
Noname manuscript No.
(will be inserted by the editor)

A Multi-Layered Component-Based Approach for
the Development of Aerial Robotic Systems: The
Aerostack Framework

Jose Luis Sanchez-Lopez · Martin Molina ·
Hriday Bavle · Carlos Sampedro · Ramón
A. Suárez Fernández · Pascual Campoy ·

Received: date / Accepted: date

Abstract To achieve fully autonomous operation for Unmanned Aerial Systems
(UAS) it is necessary to integrate multiple and heterogeneous technical soluti-
ons (e.g., control-based methods, computer vision methods, automated planning,
coordination algorithms, etc.). The combination of such methods in an operational
system is a technical challenge that requires efficient architectural solutions. In a
robotic engineering context, where productivity is important, it is also important
to minimize the effort for the development of new systems.

As a response to these needs, this paper presents Aerostack, an open-source
software framework for the development of aerial robotic systems. This framework
facilitates the creation of UAS by providing a set of reusable components speci-
alized in functional tasks of aerial robotics (trajectory planning, self localization,
etc.) together with an integration method in a multi-layered cognitive architecture
based on five layers: reactive, executive, deliberative, reflective and social.

Compared to other software frameworks for UAS, Aerostack can provide hig-
her degrees of autonomy and it is more versatile to be applied to different ty-
pes of hardware (aerial platforms and sensors) and different types of missions
(e.g. multi robot swarm systems). Aerostack has been validated during four years
(since February 2013) by its successful use on many research projects, internati-
onal competitions and public exhibitions. As a representative example of system

Jose Luis Sanchez-Lopez · Hriday Bavle · Carlos Sampedro · Ramón A. Suárez Fernández ·
Pascual Campoy
Centre for Automation and Robotics (CAR), CSIC-UPM.
Calle Jose Gutierrez Abascal 2, 28024 Madrid (Spain).
Tel.: +34 91 336 30 61.
E-mail: jl.sanchez@upm.es and pascual.campoy@upm.es

Martin Molina
Department of Artificial Intelligence, Technical University of Madrid (UPM).
Campus de Montegancedo S/N, 28660 Boadilla del Monte, Madrid (Spain).
E-mail: martin.molina@upm.es

Jose Luis Sanchez-Lopez · Martin Molina · Hriday Bavle · Carlos Sampedro · Ramón A. Suárez
Fernández · Pascual Campoy
Computer Vision and Aerial Robotics (CVAR), Technical University of Madrid (UPM).
Webpage: www.vision4uav.eu.

2 Jose Luis Sanchez-Lopez et al.

development, this paper also presents how Aerostack was used to develop a system
for a (fictional) fully autonomous indoors search and rescue mission.

Keywords Aerial robotics · Robot architecture · Autonomous behavior ·
Distributed robot systems · Multi-robot coordination · Quadrotor · Mobile
robots · Remotely operated vehicles · MAV

1 Introduction

A high degree of autonomous operation of Unmanned Aerial Systems (UAS), is
important to simplify their use by human operators and to increase the safety
of flights in dynamic environments. To provide fully autonomous operation, the
research community in aerial robotics is proposing solutions for a number of spe-
cific problems such as localization and mapping on unstructured and dynamic
environments, precise control of the aircraft with collision avoidance, trajectory
and mission planning with a high level of cognition and intelligence, human-robot
interaction, robot-robot interaction, safety and fault tolerance among others.

However, the development of a completely integrated solution for full autonomy
requires to combine in a single architecture a number of highly interrelated and
specialized building blocks. This integration creates new challenges (e.g., efficient
multi-tasking execution, adaptability to be used in different problems, scalability,
etc.).

A number of commercial and open-projects exist that aim to develop complete
software architectures (see Lim et al (2012) for a complete survey). To the best
of the authors’ knowledge, the most well-known open-source commercial oriented
projects are the “PX4 Flight Stack”, and the “APM Flight Stack”. These projects
aim to create a full software stack that provide the UAS a high level of autonomy
including for example controllers to command the drone giving a predefined set
of waypoints, a state estimator that fuses the measurements given by different
sensors to provide an estimation of the full state of the UAS (pose, velocity, acce-
leration), and a reactive obstacle avoidance that generates the appropriate motion
commands to evade obstacles perceived. Nevertheless, despite of all these available
components, the user is required to be in the loop while the UAS is performing a
mission, because he or she has to take control of the UAS in case of unexpected
changes of the environment, having to constantly monitor the mission. In addition,
the UAS has limited interaction capabilities with the environment and with the
users.

On the other hand, the activity of several research groups has produced some
open-source research oriented architecture frameworks for UAS, being the most
relevant ones, up to the authors’ knowledge:

– “asctec mav framework”, developed by ASL - ETHZ, has a special focus on
autonomous navigation of Ascending Technologies Aircrafts and it is not com-
patible with any other aircraft platforms.

– “hector quadrotor” Kohlbrecher et al (2014) framework, developed by HEC-
TOR - TU Darmstadt, focused on heterogeneous cooperation for search and
rescue (SAR) tasks.

– “telekyb” Grabe et al (2013) framework, developed by HRI - MPI. It allows the
fully autonomous multi-UAS navigation. Although it is very powerful, the main

The Aerostack Framework 3

drawback is its rigid architecture that even allowing to exchange for modules
with similar functionalities depending on the user’s need, it does not allow the
user to easily change the architecture design for new capabilities.

– “Paparazzi” Brisset et al (2006) project, developed and used by ENAC and
MAVLAB - TUDelft. This project includes not only the software framework
but also the hardware autopilot and sensors and it is not compatible with any
other commercial hardware.

– “Twirre” Van de Loosdrecht et al (2014) architecture, developed by NHL Com-
puter Vision proposes a hardware and software design. It is focused mainly on
hardware and it does not report a high level of autonomy.

Even though this line of research has produced important advances, the referred
work shows that there are important remaining challenges related to: (1) level of
autonomy, i.e. more complex hybrid architectures able to provide more degree of
autonomy and (2) versatility, i.e. more versatile integrated solutions able to be
used for different applications and physical aerial platforms.

In order to fulfill these needs, this paper shows the authors’ recent progress and
main results in this line of research. In Sanchez-Lopez et al (2016), Aerostack12

(a software framework for AErial RObotics) was firstly introduced. The authors
named Aerostack to a framework that integrates and consolidates results of four
years (since February 2013) of research work on both research of components for
aerial systems and their integration with tests in efficient architectures Sanchez-
Lopez et al (2014, 2015b). As a result, Aerostack was created as a more mature,
robust, reliable, documented, tested and validated software framework.

The advantages of Aerostack with respect to other architectures and frame-
works is twofold: (1) a complete multi-layered architectural organization to support
fully autonomous flights and (2) a versatile software framework for developing and
integrating new software components.

The multi-layered architecture includes both low-level layers for reactive be-
havior and high-level layers for intelligent behaviors. At the low-level, Aerostack
provides a number of specialized reusable components for visual perception, mo-
tion controllers, etc. At the high-level, Aerostack includes a number of components
to provide a high degree of autonomy and self-adaptation in complex and dynamic
environments with fault management procedures to increase the degree of safety.

The versatility of Aerostack is based on the following two main features. On the
one hand, it is flexible enough for a wide range of applications from teleoperated
flights of single UAS to highly autonomous missions of multi-robot UAS platforms.
On the other hand, Aerostack is hardware-independent. It is focused on software
development that is designed to work as part of the operative system, which means
that it requires the appropriate hardware design as well as its proper firmware and
middle-ware software components.

The main contribution of this paper is to describe Aerostack in depth, provi-
ding details of every subsystem of its architecture together with implementation
examples that illustrate the general concepts. This papers shows as well a complex
mission where a set of UAS navigate in a search and rescue mission in a complex
environment, with emergent cooperation between the UAS and looking for a tar-

1 Aerostack webpage: http://www.aerostack.org/
2 Aerostack Github repository: https://github.com/Vision4UAV/Aerostack

http://www.aerostack.org/
https://github.com/Vision4UAV/Aerostack

4 Jose Luis Sanchez-Lopez et al.

get. This mission allows to demonstrate the full level of autonomy achieved by
Aerostack, with emergent cooperation, and adaptation to changing environments.

The remainder of the paper is organized as follows: Sect. 2 presents the key
aspects of Aerostack framework and its architecture. Sect. 3 describes in detail the
subsystems of Aerostack. In Sect. 4 a full mission demonstrates the capabilities
and performance of Aerostack. Finally, Sect. 5 concludes the paper and points out
some lines of future work.

2 Aerostack Framework

This section describes how the Aerostack framework is organized in a multi-layered
architecture. The section also describes the library of reusable components provi-
ded by Aerostack and how the library can be used to build a new architecture for
a specific UAS.

2.1 The Multi-Layered Model

An important contribution of Aerostack is a solution to organize robotic soft-
ware components in an efficient architecture. For this purpose, we have defined a
multi-layered organization model as an architectural pattern with subsystems and
functional components.

The multi-layered organization model follows the hybrid reactive/deliberative
paradigm, i.e., an architecture that integrates both a deliberative and reactive
approaches Arkin et al (1987) and Murphy (2000). The presented design (repre-
sented in Fig. 1) includes five layers: reactive, executive, deliberative, reflective
and social.

The first three layers correspond to the popular hybrid design known as the
three layer architecture Gat (1998) and Russell and Norvig (2003): (1) reactive
layer with low-level control with sensor-action loops; (2) executive layer (or se-
quencing layer) that accepts symbolic actions from the deliberative layer and ge-
nerates detailed behavior sequences for the reactive layer; this layer also integrates
the sensor information into an internal state representation; and (3) the deliberative
layer generates global solutions to complex tasks using planning (e.g., planning
optimal trajectories). The reactive layer functions in the present while the delibe-
rative layer uses information from the past and projection to the future.

