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In these lectures (8 hours taught in November 2020), we mention some topics from (algebraic) number
theory as well as some related concepts from (algebraic) geometry that can be useful in cryptography. We
cannot go deeply into any of the topics and most results will be presented without any proofs.

One of the things that one encounters are ‘ideal lattices’. In the examples I saw, this was nothing but (an
ideal in) an order in a number field, which is one of the concepts that we present here in its mathematical
context (i.e. embedded in a conceptual setting). It has been noted long ago (already in the 19th century)
that number fields and function fields of curves have many properties in common. Accordingly, we shall
also present some basic topics on affine plane curves and their function fields. This leads us to mention
elliptic curves, however, only in an affine version (instead of the better projective one); we cannot go
deeply into that topic at all.

The material presented here is classical and very well known. Large parts of these lecture notes are taken
from my lecture notes for the lectures Commutative Algebra and Algebraic Number Theory (the latter
written in collaboration with Sara Arias-de-Reyna) for the Master in Mathematics at the University of
Luxembourg [Wiel]. They were, in turn, heavily influenced by a number of sources, such as Neukirch:
Algebraic Number Theory [Neu99]], Lorenzini: An Invitation to Arithmetic Geometry [Lor96], Atiyah-
Macdonald: Introduction to Commutative Algebra [AM69]], Stevenhagen: Number Rings [Ste17]].

1 Integers and functions

1.1 Number fields and field extensions

Example 1.1. Let d € Z be different from 0, 1 and not a square. Put
Q(Vd) ={a+bVdeC |a,beQ}CC.

We say that Q(\/d) is a quadratic field.
In particular, Q(\/&) is a field: we can add, substract, multiply and divide elements of Q(\/E) without
leaving this set (except division by zero, of course).

Exercise: Make these four operations explicit.

Example 1.2. Let n € Z>1 be a positive integer. Let ¢, = exp(2mi/n) = cos(27/n) +isin(27/n) € C.
Note that ¢, lies on the unit circle. It is a primitive n-th root of unity, meaning " = 1 and (3, # 1 for all
1<j7<n—1 Put

n—1

Q(¢n) ={D_a;¢h €Clag,...,an1 € Q}.
7=0



We say that Q((,,) is the n-th cyclotomic field. In Cryptography, one sometimes encounters Q((am) and
its ‘ideal lattice’ (ring of integers, see below).

In particular, Q((y,) is a field. If it’s not clear here, it will be clear below.
Both these examples are number fields.

Definition 1.3. A number field is a field F' C C which is a finite dimensional Q-vector space. That means
that there are elements y1, . . .,yn € F such that every x € F' can be written as

n—1
xTr = E ajyj
=0
with unique ay, . . . ,a,—1 € Q.

Even though number fields (and ideal lattices) are one of the principal motivations for these objects in this
course, we shall work more abstractly so that we are flexible and can transport results to other settings.

Definition 1.4. Let F' be a field. If K C F'is a subfield of F', then we say that K C F is a field extension.

A different piece of notation (used in mathematical literature) for a field extension is F'/ K.

The following lemma is fundamental because it allows us to use linear algebra in number theory!

Lemma 1.5. Let K C F be a field extension. Then F is a K-vector space.

More precisely: As a field F' has addition and multiplication (and also their ‘inverses’: substraction and
division). To make F' into a K-vector space, we need an addition; we just take the addition that we already
have. We also need a ‘scalar multiplication’, i.e. we must be able to multiply an element of K with an
element of F'; we again take the multiplication that we already have. Then it’s very easy to check that the
associativity, commutativity and distributivity relations that one has in a field imply all the axioms in the

definition of vector space.
Definition 1.6. Let K C F be a field extension. The degree of the field extension is defined as
[F: K] :=dimg(F),

the dimension of F' as K-vector space. This can be finite or infinite.

If [F : K] is finite, then we say that K C F' is a finite field extension.
Remark 1.7. A number field F' is hence a field (subfield of C) such that Q C F is a finite field extension.

Definition 1.8. Let K C F be a field extension. A polynomial f € K[X] is said to be the minimal
polynomial of @ € F over K if

e it is monic, i.e. its leading coefficient is 1,
e aisarootof f,ie. f(a)=0,

e any polynomial g € K[X| such that g(a) = 0 is a multiple of f (in particular, if g # 0, then
deg(f) < deg(g)-

Example 1.9. Let a € Q. Its minimal polynomial over Q is m,(X) = X —a € Q[X].

Example 1.10. Let us consider quadratic fields.

(a) Consider /2 € C. Its minimal polynomial over Q is m 5(X) = X2 -2¢€Q[X].
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(b) Consider 1+T\/3 € C. Its minimal polynomial over Q is X?> — X — 1 € Q[X].
(c) Consider HT\/_? € C. Its minimal polynomial over Q is X? — X + % € Q[X].

Example 1.11. Let p be a prime number and ¢, = exp(2ni/p) € C. Its minimal polynomial over Q is
XP=l 4 XP=2 4 ...+ X +1 € Q[X]. This is the p-th cyclotomic polynomial.

More generally, the minimal polynomial of C,, for n € Z>1 exists and can be written down rather explicitly.
It is called the p-th cyclotomic polynomial.

Definition 1.12. Let K C F be a field extension. An element a € F is called algebraic over K if it has a
minimal polynomial in K[X].

The field extension K C F is called algebraic if every a € F'is algebraic over K.

Example 1.13. In all preceding examples, we saw numbers that are algebraic over Q.

The famous number 7, defined as the ratio of the circumference of a circle over its diameter, is not al-
gebraic over Q by a famous theorem of Lindemann. One says that it is a transcendental number (over

Q).

Proposition 1.14. Any finite field extension K C F (in particular, any number field F) is algebraic, so
a € L has a minimal polynomial m, € K[X].

Proof. The powers 1 = a,a = a',a?,a®, ... mustbe K -linearly dependent because the dimension is

finite. The minimal polynomial is the shortest non-zero equation of the form
A"+ cp_1a” et +a’ =0

with ¢; € K. ]

1.2 Integers
Example 1.15. The minimal polynomial of a € Q over Q is mqy(X) = X —a € Q[X]. Note the following:
a€Z <= me(X) e ZX].

So, we have

Z={a€Q|mg(X) € Z[X].
Definition 1.16. If S is a ring and R C S is a subring, then we also speak of a ring extension (in analogy

to the terminology used for field extensions).

In the sequel, we shall often be concerned with a number field F' and consider the ring extension Z C F'.

