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Casimir force between Weyl semimetals in a chiral medium

M. Belén Farias,1 Alexander A. Zyuzin,2,3 and Thomas L. Schmidt1
1Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg

2Department of Applied Physics, Aalto University, P. O. Box 15100 FI-00076 AALTO, Finland
3Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia

(Received 5 February 2020; revised manuscript received 11 May 2020; accepted 11 June 2020;
published 29 June 2020)

We study the Casimir effect in a system composed of two Weyl semimetals (WSMs) separated by a gap filled
with a chiral medium. We calculate the optical response of the material to chiral photons in order to calculate
the Casimir force. We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir
force can be obtained. The magnitude of this repulsive force is found to be greatly enhanced at distances of a
few microns, when experimentally accessible parameters are used. Moreover, in the system under consideration
various parameters can be modified. Some of them are intrinsic to the materials employed (the absolute value
of the Hall conductivity of the WSM, the Verdet constant of the Faraday material), while some of them can be
manipulated externally even for a fixed sample, such as the external magnetic field and the orientation of the
plates which determines the sign of their conductivity. Suitable combinations of these parameters can be used to
switch from attraction to repulsion, and to place the trapping distance, in which no force acts on the plates, at
any desired distance between them.
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I. INTRODUCTION

The Casimir effect [1], i.e., the existence of a force be-
tween two neutral bodies due to the quantum fluctuations
of the vacuum electromagnetic (EM) field, is one of several
intuition defying consequences of quantum mechanics. The
measurement of this macroscopic effect represented a ma-
jor achievement of quantum field theory [2]. Nearly seven
decades after its initial prediction, there is still a high interest
in the study of both the static Casimir effect [3] and its
out-of-equilibrium counterpart: the dynamical Casimir effect
and quantum friction [4,5]. Lately, these phenomena have
been studied not only from the field-theoretical viewpoint, but
also from a materials perspective [6]. As new materials with
unique properties were discovered, their implications for these
forces have been studied [7–12], with the aim of enhancing
them, reducing them, or using them to probe intrinsic proper-
ties of the materials under consideration.

One of the primary objectives that has been pursued lately
in the equilibrium case is to achieve a repulsive Casimir
force [13]. This objective originates not only from a funda-
mental interest, but also from the point of view of nanotech-
nology, where Casimir forces can have detrimental conse-
quences: The Casimir interaction usually dominates at very
small distances and, being attractive in the majority of cases,
system parts tend to stick together, which might cause micro-
and nanoelectromechanical systems (MEMS and NEMS) to
stop working. The quest for Casimir repulsion dates back
many years [14], and it was studied both between two macro-
scopic plates as well as between a macroscopic plate and
a microscopic particle (Casimir-Polder repulsion). Casimir
repulsion was successfully detected experimentally [15] in
a system with planar geometry in which the three materials

fulfilled the relation ε1 < ε2 < ε3, where ε1,3 are the dielec-
tric constants of the outer materials and ε2 the one of the
medium in between. Further proposals have involved different
metamaterials featuring uniaxial and biaxial magnetodielec-
tric anisotropies [16] and, more relevant to this work, chiral
metamaterials [17,18]. More recently, efforts are shifting in
the direction of topological insulators, materials with an insu-
lating bulk but conducting surfaces. A thorough review of the
systems considered and the methods used for the calculations
can be found in Ref. [13].

The work presented in this paper is based on two recent
proposals that showed promising results. In the first one,
Casimir repulsion was predicted between two Weyl semimet-
als (WSM) [19]. These materials fall within the broader
category of topological nodal semimetals, a novel class of ma-
terials with topologically nontrivial electronic structure and
a gapless bulk. Those are three-dimensional (3D) materials
whose crystalline structure results in crossings of electronic
bands near the Fermi level, which give rise to Weyl cones and
low-energy quasiparticles obeying a Weyl Hamiltonian [20].
They are the first physical realization of Weyl fermions, and
exhibit many effects predicted by high-energy physics. The
crossing points are protected against backscattering by impu-
rities, so these systems remain gapless even under small per-
turbations. They also exhibit remarkable topological proper-
ties, for instance, surface states in the form of Fermi arcs [21],
which are impossible to realize in purely two-dimensional
systems.

Topological nodal semimetals can be classified according
to the positions of the Weyl cones in momentum space:
Dirac semimetals, the first realized experimentally, contain
two overlapping Weyl cones, whereas in Weyl semimetals
(WSMs) they are separated, either in momentum space (in the
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FIG. 1. Scheme of the system under consideration: two semi-
infinite Weyl semimetals, with Weyl cones split in the ẑ direction,
are separated by a distance a. A medium with chiral properties fills
the gap between them.

case of time-reversal symmetry breaking) or in energy (for
broken spatial inversion symmetry). This symmetry breaking
is what allows for the existence of Casimir repulsion, and is
what was exploited by Wilson et al. [19], who considered
a system of two identical time-reversal symmetry breaking
WSMs. There is also a very recent work where these results
have been extended to type-II WSMs, and include the effect
of surface currents [22].