The reactive layer is a sensor-action loop that includes feature extractors (in the
feature extraction system) and motion controllers (in the motor system). Feature
extractors may read simple states of sensors or may implement complex computer
vision and pattern recognition algorithms (signal processing, recognition of objects
and basic relationships). Motion controllers typically implement combinations of
Proportional-Integral-Derivative (PID) controllers (e.g., cascade controllers). For
example, these type of controllers can accept orders about a desired value for
a variable (position, speed, altitude, and yaw) in form of single commands or
simultaneous commands that are translated into low level commands to be sent
to actuators.

To increase the degree of autonomy of robots, Aerostack includes a reflective
layer based on cognitive architectures Sloman (1999); Davis (2002); Brachman

The Aerostack Framework 5

Fig. 1: Main components of the multi-layered architecture of Aerostack. The ar-
chitecture is formed by n heterogeneous robotics agents and the human operators.
Every robotic agent shares the same layered architecture, although it can have
different component implementations as well as different hardware. The architec-
ture includes five layers: the social layer allows the robotic agents to communicate
with the rest of agents. The reflective layer supervises the other layers to see if the
robot is making progress to its goals and to react in the presence of problems. The
deliberative layer generates global solutions to complex tasks using planning. The
executive layer takes actions from the deliberative layer and generates detailed
behavior sequences for the reactive layer; it additionally integrates the sensor in-
formation into an internal state representation. Finally, the reactive layer counts
with low-level control with sensor-action loops.

(2002); Singh and Minsky (2005) to simulate certain self-awareness able to su-
pervise the other layers. The reflective layer helps to see if the robot is actually
making progress to its goal and to react in the presence of problems (unexpected
obstacles, faults, etc.) with recovery actions.

Aerostack includes also a social layer with communication abilities, as it is
proposed in multiagent systems and other architectures with social coordination
(e.g., Duffy et al (2005)). In this level is important to establish an adequate com-
munication with human operators and other robots.

Aerostack has another functional organization in seven subsystems. Their functi-
onal specification, together with a description of their inputs and outputs is done in
an abstract level (thanks to a complete ontology), avoiding to describe algorithmic
or implementation details. The seven proposed subsystems, deeply analyzed in
Sect. 3, are the following: Feature Extraction System, Motor System, Situation
Awareness System, Executive System, Planning System, Supervision System, and
Communication System.

The architecture is also consistent with the usual components related to gui-
dance, navigation and control of unmanned rotorcraft systems Kendoul (2012).
In particular, the Navigation System (NS) corresponds to our feature extraction
system and situation awareness system, the Guidance System (GS) corresponds

6 Jose Luis Sanchez-Lopez et al.

to our executive system, planning system and supervision system and, finally, the
Flight Control System (FCS) corresponds to our motor system.

2.2 Features of Aerostack Framework

Concerning the behavior of UAS, the proposed multi-layered organization has the
following characteristics:

– A cognitive model to support autonomous behavior. The multi-layered model
is a solution that identifies and organizes the required cognitive processes to
support autonomous behavior, integrating processes for perception, reactive
control, deliberative reasoning, supervision, etc. The proposed model includes
ideas from the state of the art in artificial intelligence for autonomous robotics
such as hybrid paradigms (reactive/deliberative), reflective behavior and social
coordination.

– Separate representations to facilitate communication. The organization is sepa-
rated in layers which is useful to have representations at different levels. This
is important, for example, to offer a more natural interaction with operators
using their language (e.g., with concepts such as mission goals, tasks, skills,
etc.) instead of the low level technical jargon used for certain components (e.g.,
set points for controllers).

– A functional division for efficient execution. The architecture is divided into
functional blocks, i.e., blocks that play a functional role. This facilitates the
implementation of the architecture as a set of processes using a distributed
network platform with different computers and a multitasking operating sy-
stem. This is important to provide the required efficiency for real flights with
real time constraints.

Considering a robotic engineering viewpoint, where productivity is important
for rapid development and easy maintenance of UAS, we have proposed a multi-
layered organization paying special attention to the following features and advan-
tages:

– Precise meaning of terms. We have formulated the components of the archi-
tecture using common and generally accepted precise meanings from the state
of the art of autonomous robotics. The use of standard meanings facilitates
acceptance by general developers, understandability and, consequently, makes
it easier the work for maintenance. Besides the names for architectural compo-
nents, an ontology has been defined for aerial robotics, to be used as common
terminology for component interoperability.

– Uniform hierarchical organization. We have organized the architecture accor-
ding to homogeneous blocks at three abstract levels: layer, system and process.
The homogeneity and hierarchical organization also facilitates understanding
the complexity of the model.

– Implementation independent. The description is formulated defining the role
of components, but independently from specific implementations. Thus, the
model is not committed with specific hardware and software, which facilitates
reusability for different platforms.

The Aerostack Framework 7

2.3 The Aerostack Library of Aerial Robotic Components

Aerostack provides a library of reusable software components for aerial robotics.
We use the name of process to call each elemental component of the library. The
notion of process is appropriate since it helps to divide the whole problem of auto-
mated support for UASs into partial functional roles. Each process has a function,
i.e., a purpose or practical use for which the process is designed, and it is named
as an agent according to its main function, for example: mission planner (main
function: planning a mission) or obstacle recognizer (main function: recognize ob-
stacles).

The computational support of a process is designed as an atomic executable
unit (a data processor) that receives input data and, as a result of a certain infor-
mation processing, generates output data. The library of processes is implemented
using ROS (Robot Operating System) Quigley et al (2009) and each process in
Aerostack is implemented as a ROS node. Aerostack runs concurrently processes in
a multitasking operating system using the inter-process communication methods
provided by ROS: (1) a publish-subscribe mechanism using messages and topics,
and (2) a request-reply scheme (services). This multitasking support is important,
for example, to execute independently processes at lower level layers (executive
and reactive, with frequencies between 10 Hz and 1000 Hz) and higher level layers
(reflective and deliberative, with frequencies between 0.1 Hz and 10 Hz). Planning
algorithms can be computationally more expensive, so they must be decoupled for
real-time execution and avoid slow down the reaction time.

The library of components provides modularity and it is open, so new proces-
ses can be included easily in the future, without changing the core of the system
and the rest of processes. To create a new process it is necessary to program the
corresponding algorithms and data structures in a class (e.g., in C++ language)
and apply certain Aerostack conventions to be part of the library. For example, it
must be created as a ROS node and it must be subclass of a specific class (cal-
led DroneProcess) that provides a common functionality (supervision, execution
control and standard error messages)

Processes can also be used by developers outside a multi-layered architecture
to reuse certain algorithms (e.g., computer vision algorithms) for a new UAS.
In this case, they can be used as single classes without the dependence on the
multi-layered architecture.

2.4 The Component Assembly Mechanism

To develop a software architecture for a particular UAS, the developer follows a
compositional modeling approach using the processes from the library as model
fragments or building blocks. The developer can select the appropriate processes
from the Aerostack library and compose the global architecture by assembling and
adapting the selected components configuring their inputs, outputs and local para-
meters (if they have parameters). The developer selects the components according
to the required features for the UAS. For example, if the developer wants to build
a UAS with the feature self-localization by visual markers she or he must select
four processes: visual markers localizer, obstacle detector visual marks, obstacle

8 Jose Luis Sanchez-Lopez et al.

distance calculator and self localizer. The relation between features and processes
is documented in the Aerostack library to facilitate this selection to the developer.

Processes are grouped in systems. A system is a complex module that includes
a set of interconnected processes that provides a common functionality. In general,
the idea of a process in Aerostack is similar to the concept of an atomic functional
block used in the SysML (System Modeling Language, a general purpose modeling
language used in systems engineering) with input/output ports. The idea of system
similar to the concept of functional block (composite block) used in SysML, with
input/output ports.

Aerostack uses an ontology to represent input/output data of processes and
facilitates the semantic interoperability of the different components. The onto-
logy is organized according to the multi-layered architecture. This ontology has
been defined specifically for Aerostack following common terminology found in
the research literature about robotics and aerial systems. The ontology defines the
formal and explicit specification of shared concepts. The current formalization of
this ontology is based on common data representations (using ROS messages). A
complete formal specification of this ontology using an appropriate language (e.g.,
OWL) is a pending task to be done in the future.

The terminology presented below shows categories of data in aerial robotics
that provide abstraction. The level of abstraction has been carefully selected in
order to be usable in the domain of robotics, but they are generic to be reusable,
i.e., they do not define specific data representations used in actual implementati-
ons. We use these concepts in the rest of the paper to define the types of inputs
and outputs of the processes and systems to describe the architecture in a general
way. The ontology includes the following concepts:

– Raw measurements: Values corresponding to direct measurements recorded by
sensors. Aerostack uses sensor-independent parameters whose values are obtai-
ned with the corresponding interfaces (e.g. all the cameras, despite of being
from different manufacturers, use the same measurement data type for repre-
senting the acquired images, allowing therefore the interoperability between
them).

– Extracted features: Single features extracted from measurements of physical
quantities. In general, the extracted features can include a partial interpreta-
tion of characteristics of the environment such as lines, intersections, visual
markers, approximate pose, etc.

– Self-localization: Robot localization in the environment together with its kine-
matic values (e.g., velocities) as they are believed by the robot. For example:
pose, velocities, accelerations, forces, torques, etc. This data encodes the Situ-
ation Awareness of the Robot.

– Environment understanding : Characteristics of the environment and its ele-
ments as they are believed by the robot. For example: walls, pole obstacles,
other robots, distance to obstacles, etc. This data encodes the Situation Awa-
reness of the Environment.

– Internal state: This encodes the Self-awareness of the Robot, including the
self characteristic of the robot. For example: pose of the sensors in the robot,
battery level, etc.

