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KERNEL SELECTION IN NONPARAMETRIC REGRESSION

HELENE HALCONRUY* AND NICOLAS MARIET

ABSTRACT. In the regression model Y = b(X) + ¢, where X has a density f, this paper deals with an
oracle inequality for an estimator of bf, involving a kernel in the sense of Lerasle et al. (2016), selected via
the PCO method. In addition to the bandwidth selection for kernel-based estimators already studied
in Lacour, Massart and Rivoirard (2017) and Comte and Marie (2020), the dimension selection for
anisotropic projection estimators of f and bf is covered.
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1. INTRODUCTION

Consider n € N* independent R? x R-valued (d € N*) random variables (X1,Y1),..., (Xy, Yy), having
the same probability distribution assumed to be absolutely continuous with respect to Lebesgue’s measure,
and

Sk.e(n;x) ZKXZ,ZE (Y;) ; x € RY,

where £ : R — R is a Borel function and K is a symmetrlc continuous map from R¢ x R? into R. This is
an estimator of the function s : R? — R defined by

s(z) == B(U(YV1)| X1 = z)f(x) ; Vo € RY,
where f is a density of X;. For £ = 1, Sk (n;.) coincides with the estimator of f studied in Lerasle et
al. [II], but for £ # 1, it covers estimators involved in nonparametric regression. Assume that for every
ie{l,...,n},
(1) Y, = b(Xz) +&;

where ¢; is a centered random variable, independent of X;, and b : R* — R is a Borel function.

Key words and phrases. Nonparametric estimators ; Projection estimators ; Model selection ; Regression model.
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e If / =1dg, k is a symmetric kernel and

/ j—

d
1
2) K@) =[] -k <‘T‘1 xq) with A1, ..., hg > 0
q=1"1

hq

for every x,2’ € RY, then Sk (n;.) is the numerator of Nadaraya-Watson’s estimator of the
regression function b. Precisely, Sk ¢(n;.) is an estimator of s = bf. If £ # Idg, then Sk ¢(n;.) is
the numerator of the estimator studied in Einmahl and Mason [5] [].

o If { = Idg, B, = {¢]"",...,om’} (mq € N* and ¢ € {1,...,d}) is an orthonormal family of
L?(R) and

d mgq

(3) K(a',z) = [T > @) (wg)e) " (z)

g=1j=1

for every z,2' € R?, then Sk ¢(n;.) is the projection estimator on S = span(B,,, ® -+ ® Byy,,) of
s=>bf.

Now, assume that for every i € {1,...,n}, ¥; is defined by the heteroscedastic model
(4) Y; = o(Xi)es,

where ¢; is a centered random variable of variance 1, independent of X;, and ¢ : R — R is a Borel
function. If £(z) = 22 for every z € R, then Sk ¢(n;.) is an estimator of s = o2 f.

These ten last years, several data-driven procedures have been proposed in order to select the band-
width of Parzen-Rosenblatt’s estimator (¢ = 1 and K defined by ) First, Goldenshluger-Lepski’s
method, introduced in [§], which reaches the adequate bias-variance compromise, but is not completely
satisfactory on the numerical side (see Comte and Rebafka [4]). More recently, in [I0], Lacour, Massart
and Rivoirard proposed the PCO (Penalized Comparison to Overfitting) method and proved an oracle
inequality for the associated adaptative Parzen-Rosenblatt’s estimator by using a concentration inequal-
ity for the U-statistics due to Houdré and Reynaud-Bouret [9]. Together with Varet, they established the
numerical efficiency of the PCO method in Varet et al. [I3].

Comte and Marie [3] deals with an oracle inequality and numerical experiments for an adaptative
Nadaraya-Watson’s estimator with a numerator and a denominator having distinct bandwidths, both
selected via the PCO method. Since the output variable in a regression model has no reason to be
bounded, there were significant additional difficulties, bypassed in [3], to establish an oracle inequality
for the numerator’s adaptative estimator. Via similar arguments, the present article deals with an oracle
inequality for §§7 ,(n;.), where K is selected via the PCO method in the spirit of Lerasle et al. [II]. In
addition to the bandwidth selection for kernel-based estimators already studied in [I0} B3], it covers the
dimension selection for anisotropic projection estimators of f, bf (when Y7, ...,Y,, are defined by Model
(1)) and o?f (when Yi,...,Y, are defined by Model ) As for the bandwidth selection for kernel
based estimators, for d > 1, the PCO method allows to bypass the numerical difficulties generated by the
Goldenshluger-Lepski type method involved in the anisotropic model selection procedures (see Chagny

).

In Section [2 some examples of kernels sets are provided and a risk bound for Sk ¢(n;.) is established.
Section |3 deals with an oracle inequality for 5z ,(n;.), where K is selected via the PCO method. Finally,
Section [4] deals with a basic numerical study.

2. RISK BOUND

Throughout the paper, s € L2(R?). Let K,, be a set of symmetric continuous maps from R¢ x R? into
R, of cardinal less or equal than n, fulfilling the following assumption.

Assumption 2.1. There exists a deterministic constant my , > 0, not depending on n, such that
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(1) For every K € K,

sup [|[K(a,.)[3 < mg,en.
z/ R4

(2) For every K € KC,,,
sk.ell3 < mxe
with

sk =E(Ske(n;.)) =E(K (X1, .)0(Y1)).

(3) For every K,K' € K,,

E((K (X1,.), K' (X2, .)0(Y2))3) < me o5k ¢

with
sire = E(| K (X1, )Y)13)-
(4) For every K € K,, and ¢ € L2(R9),

E((K(X1,.),9)3) < mee|lvl3.

The elements of IC,, are called kernels. Let us provide two natural examples of kernels sets.