A second promising proposal involves two perfectly con-
ducting plates and a chiral medium filling the gap between
them. In a chiral medium, photons with different chiralities
have different propagation velocities, thus breaking inversion
symmetry. This allows for Casimir repulsion, as was pointed
out by Jiang et al. [23], who in order to calculate such a repul-
sive force, have developed a nonreciprocal Green’s function
method to obtain Lifshitz’s formula [24] for the Casimir force.
They found the Casimir energy between two plane plates in
nonreciprocal media, separated by a distance a along the z
direction, to be given by

EC = h̄
∫ ∞

0

dω

2π

∫
d2k‖
(2π )2

ln det (I − RBUBARAUAB) , (1)

where ω is the imaginary frequency and k‖ = (kx, ky) is the
momentum in the xy plane parallel to the surfaces of the
plates. RA is the reflection matrix of the plate filling
the space z < 0, and RB the reflection matrix of the plate filling
the space z > a, while UAB(UBA) represents the translation
matrix from B to A (A to B).

With these motivations, the main goal of the present
work is to study the interplay between the chiral photons and
the topological properties of the WSMs, and their effect on the
Casimir force. Since in both cases Casimir repulsion can be
achieved, we expect to find situations in which the repulsive
force is enhanced, thanks to the broader parameter range given
by the interplay of both types of materials. We will consider
in this work a system composed of two WSMs separated by
a gap filled with a chiral medium, as depicted in Fig. 1. We
will consider the Weyl cones to be split in the same direction
as the separation between plates, which results in a system
with rotational invariance. This already hints at the fact that
chirality has an important role to play in this type of WSM. In
fact, in Ref. [25] it was pointed out that WSMs can be thought
of as a particular type of chiral material. We will contemplate

the different possibilities for the medium in between, and
study the effects of the interplay between its properties and
those of the WSMs on the Casimir force. We shall use a simple
axionic model to describe the interaction of the WSM with
the EM field in order to concentrate on the combination of
the effects of topology and chirality, without getting lost in
cumbersome expressions. For a through treatment of WSMs
and their effect on Casimir forces, see Ref. [22].

This paper is organized as follows: in Sec. II, we study
the electrodynamics of WSMs in the presence of circularly
polarized light. In Sec. III, we review the different types of
chiral materials and their properties, to later combine these
results in Sec. IV to calculate the Casimir force between two
WSMs with a Faraday material filling the gap between them.
Lastly, in Sec. V we present our conclusions.

II. WEYL SEMIMETALS AND CHIRAL LIGHT

A. Electrodynamics inside the material

The theory of electrodynamics inside a WSM has been
developed in detail in Refs. [19,26]. The starting point is the
action S = S0 + SA for the electromagnetic field. The part S0

is the ordinary Maxwell action,

S0 = −1

4

∫
d3r dt FμνFμν − 1

c

∫
d3r dt Aν jν, (2)

where jν = (cρ, j) denotes a four-vector (ν = 0, 1, 2, 3) con-
sisting of the charge and current densities. The electromag-
netic field strength tensor is Fμν = ∂μAν − ∂νAμ. The part SA

is the axionic term [27],

SA = e2

32π2h̄c

∫
d3r dt θ (r, t ) εμναβFμνFαβ, (3)

where εμναβ is the fully antisymmetric tensor and θ (r, t ) =
2b · r − 2b0t . Here, 2b is the separation between Weyl cones
in momentum space and 2b0 is their energy offset. By writing
the Euler-Lagrange equations of motion for the vector poten-
tial Aμ,

∂νF νμ + e2

8π2h̄c
bνε

νμαβFαβ = 1

c
jμ, (4)

one obtains modified inhomogeneous Maxwell equations,
whereas the homogeneous ones are automatically satisfied
due to the definition of Fμν .

From now on, we will consider the case where only
time-reversal symmetry is broken due to a finite magneti-
zation of the material, i.e., b0 = 0. By preserving inversion
symmetry in the WSM, one obtains two Weyl cones with
opposite chiralities at the same energy [20]. Specifically, we
will assume b = bẑ. This ensures that there are no surface
Fermi arc states in the z = 0 plane, so the Casimir force
between plates separated along the z direction will be de-
termined by the bulk states only. Casimir forces in other
directions, in contrast, are affected by the surface states [28].
Moreover, this choice of setup will preserve rotational
symmetry in the xy plane.
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This means that the WSM under consideration is described
by four modified Maxwell’s equations [26]:

∇ · E = ρ − e2b

2π2h̄c
α ẑ · B, (5)

∇ × B = 1

c

∂E
∂t

+ 1

c
j + e2b

2π2h̄c
ẑ × E, (6)

∇ · B = 0, (7)

∇ × E = −1

c

∂B
∂t

, (8)

where we can identify the Hall conductivity as
σxy = −σyx = e2b/2π2h̄ and the correction to the charge
density − e2b

2π2 h̄c α ẑ · B. Hence, the axionic action generates a
source term in Ampere’s and Gauss’s law. We also note that
the ferromagnetic Weyl semimetal is a gyrotropic medium
with the gyrotropy parameter being proportional to the
separation b of the Weyl cones in momentum space [29].