The Aerostack Framework 9

– Perception mode: Representation of the perception set-up, including the ena-
bled sensors, the feature extractors and the situation awareness components,
together with their relationship.

– Robot commands: Motion values that are accepted by the actuators. Examples
are: voltage, or Pulse Width Modulation (PWM).

– Motion references: Motion values to be considered as goals by controllers or
planners. Examples of references are: position, velocity, or yaw.

– Motion mode: Representation of the configuration of the motor system, inclu-
ding the enabled controllers and their relationships.

– Actions: An action is used to express an elementary goal that the aerial robot
is able to achieve by itself, using its own actuators. Actions might have a
finite duration or infinite duration until they are disabled. An illustrative set
of actions are: take off, go to a point, move forwards, pick up item, drop item,
rotate yaw, and land.
We distinguish between two categories of actions: Executive actions are the
ones accepted by the Executive System and work in present time. Deliberative
actions involve planning, and therefore work in future time. These deliberative
actions are only accepted by the Planning System.
Actions might include, not only the symbolic name that expresses the action
to be done, but also the complement of the action (called action complement).
Examples of actions and their action complements are: go to point P , being
the point P the action complement of the action go to point; pick up item A,
begin the item A the goal of the action pick up item.
Additionally, actions return a feedback (action feedback), that is a performance
value about the incremental progress of an action. Similarly, once an action is
finished (because it is completed, or because it is unfeasible), a performance
value is returned (Action Result).

– Skills: To represent a particular robot’s ability the concept of skill is used. An
illustrative set of skills is the following: reactively avoid obstacles, self locate
using visual markers, and recognize items. Skills can be active or inactive in
a particular robot. In general, skills have influence in the behavior of actions.
Thus, skills can be understood as global modifiers for sets of actions. Skills
have infinite duration until they are disabled. We use here the concept of skill
defined in Molina et al (2016), in contrast to other meanings defined for skills
in the literature of robotics.
Skills might include, not only the skill by itself, but also complements that
add some extra information. For example, self locate using visual markers with
camera C, being C the complement that defines which camera measurements
must be used to detect visual markers and perform the self localization.
Similarly to actions, skills return a feedback (skill feedback), that is a perfor-
mance value of the enabled skill.

– Planning references: They indicate an specific goal given to the planning com-
ponents with the objective to create a plan formed by motion references. An
example of a planning reference is a point P that is required to be achieved
and is given to a trajectory planner.

– Mission: Complex goal to be executed by the robot (e.g. search an object in a
field, deliver a parcel, etc.). It can be specified by human operators with a set
of tasks that describe the different parts of the mission to be done.

10 Jose Luis Sanchez-Lopez et al.

– Task : It encodes the same concept than the mission with the only difference of
the size of the mission. A task is a complex goal with smaller complexity than
a mission. The exact division between Mission and Task depends on the final
user or developer decision.

– Society knowledge: This concept includes all the shared information between
robotic agents. This shared knowledge might include raw sensor measurements,
extracted features, situation awareness information, control and action goals,
or in general anything. Depending on the nature of the shared information, it
might be included in any component of the architecture.

– Unexpected operation: To permit the Supervision System to react to environ-
ment or operation changes, several variables require to be monitored. In the
case that one of the monitored variables acquires a certain value, a flag is
enabled and this monitored event message is sent.

– Process problem: This includes all the possible problems related to the proces-
ses execution that are monitored by the Process Monitor of the Supervision
System.

– Process management : To group the common processes messages related to
their performance, state, problems, and in general, their management. For
example a sensor might report a problem if the sensor stopped working (but
the software process is still running); or it might report a performance issue
if the measurement rate has decreased because the hardware is too hot and
needs to cool down; or it might report an error if the execution failed and the
process stopped.

3 Detail of Aerostack Subsystems

This section describes in detail the main subsystems of the Aerostack architecture.
For each subsystem, a general description is provided.

3.1 The Feature Extraction System

The goal of the Feature Extraction System is to transform the raw measurements
provided by the sensors into a simpler and more usable information (see Fig.
2). These extracted features simplify the raw measurements in a way that the
components that receive them are able to use them more efficiently.

The inputs of this system are the raw measurements given by the sensors;
and the perception mode, given by the Executive System, that encodes the con-
figuration of the complete perception system (including the sensors, the Feature
Extraction System, and the Situation Awareness System). Its only output are the
extracted features.

Similarly to the other systems, the specification of the Feature Extraction
System imposes no prior restriction on the type or quantity of its inputs and
outputs and the restrictions will only come with its particular implementation
(and its related systems). Thanks to this on purpose open definition, any kind of
feature extractor, using any kind of sensor information might be used in Aerostack
architecture.

The Aerostack Framework 11

Raw
Measurements

Situation
Awareness

System

Extracted
Features

Sensor 1

Sensor
Interface

Sensor
Interface

Sensor
Interface

Motor SystemExecutive
System

Perception
Mode

Feature Extractor

Feature Extraction
System

Feature Extractor

Feature Extractor

Fig. 2: General description of the Feature Extraction System, and its relationship
with the rest of the components of Aerostack.

To ensure the correct operation of the Feature Extraction System, the Exe-
cutive System (described in Sect.3.4), enables, disables and connects, by means
of the perception mode input, the available components in a way that they will
never cause a fault on the system. It is therefore a requirement that the available
components count with a proper start up and a shutdown routine.

Aerostack counts on with a large number of components included in the Feature
Extraction System, ranging from:

– Signal filters that extract a particular frequency component of a measurement
given by a sensor, for example low-pass, high-pass, band-pass, etc.

– Computer vision based detectors and trackers, for example a FAST keypoints
extractor, or ArUco visual marker detector Garrido-Jurado et al (2014).

– Point cloud based detectors.
– Etc.

3.2 The Situation Awareness System

The Situation Awareness System, represented in Fig. 3, has the goal to interpret
the information provided by the sensors and the Feature Extraction System to
create a useful understanding of the current situation to be used in the decision
making and control processes. The Situation Awareness System is highly depen-
dent on the mission, the environment, and the sensors, architecture and robot
setup.

The inputs of this system are the raw measurements given by the sensors, the
processed information given by the Feature Extraction System, and the motion
references and actuator commands from the Motor System. It is worth to note that
this specification of the Situation Awareness System impose no prior restriction
on the number, type, or nature of the used sensors, or the exploited Feature Ex-
tractors. The sensors can as well be located on board the robotic agent or on

12 Jose Luis Sanchez-Lopez et al.

Motor
System

Feature
Extraction

System

Self-Localization

Raw
Measurements

Extracted
Features

Environment
Understanding

Motion
References Actuator

Commands

Internal State

Perception
Mode

Sensor 1

Sensor
Interface

Sensor
Interface

Sensor
Interface

Situation
Awareness

System

Fig. 3: General description of the Situation Awareness System, and its relationship
with the rest of the components of Aerostack.

ground. The restrictions will come only with the particular implementation of the
Situation Awareness System.

In general and for completion, as the other subsystems, the Situation Awa-
reness System could also include as inputs, some additional information coming
from the Communication System (Sect. 3.7) and given by other agents of the
multi-robot system (if any), like their estimated state, their estimated state of
the map, or other information given by their sensors or Feature Extraction Sys-
tems. Including this information provided by other agents of the system allows the
creation of a multi-robot Situation Awareness System.

The perception mode input, given by the Executive System, encodes the con-
figuration of the complete perception system (including the sensors, the Feature
Extraction System, and the Situation Awareness System).

The outputs of the Situation Awareness System, that define its functionality,
are the following:

– Self-localization: estimation of the full situation state of the robot, as for ex-
ample its pose, its velocity and its acceleration.

– Internal state: information related to the internal variables of the aerial robot
like battery level, or kind, number, pose or range of the sensors equipped on
the robot, etc.

– Environment understanding : estimate of the map of the environment in a for-
mat that is usable for the rest of the components of Aerostack.

It is important to note that there is no restriction about how the Situation Awa-
reness System represents internally the map or environment. This internal model
needs to be converted to the appropriate representation, to make it usable for
the rest of the components of Aerostack, conferring more flexibility internally but
ensuring its performance within the rest of the components.

Different examples of the Situation Awareness System can be found on Pestana
et al (2014b, 2015); Sanchez-Lopez et al (2014, 2015b).

The Aerostack Framework 13

3.3 The Motor System

The Motor System, represented in Fig. 4, has the responsibility to generate the
actuator commands for the hardware elements of the robot, ensuring that the
commanded motion references are followed, knowing the motion feedback.

Feature
Extraction

System

Situation
Awareness

System

Executive
System

SensorL1

Actuator
Interface

Actuator
Interface

Actuator
Interface

Raw
Measurements

Environment
Understanding Extracted

Features

Actuator
Commands

Motion
References

Motion
Mode

Self-Localization
Internal
State

SensorL1

Sensor
Interface

Sensor
Interface

Sensor
Interface

Motor
System

Controller

Controller

Controller

Fig. 4: General description of the Motor System, and its relationship with the rest
of the components of Aerostack.

The inputs of the Motor System are grouped in:

– Motion references, that are motion values to be considered as goals, and are
given by the Executive System.

– Motion feedback, including the raw measurements given by the sensors; the
estimated state of the robot and the environment given by the Situation Awa-
reness System; and the extracted features given by the Feature Extraction
System.

– Motion mode, that encodes the configuration of the Motor System and modifies
its behavior, and that is given by the Executive System.

The only output of the Motor System are the actuator commands, used by the
hardware of the robot.

Similarly to the other systems, the specification of the Motor System imposes
no prior restriction on the type or quantity of its inputs and outputs and the
restrictions will only come with the particular implementation of the Motor Sy-
stem (and its related systems). Thanks to this on purpose open definition, any
kind of controller, using any kind of motion feedback might be used in Aerostack
architecture.

