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Abstract

Existing satellite communication standards such as DVB-S2, operate under highly-efficient adaptive coding
and modulation schemes thus making significant progress in improving the spectral efficiencies of digital satellite
broadcast systems. However, the constantly increasing demand for broadband and interactive satellite links
emanates the need to apply novel interference mitigation techniques, striving towards Terabit throughput. In
this direction, the objective of the present contribution is to investigate joint multiuser processing techniques for
multibeam satellite systems. In the forward link, the performance of linear precoding is investigated with optimal
non-linear precoding (i.e. Dirty Paper Coding) acting as the upper performance limit. To this end, the resulting
power and precoder design problems are approached through optimization methods. Similarly, in the return link
the concept of linear filtering (i.e. Linear Minimum Mean Square Error) is studied with the optimal successive
interference cancellation acting as the performance limit. The derived capacity curves for both scenarios are
compared to conventional satellite systems where beams are processed independently and interbeam interference
is mitigated through a four color frequency reuse scheme, in order to quantify the potential gain of the proposed

techniques.



1 Introduction

Current satellite systems, following the cellular paradigm, employ multiple antennas (i.e. multiple onboard
antenna feeds) to divide the coverage area into small beams (spotbeams). To the end of limiting interbeam
interferences, these multibeam satellite communication (SatCom) systems spatially separate beams that
share the same bandwidth. This multibeam architecture allows for a significant boost in capacity by reusing
the available spectrum several times within the coverage area, especially in the Ka-band. Subsequently,
the capacity of current satellite systems can well exceed 100GBps with state-of-the-art architectures [1]. A
large number of recent satellite systems procurements have clearly confirmed the trend towards multibeam
satellite systems as broadband reference system architecture. Examples include systems such as Wildblue-1
and Anik F2 (66 Ka-band spot beams), Kasat (82 Ka-band spot beams) and recently Viasat-1 (72 spot beams
in Ka-band) for mainly fixed two-way (i.e. interactive) broadband applications as well as the GlobalExpress
system designed for a new generation of mobile services in Ka-band. Interactive services, in particular,
benefit from these architectures since a finer partioning of the coverage area allows for parallel data stream
transmissions.

Despite the achievements of current SatComs, existing systems are far from the future goals for terabit
capacity. Two main obstacles towards the Terabit satellite are namely the internal with respect to the
system interferences (i.e. intrasystem or interbeam interferences) and the overwhelming number of spotbeams
needed to achieve Terabit throughput. To alleviate these performance constrains, novel techniques need to
be explored.

Terrestrial systems, have introduced the paradigm of multicell joint processing to mitigate interferences
and boost system capacity. According to this paradigm, user signals received in the uplink channel by
neighboring Base Station (BS) antennas are jointly decoded in order to mitigate intercell interferences.
Similarly, user signals in the downlink channel are jointly precoded before being transmitted by neighboring
BS antennas for the same purpose. However, one of the practical obstacles in joint processing implementation
is the existence of a backhaul network which enables this form of cooperation amongst neighboring BSs.

The interference limited nature of the multibeam satellite channel is a commonality between SatCom and
terrestrial systems. Also, considering the architecture of multibeam SatComs networks, a small number of
ground stations is responsible for processing the transmitted and received signals that correspond to a vast
coverage area. This characteristic simplifies the application of joint processing techniques. In this context,
the application of multibeam joint processing in SatCom systems is investigated in the present contribution.

The main purpose is to provide an overview of the performance of such techniques for the forward and the



return link in specific realistic scenarios, as well as to quantify the potential gain of such techniques by using
the throughput performance of conventional frequency reuse schemes as benchmark.

The rest of this article is structured as follows. An overview of related work is presented in section 2. In
section 3, the capacity performance of multibeam joint processing is examined, focusing on the forward link
of fixed services. In section 4 the return link of a satellite system serving mobile users and jointly decodes
all the received signals is investigated. Finally, in section 5, the capacity performance is quantified through
numerical simulations and compared to the performance of conventional systems, while section 6 concludes

the paper.

1.1 Notation

Throughout the formulations of this paper, &[], (~)T, (')T, ® and ® denote the expectation, the conjugate
transpose matrix, the transpose matrix, the Hadamard product and the Kronecker product operations,
respectively. The Frobenius norm of a matrix or vector is denoted by ||-||. I,, denotes a n x n identity matrix,

L, xm an xm matrix of ones, 1,, a n x 1 vector of ones, 0 a zero matrix and G,,«,, a n X m Gaussian matrix.

2 Joint Processing Techniques
This section provides a review of related work in terms of multiuser multiple input multiple output (MU-
MIMO) and multibeam processing techniques. Optimal non-linear as well as suboptimal linear techniques
have been investigated in the existing literature. In general, non-linear techniques achieve channel capac-
ity but the induced complexity comes with high implementation costs. Thus, reduced complexity linear
techniques that provide sufficient performance can be employed.

Starting from recent advances in information and communication theory, an overview of the existing

literature on multibeam processing is provided, before highlighting the contributions of this paper.

2.1 Multiuser Joint Processing Techniques

The concept of joint processing has the ability of converting the interference channel of the forward and
return link of a multi-antenna system into a MIMO Broadcast (BC) and Multiple Access Channel (MAC)

respectively. The state-of-the-art on the receiver and transmitter architectures for the two channels follows.



