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ABSTRACT

We present the design and implementation of a vision based autonomous landing algorithm using a downward looking
camera. To demonstrate the efficacy of our algorithms we emulate the dynamics of the ship-deck, for various sea
states and different ships using a 6DOF motion platform. We then present the design and implementation of our robust
computer vision system to measure the pose of the shipdeck w.r.t to the vehicle. A Kalman filter is used in conjunction
with our vision system to ensure the robustness of the estimates. We demonstrate the accuracy and robustness of our
system to occlusions, variation in intensity, etc. using our testbed.

INTRODUCTION

In recent years, considerable resources have been devoted to
the design, development and operation of Unmanned Aerial
Vehicles (UAVs). The applications of such UAVs are diverse,
ranging from scientific exploration and data collection, to pro-
vision of commercial services, military reconnaissance, and
intelligence gathering. Other areas include law enforcement,
search and rescue, and even entertainment. UAVs, particularly
ones with vertical take-off and landing capabilities (VTOL),
enable difficult tasks without endangering the life of human
pilots. This potentially results in cost and size savings as
well as increased operational capabilities and performance.
Currently the capabilities of such UAVs are limited. A he-
licopter is a compact VTOL capable platform extremely ma-
noeuvrable.

The autonomous landing of VTOL UAVs is a very impor-
tant capability for autonomous systems, and is useful for vari-
ous tasks as search and rescue, law enforcement, and military
scenarios. Our challenge is to provide the UAVs with the ca-
pability of autonomously land on ship deck platforms in ex-
treme weather conditions.

Autonomous landing on a fixed platform has been stud-
ied since the emergence of Unmanned Aerial Vehicles (UAVs)
and some existing solutions are provided (Ref. 1), (Ref. 2).

Various approaches to the problem of landing on moving
targets have been studied. Some of them are on two degree
of freedom platforms (Ref. 3) or a simple moving platform
(Ref. 4), (Ref. 5).

However, autonomously landing on a ship deck platform
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continues to be studied, and has only recently been solved for
very favourable weather conditions (Ref. 6), (Ref. 7), (Ref. 8),
(Ref. 9).

Computer Vision for landing has also been extensively
studied. (Ref. 1), (Ref. 2), (Ref. 3), (Ref. 4), (Ref. 5), (Ref. 10)
give a good overview and various applications of vision but
none of them focus on the problem of landing an UAV on a
6DOF moving platform. Various authors have focussed on
the landing problem using special markers or helipad' struc-
tures (Ref. 11), (Ref. 12), (Ref. 13).

The movement of a ship at Sea is due to the effect of the
wave motion. The typical environmental conditions attributed
to waves are grouped into several Sea States (Ref. 8) (see fig-
ure 1).

The ship can be modelled as a rigid body moving in the
sea with six degrees of freedom, figure 2 (see (Ref. 14)). Its
movement in the sea depends on the Sea State, the physical
parameters of the ship, and the wave direction.

Some authors use sinusoidal functions with a fixed am-
plitude and frequency only for heave movement (Ref. 15).
Others use sinusoidal functions for every degree of freedom
(Ref. 9). Finally, others define a different heave movement
function (Ref. 16). None of these authors take into account
the ship model or Sea State.

If we want to simulate the ship model, we can use physical
models as the one used in games (Ref. 17); or control appli-
cations (Ref. 14) or (Ref. 7). Unfortunately, these models are
too complex, not realistic enough, and need additional ship
parameters.

'In the paper, the word heliport” is used to refer to the
surface to land, and the word helipad” to refer to the draw-
ings painted on the heliport.



Sea World Meteorological Organisation
State Description Significant Wave Height (m)
0 Calm (glassy) 0
1 Calm (ripples) 0-0.1
2] Smooth (wavelets) 0.1-0.5
3 Slight 0.5-1.25
4 Moderate 1.25-2.5
5 Rough 2.5-4.0
(] Very Rough 4.0-6.0
7 High 6.0-9.0
8 Very High 9.0-14.0
9 Phenomenal Over 14

Fig. 1. Sea State Parameters. The Significant Wave Height
is defined as the average value of the height (vertical dis-
tance between trough and crest) of the largest 1/3 of the
waves present. The waves are modelled as sinusoidal func-
tion.

