(x2) > k2



c2: Length(Trajectory(x1, x2)) < DistanceBattery(x3, k1)
c3: Speed(x1, x2, x4) < k3

where the variable x1 is the current point, x2 is the destination
point, x3 is the current battery charge, and x4 is the planned
time of arrival to the destination; and the parameter k1 is the
battery consumption rate, k2 is the minimum free acceptable
space between obstacle and vehicle, and k3 is the maximum
speed of the vehicle.

The whole set of constraints is divided in subsets accord-
ing to the categories of actions. For example, there is a subset
of constraints for actions related to rotation motions, another
subset of constraints for actions related to translation motions,
etc. For a given action, the verification procedure reviews
only the subsets of constraints that correspond to categories
to which the given action belongs.

This type of model is generic to be reusable for differ-
ent physical platforms. Only the vehicle-specific parameter
values must be manually configured.

4 THE TML INTERPRETER

We implemented an interpreter of the TML language with
a set of computational processes in the software framework
Aerostack. This section summarizes Aerostack and the set
of processes that support the interpretation of the TML lan-
guage.

4.1 The Aerostack software framework
Aerostack [4] is a software framework for aerial robotics,

with a multilayered architecture supported by a distributed
inter-process communication. Aerostack uses an architec-
ture based on an extension of the hybrid reactive/deliberative
paradigm, i.e., an architecture that integrates both a deliber-
ative and reactive approaches [5]. The architecture includes
five layers (Figure 1):

• The reactive layer with low-level control with sensor-
action loops.

• The executive layer that accepts symbolic actions from
the deliberative layer and generates detailed behavior
sequences for the reactive layer. This layer also inte-
grates the sensor information into an internal state rep-
resentation.

• The deliberative layer generates global solutions to
complex tasks using planning.

• The reflective layer helps to see if the vehicle is actu-
ally making progress to its goal and helps to react in
the presence of problems (unexpected obstacles, faults,
etc.) with recovery actions.

• The social layer includes communication abilities,
which is important to establish an adequate communi-
cation with human operators and other robots.

The first three layers correspond to the popular hybrid design
known as the three-layer architecture [6]. The reflective layer
is based on cognitive architectures [7, 8] to simulate certain

self-awareness able to supervise the other layers. The social
layer has been proposed in multiagent systems and other ar-
chitectures with social coordination (e.g., [9]). It is worth to
highlight that the higher level layers, reflective and deliber-
ative, must work slower (0.1 - 10 Hz.) than the lower level
layers, executive and reactive (10 - 1000 Hz.).

4.2 Processes for mission planning
To implement an interpreter for our approach for mission

specification, we have upgraded Aerostack, reusing some of
the available components, and programming and integrat-
ing some additional ones. The processes that support the
planning system perform the following tasks asynchronously,
generating outputs when they receive new inputs that requires
an action to be taken (Figure 2):

• The mission planner interprets the TML specification
written by the human operator. The mission planner
uses such a specification to generate step by step the
next action to perform and, optionally, the set of skills
to be active, considering the current state of the envi-
ronment.

• The action specialist verifies the physical feasibility of
actions and predicts the performance of actions (e.g.,
time required, distance to cover, required charge of bat-
tery, etc.).

• The trajectory planner generates collision-free trajec-
tories that can be followed by the drone.

• The yaw planner generates a yaw value for the aerial
platform specified either as a point to look or as a yaw
to look.

The planning system communicates with processes that
perform the following tasks:

• The manager of actions and skills accepts the actions
and skills requested by the mission planner, expressed
as symbolic descriptions (e.g., take off, move to a point,
etc.), and translates them into specific orders for the
motion controllers and the activation of certain running
processes. It responds asynchronously to the requests.

• The action monitor supervises the correct execution
of initiated actions and detects either when they are
completed or when they have failed. It works syn-
chronously, monitoring the actions actively.

• The event detector detects the presence of significant
events to be considered by the mission planner (e.g.,
the recognition of a particular visual marker). It syn-
chronously monitors the considered events.

• The problem manager collects errors and initiates the
corresponding recovery actions. The detected prob-
lems are informed to the mission planner to react in
consequence. It watches out for new problems syn-
chronously.