2.1.1 Transmitter architectures: MIMO BC

In MU MIMO communications, the capacity of the MIMO BC channel can be achieved by Dirty Paper
Coding (DPC) as shown in [2]. DPC?, allows for the cancellation of the interferences of the previously, serially
encoded users, thus causing no interference to following users. However,the implementation complexity of
DPC leads to the investigation of linear precoding techniques with reduced complexity such as Zero Forcing
(ZF) and Regularized Zero Forcing (R-ZF). In these techniques, all users can be encoded in parallel with the
precoding vectors. In terms of performance, ZF cancels multiuser interference, thus being suitable for the
high Signal to Noise Ratio (SNR) regime [3]. On the other hand, R-ZF techniques, also take into account
the noise variance, thus making them suitable for any SNR [4]. The main disadvantage of linear techniques,
however, is that the number of simultaneously served single antenna users can be at most equal to the total
number of transmit antennas.

More recently, several multi-cell processing methods for the downlink of terrestrial systems were devised
in [5-7]. In particular, assuming data sharing, the authors in [5] studied the design of transmit beamforming
by recasting the downlink beamforming problem into a least minimum mean-square-error estimation (MMSE)
problem. However, the required signalling between the BSs is too high and global convergence is not
guaranteed. Later, in [6], a distributed design in time-division-duplex (TDD) systems was proposed, using
only local Channel State Information (CSI) and demonstrating that performance close to the Pareto bound
can be obtained. However, the main issue with [5,6] is that both require data sharing between the BSs. Hence,
their use with limited backhaul throughput is prohibited. Finally, in [7], distributed multicell processing
without data or CSI sharing was proposed, but with the requirement for moderate control signalling among

BSs.

2.1.2 Receiwver architectures: MIMO MAC

With respect to the MIMO MAC, MMSE filtering followed by Successive Interference Cancellation (SIC)
performed at the receive side, is proven to be the sum-rate capacity achieving strategy [8-10]. The reduced-
complexity Linear Minimum Mean Square Error (LMMSE) receiver [11,12] aims at minimizing the square
error between the transmitted and the detected signal with the use of MMSE filters. The outputs of the filters
are subsequently fed into conventional single-user decoders. The main limitation of the LMMSE receiver is
that the number of users that can be effectively filtered is limited by the rank of the channel matrix, namely
the total number of receive antennas in the system.

Multicell joint decoding was firstly introduced by [13,14]. Since then, the initial results have been



extended for more practical propagation environments, transmission techniques and backhaul infrastructures
in an attempt to better quantify the performance gain. More specifically, it was demonstrated in [9] that
fading promotes multiuser diversity which is beneficial for the ergodic capacity performance. Following that,
realistic path-loss models and user distribution were investigated in [15,16], where closed-form capacity
expressions based on the cell size, path loss exponent and user spatial probability density function (p.d.f.)
where provided. The beneficial effect of MIMO links was established in [17, 18], where a linear scaling with
the number of BS antennas was proven. However, correlation between multiple antennas has an adverse
effect as shown in [19], especially when correlation affects the BS-side. Imperfect backhaul connectivity
has also a negative effect on the capacity performance as quantified in [20]. Finally, limited or partial CSI
availability will result in degraded performance, as proven in [6,21,22]. The topic of CSI will be further

discussed in section 2.4.

2.2 Joint Processing in SatComs

A multibeam satellite operates over an interference limited channel, for which the optimal communication
strategy in general is not yet known [8,23-25]. Hence, orthogonalization in the frequency and polarization
domain is used to limit interbeam interferences. However, the concept of multibeam joint processing can be

applied and the system can benefit from reusing the full frequency in all beams.

2.2.1 Multibeam Joint Processing in the Forward Link
In the context of satellite communications, multibeam joint processing scenarios have been studied in various
settings. Specifically, the Forward Link (FL) case has been examined in [26-33]. Various characteristics of
the multibeam satellite channel were taken into account such as beam gain [28,29, 34], rain fading [30],
interference matrix [29] and correlated attenuation areas [28]. Joint processing studies concerning the FL
of SatCom systems usually assume fixed users. This assumption originates from the difficulties in acquiring
reliable and up to date CSI for the FL of satellite systems. During the CSI acquisition process, the pilot
signals need to be broadcasted to the users and then fed back to the transmitter, thus doubling the effect of
the long propagation delay of the satellite channel and rendering the acquired CSI outdated. Subsequently,
the adoption of the slow fading channel of the fixed satellite services (FSS), partially alleviates this obstacle
since CSI needs to be updated less frequently.

In terms of precoding techniques, Tomlinson Harashima precoding (THP) was studied in [34] and [29],

while linear precoding schemes such as ZF and R-ZF were evaluated in [30, 34]. Furthermore, authors



in [31] have investigated generic linear precoding algorithms under realistic power constraints for single and
dual polarized satellite channels. The effect of flexible power constraints rising from flexible and multiport
amplifiers has been evaluated in [33] and an energy efficient scheme for MMSE beamforming was proposed
in [32]. Finally, authors in [28] have considered an Opportunistic Beamforming (OB) technique based on a
codebook of orthonormal precoders and low-rate feedback.

In the present paper, linear R-ZF and non-linear DPC techniques are considered, while optimization
methods are employed to deduce the best power allocation and precoder design, to the end of maximizing
system throughput. In contrast to the existing literature, a per-beam power constraint (i.e. individual
amplifier per beam) is considered instead of the commonly assumed, less realistic sum-power constraint (i.e.

total on board power can be allocated in one beam).

