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Abstract— A reliable estimation of the flight altitude in
dynamic and unstructured indoor environments is an unsolved
problem. Standalone available sensors, such as distance sensors,
barometers and accelerometers, have multiple limitations in
presence of non-flat ground surfaces, or in cluttered areas.
To overcome these sensor limitations, maximizing their in-
dividual performance, this paper presents a modular EKF-
based multi-sensor fusion approach for accurate vertical lo-
calization of multirotor UAVs in dynamic and unstructured
indoor environments. The state estimator allows to combine
the information provided by a variable number and type of
sensors, including IMU, barometer and distance sensors, with
the capabilities of sensor auto calibration and bias estimation,
as well as a flexible configuration of the prediction and update
stages. Several autonomous indoors real flights in unstructured
environments have been conducted in order to validate our
proposed state estimator, enabling the UAV to maintain the
desired flight altitude when navigating over wide range of
obstacles. Furthermore, it has been successfully used in IMAV
2016 competition. The presented work has been made publicly
available to the scientific community as an open source software
within the Aerostack_| framework.

I. INTRODUCTION

Nowadays, Unmanned Aerial Vehicles (UAVs) are highly
demanded for their usage in civilian and military applicati-
ons. Special interests are focused on multirotor UAVs due
to their high maneuverability. Autonomous navigation of
multirotor UAVs, both in outdoors and indoors scenarios
is one of the main challenges that research community is
still addressing. Several research efforts have been presented
for outdoors autonomy [1], [2], [3] as well as for indoors
autonomy [4], [5], [6], [7], [8], [9]. In outdoor scenarios,
the localization and navigation problems are usually addres-
sed fusing the information provided by the GNSS (Global
Navigation Satellite System) with the measurements coming
from the Inertial Measurement Unit (IMU). Localization and
navigation problems indoors suffer a limitation of absence
of information provided by the GNSS. Additionally, UAV
navigation in small and unstructured indoor scenarios has to
tackle with other kind of problems such as floor and ceiling
effects.

For autonomous exploration of indoor scenarios, UAVs
require accurate localization and mapping algorithms for na-
vigation and control. The localization and mapping problem
in such UAVs can be solved using a complete 3D SLAM
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Fig. 1: The aerial platform used validating the proposed state
estimator describing its frame of references.

using vision [10]. Jiaxin Li et al. [11] performed a survey of
the several available SLAM algorithms, where they indicate
that the 2D SLAM using range finder is a solved problem,
whereas real time 3D SLAM using computer vision still
remains an open problem

As it can be assumed that the vertical and horizontal mo-
tion of multirotor UAVs can be decoupled, several research
works have been focused on fusing the horizontal localization
component (2D SLAM) with a vertical localization compo-
nent. In order to maintain a constant desired flight altitude
even when flying over non-flat surfaces (obstacles undetected
by the horizontal localization component), it is essential to
accurately estimate the flight altitude of the UAV.

The vertical localization in multirotor UAVs can be tackled
using individual sensors like distance sensors (1D laser range
finders, ultrasound sensors etc), barometer sensors or IMU
(accelerometers). Directly using measurements from a single
sensor like 1D laser range finder or ultrasound is possible
for flat ground surfaces, as the flight altitude can be directly
measured with respect to the ground, nevertheless in presence
of non-flat surfaces, as in every indoor environment, the
flight altitude cannot be directly measured with respect to the
ground. Altitude measurements provided by a barometer can
be very noisy as well as very biased in indoor environments
due to the pressure changes that occur because of the ground,
ceiling, and wall effects. Altitude calculated directly from
accelerometers, integrating the accelerations in z-axis has a
a huge drift over time due to the huge measurement noise


www.aerostack.org

resulting from the vibrations of the UAV.

In order to overcome the drawbacks of each sensor, being
able to robustly and accurately estimate the flight altitude of
a multirotor UAV in indoor environments, this paper presents
a modular multi-sensor fusion state estimator, capable to
fuse measurements from any number of different sensors
such as IMUs, barometers and distance sensors. Additionally,
the proposed state estimator is capable of estimating the
elevation of the surface below in presence of highly unstruc-
tured obstacles, allowing the navigation over non-flat ground
surfaces in indoor environments.

