
Noname manuscript No.
(will be inserted by the editor)

A Reliable Open-Source System Architecture for the Fast
Designing and Prototyping of Autonomous Multi-UAV
Systems: Simulation and Experimentation

Jose Luis Sanchez-Lopez · Jesús
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Abstract During the process of design and development of an autonomous
Multi-UAV System, two main problems appear. The first one is the difficulty
of designing all the modules and behaviors of the aerial multi-robot system.
The second one is the difficulty of having an autonomous prototype of the
system for the developers that allows to test the performance of each module
even in an early stage of the project.

These two problems motivate this paper. A multipurpose system architec-
ture for autonomous multi-UAV platforms is presented. This versatile system
architecture can be used by the system designers as a template when develop-
ing their own systems. The proposed system architecture is general enough to
be used in a wide range of applications, as demonstrated in the paper. This
system architecture aims to be a reference for all designers.

Additionally, to allow for the fast prototyping of autonomous multi-aerial
systems, an Open Source framework based on the previously defined system
architecture is introduced. It allows developers to have a flight proven multi-
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aerial system ready to use, so that they can test their algorithms even in an
early stage of the project. The implementation of this framework, introduced in
the paper with the name of “CVG Quadrotor Swarm”, which has also the ad-
vantages of being modular and compatible with different aerial platforms, can
be found at https://github.com/Vision4UAV/cvg_quadrotor_swarm with a
consistent catalog of available modules. The good performance of this frame-
work is demonstrated in the paper by choosing a basic instance of it and
carrying out simulation and experimental tests whose results are summarized
and discussed in this paper.

Keywords Aerial Robotics · Distributed Robot Systems · Multi-Robot
Coordination · System Architecture · Open-Source · Visual Navigation ·
Quadrotor · Mobile Robots · Remotely Operated Vehicles · MAV

1 Introduction

Research and development, not only scientific but also commercial, related to
Unmanned Aerial Vehicles (UAV) has experienced a big growth in the last
few years. Although fixed-wing UAVs dominate the market of civilian and
military applications, rotary-wing UAVs, with multirotor platforms being the
most used ones, are becoming a good alternative for small environments tasks
such as aerial photography, inspection, surveillance and search and rescue.
Additionally, due to the limitations of multirotor platforms (like their small
payload or its limited endurance), multirobot systems are becoming more and
more popular to efficiently solve complex missions.

The design and development of an autonomous system is a hard task that
requires sufficiently experienced designers to consider, during the design pro-
cess, all the modules needed for its correct autonomous performance. If the
goal is to create an autonomous multirobot system, the complexity increases.
Once the system has been correctly designed, the development stage begins. A
frequent problem for developers is the difficulty of testing the performance of
their algorithms in a real flying system, because they usually do not have ac-
cess to the full autonomous prototype until all the modules are in an advanced
development stage.

These two problems -the difficulty of designing an aerial multirobot system
and the difficulty of having an autonomous prototype of the system to test
the performance of each module even in an early stage of the project- are the
motivations of this paper.

In section 2, a multipurpose system architecture for autonomous multi-
UAV platforms operation is presented. This versatile system architecture can
be used by the system designers as a template when developing their own
systems. The proposed system architecture is general enough to be used in
a wide range of applications, as shown in section 3 by its successful usage in
three very different projects.

To allow the fast prototyping of autonomous multi-aerial systems, we have
developed an Open Source framework based on the previously defined system

https://github.com/Vision4UAV/cvg_quadrotor_swarm
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Fig. 1 Experimental flight of a basic instance of the framework “CVG Quadrotor Swarm”.
This basic instance is characterized by swarm behavior, using 5 AR Drones. The row of
columns represents a virtual wall with a single 1.5 m opening in the middle. In order to
simplify the localization problems the columns are marked using ArUco visual markers [5].
In this flight the mission of the swarm is to cross from one side to the other, while each
swarm agent also has to avoid collision with the columns and the other drones. This test
was designed to showcase the capabilities of this basic instance of the framework.

architecture, which allows developers to have a flight proven multi-aerial sys-
tem ready to use so that they can test their algorithms even in an early stage
of the project. This framework, which we call “CVG Quadrotor Swarm”and
also has the advantages of being modular and compatible with multiple aerial
platforms, is presented in section 4. To demonstrate the correct performance
of this framework, we have chosen a basic instance of the framework and we
have completed simulation and experimental tests (see figure 1), whose results
are shown in sections 5 and 6. Finally, section 7 lists a set of possible future
works and section 8 concludes the paper.

2 Autonomous Multi-UAV System Architecture

The first contribution of this paper is the design of an Autonomous Multi-
UAV System Architecture general enough to be used for every autonomous
multi-UAV system developer.

As the interest on UAVs has experienced a big growing in the last years,
there exist multiple research groups working on this field. Most of them focus
their researches on specific topics like perception, control, intelligence, behav-
iors, etc., being unable to develop a fully functional Autonomous Unmanned
Aerial System. Some others, work in the field of multi-robot system, sim-
plifying problems like localization, perception, etc., focusing on multi-robots
behaviors and interaction.
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Some examples are the following (see “Publications” in each group’s web
page to have a full list of publications):

– Robotics and Perception Group 1 of University of Zürich (Zürich, Switzer-
land), led by Prof. Dr. Davide Scaramuzza.

– Vijay Kumar Lab 2 of University of Pennsylvania (PH, USA), led by Prof.
Dr. Vijay Kumar (See [11]).

– Computer Vision Group 3 of Technical University of Munich (Munich,
Germany), led by Prof. Dr. Daniel Cremens.

– The ETH Zürich (Zürich, Switzerland), has three very active research
groups:
Computer Vision and Geometry Group (CVG) 4, led by Prof. Dr. Marc
Pollefeys.
Autonomous Systems Lab (ASL) 5, led by Prof. Dr. Roland Siegwart, with
the “SFly” project 6

Institute for Dynamic Systems and Control 7, led by Prof. Dr. R. D’Andrea,
with the Flying Machine Arena 8.