2.2.2 Multibeam Joint Processing in the Return Link

First attempts to study multibeam joint processing in the Return Link (RL), onwards refered to as multibeam
joint decoding, have been carried out in [35-37]. The RL of a satellite system employing multibeam joint
decoding was studied via simulations in [37] from a system point of view, where MMSE and optimal multiuser
receivers were considered, on a simplistic channel model basis, demonstrating a considerable improvement
in both availability and throughput. The first analytic investigation of the uplink capacity of a multibeam
satellite system was done by [35], where closed-form expressions were derived for the capacity of multibeam
Rician channels. Asymptotic analysis methods for the eigenvalues of the channel matrix were used in [38]
to determine upper bounds for the ergodic capacity and calculate the outage probability of a MIMO Land
Mobile Satellite (LMS) channel which is represented by Rican fading with a random line-of-sight (LoS)
component. Similarly, in [39] the statistics of minimum and maximum eigenvalues were derived for Rician
fading with Gamma distributed LoS component. Finally, it should be noted that a multiuser decoding

algorithm was presented in [36].

2.2.3 Practical Constrains in the system design level
Albeit the throughput enhancement the cooperative techniques can provide in satellite networks, as it will
be shown in the following, several issues arise with the adoption of these techniques in Satcoms and need to
be addressed.

Firstly, multibeam satellite systems with a high number of beams need to employ multiple GWs. The

future of broadband satellite communications is without any doubt connected with multibeam satellites.



As throughput demand increases, the number of beams needs to be increased so that the same spectrum
segments can be reused in spatially separated beams. Due to feeder link limitations, one single gateway
cannot accommodate the total number of employed beams thus emanating the necessity for multiple GWs
to serve large multibeam systems. In the present publication, to perform multibeam joint processing, both
for the forward and the return link, a centralized precoder and decoder respectively is assumed. This
theoretical assumption can be supported by a real system implementation via two approaches. One solution
would be the exploitation of higher frequency bands for the feeder link (optical feeder links), assuming
that such a system can be practically employed. As a result, a single gateway could serve the multibeam
satellite system. Alternatively, another approach is the full interconnection amongst the multiple GWs so
that they all share the same data (channel state information and data). The second approach is easier to
implement if we consider the bandwidth capabilities of broadband cable networks. Of course, the added
delay is an issue to be considered, especially in the SatCom context where delay is already a major issue.
Subsequently, both approaches lead to the verification of the simplistic assumption of cooperative system
that utilizes a central precoder/decoder. Additionally, although this contribution does not tackle the subject
of decentralized precoding/decoding, works in the existing literature examine the performance degradation
effects of the adoption of decentralized precoder designs, for the case where full gateway interconnection
cannot be assumed. An example of such an approach for multibeam satellite systems can be found in [40]
where the level of cooperation amongst GWs is examined and the most promising technique is shown to be
partial data and channel state information exchange among the interconnected GWs.

A second major issue is the payload implications of the adoption of full frequency reuse. Multibeam
Joint Processing can be classified in the more general category of Multi-User Detection (MUD) techniques.
Interfering users are successively decoded/precoded thus allowing for the subtraction of the known interfer-
ing signals. This alleviation of interferences enables the full frequency reuse in multibeam system allowing
for more aggressive exploitation of the available bandwidth thus leading to higher spectral efficiency. Never-
theless, the added on-board complexity that results from the increase of the frequency reuse in a multibeam
satellite system needs to be noted. More aggressive reuse of the spectrum is translated in a proportional
increase in the number of amplifiers accommodated in the satellite payload. Indeed, when advancing from a
specific frequency reuse scheme (e.g. 4 color frequency reuse) to full frequency reuse, the number of on board
high-power amplifiers (HPAs) needs to be increased (e.g. 4 times more HPAs) since each beam will occupy
the hole bandwidth of the amplifier. Currently, this proves a heavy burden for the satellite payload hence

more simplistic approaches need to be investigated. Added to that, a fairness issue arises in the comparison



of multibeam joint decoding to conventional single beam decoding since the first, requires increased power
and payload mass compared to the latter.

The above noted issues will not be further addressed in the present contribution but they will be part of
the authors’ future work. In the following, the achievable RL throughput by the means of MMSE filtering
followed by non-linear SIC and of Linear MMSE, is calculated through simulations. The novelty of this
work is the consideration of the multibeam antenna pattern over a correlated Rician channel. Additionally,

lognormal shadowing is incorporated in the channel model to investigate the effect of user mobility.

2.3 Satellite Communication Standards

The second generation of the Digital Video Broadcasting over Satellite standard (DVB-S2) is the latest gen-
eration standard for satellite communications enabling broadband and interactive services via satellite [41].
It has been designed for broadcasting services (Standard and High Definition TV), Internet and professional
services such as TV contribution links and Digital Satellite News Gathering [42]. During the formulation of
DVB-S2, three main concepts were carefully considered: (a) best transmission performance approaching the
Shannon limit, (b) total flexibility and (c) reasonable receiver complexity [43]. High performance and low
complexity iterative decoding schemes like Low Density Parity check Codes (LDPC) along with high order
Amplitude and Phase Shift Keying (APSK) modulations were adopted for efficient operation over the non-
linear satellite channel in the quasi error free region. Compared to previous standards, the second generation
standard attains 20 — 35% capacity increase or alternatively 2 — 2.5dB more robust reception for the same
spectrum efficiency by virtue of the advanced waveforms. Furthermore, to facilitate the provision of inter-
active services, the standard features operation under adaptive coding and modulation (ACM) parameters.
When used for interactive services, ACM allows optimization of the transmission parameters adaptive to
varying path conditions [44,45]. Hence, resources are optimally exploited, since operation under a constant
fading margin according to a worst case scenario design, is no longer necessary. Moreover, DVB-RCS NG is
a next generation (NG) return channel over satellite, Very Small Aperture Terminal (VSAT) standard that
has recently been approved by the DVB technical module as common physical layer standard within the
RCS2 context. This standard improves the existing mature DVB-RCS standard by including state of the art
channel coding and highly efficient, non-linear modulation schemes. Hence, the efficiency and the flexibility
of the return channel operational modes is enhanced. All of these standards have been devised for large

multiuser satellite two-way systems and can be adapted to the proposed multibeam processing techniques.