Definition 1.17. Let R C S be a ring extension. Then a € S is called integral over R if there is a monic
polynomial f € R[X] such that f(a) = 0.

We first clarify which algebraic elements are integral in the case of interest to us.

Lemma 1.18. Let F' be a number field. Then a € F is integral over Z if and only if its minimal polynomial
mq has coefficients in Z.

More generally, let R be an integrally closed integral domain (see below; 7 is an example) with field of
fractions K. Let K C F be a finite field extension. Then a € F' is integral over R if and only if its minimal
polynomial m,(X) has coefficients in R.



Proof. We only prove the first statement. The general statement requires more technology and will be
skipped.

One implication is clear (and works without any assumption on R in the general case). For the other one,
let f € Z[X] be any monic polynomial such that f(a) = 0. Consider f as an element of Q[X]. As such,
it is a multiple of the minimal polynomial m,(X) € Q[X], i.e.

J(X) =mq(X) - h(X)

for some polynomial h(X) € Q[X]. Note that h(X) is necessarily monic. Now, a theorem of Gaul tells
us that if a monic polynomial with coefficients in Z factors into two monic polynomials, then both of them
also have coefficients in Z, proving m,(X) € Z[X]. O

We reconsider the same examples as above.

Example 1.19. Let a € Q. As its minimal polynomial over Q is mq(X) = X — a € Q[X], we have:
a € Zif and only if a is integral over Q.

Example 1.20. Let us consider quadratic fields.

(a) Consider \/2 € C. As its minimal polynomial over Q is m 5(X) = X2 — 2 € Z[X], it follows that
V2 is integral over 7.

(b) Consider % € C. As its minimal polynomial over Q is X?> — X — 1 € Z[X)], it follows that

127\/5 € C is integral over Z.

(c) Consider 1+‘2/j5 € C. As its minimal polynomial over Q is X?> — X + % & Z[X)], it follows that
L\/TS c C
2

is not integral over 7.

Example 1.21. Let p be a prime number and (, = exp(2mi/p) € C. As its minimal polynomial over Q
is XP~1 4+ XP=2 4 ... + X + 1 € Q[X], it follows that Cp is integral over 7. More generally, the same
conclusion holds for all ,, for n € Z>.

1.3 Ring of integers and integral ring extensions

Definition 1.22. For a number field F', define the ring of integers of F' as
Zp = {a € F | ais integral over Z}.

We revisit again the above examples.

Example 1.23. Ring of integers of Q: As seen above: Zg = Z, i.e. Z is the ring of integers of Q.

Example 1.24. Let d # 0,1 be a squarefree integer. The ring of integers of Q(\/d) is

(1) Z[Vd), ifd = 2,3 (mod 4),

]
(2) ZMY/4), ifd =1 (mod 4).

Example 1.25. Let n € Z>1 and ¢, = exp(2mi/n) € C. The ring of integers of the n-th cyclotomic field
Q(Gn) is

n—1

Zo,) = 2] = {>_a;¢l € Clao, ... an1 € Z}.
7=0



Attention: if n is not prime, then the powers (p, for 0 < j < n — 1 do not form a basis (there’s linear
dependence). For instance, for n = 4, we have {4 = i and 1,i,i*> = —1,i®> = —i are not Q-linearly
independent.

Exercise: Work our a basis for n = 2™,

Let us add an abstract definition, which we will mostly (but not exclusively) use with R = Z and S = Zg
with a number field K.

Definition 1.26. Let S be a ring and R C S a subring.

(a) The set Rs = {a € S | aisintegral over R} is called the integral closure of R in S (compare with
the algebraic closure of R in S — the two notions coincide if R is a field).

An alternative name is: normalisation of R in .S.

(b) S is called an integral ring extension of R if Rg = S, i.e. if every element of S is integral over R
(compare with algebraic field extension — the two notions coincide if R and S are fields).

(c¢) R is called integrally closed in S if Rg = R.

(d) Anintegral domain R is called integrally closed (i.e. without mentioning the ring in which the closure
is taken) if R is integrally closed in its fraction field.

(e) Let a; € S fori € I (some indexing set). We let Rla; | i € I] (note the square brackets!) be the
smallest subring of S containing R and all the a;, i € 1.

Note that we can see R[a] inside S as the image of the ring homomorphism
o, : R[X] — S, ZCiXZ — Zcial.
i=0 i=0
Remark 1.27. The ring of integers of K is the integral closure of 7 in K, this explains the piece of

notation Z . An alternative notation that one often encounters in mathematical texts is Ok.

Example 1.28. Every UFD (unique factoriation domain) is integrally closed. In particular, Z, and poly-
nomial rings F[X1, ..., X,] are integrally closed.

In the next statements, we will speak of R-modules for a ring R. An R-module is nothing else than a
vector space (exactly the same definition), except that we allow the coefficients to be in a ring, where as
the notion of vector space is restricted to coefficients in fields.

Proposition 1.29. Let R C S C T be rings.

(a) Fora € S, the following statements are equivalent:

(i) a is integral over R.

(ii) Rla] C S is a finitely generated R-module.

(b) Letay,...,a, € S be elements that are integral over R. Then Rlay,...,a,] C S is integral over R
and it is finitely generated as an R-module.

(c) Let R C S C T be rings. Then ‘transitivity of integrality’ holds:

R C Tisintegral < S C T isintegral and R C S is integral.



(d) Rg is a subring of S.

(e) Anyt € S that is integral over Rg lies in Rg. In other words, Rg is integrally closed in S (justifying
the name).

Proposition 1.30. Let R be an integral domain, K = Frac(R), K C F a finite field extension and
S := Ry the integral closure of R in F. Then the following statements hold:

(a) Every a € F' can be written as a = 7 with s € Sand 0 # r € R.
(b) F = Frac(S) and S is integrally closed.

(c) If R is integrally closed, then S " K = R.

1.4 Trace and norm in field extensions

We now systematically do linear algebra in field extensions. Let K C F' be a finite field extension of
degree [F' : K] = n. Leta € L. Note that multiplication by a:

T, : F — F, xw— ax

is F-linear and, thus, in particular, K -linear. Once we choose a K -basis of F', we can represent 1}, by an
n X n-matrix with coefficients in K, also denoted 7T,.

Example 1.31. The complex numbers C have the R-basis {1,i} and with respect to this basis, any z € C

is represented as () = x + yi. Now, take a = (1) = b+ ci € C. We obtain: T, = (° ), as we can

c c b
easily check:

Ta(z) = az = (b+ ci)(z + yi) = (br — cy) + (cx + by)iand T,(2) = (> 7¢) (§) = (lz;lc)z) ‘

As an aside: You may have seen this matrix before; namely, writing z = r(cos(¢) +isin(yp)), it looks like

( cos(ip) — sin(i)

sin(p) cos() ), i.e. it is a rotation matrix times a homothety (stretching) factor.