– Heterogeneous Cooperating Teams of Robots (HECTOR) of Technische
Universitt Darmstadt (Darmstadt, Germany).

– Cognitive Systems 9 of University of Tubingen (Tbingen, Germany).
– Autonomous Robotics and Human-Machine Systems (HRI) 10 of Max Planck

Institute for Biological Cybernetics (MPI), led by Dr. Paolo Stegagno
(Tbingen, Germany).

– Research Group for Statistical and Biological Physics of Etvs Lorand Uni-
versity (ELTE) (Budapest, Hungary) (See [21]).

– Autonomous Mobile Robotics Group (AMOR) 11 and Laboratory for Robotics
and Intelligent Control Systems (LARICS) 12 of University of Zagreb.

– Autonomous mini-UAVS 13 of UPMC-CNRS, led by Pascal Morin (France).
– Systems Control and Flight Dynamics 14 of ONERA (France).
– Autonomous Intelligent Systems 15 of University of Bonn (Bonn, Germany)
– Aerial Vision Group 16 of Technical University of Gratz (Gratz, Austria).

1 http://rpg.ifi.uzh.ch
2 http://www.kumarrobotics.org/
3 http://vision.in.tum.de
4 http://www.cvg.ethz.ch/
5 http://www.asl.ethz.ch/
6 http://www.sfly.org/
7 http://www.idsc.ethz.ch/
8 http://flyingmachinearena.org/
9 http://www.cogsys.cs.uni-tuebingen.de/

10 http://www.kyb.mpg.de/research/dep/bu/hri/
11 http://act.rasip.fer.hr/groups_amor.php
12 http://larics.rasip.fer.hr/
13 http://chair-uavs.isir.upmc.fr/
14 http://www.onera.fr/en/dcsd
15 http://www.ais.uni-bonn.de/
16 http://aerial.icg.tugraz.at/

http://rpg.ifi.uzh.ch
http://www.kumarrobotics.org/
http://vision.in.tum.de
http://www.cvg.ethz.ch/
http://www.asl.ethz.ch/
http://www.sfly.org/
http://www.idsc.ethz.ch/
http://flyingmachinearena.org/
http://www.cogsys.cs.uni-tuebingen.de/
http://www.kyb.mpg.de/research/dep/bu/hri/
http://act.rasip.fer.hr/groups_amor.php
http://larics.rasip.fer.hr/
http://chair-uavs.isir.upmc.fr/
http://www.onera.fr/en/dcsd
http://www.ais.uni-bonn.de/
http://aerial.icg.tugraz.at/
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– Institute of Robotics and Industrial Informatics 17 of UPC-CSIC (Barcelona,
Spain).

– Micro Air Vehicle Lab 18 of Technical University of Delft (Delft, Nether-
lands).

– Ecole Nationale de la Aviation Civile (ENAC) (Toulouse, France).

The activity of these research groups resulted on several System Architec-
tures with an available Open-Source Framework:

– The “asctec mav framework” 19, developed by ASL - ETHZ, has a special
focus on autonomous navigation of Ascending Technologies Helicopters 20.

– The “hector quadrotor” 21 framework, developed by HECTOR - TU Darm-
stadt (see [3]), focused on heterogeneous cooperation for search and rescue
tasks.

– The “telekyb” 22 framework, developed by HRI - MPI (see [6]). This frame-
work and architecture allows the full Autonomous Multi-UAV Navigation,
but it results hard to adapt to every required use (see section 3).

– The “Paparazzi” project 23 with specific hardware and Open-Source soft-
ware, is developed and used by ENAC and MAVLAV - TUDelft. This
project is very focused on Low-Level Control (see 2.3.1).

Finally, there also exist, commercial open projects. The most important one
is the “PX4” project 24, that is an Open-Source and Open-Hardware project
which aims to promote the development of low-cost UAS.

If we focus on Open-Hardware, which objective is the development of the
electronics needed to develop UAS, the three main projects are: “PixHawk”
project 25; “PX4 FMU”; and “APM \ ArduPilot”.

The two main Open-Source projects, which aim is the development of soft-
ware framework to achieve the autonomous navigation of UAS, with special
focus on Low-Level controllers (see 2.3.1), are grouped under the “Linux Foun-
dation Drone Code” 26; and are: “PX4 flight stack” 27; and “APM \ArduPilot”
28

To the knowledge of the authors, no other work describes a full versatile
open source architecture that enables the autonomous operation of a multi-
robot (i.e. several robotic agents at the same time), multiplatform (i.e. het-

17 http://www.iri.upc.edu/
18 http://www.lr.tudelft.nl/en/cooperation/facilities/mav-laboratory/
19 http://wiki.ros.org/asctec_mav_framework
20 http://www.asctec.de/en/
21 http://wiki.ros.org/hector_quadrotor
22 http://wiki.ros.org/telekyb
23 http://wiki.paparazziuav.org/wiki/Main_Page
24 https://pixhawk.org/
25 https://pixhawk.ethz.ch/
26 https://www.dronecode.org/
27 https://pixhawk.org/platforms/start
28 http://ardupilot.com/

http://www.iri.upc.edu/
http://www.lr.tudelft.nl/en/cooperation/facilities/mav-laboratory/
http://wiki.ros.org/asctec_mav_framework
http://www.asctec.de/en/
http://wiki.ros.org/hector_quadrotor
http://wiki.ros.org/telekyb
http://wiki.paparazziuav.org/wiki/Main_Page
https://pixhawk.org/
https://pixhawk.ethz.ch/
https://www.dronecode.org/
https://pixhawk.org/platforms/start
http://ardupilot.com/
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Fig. 2 Proposed Autonomous Multi-UAV System Architecture. The green block on the
right symbolizes the Aerial Platform (section 2.1); the red block includes the Localization
and Mapping Modules (section 2.2); the gray block covers the Control Modules (2.3); the
yellow one represents the Planning and Intelligence (section 2.4); while the two blue blocks
are the Supervision and Communication Modules (section 2.5). Finally, each aerial robotic
agent communicates with the rest of robotic agents and with the user thanks to the Human-
Machine Interface (HMI, section 2.6).

erogeneous robotic agents) system of aerial platforms (with special focus on
multirotor platforms).