The remainder of the paper is structured as follows, Sect.
analyzes some related work. Sect. presents the general
features of our proposed modular state estimator, providing
details of its components in Sect. Several experiments
that demonstrate the good performance of our proposed state
estimator are shown in Sect. [V] Finally, Sect. [V concludes
the paper and points out some future work lines.

II. RELATED WORK

In multiple works that demonstrate a fully autonomous
approach in indoors environments, such as [4], [5], [6], [12],
horizontal localization and mapping was achieved fusing
visual information from ArUco visual markers [13] with
orientations from the IMU and the vertical localization was
achieved using an ultrasound sensor. These works provided
no capabilities of estimating the elevation of the surface
below the UAV and hence proved efficient only in presence
of flat surfaces with zero elevation. In another fully auto-
nomous work [14], used in International Aerial Robotics
Competition (IARC) with several iRobots moving randomly
below the UAV, the localization was performed with a 2D
SLAM using several computer vision algorithms providing
the horizontal localization and a px4flow sensor providing
the vertical localization. This work did not estimate the
elevation of the surface below the UAV containing all the
iRobots for maintaining a stable flight altitude.

Opromolla et al. [15] performs 2D localization using laser
sensor on a custom hardware platform which was never
tested in real flights, hence never fusing the horizontal
localization component with a vertical localization compo-
nent. Grzonka et al. [8] proposes an approach of altitude
filtering using fusion of IMU and laser data estimating the
elevation of the surface below and thus the flight altitude
of the UAV. This work lacks proper explanation of the
approach as well does not show efficient results in presence
of highly unstructured obstacles. Grzonka et al. [9] proposes
an improved approach for filtering the altitude using two
stage system of Kalman filters, the first stage is used to track
the altitude z and the vertical velocity v, combining inertial
measurements, altitude measurements and already mapped
levels under the UAV. And in the second stage the Kalman
filter is used to estimate the elevation of the levels currently
measured by the UAV. This work assumes that the surface
under the UAV is piecewise constant and does not account
for discontinuity in the surface elevation. Ivan Dryanovski et
al. [16] proposes an approach for robust altitude estimation of

the UAV by deflecting the rays from a horizontally mounted
laser to the ground using a mirror. A histogram is computed
of 20 altitude readings with a bin size of 2 cm. After
detecting a peak of the histogram, an average of the readings
belonging to that bin is computed thus estimating the flight
altitude of the UAV as well the estimated floor level. This
technique does not consider the noise in the measurements of
the laser sensor when detecting an edge on the surface below,
which can cause wrong estimation of the flight altitude and
result in huge accumulation error over time.

III. PROPOSED MULTI-SENSOR FUSION STATE
ESTIMATOR

In this work we present a modular state estimator based
on an extended Kalman filter (EKF).

Our proposed state estimator, represented in Fig. |2} com-
bines measurements from several sensors, including IMU,
barometer and distance sensor, and estimates the robot states
& r and the ground object state £ (elevation of the ground
surface).
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Fig. 2: The inputs and outputs of the proposed state estimator.

The proposed state estimator has the following main
features:

e Modularity on the number of sensors used, what allows
a usage of a variable number and kind of sensors for
the state estimation.

o Auto calibration of sensors, allowing to estimate the
internal state of some sensors (e.g. biases on the mea-
surement), providing a more robust and accurate state
estimation.

o Synchronous prediction of the estimated state: Whene-
ver an estimation of the state is required, the prediction
stage is executed.

o Asynchronous update of the estimated state based on
the available measurements: Whenever a measurement
arrives to the state estimator, both prediction and update
stage are executed consecutively, allowing the accurate
usage of sensors with different measurement rate.

As stated before, the proposed state estimator is modular,
being its available components, deeply described in Sect.[[V]
the following: robot (R), ground object (G), IMU sensor
(Ix), barometer sensor (Bx) and distance sensor (D).



In the following sections, the combination between the
different components is described in detail. Sect.
explains the state and process model composition taking into
account the designed modularity; and Sect. indicates
how the available measurements are gathered, forming the
measurement model. Additionally, Sect. and Sect.
present the widely known extended Kalman filter equations
used for the prediction stage and update stage respectively.
For the purpose of this paper, sin(x) and cos(z) are abbre-
viated as s(x) and c(x) respectively.

