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Jose Luis Sanchez-Lopez1, Jesús Pestana1, Paloma de la Puente1,
Adrian Carrio 1 and Pascual Campoy1

Abstract—
This paper presents a low-cost framework for visual quadro-

tor swarm prototyping which will be utilized to participate
in the 2013 International Micro Air Vehicle Indoor Flight
Competition. The testbed facilitates the swarm design problem
by utilizing a cost-efficient quadrotor platform, the Parrot
AR Drone 2.0; by using markers to simplify the visual localiza-
tion problem, and by broadcoasting the estimated location of
the swarm members to obviate the partner dectection problem.
The development team can then focus their attention on the
design of a succesful swarming behaviour for the problem at
hand. ArUco Codes [2] are used to sense and map obstacles
and to improve the pose estimation based on the IMU data and
optical flow by means of an Extended Kalman Filter localization
and mapping method. A free-collision trajectory for each drone
is generated by using a combination of well-known trajectory
planning algorithms: probabilistic road maps, the potential field
map algorithm and the A-Star algorithm. The control loop
of each drone of the swarm is closed by a robust mid-level
controller. A very modular design for integration within the
Robot Operating System (ROS) [13] is proposed.

I. INTRODUCTION

The motivation of the presented work is to design a
low-cost framework for quadrotor swarm prototyping. The
framework is designed to ease the main issues related
to working with a multirobot system, which are obstacle
avoidance and partner detection. The focus is to allow
the team of designers to try various swarming behaviours
on a real robotic swarm, so that the advantages of the
proposed strategy can be experimentally demonstrated on
an early stage of the development process. In order to
obtain a cost-effective testbed the AR Drone 2.0 quadrotor
was selected as the aerial swarm agent, as it is a low-
cost but competitive platform. The second motivation is
to participate in international robotics competitions using
simple, but swarming, visual aerial robotic agents. More
specifically, the presented work has been implemented to
participate in the 2013 edition of the International Micro
Air Vehicle (IMAV) Flight Competition.

There exists a large variety of applications which require
a robotic system to densely navigate a wide area. Such
applications can benefit from a swarming approach for the
required data gathering of the problem at task, taking benefit
from the robotic population. For instance, such an approach
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could be applied to security and surveillance tasks of middle
sized areas.

Fig. 1. The swarm is composed by identical robotic agents, which are
composed of an AR Drone 2.0 which is commanded via Wifi from a ground
station. The ground stations can communicate with each other under ROS
via LAN, where one of them is running the roscore.

The IMAV Flight Competition is one of the most relevant
competitions in Europe in the field of Autonomous Aerial
Robotics and in the field of Small Remotely Piloted Air
Systems (sRPASs). The Computer Vision Group (CVG)
participated last year [20], in the 2012 edition, showing
the potential and the research experience of the group.
The learning experience obtained from the indoor dynamics
competition encouraged us to keep working in the same line
and also to try a swarming approach in the 2013 edition.
Our motivation for participating in such competitions is
to develop autonomous systems which can be later modi-
fied to perform civilian applications. This year’s rules are
significantly different with respect to 2012 edition. In the
IMAV 2013 edition there is only one indoor competition
(see [3]) which requires a high level of autonomy. The
scenario has some fixed and previously known obstacles (a
wall and four fixed poles) and several obstacles located at
unknown positions (two windows and four obstacle poles).
The indoor competition includes various challenges, among
others: flying through a window, flying through the obstacle
zone, target detection and recognition, path following and
precision landing.

After a deep analysis of the contest characteristics, a
Visual Quadrotor Swarm was selected as the best option
to join the 2013 IMAV indoor flight competition. A swarm
composed by a significant number (more than 5) of relatively
simple quadrotors (see section II) is going to be used to
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Fig. 2. Robotic agent software architecture. The ROS nodes of each agent are executed on a ground station which commands one AR Drone via WiFi.
Each white box represents a module, and the green text inside it are configuration files. The localization module is implemented using an EKF which
fuses the odometry based estimation with the ArUco visual feedback. This modules broadcasts the estimated pose to the mission and trajectory planning
modules, to the controller modules and to the other robotic agents. The brain module receives the estimated position of the other robots and communicates
it to the trajectory planner.

achieve all missions except for the dropping one (mission
6). Additionally, as we decided to work with a visual swarm,
a external visual aid described in section III-B is needed to
solve the localization problem. Our swarm is going to be
fully automated, and thus the level of autonomy is going
to be ”Autonomous Mission Control”, requiring only one
operator to start up and supervise/monitor the whole system
(just in case something goes wrong, the operator could stop
independent elements of the swarm, or the whole system).