2.4 Channel State Information Acquisition

Channel State Information (CSI) is one of the most important enablers for the application of the multibeam
joint processing techniques. A specific part of the existing literature addresses the importance of CSI in
MIMO systems, such as [21,46—49]. In the context of SatComs, channel knowledge can be acquired at
the end-user ground stations for the FL and then fed back to the Gateway Station (GS) for the RL. More
specifically, CSI should be available at the GS so that multiuser precoding can be performed for the FL. and
joint decoding at the RL. Current standards are using pilot sequences, either available within the standard
as an optional feature (i.e. for DVB-S2) or defined within the specified requirements for the transmission
burst structure of the Multi-Frequency Time Division Multiple Access (MF-TDMA) return channel (i.e.
for the DVB-RCS NG). A recent study for the effect of CSI in the satellite context can be found in [50],
where the satellite link performance with and without channel state information is compared and a technique
for estimating channel state information is proposed. Subsequently, the current state of the art reference
transmission standards are well suited for the adaptation of the proposed multibeam satellite systems.

In more detail, CSI is acquired by broadcasting pilot signals through the FL to all terminals which in
turn measure them and feed the quantized measurements back to the GS through the RL. In most cases, FL
and RL operate in different frequency bands and thus the described process yields the FL. CSI. Nevertheless,
it is often assumed that the two link are reciprocal (especially if they are adjacent in frequency) and as a
result the measured CSI can be also used for the RL. Furthermore, the CSI acquisition process in satellite
communications introduces a long delay which may result in outdated CSI. This complication is especially
acute for the FL where CSI is needed before transmission in order to calculate the precoding vectors. In the
RL, CSI is only needed for decoding and therefore it can be transmitted by the terminals along with their
data.

Based on this discussion, in the following sections we focus on fixed terminals for the FL (slow-varying
channel) and mobile terminals for the RL return link. In the RL case, the joint decoding techniques can
be applied either for fixed or mobile satellite services. As a matter of fact, the slow fading channel would
even lead to simple practical implementation since CSI is easier to acquire. However, this distinction has
been made in order to point out one main difference between the forward and the return link. In the RL,
the channel estimates can be sent along with the transmitted data. This introduces much less delay when
compared to FL case, where the pilot signal needs to be transmitted and fed back to the GW before the
precoding matrix can be calculated, leading to approximately double time delay compared to the RL case.

This substantial difference in the CSI acquisition procedure, leads to the definition of the specific scenarios.



Added to that, the FSS case for the return link has been also studied by [35]. Nevertheless, the proposed
analysis is straightforwardly applicable to fixed satellite services, by omitting the shadowing coefficients in
the definition of the channel matrix. Finally, it should also be noted that the feeder link, i.e. the link between

the gateway and the satellite, is considered ideal.

3 Capacity Performance of Multibeam Joint Processing: FL for Fixed Services

The first system example scenario discussed is a Ka-band multibeam scenario for fixed satellite communi-
cation and high speed applications. These scenarios can include, for example, multiuser systems such as
broadband internet access systems. In such scenarios mainly the FL is the limiting factor of the overall
system dimensioning. Thus, the proposed techniques for this FL scenario, with parameters given in Table
1, will be studied in the following section. The modeling of conventional systems is also included to assist
in the evaluation of the potential gain of these techniques. The considered figure of merit is the average per

user achievable throughput, namely the sum throughput for all beams divided by the number of users.

3.1 Channel Model

One of the main differences between SatCom and terrestrial systems are the inherent characteristics of the
channels they are operating over. The most fundamental attributes of the satellite channel are the high
LoS component of the signal and the multibeam antenna radiation pattern. Additionally, satellite systems
operating in frequencies over 10 GHz are prone to atmospheric attenuation. Especially, rain fading is the
dominant factor and will be taken into account in the course of our analysis. It is modeled via the latest
empirical model proposed in the International Telecommunications Union - Radiocommunications Sector
(ITU-R), Recommendation P.618 [51]. The distribution of the power gain £ in dB, £ = —201log,,(&), is
commonly modeled as a lognormal random variable, i.e. In({qp) ~ N (u,0), where p and o depend on
the location of the receiver, the frequency of operation, the polarization and the elevation angle toward the

satellite. The probability density function of a lognormal variable £ reads as

1 (Ing — p)?
p(§) = WGXP <_W> , &> 0. (1)

Variables p (dB) and o (dB) are the mean and standard deviation of the variable’s natural logarithm
respectively.

The corresponding K x 1 rain fading coefficients from all antenna feeds towards a single terminal antenna

10



are given in the following vector

h= & oy 2)
where ¢ denotes a uniformly distributed phase. The phases from all antenna feeds are hard to differentiate
and assumed to be identical. This is because we consider a LoS environment and the satellite antenna feed
spacing is not large enough compared to the communication distance [52].