Proposition 2.2. Consider

d
1 x —x
K:k(hmin): { H}T < q) s hi,...,hqg € {hmin,...,l}},

where k is a symmetric kernel (in the usual sense) and nhd
Assumptwn and, for any K € Ki(hmin) such that

min

q=1""1
with hy,...,hqg € {Pmin, ..., 1},
L
= IKBEC)) IT -
q=1"1
Proposition 2.3. Consider

d mg

ICBl»--an (mmaX) = (m/,x) = H Z @;ﬁq (xq)‘»@;‘nq (17:1) y M, ...,

q=17=1

where m& € {1,...,n} and, for every m € {1,...,n}, B,, = {o7,...

of L2(R) such that

sup E @7 (z")* <mpm
T E]R

with mg > 0 not depending on m and n, and
(5) By CBpg1 s ¥Yme{l,...,n—1}

or

> 1.

The kernels set Ki(hmin) fulfills

d 1 x—x
Hh— ( q> A

mgq € {17~-~7mmax} ,

, M} is an orthonormal family

(6) mp :=sup{|E(K(X1,2))| ; K € Kg,.. 5, (Mmax) and x € R} is finite and doesn’t depend on n.
The kernels set Kg, ..., (Mmax) fulfills Assumptwn and, for any K € Kp, ... B, (Mmax) such that

d mgq

) = H Z@Tq(xq)qu(x;) Vo, 2 € RY

g=1j=1
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with my,...,mp € {1,..., Mmax},
d
s < mgE(L(Y1)?) [ m
=1

q
Remark. Note that Condition (5)) (resp. (6)) is close to (resp. the same that) Condition (19) (resp.
(20)) of Lerasle et al. [I1I], Proposition 3.2. See also Massart [I2], Chapter 7 on these conditions. For
instance, the trigonometric basis and Hermite’s basis satisfy Condition . The regular histograms basis
satisfy Condition @ Indeed, by taking 7" = ¢7" := VM —1)/m,j/m| for every m € {1,...,n} and
je{l,...,m},

d myg
1555565 | = 35 55 (T i)
g=1j=1 Jji=1 Jja=1
Ji/ma Jd/ma
x/ / f(xy, ..., ah)dxy - dx))
(J1—1)/my (Ja—1)/ma
4 mg
< lloo TT D2 L1y /masi/mat(@) < 1 flloo
a=1j—=1
for every my,...,mq € {1,...,n} and x € R%.

The following proposition provides a suitable control of the variance of Sk ¢(n;.).

Proposition 2.4. Under Assumption . (1,2,8), if s € L2(R?) and if there exists o > 0 such that
E(exp(a|f(Y1)|)) < oo, then there exists a deterministic constant gz > 0, not depending on n, such that

for every 6 €]0,1],

- 5 log(n)®
E( sup {\nsK,e(n;.)—sK,zu% K }) < oz 2
Kek, n

Finally, let us state the main result of this section.

Theorem 2.5. Under Assumption if s € L2(R?) and if there exists a > 0 such that E(exp(alf(Y1)])) <
00, then there exists a deterministic constant gz, g > 0, not depending on n, such that for every

0 €]0,1],
B {Icatns) = 51— (1) (e — sl + 22) }) < gt
KS;IC) SK,e(n; . S{l2 SK, — S2 n S 23 on

SK,¢ 1. _ log(n)®
E — 5|2 : ) —sl|? < —
(s {lsme = s+ 22 = ot - s13} ) < Tz

Remark. Note that the first inequality in Theorem [2.5| gives a risk bound on the estimator Sy ¢(n;.):
~ SK.0 log(n 5
(i elns.) — sl3) < (14 0) (lsrce — 513+ 22 4 g L)

for every 6 €]0,1]. The second inequality is useful in order to establish a risk bound on the adaptative
estimator defined in the next section (see Theorem [3.2)).

and

3. KERNEL SELECTION

This section deals with a risk bound on the adaptative estimator s .), where

57,0(m;
K € arg min {[[Sx.e(n:) = So,e(n:)[3 + pen(K)},

K is an overfitting proposal for K and

(7) pen(K) := % Z(K(.,Xi),KO(.,X Nol(Yi)? : VK € K.
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t

Example. For K,, = Kg(hmin), one should take

d /

1 r, —

Ko(z',z) = = I | k (W) Ve, 2’ € RY,
min a=1 min

and for IC,, = K, ... B, (Mmax), one should take

d Mmax

Ko(e',x) =[] D o= (aq) () 5 ¥a,2’ € RY.

qg=1 j=1
In the sequel, in addition to Assumption [2.I] the kernels set &, fulfills the following assumption.

Assumption 3.1. There exists a deterministic constant wy , > 0, not depending on n, such that
E( sup <K(X1a~)781</,z>§> < M e
K,K'e€K,
The following theorem provides an oracle inequality for the adaptative estimator sz é(n; .-
Theorem 3.2. Under Assumptions and if s € L2(RY) and if there ewvists a > 0 such that

E(exp(alt(Y1)|)) < oo, then there exists a deterministic constant ¢z > 0, not depending on n, such that
for every ¥ €]0,1],

N : N
BIS7 (1) ~ s13) < (1) i B to) = s3)+ 22 (s = ol +

1og(n>5>
n
Finally, let us discuss about Assumption [3.I] Note that if s is bounded and
my = sup{|K(«',.)||? ; K € K, and 2’ € R?}
doesn’t depend on n, then K, fulfills Assumption 3.1} Indeed,
E < sup (K(X17.),5K/7g>§) < ( sup ||sK/,g||c2x,) E (nglgn ||K(X1,)||f)

K,K'eKn K'ekn

e} 2
< mg sup { </ |K’(z’,z)s(m)|dm) iK' € Ky and 2’ € ]R} < mi|s|%.