We proceed to solve the modified Maxwell equations in
Fourier space by using E(r, t ) = E(k, ω)eik·r−iωt , and analo-
gously for B(r, t ). An effective dielectric function ε(ω) can
be introduced to describe the macroscopic response of the
material [26] by defining the displacement field as D(k, ω) =
ε(ω)E(k, ω) with

ε(ω) =
⎛
⎝ ε0 iσxy/ω 0

−iσxy/ω ε0 0
0 0 ε0

⎞
⎠, (9)

where at zero temperature and for a clean semimetal with two
Weyl points one has [30]

ε0(ω) = 1+ α

3π

c

vF

[
ln

∣∣∣∣ �2

4μ2−ω2

∣∣∣∣− 4μ2

ω2
+iπ
(ω−2μ)

]
,

(10)

in which α = e2/h̄c is the fine structure constant.
In the previous equation, vF is the Fermi velocity for the

excitations of the material, and we have introduced a cutoff �,
whose maximum can be estimated as � ∼ vF b. When rotating
to imaginary frequencies ω = iξ as required by Lifthitz’s
equation and for vanishing chemical potential, we can write

ε0(iξ ) = 1 + α

3π

c

vF
ln

(
�2

ξ 2

)
. (11)

As will be shown in the following sections, the relevant fre-
quencies contributing to the Casimir force are of the order ξ ≈
c/a. This means that for vF /c ≈ 10−3, for distances between
materials a of the order of 1 μm and distances between Weyl
cones such that 1/b ≈ 1 nm, the argument of the logarithm
can be estimated as (vF /c)2(ab)2 ≈ 1. The prefactor in front
of the logarithm will be as well of order one, so that we can
approximate ε0 ≈ 1 up to logarithmic corrections. Our results,
then, shall remain valid as long as we consider distances
a ∼ c/�, that is, distances of a few micrometers.

With the definition (9), the two first equations in (5) can be
combined into a wave equation for the displacement field,

[k ⊗ k − k2I]ε−1(ω)D(k, ω) = −ω2

c2
D(k, ω), (12)

where k2 = k2
x + k2

y + k2
z . We can obtain the dispersion rela-

tion and the allowed polarizations inside of the material as the
solutions to the wave equation above. For the system to have
nontrivial solutions, the determinant of the matrix,

M(ω) = [k ⊗ k − k2I]ε−1(ω) + ω2I, (13)

must vanish. Here, we have taken c = 1 and will do so in
the rest of the paper unless otherwise stated. The solutions
to this equation provide the dispersion relation inside the
WSM [19,26]:

ω2
±(k) = k2 + σ 2

xy

2
±

√
k2

z σ
2
xy + σ 4

xy

4
. (14)

Setting ω = ω± will ensure that Eq. (12) has nontrivial solu-
tions, which are the allowed polarizations inside the material.
The (unnormalized) polarization vectors corresponding to the
energies ω± are

D± = ω±kz(k2 − ω2
±)ê1 − ikσxy

(
ω2

± − k2
x

)
ê2, (15)

where ê1 = ŷ × k̂ and ê2 = ŷ are the transverse electric (TE)
and transverse magnetic (TM) directions, respectively. With-
out loss of generality, we have chosen the y axis such that
ky = 0. The latter is possible due to rotational symmetry in
the xy plane. In particular, this shows that the material is
birefringent.

B. Reflection matrix in the chiral basis

Since our goal is to calculate Casimir forces using Lif-
shitz’s formula, we are interested in calculating the reflection
matrix of a WSM that occupies the z > 0 half space. This
means that the vacuum dispersion relation ω2

vac = k2 holds for
z < 0, whereas Eq. (14) holds for z > 0.

Since the system has translational symmetry in the xy plane
as well as on the time axis, kx, ky, and ω must be the same
on both sides of the interface, and the only variable that
can change is kz. For an incoming wave with wave vector
q = (qx, qy, qz ) and frequency ω, the outgoing wave inside
the WSM will have the same frequency but a different wave
vector k = (qx, qy, kz ). Matching both dispersion relations,
ωvac(q) = ω±(k), there are two possible outgoing wave vec-
tors k± for a given incoming wave vector q,

(k±
z )2 = qz(qz ± σxy). (16)

Note that both of the two equations ωvac(q) = ω±(k) have
the same two solutions for (k±

z )2. Nevertheless, for incident
wave vectors with qz < σxy, there is only one polarization
propagating inside the material, since the other polarization
results in an evanescent wave [26].

Thus, an incident wave with frequency ω and wave vector q
can be transmitted with two different wave vectors inside the
WSM. Correspondingly, each of these wave vectors will be
associated with a particular polarization e± of the transmitted
field, which can be obtained from Eq. (15),

e±(q) = q2
z x̂ ∓ iωqzŷ − qxk±

z ẑ. (17)

In addition to energy conservation and momentum con-
servation perpendicular to the interface, to obtain the reflec-
tion matrix we demand that the electromagnetic field fulfils
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specific boundary conditions, namely, the continuity of the
components E‖ and B‖ parallel to the interface.