We reused the trajectory planner and the yaw planner (see
[10] for details about these components) and we adapted the



Figure 1: Main components of the Aerostack multi-layered architecture [4]

Figure 2: Detail of processes used in Aerostack to interpret the TML mission specification language.



manager of actions and skills. Since Aerostack is a software
framework platform independent, the resulting mission plan-
ning system also has this property. Only certain platform-
dependent parameters must be configured.

5 EVALUATION

This section presents the results of evaluations that we
performed for the TML language: (1) flight tests and (2) mis-
sion specification for the IMAV 2016 competition.

5.1 Flight tests

The TML language was tested in real flight using differ-
ent mission cases with various degrees of complexity. This
section describes one of these cases, whose formulation was
based on a surveillance mission. The goal of this mission is
to search for a subject in a spatial area avoiding any type of
obstacle. When the aerial robot recognizes the presence of
the subject, it performs an alert action (e.g., notify the loca-
tion of the object, start an alarm sound, etc.) and returns to
the starting point.

For the sake of simplicity, we defined an indoor mis-
sion where the robot performs a search routine (a squared
trajectory with a side of 2 meters) and detects obstacles or
the searched subject using visual markers (ArUco markers).
These simplifications facilitate the practical development of
the real flight and allow testing the functionality of the TML
language. The experiment was carried out with the aerial
platform Parrot AR Drone 2.0. We used the same specified
mission considering several scenarios with changes in the en-
vironment with different locations of obstacles and searched
subject. Figure 3 shows graphics representing the trajectories
followed by the robot in the different scenarios.

The described experiment demonstrates that the TML lan-
guage can be used to specify and execute a mission for an
aerial vehicle in a dynamic environment. The experiment
shows how the robot adapts correctly its behavior to changes
in the environment, considering different locations of obsta-
cles and the searched subject.

It is worth to clarify that this behavior was achieved in
two different decision planes. On the one hand, the process
mission planner supports an adaptive behavior corresponding
to the moment when the subject is detected, according to the
specified reaction written explicitly in TML language (return
to the starting point).

On the other hand, the process trajectory planner sup-
ports an adaptive behavior corresponding to the presence of
obstacles, generating collision-free trajectories to be followed
by the robot. In summary, this experiment corresponds to
a representative type of mission based on surveillance but
presents also similarities to other types of missions (e.g.,
search and rescue, terrain mapping, etc.) where the aerial
robots must show certain degree of autonomy.

5.2 IMAV 2016 Competition
We analyzed the ability of the TML to be used as spec-

ification language for the mission of the IMAV 2016 indoor
competition. This mission includes partial goals such as tak-
ing off from a moving platform, entering the building via dif-
ferent entrance (doorway, chimney or window), pickup ob-
jects and release them to the correct locations, exiting the
building, landing on the moving platform, and mapping of
the indoor environments.

Appendix A shows an example of specification that we
wrote in TML language for this mission. For this specifica-
tion, we made certain assumptions about actions and skills.
For example, we assumed that the robot is able to do specific
actions (pick up item, drop item), specific skills (recognize
bucket, recognize item), or general actions (go to a rectangle
identified by a colored frame, like the door in the competition,
or explore the space building a map).

According to these assumptions, we were able to write in
TML the corresponding IMAV 2016 mission, which demon-
strates that this language provides enough expressive power
to formulate such a type of missions. In particular, tasks were
useful to structure modularly the different parts of the mis-
sion: take off at operating zone, enter building, explore build-
ing, etc. Event handlers were useful to react to recognized
items and buckets while the robot is exploring the building.
The concept of actions and skills were also useful to model
the different abilities of the robot for this mission.

6 CONCLUSION

In this paper, we have described TML, a language that
follows a task-based approach to specify missions for aerial
robotics. The TML language uses the concept of task as a ba-
sic notion to structure the mission and other intuitive concepts
(actions, skills, events) that can help to be easily learned and
used by operators.

We implemented a TML interpreter as part of the
Aerostack software architecture. Thanks to the use of this
framework, the implementation of the TML interpreter is in-
dependent on aerial platforms and able to be used in real
flights. The TML interpreter is freely available for the
research community as part of the Aerostack architecture
(www.aerostack.org). The evaluation of TML showed that
this language is expressive enough to specify a mission such
as the one defined for the IMAV 2016 competition. The real
flight experiments with the interpreter of TML in Aerostack
showed also an adequate adaptation to environment changes.