In the nonparametric regression framework (see Model ), to assume s bounded means that bf is
bounded. For instance, this condition is fulfilled by the linear regression models with Gaussian inputs.
The following examples focus on the condition on my.

Examples:
(1) Consider K € Kk (hmin). Then, there exists hy,...,hqg € {hmin, ..., 1} such that
d

/ _ 1 x/q_xq . / d
K(x,x)f};[lh—qk h ; Va, o' € R,

Clearly, ||[K (2, .)|l1 = ||k||{ for every o' € R?. So, for K, = K (hmin), mx < [|k[3%.
(2) For K,, = Kg,,...B, (Mmnax), the condition on my seems harder to check in general. Let us show
that it is satisfied for the regular histograms basis defined in Section 2] For every my,...,mq €

{1,...,n},

d mg d mq 3/maq

My My
L3 v | < I (meXo ooty [ e <1
q=1 j=1 1 g=1 j=1 (J—=1)/mq

The following proposition shows that Kg, ... 5, (Mmax) fulfills Assumption for the trigonometric basis,
even if the condition on my is not satisfied.
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Proposition 3.3. Consider x1 := 11 and, for every j € N*, the functions x2; and x2j+1 defined on
R by

X2;(x) = \/5(:08(277]'3:)1[0)1] () and x2;+1(x) == \/58111(271’]'3@)1[071] () ; Ve € R.
Ifs € C*(RY) and By, = {x1,- .., Xm} for everym € {1,...,n}, then Kp, ... 5, (Mmax) fulfills Assumption
[Z1

4. BASIC NUMERICAL EXPERIMENTS

Throughout this section, d = 1, £ € {1,Idg} and Y3, ..., Y}, are defined by Model with e1,...,6, ~
N(0,1). Some numerical experiments on S 1(n;.) (resp. Sk 1dx(n;.)) for K € Ky(hmin) have already
been done in Varet et al. [13] (resp Comte and Marie [3]). So, this section deals with basic numerical
experiments on Sk 1(n;.) and Sk 1a,(n;.) for K € Kp, .. B, (Mmax) and By, = {Y7, ..., ¥} for every
m=1,...,n

In this case, K= K7(¢) where
Ko (2, 2) := Zw]m(x')dj;n(x) Vo, e R, Vm e M= {1,... , Mmax},
j=1
m(¢) is a solution of the minimization problem
mln {||§Kvn7z(n; ) - gK'mmaxl(n; )||% + pen(m)}
meM
and

2 n
pen(m) := o Z Ko, (5 Xi))2l(Y5)? 5 Ym € M.

For ¢ € {1,1dg}, n = 250 and mmax = 30, m is selected in M for two basic densities and two nonlinear
regression functions:

e f = f1 the density of £(5).

e f = f> the density of N'(1/2,(1/8)?).

o b(z) = by(x) := 10(z% — 1/2) for every z € [0,1].

e b(x) = ba(x) := cos(5mx) for every = € [0, 1].
On the one hand, on the four following figures, one can see the beam of all possible estimations of f and
bf (i.e. for each m € M) at left, the PCO criteria for Sk 1(n;.) and Sk 14, (n;.) for each m € M at the
middle, and the PCO estimations of f and bf (i.e. for m = m(1) and m = m(IdR)) at right:

FIGURE 1. f = f1, b= b1, m(1) = 10 and m(Idg) = 10.
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Estimations of  for m = 1 to m_max

Estimations of bf for m = 1 to m_max.

IN NONPARAMETRIC REGRESSION

PCO criterion for PCO estimation of f

i
3

PCO crterion for bf PCO estimation of bf

-

FIGURE 2. f =

Estimations of f for m = 1 to m_max

fl, b= bg, ’I/T\l(l) =12 and ’ﬁ?,(Id]R) = 20.

PCO crterion for PCO estimation of

-

PCO crterion for bf PCO estimation of bf

-

FIGURE 3. f = f2, b= b1, m(1) = 10 and m(Idg) = 15.

-

PCO crterion for bf PCO estimation of bf

f
-

FIGURE 4. f

fg, b= bg, fl\l(].) =15 and ’r/l\’L(IdR) 6.
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On the other hand, for (f,b) = (f1,b2) and (f,b) = (f2,b1), let us generate 10 datasets of n = 250
observations of (X7, Y1) and, for each of these, select m € M via the PCO criterion introduced previously.
On the two following figures, the beam of all PCO estimations of f (resp. bf) is plotted at left (resp. at
right):

Beam of PCO estimations of bf

FIGURE 5. f = f; and b = bs. FIGURE 6. f = fy and b = b;.

APPENDIX A. DETAILS ON KERNELS SETS: PROOFS OF PROPOSITIONS [2.2], 23] AND [3.3]

A.1. Proof of Proposition @l. Consider K, K" € Kp(hmin). Then, there exist h,h’ € {hmin, ..., 1}%

such that
d 1 x — x4 d 1 x — 4
/ . I I q 1(. 0 _ I | q
x)—qu hqk( h ) andK(l’,I)— hk'( h/ >

q
for every x,z’ € R%.
(1) For every z’ € R%,

d
1
1K (2, )15 = [1%lI3¢ ] | o S k3%
q=1 "4

(2) Since s,e = K x5, [|sx.ell5 < [|%]7]]5]13-
(3) First,

d
sxr e = |[KIZE(( H

Then,
E((K(X1,.), K'(Xz,)0(Y2))3) = E((K * K')(X1 — X2)*((Y2)*)
< I flloll K+ KIZE(C(Y1)?)
< I llocllEli?s 50,0
(4) For every ¢ € L2(R?),
E((K(X1,.),%)3) = E((X *¢)(X1)%)
< flloo K * 9113 < 1 Flloo R N140113-