Since rain attenuation is a slow fading process that exhibits spatial correlation over tens of Kms [53],
we assume that users among different beams undergo independent fading. In other words, we assume that
each correlated area [28] [53] cannot extend over the coverage of a single beam. This is a valid assumption
if we consider that beam sizes are typically of the size of hundreds of kilometers. Moreover, the common
assumption of user scheduling, according to which only one user per beam is served during a specific time
slot, is adopted thus rendering the fading coefficients amongst users independent.

The link gain matrix defines the average SINR of the each user and it mainly depends on the satellite
antenna beam pattern and the user position. Define one user’s position based on the angle 6 between the
beam center and the receiver location with respect to the satellite and 634 is its 3-dB angle. Then the beam

gain is approximated by [34]:

b(0,k) = bmas (J;EL“) 136 J?;g‘))Q (3)

where u = 2.07123sin6/sin 6545, and Jy, J3 are the first kind Bessel functions, of order one and three
respectively. The j-th user corresponds to an off-axis angle 6 with respect to the boresight of the i-th beam
where 0; = 0°. The coefficient bpax = (ﬁ)2 do%’ where A is the wavelength and dy ~ 35786 Km, is the
satellite altitude.

Collecting one user’s beam gain coefficients from all transmit antennas into the K x 1 vector b, the overall

channel for that user can be expressed as

=
I
=
©
-

(4)

3.2 Problem Formulation

Let us denote the complex signal intended for user k as s, with E[|si|?] = 1. Before transmission, the
signal to be transmitted is weighted by the beamforming vector ,/prwy where wy, is a complex vector with
|[wg]l =1 and py is the transmit power for the k-th user signal. The total transmit signal is given by

K

X = Z\/pTngSk (5)

k=1
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The received signal at user k is

K
Yr = hL Z VPEWESE + 1 (6)
k=1

where ny, is the independent and identically distributed (i.i.d.) zero-mean Gaussian random noise with power

density Ny. Then the received SINR at the k-th user is

prlwlhy?
>tk pj|wjhk|2 + W Ny

(7)

I'y =

where B, is the total user-link bandwidth. The achievable average per user throughput is then expressed as

K

B,
R= ?;log2(1+rk)- (8)

In this section, the problem of interest is to maximize the system throughput by optimizing the precoding
and power allocation subject to individual power constraints Py = [p1, pe,...pk| on beam k. This problem

can be formulated as

max R 9)
{pr,wi}
K
s.t. ZpkW;;ijWk S Pj,j = 1,' o ,K.
k=1

where Q;; is a k x k matrix full of zeros, besides its (4, j) element which is unitary.
The described throughput maximization problem is difficult to tackle and the optimal solution is unknown
in the literature. Next we will separate the optimization of precoding from the power allocation, then provide

simple and sub-optimal solutions for each of them.

3.2.1 Regularized Zero-forcing and Sub-optimal Power Allocation

ZF is a simple but suboptimal linear precoding strategy that mitigates multiuser interference, while its
design only depends on the channel regardless of the noise. Although it is asymptotically optimal in the
high SNR regime, the drawback of ZF precoding is that the throughput does not grow linearly with K [54].
R-ZF was proposed as a simple precoding technique with substantial performance. This method introduces
a regularization parameter that takes into account the noise effect. Thus, the resulting throughput is proven
to grow linearly with K [55]. More specifically the precoding vector wy, is taken from the normalized k-th
column of

W= (HH+al) ', (10)

12



where « is the regularization factor, that needs to be carefully chosen to achieve good performance. Based

on the large system analysis, the optimal « (in the statistical sense) to maximize the SINR is given by [56],

NOBu

opt —
max Py,

«

(11)

With R-ZF precoding, the throughput maximization problem (9) reduces to a power allocation optimization

problem:

max R 12
{pr} (12)

K
s.t. ZpkW]tijWk SPj,jZl,--- 7K.
k=1

Subsequently, the applying R-ZF the power and precoding matrix optimization problems are separated and
a solution can be found. However, although the constraints are linear, the throughput is non-convex with
respect to the power vector thus and hard to find the optimal solution. To overcome this restrain, we propose
the use of simple gradient-based algorithms, such as the steepest descent algorithm to find a locally optimal
solution for the power allocation optimization problem. Subsequently the average per user throughput for
the R-ZF technique will read as

K Th, |2

B, pr|wyhy|

Rrzr = — E log, (1 + . (13)
K k=1 Ej;ék:pﬂwj'hklg + BuNo

3.2.2 Dirty Paper Coding
DPC is known to be the sum-rate capacity-achieving technique in MU MIMO downlink. Hence, it is used
as an upper bound for the suboptimal, linear techniques. As a non-linear technique, DPC is based on the
idea of known interference precancellation while serially encoding user signals.

Let us now assume that 7o = {1,2,..., K} is a trivial user encoding order. Then the received SINR at

user k is

[DPC _ Pk\hLWkF
DPC _
Disk pj|hLWj|2 + No By

With DPC, the throughput maximization problem with individual power constraints (9) has been solved by

(14)

converting it into a dual uplink with sum power constraint across users and uncertain noise and employing
an interior-point algorithm [57]. It should be noted that the sum-rate capacity can be achieved by all user
encoding orders, but the individual user rates vary according to the employed encoding order.