The versatility of the proposed architecture allows designers to use it as a
template for its own aerial robotic systems regardless their complexity, being
valid for the easiest cases as well as for more complex ones.

The advantages of using the proposed System Architecture are threefold:
First, it allows the designers to quickly design an autonomous robotic aerial
system for any application, simplifying the systems engineering stage. Second,
the architecture allows the user to consider all the modules needed for the
correct operation of the system, avoiding design errors due to some modules
not being taken into account. Third, it allows the developers to easily focus on
the working of one or several modules without ambiguity because the modules’
utility is clear enough.

In figure 2, the full system architecture is represented.

2.1 Aerial Platform

In the proposed system architecture, the aerial platform represents a mul-
tirotor vehicle, but the reader could easily extend the work to other aerial
platforms. The aerial platform is composed by the mechanical frame, the mo-
tors and its drives, the propellers, the battery, and a power board. The aerial
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platform could carry several sensors, like an Inertial Measurement Unit (IMU),
cameras, an Optical Flow Sensor, altitude sensors, Global Positioning Systems
(GPS) receivers, etc. Although not represented in figure 2, external sensors like
Motion Capture Sensors can be utilized too with an easy extension of the pro-
posed system architecture. Additionally, the aerial platform has a small com-
puter (sometimes called “autopilot”, “flight controller”, or “flight controller
unit, FCU”), that at least runs a Low-Level Controller (section 2.3.1) and
a first state estimator (Self-Localization Module, section 2.2.2). The aerial
platform can also carry one or more powerful computers (sometimes called
“on-board computers”) to run part or the full system architecture presented
in this paper. In some cases, the manufactures include a Mid-Level controller
(or in some cases even a High-Level controller) running on the autopilot. Ad-
ditionally a basic supervisor usually runs on the autopilot.

2.2 Localization and Mapping

Localization implies being able to know the state of the drone in a map that
can be previously known or unknown, using the information given by the
sensors. Mapping is the action of internally generating a model of the envi-
ronment with an adequate representation suitable for subsequent environment
interpretation. The environment can be structured or unstructured and it can
be static or it can include moving objects. The proposed architecture divides
the Localization and Mapping module in three submodules as described in
detail below. Additionally, each submodule can be down-sampled in several
submodules, but since this is related to the application and the algorithm
used, we leave this down-sampling decision for the system architecture users.
Since full Localization and Mapping is a hard and a very extensive task, the
three proposed submodules can be linked to each other in a bidirectional way
to maximize their performance.

2.2.1 Perception

This set of modules are responsible for extracting a simpler information from
the measurements given by complex sensors (like cameras, LIDAR, etc.). Some
computer vision algorithms can be included here.

2.2.2 Self-Localization and Map Generation

Using the information given by the sensors and the information given by the
Perception modules, the state of the drone (including its pose) can be es-
timated and a map can be generated. State Estimation and Simultaneous
Localization and Mapping (SLAM) algorithms can be included here.
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2.2.3 Environment Understanding

Once the map is built and the drone’s state is estimated (so the drone is
correctly localized in the map), the last step is the understanding of the en-
vironment so that this information can be properly used by other required
modules. This module uses the information given by the sensors, the infor-
mation given by the Perception modules and the information given by the
Self-Localization and Map Generation modules to generate high-level infor-
mation of the environment that the drone can easily use. State Estimation
and Machine Learning algorithms can be included here.

2.3 Control

The Control modules are responsible for guiding the drone to reach the desired
set-point or the command-reference. The Controllers use the information given
by the Localization and Mapping module as feedback. They can be classified in
three groups that are detailed in the next sub-sections depending on how close
the Controller works with respect to the hardware. Apart from the Controllers,
the Manager of Actions and Controllers Module (section 2.5.1) aims to allow
the operation of the different Controllers that the system can have.

2.3.1 Low-Level Controller

The Low-Level Controller command references are the Thrust, the Pitch, the
Roll and the derivative of the Yaw with respect to time. It interacts directly
(or through a supervisor module) with the motor drives of the aerial platform.

2.3.2 Mid-Level Controller

The Mid-Level Controller is defined in this architecture as a set of controllers
that transform the platform in a more usable one, adding the following fea-
tures:

– Take-off and Landing maneuvers that allow the drone to start and finish a
flight in an autonomous way.

– Hover maneuver that allows the drone to stay in the air in a set point
without moving.

– Altitude controller that allows the High-Level controller to send height or
altitude speed commands instead of Thrust commands.

Additional behaviors like Emergency can be added.

As a simplification, we can consider that the Mid-Level controller trans-
forms the aerial platforms in a Parrot ARDrone like platform (see [2, 14]),
hence simplifying the development and work with these platforms.
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2.3.3 High-Level Controller

The responsibility of the High-Level Controller is the generation of Height
or speed of Height, Speed of Yaw, Pitch and Roll Commands that allow the
drone to follow the references given by the Planning and Intelligence Modules
(section 2.4) appropriately.

2.4 Planning and Intelligence

Planning uses the information given by the Localization and Mapping modules
(section 2.2) to generate command references used by the Control Modules
(section 2.3) in order to accomplish a particular objective.

All underactuated multirotors have four independent degrees of freedom
which are the position (x-y-z) and the Yaw angle. The proposed architec-
ture divides the Planning and Intelligence Modules in three submodules, as
explained bellow.