We can now do linear algebra with the matrix 7, € Mat,, (K).
Recall that the frace of a matrix M = (m; j)1<i j<n € Mat, (K) is defined as

n
TI‘(M) = Z mm,
=1

the sum of its diagonal entries.

Definition 1.32. Let K C F be a field extension of degree [F' : K| = n. Let a € F. The trace of a in
K C F is defined as the trace of the matrix T,, € Mat,,(K) and the norm of a in K C F is defined as the
determinant of the matrix T, € Mat,,(K):

Trp K (a) == Tr(T,) and Normp, g (a) := det(Ty).
Note that trace and norm do not depend on the choice of basis by a standard result from linear algebra.

Example 1.33. Let us continue the example above. Let z = x +yi € C. Then Tr¢ r(z) = 2z = 2 Re(2)
and Normg /g (2) = 22 4 y% = |2~

Lemma 1.34. Let K C F be a finite field extension.



(a) Trp g defines a group homomorphism (F,+) — (K, +), i.e.

Trp/g(a+b) = Trp/k(a) + Trp/k(b) for all a,b € F.
(b) Normp g defines a group homomorphism (F ) — (K*,-), i.e.
Normpg) g (a - b) = Normp/k(a) - Normp, i (b) for all a,b € F.
Proof. (a) The trace of a matrix is additive and 7}, 1, = T}, + T}, because
Torp(x) = (a+ bz = az + br = Tu(z) + Tj(v)

forall x € F.

(b) The determinant of a matrix is multiplicative and 7., = T, o T} because
Tos(z) = abz = T, (Ty(z))
forall z € F. 0

Lemma 1.35. Let K C F be a finite field extension of degree [F : K| =n. Leta € F.

(a) Let f, = X" + b, 1 X" 14+ + 01X + by € K[X] be the characteristic polynomial of T, €
Mat,,(K). Then Trp/k(a) = —b,—1 and Normp ) i (a) = (—1)"bo.

(b) Let my = X%+ cg 1 XV + -+ 1 X + ¢o € K[X] be the minimal polynomial of a over K.
Then {1,a,a?,...,a% '} forms a K-basis of K(a) and [K(a) : K| = d. Moreover, the matrix T,

Tr—ax

representing the map K (a) —— K (a) with respect to this K-basis equals

00 - 0 —co
10 - 0 —c1
01 - 0 —c2

T, = '
00 1 705171
(c) Thend = [K(a) : K] and with e = [F : K(a)] one has mq(X)¢ = fo(X).

Proof. Exercise. ]

We need some important pieces of terminology from field theory.

Definition 1.36. Let K C F and K C L be field extensions. Denote
HomfY(F L) = {¢ : F — L | field homomorphism s.t. Vz € K : p(z) = x},

the set of field homomorphisms from F to L that are the identity on K.

Let K be an algebraic closure of K (i.e. and algebraic extension K C K such that every non-constant
polynomial in K[X] has a zero (and hence all zeros) in K.

We say that a finite field extension K C F is separable if [F : K] = #Hom{¢4(F, K).
Example 1.37. If K is a field of characteristic 0, i.e. a field that contains (a subfield isomorphic to) Q,

then any field extension K C F' is separable. If K is a finite field, the same conclusion holds.

However, if K is an infinite field of characteristic p > 0, then there are non-separable extensions. One
encounters this when working with elliptic curves over finite fields.



Proposition 1.38. Let K C F be a finite separable field extension, K an algebraic closure of K con-
taining F'. Let, furthermore, a € F and f, be the characteristic polynomial of T,. Then the following
statements hold:

(@) fo(X) = T setomen m) (X — o(a)),

(b) Trp/x(a) = 3 sctomicd(rx) (@), and

(c) Normp,(a) = ngHomggld(F,f) o(a).

Corollary 1.39. Let K C F' C L be finite separable field extensions. Then

Trr k= Trp/x o Trp p and Normy ;e = Normp g o Normyp, /p.

We now apply norm and trace to integral elements. We again state the result in general, but one can think
of R = Z, F anumber field and S = Z its ring of integers.

Lemma 1.40. Let R be an integrally closed integral domain, K its field of fractions, K C F' a separable
finite field extension and S the integral closure of Rin F. Let s € S. Then the following statements hold:

(a) Trg i (s) € Rand Normp/k(s) € R.
(b) s € S* & Normp/k(s) € R
Proof. (a) directly follows from S N K = R.
(b) ‘=": Let s,t € S* such that ts = 1. Then
1 = Normp, (1) = Normp x (st) = Normp, (s)Normp x (t),

exhibiting an inverse of Normp - (s) in R.

‘«=": Assume Normp,(s) € R*. Then
1 =rNormp/g(s) =1 H o(s) = (r H o(s))s = ts,
o€Homp (F,K) id#ocHom (F,K)

exhibiting an inverse to s in S. O

1.5 Discriminant

Definition 1.41. Let K C F be a finite separable field extension of degree n = [F : K|. Let K be an
algebraic closure of K. Further, let Hom??ld(F, K)=1{o1,...,0n}andletay,...,a, € F bea K-basis
of F'. Form the matrix

o1(a1) o1(ag) - o1(an)
D(a, ... o) = (0i(aj))i<ij<n = oa(a1) oz(az) -+ oz(an)
on(a1) onlaz) -+ oplan)
The discriminant of (o, . . ., av,) is defined as

disc(av, ..., o) == (det D(oy, ... ,an))2.

The trace pairing on K C F'is the bilinear pairing

FxF—=K, (v,y)w Trpg(ry).
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Example 1.42. (a) Let 0,1 # d € 7Z be a squarefree integer and consider K = Q(\/&) Computations
(exercise) show:
1+vVd

2

disc(1,vV/d) = 4d and disc(1, ) =d.

(b) Let f(X) = X3+ aX + b € Z[X] be an irreducible polynomial and consider K = Q[X]/(f). Let
a € C be any root of f, so that we can identify K = Q(c) and 1, o, o? is a Q-basis of K.

Computations (exercise) show disc(1, o, %) = —4a3 — 27b%,

Remark 1.43. The discriminant of a polynomial f can also be computed as the resultant of f and its
formal derivative f’.