Let us consider an incoming wave with q = (qx, 0, qz )
that is either reflected at the interface to a new wave vector
qr = (qx, 0,−qz ), or transmitted into the WSM with either
of the wave vectors k± = (qx, 0, k±

z ). To obtain the reflection
matrix, we need to match the incoming, reflected, and trans-
mitted electric and magnetic fields.

Inside the WSM, there is only one allowed polarization
vector e± for a given wave vector k±. Outside the WSM,
however, there are two possible polarizations for a given wave
vector, and different bases can be chosen that would each
be correct solutions of Maxwell’s equations. The most usual
choice is the transverse basis {ê1, ê2} that was introduced in
the end of the previous section. However, this is not necessar-
ily the best choice for every system: Since ours has rotational
symmetry about the z axis, the most convenient choice of
basis for the electromagnetic field is the chiral or circularly
polarized basis,

êR,L =1

2
(ê1 ± iê2) = 1√

2

(
qz

q
x̂ ± iŷ − qx

q
ẑ

)
, (18)

ê′
R,L =1

2
(ê′

1 ± iê′
2) = 1√

2

(
−qz

q
x̂ ± iŷ − qx

q
ẑ

)
, (19)

where q = |q| and êR,L are the polarization vectors for circular
waves with positive or negative helicity, propagating from left
to right (from plate A to plate B; see Fig. 1). On the other
hand, ê′

R,L correspond to the case where waves propagate from
right to left (plate B to plate A), with ê′

1 = ŷ × q̂r and ê′
2 = ŷ.

It is easy to see that both {ê1, ê2, q̂0} and {ê′
1, ê′

2, q̂r} form a
right-handed set of vectors.

To understand the difference between êR,L and ê′
R,L and

their physical meaning, let us look at the case of normal
incidence where qx = 0. In this case, when the incoming
wave propagates along the +ẑ direction, we have q0 = qzẑ
with qz > 0 and êR,L = (x̂ ± iŷ)/

√
2. We consider an incom-

ing right-circularly polarized field E0(r, t ) = E0eiq0·r−iωt êR.
If this wave is reflected, its propagation direction will be
reversed, so the wave vector changes to qr = −qzẑ.

As we mentioned, when the propagating direction is
reversed, a right-handed set of vectors will be given by
{ê′

1, ê′
2, q̂r}, and the correct basis to describe the polarization

of our system is the primed one (19) that, for normal inci-
dence, becomes ê′

R,L = (− qz

q x̂ ± iŷ)/
√

2. The reflected field

can then be written as Er = E0eiqr ·r−iωt eiπ ê′
L. Thus we show

that, for the normal incidence case, a right-handed circularly
polarized wave (positive helicity) incoming along the +ẑ
direction will become left handed (negative helicity) and gain
a π phase when the direction of motion is reversed (as is the
case, for instance, when reflected by a perfect mirror).

Thus we choose Eq. (18) as the basis for the incoming
electric field E0, Eq. (19) for the reflected field Er , and
Eq. (17) for the transmitted fields E±. This allows us to write
the total electric field at each side of the interface as

E0 = ER
0 êR + EL

0 êL,

Er = ER
r ê′

R + EL
r ê′

L,

E± = E±
(
q2

z x̂ ∓ iωqzŷ − qxk±
z ẑ

)
. (20)

The magnetic field at each side of the interface can be
readily written by taking B0 = ωq × E0, Br = ωqr × Er and
B± = ωk± × E±. Thus the boundary conditions can be used
to obtain a linear system of four equations, one for the
continuity of each field in the x and y directions. The resulting
system of linear equations can be easily solved for the reflec-
tion coefficients Ri j ≡ Ei

r/E j
0 with i, j ∈ {R, L}. One finds that

the reflection matrix for the WSM in the chiral basis has a
simple off-diagonal form,

R(qz ) = 1

σxy

(
0 σxy + 2k−

z − 2qz

σxy − 2k+
z + 2qz 0

)
. (21)

According to Eq. (20), this reflection matrix acts on an incom-
ing vector in the basis {êL, êR} and returns the components of
the reflected vector in the basis {ê′

L, ê′
R}. This is the natural

choice for the chiral basis associated with the two different
propagation directions, as has been discussed above.

In order to obtain the correct Casimir force via Lif-
shitz’s formula, it is necessary to obtain as well the mir-
rored reflection matrix R′ which accounts for the reflection
of waves incoming towards a WSM occupying the z < 0
half-space [13]. To do that it is necessary to consider an in-
coming wave with wave vector q′

0 = (qx, 0,−qz ), a reflected
wave with q′

r = (qx, 0, qz ), and transmitted fields with k′
± =

(qx, 0,−k±
z ). Then, all the steps to obtain the reflection matrix

can be reproduced, and the net effect of this change is that
the roles of k+

z and k−
z are swapped, leading to the following

mirrored reflection matrix, now relating an incoming vector in
the primed chiral basis {ê′

L, ê′
R} with a reflected field written

in the nonprimed basis {êL, êR},

R′(qz ) = 1

σxy

(
0 σxy − 2k+

z + 2qz

σxy + 2k−
z − 2qz 0

)
. (22)

C. Wick rotation to imaginary frequencies

In order to apply Lifshitz’s formula, it is necessary to per-
form a Wick rotation to imaginary frequencies. This rotation
has been performed in Ref. [19] but only under the assumption
σxy > 0. Allowing for the possibility of the cones being split in
the opposite direction, i.e., b = −bẑ, we will consider the case
σxy < 0 as well. This is relevant because for a given sample
the sign of its Hall conductivity changes if it is mirrored in
space [31,32].