Inertial Frame & 0

Fig. 2. Standard notation and sign conventions for ship
motion description.

To consider the ship model in the simplest form, a reg-
ister of sailing data (Ref. 18) could be used to calculate the
model (Ref. 19). With this approach, the Sea State and wave
direction are ignored.

A better approach is the use of a simple physical model that
consists of a sinusoidal function for each degree of freedom,
whose parameters depend on the Sea state, wave direction,
and of course the ship (Ref. 8). However, this approach is
not random enough for our problem because each degree of
freedom moves periodically.

The paper is organized as follows: in section ”System De-
scription” a system and equipment description is developed;
the ship deck simulation is explained in section ”Ship Deck
Simulation”; section “Computer Vision System” describes
how the computer vision system works; the state estimator
is explained in section ”State Estimation: Kalman Filter”; re-
sults of the whole system are described in section "Results”;
finally, section “Conclusion and future work™ concludes the

paper.

SYSTEM DESCRIPTION

The VTOL UAV proposed to be used in our study is a Ro-
tomotion Inc, SR200 (figure 3). This helicopter is equipped

Fig. 3. Rotomotion SR 200 Gas powered Helicopter.
Length: 2790 mm; Width: 760 mm; Height: 860 mm;
Main Rotor Diameter: 3000 mm; Endurance: Up to 5
hours; and Maximum Payload: 22.7 kg

with an autopilot, an inertial measure unit (IMU), a GPS sen-
sor, and a small computer that simplifies the control task and
is ideal for the development of autonomous capabilities for
UAVs.

A white H surrounded by a white circle (figure 4) is painted
on the heliport surface. These marks are the most extended
marks to indicate the presence of a heliport surface.

Fig. 4. Helipad Marks used in our application. They are
typical marks.

To detect the heliport, and to measure its pose with respect
to the helicopter’s pose, we propose to use a single downward
looking colour camera computer vision system (a single cam-
era with three channels: RGB). We selected the single cam-
era system instead of a stereo pair because we assume that
the size of the square landing platform is known, and because
stereo requires a very large baseline. As such, the 3-D recon-
struction could be calculated using the platform model and the
camera calibration parameters (see section "Computer Vision
System”). The helicopter is also equipped with SONAR sen-
sors that return the measurements of the distance to the floor
when the helicopter is really close to it. These sensors al-
low us to detect the heliport pose in the very last stage of the
landing when the helicopter is so near to the heliport that the
computer vision system is not able to detect the marks.

SHIP DECK SIMULATION

We simulate the movement of the ship deck on the Sea, using
a Servos and Simulation Inc, Generic Motion System (model



710-6-500-220) with a 2.44 x 2.44m? gray surface as heliport
(figure 5).

Fig. 5. Servos and Simulation Inc, 710-6-500-220 Generic
Motion System. Number of axis: 6; Height: 48.6 cm;
Floor Platform: 66 x 68.6cm?; Power: 220 VAC @ 20 A;
Payload: 226.8 kg; Max. Roll (x): +13°; Max. Pitch (y):
+15° Max. Yaw (z): +16°; Max. Surge (x): +10.2cm;
Max. Sway (y): +10.2cm; and Max. Heave (z): +6.4cm

Our approach for the ship deck motion simulation is an
improvement of (Ref. 8). We propose a uniform random gen-
eration for the amplitude of each sinusoidal movement based
on how the amplitude data corresponds to the top 1/10 waves.
To obtain a continuous and derivable movement, we interpo-
late between two different sinusoidal function with a 5 degree
polynomial.

Using MATLAB to achieve the ship simulation, we obtain,
for a Sea State of 6, a Wave Direction of 60°, and a Oliver
Hazard Perry Class FFG Frigate, the following plots (figures
6, 7 and 8). The shape of these plots looks similar to the
available plots of ship movements in (Ref. 18).