According to (14) and (8) the achievable average peruser throughput will read as

13



K
B
Rppc = f“ > logy (1+TP7C). (15)
k=1

3.2.3 Conventional frequency reuse scheme

To the end of providing a benchmark scenario so that the performance enhancement can be quantified
a conventional system will also be studied. As already discussed in section 1, the norm in multibeam
satellite systems is the use of conventional single beam decoding. In order to achieve acceptable SINR ratios
at the receive side, orthogonalization in the frequency domain is employed. In the present contribution,
the polarization domain has not been examined for simplicity reasons. Hence, the usual case of a four
color frequency reuse scheme has been assumed, where interferences are alleviated by allocating different
spectrum segments to adjacent beams. Despite this spatial separation, the potentially large number of beam
in a multibeam satellite system emanates the need of accounting for interferences originating from non-
neighboring co-channel beams. To this end, the conventional system throughput for each beam is calculated

as

K
1 B |2
RFL = B¢ ZZlog2 1+ i — | ¢ (16)
k=t Yjzhieac Ihil* + (4Nf§u)

The channel coefficients h;, for the k-th user are given by (4), while A% is the set of the co-channel to the

k-th, users.

4 Capacity Performance of Multibeam Joint Processing: RL for Mobile Services

The second scenario considered involves an S-band satellite network for mobile applications. In fact, such
networks are typically bandwidth limited and the usage of joint multibeam processing promises to increase
overall system capacity by exploiting the full frequency reuse while mitigating the challenging interbeam
interference limitation requirements within the overall system concept. More aggressive reuse of the available
spectrum reuse is consequently possible through smaller beams with no requirements on co-channel isolation

leading to potentially increased overall system capacity. The RL is analyzed in this context hereafter.

4.1 Channel Model
To the end of accurately modeling the land mobile satellite channel the important parameters of the actual
system need to be accounted for. Mobile users, due to size limitations, are equipped with low gain antennas

and low power amplifiers. Added to that, user mobility, prohibits the use of frequencies over 3GHz since the
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link budget would be compromised by the lack of orbital pointing accuracy, the increased free space losses
and the high atmospheric attenuation due to rain fading. Finally, the importance of the LoS component of
the received signal, an inherent characteristic of satellite communications, will be accounted for by assuming
Rician fading coefficients.

More specifically, in the following we consider a cluster of K spot-beams covering K user terminals, each
equipped with a single antenna, under the limitation of a single transmitting user per beam, during a specific
channel instance’. Hence, a MIMO MAC is realized. Subsequently, the input-output analytical expression

for the i-th beam reads as

K
Y; = Zzijxj + n;, (17)
=1

where z;; is the complex channel coefficient between the i-th beam and the j-th user and n; is the additive
white Gaussian noise (AWGN) measured at the receive antenna. To the end of investigating the adverse
satellite channel the following characteristics will be incorporated in the channel model: beam gain b;;,
lognormal shadowing &;, Rician fading h;; and antenna correlation. Hence, (17) becomes
K
i = Y bijhii&ia; + . (18)
j=1
Shadowing &; only depends on the j-th user position as a result of the practical collocation of the satellite

antennae. The general baseband channel model for all beams in vectorial form reads as
y = Zx +n, (19)
where y,x,n are K x 1 vectors. The channel matrix Z g« x will be:
Z=B-Hzpo=/% (20)

where each line of the satellite antenna gain matrix Bxxk contains the square roots of the normalized
coefficients given by (3) as described in 3.1. The matrix Hp is the channel gain matrix that consists of
random i.i.d nonzero mean Gaussian elements and models the Rician satellite channel [35]. Due to rank
deficiencies introduced by LoS signal components and the high receive correlation at the satellite side (20)
can reduce to [35, 58]

Z=B-Hp, 2 (21)

where the diagonal matrix Hpy is composed of the elements of the unit rank matrix Hg. Finally, random

fading coeflicients following a lognormal distribution have been employed to model shadowing due to user
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mobility. Owing to the practical collocation of the on board antennae, possible obstructions affect equally
all received signals. Subsequently, E; is a diagonal matrix composed of random elements that represent
shadowing due to user mobility: B, = diag{&€}, where & = [£1,& ... &k]. The probability density function

of the random fading coefficients &, reads as in (1).

4.1.1 Single-Beam Decoding
In the same direction as in section 3.2.3 the benchmark performance metric will be given by the throughput

of a conventional single beam decoding system, which for each beam reads as

|23 ]

—
Djtigeac 17l + (4Nogu)

K
1
RL _
Ry = B,E 1 ;,1 log, | 1+

The channel coefficients z;; are given in (18), while A% is the set of co-channel to the i-th, beams.

4.1.2 MMSE filtering with Successive Interference Cancellation

Conventional single beam decoding sacrifices bandwidth to cope with interferences. However, the almost
linear dependence of channel capacity with respect to bandwidth motivates the study of more advanced
decoding techniques that allow for the full exploitation of resources. The optimal decoding strategy when
full frequency reuse is employed is proven to be successive interference cancellation. Following the MMSE
filtering of the strongest user, it’s signal is decoded and then subtracted from the aggregate signal and so
on. Hence, the second in order user will cope with less interference. The achievable capacity for this case
reads as:

Rsic = %5 {log2 det (In + 'yZTZ)} , (23)

where v stands for the transmit SN R and all the users are transmitting with the same power.