Defining K± = k+
z ± k−

z , we can write the off-diagonal
elements of the reflection matrices as

RLR(qz ) = 1

σxy
(σxy − K− + K+ − 2qz ), (23)

RRL(qz ) = 1

σxy
(σxy − K− − K+ + 2qz ), (24)

where

K+ =
√

2qz
(
qz +

√
q2

z − σ 2
xy

)
,

K− = sgn(σxy)

√
2qz

(
qz −

√
q2

z − σ 2
xy

)
. (25)

Therefore, K+ is always positive, whereas K− changes sign
with σxy. With these definitions we are able to rotate to
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imaginary frequencies, defining ω = iξ , so that q2
z = ω2 −

q2
x − q2

y = −ξ 2 − q2
x − q2

y . This allows us to define qz = ipz,
with pz ∈ R, fulfilling p2

z = ξ 2 + q2
x + q2

y > 0. Then we ob-
tain for K+ and K−,

K+ = i

√
2pz

(√
p2

z + σ 2
xy + pz

)
, (26)

K− = sgn(σxy)

√
2pz

(√
p2

z + σ 2
xy − pz

)
. (27)

With this we can now write the reflection matrix in terms of
the imaginary transversal momentum pz, so that the rotated
reflection matrix in the chiral basis can be written as

R(ipz ) =
(

0 R(pz )

R∗(pz ) 0

)
, (28)

with

R(pz ) = 1 − g(pz ) + ih(pz ), (29)

g(pz ) = 1

|σxy|

√
2pz

(√
p2

z + σ 2
xy − pz

)
, (30)

h(pz ) = 1

σxy

√
2pz

(√
p2

z + σ 2
xy + pz

) − 2
pz

σxy
. (31)

Then, for the reflection matrix of the mirror-reflected system,
we obtain

R′(ipz ) =
(

0 R∗(pz )

R(pz ) 0

)
. (32)

III. CHIRAL MEDIA

The other necessary element to describe our system is the
chiral medium filling the gap between the two WSM. In a
chiral medium, the eigenmodes are not TE-TM waves, but
rather chiral states. Moreover, waves with different chirali-
ties propagate in the medium with different velocities. The
properties of the medium between the WSMs enters in the
translation matrices in Eq. (1). They are diagonal in the chiral
basis. Specifically, UAB acts on vectors from the basis {êL, êR},
while UBA acts on vectors from the primed basis {ê′

L, ê′
R}. They

are given by [23]

UBA =
(

eik+
L a 0

0 eik+
R a

)
, UAB =

(
eik−

L a 0
0 eik−

R a

)
, (33)

where k±
R (k±

L ) are the z component of the wave vectors of right
(left) circularly polarized photons propagating in the + (right
to left) or − (left to right) direction. In vacuum, k±

R,L are simply
equal to qz since all photons propagate with the same velocity,
but in chiral media they develop a shift in their propagation
velocity that might depend on their chirality, their propagation
direction and the properties of the material involved.

From this we see that the chiral basis was not only the
natural choice to work in this type of WSM, but also in chiral
materials. These are not two unrelated facts: In Ref. [25] it
has been pointed out that WSMs with cones splitting in the
direction of propagation are a particular type of chiral medium
because the two polarizations inside the material propagate

with different velocities. In the normal incidence case, when
qx = 0 and ω = qz, we can see that the eigenstates inside the
material (17) reduce indeed to the chiral basis.

Chiral media can be separated into two large groups de-
pending on whether the propagation velocity depends only
on the chirality of the photons or also on their propagating
direction. The first class, which as we shall see below is not
relevant for our work, are the optically active materials. These
materials preserve time-reversal symmetry, and thus photons
with opposite chirality would propagate with different ve-
locity independently of their direction of propagation: k±

R =
k̄z + δkz, and k±

L = k̄z − δkz, where k̄z = i
√

ω2 + k2
‖ ≡ ipz is

the mean wave vector of photons and δkz is the difference
of the wave vectors, which depends on the properties of
the medium. For optical active materials it can be taken as
δkz = α0ρ, where α0 is the specific rotation and ρ is the mass
concentration of optically active molecules [33].