A. State and process model

The state vector, x, is formed by the state vector of all the
components, similar to the process model noise n, being:

TR

TG

T Jx

L Bx

L Dx

where the process model noise has an associated covariance
matrix T

In the same way, the discrete time process model formed
by all the individual discrete time process model of all the
components, being:

z(k) = f(z(k-1),At,n)

where At is the change in time between k and k + 1.
The Jacobian matrices of the discrete time process model
are given by:
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B. Prediction Stage

During the prediction stage, the state x is estimated in
the current instant time k, taking into account its previous
estimate in k£ — 1, and based on the process model, following
the EKF equations:

@(klk —1) = f(@(k - 1|k — 1), At) (1
Pklk—1)=F, -Plk—1k—1)-F,"+F,-T-F,"”
(2)

being P the covariance matrix of the estimated state .

C. Measurements and measurement model

The available measurements z = {zr«, Zp«, Zps«} at a
particular instant time &, determine the measurement model,
that changes dynamically, being:

z(k) = h(x(k), €)

where € is the measurement model noise, with an associated
covariance matrix R.

The Jacobian matrices of the measurement model are given
by:
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D. Update Stage

During the update stage, the state is modified taking
into account its prediction, the measurement model and the
available measurements, following the EKF equations.

First of all, the measurement residual v is computed as:

v =z(k) — h(z(klk — 1)) 3)
with an associated covariance matrix:
S=H, Pklk-1)-H,"+H.-R-H" 4

The near optimal kalman gain K is then computed as

K=Pklk-1)-H," -8 )

And the estimated state is updated as:
z(klk) =x(klk—1)+ K -v (6)
P(kk) = (I, — K- H,) - P(lk—1) ()

n being the dimension of the state x, and I,, the identity
matrix of dimension n X n.

IV. COMPONENTS OF THE PROPOSED STATE ESTIMATOR

This section describes the components of the proposed
state estimator.

All the sensors are assumed to be located in the center of
the robot, with their reference frame being aligned with the
robot reference frame as shown in Fig.

A. Aerial Robot

The aerial robot state xr includes:

o Vertical coordinate of the robot reference frame in world
coordinates, ¢, .

o Vertical coordinate of the velocity of the robot with
respect to world, in world coordinates, Uzg/w-

o Vertical coordinate of the acceleration of the robot with
respect to world, in world coordinates, az%w.

o Attitude of the robot reference frja,me in world coordi-

nates, O = |05 , 92121, 9221 , as Euler angles.

« Angular velocity of the robot with respect to robot in ro-
T

bot coordinates, wg‘w = [wmglw, wyg‘w, wzglw
The aerial robot is assumed to change its vertical accelera-
tion and its angular velocity slowly, permitting the usage of
a constant vertical acceleration and constant angular velocity
as process model. Thus this model is only valid when
assuming the aerial robot is a multirotor. Other important
consequence of this slow motion, is that their pitch and roll
angles, can be approximated as zero when required: 975‘}/%/ ~0
and Hy}/zv ~ 0.
According to the kinematics of a moving body, relations-
hip between Euler angles and angular velocities can be given
as:

k]l L0 =50y %) (6o
Wyt |=|0 c(Be)  s(Oaf)e(Oy)| 6, | ®
wggw ] 100 =s(0a ) e(0a ) s(0, )] 6.



As the 6, % ~ 0 and HyZV ~ 0 relationship between the
Euler angles and angular velocities can be reduced as:
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wyg‘w ~ Oy p (10)

W
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(1)

Therefore, the discrete time process model of the robot,
f r 1s simplified to:

t-p (k) =t} (k—1) +v. g (k—1) - At (12)
A2

+ = agw(k—1) (13)

v () =va (k= 1) + azg (k= 1) - At (14)

azpw (k) = zmw( — 1)+ na, (15)

O (k) =07 (k—1) + wiy (k—1) - At (16)

“’R\W( ) _wR\W( - 1) +ne 17)

where the noise of the process model of the robot, np, with
an associate covariance matrix T'g, is given as:

n
ne

The state of the ground object x includes:

(18)

B. Ground object

« Altitude of the ground object in world coordinates, ¢, ¢ .