Proposition 1.44. Let K C F be a finite separable field extension of degree n = [F' : K|. Let ay, . .., ap
be a K-basis of F. Then the following statements hold:

(a) Let D := D(ayq,...
chosen K-basis. That is,

, ). Then D™D is the Gram matrix of the trace pairing with respect to the
DtrD = (TrF/K(oziozj))

1<i,j<n’

(b) We have

disc(ay, ..., ap) = det(D)? = det(D¥ D) = det (TrF/K(aiaj))1<ij<n.

(c) Let C = (c;j)1<ij<n be an n x n-matrix with coefficients in K with det C # 0 and put ; := Coy
fori=1,... n. Then

disc(B1, . . ., Bn) = det(C)? disc(ar, . . .

,Oén).

(d) If F = K(a), then
disc(1,a,...,a" ! = H (Jj(a) — Ui(a))27

1<i<j<n

where o1, . .., 0, are the K -field homomorphisms F — K.

Proof. (a)Let oy, ...,o, be the K-field homomorphisms F' — K. Then we have

oi1(ar) o2(aq) on(ar) o1(ar) o1(ag) o1(an)
Drp _ o1(ag) o2(ag) on () oa(ay) o2(a2) oa(ay)
o1(an)  oo(ay) on (o) on(ar) op(ag) on (o)

22:1 Uk(OqOQ)

ZZ:1 ok (o)

ZZ:1 Uk(alan)
EZ:I ok (o)

ZZ:1 O’k:(aloéz)
Zﬂ’zl or(aaz)

Yt oklanar)  Dop_ on(anaz)

Trp/k(aron) Trpx(oros)
Trp/k(azon)  Trpk (o)

Trp/k(ancr) Tre g (anas)

ZZ:1 ok (anom)

Trp/k(cran)
Trp/k (2an)

TrF/K(anan)

So, the (4, j)-entry of the matrix D" D equals Trp /K (a;j). Hence, D% D is the Gram matrix of the trace

pairing with respect to the chosen K-basis.



(b) is clear.
(c) Exercise.
(d) Exercise. ]

Proposition 1.45. Assume the setting of the previous proposition. The discriminant disc(ayq, ..., qp) is
non-zero and the trace pairing on K C F' is non-degenerate.

1.6 Integral bases, orders and lattices in number fields

For going on, we need to introduce some more terminology on modules (‘vector spaces over rings’). It is
again the same as for vector spaces.

Definition 1.46. Let R be a ring and let M be an R-module.
Let m; € M with indices i € I (some set) be a collection of elements.

The collection (m;);cy is called a generating set of M if for every m € M there is a finite subset of indices

J C I and for every j € J there is r; € R such that m = ZjeJ Tim;.
If M possesses a generating set that is finite, then M is called finitely generated as R-module.

The collection (m;)icy is called R-linearly independent or R-free if for all finite subsets of indices J C I
the only linear combination equal to zero:

0= Z rimg;
JjeJ
withr; € R for j € J is the one where r; = 0 forall j € J.
An R-free generating set of M is called an R-basis of M.

An R-module M that possesses an R-basis is called R-free.
The number of elements in an (and any) R-basis of M is called the R-rank of M, denoted rkr(M ).

Remark 1.47. If R = K is a field, then any R-module is a K-vector space and by results form linear
algebra it is automatically free and possesses a K-basis. Moreover, in that case, dimension and rank are
the same.

However, if R is not a field, then there are in general non-free modules, which also don’t have any basis
(but they all have generating sets).

We include the structure theorem of finitely generated modules over PIDs (principal ideal domains). The
main example is & = Z or a polynomial ring in one variable over a field. The proof is not very difficult,
but not included here.

Theorem 1.48. Let R be a principal ideal domain and M a finitely generated R-module. Then the
following statements hold:

(a) Assume that M is a free R-module of rank m. Then any submodule N of M is finitely generated and
free of rank < m.

(b) An element m € M is called a torsion element if there is 0 # r € R such that rm = 0. The set
Miorsion = {m € M | m is a torsion element } is an R-submodule of M.

(c) M is a free R-module < M;qsion = {0}
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(d) There is an integer m such that

M = Miorsion PR® ... D R.
—_———

m times
We need one more piece of terminology for modules.

Definition 1.49. An R-module M is called Noetherian if all its submodules are finitely generated. A ring
R is Noetherian if it is Noetherian as R-module; this is equivalent to asking that all ideals of R are finitely
generated.

Example 1.50. Every principal ideal domain (PID) is Noetherian, so, in particular, 7 is Noetherian.
Moreover, the polynomial ring in n-variables over a Noetherian ring is Noetherian (this is called Hilbert’s
Basissatz).

Definition 1.51. Let R C S be an integral ring extension. If S is free as an R-module, then, by definition,
an R-basis of S (i.e. a free generating system) exists and is called an integral basis of .S over R.

We point out that, if S is an integral domain (as it always will be in this lecture), then an R-basis of S is
also a K -basis of F' = Frac(S) with K = Frac(R).

Note that, in general, there is no reason why an integral ring extension .S should be free as an R-module.
This is, however, the case for the rings of integers, as the following proposition shows. We first need a
lemma.

Lemma 1.52. Let R be an integrally closed integral domain, K its field of fractions, K C F a separable
finite field extension and S the integral closure of R in F'.

(a) For any K-basis o, ..., an of F, there is an element r € R\ {0} such that ra; € S for all i =
1,....n

(b) Let ay,...,ap € S bea K-basis of F and let d = disc(av, . . ., ) be the discriminant of this basis.
Then dS C Roaq + - - - + Ray,.

Proof. (a) By Proposition [.30] (a), we can write «; = % withr; € Rands; € Sforallt =1,...,n.
Hence, we may take r =ry - ... - 1.

(b)Lets = Z?:l xjoj beanelementof S withz; € Kforj =1,...,n. Weshow ds € Roj+- - -+Ray,.

Note that the elementary properties of the trace yield
n
Trp g (ais) = ZTr(aiaj)a:j €R.
j=1

Trp g (aiar) - Trp g(aian)
We can rewrite this in matrix form using M = D% D = : - : . Now:

Trp/g(anar) - Trp g (anan)

z1 > Trpy ke (anaj)w;
M< : > = : cR".

on Z;L:1 Trp/ i (anoy)T;

Multiplying through with the adjoint matrix M7 yields

M# M (:1> = det(M) (:1> :d(:;l) € R™.

Thus, dz; € Rforalli = 1,...,n and, consequently, ds € Raj + - - - 4+ Ra,. O
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Proposition 1.53. Let R be a principal ideal domain, K its field of fractions, K C F a finite separable
field extension and S the integral closure of R in F.