II. SYSTEM DESCRIPTION

The system is composed by a swarm of autonomous Un-
manned Aerial Vehicles (UAVs). Each drone is autonomous
enough to complete a previously defined mission avoiding
obstacles and collisions with the other drones of the swarm.
There is no high-level intelligence that controls or synchro-
nizes the drones, the system then being a pure swarm. All
the drones of the swarm share its pose in order to avoid the
partner detection problem.

Each robotic agent is composed of the quadrotor platform
and a ground station, see Fig. 1. The agent is composed
of separate modules which work using the Robotics Op-
erating System (ROS), see [13]. The Parrot AR Drone 2
[4] was selected as robotic platform, the characteristics of
this platform are thoroughly explained in [5]. The ground
computer communicates with the drone via Wi-Fi using
the ardrone autonomy ROS package [1]. On the other side,
all the drone’s ground computers are communicated via
ethernet.

III. DRONE’S MODULES

In this section the main modules, see figure 2, of each
robotic agent of the swarm are described. The Pose Esti-
mator and the Trajectory Controller modules are explained
somewhere else [20], [19].

A. Drone’s Aruco Eye

The localization of the drone in the map is firstly estimated
using the Pose Estimatmor module. Since this measure has
drift, we need to correct it with an absolute measure when
available using the module described in section III-B. For this
purpose, we use a visual external aid: ArUco Codes (figure
3, see [2]). This library allows to calculate the 3D pose of
the camera with respect to each ArUco code.

Fig. 3. Samples of ArUco Codes, which are markers used to simplify the
obstacle detection and localization problems.

There are two kind of ArUco codes defined in our system.
The ones whose position is previously known and the ones
whose position is unknown. Some of these ArUco codes are
attached to all the obstacles (fixed known obstacles and fixed
unknown obstacles).

With this distribution of codes, we are able to locate the
drone with respect to the known ArUco codes, and to sense
and locate the unknown obstacles with respect to the drone
camera.

This visual aid helps us to solve two problems at the
same in quite a straight forward manner: we solved the
problem of sensing all the obstacles, that is a very hard task
using only computer vision, and we also avoid the visual
localization problem in a general environment, which is not
solved precisely yet (even though there are some approaches



like [11]).

B. Drone’s Localization and Mapping

Localization in indoor environments is a challenging task
for UAVs, especially if a low cost and very lightweight
solution is required [17], [21], [14], [12]. In the absence of
GPS and laser sensors, visual approaches are very popular
[21], [14], [12].

In the proposed system, the global localization of each
drone is based on the IMU data and optical flow for the
pose estimation, calculated by the Pose Estimator module.
However, this measure has a drift which may be significant,
so it should be corrected with more reliable information from
the environment when available. For this purpose, we decided
to use visual external aids, the ArUco codes [2] previously
described. This library provides the 3D pose of the camera
with respect to each ArUco code in a simple and convenient
manner. The input of the localization node are hence the
pose estimation result (similar to odometry) and the relative
observations of the ArUco Codes, received by means of ROS
messages.

Since the environment can be partially known a priori,
some fixed landmarks are employed. ArUco codes with
a priori known global poses are attached to the known
poles. Other ArUco codes are placed on the wall and the
unknown obstacles, and others are distributed over the floor,
with an inclination angle of 45◦ and mounted on top of a
platform 15 cm high. The latter are used so as to improve
the visibility of ArUco codes when navigating among the
poles; several tests were performed to qualitatively select an
appropiate inclination working properly for the ArDrone’s
camera field of view. Simple and easy-to-use accessories for
a fast arrangement of the ArUco codes in the environment
were designed and built.

Localization with visual external aids for UAVs has been
recently proposed in other works [21], [14], [12]. The method
presented by Jayatilleke and Zhang [14] requires all the
landmark poses to be known a priori and only works in
limited areas, employing quite a simple approach without
filtering of any kind. The work by Faig et al. presents an
interesting approach for local relative localization in swarms
of micro UAVs, with the external marks always within the
field of view. Our method was mainly inspired by the work
by Rudol [21], but our models and formulation are quite
different from those proposed by Conte [6].