2.4.1 Trajectory Planner

Its goal is to generate 3D collision free trajectories (x-y-z) that can be followed
by the drone.

2.4.2 Yaw Commander

The function of the Yaw Commander is the generation of Yaw angle references.
This can be used with different objectives, like maximizing the performance
of the on-board sensors (for example a camera or a LIDAR), or to achieve a
particular goal (for example to watch over some target).

2.4.3 Mission Planner

The mission planner is the highest-level Planning and Intelligence submodule.
The mission to achieve by a particular robotic agent can be defined by the
user (in case of a single robot system or a swarming-type multirobot system),
or can be defined by other robotic agent, usually called the coordinator (in
case of a non-swarming multirobot system). The mission planner can be as
complex as the mission requires.

2.5 Supervision and Communication

The Supervision and Communication Modules are key modules to ensure the
correct autonomous behavior of the system, monitoring the state of all mod-
ules, activating and deactivating actions depending on its state. They are,
additionally, in charge of the communication between the aerial robotic agent
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and the other robotic agents and the system operators. Their last mission is
the logging of the state of the robotic agent so that it can be reviewed or
post-processed later.

2.5.1 Manager of Actions and Controllers

This module has the function of allowing and prohibiting actions of the aerial
robotic agent requested by the operator or by other modules, depending on the
state of the full system. It additionally has the mission of switching properly
between controllers (enabling and disabling them) without any collisions.

2.5.2 Modules Supervisor

The goal of this Supervisor is to monitor the state of each module of the
system, enabling and disabling it when needed, ensuring a correct autonomous
performance of the system. It also has the failure mode routines.

2.5.3 Communication Manager

This module communicates the areal robotic agent with the rest of the system,
that means, with the other robotic agents and with the operators and users.

2.5.4 Logging

Finally, the Logger module, keeps a record of the events taking place on the
aerial robotic agent so as to allow the users, the operators or the developers
of the system to review them.

2.6 Human Machine Interface

The Human Machine Interface (HMI) allows the operators or users of the
system to bi-directionally communicate with each aerial robotic agent. Both
communication directions are equally important because:

– The communication from the robotic agent to the operator is needed to
monitor its state and the performance of the requested mission. This will
allow the operator to actuate in case of a need to redefine or abort the
mission. A good user graphical interface simplifies this task.

– The communication from the operator to the robotic agent is needed if a
non-rigid behavior is needed to accomplish the goal, making it possible to
redefine the mission and also to start, stop and abort the mission.
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3 Successful uses of the proposed Autonomous Multi-UAV System
Architecture

The proposed Autonomous Multi-UAV System Architecture (section 2) has
been used by the Computer Vision Group (CVG) of the Centre for Automation
and Robotics (CAR, CSIC-UPM) in all its research projects since it was firstly
defined in January 2013. In these nearly two years, the system architecture
has been refined and converted into a fully usable and general architecture
that can be used in many possible aerial robotic projects.

As a demonstration of the strength of this architecture, three different
examples are shown in the following subsections.

3.1 Vision-based object following

This work is described in [17] and [15]. The goal of this work was the devel-
opment of an autonomous aerial platform capable of following a user defined
object using computer vision as the main source to perceive the target, and
using a low-cost aerial platform, like the Parrot ARDrone, to facilitate the
algorithm development. This work, requires a big simplification of the pro-
posed System Architecture. Now, only a single aerial robotic agent is used to
achieve the mission. The selected aerial platform (Parrot ARDrone, see [2, 14])
includes in its autopilot a Mid-Level Controller and a first Self-Localization
Module (which estimates yaw, pitch, roll, height and speeds in x and y).

The equivalences between the proposed System Architecture and the mod-
ules described in [17] are the following:

– Perception: OpenTLD algorithm (see [10, 13]).
– Environment Understanding, and Self-Localization and Mapping: are re-

ferred to in [17] as “the estimation of the position of the target with respect
to the drone, expressed in the drone’s reference frame”, using the informa-
tion given by the tracker. That means, equations 1 and 2, and the left
equations of figure 5 in [17].

– High-Level Controller: both “Position Controller” and “Model Identifica-
tion” (to transform from speed commands to Pitch and Roll commands).

– Yaw Commander: is hidden in the equations 1 and 2 in [17].
– Supervisor: implements the proposed logic when the target is lost.
– HMI: allows the user to control the mission and to select the target to

follow.

There is no Trajectory Planner or Mission Planner, because the mission is
defined manually by the user, who directly interacts with the Supervisor.

3.2 2013 International Micro-Aerial Vehicle Competition

This work is described in [16] and [20]. This work successfully achieved the
first award in the Indoors Autonomy Challenge of the 2013 International Mi-
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cro Aerial Competition (IMAV 2013), see [9]. In this project a swarm of Parrot
ARDrone aerial platforms had to complete a mission in a structured environ-
ment. There was no coordinator in the swarm and the coordination emerged
as the result of the interaction of the intelligence of each swarm agent.

As detailed in section 3.1, the aerial platform includes a Mid and Low-Level
controller and a first sub-module for Self-Localization.

The equivalences between the proposed System Architecture and the mod-
ules described in [16] are the following:

– Perception: “Aruco Eye”.
– Self-Localization and Mapping (second sub-module): “Pose Estimator”.
– Self-Localization and Mapping (third sub-module): “Localization and Map-

ping”.
– Environment Understanding: “Obstacle Generator”.
– High-Level Controller: “Trajectory Controller”.
– Trajectory Planner: “Trajectory Planner and Collision Avoidance”.
– Yaw Commander: “Yaw Commander”.
– Mission Planner: “Mission Planner”.
– Supervisor and Communication: “Hypothalamus”.

Even though not described in [16], the system also has a Logger and a
HMI.