(For instance, we can take R = 7, K = Q, F' a number field and S = Zr its ring of integers.)

Then every finitely generated S-submodule 0 # M C F'is a free R-module of rank [F' : K. In particular,
S possesses an integral basis over R. Moreover, S is a Noetherian ring.

Proof. As principal ideal domains are unique factorisation domains and, hence, integrally closed, we may
apply Lemmal[[.32]to obtain a K-basis a1, ..., a, € S of F and we also have dS C Raj + - - -+ Ray, =:
N with d = disc(ay, . .., ayp). Note that N is a free R-module of rank n = [F': K].

Let my,...,my € M be a generating system of M/ C F'as S-module. As the m; are elements of F, by
Proposition (a) there is » € R such that rm; € S foralli = 1,...,k, whence rM C S. Hence,
rdM C dS C N. Consequently, Theorem [[L48] yields that rdM is a free R-module of rank at most n.
Of course, the R-rank of rdM is equal to the R-rank of M. Let 0 = m € M. Then Nm < Sm < M,
showing that n, the R-rank of N (which is equal to the R-rank of N'm) is at most the R-rank of M. Since
finite direct sums of Noetherian modules are Noetherian, it follows that S is Noetherian. ]

For the rest of this section we specialise to the case of number fields.

Definition 1.54. Let F' be a number field. A subring O of Zr is called an order of F' if O has an integral
basis of length [F : Q|. Equivalently, the index (Zp : O) as abelian groups is finite.

Corollary 1.55. Let F' be a number field and Z r the ring of integers of F'. Then the following statements
hold:

(a) Zr is an order of F, also called the maximal order of F.

(b) Let O be an order of F and 0 C I < O be an ideal. Then I is a free Z-module of rank [F : Q| and
the quotient O /1 is finite (i.e. has finitely many elements; equivalently, the index (O : I) is finite).

Proof. (a) It is a trivial consequence of Proposition that Zp is a free Z-module of rank [F' : Q]
because Zp is a Zp-module generated by a single element, namely 1. In particular, Zp has an integral
basis and, hence, is an order of F'.

(b) Since I C O is a subgroup and O is a free abelian group, I is free of rank rk(I) < rk(OQ) = [F : Q].
Let 0 # x € I, then zO C I. As rk(O) = rk(zO) < rk(I), it follows that rk(I) = rk(O) = [F : Q).
The quotient of any two free Z-modules of the same rank is Z-torsion by Theorem [L48]l Hence, O/ is
an abelian group generated by finitely many elements of finite order, hence, it is a finite group. OJ

Example 1.56. Let [ € Q[X] be an irreducible monic polynomial and let F = Q[X]/(f) be the number
field defined by f. Then Z[X]/(f) is an order in F, called the equation order of f. Note that is usually
is NOT the maximal order, i.e. it is usually not the ring of integers. It may have some kind of ‘singular
points’. More on that later.

Definition 1.57. Let I’ be a number field with ring of integers 7y and 0 # a C F be a finitely generated
Z-module. The discriminant of a is defined as disc(a, . .., ay,) for any Z-basis of the free Z-module a
(see Proposition[[.33). (By Proposition (c), this definition does not depend on the choice of Z-basis
because the basis transformation matrix is invertible with integral entries and thus has determinant £1.)

The discriminant of F' is defined as disc(Zr).

Proposition 1.58. Let I be a number field and Zr its ring of integers. Let 0 = a C b C F be two finitely
generated Z.p-modules. Then the index (b : a) is finite and satisfies

disc(a) = (b : a)? disc(b).

12



1.7 Fields and rings of functions (on a plane curve)
In order to keep the technicalities low, we shall only work in an affine setting and not in a projective one.
Definition 1.59. Let K C F' be a field extension. Let n € Zx>1. The set of I'-points of affine n-space is

defined as A" (F) := F™ (i.e. n-dimensional F-vector space).
Let S C K[Xy,...,X,] be a subset. Then

Vs(F :={(z1,...,x,) € A™(F) | f(x1,...,2,) =0forall f € S}

is called the set of F-points of the affine (algebraic) set belonging to S.
If the set S consists of a single non-constant polynomial, then Vs(K) is also called a hyperplane in A (K).

Ifn = 2and S = {f} with non-constant f, then Vs(K) is called a plane curve (because it is a curve in
the plane A%(K). Its F-points are defined as Vs(F) for K C F a field extension.

Convention: When the number of variables is clear, we write K [X] for K[X}, ..., X,,]. In the same way
atuple (z1,...,2,) € A"(K) is also abbreviated as z if no confusion can arise.

The letter “V’ is chosen because of the word ‘variety’ or ‘vanishing set’.

Example 1.60. (a) K =R, n =2, K[X,Y]> f(X,Y) = aX +bY + c non-constant. Then V(s (R) is
aline (y = —3x—7 if b # 0; ifb = O, then it is the line with x-coordinate — 7 and any y-coordinate).

(b)) K=R,n=2 K[X,Y]> f(X,Y) = X*+Y? — 1. Then Vi 11(R) is the circle in R* around the
origin with radius 1.

(c) K =Q, f(X7Y) = X2 + Y2 + 1. Note V{f}(R) = (), but (Ovl) S V{f}((C)

(d) K =Ty, f(X,Y) := X?+Y?+1 = (X+Y +1)? € F3[X]. Because of f(a,b) =0 & a+b+1=0
forany a,b € L, L/Fo, we have

Viry(L) = Vixyy413(L),
which is a line.

Example 1.61. (a) Let K = Q and consider f(X,Y) = X2 +Y? —1 and the Q-points of the associated
curve C = St = V(11 (Q). They correspond in a precise way to primitive pythagorean triples (a, b, c)
for a,b,c € Z and a® + b*> = 2. For details see an exercise.

Note that this is a nice and first illustration of the deep relations between geometry and number theory
(algebra). We will encounter several in this course.
(b) Let K be a field and consider f(X,Y) = X2 + Y2

The only solution of the form (x,0) is (0,0) in any field K. Suppose now (z,y) is a solution with
y # 0. Then 2* = —y?, or 2> = —1 with z = L

Hence, Vi (K) = {(0,0)} if and only if X* = —1 has no solution in K.
In particular, V5 (R) = {(0,0)} (but: V(1,(C) = Vix_iv}(C) U Vix1iv}(C), union of two lines)
and V(s (F,) = {(0,0)} if and only if p = 3 (mod 4).