We designed and implemented an Extended Kalman Filter
(EKF) that allows the complete 6 DOF pose of the drone
to be corrected by integrating the odometry data and the
information from the external visual aids detection. The
localization method benefits from the existence of known
landmarks, but it also incorporates unknown detected fea-
tures, using a Maximum Incremental Probability approach
for building a map of 6 DOF poses corresponding to ArUco
codes positioned in the environment. Similar methods for
ground mobile robots were developed in previous work by
de la Puente et al., initially based on the observation of 2D
point features with a laser scanner [8] and later based on the

extraction of planar features from 3D point clouds generated
by a tilting laser scanner [10], [9].

In this work, the data association problem does not have
to be addressed, since the ArUco readings provide unique ids
for the observations and the landmarks. This way, loop clo-
sure is facilitated and enhanced robustness can be achieved
with a not very cumbersome algorithm which showed nice
empirical results in our initial tests.

Non linear state and observation models are used. At each
iteration k, the prediction of the pose state x (6 DOF) is
given by:

x̃k = f(x,u)x̂k−1,uk
= x̂k−1 ⊕ u, (1)

where the ⊕ operator corresponds to the composition
of relative transformations in the 6D space. The noise in
the odometry measurements is considered as gaussian white
noise (as required to apply the EKF), and the odometry
increment u is represented as u ∼ N(û, Q).

The observation model is defined by the following inno-
vation vector for an association of observation oi and map
landmark lj:

hi,i+5 = x̃⊕ oi − lj (2)

The correction of the pose state is obtained by the update
equation:

x̂k = x̃k −Whk (3)

where W is the Kalman gain matrix of the system. The
covariance matrices are updated at each stage of the filter as
required [22].

The environment is assumed to be static except for the
presence of other drones. The accumulation of drift error if
the drone is not able to detect ArUco codes all the time may
require the incorporation of a forgetting mechanism so that
the drone can navigate safely with local maps. In our tests
thus far this has not been necessary due to the addition of
extra ArUco codes over the floor, but this should be further
investigated.

The input parameters of the algorithm (initial pose, covari-
ance values, global poses and ids of the known landmarks)
are read from an XML file, by means of the pugixml library
[15]. The output is the corrected absolute pose of the drone
and the list of global poses of the landmarks belonging to
the map. Other nodes subscribe to these topics, as shown in
Fig. 2.

C. Drone’s obstacle generator

Once the position of the unknown ArUco landmarks is
obtained, they are processed in order to obtain higher level
geometrical features in 2D to be used as obstacles by the
trajectory planner. The map of obstacles is rebuilt at every
iteration.

To do so, some prior information is required. Each of the
obstacles is given a unique id and the ids of the ArUco
codes belonging to it are provided. The radius of the poles is



known. The poles are modeled with circles given by the co-
ordinates of their center and the radius c(xc, yc, r), while the
walls are modeled with rectangles given by the coordinates
of the center, the width and the length R(xc, yc, w, l).

Given the observation of a landmark lj belonging to pole
i, an initial estimate of the circle i is very easily obtained:

(xci , yci) = lj + rdir (4)

with dir = (cos(yaw), sin(yaw)). This initial estimate is
further refined by the mean value of incorporating subsequent
landmarks belonging to the same pole.

The distribution of the ArUcos of the windows has to be
known more precisely. Currently, two different options are
supported: the first solution is to place the ArUco codes at
the corners of each window (with a predefined order) and the
second solution is to place one ArUco code at each side of
each window and two ArUco codes below each window (also
with a predefined order). The second option seems to work
best due to the fact that the ArDrone presents a horizontal
field of view wider than the vertical field of view. Basic
geometry is applied in order to obtain the rectangle models
of the wall.

D. Drone’s Trajectory Planner and Collision Avoidance

The objective of this module is the creation of a free
collision 2D trajectory (horizontal coordinates x and y) to
achieve a mission.

The module works as follows: a free-obstacles Probabilis-
tic Road Map (PRM) [7] of the 2D map is generated off-line.
The advantage of use a PRM instead of using a fixed-cell
decomposition is that you can select the number of nodes in
the graph and the neighbourhood of them. Also, if the robot
is moving thought a zone with a lot of obstacles, new nodes
can be added.