3.3 2014 International Aerial Robotics Competition

This work is described in [18]. This work successfully achieved two special
awards: “Best Obstacle Avoidance Award” and “Best Trajectory Controller”
in the 7th Mission of the 2014 International Aerial Robotics Competition
(IARC 2014), in the Asia Venue, see [8]. In this project, a single autonomous
aerial platform (an Asctec Pelican, see [1]) had to complete a “shepherding”
task, guiding ten ground robots (iRobots) moving on an arena with four mov-
ing obstacles. The “shepherding” task was carried out by interacting with the
ground robots (touching or blocking them). The selected aerial platform has
a Low-Level controller running on-board its autopilot.

The equivalences between the proposed System Architecture and the mod-
ules described in [18] are the following:

– Perception: here should be included all the “Computer Vision Algorithms”.
– Self-Localization and Mapping (first sub-module): “Odometry-based State

Estimator”.
– Self-Localization and Mapping (second sub-module): “Localization and

Mapping”.
– Environment Understanding: It is included in “Localization and Mapping”

and comes to being able to identify the iRobots and obstacles in the map,
trying to predict their movement.

– Mid-Level Controller: “Multirrotor Driver”
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– High-Level Controller: “Flight Controller” which includes several flying
modes and actions.

– Trajectory Planner: Included in the “Flight Controller”.
– Yaw Commander: Included in the “Flight Controller”.
– Mission Planner: “Mission Planner”.
– Supervisor and Communication: It is divided in the “System Supervisor”;

included also in the “Flight Controller” that switches between control
modes; and included also in the “Multirrotor Driver” for actions.

– HMI: “Human Machine Interface”.

A Logger was also included but not mentioned in [18].

4 An Open Source Framework for Autonomous Multi-UAV
Systems: CVG Quadrotor Swarm

The second contribution of the paper is the presentation of an open source
and flight-proven framework that allows its users to start working easily with
a simple autonomous multi-aerial robotic system designed according to the
system architecture proposed in section 2.

This work was initially presented in [19] and here the work is continued by
adding new features to the framework and more tests, both under simulation
and real experimental ones (sections 5 and 6).

The presented framework has been designed to accelerate the prototyping
of successful multi-aerial-robot behaviors for the research and development of
civilian applications of small Unmanned Aerial Vehicles (sUAVs). The motiva-
tion of this framework is to allow the developers to focus on their own research
by decoupling the development of dependent modules, leading to a more cost-
effective progress in the project. In order to achieve this, the framework has
been made public and open-source, offering several open-ended modules re-
quired for experimental multi-aerial-robot navigation.

The main design specifications of the system are the following:

– Modularity, to allow code reuse for different solutions. For this reason, the
Robot Operating System (ROS) is used as middleware between modules
and across computers. To better understand the characteristics of ROS,
see [22, 4]. Additionally, ROS is a world wide used software middleware
used by roboticists.

– Compatibility with various quadrotor platforms through the usage of a well
specified interface.

– Capability of realizing multi-aerial-robot missions. The robots would be
connected through WLAN, see figure 3, and they would communicate un-
der the ROS middleware.

– Flight-proven and capability of running simulations on big parts of the
developed architectures.

– Open-source, so that we can share our work and other developers can reuse
any part of the architecture in their own projects.
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Fig. 3 The multi-robot system is composed by robotic agents, which consist of a quadro-
tor platform and an specific instance of the software architecture. The drone is either com-
manded via WiFi from a ground station or from an on-board computer. All the computers
can communicate with each other through a (Wireless) Local Area Network (LAN). The
communications between modules and robotic agents is implemented creating a single ROS
network.

The key characteristic of our framework is modularity. This allows to create
independent modules with specific functionalities which can be exploited once
connected to the rest of the architecture. This modularity allows the individual
testing of modules, easing the project progress. Also, understanding the mod-
ules as input-output systems permits to test in simulation the compatibility
of their interfaces with the full system instance at hand.

Our framework uses the Robot Operative System (ROS) [22], a worldwide
used API that eases the management of communication between the soft-
ware modules of our system. The framework is fully compatible with the last
ROS version (ROS Indigo) and its new building tool Catkin. The framework
modules were programmed in C++ and Python. In general, the ROS com-
munication interface has been separated from the main functionality of the
modules by means of wrappers.

The compatibility with various quadrotor platforms is achieved thanks to
the modularity requirement. Since each module is defined by its interface, dif-
ferent platforms can be used with the only requirement of respecting the spec-
ified interface. However, if a platform is heterogeneous with respect to every
supported platform (i.e. it uses different sensors), the developer can leverage
from the modularity requirement to minimize the required work of interfacing
it with the rest of the architecture. To achieve this goal, the interface between
modules has been specified and each robot agent uses its own configuration
files. Each module can be executed in an on-board computer or in ground
computers. However, all the computers have to be connected in a local area
network (LAN) or in a wireless local area network (WLAN), see figure 3.

The framework is fully operative, which is shown in the paper through
simulations and real flight tests of up to 5 drones, and was demonstrated in
section 3 through three different successful projects.
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Since we trust our system and we believe in sharing within the scientific
community, we decided to make our framework open-source. This way, anyone
interested in working with multi-robot aerial applications can use our frame-
work as a starting point for their research and as a tool to test their own
algorithms.

To share the framework with the scientific community and to develop new
modules, keeping track of the past state of the development, we use a Git
repository for the framework structure that links to several git repositories
(one per package or module) using the tool Git Submodule. This Git tool
helps in making the framework more modular. The link to the framework’s
code Git repository is specified in the following website: https://github.

com/Vision4UAV/cvg_quadrotor_swarm.
Now that the main features of the framework have been presented, we

proceed to describe its available modules of packages, which correspond to the
modules developed for the projects cited in section 3.

The following notation is used in the rest of the section: Package is a set
of code (C++ or Python) with a unitary meaning and utility. It can contain a
library and / or an executable. All packages in the framework are declared as
ROS packages. A Stack is a set of packages that are grouped because they have
a similar meaning or utility or their meaning or utility is linked. A Module is
a ROS node inside a package that adds a specific behavior or function to the
drone.