The world reference frame is assumed to be in the lower
location of the environment in the z-axis coordinate, that
means, that the altitude of the ground object in world
coordinates is always positive.

Being, the discrete time process model of the ground
object, f, given by:

L (k) = o (k—1)+n,q, ift,¥(k-1)>0
= 04 n.q, if £, (k—1)<0
(19)

where the noise of the process model of the ground object,
ng, with an associate covariance matrix 7', is given as:

ng = [nz G} (20)

C. IMU sensor: accelerometer, gyro and magnetometer

The IMU sensor considered in our state estimator is an
intelligent component formed by an accelerometer, a gyro
and a magnetometer, with an internal state estimator that does
not provide the raw measurements, but a filtered estimation
of them. This consideration is not too strong as every
autopilot hardware used for multirotor platforms incorporates
this kind of IMU sensor.

The acceleration measurement is assumed to have a bias
modeled as a random process, as it randomly changes its
value with the time.

The state of the IMU sensor, xj,, includes:
o Bias on the vertical measurement of the acceleration,
baz -
Being the discrete time process model of the IMU sensor,
f1. given by:

baz*(k) = baz*(k -

where the noise of the process model of the IMU sensor,
nr,., with an associate covariance matrix 7'y, is given as:

(22)

1)+ np @21)

azx

nr = [, ]
The IMU sensor provides the following measurements,
ZIxe
. T
e Acceleration measured, z, = [zw, Zays zaz] .
. T
o Attitude measured, zg = [20,, 20,, 20.]

. ’ T

o Angular velocity measured, z,, = [sz, Zuys zwz]

Nevertheless, only the following measurements are taken into
account: Zg, 205, 26ys Zwz»> and 2u.y.
Being its measurement model, h;,, given by:

o Acceleration measured:

Za =apy — 9" +ba + € (23)

T

() (o
where RIéV is the 3D rotation matrix derived from the
Euler angles.

Since we consider 6, ~ 0 and Gygf ~ 0 the rotation
matrix can be approximated as:

c(6:1) —s(b:x)
Ry ~ |s(6:7)  c(0:})
0 0

)+ba+ea (24)

0

0 (25)
1

As only the vertical component is taken into account:

Wt basy + €as (26)

~ w
Zay ~ azR‘W — 9z

o Attitude measured:

zo =03 + € 27)

And only two components are taken into account as:

29, =0s )i + €0, (28)

Zﬂy :aylvg + e@y (29)
o Angular velocity measured:

Zo = wng + €, 30)

And only two components are taken into account as:

€1y
(32)

R
Rwg :sz‘W + €ug

_ R
Zwy =Wy g T €wy



where the noise of the measurement model of the IMU sensor
€14, With an associate covariance matrix Ry, is given as:

(33)

Erx = eé’y

D. Barometer sensor

The Barometer sensor considered in our state estimator is
an intelligent component that provides direct measurements
of the flight altitude instead of raw pressure measurements
thanks to an internal state estimator. As with the IMU sensor,
this consideration is not too strong since every autopilot
hardware used for multirotor platforms incorporates this kind
of sensor.

Similar to the acceleration measurement, the barometer
measurement is assumed to have a bias modeled as a random
process, as it randomly changes its value with the time.

The state of the Barometer sensor, @ g,, includes:

« Bias on the vertical measurement of the barometer, by, .

Being the discrete time process model of the barometer
sensor, fp,, given by:

bbz*(k) = bbz*<k - 1) + nbe*

where the noise of the process model of the barometer sensor,
N B+, With an associate covariance matrix T g,, is given as:

(35)

(34)

NBx = [nbbz*:l
The barometer sensor provides the following measure-
ments, zpy:
¢ Vertical coordinate in world reference frame, 2y,
Being its measurement model, hp,, given by:

Zby = tzg + bbz* + €bz (36)

where the noise of the measurement model of the barometer
sensor €p,, with an associate covariance matrix Rp,, is
given as:

€ERy — [Ebz] (37)

E. Distance sensor

The distance sensor does not incorporate any state, and
therefore, its does not add any process model.

The distance sensor provides the following measurement,
ZDx-+

« Distance measured to the ground object, z4.