The Motor System comprises, therefore, a set of controllers that can be used
independently or in cascade to allow the robot to follow a given motion reference.

14 Jose Luis Sanchez-Lopez et al.

To ensure the correct operation of the Motor System, the Executive System (des-
cribed in Sect. 3.4), enables, disables and connects, by means of the motion mode
input, the available controllers in a way that they will never cause a fault on the
system. It is therefore a requirement that the controllers included in the Motor
System count with a proper start up and a shutdown routine.

The different controllers of the current version of Aerostack are the following:

– Low-level embedded controllers (provided by the hardware autopilot of the
aerial platform): motor speed controller, angular velocity control, horizontal
attitude control.

– Navigation controllers (deeply described in Pestana (2012), Pestana et al (2013a),
Pestana et al (2014a)): linear velocity controllers, position controllers, heading
controller, point to look control component, path following component.

– Visual servoing controller (deeply described in Pestana et al (2013b, 2014c)).

It is worth to highlight that nowadays, some commercial multirotors, specially
the most advanced ones, include embedded in their hardware many controllers that
can be used with different control modes, having internally its own Motor System
(and optionally its own Situational Awareness System). Nevertheless, as this is not
a general fact, and it was even less common in the moment that Aerostack was
firstly designed, Aerostack provides its own controllers. However, the definition
of the Motor System of Aerostack does not enforce to use Aerostack controllers,
being possible to use these embedded controllers.

3.4 The Executive System

The main goal of the Executive System (represented in Fig. 5) is to accept di-
rectives from the deliberative layer (or from a human operator) and to sequence
them to be performed by the reactive layer. To be able to properly sequence these
directives, the Executive System uses the feedback given by the perception com-
ponents.

Two different kinds of directives are accepted from the deliberative layer, acti-
ons and skills (described in Sect. 2).

An important property of the Executive System is that it creates a clear se-
paration between two representation levels: (1) a symbolic level, where goals are
described with linguistic symbols, which is very useful as an operator language
for the specification of missions, and (2) a controller or perception level, where
goals are described with quantitative values that are used as reference values for
controllers, or commands of the components of the perception system.

The Executive System has a symbolic representation of the dynamic state of
the aerial robot. For example, the state of the robot might be landed, taking
off, hovering, or landing. These states can be divided in (1) states with a finite
duration (for example, the taking off state automatically ends when the aerial
robot has reached a specific altitude), and (2) states with undetermined duration
(for example, the hover state only ends when the Executive System disables it).

These states and their transitions can be described using a finite state machine.
The transitions between states describe the feasible actions that the Executive
System can accept. The skills are modifiers of these states and transitions. For
example, the action take-off, that represents a transition from the landed state

The Aerostack Framework 15

Fig. 5: General description of the Executive System, and its relationship with the
rest of the components of Aerostack.

to the taking-off state, only exists if a skill for measuring the flying altitude is
enabled.

Actions are therefore augmented with skills. Some skills are required for the
execution of a particular action, but some other skills are optional and only chosen
by the operator. The notion of skill is useful as an intuitive concept to express
more easily what complex abilities should be active, without considering low-level
technical details. Internally, a skill is automatically supported by a set of running
processes. Thus, the activation of skills is associated to the increase of resource
consumption (memory space, processing time, battery charge) so it is important
to deactivate unnecessary skills when it is possible.

The Executive System has therefore a complete knowledge of all the possible
actions and skills, together with their possible effects. The Executive System has
the responsibility of ensuring that the transitions between states is feasible. For
example, a take off action is only allowed from a landed state, and never from the
hovering state.

Another additional task of the Executive System is to prepare all the compo-
nents (motion and perception components) involved on a specific requested action
or skill, enabling them in the proper instant of time in a way that they do not
collide with other components, monitoring their state, and in case of being una-
vailable, generating a response to the requested action or skill.

It is important to note that the Executive System is only checking the feasibility
of an action or skill in the present time, unlike the Planning System, that is
checking the feasibility in the future time. For example, since a take off action
requires to start the propellers of the aerial robot, if the propellers cannot be
started, the Executive System will notice that the action take-off is not feasible,
nevertheless, the Executive System will never check for example if the battery level
would allow to complete an specific mission before taking off.

The Executive System is able to enable, disable and reconfigure all the motion
components (Motor System and Actuator Interfaces) by means of the motion mode

16 Jose Luis Sanchez-Lopez et al.

command; and to enable, disable and reconfigure all the perception components
(Situation Awareness System, Feature Extraction System, and Sensor Interfaces)
by means of the perception mode.

Different architectures for the Executive System have been tested in Aerostack.
The tested approach range from a centralized architecture where a single compo-
nent performs the complete functionality of the Executive System (an example of
this centralized version is shown in Molina et al (2016) where the Executive Sy-
stem is implemented as a main process called Manager of Actions and Skills), to a
distributed layered architecture (presented in Fig. 6), where there is a coordinator
component (the Behavior Manager) that interacts in two different levels of speci-
alized components (the first level distinguish between actions and skills, and the
second level distinguish between motion components and perception components).
A further analysis of the proposed architectures of the Executive System is out
of the scope of this paper, being only worth to mention that distributed layered
architectures perform better than centralized ones, being their complexity and the
effort to add new states and actions smaller.

Fig. 6: Detail of the Executive System.

3.5 The Planning System

The Planning System, represented in Fig. 7, generates goals to accomplish a par-
ticular complex mission, task or deliberative action. These generated goals are
represented as executive actions and skills that are forwarded to the Executive
System. Additionally, it reacts to changes in the operation provided by the lower-
level layers and to unexpected operation events given by the Supervision System,
generating new goals that modify the previously produced ones. Unlike the Exe-
cutive System, the Planning System works in future time, taking into account the
current state of the robot, predicting the consequences of the planned actions in
the future.

The Planning System has to be able to generate goals fast enough to make
possible an efficient reaction to changes in the mission, in the environment, or in

The Aerostack Framework 17

Fig. 7: General description of the Planning System, and its relationship with the
rest of the components of Aerostack.

the state of the robot. This is specially critical in aerial robots, since their unstable
nature disqualifies them to passively wait a slow response of the Planning System.

The Planning System can be divided in three components:

– Mission planner. The mission planner (Sect. 3.5.1) is a deliberative component
that receives as input a mission, a task or a deliberative action to be performed
and generates as output a sequence of executive actions to be executed together
with their corresponding required skills. The mission planner generates such
actions considering the dynamic changes in the environment.

– Action specialist. The action specialist helps the mission planner during the
deliberation to anticipate if a tentative actions is feasible, according to the
current situation. For this purpose, the action specialist has a knowledge of all
possible actions and their effects. For example, the action specialist can verify
in advance that a certain spatial point is too far to be reached, considering the
current charge of battery. The action specialist is also able to predict physical
magnitudes of certain actions such as required time, distance to cover, amount
of battery to consume, required free space, etc. It is important to know, that
this estimation is approximate, i.e. it is done using inexact models and help
to find more efficiently the solution, anticipating certain clear solutions. This
means that, when the actions are executed, the robot can behave in a different
way due to specific changes in the environment. It is important to note that,
unlike the Executive System, the action specialist is checking the feasibility of
the actions, not only in the present time, but also in the future time.

– Micro planners (optional, chosen by the mission planner). The micro planners
generate motion references that can be followed by the robot, given the current
(self-localization, and internal state) and desired (planning references) state of
the robot, and the environment map (environment understanding). An exam-
ple of a micro planner is the trajectory planner (Sect. 3.5.2), that generates
trajectory references.

18 Jose Luis Sanchez-Lopez et al.

3.5.1 Mission planner

The mission planner receives as input a mission, a task or a deliberative action
to be performed and generates as output a sequence of executive actions to be
performed together with their corresponding skills which the Executive System
is able to manage. To do this, it is able to request motion references to several
micro planners by sending them planning references. For example, the deliberative
action “go to point (P) with active obstacle avoidance”, being the point (P) the
action complement that describes the coordinates of the the destination point,
and it has to be transformed in the following executive action, “follow path (T) in
path following mode”, being the path (T) the action complement formulated as a
sequence of waypoints. To do so, it is used a path planner (see Sect. 3.5.2) that
generates a collision-free path (T) to reach the point (P).

The mission planner is able to react to changes in the operation provided by
the lower-level layers. These changes in operation might include: changes in the
environment (e.g. a new obstacle appeared) or in the knowledge of the environment
(e.g. a new obstacle is mapped), changes in the internal state of the robot (e.g. low
battery warning), changes in planned events (e.g. a planned action has finished, a
planned trajectory is not collision-free anymore).

The mission planner is able to react to unexpected operations given by the
Supervision System (Sect. 3.6). These unexpected operations might be any kind
of difficulties, including action problems (e.g. an action cannot be executed) or
processes problems (e.g. a process has unexpectedly finished).

Finally, the mission planner has the responsibility to send to the Executive
System, if feasible, the planned executive actions and skills.

Aerostack proposes, but not limits, to use task-based mission planners, that
decompose a complete mission in a task tree. Tasks are defined as a basic compo-
nent to structure a mission with a modular organization. At the same time, every
task might be decomposed in another simpler task tree. An important requirement
is that every task tree always ends with actions (either executive or deliberative).

The first mission planner used in Aerostack (presented in Sanchez-Lopez et al
(2013, 2014); Pestana et al (2014b); Sanchez-Lopez et al (2015b); Pestana et al
(2015)) proposes to use a basic task-based mission planner, whose missions have a
predefined sequential behavior. Missions are defined as a task tree by the operator
using a particular language using XML syntax to be readable by both humans and
machines.

The mission definition includes the possibility to use while-loop and conditional-
clauses allowing to change the mission flow and reacting therefore to some mo-
nitored events. An example of a while-loop is the following: while battery level
is greater than a specific value, keep doing the current task. An example of a
conditional-clause is: if a specific visual marker is detected, perform a particular
task.