Due to the high implementation complexity of such techniques, suboptimal methods need to be examined
as well. Added to that, imperfect channel estimates lead to residual cancellation errors and practical coding
schemes are imperfect hence decoding errors can propagate to the following users. For the above reasons,

suboptimal solutions can be applied and their potential gains are examined in the following section.
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4.1.3 Linear MMSE Filtering
A more practical receiver implementation would only consider MMSE filtering of the received signals followed
by singe user decoding. In this case, linear MMSE capacity reads as:

Ryrvise = %5 {i —log, ({(IK + VZTZ)_lLi)} - (24)

i=1

5 Numerical Results
In this section, numerical results are provided in order to study the performance of multibeam processing
for both the forward and the return link. The considered metric is the per user throughput, averaged over
the channel statistics, in bits/s. Since signals from adjacent beams are no longer harmful when multicell
processing is in place, we consider a set of feed antennas which allow for the illumination of beams with
variable overlap. In other words, we assume a number of beams with fixed centers of the earth surface
but variable diameter. The formulas presented in section 3 are used to calculate the spectral efficiency of
each architecture for every value of the variable overlap, i.e. for every instance of the matrix containing the
beam gain coefficients. The objective is to evaluate the effect of beam overlap on system throughput and
investigate whether there is an optimal overlap point which optimizes the multibeam processing throughput.
During the simulations, a satellite system with only 7 beams was considered for reasons to be explained
and justified hereafter. The computational complexity of the employed optimization algorithm, namely the
‘the steepest descent algorithm’, grows with the number of beams since the algorithm performs channel
matrix inversions and multiplications. To overcome this obstacle, a small number of beams symmetrically
arranged over a cellular-like coverage area was employed. Subsequently, the achieved total system through-
put has been averaged over the number of beams, providing the average per beam achievable rate. This
performance metric facilitates the extension of the results into larger systems, assuming the linear depen-
dence of the system throughput with respect to the number of beams; a solid assumption for conventional
systems [1]. For the proposed systems, the linear dependence of capacity with respect to the channel di-
mensions assumption can be justified by the MIMO literature. The prelog of the channel capacity grows
linearly with the rank of the channel matrix, i.e. the number of beams in our case. This fact can support
the assumption that the broadcast MIMO channel (MIMO BC) capacity will scale approximately linearly
with the number of beams. Hence, the average per beam capacity can provide a good estimation for the
total capacity of a larger multibeam channel. Additionally, if a larger system was addressed, the approach

would have been similar. The precoder matrix should have smaller dimensions than the full channel matrix
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in order to perform the optimization, since the highly directive antennas lead to very good beam isolation.
This means that if the precoder matrix had dimensions equal to the number of beams (i.e. interferences
from all beams are taken into account) it would be a matrix with very small, decreasing entries away from
the main diagonal, resulting in an ill-conditioned precoding matrix that cannot be accurately handled. The
solution is to take into account the first or maybe the second tier of interfering beams by employing smaller

precoding matrices.

5.1 Forward link

For the multibeam joint precoding, a satellite FL. was considered as described in section 3.1 with detailed
parameters listed in Table 1. According to the discussions of section 2 optimization algorithms were used
to solve the problem of power allocation and precoding matrix calculation, in the case of the linear R-ZF.
Subsequently sub-optimal R-ZF throughput could be evaluated using (13). The capacity achieving non-
linear DPC is evaluated using (15). Moreover, the conventional spotbeam system has the same user-link
bandwidth B, and noise density while it employs a frequency re-use scheme with factor 4 in order to mitigate
inter-beam interferences. The achievable capacity is given by (16). The results are plotted in Figures 1 and
2 versus the variable, normalized to the nominal 3 dB, beam overlap.

In Fig. 1, the optimized sum rate results are shown for the FL. when users are uniformly located within
cells. First it is noted that for all schemes, the maximum rates are achieved when the normalized beam
angle is less than the nominal one and for both R-ZF and DPC precoding the optimal beam angles are
only 30% of the nominal one. This is because users are randomly located in the cells and it is preferred for
satellite antenna feeds to focus on a smaller beam size in order to reduce interference to neighboring cells
while users outside the cell can be jointly served by all feeds. As can be seen, when the normalized beam
angle is less than the nominal one, more than double rates are achieved by joint beam processing using R-ZF
precoding or DPC precoding, compared to conventional single beam processing. Also due to the smaller
beam size, interference is not the dominant factor therefore the linear R-ZF precoding performs almost as
well as DPC precoding. When the normalized beam size increases, beams become overlapped and achievable
rates decrease due to the strong interferences. In this case, DPC clearly shows the advantage of non-linear
interference pre-cancellation over the linear R-ZF precoding.

In Fig. 2, the optimized sum rate results are shown for the FL. when users are on cell edges which is a
worst scenario and results in much lower rates for all schemes. Again substantial rate gains are achieved by

multibeam joint processing using R-ZF and DPC precoding. The optimal beam sizes are the nominal one
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or close to it, which is reasonable to cover users that are on the edge.

5.2 Return Link

With respect to the RL scenario, a set of Monte Carlo simulations were carried out to evaluate the behavior
of the proposed optimal and sub-optimal schemes given in section 2. The RL scenario follows the parameters
of Table 2. The goal of the simulations is twofold. Firstly, it serves as a benchmark to measure the gain
of the theoretical SIC given by (23) and the more realistic minimum mean square error method given by
(24), over the conventional 4 color frequency reuse schemes as given by (22) Secondly, the effect of beam
overlapping on the performance of the system is investigated. Thus the achievable per user throughput is
plotted in Figures 3 and 4, for the three different receiver implementations, as the percentage of beam overlap
changes. The independent variable is normalized over the nominal 3dB beam size. For beam size less than
one, the satellite receives less then half of the maximum gain from each user, hence gaps appear between
beams in the coverage area.For more then one, beams overlap and the satellite is receiving more useful as
well as interfering signal power®. The metric utilized is average per user achievable throughput, expressed
in Mbps.