Position of the Cots of the ship. x=blue; y=red; z= green

position of the CoG of the ship (m)

time (sec)

Fig. 6. Position of surge (x, blue), sway (y, red) and Heave
(z, green) of the simulated ship’s Center of Gravity.

Euler angles of the ship. Roll=blue; Pitch=red; ¥aw=green
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Fig. 7. Euler angles of the simulated ship: Roll (blue),
Pitch (red) and Yaw (green).

Fuosition of the center of the deck of the ship. x=blue; y=red; z= green

position of the center of the deck of the ship (m)

time (sec)

Fig. 8. Position of surge (x, blue), sway (y, red) and Heave
(z, green) of the Center of the landing Deck of the simu-
lated ship.

Once the ship simulation is calculated, because of our plat-
form motion is smaller than the real ship’s (figure 5), and our
helicopter is smaller than its manned counterpart (figure 3),
the entire system has to be scaled down. The approach that
we choose for the scaling consist on scale only the amplitudes
of the movement of each degree of freedom (DoF). We scale
down the position DoF (x, y, and z) multiplying the simulated
amplitude by the coefficient 1/90, and the angles (Yaw, Pitch,
and Roll) by 1/3. While the scaling function is not realistic, it
ensures that position and attitude are not being distorted and
the platform is being used to the maximum extent possible.

The following step in the ship deck simulation is the calcu-
lation of the motor inputs of our platform through the Inverse
Kinematics (figure 11) using the scaled ship simulation move-
ment as the desired movement of our motion platform (figure
10). According to (Ref. 20), we use the equation 1, defining a
fixed reference system (attached to the bottom of the motion
platform) and a mobile reference system (attached to the mo-



bile part of the platform), to calculate the inverse kinematics:

L; = ||Oy 4 Ogp - Poi — Oy (1)

Where L; is the longitude of the bar i of the motion plat-
form; O, = [x,y,z]" is the desired position of the mobile ref-
erence system respect to the fixed one; Og, is the 3-by-3 ro-
tation matrix of the desired attitude of the mobile reference
system respect to the fixed one; P, is the 3-by-1 vector of the
position of the side of the bar i fixed to the mobile part of
the platform, in coordinates of the mobile reference system;
O,; is the 3-by-1 vector of the position of the side of the bar
i moved by the motor i, respect to the fixed reference system.
0O,; depends on the motor input g; that is the unknown of the
equation; and i = 1..6 indicates the number of the bar of the
motion platform (see figure 9).
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Fig. 9. Generic 6 DoF parallel robot.

When equation 1 has no solution inside the compatible val-
ues of ¢;, a singular configuration is achieved. If that happens,
we calculate the value that minimizes equation 1 that is the
nearest achievable pose by the platform respect to the desired
one.

The last step is the filtering of the calculated inputs in or-
der to limit the speeds and accelerations because the inverse
kinematics calculation does not take them into account (figure
12).

COMPUTER VISION SYSTEM

In order to measure the pose of the Landing Platform, we use
a single downward looking camera computer vision system on
board the helicopter as described in section ”’System Descrip-
tion”.

As the helipad has no image descriptors (like SURF fea-
tures), the detection and the tracking cannot be based on
matching them with a previously known template. We have
to use other features of the helipad, like the color or the marks
(an H surrounded by a circle).
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Fig. 10. Desired motion of our motion platform, for the
ship simulation described in figures 6, 7 and 8. In red,
points of singular configuration that are not achievable by
our platform; in blue achievable points.
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Fig. 11. Motor inputs (Volts) before filtering for the desired
movement described in figure 10.