A second mission planner available in Aerostack, presented in Molina et al
(2016), is an extension of a task based approach (with task trees) together with
reactive planning (using event handlers formulated with rules) to facilitate a more
flexible specification of plans to be adaptive to a dynamic environment. This re-
presentation is supported by a formal language, the TML language (Task-based
Mission specification Language), that incorporates deliberative terms about acti-
ons and skills that were not considered in previous planners of Aerostack. This

The Aerostack Framework 19

language formalization creates a new simpler but complete grammar and vocabu-
lary that is verified after the mission definition by the operator, allowing to correct
errors, giving robustness to the mission planner.

Another mission planner available in Aerostack (see Sampedro et al (2016))
proposes a task-based mission planner able to work in dynamic environments.

The operator only has to define the high level mission without specifying the
complete mission tree, but only high level tasks. These high level tasks (called
behaviors) are internally represented as a task tree that might be called by the
operator and have been included in the mission planner. Examples of these be-
haviors are: explore an area (that requires to sample the area to explore and
concatenate several navigation to a point P actions); or find an object (that re-
quires to explore an area until the object is found, including specific stops to look
for the object with the onboard camera).

Together with the behaviors, a set of restrictions and conditions that have be
satisfied for every task, have been included in the mission planner. Examples of
the restrictions and conditions are: before moving to point P , a take-off is needed;
or, when trying to navigate to a point PA, if it is occupied, navigate to a point
PA′ in the neighborhood of point PA.

The complete mission tree can be generated from a very simple set of tasks
and behaviors. The missions and tasks are therefore automatically nested, crea-
ting complex missions without the operator intervention. Additionally, it allows
to interact with dynamic and changing environments.

3.5.2 Trajectory planner

The trajectory planner generates deliberative motion references for the aerial ro-
bot. These motion references might include pose references, velocity references
and acceleration references (among others) with or without time constraints. The
generated motion references have to be compatible with the input of the used
controllers available in the Motor System.

For the sake of simplicity, only pose references without time constraints are
considered as the output of the trajectory planner since the existing path following
controller incorporates an acceleration and velocity along path planner.

In common under-actuated multirotor aerial robots, only four degrees of free-
dom are controllable, normally its heading (yaw angle) and its position in world
coordinates. Additionally, the commanded heading and position can be decoupled,
so the pose path planner might be divided in:

– Position path planner. It generates collision-free paths that can be followed by
the aerial robot, given the current and desired position of the aerial robot, and
the shape of the obstacles (obstacles includes static environment obstacles and
moving obstacles). The available position path planner is implemented based
on PRM, Potential Field Map and A? (see Pestana et al (2014b, 2015); Sanchez-
Lopez et al (2014, 2015b) for more details about the trajectory planner).

– Heading path planner. It generates heading motion references that must be
followed by the aerial robot. For example, the yaw value can be specified as a
point to look or as a yaw to look. This can be used with different objectives, like
maximizing the performance of the on-board sensors (for example a camera),
or to achieve a particular goal (for example to watch over some target).

20 Jose Luis Sanchez-Lopez et al.

Both proposed path planners, position and heading, might be used indepen-
dently, depending on the mission planner requirements. Common under-actuated
multirotor aerial robots are normally symmetric in their horizontal dimensions,
and therefore, for common navigation tasks, to changing the heading angle is not
needed to reach a particular position point, and consequently, the heading planning
might be decoupled from the position planning.

It is important to note, for the sake of generality, that aerial robots with more
than four degrees of freedom (e.g. multirotors with tilting propellers or multirotors
with manipulators) might be used, with more complex path or trajectory planners.
The proposed architecture allows to use any kind of aerial robots, despite the
simplification done in this section.

3.6 The Supervision System

The goal of the Supervision System (represented in Fig. 8) is to ensure the cor-
rect autonomous behavior of the whole aerial robot. It evaluates if the robot is
actually making progress to its goals and to react in the presence of problems or
unexpected situations (e.g. faults, lost communications, etc.) with recovery actions.
The Supervision System helps to provide therefore a fault-tolerance execution. In
general, handling fault-tolerance typically consists of three steps: failure detection,
notification, and recovery.

Fig. 8: General description of the Supervision System. Since it is supervising all
the other layers, it has a tight relationship with all the components of Aerostack.

The general structure of the Supervision System includes (1) a set of specialists
in kinds of events and problems, and (2) an event and problem manager.

Each specialist, called an system operation monitor, is specialized in detecting
a particular class of events or problems, receiving as input the necessary informa-
tion about situation and actions, and generating as output a category of event or
problem. A specific important system operation monitor is the process monitor,
that supervises the correct operation of the processes.

In addition to the system operation monitors, the Supervision System includes
an event and problem manager, that is able to generate a response to events,
malfunctions or unexpected situations, depending on the level of emergency and
the nature of the event or problem received.

The Aerostack Framework 21

3.6.1 System operation monitor

The system operation monitors are specialized in detecting a particular class of
events or problems, receiving as input the necessary information about situation
and actions and generating as output a category of event or problem.

Examples of the system operation monitor (see Fig. 9) are the following:

– Motor monitor. It detects events and problems related to the Motor System and
the Actuator Interfaces. An example would be a controller giving an incorrect
actuator command, such as an NaN value or an infinite value.

– Perception monitor. It detects events and problems related to the Situation
Awareness System, the Feature Extraction System, and the Sensor Interfaces.
Example of these events are incorrect measurements given by the sensors, like
NaN values; or large covariances values in the estimated self-localization that
require to run re-localization algorithms.

– Executive action monitor. It monitors the executive actions and skills feedback
from the Executive System. It supervises the execution of a requested action
and informs when the action has been completed or when it has failed. For
example, if the requested action is to move to a certain point, the action mo-
nitor verifies periodically the distance between the robot and the desired point
and, when the distance is less than a threshold (established by a configuration
parameter), the action monitor notifies that the requested action has been
completed.

– Deliberative action monitor. It monitors the deliberative layer, in the same way
than the executive action monitor.

Fig. 9: Example of system operation monitors.

3.6.2 Process Monitor

The process monitor has the mission of supervising the correct operation of the
processes. The process monitor is capable of monitoring all different processes hos-
ted in different computers and is responsible for acquiring and informing about the
different errors related to processes, including when a process stops its execution
unexpectedly.

22 Jose Luis Sanchez-Lopez et al.

To check if a process is alive, the process monitor uses a watchdog technique.
This technique consists of periodically sending signals to a supervisor (in this
case, the process monitor) to ensure that the supervised component is still alive.
If the supervised component stops sending signals for a certain amount of time,
the supervised component is considered to be offline. By using a watchdog in
Aerostack, every process sends an alive signal to the process monitor, so that the
monitor can track if a process has interrupted its correct execution.

In addition, the process monitor gets the execution state (e.g. paused, running,
etc.) of the processes. Each process automatically notifies its execution state to
the process monitor when the process sends the alive signal.

3.6.3 Event and problem manager

Recovery actions can be performed as a response to malfunctions or unexpected
situations, detected by the problem monitors. In order to recover problems and
depending on the level of emergency and the nature of the problem, the problem
manager acts on a different level of the Aerostack. A priority scheme is needed,
since the presence of a failure can propagate several detected errors. For example,
if the altitude sensor fails, it can generate a fault detection in the sensor interface
but also in other processes that use the altitude measurement (for example the
Situation Awareness System or the Motor System).

3.7 The Communication System

The goal of the Communication System, represented in Fig. 10, is to allow a robotic
agent to exchange information with the human operators and with the rest of the
robots of the system. This system is able, if needed, to establish a bidirectional
communication with all the components of the agent, to permit this information
transfer.

Fig. 10: General description of the Communication System, and its relationship
with the rest of the components of Aerostack.

The Aerostack Framework 23

The Communication System can be separated in two main parts, (1) the robot
side, that is included in every robot agent architecture, and (2) the human side,
that has one instance per human operator.

Both sides include interfaces (in Fig. 10, called X − Y Interface, being X,Y =
{Robot,Human}) that convert data between different formats and networks al-
lowing the intercommunication between all the agents (human or robotic) of the
system. In general, the implementation of the communication interfaces is highly
dependent of the kind of network used. For example, internally, every robotic agent
might use ROS as the middleware for interprocess communication, but, between
agents, MavLink middleware might be used for inter-agent communication.

The human side of the Communication System also includes multimodal user
interfaces with graphics, speech, visual images, hand gestures, among others, that
can simplify the interaction between the human and the aerial robot. A review of
the multi-modal user interfaces that are available in Aerostack can be found in
Suarez-Fernandez et al (2016).

4 Aerostack Evaluation

Aerostack is fully operative, validated since its first alpha version in February 2013,
by simulations and real flight tests with multiple aerial robots flying simultaneously
(up to five), and with five different aerial platforms equipped with diverse sensors.
In the following sections, we describe additional evidences related to the evaluation
of Aerostack, enumerating first a set of reported used (Sect. 4.1), then describing
a full experiment (Sect. 4.2) and finishing with some general evaluation metrics
(Sect. 4.3).

4.1 Reported uses of Aerostack

Aerostack has been used from its first pre-release in the development of many
different projects.

In the one hand, it has been used in three different aerial robotics competitions:

– In IMAV 2013 Pestana et al (2014b, 2015), where a swarm of up to five Par-
rot ARDrone 2.0 platforms were flying simultaneously executing a navigation
indoors mission. The competition ended, being awarded with the first place in
the category of indoor autonomy.

– In IARC 2014 Sanchez-Lopez et al (2015a), an AscTec Pelican equipped with
an AscTec Mastermind computer and multiple cameras was performing a very
complex LIDAR-denied indoors mission, obtaining two awards: the best system
control and the best target detection.