Example 1.62. Let K be a field and f(X) = X + aX? + bX + c be a separable polynomial (meaning
that it has no multiple zeros over K).

Any plane curve of the form Vy2_y(x) is called an elliptic curve.
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Definition 1.63. Let X be a subset of A" (K).

The coordinate ring of X' is the ring of functions X — K that are described by polynomials. More
precisely, it is the image of the ring homomorphism

¢: K[X] — Maps(X,K), [+ ((@1,...,30) = f(z1,...,20))

(with + and - on Maps(X, K) defined pointwise: (f+g)(x) := f(z)+g(z) and (f-g)(z) :== f(z)-g(z)).
The kernel of ¢ is called the vanishing ideal of X':

Iy :=ker(p) ={f € K|X]| f(z) =0forallz € X}.

By the isomorphism theorem, we have K[X| = K[X]/Zy.

Proposition 1.64. Let K be a field and f € K[X,Y] a nonconstant irreducible polynomial. Let C' =
Vi(K) be the associated plane curve. Assume that Vy(K) is infinite (which is automatic if K = K is
algebraically closed).

Then the vanishing ideal I is (f) and the coordinate ring K[C| is isomorphic to K[X,Y]/(f).
Example 1.65. o Line f(X,Y) =X -Y +2cR[X,Y], L:=V/R):

We have Ty = (X —Y + 2), i.e. that the vanishing ideal of L is the principal ideal generated by f.
This is a consequence of Proposition|[.04!

We compute the structure of the coordinate ring in this case. Consider the ring homomorphism:
¢ RIX,Y] 5 R[T], g(X,Y) > g(T,T+2).

Note that this homomorphism is chosen such that X —Y + 2 gets mappedto T — (T +2)+2 =10
and so lies in the kernel. We now prove that the kernel is equal to Ly (and hence to (X —Y + 2)).
Let g € ker(p). This means g(T, T + 2) is the zero polynomial. If we now take a point (z,y) € L,
then it satisfies y = x + 2, whence g(z,y) = g(x,x + 2) = 0 because it is equal to (T, T + 2)
evaluated at T = x. This means g € L., as claimed.

From the isomorphism theorem, we now obtain that the coordinate ring is just the polynomial ring

in one variable:
RIL] =R[X,Y]/Z, =R[X,Y]/(X - Y +2) 2 R[T].

In other words, the coordinate functions satisfy the equality ro = r1 + 2.
e Parabola f(X,Y):= X? —Y +2 € R[X,Y], P := Vy(R):
Again by Proposition[[.6dlwe have Ip = (X? — Y + 2).
With arguments similar to those used before, we conclude that the coordinate ring is
R[P] = R[X,Y]/Zp = R[X,Y]/(X? - Y +2) = R[T],

where the last isomorphism is given by sending the class of g(X,Y) to g(T,T? + 2). So, it is again
isomorphic to the polynomial ring in one variable.

e Hyperbola f(X,Y):= XY —1 e R[X,Y], H :=V;[R):
We again have T, = (XY — 1) by Proposition[1.64) This time we obtain
<]
X
f .
={> aX'|e f€Za; € R} CR(X) := Frac(R[X]).

i=e

R[H] = R[X,Y]/(XY — 1) 2 R[X,
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Note that this ring is not isomorphic to the polynomial ring in one variable. For, suppose to the

contrary that there is a ring isomorphism ¢ : R[X, +] — R[T]. As X is a unit, so is p(X).

Thus, o(X) € R[T]* = R* is a constant polynomial. Consequently, the image of ¢ lands in R,
contradicting the surjectivity.

Definition 1.66. Let X C A"(K) be a subset. We say that X is reducible if there are two affine subsets
Xy =Vg,, Xo = Vg, (K) C A"(K) such that

X C X UAX,

and

XSZ Xl and X Z XQ.
An affine set X C A™(K) is called an affine variety if X is irreducible (i.e. not reducible).

Example 1.67. o Let f(X,Y) = XY € R[X,Y]. Then V;(R) is the union of the x-axis and the
y-axis, so clearly V¢(R) is reducible. More precisely,

Vi(R) = Vx(R) UVy (R).
o The line X —Y + 2 is irreducible. Attention: it is reducible for the usual real topology (take two
closed ‘half lines’ overlapping).

o The hyperbola H is also irreducible. This is a consequence of the next proposition, since the co-
ordinate ring R[H] is an integral domain.

We can now formulate a topological statement on an affine algebraic set as a purely algebraic statement on
the coordinate ring! This kind of phenomenon will be encountered all the time in the sequel of the lecture.

Proposition 1.68. Let () # X C A"(K) be an affine set. Then the following statements are equivalent:
(i) X isirreducible (i.e. X is a variety).
(ii) The coordinate ring K|X| is an integral domain.

Definition 1.69. Let X C A" (K) be an affine variety (so that its coordinate ring K[X] is an integral
domain).

Then the function field of X is the field of fractions of K[X]. It is denoted K (X).

The elements in the function field are thus fractions 5 with f, g € K[X].

IMPORTANT: We cannot view these fractions inside Maps(X', K') because the denominator L@r,n)

9(-731 ----- xn)
may be zero for some (x1,...,2,) € X. So, an element 5 of the function field only gives us a map
fz1,...,x)
X\V(K)—= K, (r1,...,05)—» —F—"——=.
\ Vy(K) (z1 n) RS

It is not everywhere defined. If one introduces a suitable topology, one can see that it is defined on an open
set.

We will go more into that when we discuss local vs. global below.
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1.8 Morphisms between curves

Definition 1.70. Let C1 = V¢(K) and Cy = V,(K) be affine plane curves. A map ¢ : C1 — Cois a
morphism of curves if it is given by polynomials in the following sense: there are 1, p2 € K[C1] such
that for all (z,y) € Ci we have

o(z,y) = (p1(z,9), p2(x,y)) € Ca.

We speak of an isomorphism if there is also a morphism 1) : Cy — C such that Yo = id and o1 = id.

Example 1.71. Let f(X,Y) = X2 +Y?%2 ~1land g(X,Y) = X +Y — 1 be polynomials (say in R[X,Y]).
The associated curves V¢ (R) and V4 (R) are the unit circle and the line through (0,1) and (1, 0) (of slope
—1). Then

9 Vi(R) = Vy(R), (2,) = (2%,3%)

is a morphism of curves.

Proposition 1.72. Let ¢ : C1 — Cy be a morphism of curves given by @1, p2 € K[C1].

Then the map
" K[Co] = K[C1], g+ ¢"(9):=gof

is a K-algebra homomorphism.