The computer vision algorithm has the following steps de-
scribed below:

1. Image Acquisition and Preprocessing.
2. Heliport Zone Extraction.
3. Helipad Marks Extraction.

4. Heliport 3D Reconstruction.

The computer vision algorithm has been developed max-
imizing its accuracy, performance and robustness. We tried
to avoid false positives using a very long decision tree. A
false negative (no measure when it has to be measured) is
better than a false positive (a wrong measurement), because
the state estimator (section ’State Estimation: Kalman Filter”)
can manage it more easily.
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Fig. 12. Motor inputs (Volts) after filtering inputs in figure
11.

Image Acquisition and Preprocessing

To start with the computer vision algorithm, the colour im-
age is acquired (figure 13). The camera gives the image in the
RGB (Red-Green-Blue) colour space. Then, the image is con-
verted to an intensity image and to the HSV (Hue-Saturation-
Value) colour space. Both images are preprocessed with a
mean filter and then, with a opening morphological trans-
formation (Ref. 21). With this image preprocessing we are
preparing the image to the following steps. If the preprocess-
ing would not be done, the computer vision algorithm would
work slower and with less accuracy, performance and robust-
ness.

Fig. 13. Example of an Ac-
quired Image

Heliport Zone Extraction

In this step, we work with the preprocessed HSV colour im-
age. A colour thresholding is done to get a binary image with
the gray pixels of the heliport. This binary image also requires
a preprocessing step, that consist on a median filter followed
by an opening morphological transformation. Then, the blobs
are extracted and the small ones are deleted. With all these
preprocessing, we clear all the noise and small regions. Fi-
nally, the blobs are filled in and, an OR logical transformation
is done to get a whole binary image that represent the can-
didate pixels to belong to the heliport. Note that the heliport

zone extraction give us not only the gray pixels, but also the
white ones of the H and circle marks because of the blob’s
filled in that we did. Note also, that this step gives also other
gray regions that can be visible in the image, giving us some
false positives that we will filtered in the next stages.

Helipad Marks Extraction

To start with this stage, we element-by-element multiply the
intensity image obtained in the first step described and the
binary output image of the previous section (figure 14). This
resulting image is thresholded looking for the white pixels of
the heliport marks (the H and the circle). In order to remove
noise and prepare this binary image, it is preprocessed with
a median filter and an opening morphological transformation.
Then, the resulting blobs are calculated, filtering those with
small area (figure 15). The segmentation steps ends, and the
classification step starts.
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Fig.
Threshold Image, ready for
look for Heliport Marks

Fig. 14. Example of an In- 15. Example of a

tensity Image after Heliport
Extraction

The classification is done with a decision tree, where, each
level gives some false positives, however, at the end of the
tree, we will have one single solution. With this methodol-
ogy, the speed and specially the accuracy of the computer vi-
sion algorithm is improved. In the first stages, an individual
classification for Hs and circles is done. Then, we use both
candidates (if found) to classify and verify them.

The first level is a fast classification using the Euler num-
ber (Euler number = connected components — number of
holes) of each blob. H blobs have an Euler number equal to
zero, and circle blobs’ Euler number is one. Blobs with dif-
ferent Euler numbers are discarded. The Euler number is a
scale, translation, rotation and homography invariant feature.
The second level is a classification with a multi-layer percep-
tron (MLP) artificial neural network (ANN) with ten neurons
in the hidden layer, tree outputs (H candidate, O candidate and
other) and five inputs (see figure 16). The inputs are obtained
with a principal component analyse (PCA) applied to the first
seven invariant Hu Moments of each blob. Hu Moments are
invariant to scaling, translation and rotation and are used in
Optical Character Recognition (OCR), (Ref. 22), (Ref. 23),
(Ref. 24). Homography modifies a little these features, but
they can be used in our decision tree. As the H has more in-
formation than the circle (because it is less symmetrical that
the circle), we can use it in the third classification level. This



third level uses the signature of the H candidates. The sig-
nature is invariant to rotation and translation; it preserves its
shape to scaling; and some features of the shape (relative max-
imum and minimum) are preserved to homography. The H
signature has four relative maximum and four relative mini-
mum. The four maximum are the external corners of the H;
and the four minimum are the bisectrix of the horizontal seg-
ment (above and below the centroid), and the bisectrix of the
vertical segments (the external points). Because of its symme-
try, if we connect the four maximum, we have a cuadrilateral
polygon whose center should be near to the centroid of the
H blob. The same phenomenon appears with the minimum.
The fourth level in our tree checks that all these three cen-
ters (center of maximum, center of minimum and centroid)
are near. The fifth level checks the distance between the verti-
cal straight lines of the maximum (vertical segment of the H)
and the points of the minimum that should be in the vertical
segment of the H. This distance has to be small (ideally zero).