– In IMAV 2016, where a custom custom PixHawk based quadrotor equipped
with an Intel NUC was performing a fully autonomous indoor mission.

Simultaneously, Aerostack has been used as the main framework for other
research activities:

– In Sanchez-Lopez et al (2014, 2015b), Aerostack was first used to perform
complex navigation missions of a fully autonomous swarm (up to five) of aerial
robots.

24 Jose Luis Sanchez-Lopez et al.

– In Pestana et al (2013b, 2014c), using Aerostack, the authors demonstrated
that a fully autonomous aerial robot was able to follow any object using com-
puter vision algorithms.

– In Sanchez-Lopez et al (2016), a fully autonomous search and rescue mission
was carried out thanks to Aerostack.

– In Sampedro et al (2016), the authors expanded Aerostack capabilities to de-
monstrate the benefit of using a global coordinator to accomplish high-level
missions requested by the user with a fully autonomous swarm (more than
three) of aerial robots.

– In Suarez-Fernandez et al (2016) Aerostack was used for research and deve-
lopment of Natural User Interfaces for Human-Drone Interaction using hand
gestures, speech, body movements and visual cues.

– In Molina et al (2016) a task-based mission specification language was develo-
ped to enhance the previous Aerostack mission planner.

Finally, Aerostack has been employed in multiple shows and exhibitions for
both general and specialized public, highlighting the 2016 European Night of the
Researchers3 where three Parrot ARDrone 2.0 did an autonomy demonstration
which was attended by more than 400 people.

The excellent results achieved in the international competitions, the success in
the diverse research activities, and the high level of satisfaction of the audience in
the public demonstrations, evidences the good performance of Aerostack in terms
of functionality, usability, and reliability, awakening the interest of the scientific
community in Aerostack.

4.2 Experiment

This section describes an experiment as a representative example of system de-
velopment and mission execution to demonstrate and illustrate the capabilities of
Aerostack.

The experiment described here is based on a search and rescue mission. In this
mission, an emergency situation is emulated inside a house and the first response
to the emergency, until the human rescue team arrives to the accident area, is
demonstrated (Fig. 12).

Two exploratory fully autonomous aerial robots navigate from the rescue equip-
ment base to the inside of the house, entering through an open window or door,
searching for a target (e.g. an injured human subject).

As soon as an subject is detected, a rescue aerial robot is called, arriving to
the position where the subject has been found. This rescue aerial robot has the
responsibility of guaranteeing the survival of the subject while the human rescue
team arrives to the area. The rescue aerial robot might therefore, for example
deliver a first aid package, and track and monitor the human subject, interacting
with him or her by means of natural interfaces. Thanks to this aerial robot, the
rescue equipment is able to monitor the state of the injured person, being able to
generate an efficient response.

3 Webpage: http://www.madrimasd.org/lanochedelosinvestigadores/actividad/
vuelo-de-drones-y-m%C3%A1s-robots-asombrosos?lan=en

http://www.madrimasd.org/lanochedelosinvestigadores/actividad/vuelo-de-drones-y-m%C3%A1s-robots-asombrosos?lan=en
http://www.madrimasd.org/lanochedelosinvestigadores/actividad/vuelo-de-drones-y-m%C3%A1s-robots-asombrosos?lan=en

The Aerostack Framework 25

If the emergency situation has been stabilized and the subject does not need
assistance anymore, or if the human rescue team has arrived to the area, the rescue
aerial robot might be commanded (by the subject or the rescue team) to come
back to the rescue equipment base. In the mean time, the search aerial robots
keep searching for more targets. As soon as the house is completely explored, or
the emergency situation has been stabilized, the search aerial robot finish their
exploratory mission, and they autonomously return to the rescue equipment base.

4.2.1 Hardware Configuration

To execute Aerostack, we used three Unix based laptops: (1) computer A with
Intel i7-4510U (2.00GHz, 4 cores) and 8 GB of memory (2) computer B with an
Intel i7-3612QM (2.1GHz, 4 cores) and 8 GB of memory and (3) computer C with
Intel i7-6700HQ (2.4 GHz, 4 cores) and 20GB of memory. The three of them had
WiFi and ethernet connection. The laptops were connected in a LAN using their
Ethernet interface and a switch.

For simplicity, we used AR Drones 2.0 as the aerial platforms, but other ty-
pes of aerial platforms could also be used. Each aerial platform was individually
connected to an associated laptop by means of the WiFi connection, creating as
many additional WLANs as aerial platforms were used (three in this case).

4.2.2 Specific System Architecture for the Experiment

This section illustrates how we used the general Aerostack architecture and the
library of processes for building the particular software system architecture for
the concrete search and rescue problem corresponding to the experiment. Table 1
summarizes the components that we used for each aerial robot.

Fig. 11 shows the organization of the processes of the Situation Awareness Sy-
stem. The figure shows a block diagram where each rectangle represents a process
or a system (e.g., odometry based pose estimator, visual marker based pose esti-
mator, etc.) and they are interconnected using flow ports (e.g., Aruco observations,
estimated speeds, etc.).

In this case, the Situation Awareness System uses two processes for the self-
localization and mapping that are (1) odometry based self localizer that uses the
model of the quadrotor, the information given by the IMU, the optical flow sensor
and the altitude sensor to estimate the odometric pose of the aerial robot, and (2)
a visual marker based localizer to estimate the pose and velocities of the aerial
robot using the visual markers in the environment (e.g., Aruco visual markers)
together with its odometric pose estimation with respect to the world reference
frame, and the pose of the visual markers with respect to the world reference
frame.

Three processes are used for the environment understanding that are (1) ob-
stacle processor that converts the map of visual markers, that is only useful for the
localization estimation processes into a usable map of geometric primitives (obsta-
cles) based on a previous knowledge of the relationship between the visual markers
and the geometric primitives; (2) obstacle distance calculator that extracts additi-
onal information of the map of geometric primitives like the distance between the
current position of the aerial robot and the closest obstacle; and (3) tracker eye,

26 Jose Luis Sanchez-Lopez et al.

Layers System Processes

Physical layer Hardware Interface ARDrone drivers (13 proc.)

Reactive layer

Feature Extraction System
Front image rectifier
ArUco Eye
TLD tracker (2 proc.)

Motor system
Trajectory controller
Visual servoing controller
Heading commander

Executive layer
Situation Awareness System

Odometry based self localizer
Visual marker based localizer
Tracker eye
Obstacle recognizer
Obstacle distance calculator

Executive System Manager of actions

Deliberative layer Planning System
Mission planner
Trajectory planner

Reflective layer Supervision System Process monitor

Social layer Communication System

Robot-robot interface
Alphanumeric user interface
Graphical user interface (GUI)
TLD GUI
ArUco GUI
Speech and sound interface (3 proc.)

Table 1: Summary of the software components used for the specific system archi-
tecture corresponding to the experiment.

that analyzes the information coming from the TLD tracker, estimating if the the
object to track is present in the image.

The architecture implemented for this experiment includes the majority of
the components defined in the general description along Sect. 3. However, the
functionality of certain generic components has been distributed in this particular
architecture for historical reasons to keep the compatibility with previous software
versions. For example, the functionality of the action monitor is included in the
manager of actions process. Additionally, the mission planner process incorpora-
tes some of the functionalities of the event detector. Furthermore, the trajectory
controller process includes the management of all the controllers that this com-
ponent has (velocity controller, position controller, trajectory controller), which
corresponds to the Executive System in the general architecture. We are currently
working on building new versions of such components to follow the general archi-
tecture.

This example corresponds to an application that uses the complete Aerostack
framework, selecting the appropriate components. This means that it was not
necessary to develop additional components (e.g., new type of sensors, new com-
puter vision algorithms), and therefore, the effort carried out by the developers to
perform this experiment was limited to:

– Software architecture configuration. Design the architecture of processes for
each aerial robot. Write the launch files that use the appropriate software
components from Aerostack.

– Configuration of every component of every aerial robot. Write xml files that
configure every component, including the environment map and the mission
specification.

The Aerostack Framework 27

Fig. 11: Block diagram of the Situation Awareness System used for the experiment.

4.2.3 Mission Execution

The global goal is to search for a subject in a spatial area (Fig. 12) and to naturally
interact with him or her. The global search goal is distributed in different local sub-
goals with two different aerial robots. Each robot covers a different local search
area. A third aerial robot is used for the natural interaction with the subject.
The environment is an indoors area, with simple shape (walls and poles) static
elements, augmented with visual markers (ArUco markers). Both the obstacles
and the searched subject are uniquely labeled thanks to the visual markers. We
used ArUco markers to perform the localization and mapping task for simplicity
although other more advanced methods could be also used.

In more detail, the mission is as follows:

– Two aerial robots take-off at the same time from one specific take-off point in
the rescue equipment base.

– Each aerial robot covers a different search area defined as a set of waypoints
as destination points.

– Unknown simple shape static obstacles are present and each aerial robot must
detect them and avoid them. In addition, each aerial robot must avoid collisions
with the other robots. The aerial robots must cross narrow areas and they
must decide how to enter in the appropriate order to avoid collisions amongst
themselves.

– When an aerial robot recognizes the presence of the subject, it notifies the
third aerial robot with the location of the subject, and both initial aerial robots
return to their respective take-off points and land.

28 Jose Luis Sanchez-Lopez et al.

– After receiving the notification about the location of the subject, the third
aerial robot takes-off from its specific take-off point at the rescue equipment
base and approaches the subject.

– The third aerial robot remains near the subject and naturally interacts with
him or her until receiving a command from the subject to return to its take-off
point and land.

Fig. 12 shows different frames of the search and rescue mission. The rescue
base (where the aerial robots take-off) is located in the left side of the images.
The accident area is supposed to be the interior of a house, where the subject
(highlighted in green) is supposed to be. A video with the complete execution of
the mission can be watched in https://youtu.be/t2mJftbBHWc.