The second class consists of the materials that display the
Faraday effect, an optical analog of the Hall effect discovered
by Faraday [34], in which the light passing through a medium
in a magnetic field experiences a rotation of its polarization. In
such materials, the optical rotation angle is given by θ = VBl ,
where V is the Verdet constant which characterizes the mate-
rial, l is the distance traveled by light, and B is the component
of the magnetic field in the direction of propagation. For
Faraday materials, the photons display a difference in their
propagating velocity that depends on their chirality as well
as on their direction of propagation, i.e., k±

R = k∓
L = k̄z ± δkz,

with δkz = VB. We will see shortly that Faraday materials
have interesting consequences for the Casimir force between
WSMs.

IV. CASIMIR FORCE BETWEEN TWO WEYL
SEMIMETALS IN A CHIRAL MEDIUM

With all the elements we have presented so far, we are
now ready to consider the Casimir force between two WSM,
with Hall conductivities σ A,B

xy , occupying the two half-spaces
z < 0 and z > a, respectively, as was shown in Fig. 1. The
gap between them is filled by a chiral medium, and we shall
obtain the Casimir force by calculating the Casimir energy
via Lifshitz’s formula (1). The reflection matrices for the two
plates are

RA(ipz ) =
(

0 R∗
A(pz )

RA(pz ) 0

)
,

RB(ipz ) =
(

0 RB(pz )

R∗
B(pz ) 0

)
, (34)

where RA,B(pz ) = R(σxy = σ A,B
xy ) and with R as derived in

Eq. (29). The off-diagonal form of the reflection matrices for
WSM implies that the matrix involved in the calculation of the
Casimir force becomes diagonal,

M ≡ I − RBUBARAUAB

=
(

1 − RBRA ei(k+
R +k−

L )a 0

0 1 − R∗
BR∗

A ei(k+
L +k−

R )a

)
. (35)
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This matrix can be interpreted in the following way: The first
component contains a term RBeik+

R aRAeik−
L , which accounts

for a left-polarized photon traveling in the − direction towards
the A plate, where it is reflected. The Fresnel coefficient
for such reflection is RA, i.e., the photon will be reflected
with probability RA and transmitted with probability 1 − RA.
Given the rotational symmetry of the system, its angular mo-
mentum cannot be changed under reflection. However, since
its linear momentum changes and the direction of motion is
reversed, its helicity changes. It thus becomes a photon with
right chirality, traveling in the + direction towards the B plate.
There, it again gets reflected with the Fresnel coefficient RB,
and the propagation starts over.

The other nonvanishing component contains a term
R∗

Beik+
L aR∗

Aeik−
R . Here, we have a right-polarized photon which

undergoes the same situation as before, but this time the
Fresnel coefficients involved in the reflections are the complex
conjugates R∗

A,B. This means that a WSM acts as a regular im-
perfect mirror for chiral photons, but the reflection coefficient
depends on the chirality of the photons. If the photons were
polarized in the TE-TM basis, then the WSM would mix their
polarizations.

As we saw in Sec. III, there are two different types of
chiral media. For optically active media, we have seen that
the velocity of photons does not depend on their propagation
direction. By looking at Eq. (35) it can be seen that, since
k±

R = k̄z + δkz and k±
L = k̄z − δkz, all the dependence on the

characteristics of the material (δkz) would vanish for the
Casimir energy. For this reason, we will focus from now on
Faraday materials.

To obtain the Casimir force, we need to calculate

m(pz ) ≡ det (M)

= 1 − 2e−2pza[CR(pz ) cos (2δkza)

− CI (pz ) sin (2δkza)] + W (pz )e−4pza, (36)

where we have defined

W (pz ) = |RA|2|RB|2

= [
(1 − gA)2 + h2

A

][
(1 − gB)2 + h2

B

]
,

CR(pz ) = Re(RARB) = (1 − gA)(1 − gB) − hAhB,

CI (pz ) = −Im(RARB) = hA(1 − gB) + hB(1 − gA), (37)

where gA,B(pz ) and hA,B(pz ) are defined in Eq. (29). We shall
remain in a limit where neither δkz nor σ A,B

xy depend on the
frequency or wavelength of the light. Hence, a change of vari-
ables to spherical coordinates can be performed, noting that
p2

z = ξ 2 + q2
x + q2

y , so that we can write qx = pz cos φ sin θ ,
qy = pz sin φ sin θ , and ξ = pz cos θ , with φ ∈ [0, 2π ], θ ∈
[0, π/2], and pz ∈ [0,∞]. Then the Casimir force FC =
−∂Ec/∂a can be written as

Fc = − h̄

(2π )2

∫ ∞

0
d pz

p2
z

m(pz )

∂m(pz )

∂a
. (38)

Now we can introduce the dimensionless variables u ≡ pza,
as well as δkza and aσ A,B

xy (the latter is dimensionless because
we are using Gaussian units and taking c = 1), so that the

FIG. 2. Casimir force for two WSMs with different Hall con-
ductivities σ A

xy and σ B
xy, with vacuum filling the gap between them.

The Casimir force is shown as a function of the dimensionless
conductivities aσ A

xy and aσ B
xy, where a is the distance between the

plates. The black solid lines are the curves in which the force
vanishes, and the light blue areas are the zones in which the Casimir
force is repulsive.