Output

Fig. 16. Multi-layer perceptron (MLP) artificial neural
network (ANN) with ten neurons in the hidden layer, tree
outputs (H candidate, O candidate and other) and five in-
puts, used in the second level of the classification tree.

Hitherto, our classification tree uses only individual fea-
tures to achieve its task. Now, we have to select only one H
blob and one circle blob among all the resulting candidates
that have to be compatible both together. The sixth level is
based on the knowledge that the H has to be inside the circle.
The seventh and last level calculates the coefficient between
the area of the H and the area of the circle, which should be,
more or less, a constant value. In these two last levels all H
and circle blob candidates are tested, discarding those that do
not satisfy the conditions checked in the levels.

At the end of this step, we have the helipad marks (H and
circle) extracted of the image (figures 17 and 18).

Fig. 17. Example of Circle
selected blob

Fig. 18. Example of a H se-
lected blob

Heliport 3D Reconstruction

The last step in the computer vision algorithm has to give us
the 3D pose of the heliport with respect to the camera (on-
board the helicopter). With the corners of the H of the helipad
in the image (obtained thanks to its signature), we can calcu-
late the homography matrix between these points of the image
and the same points in a predefined target image. Then, using
the homography matrix, we calculate the corners of the heli-
port knowing where are the corners in the target image (figure
19).

Once we have the corners of the heliport in the image, the
3D reconstruction has to be performed (figure 20). The recon-
struction is based on the pin-hole camera model (equations 2
and 3, been i = 1..4), the square and known platform model
(equation 4, been i, j = 1..4 and i # j; and equation 5, been
i,j,k=1.4and i +# j+# k). The camera has to be previously
calibrated (focal distance f, scale factors K, and K, and prin-
cipal point C, and Cy, no distortion is assumed).

xi f Ky — (xfi —Cx) -z 0 (2)
Viof Ky—=(i—Cy)z 0 €)]
Xi—xl| = L 4)

(&—%)- (% -%) = 0 5)

Where X; = [x;,;,z]" are the 3D coordinates of the point i in
the central coordinate system, and xy; and yy; is the 2D coor-
dinate of the point i in the camera lateral coordinate system.

Fig. 19. Example of Output
Image after the computer
vision algorithm. In green,
the heliport. In red, the H
corners (maximum of sig-
nature). In purple, the min-
imum of the H signature

Fig. 20. Example of 3D re-
construction after the com-
puter vision algorithm. The
camera is fixed in the point
0, 0, 0), looking down-
wards

STATE ESTIMATION: KALMAN FILTER

In order to manage the measurements of the computer vision
system, filtering the noise and calculating the pose of the he-
liport even when measurements are not available, a state esti-
mator is needed.

In our problem we can see three coordinate systems: the
first one, the World frame, fixed to the ground; the helicopter
frame, fixed to the camera on-board the helicopter; and the
last one, the heliport frame, fixed to the landing platform. The



movement of the helicopter with respect to the World is mod-
elled thanks to the helicopter model, and can be measured
thanks to the IMU and GPS. The movement of the landing
platform with respect to the World is unpredictable and we
have no measure of it, but we have the measure of the move-
ment of the helicopter respect to the landing platform (the out-
put of the computer vision system). If we assume that we
have a good estimation of the pose of the helicopter frame,
we can transform the computer vision measure into a mea-
sure between the World frame and the landing platform. With
this transformation, we decouple the models (but not the mea-
sures), and it is easier to define them.