Our future work includes adding improvements to this
language such as new and more complex actions and skills.
We also plan to build a graphical user interface that help op-
erators to specify missions based on TML. This interface can
use graphical notations and restricted menu options. Another
line of future work is to combine TML with a multi-agent ap-
proach to support distributed and coordinated planning (e.g.,
[11]).

www.aerostack.org


Figure 3: This figure shows different trajectories followed by our aerial robot in real flights during the execution of the same
mission specified in TML language. The experiment shows how the robot adapts correctly its behavior to changes in the
environment, considering different location scenarios of an obstacle and the searched subject. In the figure, the origin of the
movement is the point (4.0, 4.0). The graphic (a) corresponds to the squared trajectory followed by the robot in a scenario
without any influence from the environment.

Figure 4: Platform and markers used in our experiments.

ACKNOWLEDGEMENTS

This research work has been supported by the Span-
ish Ministry of Economy and Competitiveness through the
project VA4UAV (Visual autonomy for UAV in Dynamic En-
vironments), reference DPI2014-60139-R.

REFERENCES

[1] E. Santamaria, P. Royo, C. Barrado, E. Pastor, J. Lpez,
and X. Prats. Mission aware flight planning for un-
manned aerial systems. In AIAA Guidance, Navigation,
and Control Conference and Exhibit, Honolulu (HI),
2008.

[2] B. Schwartz, L. Nagele, A. Angerer, and B. A. Mac-
Donald. Towards a graphical language for quadrotor
missions. In Workshop on Domain-Specific Languages
and models for Robotic systems, 2014.

[3] A. L. Rothenstein. A Mission plan specification lan-
guage for behaviour-based robots. PhD thesis, Univer-
sity of Toronto, 2002.

[4] J. L. Sanchez-Lopez, R. A. Suarez Fernandez, H. Bavle,
C. Sampedro, M. Molina, J. Pestana, and P. Campoy.
Aerostack: An architecture and open-source software
framework for aerial robotics. In The 2016 International
Conference on Unmanned Aircraft Systems ICUAS, Ar-
lington, VA, 2016.

[5] R. C. Arkin, E. M. Riseman, and A. Hansen. Aura:
An architecture for vision- based robot navigation. In
proceedings of the DARPA Image Understanding Work-
shop, Los Angeles, CA, 1987.

[6] E. Gat. On three-layer architectures. In David Ko-
rtenkamp, R. Peter Bonnasso, and Robin Murphy, ed-
itors, Artificial Intelligence and Mobile Robots. AAAI
Press, 1998.

[7] A. Sloman. What sort of architecture is required for
a human-like agent. In M. Wooldridge and A. Rao,
editors, Foundations of Rational Agency. Kluwer Aca-
demic Publishers, 1999.

[8] R. J. Brachman. System that know what they’re doing.
IEEE Intelligent Systems, 17(6):67–71, 2002.



[9] B.R. Duffy, M-Dragone, and D.M.P. O’Hare. The
social robot architecture: A framework for explicit
social interaction. In In Proceedings Cognitive Sci-
ence Workshop, Android Science-Towards Social Mech-
anisms, Stresa, Italy, 2005.

[10] J.L. Sanchez-Lopez, J. Pestana, P. de la Puente,
R. Suarez-Fernandez, and P. Campoy. A system for
the design and development of vision-based multi-
robot quadrotor swarms. In Unmanned Aircraft Sys-
tems (ICUAS), 2014 International Conference on, pages
640–648, May 2014.

[11] C. Sampedro, H. Bavle, J. L. Sanchez-Lopez, R. A.
Suaarez-Fernandez, A. Rodrguez-Ramos, M. Molina,
and P. Campoy. A flexible and dynamic mission plan-
ning architecture for uav swarm coordination. In Un-
manned Aircraft Systems (ICUAS), 2016 International
Conference on, Arlington, VA, 2016.

APPENDIX A: MISSION FOR IMAV 2016
This appendix shows a mission specification in TML lan-

guage for IMAV 2016 Indoors Competition. This corre-
sponds to an example where only one item is picked up.