4.1 Basics

This set of stacks simplify the usage of the framework and the development of
new modules or packages.

4.1.1 Framework Core

This stack is a group of ROS packages which include the ROS messages and
ROS services used to communicate the stack modules, and the definition of
a key C++ class called “DroneModule”. The “DroneModule” class has two
main functions. Thanks to this class, a rigid structure is defined for the creation
of new modules. This not only helps the user with the development of new
modules, but also allows the supervisor module to manage and control all the
modules in an easy and efficient way by means of a common interface.

4.1.2 Libraries and Utilities

These stacks include some basic C++ packages that are useful for the develop-
ing of new modules. They include interfaces for C++ libraries like pugixml29,
or newmat1130; a library to build an Extended Kalman Filter (EKF) (lib cvgekf);

29 http://pugixml.org/
30 http://www.robertnz.net/nm11x.htm

https://github.com/Vision4UAV/cvg_quadrotor_swarm
https://github.com/Vision4UAV/cvg_quadrotor_swarm
http://pugixml.org/
http://www.robertnz.net/nm11x.htm
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libraries to help the user to work easily with different reference frames (lib pose
and referenceFrames); a library to create threads (lib cvgthreads) without us-
ing the C++11 standard that is not compatible with ROS (ROS uses the
C++03 standard); and a library with a mix of other utilities and control
blocks (lib cvgutils), like filters, PIDs, ...

4.1.3 Logging

Thanks to this stack, the user is able to log the state of the full system easily
by configuring which topics need to be logged. The key differences between
this logger and a standard rosbag file are the following: All the topics are
stored in a plain text file with the time stamp and the name of the module
and topic that published it, which is readable by the user. Additionally, images
are stored as .png files. This log is additionally readable by Matlab thanks to a
script that can be found in the framework. Additionally, it could be read as a
rosbag play because every logged event is timestamped (but this functionally
is not implemented yet).

4.2 Drone and Sensor Drivers

This stack includes both the interfaces (here called drivers) between the frame-
work and the aerial platforms and the interfaces between the framework and
the sensors used onboard the platforms.

The available aerial platforms are: Parrot ARDrone ([2, 14]), AscTec Peli-
can ([1]), and Mikrokopter Okto ([12]).

The available sensors are: px4flow31, and uEye usb Cameras32.
Although the framework includes a basic set of aerial platforms and sensors

that allow the user to start prototyping, including new platforms or sensors
is not a very heavy task, which shows the power of being able to use all the
modules of the framework but only requiring the creation of an interface using
the message types defined in the framework.

4.3 Localization and Mapping

The perception of the ArUco visual markers used for the IMAV 2013 Indoors
Competition and the perception developed for the IARC 2014 Competition
are available and included in the perception module.

The framework counts with an EKF odometry pose estimator that highly
relies on optical flow; and an EKF-SLAM that relies on the ArUco visual mark-
ers used for the IMAV 2013 Indoors Competition as the set of Self-Localization
and Map Generation.

31 http://pixhawk.org/modules/px4flow
32 http://en.ids-imaging.com/

http://pixhawk.org/modules/px4flow
http://en.ids-imaging.com/
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Finally, as part of the Environment Understanding, the framework includes
two modules. One of them, which was used for the IMAV 2013 Indoors Com-
petition, transforms the map generated with the ArUco visual markers into
usable obstacles like poles or walls. The second module, used for the IARC
2014 Competition, tracks the pose of the ground robots in the arena.

4.4 Control

The framework does not include any Low-Level Controller, being the manu-
facturer’s ones the ones used for each platform.

The framework presented in this paper includes a Mid-Level Controller
that works for the multirotor aerial platforms. This controller has to be tunned
for each platform by using configuration files. The available flight modes are:
trajectory, position, speed and object following.

A High-Level Controller that -after a tunning process- works for multiro-
tor aerial platforms, is included in the framework. This High-Level controller
provides four modes: Trajectory, Position, Speed and Object Tracking.

4.5 Planning and Intelligence

The presented framework only includes a 2D Trajectory Planner (x-y), being
the extension to 3D a candidate for future work.

The framework relies on a basic Yaw Commander that allows the user to
define a looking point or a looking direction.

A sequential Mission Planner allows the operator to define a mission as a
set of separate tasks which are, in turn, fully described by a set of numeric
parameters. The mission definition requires an xml file where the mission is
defined. It has different available tasks such as: take off, land, hover, sleep or
move.

4.6 Supervision and Communication

The framework includes two supervisors, the one used for the IMAV 2013
Competition and the one used for the IARC 2014 Competition.

4.7 HMI

The framework includes several nodes that act like HMI. There is a terminal
user interface and several interfaces which use RViz33 to visualize the state of
the aerial robotic agents.

33 http://wiki.ros.org/rviz

http://wiki.ros.org/rviz
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4.8 Simulators

Before a real multi-aerial-robot flight takes place, all the hardware needs to
be checked and set up, including not only the quadrotor platforms but also
the test environment, the external visualization and processing computers, the
WLAN, etc. Another very important requirement, for security reasons, is to
have one emergency pilot per quadrotor. All this means that a lot of time and
people are required to set up everything for an experimental test, which also
means that every test has a significant cost. Since preparing a multi-aerial-
robot system for a flight is costly, real tests should preferably be carried out
after the system is tested in simulation.

Thanks to the modularity of the proposed framework, it is possible to
replace actual modules with simulated counterparts, since they only need to
somewhat mimic the original module’s interface. The value of such simulations
is that they allow to test sets of modules of the actual flight architecture, easing
the testing and debugging software development processes.