Being its measurement model, hp,, given by:
by — b0

cos(f, 1 ) - cos((‘)yg)

24 = + €q (33)
where the noise of the measurement model of the distance
sensor €p,, with an associate covariance matrix Rp,, is
given as:

€EDx = [fd} (39)

V. EXPERIMENTS AND RESULTS

In this section, the experiments that have been conducted
in order to validate the proposed approach are presented.
The aim of the validation is twofold. First, to demonstrate
the capabilities of the designed state estimator in presence
of several obstacles located on the ground and second, to
evaluate the behavior of the proposed system in presence of
unexpected sensor measurements.

This section is divided into two subsections, in Sect. [V
[A] the entire experimental setup including the sensors and
computational hardware as well as the software used is
explained. In Sect. [V-B] the results obtained in real flights
are shown and analyzed.

A. Experimental Setup

1) System Setup: Fig [I] represents the custom aerial
platform used for validating the proposed state estimator.
The autopilot utilized in the real flight experiments was
Pixhawk. Three different onboard sensors were used in the
presented state estimator: a 1D laser range finder Lightware
SF/10A with a minimum and maximum range of 0 and 25
m respectively, a resolution of 1 cm and an accuracy of 0.05
m in the absence of sensor noise; a 9-axis IMU integrated
within the Pixhawk autopilot; and a barometer also integrated
with the Pixhawk autopilot with an altitude resolution of 10
cm.

The entire computation was performed on an on-board
intel-NUC 6i5SYK computer. All the above mentioned sen-
sors communicate with the on-board computer using USB
communication.

The software modules were developed in C++, using C++
11 standards. Regarding the software system, Aerostack soft-
ware framework was utilized. A full description of Aerostack
architecture and its components is out of scope of this paper,
and can be reviewed at [4]. The complete description of the
components used for the autonomous flights can be found at
[17].

2) Real Flights configuration: In order to validate the ap-
proach, several fully autonomous real flights were performed
in different challenging indoor scenarios.

o Navigation in unknown and unstructured indoor en-
vironment: The scenario, with a size of 5 m x 9
m, consisted of several obstacles with height smaller
than the flight altitude of the UAV in order to be
undetected by the 2D SLAM. The obstacles consisted
of several tables with a uniform surface. Several chairs
were placed with random discontinuity in their surface
increasing the noise in the measurements provided by
the 1D laser range finder.

o Take-off and land from a platform: The platform, loca-
ted in an indoor scenario, with a size of 5 m x 9 m,
was a square sized platform with an area of 140 cm?
and height of 47 cm. In this experiment the taking-off
and landing was performed over the platform.
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Fig. 3: Results obtained while performing take-off, navigation and land tasks during the execution of a real flight.

B. Results and Discussions

In this section, all the results obtained during the execution
of the real flight experiments explained in Sect. [V-A.2] are
described in detail. In both the experiments the commanded
flight altitude to the UAV is 140 cm.

o Navigation in unknown and unstructured indoor envi-
ronment:
Fig. 3] represents the results of the complete real flight
performed during this experiment. The experiment is
divided into three main phases: 1.Take-off 2.Navigation
and 3.Land.

— Take-off and land phase. As can be observed in
Fig. [3] between time instances ¢ = 0 s to ¢t = 10
s the UAV performs the take-off task from a flat
ground surface, whereas from instances ¢ = 210 s
to t = 220 s the land task is executed. It can be
noticed that, the state estimator is able to accurately
estimate the flight altitude without any delay during
these phases (which is essential for fast take-off
and land maneuvers) when compared to the altitude
provided by the 1D laser range finder. As seen
in Fig. the barometer provides biased flight
altitude measurements. Due to its auto calibration
feature, the state estimator accurately estimates the
barometer bias and estimates the accurate flight
altitude.

— Navigation phase. As highlighted in Fig. [} the
navigation is performed over a wide variety of
obstacles in terms of size, height, 3D shape and
surface. Despite the heterogeneity of the configu-
ration, the state estimator is capable of providing
a robust flight altitude estimate. Even in presence
of obstacles composed of several uneven surfaces

like chairs where the 1D laser range finder me-
asurements have higher noise (see time instances
between ¢ = 130 s to t = 140 s and time instances
t =150 to t = 160 s in Fig. @) the state estimator
provides a good estimate of the flight altitude.