A.2. Proof of Proposition Consider K,K' € Kpg,, B, (Mmax). Then, there exist m,m’ €
{1,..., Mmax}? such that

m’

d Mmq my ,
HZQQ )andK HZ@T“ (xq)e )
g=1j=1 g=1j=1

for every x,z’ € R
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(1) For every 2’ € R%,

mq )
1K@ 00 =11 D2 @?q(ﬂfé)@?q(ﬂﬁg)/ e ()] (x)dz
a=1,7/=1 00
d mqg
= [I > @o)? <mg [ my < min
g=1j=1 q=1
(2) Since
mq
sl Z D @ Ol © - @ 90,

by Pythagore’s theorem,
(3) First,

5 < lIsll3-

d 7n; , d
s =E (V1) T D 0] “(X1.0)?| <mEEEM)?) [ m,

g=1j=1 q=1

On the one hand, if By, ..., B, satisfy Condition 7 then

B((K (X,.), K (X2, )02 = [

Rd

< [[fllocE

d , oo
() ] ﬁ%mﬁ%m/%W%ﬂW4

< flloo5 K7 e

On the other hand, if By, ..., B, satisfy Condition @, then

E((K(X1,.), K'(X2, )0(Y2))3) < E(|K (X1, )[31K (X2, .)[30(Y2)?)
= E(K (X1, X1))E(| K" (X2, )[30(Y2)?) < Tpsk e

(4) For every ¢ € L2(R%),

E((K(X1,.),0)3) = E [|> > (@@l @ @@l ) (ol @ @ 9')(X1)

j1=1 Jja=1
2

ma mq
<Uflloe | D2 Doty opt @ @ eltha(eft @ @@l ()| < [ fllcll®l3:

Jji=1 Ja=1 9

A.3. Proof of Proposition For the sake of readability, assume that d = 1. Consider K, K’ €
KB,,...B, (Mmax). Then, there exist m,m’ € {1,..., Mmax} such that

ZXJ ) and K'(2/,x) ZXJ Vo, 2’ € R.
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First, there exist my(m,m’) € {0,...,n} and ¢; > 0, not depending on n, K and K’, such that for any
x' €10,1],

’

mAm
(K (') osre)el = | D EE(Y)xG(X1))x ()
j=1
my (m,m’)
<o +2 Z E(0(Y1)(cos(2mjXy) cos(2mja’) 4 sin(2mj Xy) sin(2mja’))1j.1)(X1))
j=1
my(m,m’)
= +2| > E(UYy)cos(2mj(X; — ') 1y (X1))|-
j=1
Moreover, for any j € {2,...,my(m,m’)},

E(4(Y1) cos(2mj (X1 — 2'))1p,1y(X1)) = /0 cos(2mj(z — 2"))s(x)dz
_ 1 [sin@mj(z — x’))s .
S [ 2 ( )}o

# 1 [ =) ) L [ D) g

72 472 0o J 472
s(0) —s(1) a;(2’)  Bi(a’)
= : + =L
2 Jj 72

where a;(z’) := sin(2mjz’) and

1
472

By(a) = (<s'<1> — /(0)) cos(2mja’) — / cos(2nj(a — x’))s”<x>dx) .

Then, there exists a deterministic constant ¢y > 0, not depending on n, K, K’ and z’, such that

2 2
my (m,m’) my (m,m’)
/ 2 ' ay(2') ' BJ
(8) (K@@', ),sgoi<e|l+| Y - + }:
Jj=1

Let us show that each term of the right-hand side of Inequality are uniformly bounded in z’, m and
m’. On the one hand,

1
S x| Hﬁjllooz 77 < 5 Qoo+ [1570)-

(]

i
(] &\
/

On the other hand, for every x €]0, 7| such that [7/x] + 1 < my(m,m’) (without loss of generality),

my (m,m’) my(m,m’)

. [w/x] . . ..
Z EJ ) < Z gj ) + Z EJ )
j=1 j=1 j=[r/z]+1
s 2
(9) Sz [E} + (1 + [/x])sin(z/2) STtz

Since z — sin(z) is continuous, odd and 27-periodic, Inequality @ holds true for every x € R. So,

my(m,m’)
voall oy
J

Jj=1
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Therefore,

1
E sup <K<X1,.>,sK/,e>§] <o (14 (4 2P 4 @l e + 151 )
KaK/EK:Bl ,,,,, Bn (mmax)

APPENDIX B. PROOFS OF RISK BOUNDS

In this section, the proofs follow the same pattern as in Comte and Marie [2, [3].

B.1. Preliminary results. This subsection provides three lemmas used several times in the sequel.

Lemma B.1. Consider
Uk i e(n) =Y (K(Xi, JUY:) = sce, K' (X5, JUY5) = skr0)2 5 VE, K € Ky,
i
Under Assumption . (1,2,3), if s € L2(R?) and if there exists a > 0 such that E(exp(alf(Y1)])) < oo,
then there exists a deterministic constant qgq > 0, not depending on n, such that for every 6 €]0, 1],

Uk k' 0 1 5
IE( sup {| K,k 0(n)] . nﬁK’,fz}> < og(n) '

K,K'eK,, n? on

N

Lemma B.2. Consider
Vic.o(n ZHK 5 Y = sic il 3 VK € K.

Under Assumption . (1,2), if s € L2(RY) and if there exists o > 0 such that E(exp(all(Y1)])) < oo
then there exists a deterministic constant > 0, not depending on n, such that for every 6 €]0,1],
log(n)?

0
E (KSEIIC) {|VK€( ) — Skl — nﬁK,e}> < on

Lemma B.3. Consider
WK7K/7g(n) = <§K75(n; ) — SK ;s SK' 0 — S>2 ; VK, K’ clc,.