Several simulators are included in the framework. The reader must note
that the simulators are not intended to be a very accurate representation of the
drone, and they should not be used for tunning the controllers or for learning
models. Therefore, the simulators do not allow to thoroughly test anything
related directly to the dynamics of the multicopter. However, these simula-
tors have proved to be big time savers using them for testing the complete
architecture before a real flight.

5 CVG Quadrotor Swarm: Simulation Results

In order to demonstrate the functionality of the presented framework, some
general modules were selected from the list of available ones, generating a
basic instance of the framework. Once this basic instance was defined, some
simulation and experimental tests were carried out. In this section the simu-
lation results are detailed, while in section 6 the results from real experiments
are shown. The simulators used in this section do not represent the accurate
expected behavior of the drones (dynamic model of the drone, models of the
sensors, etc.), but allow to demonstrate the functionality and mission specifi-
cations of the complete proposed system before a real flight.

The basic instance of the framework is defined in [19] and this section and
the following are a continuation of this work.

The following sections of the paper present the execution of two different
missions which have been called: “The Pinball” and “The Hole”. It is noted
that these two simulator modules were not designed to provide an accurate
behavior compared to their real counterparts’ behavior. The goal was to test
the rest of the system in order to debug it and improve it, and also to check
the mission specifications before experimental flights. The reader is invited
to visit the research group’s webpage to watch videos of these simulations
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and the corresponding experimental flights: http://www.vision4uav.com/

?q=quadrotor_stack.
In order to interpret the simulation and experimental flight figures, the

modules specifications, which are described in [19], have to be taken into ac-
count. From them, the overall expected behavior of the drones is:

– Each drone follows a sequence of waypoints given by its mission specifica-
tion. The mission planner executes it sequentially.

– During execution, the planner will attempt to find trajectories that are
collision-free. If it fails, the drone will be controlled to stay in the current
position.

– If other swarm agents enter the current trajectory, the planner will detect
it and will stop the drone and attempt to find a collision-free trajectory.

– If another swarm agent is on the current goal waypoint, the drone is com-
manded to stay in the current position. A new trajectory is planned when
the goal position is again free.

5.1 Mission 1: The Pinball

This mission is carried out in a volleyball court (dimensions: 9 m x 18 m).
Twelve poles (four of them with a diameter of 40 cm; and the other eight
of 30 cm) are spread in the court with a distribution 1-3-4-3-1, as shown in
figures 4 to 6. These poles act like obstacles in the same way as the pins in
the pinball. Five drones execute a navigation mission that involves crossing the
obstacles zone from one side of the court to the other. The mission specification
includes the following sequence of tasks:

1. Start the architecture operation and take-off,
2. Move to a goal landing location,
3. Land and stop the architecture.

In figures 4 to 6, the trajectories followed by each drone in three simulations
of the same mission are displayed. As there is no high-level intelligence that
synchronizes the swarm, their behaviors are not deterministic and, thus, are
different in every simulation execution:

– Simulation 1, Fig. 4: each drone followed a short and direct path, with very
small rectifications, to its goal landing location.

– Simulation 2, Fig. 5: some drones followed a short and direct path, but
others accomplished a very long path to avoid the other drones in the
court.

– Simulation 3, Fig. 6: in this case, many drones followed a long path to their
goal landing location.

Since the swarm agents plan their trajectories with no interaction with a global
synchronization intelligence, the different executed paths are a demonstration
of a low-intelligence swarm behavior.

http://www.vision4uav.com/?q=quadrotor_stack
http://www.vision4uav.com/?q=quadrotor_stack
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Fig. 4 Simulated flight of the Pinball Mission, where five drones flew autonomously. The
executed trajectories of the drones are shown as line plots. The black circles are the poles.
In this simulation, all the trajectories followed by the drones are direct and short. Some
drones needed to create a longer path to avoid a collision. For example, the drone plotted in
green had to go to the left of the map at the beginning of the simulation to avoid a collision
with the drone in cyan. Once the collision was avoided, the drone replanned its trajectory
again in order to avoid a collision with the red drone.

5.2 Mission 2: The Hole

This mission is carried out in a volleyball court (dimensions: 9 m x 18 m). Ten
poles (four with a diameter of 40 cm; and the other six, 30 cm) are spread in
the court with a distribution 2-6-2, as shown in figures 7 to 9. The poles in
the middle create a wall obstacle with a single opening or hole whereby the
drones have to cross. Five drones execute a navigation mission that requires
crossing the obstacles zone from one side of the court to the other. The mission
specification is defined by the following sequence of tasks:

1. Start the architecture operation and take-off,
2. Move to a goal landing location,
3. Land and stop the architecture.

In figures 7 to 9, the trajectories followed by each drone in three different
simulations of the same mission are displayed. As there is no high-level intelli-
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Fig. 5 Simulated flight of the Pinball Mission, where five drones flew autonomously. The
figure can be interpreted similarly to Fig. 4. In this case, all the drones followed a short
and direct path except the green one, which had to fly a very long path to avoid several
collisions: first, with the cyan drone; and later with the magenta and red ones.

gence that synchronizes the swarm their behaviors are not deterministic and,
thus, are different in every simulation execution:

– Simulation 1, Fig. 7: all the drones followed a short and direct path with
very small rectifications in the trajectory.

– Simulation 2, Fig. 8: some drones followed a short and direct path, but
others accomplished a longer path to avoid the other drones in the court.

– Simulation 3, Fig. 9: a simulation where some of the drones followed a
longer path is shown.

Again the different executed paths are a demonstration of a low-intelligence
swarm behavior.

6 CVG Quadrotor Swarm: Experimental Results

Once the system has been tested in simulation, the following step is to test it
in real experiments.

As the simulations were not an accurate representation of the reality, in
the real tests some issues that are not present in simulation appeared, such as:
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Fig. 6 Simulated flight of the Pinball Mission, where five drones flew autonomously. The
figure can be interpreted similarly to Fig. 4. In this case, all the drones followed a long path
to avoid collisions. These “chaotic” paths are a demonstration of a low-intelligence swarm
behavior.