Casimir force results in

FC

F0
= 240

π4

∫ ∞

0
du u2e−2u n(u)

m(u)
, (39)

where F0 = −h̄π2/240a4 is the attractive Casimir force be-
tween two perfectly conducting plates, and

n(u) =CR(u)[u cos(2aδkz ) + aδkz sin(2aδkz )]

− CI (u)[u sin(2aδkz ) − aδkz cos(2aδkz )]

− uW (u)e−2u, (40)

and the functions m(u), CR(u), CI (u), W (u), rA,B(u), and
pA,B(u) are obtained by replacing pz → u, σ A,B

xy → aσ A,B
xy , and

δkz → aδkz in their original definitions.
At this point it is easy to check some basic limits: The limit

aσ i
xy → 0 for i ∈ {A, B} results in ri → 1 and pi → 0, so that

the force vanishes. This was expected because in that limit the
WSM effectively behaves like vacuum as can be seen from its
dielectric constant, Eq. (9).

On the other hand, when aσ i
xy → ∞, one finds ri, pi →

0, so the reflection matrix in the chiral basis has ones in the
off-diagonal elements, which would correspond to a perfectly
conducting plate. And indeed, we can check that in this limit
of Fc/F0 → 1.

We will begin by considering the case in which the gap
between the two WSM is filled by vacuum, as considered
in Ref. [19], but allowing for the Hall conductivities of the
plates to be different from one another. We show these results
in Fig. 2. We see that a necessary condition for repulsion to
be possible, in absence of a chiral medium, is that sgn(σA) =
sgn(σB). Moreover, one sees that for fixed distance, as long
as one of the Hall conductivities is small enough, a repulsive
force can still be obtained for large values of the other Hall
conductivity. However, it is worth pointing out that even
though repulsion can be achieved in vacuum, its magnitude
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FIG. 3. Casimir force for two WSM with identical Hall con-
ductivities σ A

xy = σ B
xy = σxy when the gap in between them is filling

by Faraday material. The force is shown as a function of σxya
and δkza, where a is the distance between the plates and δkz is
the difference between the propagating velocities of photons with
different chirality, which is a characteristic of the chiral medium.
The solid black lines correspond to a vanishing force, marking the
transition from regions with attraction (in red) and repulsion (in
blue).

is still only about 5% of the magnitude of the Casimir force
between two perfectly conducting plates for the parameters
considered. Nevertheless, a significant reduction of the attrac-
tive force can be achieved.

Another interesting effect can be seen already in Fig. 2.
A change from σxy to −σxy can be obtained trivially by
simply flipping the sample as this results in a reversal of
the separation between Weyl cones from b = bẑ to b = −bẑ.
This means that at a fixed distance and for a given pair of
samples, flipping one of the samples would result in a change
from attraction to repulsion and vice versa. Being capable
of achieving both repulsion and attraction without the need
of changing the distance, applying external fields or doping,
makes WSM a very versatile testbed for studying the Casimir
repulsion.

Next, we turn to the case of a chiral medium filling the gap
between the WSMs. In Fig. 3 we consider the case in which
both WSMs have the same Hall conductivity σ A

xy = σ B
xy = σxy,

and show the Casimir force as a function of the dimensionless
variables σxya and δkza, where δkz is the shift in propagating
velocities of photons with different chirality. The black line
separates the region in which the force is attractive from
the region where repulsion is achieved. For a fixed distance
between the plates, we can see that the presence of the chiral
medium can lead to stronger repulsive forces, reaching about
50% of the magnitude of the Casimir force between two
perfectly conducting plates F0 for the parameters considered.

On the other hand, we know that the sign of δkz indicates
the chirality that propagates faster than the other within the
Faraday material. That is, for positive δkz, a right-handed
wave moving in the +ẑ direction will have a larger propa-
gating velocity than a left-circularly polarized wave moving
in the same direction. If δkz is negative, such relation will be

inverted. From Fig. 3 we can see that the repulsion is enhanced
in the regions in which the sign of δkz is opposite to the sign of
σxy. The sign of δkz can be changed by flipping the orientation
of the external magnetic field.

We can gain a deeper insight into the effect of both the
WSM and the Faraday material by looking at the dependence
of the force on the distance between the plates. To do so
we rely on the available experimental data: For the WSM, we
will consider a Hall conductivity of σxy/c = 2.65 × 106 m−1

in Gaussian units, which corresponds to the measured σxy =
870 �−1cm−1 [35]. Regarding the Faraday material, we will
follow Ref. [23] and consider the large Verdet constant V =
5 × 105 radm−1T−1, and an external applied magnetic field of
B = 0.4 T, which results in a phase difference δkz = VB ≈
2 × 105 rad m−1 between the left- and right-circularly polar-
ized photons.