Under Assumption . (1,2,4), if s € L2(R?) and if there evists a > 0 such that E(exp(all(Y1)])) < oo,
then there exists a deterministic constant qgz > 0, not depending on n, such that for every 6 €]0, 1],

log(n)*
B s (Wicka(] — e — 1) ) < i
K,K'ek,, n

B.1.1. Proof of Lemma[B.1 Consider m(n) := 8log(n)/a. For any K,K' € K,
Uk k' e(n) = Ull(,K’,K(n) + UE{,K@@(”) + U?(,K’,Z(n) + U?(,K',e(”)

where
Uk s o(n) ==Y gl o o5 X3, Y3, X5, Y5) 1 1=1,2,3,4
i#j

with, for every (z',%), (z",y') € E =R% x R,

g (i y, 2y = (K@, )W) ey <mm) — ko (5, K (@, )W) ey <mm) — Sk o(n5 )2,
gic e o(ms 'y y, 7 y) = (K@ W) e smny = Sxe(5), K (2", )W) ety <mn) — ko o(n5))2,
gx e iy, 2y = (K@, )W) ey <mm) — ko (5, K (@, )W) ey smn) — Sxro(n3 )2,
g o’ y, 2y = (K@, )W) smm) — Sxo(n:), K' (@, )0 ) ey smm) — S 0(ni )2

and, for every k € IC,,,
spo(n; ) = E(k(X1, JOYD) vy <m(n)) and s ,(n;.) = E(k(X1, JOY1)1j0vy) >m(n))-
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On the one hand, since E(g}(7K/7g(n;ac’,y,X1,}/1)) = 0 for every (2/,y) € E, by Giné and Nickl [7],
Theorem 3.4.8, there exists a universal constant m > 1 such that for any A > 0, with probability larger
than 1 — 5.4e™?,

Uk ko) m

% < ﬁ(CK,K',e(n))\U2 + 05 ke (WA + b0 ()X? + agrer o(n)A?)
where the constants ax g’ ¢(n), bx k' ¢(n), ¢k k' ¢(n) and dx k ¢(n) are defined and controlled later.
First, note that

U%{,K',z(”) = Z(SDKJ{QZ(W X, Y, X;,Y;)

ij
(10) —Vr,k0(n; X, Yi) — e re(n: X5, Y5) + E(ek ko e(n: X, Y, X5, Y5))),
where
e ey y, 2 ") = (K (@ )0Y) L) <) K (@ )0 )L je <mn))2
and

Ve (s’ y) = k@', )W) ey <mny» S o (05 )2 = Elpr i e(n; 2, y, X1, 1))
for every k, k' € K, and (2',y), (z”,y’) € E. Let us now control ax k' ¢(n), bx i’ e(n), ¢k k ¢(n) and
DK,K’,Z(”)Z
e The constant ag g/ ,(n). Consider
agrre(n) = sup g e e(nial iy 2"y,
(a"y), (=" y")EE
By , Cauchy-Schwarz’s inequality and Assumption (1),

ar ke(n) < 4 sup K (2", )0(y) 100y <mn)» K (2" )0 )L 100y 1<m(n)) 2]
(z',y),(=",y' ) EE

< 4m(n)? ( sup K(m’,.)Hg) ( sup |K’(3:”,.)||2> < dmg m(n)?n.
I/G]Rd I”GRd

So,
1 4

2 2,2
ﬁaK,K’,Z(n))\ < ﬁmiggm(n) A°.

e The constant by i ¢(n). Consider
br.kr0(n)’ :=n sup E(Q%(,K/,z(néxlay,Xth)z).
(z'y)EE

By , Jensen’s inequality, Cauchy-Schwarz’s inequality and Assumption (1),

bi i e(n)? < 16”( Su)pE]E(<K(‘T/?')E(y)llé(y)\gm(n)aK/(Xh')E(Yl)l\f(Y1)|<m(n)>§)
x'y)€E

< 16nm(n)® sup 1K (!, BB (X1, J) Ly <mn [B) < 16, enPm(n) s
z/€R

So, for any 6 €]0, 1],
1 3m\7? 2 . o\ 1 1/2
?[’K,K',z(n)/\?’/2 <2 <9) mmzc<zm(”)>\3/2 X <3m> /2K

0 12mA3

< —S§ =+
S 3mn K on

e The constant cx g ¢(n). Consider
ki 0(n)? = n’E(gk g o(n; X1, Y1, X5, Y2)?).
By (L0), Jensen’s inequality and Assumption [2.1}(3),
cx,x0(n)” < 16R”E((K (X1, JY1) L) <min), K (X2, )0(Y2) 1 00va) 1 <m(n))3)
< 16n°m(n)’E((K (X1, .), K'(X2, )0(Y2))3) < 16my n*m(n) sk .

m;c,gm(n)?
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So,
1 12 o 0 12mA 9
IO K e(n)A 73111 Sk ‘+Tn myc m(n)”.

e The constant d0x g/ ¢(n). Consider

Ok 0(n) ;:(m;p B ai(Xi, Yi)bi (X5, Vi) gk ser o3 X, Vi, X5, Y5) |
a,b)eA i<j

where

n—1

A=< (a,b) 1 Y E(ai(X;,Y;)?) < 1and Y E(b;(X;,Y;)%) <1
=1 j=2

By , Jensen’s inequality, Cauchy-Schwarz’s inequality and Assumption (3),

Ok xre(n) <4 sup E Z Z lai (X, Yi)bi (X5, Y) o k0 0(n; X3, Vi, X5, ;)|
(a,b)eA =1 j=i+1

< Anm(n)E((K (X1,.), K' (X2, JU(Y2))2)Y? < dmonm(n)s;/7,.