(a) The two search robots need to access
to the building.

(b) The search robots explore the accident
area searching for targets.

(c) The rescue robot has to reach the per-
son, and the search robots conclude their
exploratory mission.

(d) The rescue robot waits until the acces-
ses to the house are clear to avoid a colli-
sion.

(e) The rescue robot interacts with the
person by means of natural interfaces.

(f) The rescue robot returns to the rescue
base.

Fig. 12: Different frames of the search and rescue mission.

https://youtu.be/t2mJftbBHWc

The Aerostack Framework 29

The trajectories followed by the aerial robots during the execution of the search
and rescue mission, are shown in Fig. 13. The two search aerial robot followed the
trajectories plotted in red and green, while the rescue aerial robot followed the
blue trajectory.

(a) 3D trajectory of the aerial robots in the
search and rescue mission.

(b) 2D trajectory of the aerial robots in
the search and rescue mission.

Fig. 13: Trajectory followed by all the aerial robots in the entire search and rescue
mission.

Due to the complexity of the mission and the difficulty to understand the tra-
jectories shown in Fig. 13, the experiment is divided in the different instant times
displayed in Fig. 14. These plots also represent with dashed lines, the collision-free
planned path provided by the Planning System. Similarly than before, the two
search aerial robots followed the trajectories plotted in red and green, while the
rescue aerial robot followed the blue trajectory.

The search and rescue mission is executed as follows:

In Fig. 12a, the two search aerial robots (highlighted in red) take-off from the
rescue base and start their exploratory mission, needing to access to the building
(either through the window or the door). Fig. 14a shows the trajectories followed
by the two search aerial robots at this time instant.

Once inside the building, every search aerial robot explores the accident area,
searching for targets (see Fig. 12b). Every aerial robot explores a different part of
the accident area as in the trajectories in Fig. 14b.

As soon as the subject is detected, the rescue aerial robot (highlighted in blue)
takes off from the rescue base, with the objective to reach the subject (Fig. 12c).
Fig. 14d shows the trajectories of the search aerial robots when the subject is
detected. In parallel, the search aerial robot conclude their mission and come back
to the rescue base. Although it is not needed, the subject has a visual marker to
be properly identified by the search robots.

30 Jose Luis Sanchez-Lopez et al.

(a) 2D trajectories from
time t = 0 s to t = 15 s.

(b) 2D trajectories from
time t = 0 s to t = 55 s.

(c) 2D trajectories from
time t = 65 s to t = 75 s.

(d) 2D trajectories from
time t = 65 s to t = 85 s.

(e) 2D trajectories from
time t = 65 s to t = 98 s.

(f) 2D trajectories from time
t = 95 s to t = 110 s.

(g) 2D trajectories from
time t = 110 s to t = 160 s.

(h) 2D trajectories from
time t = 160 s to t =
182.33 s.

Fig. 14: Different trajectories of the aerial robots in several time frames.

As can be seen in Fig. 12d and the corresponding trajectories in Fig. 14e, the
search robot is faster leaving the house than the rescue robot entering in it, so to
avoid a collision, the search robot autonomously waits until the accesses to the
house are clear.

In Fig. 12e and Fig. 14g, the rescue robot interacts with the subject by means
of natural interfaces.

The Aerostack Framework 31

After the emergency situation is stabilized, the rescue aerial robot autono-
mously returns to the rescue team base (Fig. 12f and Fig. 14h).

Fig. 15 shows the inter-process communication between some of the involved
systems in the experiment. This example shows only a few messages for illustrative
purposes. This figure shows, for example, the role that the supervision system
plays to monitor the action execution. The example also illustrates how the event
corresponding to the subject detection triggers the landing action by the mission
planner. In the figure, the time stamps indicate (in seconds) the delay of the
sequence of messages.

Feature
extraction

Situation
awareness Mission Planner Trajectory

planner Executive system

T = 0 seg
Requested action:
Take off

T = 21.965231 seg
Requested action:
Go to point

Motor system

T = 0.000008 seg
High level action:
Take off

T = 22.447246 seg
Mission point:
<1.5, 7.25, 1.3>

Mission planning system

T = ...
Set points:
"..."

T = = 27.297939
Trajectory ref:
<1.418, 0.997, 1.299>,

..., <1.5, 7.25, 1.299>

Supervision
system

T = 4.316588 seg
Completed action:
Take off

...T = 76.604266 seg
Event detected:
"Subject detected" T = 76.655892 seg

Requested action:
Land

T = 78.517481 seg
Completed action:
Land

T = 0.257479 seg
Initiated action:
Take off

T = 21.965446 seg
High level action:
Move

Social
communication

T = 22.466686 seg
Society pose:
<..., ..., ...>

...

...
...T = 76.587279 seg

Marker detected:
"2"

T = 76.656448 seg
HL action:
Land

...

Hardware
interface

T = ...
Set points:
"..."

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...............

Fig. 15: Example of inter-process communication among Aerostack systems. The
figure shows a sample of low level ROS messages sent and received between systems
corresponding to one of the complex experiments that we performed to evaluate
Aerostack. The example shows the sequence of the messages using time stamps to
illustrate the temporal delays.

4.3 Evaluation Metrics

This section provides a number of quantitative evidences (about modular orga-
nization, processes, etc.) based on previous experiments that demonstrate some
performance and quality features of the software framework.

Aerostack is a modular and specialized software with 89 software modules
(defined as ROS packages), apart from multiple standard ROS packages. Aerostack
organizes modules taking into account their functionality in different processes and

32 Jose Luis Sanchez-Lopez et al.

sub-systems. For the previous example, it was necessary to use 22 software modules
per robot agent. In addition, Aerostack also provides a modular organization of
components (division in groups of software packages) according to the type of use
and their level of dependency of ROS and other components of Aerostack. The
previous flight experiment corresponds to a case of an application that uses the
complete software framework.

As described, Aerostack uses asynchronous multitasking, where different pro-
cesses run concurrently, with inter-process communication provided by ROS. De-
pending on the application, one can execute from 10 to 50 processes simultaneously
per robotic agent in a single computer or along multiple distributed computers.
The computational needs are highly dependent on the specific implementation of
the used modules, but, as stated in Sect. 4.1, the available components have run in
very different computers. In the example presented on Sect. 4.2, one single agent
was operated with 40 processes executed simultaneously and the ROS messages
were published on about 180 different ROS topics. Even with this amount of pro-
cesses and information exchanged, Aerostack worked fluidly and efficiently in real
time.

The examples where Aerostack has been used also demonstrate other software
quality features such as usability and scalability. Usability in Aerostack is provided
by its modularity and a uniform documentation, both in source code and text
documents. Aerostack counts also with manuals and tutorials that presents the
main aspects of Aerostack with case of uses and examples ranging from basic
users to developers.

The experience with Aerostack has also proved its scalability. In the last four
years, since the original implementation in February 2013, Aerostack has grown
gradually by including new components for more complex problems.

The first public release counted with 41 software modules, while the presented
one has more than double this amount, 89 software modules. Currently, Aerostack
is a live and evolving product supported by our academic team at the Technical
University of Madrid that keeps updating the software framework and adding new
components and functionalities.

5 Conclusions and Future Work

A fully autonomous operation of UAS is needed with the objective to simplify
their use and to extend its utilization to a great number of applications. To solve
this challenge, many open-source architecture frameworks for UAS have been de-
veloped, but they still present two main weakness: (1) in most of the cases, the
acquired level of autonomy is limited, focusing on semi-autonomous missions. (2)
versatility is typically restricted, being the available open-source architecture fra-
meworks limited to some applications or aerial platforms.

To fill these gaps, this paper described Aerostack45, a system architecture
and open-source multipurpose software framework for fully-autonomous single and
multi-UAS.

Aerostack aims to help developers design their own implementation of their
system architecture by having a reference model with a full specification of the

4 Aerostack webpage: http://www.aerostack.org/
5 Aerostack Github repository: https://github.com/Vision4UAV/Aerostack

http://www.aerostack.org/
https://github.com/Vision4UAV/Aerostack

The Aerostack Framework 33

required components. In addition, Aerostack provides a reusable open-source soft-
ware framework formed by flight proven and ready to use executable software
components and libraries which help developers to speed up the build process of
their designed system.

Aerostack was firstly presented in Sanchez-Lopez et al (2016), and is based on
the authors’ previous work Sanchez-Lopez et al (2014, 2015b). Compared to the
initial publication of Aerostack, the main contribution of this paper is that it pro-
vides a deeper description of Aerostack, providing details of every subsystem of its
architecture together with implementation examples which can be useful for rese-
archers and developers for a more complete understanding of the framework. The
paper also includes a more detailed discussion and justification of the framework
organization and a more complete experiment to demonstrate the capabilities of
Aerostack.

The formalization of the system architecture using the state of the art of in-
telligent, cognitive and social robotics knowledge, based on five layers: reactive,
executive, deliberative, reflective, and social, confers Aerostack’s architecture more
autonomous capabilities and a higher level of versatility.

The open-source software framework of Aerostack includes the main compo-
nents to execute the architecture for fully autonomous missions of swarms of ae-
rial robots. This release includes as well a collection of components with two-
dimensions modularity that can be used in specific environment conditions and
mission requirements that allows the users and developers to have a fully au-
tonomous swarm of aerial robots ready-to-use and flight-proven. The provided
framework counts with the compatibility of five well known aerial platforms, as
well as a high number of sensor interfaces. In addition, Aerostack’s framework in-
cludes a documentation for basic users and developers, guiding them when using
it; and also the support of a multidisciplinary team of researchers at the Technical
University of Madrid that is actively working with Aerostack, which ensures the
continuous evolution and update of Aerostack.

Aerostack has been tested through four years (since February 2013) of success-
ful use on research projects, international competitions and exhibitions. To confirm
this, this paper presented Aerostack carrying out a fictional fully autonomous ind-
oors search and rescue mission.