Explicitly, we have ¢*(g)(z,y) = g(p(z,y)) = g(¢1(z,y), p2(z, y)).
We also have a converse.

Proposition 1.73. Let Cy, Cy be affine plane curves. Let 1) : K[Cy] — K[C1] be a K-algebra homo-
morphism. Put 1 := (X +Z¢,) € K[C1] and p2 == (Y + I¢,) € K[Ch].
Then the map
p: 01— Oy (2,9) = (1(2,9), 2(2,9))
is well-defined and p* = ).

Proof. We must check that (o1 (z,y), p2(z,y)) lies in Cy whenever (x,y) lie in C;. For that purpose, let
g € Z¢, be any polynomial in the vanishing ideal of C5. Note that

g(X +IC’27 Y + ICQ) = g(X, Y) +ICQ =0 +IC2-
Consequently, we have

0= w(g(X+IC27Y+IC2)) = g(¢(X +ZCz)7w(Y+ICQ)) = g(‘Pla‘PZ) € K[CI]

Hence,
9(e1(z,y), pa(w,y)) = 0¥(z,y) € C1.
This implies (v1(z,y), p2(z,y)) lies in Co.
It suffices to check the equality ¢* = v on generators: X + Z¢,,Y + Z¢, € K[Cy).

90*(X +ZC2)(1:73/) = Qal(xvy) = ¢(X +Icz)

and similarly for the other one. O

Now we do the same thing again, but not with the coordinate rings, but their quotient fields, i.e. function
fields. In order for the latter to be defined, we will impose that the curves are irreducible.
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Definition 1.74. Let Cy = V(K) and Cy = Vy(K) be irreducible affine plane curves.

A rational map ¢ of curves from Cy to Cy is given by rational functions @1, p2 € K(C1) such that for all
(x,y) € C1 where both @1 and @, are defined, we have

e(z,y) = (e1(2,9), p2(z,9)) € Ca.
We use the piece of notation ¢ : C1 --+ Co.

Proposition 1.75. Let ¢ : Cy --+ C5 be a rational map of irreducible affine plane curves given by
e1,p2 € K(C1).
Then the map

@ K(Cy) = K(Ch), g—=¢*(g)=gof
is a K-field homomorphism, i.e. a (necessarily injective) field homomorphism that is the identity on K. In
other words, we have field extensions

K C ¢ (K(Cy)) € K(Ch).

The extension p* (K(CQ)) C K(C)) is finite.
Explicitly, we have p*(g)(z,y) = g(p(z,y)) = g(¢1(z,y), p2(z, y)).

Also as before, we also have a converse with a similar proof.

Proposition 1.76. Let Cy, Cy be irreducible affine plane curves. Let ¢ : K(Cy) — K(C1) be a K-field
homomorphism. Put p1 = (X +Z¢,) € K(C1) and p2 := (Y + Z¢,) € K(Ch).

Then the map
P Cl — 027 (l‘,y) = (801($7y)7902($7y))

is well-defined and p* = 1.

Example 1.77. Let F be a field and let F/y and E5 be two elliptic curves over F'. In line with the approach
in these lectures, we see the elliptic curves as affine plane curves, but we equip them with ‘a point at

infinity’ Q. Then they have the structure of an abelian group with O as neutral element.

An isogenies between E and F» is a morphism of curves
Q : F1 — FEsy

such that p(O) = O. It is known that if © is not the zero map, then it is surjective with finite kernel and in
that case we obtain the injection of function fields

The degree of this field extension is called the degree of the isogeny. Moreover, the isogeny is called
separable if the function field extension has this property.

The most important isogenies are those given by multiplication by an integer m € Z.
[m]: E— E, P+~ mP

for any elliptic curve. Its degree is m>.
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2 Local versus global

2.1 Local rings and localisation

Definition 2.1. Let R be a ring. An ideal m C R is called maximal if there is no ideal J C R such that
mCJCR.
Anideal p C R is called prime if whenever rs € p withr,s € R one hasr € p or s € p.

Lemma 2.2. Let R be a ring and I C R be an ideal.

(a) Iisaprimeideal < R/I is an integral domain.
(b) I is a maximal ideal < R/I is a field.
(c) If I is maximal, then it is also prime.

Example 2.3. The prime ideals of Z (or any other PID) are exactly the ideal (0) and all ideals generated
by prime numbers/elements. The maximal ideals are the same, with the exception of (0).

Lemma 2.4. Let L/ K be a field extension and X C A™(L) be a subset.
(a) Every L-point (ay,...,a,) € X gives rise to the K-algebra homomorphism

eV(alw"an) : K[X] = K[Xl, C.. ,Xn]/IX — L, g(Xl, .. ,Xn) —|—IX — g(al, .. .,an).

(D) If L = K, then the kernel of ev(qy, ... 4, IS the maximal ideal equal to (X1—a1,....,Xp—an) +Zx.

n

Proof. (a) is clear.

(b) The ideal (X — a1, X9 — ag,..., X, — a,) is clearly maximal because the quotient by it is /. As
(X1 —a1, X2 —ag,...,Xn —an) C ker(ev(y, . 4,)) it follows that the two are equal (as ev(y, 4, is
not the zero-map — look at constants). OJ

We now determine the maximal ideals of the coordinate ring of any affine algebraic set over an algebraic-
ally closed field.

Corollary 2.5. Let K be an algebraically closed field and a < K[ X1, ..., X,] a proper ideal.
(a) The maximal ideals m<K[X7, ..., X,| are precisely (X1 —aq,..., X, —ay) for (a1,...,a,) € K™

(b) The maximal ideals m < K[X1, ..., X,] which contain a are precisely (X1 — a1, ..., X, — ay) for
(a1,...,a,) € Vo(K).

(c) The maximal ideals of K[ X1, ..., Xy]/aare (X1—aj1+a,..., X,—ap+a)for(ay,...,a,) € Vo(K).
Definition 2.6. A ring R is called local if it has a single maximal ideal.
Example 2.7. (a) Every field K is a local ring, its unique maximal ideal being the zero ideal.

(b) Let p be a prime number. The ring Z./(p") is a local ring with unique maximal ideal generated by p.

Reason: (p) is a maximal ideal, the quotient being F, a field. If a C Z/(p") is a proper ideal and
x € a, then x = py + (p"), as otherwise x would be a unit. This shows that x € (p), whence a C (p).