In Fig. 4, mobile users are assumed on the cell edge. In this worst case scenario, results indicate
that multibeam joint decoding techniques with successive interference cancellation can theoretically achieve
more than twofold gain over conventional techniques. More realistic receiver implementation techniques
with linear MMSE filtering still achieve two times more throughput than the four color frequency reuse
scheme. Additionally, system optimality is as expected very close to the nominal value of the beam size.
In the same figure, we notice that for high beam separation (i.e. percentage of beam overlap less than 0.6)
linear MMSE performs the same to the SIC. This is justified by the fact that when beams do not overlap,
interferences become negligible. Taking into account that a characteristic of LMMSE is its optimality at
the noise limited regime, the above observation is justifiable. Furthermore, when receive SINR increases,
interferences become important and linear MMSE techniques prove suboptimal compared to SIC. However,
they still manage to maintain a twofold gain over the conventional systems. Finally, an important observation
is that the performance of conventional schemes quickly degrades as they are highly affected by interferences.
Alternatively, the proposed schemes show higher tolerance to interferences, hence making them appropriate
for a real system implementation where practical restrictions prevent ideal multibeam coverage areas.

According to Fig. 3, when users are randomly allocated within each beam, then the optimal solution is

to incorporate highly directive antennas that better serve users close to the beam center. Hence, optimal
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throughput is achieved for 0.2 of the nominal beam size. As expected, achievable throughput is higher,
compared to the worst case scenario with cell edge users. Again, more than twofold gain can be realized of

conventional schemes.

6 Conclusions

The present article provides an overview of the application of joint processing techniques in SatComs. The
presented schemes, here in referred to as multibeam joint processing techniques, have the potential of being
incorporated in existing satellite payloads with some modifications on the ground segments of multibeam
satellite systems, in the existing SatCom standards, in the satellite payload and in the capacity of the feeder
link (i.e. the link between the gateway and the satellite). Both the forward and the return link of these
systems have been examined under realistic link budget assumptions respectively.

Concerning the FL, precoding along with optimal power allocation amongst beams can provide substantial
gains by pre-canceling interferences. Non-linear DPC has been applied to provide an upper bound for the
performance of this approach. Linear R-ZF provides a more realistic value for the potential gain of joint
processing techniques. Performance results were compared to current conventional architectures so that the
potential gain could be quantified. More than twofold gain is expected with the implementation of multibeam
joint processing in the FL. Finally, the performance of the aforementioned schemes was examined versus an
important system design parameter, namely the percentage of beam overlap, where the optimal values of
beam overlap for throughput maximization have been deduced.

In the RL, non-linear MMSE filtering followed by SIC acts as the performance upper bound for the
joint decoding approach. Linear MMSE filtering is the suboptimal scheme that depicts the more realistic
performance. The conventional single beam decoding scheme with frequency reuse acts a performance
benchmark. Multibeam joint processing in the RL can potentially achieve more than twofold gain over
current system architectures. Again, the performance was studied versus variable beam overlap and the

optimal values of this parameters have been extracted.
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Endnotes

(a) or alternatively: Known Interference Precancellation. (b) This assumption is accurate for existing stan-
dards such as DVB-RCS where in every beam, each user transmits during one timeslot. (c¢) An appropriate

threshold for the beam gain is —4.3d dB of the maximum beam gain to avoid gaps in the coverage area.
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Figures
Figure 1 - FL performance, uniform users

Average per beam rate in the FL where users are randomly located within each beam.

Figure 2 - FL performance, beam edge users

Average per beam rate in the forward link where users are on cell edges.
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Figure 1: Average per beam rate in the forward link where users are randomly located within each beam.

Figure 3 - RL performance, beam edge users

Average per user rate in the return link for random users.

Figure 3 - RL performance, beam edge users

Average per user rate in the return link for beam edge users.

Tables
Table 1 - Link Budget Parameters — Forward Link
Table 2 - Link Budget Parameters — Return Link
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Figure 2: Average per beam rate in the forward link where users are on beam edges.
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Table 1: Link Budget Parameters — Forward Link

Parameter Value
Orbit GEO
Frequency Band Ka (20 GHz)
User Link Bandwidth 500 MHz
Number of Beams 7
Beam Diameter 600 Km
TWTA RF Power @ Saturation 130 W
Frequency Reuse Factor (Conventional Scheme) 4
Free Space Loss 210 dB
Receiver noise power N -118 dBW
Max satellite antenna gain G 52 dBi
Max user antenna Gain G 41.7 dBi
Downlink Free Space Loss 210 dB
Fading Margin 3 dB
Rain Fading Mean -2.6 dB
Rain Fading Variance 1.63 dB
Receive SNR 21 dB

27



Table 2: Link Budget Parameters — Return Link

Parameter Value
Orbit GEO
Frequency Band S (2.2 GHz)
User Link Bandwidth B,, 15 MHz
Number of Beams 7
Beam Diameter 1200 km
Mobile terminal RF power [-3 — 24.5]dBW
Frequency Reuse Factor (Conventional Scheme) 4

Free Space Loss L 193 dB
Receiver noise power N -133 dBW
Mobile Antenna Gain Gr 3 dBi
Max satellite antenna gain Gp 52 dBi
Mobile Antenna Gain G 3dB
Fading Margin 3dB
Receive SNR [-5 —20] dB
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