As Aerostack is alive because of its active use, two clear lines of future work ex-
ist: Firstly, the main components of Aerostack’s software framework can be impro-
ved, making it more robust and efficient. Secondly, researchers can use Aerostack
as is, limiting their contributions to new components with more functionalities
than the existing ones, such as state estimators, controllers, planners, or computer
vision algorithms among others.

Acknowledgements This research work has been partially supported by the Spanish Mi-
nistry of Economy and Competitiveness through the project VA4UAV (Visual autonomy for
UAV in Dynamic Environments), reference DPI2014-60139-R. The authors would like to thank,
as well, the Consejo Superior de Investigaciones Cientificas (CSIC) of Spain for the JAE-
Predoctoral scholarships of one of the authors and his funded research stays.

The authors would like to thank other members from the Computer Vision and Aerial
Robotics (CVAR) research group and the Department of Artificial Intelligence (UPM) for
their help in software programming and the development of fight experiments: David Palacios,
Adrian Diaz-Moreno, Guillermo de Fermı́n, Alberto Camporredondo and Carlos Valencia.

34 Jose Luis Sanchez-Lopez et al.

References

Arkin RC, Riseman EM, Hanson AR (1987) Aura: An architecture for vision-
based robot navigation. In: proceedings of the DARPA Image Understanding
Workshop, pp 417–431

Brachman RJ (2002) Systems that know what they’re doing. IEEE Intelligent
Systems 17(6):67–71, DOI 10.1109/MIS.2002.1134363

Brisset P, Drouin A, Gorraz M, Huard PS, Tyler J (2006) The paparazzi solution.
In: MAV 2006, 2nd US-European Competition and Workshop on Micro Air
Vehicles

Davis DN (2002) Computational architectures for intelligence and motivation. In:
Intelligent Control, 2002. Proceedings of the 2002 IEEE International Sympo-
sium on, IEEE, pp 520–525

Duffy BR, Dragone M, O’Hare GM (2005) Social robot architecture: A framework
for explicit social interaction. In: Android Science: Towards Social Mechanisms,
CogSci 2005 Workshop, Stresa, Italy

Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas F, Maŕın-Jiménez M (2014)
Automatic generation and detection of highly reliable fiducial markers un-
der occlusion. Pattern Recognition 47(6):2280 – 2292, DOI http://dx.doi.org/
10.1016/j.patcog.2014.01.005, URL http://www.sciencedirect.com/science/

article/pii/S0031320314000235

Gat E (1998) On three-layer architectures. In: Kortenkamp D, Bonnasso RP,
Murphy R (eds) Artificial Intelligence and Mobile Robots, AAAI Press

Grabe V, Riedel M, Bulthoff H, Giordano P, Franchi A (2013) The telekyb fra-
mework for a modular and extendible ros-based quadrotor control. In: Mobile
Robots (ECMR), 2013 European Conference on, pp 19–25, DOI 10.1109/ECMR.
2013.6698814

Kendoul F (2012) A survey of advances in guidance, navigation, and control of
unmanned rotorcraft systems. Journal of Field Robotics 29(2):315–378

Kohlbrecher S, Meyer J, Graber T, Petersen K, von Stryk O, Klingauf U (2014)
Robocuprescue 2014-robot league team hector darmstadt (germany). RoboCu-
pRescue 2014

Lim H, Park J, Lee D, Kim H (2012) Build your own quadrotor: Open-source
projects on unmanned aerial vehicles. Robotics Automation Magazine, IEEE
19(3):33–45, DOI 10.1109/MRA.2012.2205629

Van de Loosdrecht J, Dijkstra K, Postma J, Keuning W, Bruin D (2014) Twirre:
Architecture for autonomous mini-uavs using interchangeable commodity com-
ponents. In: IMAV 2014: International Micro Air Vehicle Conference and Com-
petition 2014, Delft, The Netherlands, August 12-15, 2014, Delft University of
Technology

Molina M, Diaz-Moreno A, Palacios D, Suarez-Fernandez RA, Sanchez-Lopez JL,
Sampedro C, Bavle H, Campoy P (2016) Specifying complex missions for aerial
robotics in dynamic environments. In: International Micro Air Vehicle Confe-
rence and Competition, IMAV 2016, Beijing, China

Murphy R (2000) Introduction to AI robotics. MIT press
Pestana J (2012) On-board control algorithms for quadrotors and indoors naviga-

tion. Master’s thesis, Universidad Politécnica de Madrid, Spain
Pestana J, Mellado-Bataller I, Fu C, Sanchez-Lopez JL, Mondragon IF, Campoy

P (2013a) A general purpose configurable navigation controller for micro aerial

http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://www.sciencedirect.com/science/article/pii/S0031320314000235

The Aerostack Framework 35

multirotor vehicles. In: ICUAS 2013
Pestana J, Sanchez-Lopez J, Campoy P, Saripalli S (2013b) Vision based gps-

denied object tracking and following for unmanned aerial vehicles. In: Safety,
Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium
on, pp 1–6, DOI 10.1109/SSRR.2013.6719359

Pestana J, Mellado-Bataller I, Sanchez-Lopez JL, Fu C, Mondragón IF, Campoy P
(2014a) A general purpose configurable controller for indoors and outdoors gps-
denied navigation for multirotor unmanned aerial vehicles. Journal of Intelligent
& Robotic Systems 73(1-4):387–400

Pestana J, Sanchez-Lopez J, de la Puente P, Carrio A, Campoy P (2014b) A
vision-based quadrotor swarm for the participation in the 2013 international
micro air vehicle competition. In: Unmanned Aircraft Systems (ICUAS), 2014
International Conference on, pp 617–622, DOI 10.1109/ICUAS.2014.6842305

Pestana J, Sanchez-Lopez J, Saripalli S, Campoy P (2014c) Computer vision ba-
sed general object following for gps-denied multirotor unmanned vehicles. In:
American Control Conference (ACC), 2014, pp 1886–1891, DOI 10.1109/ACC.
2014.6858831

Pestana J, Sanchez-Lopez JL, de la Puente P, Carrio A, Campoy P (2015) A
vision-based quadrotor multi-robot solution for the indoor autonomy challenge
of the 2013 international micro air vehicle competition. Journal of Intelligent &
Robotic Systems pp 1–20, DOI 10.1007/s10846-015-0304-1, URL http://dx.

doi.org/10.1007/s10846-015-0304-1

Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY
(2009) Ros: an open-source robot operating system. In: ICRA workshop on open
source software, vol 3, p 5

Russell SJ, Norvig P (2003) Artificial Intelligence: A Modern Approach, 2nd edn.
Pearson Education

Sampedro C, Bavle H, Sanchez-Lopez J, Suarez-Fernandez R, Rodriguez A, Molina
M, Campoy P (2016) A flexible and dynamic mission planning architecture
for uav swarm coordination. In: Unmanned Aircraft Systems (ICUAS), 2016
International Conference on, p 0

Sanchez-Lopez J, Pestana J, de la Puente P, Suarez-Fernandez R, Campoy P
(2014) A system for the design and development of vision-based multi-robot
quadrotor swarms. In: Unmanned Aircraft Systems (ICUAS), 2014 International
Conference on, pp 640–648, DOI 10.1109/ICUAS.2014.6842308

Sanchez-Lopez J, Pestana J, Collumeau JF, Suarez-Fernandez R, Campoy P, Mo-
lina M (2015a) A vision based aerial robot solution for the mission 7 of the inter-
national aerial robotics competition. In: Unmanned Aircraft Systems (ICUAS),
2015 International Conference on, pp 1391–1400, DOI 10.1109/ICUAS.2015.
7152435

Sanchez-Lopez J, Suarez-Fernandez R, Bavle H, Sampedro C, Molina M, Pestana
J, Campoy P (2016) Aerostack: An architecture and open-source software fra-
mework for aerial robotics. In: Unmanned Aircraft Systems (ICUAS), 2016 In-
ternational Conference on, p 0

Sanchez-Lopez JL, Pestana J, de la Puente P, Carrio A, Campoy P (2013) Visual
quadrotor swarm for the imav 2013 indoor competition. In: Armada MA, San-
feliu A, Ferre M (eds) ROBOT2013: First Iberian Robotics Conference, Sprin-
ger, Advances in Intelligent Systems and Computing, vol 253, pp 55–63, DOI
10.1007/978-3-319-03653-3 5

http://dx.doi.org/10.1007/s10846-015-0304-1
http://dx.doi.org/10.1007/s10846-015-0304-1

36 Jose Luis Sanchez-Lopez et al.

Sanchez-Lopez JL, Pestana J, Puente P, Campoy P (2015b) A reliable open-source
system architecture for the fast designing and prototyping of autonomous multi-
uav systems: Simulation and experimentation. Journal of Intelligent & Robotic
Systems pp 1–19, DOI 10.1007/s10846-015-0288-x, URL http://dx.doi.org/

10.1007/s10846-015-0288-x

Singh P, Minsky M (2005) An architecture for cognitive diversity. Visions of mind:
architectures for cognition and affect 312:166

Sloman A (1999) What sort of architecture is required for a human-like agent? In:
Wooldridge M, Rao A (eds) Foundations of Rational Agency, Kluwer Academic
Publishers

Suarez-Fernandez R, Sanchez-Lopez J, Sampedro C, Bavle H, Molina M, Campoy
P (2016) Natural user interfaces for human-drone multi-modal interaction. In:
Unmanned Aircraft Systems (ICUAS), 2016 International Conference on, p 0

http://dx.doi.org/10.1007/s10846-015-0288-x
http://dx.doi.org/10.1007/s10846-015-0288-x

	Introduction
	Aerostack Framework
	Detail of Aerostack Subsystems
	Aerostack Evaluation
	Conclusions and Future Work