So,
1 0 12mA2
5 / )\ < _— ’ 2.
2 Ok K ’g(n) 3mn5K o+ on mlC,lm(n)
Then, since m > 1 and A > 0, with probability larger than 1 — 5. de=?,

UL o ()| 8 40m?
w < skt mcm(n)(1+ A)>.

So, with probability larger than 1 — 5.4|KC,[e™?,

Uk xr o(n 0 40m?
Sk.e(n,0):= sup {|KK2A)| - 5K/’g} < mic em(n)?(1 4+ )3,
K,K'ekn, n n n

For every t € R, consider

’ 1/3 2 )
=1 _ ith = .
Aic,e(n, 0,t) + <m;c . 9)> with mg ¢(n, 0) o K. (n)

Then, for any T > 0,

E(S]C’g(n,e)) <T+ /oo P(S}C’Z(Tu 9) > (1 + )\;Qg(n,&t))?’m;c’g(n, 9))dt

T
T1/3 : > 1—r1/3/2
< 2T + 5.4C1|/Cn|m)cvg(n,9) exp <W> with ¢ = /O € / dr.
Moreover,
1 2 40 - 8%m?
mic g(n,e) < c2 Og(n) with Co = 7mm;c l-
’ on a? '
So, by taking
1 5
T = 23C2 Og(n) ,
on

and since |[KC,,| < n

5

Kl log(n)°

n < (24 + 5.4(1)(2
n

1 5
E(S}C,g(n,e)) < 24C2 Og;:) + 5.4C1m;c’g(n,9)

13



14 HELENE HALCONRUY* AND NICOLAS MARIE'
On the other hand, by Assumption (1)7 Cauchy-Schwarz’s inequality and Markov’s inequality,

E(KIS(UPIC gi,Kne(n;Xl,K7X2,Yz)|> <dAm®n) > BV ey smm (K (X1, ), K' (X2, .))2])
JK'eKn

K, K'€kn
< 4m(n)m;<,zn\’€n\2E(£(Y1)2)1/2P(|€(Y1)| > m(n))1/2 < c:;@
With 32
&5 = —mg E(U(Y1)")*E(exp(al((¥)])/2.
So,

Uz ., ,(n 1
E sup | K,K2,£( ) < e og(n)
K,K'ek, n n

U .. ,(n
E( sup Uk .0 )|><c310g(n).

K, K'e, n? n

and, symmetrically,

By Assumption (1)7 Cauchy-Schwarz’s inequality and Markov’s inequality,

E| sup lgkre(n X, Y, Xo, o) | <40 ) E(LYDEY2) 1)) jeva) > mm (K (X1,.), K'(X2,.))2])
K,K'eKp K,K'e€Kn

< dmp K PE(C(YV)DB(A(Y)] > m(n) < <

with
¢y = dmy JB(L(Y1)?)E(exp(alf(Y1)])).
So,
E( sup |U?(,K/2,e(“)|> < c‘;.
K,K'ek, n n
Therefore,

Us s 0 log(n)® 1
E( sup [1Umre®l 00 VY 9145 40)6, 280" 4 o tos(n) | ca
K, K'€Cn n? n on n n®

B.1.2. Proof of Lemma([B.4 First, the two following results are used several times in the sequel:

Isx.ell3 < E(K(Yl)Q)/ fa') | K(2',2)*a(dz)Aa(da’)

R Rd
(11) < E((V1)2)micn

and

E(Vi.e(n)) = E(| K (X1, )(Y1) — s.ell3)

(12) = E(IK (X1, )Y + lsxell3 — Z/Rd sic0()E(K (X1, 2)0(Y1)Aa(dw) = sxce — [[sx.ell3.

Consider m(n) := 2log(n)/a and
vie(n) == Vi o(n) — E(Vi e(n)) = vk o(n) + vi 4(n),

where
n

. 1 ) . )
Ve () = = 37 (Gl o5 X2, i) = Bl (3 X5, Y0) 3 5 = 1,2
=1

with, for every (2/,y) € E,
gre(m; 2’ y) = K (', )l(y) — sk.ell3Lie0y))<mn)
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and
i’ y) = | K (@', )(y) — sxell3Lje0) > mn)-
On the one hand, by Bernstein’s inequality, for any A > 0, with probability larger than 1 — 2e™*,

2\ A
[vk,e(n)] ore(n) + exce(n)
where
19%.0(15 ) lloo
crce(n) = 2 and v p(n) = Elgl o(n: X1, Y1)%).
Moreover,
1
CK,g(n) = g sup ||K(m/,)€(y) — SK,Z||§1M(y)|<m(n)
(z,y)EE
2 2
< 3 (2 sup I I + sl ) < 5 n)? + BV e
z’/ €Rd

by Inequality , and

i e(n) < [lggc,e(n; )l E(Vi,e(n))
< 2(m(n)? +E(U(Y1)?))mc,en(sie — [lsk.ell?)
by Inequality and Equality (12). Then, for any 6 €]0,1],

2) + 2 (m(n)? + E((V)?)mi g

vk o(n)] < 2\//\(1“(7”0)2 +E((Y1)?))mic,e(srce — |55 .e] 3

5\
< 95[(’@ + 3—0(1 + ]E(Z(Yl)Q))m;g,gm(n)Q

with probability larger than 1 — 2e~*. So, with probability larger than 1 — 2|KC,,|e ™,

vk ,(n 0 5\
Ske(n,0) := sup {M - ’I’L5K7é} < %(1 + E(£(Y1)?))myc gm(n)?.