As the movement of the ship deck platform respect to the
World frame is unpredictable, we cannot a model to estimate
its pose. We define the following model:

dSX,'
drd

=0 (6)

Where x; is the position of each DoF (x, y, z, 6, y, @) of the
landing platform.

With this model, an Extended Kalman Filter is imple-
mented to obtain the pose of the heliport, using the computer
vision measurements and knowing the state of the helicopter.

RESULTS

In this section, some examples of the results of previous sec-
tions are shown. More results and videos are available at
http://www.vision4uav.com/?q=jlsanchez/research.

Computer Vision System

The computer vision system performance depends on differ-
ent parameters:

- The camera selected: the resolution is a key factor in
the detection step, and the parameters Cy, Cy, Ky, and K|,
affect on the 3D reconstruction algorithm.

- The lens selected: with the resolution of the camera, is
the other key factor in the detection step. Also, the f
factor affects on the 3D reconstruction.

- The computer used: the framerate of the computer vision
algorithm depends on the computer used.

To test the computer vision, we use a 19 cm x 19 cm heli-
port as shown in figure 4. This scaled version of the heliport
allows us to test the computer vision system in an easy way.
Of course, the camera and the lens will be scaled too. The
selected camera is a Point Gray Inc, Chameleon USB color
camera (model CMLN-13S2C-CS), that can work with a res-
olution of 640 x 480 pixels at a rate of 24 frames per second
(fps). The lens used is a FUJINON (model YV5x2.7R4B-
2) with a focal length between 2.7 mm and 13.5 mm, which
means an angle of view between 99°x 74°and 20°x 15°. With
this lens we can test our algorithm in different situations. We

set the lens in a way that we were able to see our helipad in
a range distance between around 0.4 m and 1.5 m, that means
between 2 and 8 times the size of the test helipad. For smaller
distances, we assume that we are in the last step of the land-
ing, and the SONARs would work. For bigger distances, we
assume that we are far enough, and we can approximate the
helicopter to the ship safely before starting the landing ma-
noeuvre. Of course, these distances can be modified by chang-
ing the lens focal distance. Also someone could consider the
use of two or more cameras to see the heliport at different
distances, running the same computer vision algorithm.

Once the camera and the lens is set for our tests,
we calibrated it, getting: f - K, = 1307.549726, f-K, =
1307.549726, C, = 319.5 and Cy = 239.5. The distortion of
the lens does not affect. If the distortion affects, a previous
step in the computer vision algorithm could be done to cor-
rect it.

The used PC to run the algorithm is a 2010 laptop with
a Dual-core Intel Core i3 CPU @ 2.26GHz. The framerate
achieved is around 6 fps, but with a more powerful PC, this
framerate could be improved easily up to 20 fps or more. By
the way, this low framerate is enough for out application, be-
cause the helicopter is equipped with an IMU (and also a GPS)
that allow us to know its pose faster. That means that with the
computer vision system we only need to measure the pose of
the ship respect to the helicopter and the frequencies of the
movement of the ship are much slower than 6 fps (as we saw
in a previous section, they are between 0.07 and 0.13 Hz, so a
framerate of 6 fps is more than 45 times faster).

In figures 21 to 23, the performance of the detection steps
of the computer vision algorithm is tested. We can affirm that
for different distances and angles of the heliport respect to
the camera, the algorithm is able to detect the heliport. We
also can affirm that even with a lot of contamination or partial
occlusions of the helipad or even with illumination changes,
it can still be detected.

Fig. 21. Example of Heliport very tilted. The 3D recon-
struction reflects the tilting, and the computer vision algo-
rithm still works despite the huge tilting

Other important issue to evaluate is not only the perfor-
mance of the detection of the helipad, but also the final 3D re-
construction of the heliport. The accuracy of the computer vi-
sion system (for our camera-lens-heliport selection) depends


http://www.vision4uav.com/?q=jlsanchez/research

Fig. 22. Example of Heliport far away. The 3D reconstruc-
tion reflects the bigger distance. The computer vision al-
gorithm is able to work in different ranges of heliport dis-
tances.