Once the free-obstacle graph is created, then an A-Star
algorithm [18] searches the path using a potential field map
function as the cost of the algorithm. This potential field
map is built as a sum of a component that attracts the drone
to the end of the obstacle zone and another component that
repels the drone from any obstacle. The usage of a search
algorithm (A-Star) instead of the potential field map alone
[16], avoids the problem of the local minima.

There are three kinds of obstacle considered. The first type
of obstacles are the fixed and previously known obstacles
which are set during the start of the module and are obstacles
that never change its previously known position. The second
type are the fixed and unknown obstacles that are received
from the module described in III-C whose position could
change over time, depending on how precisely are the
ArUcos pose determined by the module III-B. The last type
are the unknown and moving obstacles that are other drones
and are only considered in the path planning if they are
near to the drone. The positions of other drones are received
through the brain (see section III-F).

Once the path is calculated using the A-Star algorithm, it
is post-processed in order to obtain a shorter and more direct

path, avoiding the noise produced by moving the robot from
node to node of the PRM. The post-processing is done using
the value of the potential field map. Fig. 4 shows a sample
trajectory obtained by employing the exposed algorithm.
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Fig. 4. Planned trajectory. In black, obstacles; in blue, the PRM; in
magenta, the solution of the A-Star; in red, the post-processed trajectory

When a new pose of the drone or new positions of
the obstacles are received, the planner checks if the new
obstacles are outside the planned trajectory and if the drone
is following the path. Otherwise, the trajectory is re-planned.

With this algorithm we solve the problem of the path
planning and the collision avoidance, being able to navigate
safely in the map using the Trajectory Controller module.

E. Drone’s Mission Planner

The mission planner allows the operator to define a
mission as a set of separate tasks; which are, in turn, fully
described by a set of numeric parameters. The mission
definition requires a xml file where the mission is described.
It has available different tasks like take off, land, hover, sleep
or move.

This module interacts with the trajectory planner (section
III-D) and with the localizer (section III-B) when moving or
with the brain (section III-F) otherwise.

F. Drone’s Brain

This is the very high-level module of each drone. It sends
high-level commands to the drone like take-off, land or hover.
It also communicates with other drones, receiving the pose
of each other drone of the swarm.

The drone’s brain communicates with all the modules,
being in charge of monitoring each module state, activating
or deactivating them.



IV. CONCLUSIONS

This paper presented an overview of a whole swarm
system designed to autonomously complete the indoor mis-
sion of the IMAV 2013 competition. The system is low-
cost -employing Parrot ArDrone 2.0 quadrotors without any
extra sensors- and deployment and setup are quite easy and
straightforward due to the fact that only a limited number of
known external ArUco codes is required.

The ArUco codes are used for localization and mapping,
improving the pose estimation obtained from IMU data
and optical flow by means of an EKF based method. The
resulting map of ArUco codes is converted to higher level
2D geometrical obstacles used by a fast trajectory planner
combining probabilistic roadmaps, the potential field map
algorithm and the A-Star algorithm. All the drones have
access to the global position of every other drone in the
team. The corresponding obstacles are incorporated to obtain
a safe trajectory. A robust mid-level controller employs the
target global position given by the trajectory planner and the
corrected pose of each drone in order to drive them to their
respective goals, defined by a mission planner module. The
system design and implementation is based on ROS, which
makes code sharing, reutilization and monitoring easier.

This paper presents two additional contributions. First, a
low-cost framework for visual quadrotor swarm prototyp-
ing was described. The framework allows to separate the
complexity of some modules such as the localization and
obstacle detection capabilities, from the swarm behaviour de-
velopment and experimental testing. Second, the framework
is used to prototype an aerial visual robotic swarm approach
to security and surveillance applications, which is then used
to participate on the IMAV2013 competition.

Some initial tests were carried out in simple environments,
showing good performance results. We are currently building
a real environment like the one shown in the competition
rules in order to conduct more complex and realistic exper-
iments and validations. Future work also includes designing
and implementing a good graphical user interface for mission
management. If the visibility of ArUco codes is not good in
the whole area, the localization method may be modified
so that old unknown obstacles get removed from the map.
The trajectory planning algorithm may be updated with novel
ideas.
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