1 <mission name="Indoor Competition IMAV 2016">
2 <skill name="AVOID_OBSTACLES"/>
3 <!-- TASK: Take off at operating zone -->
4 <task name = "Take off at operating zone">
5 <skill name="SELF_LOCATE_BY_MARKERS"/>
6 <task name = "Take off to start the mission">
7 <action name="TAKE_OFF"/>
8 </task>
9 <task name = "Memorize operating zone">

10 <action name="MEMORIZE_POINT"/>
11 <argument name="coordinates"
12 label="operating zone"/>
13 </task>
14 </task>
15 <!-- TASK: Enter building -->
16 <task name = "Enter building">
17 <task name = "Go to the door">
18 <action name="GO_TO_RECTANGLE">
19 <argument name="frame color" value="red"/>
20 </action>
21 </task>
22 <task name = "Enter through the door">
23 <action name="MOVE_FORWARDS">
24 <argument name="distance" value="1.5"/>
25 </action>
26 </task>
27 <task name = "Memorize where is the door">
28 <action name="MEMORIZE_POINT">
29 <argument name="coordinates"
30 label="door coordinates"/>
31 </action>
32 </task>
33 </task>
34 <!-- TASK: Explore building -->
35 <task name = "Explore building">
36 <skill name="RECOGNIZE_ITEMS"/>
37 <skill name="RECOGNIZE_BUCKETS"/>
38 <action name="EXPLORE_SPACE">
39 <argument name="build map" label="yes"/>
40 </action>
41 </task>
42 <!-- TASK: Transport item A -->
43 <task name = "Transport item A">
44 <condition label="item A coordinates"
45 comparison="known" value="yes"/>

46 <condition label="bucket A coordinates"
47 comparison="known" value="yes"/>
48 <task name = "Go to item A">
49 <action name="GO_TO_POINT">
50 <argument name="coordinates"
51 label="item A coordinates"/>
52 </action>
53 </task>
54 <task name = "Pick up item A">
55 <action name="PICK_UP_ITEM"/>
56 </task>
57 <task name = "Go to bucket A">
58 <action name="GO_TO_POINT">
59 <argument name="coordinates"
60 label="bucket A coordinates"/>
61 </action>
62 </task>
63 <task name = "Drom item A">
64 <action name="DROP_ITEM"/>
65 </task>
66 </task>
67 <!-- TASK: Exit building -->
68 <task name = "Exit building">
69 <task name = "Return to the door">
70 <action name="GO_TO_POINT"/>
71 <argument name="coordinates"
72 label="door coordinates"/>
73 </task>
74 <task name = "Correct orientation">
75 <action name="ROTATE_YAW"/>
76 <argument name="angle" label="90"/>
77 </task>
78 <task name = "Exit building through the door">
79 <action name="MOVE_FORWARDS"/>
80 <argument name="distance" value="1.5"/>
81 </task>
82 </task>
83 <!-- TASK: Land at operating zone -->
84 <task name = "Land at operating zone">
85 <skill name="SELF_LOCATE_BY_MARKERS"/>
86 <task name = "Go to operating zone">
87 <action name="GO_TO_POINT"/>
88 <argument name="coordinates"
89 label="operating zone"/>
90 </task>
91 <task name = "Final landing">
92 <action name="LAND"/>
93 </task>
94 </task>
95 <!-- Event handlers -->
96 <event_handling>
97 <!-- EVENT: Item A found -->
98 <event name="Item A found">
99 <condition current_task="Explore building"/>

100 <condition parameter="Item A found"
101 comparison="equal" value="yes"/>
102 <action name="MEMORIZE_POINT">
103 <argument name="coordinates"
104 label="item A coordinates"/>
105 </action>
106 <termination mode="CONTINUE"/>
107 </event>
108 <!-- EVENT: Bucket A found -->
109 <event name="Bucket A found">
110 <condition current_task="Explore building"/>
111 <condition parameter="Bucket A found"
112 comparison="equal" value="yes"/>
113 <action name="MEMORIZE_POINT">
114 <argument name="coordinates"
115 label="bucket A coordinates"/>
116 </action>
117 <termination mode="CONTINUE"/>
118 </event>
119 </event_handling>
120 </mission>

Example 4: Mission specification file for IMAV 2016.