Fig. 23. Example of Contamination on the heliport. The
computer vision algorithm works appropriately even with
a really big and probably ”unrealistic”’ contamination.

on the pose of the heliport respect to the camera. Tests showed
us that, as we expected, the position of the center of the he-
liport (x, y and z coordinates) respect to the camera frame is
more accurate and less noisy than the Euler angles (0, y and
¢ coordinates). Also, we can see that the noise of the euler
angles is reduced if the heliport is tilted respect to the camera,
that mean, the most dangerous poses. So, the less parallel the
camera plane is respect to the heliport plane, the system better
works. Figures 24 to 26 show a test with the heliport parallel
to the camera plane. Figures 27 to 29 show other test with the
heliport tilted.

State Estimation

In figure 30, one of the DoF of the motion platform (the
7 movement) is estimated using the Kalman Filter with the
model proposed in section “’State Estimation: Kalman Filter”
and typical measures and noises of the computer vision sys-
tem described, after the transformation to World frame’s co-
ordinates.

CONCLUSION AND FUTURE WORK

In this paper a new and complete ship deck simulation for
the autonomous landing of VTOL UAVs on ships is proposed

Fig. 24. Heliport at a distance of around 6 times the size of
the helipad. The heliport plane is parallel to the camera
plane. This is one of the cases in which the 3D reconstruc-
tion works worst (very noisy).
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Fig. 25. Position x, y and z of the centre of the heliport
respect to the camera when is stationary like in figure 24.
Mean values: 0.008 m, -0.0229 m, and 1.2415 m. Standard
deviations: 0.000460 m, 0.000425 m, and 0.0069 m.
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Fig. 26. Euler Angles Yaw, Pitch and Roll of the heliport
respect to the camera when is stationary like in figure 27.
Mean values: 161.6°, 162.9°, and 108.6°. Standard devia-
tions: 11.60°, 3.90°, and 12.47°.

using a real Motion Platform. This simulation fulfils the re-
quirements of being accurate, realistic, random and simple
enough, therefore we can use it easily without losing realism.
The pose of this landing platform is measured using a single
downward looking camera computer vision system on board
the helicopter for standard grey helipads with an H surrounded
by a circle. The computer vision requires the knowledge of
the deck size for the 3D reconstruction. This algorithm was
developed having in mind robustness, avoiding any false posi-
tive. Also, it works appropriately even with contamination on



Fig. 27. Heliport at a distance of around 3 times the size
of the helipad. The heliport plane is tilted respect to the
camera plane. In this case the 3D reconstruction works
better (less noisy).
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Fig. 28. Position x, y and z of the centre of the heliport re-
spect to the camera when is stationary like in figure 24.
Mean values: -0.0433 m, -0.0142 m, and 0.6857 m. Stan-
dard deviations: 0.000425 m, 0.000526 m, and 0.0016 m.
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Fig. 29. Euler Angles Yaw, Pitch and Roll of the heliport
respect to the camera when is stationary like in figure 27.
Mean values: 7.9°,133.0°, and 72.8°. Standard deviations:
0.98°, 0.38°, and 1.22°.

the helipad or light changes. A state estimator that uses the
computer vision measures, calculates the state of the landing
platform, removing its noise and avoiding the problems when
the helipad is not detected. These are the first steps required to
achieve a solution to the challenge of autonomously landing
on a ship.

To complete this challenge, as future work, a state estima-
tor which incorporates the helicopter model, and IMU mea-
surements is required. Additionally, a controller will need to
be designed and tested in order to close the control loop.
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Fig. 30. Example of State Estimation of the pose of the mo-
tion platform. It is shown the z movement. In the upper
plot, in blue, the real state, and in red, the estimated state.
In the bottom plot, in cyan, the measurements of the com-
puter vision system, with its typical noise, after the trans-
formation to refer them to the World frame.
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