In Fig. 4 we show the behavior of the Casimir force for
both shorter (0–5 μm) and longer (0–30 μm) distances. For
shorter distances, we can see what we already observed from
Fig. 3: that there is no Casimir repulsion between WSMs
whose conductivities have different signs, regardless of the
presence of a Faraday medium in between them (light blue
and orange curves). A flip in the sign of the phase velocity
difference δkz would not affect the force in this case (as will
be shown in Fig. 5), since both systems would be equivalent.
In contrast, when the conductivities of both WSMs have the
same sign, then the introduction of a Faraday material with
a positive Verdet constant and the application of an external
magnetic field in the opposite direction to the splitting of the
Weyl cones would lead to an enhancement of the repulsion
(light purple curve). A system with these characteristics would
be able to host repulsive forces even at small distances (in
contrast with the perfectly conducting case [23]), but the
range of distances for which repulsion is achieved is much
larger than in the absence of the Faraday medium. The
magnitude of the repulsive force, for small distances, can
be as well much larger than the repulsive force obtained in
vacuum.

When we have a look at larger distances, the first thing
we notice is that, in the absence of chiral medium (light blue
curves), the only repulsive region exists at small distances, and
there is only one trapping distance where the force vanishes.
The presence of the chiral medium is what creates the oscil-
lations already found in Ref. [23] for the force between two
perfectly conducting plates. The period of such oscillations
is determined by δkz, and their origin can be understood by
looking at Eq. (35): We see that in absence of a chiral medium,
the argument of the exponential becomes real, but when δkz �=
0, a phase is introduced. This phase can be interpreted as
a phase shift occurring at the interface when the photon is
reflected. We can think of a phase ±δkza being introduced in
each reflection coefficient, modifying its effective value as the
distance between the interfaces change. For certain distances,
even a flip in the sign of this effective reflection coefficient
might occur. We show the perfect conducting plate limit as
well, using a very large value for the Hall conductivity, as a
dark blue line. We can see that the main advantage of having a
finite Hall conductivity via WSMs is found at small distances,
for which repulsion can only be achieved in this scenario. At
larger distances, the finite Hall conductivity changes slightly
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FIG. 4. Casimir force as a function of the distance, for long and short distances. The δkz = 0 case corresponds to vacuum filling the gap
between the two WSMs. The nonvanishing δkz are set to be δkz = ±2 × 105 m−1, and the values of the Hall conductivities of the WSMs are
such that σ A

xy/c = 2.65 × 106 m−1. The curves marked with a S are the ones corresponding to a symmetric configuration where σ A
xy = σ B

xy, while
A stands for the antisymmetric configuration with σ A

xy = −σ B
xy. The line marked “large,” shown in the plot for large distances, corresponds to a

value σ A
xy/c = 2650 × 106 m−1 and illustrates the perfect conductor limit.

the position of the zeros, allowing for more control on the
position of the trapping distances.

Lastly, in Fig. 5, we show the behavior of the force for
different values and signs of δkz. We find that the frequency of
the oscillations grows with δkz, and that for long distances, the
sign change only moves slightly the position of the trapping
distances.

V. CONCLUSIONS

In this work we have studied the Casimir interaction
between two semi-infinite Weyl semimetals separated by a

FIG. 5. Effect of the sign and amplitude of δkz on the Casimir
force for long distances. The values of the Hall conductivities of
the WSMs are such that σ A

xy/c = 2.65 × 106 m−1 and δkz = ±2 ×
105 m−1. The curves marked with an S are the ones corresponding
to a symmetric configuration where σ A

xy = σ B
xy, while A stands for the

antisymmetric configuration with σ A
xy = −σ B

xy.

distance a, and whose Weyl cones are split in the same
direction as the gap between the two materials. This fact
renders both plates rotationally symmetric, and we found that
this implies that they show a particular response in presence
of circularly polarized light: Each photon sees the WSM as
an imperfect isotropic mirror, but with a different reflection
coefficient depending on its chirality.

Even if the gap is filled with vacuum, WSMs exhibit in-
teresting features regarding Casimir interactions, as has been
shown in the literature [19,22]. We found that a flipping of one
sample in real space may switch the system from repulsive to
attractive and vice versa, which makes WSMs very versatile
materials from the point of view of investigating the Casimir
force, given the fact that the same sample may exhibit either
repulsion or attraction depending only on its orientation with
respect to another sample.

We then considered the case in which the gap between the
two materials is filled with a chiral medium, either a Faraday
material or an optically active medium. We found that, in the
latter case, the medium has no effect on the Casimir force.
In contrast, the presence of a material with Faraday rotation
between the two WSMs presents several advantages with a
view towards Casimir repulsion.

The addition of a Faraday medium in the gap enhances
the repulsive force at short distances, as long as the magnetic
field that generates the difference between the propagating
velocities in the Faraday material points in the opposite di-
rection as the separation between the Weyl cones in momen-
tum space. The effect of the external magnetic field on the
WSM can be neglected. It is worth pointing out, however,
that for large separation between the plates using highly
conducting metals would lead to stronger repulsion than using
WSMs [23].

The system we presented here allows for the manipulation
of various parameters, some intrinsic to the materials em-
ployed (the absolute value of the Hall conductivity |σxy| of
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the WSM, the Verdet constant of the Faraday material V), but
also some external ones like the orientation of the plates which
determines the sign of their conductivity and the external
magnetic field. Suitable combinations of these parameters can
be used to place the trapping distance, in which no force acts
on the plates, at any desired distance between them.
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