Through this experiment, we demonstrate that despite
of several noisy sensor measurements at several time
instances, the state estimator is able to estimate the
accurate flight altitude in order to maintain the desired
flight altitude.

Take-off and land on a platform:

In this experiment, an important variation in terms of
the configuration of the proposed scenario is presented.
In this case, the UAV is required to take-off and land
from an elevated surface (platform). The experiment can
be divided as:

- Take-off from the platform. As shown in Fig. [
during time instances ¢ = 0 s and ¢ = 20 s the UAV
which is landed on the platform, performs the take-
off task. The state estimator is initialized with both,
the initial flight altitude and the ground obstacle
height equal to the height of the platform (47 cm).
Although the measurements provided by the 1D
laser altimeter are with respect to the platform
when the UAV is on top of the platform (see take-
off phase in Fig. [3), the state estimator is able to
deal with the initial height offset introduced by
the platform, providing an accurate flight altitude
estimate on top of the platform.

— Navigation Phase. When comparing the estimated
altitude with the 1D laser range finder altitude, it
can be observed in Fig. E] that, after time instant
t = 40 s the state estimator accurately estimates
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Fig. 5: Results obtained during the execution of a complete flight, where take-off and land tasks were performed over an
elevated ground surface (platform).

the flight altitude as the UAV exits the platform
below it and navigates over the obstacles without
any divergence in its state.

— Land on the platform. Between time instances t =

110 s and t = 120 s the UAV performs the task
of land on the platform (see Fig. [5). The land task
consists of two stages the 1.Approach stage where
the UAV starts descending on the platform and
2.The fast landing stage (a free fall of the UAV
on the platform), is triggered if the current flight
altitude is less than the threshold altitude to land.

It can be highlighted through Fig. [3] that, during
the approach stage the state estimator estimates
accurately the height of the platform but due to high
velocity and acceleration constraints during the fast
landing stage, the estimated flight altitude drops to
zero instead of the height of the platform. This error
has no effect in any of the functionalities of the
system, as land being the last task to be executed
during a mission.

Through this experiment we demonstrate the good and
acceptable performance of the state estimator to esti-



mate the flight altitude when taking-off and landing
from elevated ground surfaces.

We compare the estimated flight altitude with the altitude
measured by the 1D laser altimeter over flat ground surfaces
to achieve an average error less than 10 cm. We refer the
reader to a Videﬂ demonstrating the capabilities of the
proposed state estimator. Additionally, our proposed state
estimator was successfully used in IMAV 2016 indoors
competition for solving the problem of vertical localization
of the UAV. Further details can be found at [17].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a robust multi-sensor fusion
state estimator for accurately estimating the flight altitude of
a multirotor UAV as well as the elevation of the floor below
it in highly unstructured indoors environments.

Our proposed EKF-based state estimator has the following
features: (1) modularity in the number of sensors used, in
order to fuse the information provided by variable number
and type of sensors, including IMU sensors, barometer
sensors and distance sensors, thus improving robustness; (2)
auto calibration of sensors, which improves the accuracy
of the state estimation; (3) synchronous prediction of the
estimated state whenever it is needed by the controller; and
(4) asynchronous update of the estimated state whenever a
measurement is received.

Several real indoor flight experiments have been conducted
in order to validate the proposed approach, with a minimal
sensor setup of an IMU, a barometer and a 1D laser range
finder. We achieve an average error less than 10 cm when
comparing the estimated altitude by the state estimator with
the altitude measured by the 1D laser range finder over flat
ground surfaces.

Finally, we release this algorithm as an open source soft-
ware within Aerostack frameworlﬂ allowing the scientific
community to use it for their experiments.

The first line of future work is the improvement of
the models used in the components of our proposed state
estimator, including the possibility that the sensors are not
coincident with the robot reference frame, and allowing the
fast navigation of the aerial robot.

As a second line of future work, our focus is to add
measurements from a downward facing light weight RGB-D
sensor in the proposed state estimator. The RGB-D sensor
provides a much richer information in the form of point
cloud as compared to a 1D laser range finder which provides
information only about a single point. We focus to use a
plane segmentation method, for computing the planes from
a point cloud data and calculating the relative change in
altitude with respect to the computed planes.
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