– Inaccurate quadrotor model
– Inaccurate drone’s sensors measurements
– Inaccurate performance of the computer vision algorithms

Those inaccuracies involve localization and control errors that the system has
to minimize and deal with.

In this section, real tests of the missions simulated in section 5 are achieved.

6.1 Mission 1: The Pinball

This is the same mission defined in section 5.1. Figures 10 to 11 show the
trajectories followed by each drone in two different tests. These trajectories
are more noisy than the one achieved through the simulations due to the
problems and inaccuracies cited above. However, the system keeps working
correctly and completes the mission.
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Fig. 7 Simulated flight of the Hole Mission, where five drones flew autonomously. The
executed trajectories of the drones are shown as line plots. The black circles are the poles.
All the drones followed a direct and short path. In the figure, it can be seen that, since
there is a bottleneck in the mission, the drones had to wait while the middle passage was
traversed by other drones. When there are no other drones in the hole, they planned a new
trajectory.

6.2 Mission 2: The Hole

This mission is the same as the one defined in section 5.2. Figures 12 to 13 show
the trajectories followed by each drone in two different tests. These trajectories
are more noisy than the one achieved through the simulations due to the
problems and inaccuracies cited above. However, the system keeps working
correctly and completes the mission.

7 Future Work

The future work can be structured according to the two contributions of the
paper.

As future work related to the autonomous multi-UAV system architecture
defined in this paper, we can increase the complexity of the proposed system
architecture by explicitly adding modules that determine the interaction with
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Fig. 8 Simulated flight of the Hole Mission, where five drones flew autonomously. The
figure can be interpreted similarly to Fig. 7. All the drones followed a direct and short
paths, including the waiting and re-planning due to the hole, except the drone plotted in
green which moved in the map executing a longer path.

other robots or with the environment; or by adding modules to define the
operation of actuators controlled by the system architecture (for example the
aerial robots can carry on a pan and tilt camera or a robotic arm).

The possible future work related to the presented framework, the “CVG
Quadrotor Swarm”, is wider. On one hand, a better and simplified module
integration and development can be done as future work, including the sim-
plification of the Modules Supervisor that can be auto-generated once the
modules are defined. On the other hand, new modules can be developed to
have a longer catalog with more complex behaviors. Thanks to the modularity
of the system, specialists in different robotics fields can contribute to specific
modules of the architecture. Since the system is open-source and it is fully
working both in simulation and in reality, each specialists can download it
and develop a module for the system that attracts their interest and, after-
wards, they will be able to test it against the rest of the system in simulation
or in experimental flights. Some possible working lines are described in the
following paragraphs:
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Fig. 9 Simulated flight of the Hole Mission, where five drones flew autonomously. The
figure can be interpreted similarly to Fig. 7. Some drones like the magenta, green and cyan
ones followed short and direct paths; but others, like the blue and the red ones followed long
paths trying to find a way to traverse the hole.

One possibility is to use the described modules to conduct research in the
fields of swarming and multi-robot systems. More complex behaviors could
be added to the agents of the swarm in order to accomplish more complex
missions that require a higher level of coordination. Or, putting behind the
swarming aspect, a central unit that coordinates the robots can be added in
order to improve their synchronization.

Another possibility is to carry out research in the field of fault tolerant sys-
tems, integrating the proposed architecture with a meta-control architecture
that is able to detect events such as component failures (i.e. one of our mod-
ules), and after its occurrence attempt to rearrange the module architecture
excluding the malfunctioning module, like in [7].

Although the system works correctly, it can only perform navigation tasks
and it still requires to fly in an structured environment. This means that the
mission planner could be redesigned in order to obtain a more versatile swarm
behavior. Better perception, localization and mapping algorithms and sense
and avoid algorithms that do not rely on visual markers could further extend
the applicability of the framework.
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Fig. 10 Experimental flight of the Pinball Mission, where five drones flew autonomously.
The executed trajectories of the drones are shown as line plots. The black circles are the
poles. Some of the drones followed a direct and short path (blue, magenta, and cyan) and
others a longer one (red and green). The experimental trajectories are noisier than the
simulated ones, due to limitations in the simulator.

8 Conclusions

We identified two main problems during the process of designing and develop-
ing autonomous Multi-UAV Systems. In the first place, it is difficult to design
an aerial multirobot system taking into account all the complex issues that
have to be tackled. Secondly, it is hard to have access to a working prototype
of the system so that developers can test the performance of individual mod-
ules in an integrated manner even in early stages of the project. This paper
provides contributions related to these two problems.

To begin with, a multipurpose system architecture for autonomous multi-
UAV platforms was presented. This versatile system architecture was the result
of intense analysis and discussions, and it can be used by other system design-
ers as a template when developing their own systems. The proposed system
architecture is general enough to be used in a wide range of applications, as
shown in the paper with three project examples. This system architecture
intends to be a reference for all designers.
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Fig. 11 Experimental flight of the Pinball Mission, where five drones flew autonomously.
The executed trajectories of the drones are shown as line plots. The black circles are the
poles. In this case, all the drones followed a long path. The experimental trajectories are
noisier than the simulated ones, due to limitations in the simulator.

Additionally, to provide the infrastructure for fast prototyping of autonomous
multi-aerial systems, an Open Source framework based on the previously
defined system architecture was introduced. The “CVG Quadrotor Swarm”
framework allows developers to have a flight proven multi-aerial system ready
to use. This way, different algorithms can be easily tested without the need
to implement a whole initial working system. This framework, which also
presents the important advantages of being modular and compatible with dif-
ferent aerial platforms, can be found at https://github.com/Vision4UAV/

cvg_quadrotor_swarm with a comprehensive list of available modules. The
good performance of the framework has been shown by choosing a basic in-
stance of it and carrying out simulation and experimental tests for different
missions.
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