For every t € Ry, consider

5
= ith = (1 +E({(Y})> 2,
)"C,Z(nveﬁt) m]@g(n,@) wit m’Cl(n’ 9) 39TL( + (f( 1) ))m’C,Zm(n)
Then, for any T > 0,
E(Sks(n.0) < T+ / P(Sxc.¢(1,8) > ic.o(n, 6, )y o(n, 6))dt
T

T oo
< 2T 4 21| Ky, [mc (1, 6) exp (Qm,”(ne)> with ¢; = / e 2dr = 2.
s ) 0

Moreover,
log(n)? . 10
mx,g(n,e) < Co ge(n) with Cy = @(1 +E(£(Yl)2))m)c,g.
So, by taking
1 3
T = 2, og(n) ,
on
and since |K,| < n,
log(n)? K, log(n)3
E(Sk.c(n,0)) < 4cs gg(n) + dmpe o (n, ). - | <56, gg(n) .
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On the other hand, by Inequality and Markov’s inequality,

g o(n)] 2
E| sup =22 gE(sup|BXXh)aE)sKﬂ@han)Nﬂm>
Kek, n n Kek,
4 o7 1/2
C
< -E ’alﬁf sup || K(X1,.)[3+ sup |lsk.el3 ] P(|6(Y1)| > m(n))/? < =
n Kek, Kek, n
with
¢ = S (E(£(Y1)*)?E(exp(alf(Y1)]) 2.
Therefore,

1 3
on n

Kek, n n
and, by Equality (12), the definition of v ¢(n) and Assumption [2.1}(2),

1 0 1 3
E( ek {WK’Z(H) — sl = 5“}) < 8, 08" | G ¥ M
Kek, (N n on n

B.1.3. Proof of Lemma[B.3 Consider m(n) = 12log(n)/a. For any K,K' € K,,
Wi i e(n) = W%(,K/,é(”) + WIQ(,K’,Z(TL)

where
) 1< . )
W;{,K’,Z(n) = E Z(g%(’K/j(naXu}/Z) - E(Q;{yK’y[(anmY;))) )= ]-72
i=1

with, for every (2/,y) € E,
gxc.rer o y) o= (K (', )0(y), sk 0 — 8)2110y) | <m(n)
and
9%(,}(/,12(”; ll?l,y) = <K($/a (), SK' 0 — 5>21|é(y)\>m(n)-
On the one hand, by Bernstein’s inequality, for any A > 0, with probability larger than 1 — 2e=*,

2\ A
(Wi g o(n)] < ;UK,K',Z(H) + ECK,K’,Z(H)

e Ik o)1
g r o\ ) |loo
CK,K’,Z(”) = % and DKVKIVZ(’HJ) = ]E(g}(7K,7g(n; X17Y1)2).

Moreover,

1

¢k i (n) = 3 sup (K (2, )0(y), sk 0 — 8)2|Lje(y)|<m(n)
(z’,y)eEE
1 1
< gm(n)llskre = sllz sup IK (2", )]l < gmllc/jnl/2m(n)||81<zf = sll2
x/E]Rd

by Assumption [2.1}(1), and
v e(n) <SE((K (X1, Y1), 8500 = $)3L10(vi) | <m(m) < m(n) mc ol|srer e — 53
by Assumption [2.1}(4). Then, since A > 0, for any 6 €]0, 1],

2 A 12
Wi ko o(n)] < \/nm(”)2mlc,é||31<’,é — )13 + Wm;c/,gm(”)HSK',e — 52
mi e
26n
with probability larger than 1 — 2e~*. So, with probability larger than 1 — 2|KC,,|e™?,

m
Sice(n,0) = sup {|Wi g o(n)] = Ollsicre — s[5} < T2 m(n)?(1+ V)2
K K'€,, 20n

< Osxre—s|3+ m(n)2(1 + \)?
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For every t € R, consider

1/2
. mic.e 2
A 0,t) = -1 _— th 0) = .
K’g(n, R ) + (mlge(n, 0)> wl m;g,g(n, ) 20m m(n)
Then, for any T > 0,
B(Sico(n0) < T+ [ B(Scn6) > (14 Ac.an,6,6) P o(m, )
T
T1/2 ) 00 L1/2 0
< 2T + 261 | Ky |myc ¢ (n, 6) exp (-W) with ¢q :/0 el =2y,
Moreover,
1 2 122
mi ¢(n, 9) < 0o Og(n) with ¢ = —=my .
E 20{2 )
So, by taking
1 4
T — 2%, og(n) 7
on

and since |IC,,| < n,

n 1 *
n on

On the other hand, by Assumption (2,4), Cauchy-Schwarz’s inequality and Markov’s inequality,

. log(n)*
E(Sk.¢(n,0)) < 2%¢ Oge(:) + 2c1mic o (n, 0)

E( sup |W12(,K’,Z(n)|) < QE(g(Yl)glle(Yl)\>m("))1/2 Z E(K(X1,.), 85,0 — 8)3)'/?
K K'e, Kok,

C
< 2mgllsre = slLE(E) Y VAL PR(AY)| > mn) V< 2

with
¢3 = 2m S (7 + [[s]l2)E(C(Y1) )V E(exp(alé(Y)]) V4.
Therefore,
log(n)4 C log(n)4
B (s (Wickra(m)] = e =518} ) < 2+ 2000 B0 4 © < o B0
K,K'eKn, n n on

with cq = (23 + 2¢1)ca + c3.

B.2. Proof of Proposition For any K € K,,,

-~ U p(M V n
(13) [5k,e(n;.) = sk.ell3 = Kﬁfz( ) + Kﬁ( :

with Uk ¢(n) = Uk, ik ¢(n) and Vi ¢(n) = Vi k¢(n). Then, by Lemmas and

N sie| 0 log(n)®
E (KSUIIC)n {’||3K,Z(n§ ) —skll3 — T‘ - n5K,Z}> Sea—,-

with gz = 1+ @2
B.3. Proof of Theorem On the one hand, for every K € K,,,

~ S5K.¢
ISrc.e(mi) = sll3 = (1+6) (llswe = 3 + 22

can be written
SK.¢

ISk.e(n;.) — skell3 — (1+ 9)7 + Wi ke(n) = 0lsk.e — s|3.

Then, by Proposition 2.4 and Lemma [B23]
~ 5 log(n)®
B (sup (I sl = (1+0) (I sl + *54)} ) < a5

Kek, On

17
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with g = a1+ g3 On the other hand, for any K € IC,,,

e = sl13 = II5k.e(n;) = sll3 = [15x.e(ns.) = sx.ell3 = Wi e(n).

Then,
SKy¢ N ot
(1—-0) (HSK,E — s[5+ 1; ) —I8k.e(n;.) — 5|2 < [Wi.e(n)| = Ollsk.e — s|? + Ago(n) — 025
where 5
3 £
Ak e(n) = ’||5K75 — sk.ull2 - KL
By Equalities and (12)),
U 2
A(n) = K,ZZ(TL) N vice(n)  |lsk.ell3 |
n n "

By Lemmas [B:2) and [BI} there exists a deterministic constant ¢; > 0, not depending n and 6, such that

E( sup { Acoln) - 5“}) < o B80S

KeK, n on

By Lemma,

log(n)3
E( sup {|WK,e<n>|—e||sK,e—s|§}> <
Kek, n

Therefore,

SK.0 1. 9 _ log(n)®
E _ 2 L S ) — <
(KSél’IC)n {||SK,4 sl + == = 7 I5xe(ns) 82}) I )

with g = @mg+ «.
B.4. Proof of Theorem The proof of Theorem [3.2]is dissected in three steps.

Step 1. This first step is devoted to provide a suitable decomposition of
135 ¢(n5 ) — sll3-

First,

~

157 o(n3 ) = sll3 = 155 (75 ) = oo (n; I3+ [5x0,e(ns ) = slI3 = 2(8ko,0(ns ) =55 o (n5 ), S (5 ) = 8)2

From @, it follows that for any K € K,
15 o(5) — sli3 < IBkce(ns ) — sll3 + pen(k) — pen(R) + 5 e(ni ) — 5112
—2(Sko,0(n; ) = 55 (1), Sk e(n5) = 8)2
(14) = [ISKe(n; ) = slI3 + ¥on (K) — v (K)

where
Y (K) = 2(5k e(n;-) — 8,5k, 0(n; ) — $)2 — pen(K).

Let’s complete the decomposition of |57 ,(n;-) — s[|3 by writing

Ilpn(K) = Q(wl,n(K) + ¢2,n(K) + wB,n(K))a
where

i) = Dbt )

Yo (K) = —— (ZK(YMKO(XW)JK,M + ) UY)(K (X, -)>8Ko,e>2> + %(8&,@,8&02 and

=1 =1
Y30 (K) = Wik ko e(n) + Wiy k0(n) + (Sk.0 — S, SKo.0 — S)2-
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Step 2. In this step, we give controls of the quantities
E(¢hs.n(K)) and E(¢; n(K)) 5 i = 1,2,3.
e By Lemma [B.] for any ¢ €]0, 1],

log(n)®

0
E K)|) < —
(1K) < s+ ammy

and

= 0 1 5
E(j1n(K)]) < ~Elsg ) + Oge(:) '

e On the one hand, for any K, K’ € K,,, consider
Uy (K, K') Zf s SK7.0)2-
Then, by Assumption [3.1]

E ( sup |Wo, (K, K/)|) < E(U(W)?)YV’E < sup (K (Xy, .),sKgg)%) v
K,K'ek, K,K'€K,
< mE()).
On the other hand, by Assumption (2),
|(sk,0, SFco.0)2] < My e

Then, there exists a deterministic constant ¢; > 0, not depending on n and K, such that
€1

E(|2.n(K)D) < & and E(jan(R))) <
e By Lemma [B:3]

0 log(n)*

B (K))) < Ulssce = sl + 1w — s1) + Bemgr o)
0 1/2 9 1/2

F(0) smca— sl (2) N — sl

0 6 1 log(n)*
< 5||sz<,e — 5|2 + (4 + 9) llsxo.c — |13 + Sagz 0

and

~ 0 0 1 log(n)*
Bl (R < §E(lsre, — 18+ (G + 5 ) oo = oI + Sz i

Step 3. By the previous step, there exists a deterministic constant ¢s > 0, not depending on n, 6, K
and K, such that

5 log(n)?
B () < 0 (Lo =31+ 20) 4 (G4 5 ) lswe = ol + car B
n
> log(n)°
BB < 08 (lsg, — sl + 20 ) 4 (545 ) s = ol + 50

Then, by Theorem

o o 2 ¢ | qzm ) log(n)®
< 7 ) — g2 vz 2 © &5
B0 € 2 gB0ens) sl + (5 + 5 ) oo = sl + (5 + 22 ) 22

and

and
5

2 2 €2 3 |\ log(n)
+ 0) lskoe — sll5 + (9 + 1_0> )

[NCF IS

n

N 9 R )
B(un(R)N) < 125815 n5) o1+
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decomposition , there exist two deterministic constants cg, ¢4 > 0, not depending on n, 6, K and
, such that

E(I5g () — s12) < E(Sic.e(n) — 512) + E(lon(K)]) + Bl (R))
< (14 125 ) BllSatr) = sIB) + Bz o5 — oI
¢ log(n)®
=

€3
+5 llsxoe = sllz + 5

is concludes the proof.
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