(c) {$ € QJa,bec Zged(a,b) = 1,2 1 b} is a local ring (see Example 2.12] where one also finds a
geometric example).
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Example 2.8. Ler X C A"(F') be an algebraic variety and F(X) = Frac(F[X]) be its function field.
Recall that its elements are fractions of functions given by polynomials, and since the denominator may
vanish at some points, a rational function is not everywhere defined, in general.

Let P € X be a point. Consider the subring
F[X)p={f e F(X)| fisdefinedat P} C F(X).
It is a local ring. Its maximal ideal is
{f € F(X)| fisdefined at P and f(P) =0} C F(X).

We will encounter this ring later again as the localisation of the coordinate ring F[X] at P, from which
we already borrowed the piece of notation.

We will now introduce/recall the process of localisation of rings and modules, which makes modules/rings
local.

Proposition 2.9. Let R be a ring, T' C R a multiplicatively closed subset (i.e. for t1,to € T we have
tito € T') containing 1.

(a) An equivalence relation on T’ X R is defined by
(tl,’l“l) ~ (t2,7"2) S dse T S(Tltg — 7“2751) =0.
The equivalence class of (t1,r1) is denoted by 7.

(b) The set of equivalence classes T~'R is a ring with respect to

t t
4 TIRx TR TR, Ly 2 ot
1t tito

and
CT'RxT 'R TR, 22172
' Tty te tite

Neutral elements are O := % and 1 := %

(c) Themap jn: R — T7'R, r 1, is a ring homomorphism with kernel {r € R |3t € T : vt = 0}. In
particular, if R is an integral domain, then this ring homomorphism is injective.

Proof. Easy checking. O
Note that for an integral domain R, the equivalence relation takes the easier form
(t1,7m1) ~ (t2,72) & rita —rat1 =0,

provided 0 ¢ T (if 0 € T, then T~ ! R is always the zero ring, as any element is equivalent to %).
If R is an integral domain and 1 € 7" C T is a multiplicatively closed subset, then 7'~! R is the subring

r

of T~ LR the elements of which can be written as fractions 7 with denominator ¢’ € T".

Example 2.10. Let R be an integral domain. Then T' = R\ {0} is a multiplicatively closed subset. Then
Frac(R) := T~ R is the field of fractions of R.

Subexamples:

(a) For R =7, we have FracZ = Q.
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(b) Let K be a field and R := K[Xy,...,X,]. Then Frac K[X1,...,X,] =1 K(X1,...,X,,) is the
field of rational functions over K (in n variables). To be explicit, the elements of K (X1,...,X,,) are
equivalence classes written as H with f,g € K[X1,...,Xy), 9(X1,...,X,) not the zero-
polynomial. The equivalence relation is, of course, the one from the definition; as K[X1,...,X,]

f(le-"vXn)

is a UFD, we may represent the class SXix,) s a ‘lowest fraction’, by dividing numerator and
~~~~~ n

denominator by their greatest common divisor.

Definition 2.11. Let R be a ring and p < R be a prime ideal. Then T := R \ p is multiplicatively closed
and1 € Tand 0 ¢ T.

Then Ry, = T~'R is called the localisation of R at p.
Example 2.12. (a) Let R be an integral domain. Then (0) is a prime ideal and Frac(R) = R ) (hence
the examples above can also be seen as localisations).

In that case, we also have T' = R\ p C R\ {0} and so the localisation Ry at any prime ideal p is the
subring of Ry = Frac(R) consisting of fractions § that can be written with denominator t € T i.e.

t&p.

(b) Let R = Z and p a prime number, so that (p) is a prime ideal. Then the localisation of Z at (p) is

Ly and its elements are {7 € Q | p { t,gcd(r,t) = 1}. Here we used that 7 is an integral domain

and so L) C Frac(Z) = Q.
(c¢) Let K be a field and consider A" (K). Let a = (a1, ..., a,) € A™(K).
Let p be the kernel of the ring homomorphism
K(Xi,...,.Xp) = K, fw flal,...,ap).

Explicitly, p = {f € K[X1,...,X,] | f(a) = 0}. As this homomorphism is clearly surjective (take
constant polynomials as preimages), we have that K[X1,...,X,]/p is isomorphic to K, showing

that p is a maximal (and, hence, a prime) ideal.

The localisation K[ X1, ..., Xy]p is the subring of K (X1, ..., Xy,) consisting of elements that can be
written as LEL=Xn) 3y gy (a an) # 0

g(Xlr"zx”l) g Ly---s@n '
This is the same as the set of rational functions K (X1, ..., X,,) that are defined in a Zariski-open
neighbourhood of a. Namely, let 5 € K[Xy,...,Xplp sothat g(a) # 0. Then the function x — %

is well-defined (i.e. we do not divide by 0) on the Zariski-open set A" (K)\V4)(K), which contains a.

On the other hand, if for 5 € K(Xy,...,X,) the function z — % is well-defined in some Zariski-

open neighbourhood of a, then, in particular, it is well-defined at a, implying g € K[X1,..., Xnlp.

In conclusion, K[X1, ..., X,], is the ring of rational functions that are well-defined in a Zariski-open

neighbourhood of a.

Corollary 2.13. Let R be a ring and p < R be a prime ideal. Then the localisation Ry, of R at p is a local
ring (in fact, its maximal ideal is T~'p, in the notation of Proposition 2.14).

Proposition 2.14. Let R be a ring, T C R a multiplicatively closed subset containing 1. Let M be an
R-module.

(a) An equivalence relation onT" X M is defined by

(t1,m1) ~ (ta,mo) & Is € T : s(tymg — tamy) = 0.
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(b) The set of equivalence classes T~*M is an T~ R-module with respect to

t t
LT IMx T M — T M, @_,_@:w
1 t2 tito

and scalar-multiplication

T RxT M Ty, DT
t1 ta  tit

The neutral element is 0 := %.

(c) The map 1 : M — T-IM, m — % is an R-homomorphism with kernel {m € M | 3t € t : tm =

0}.

Remark 2.15. A concept related to localisation is completion. For example, completing Q with respect to
the ‘usual’ absolute value, one obtains the real numbers R. Completing with respect to the p-adic absolute
value for a prime number p, one obtains the p-adic numbers. Completing a ring of functions at a point,
one gets a power series ring, allowing one to consider the Taylor expansion, for example. We won’t have

the time to look into this at all during these lectures.

2.2 Singular and non-singular points on a curve
Let f(X,Y) € K[X,Y]and a,b € K such that f(a,b) = 0. Recall the Taylor expansion of f:

9f
0X

Definition 2.16. Let K be a field, f € K[X,Y] a non-constant irreducible polynomial and C = Vi (K)
the associated plane curve.

l(ap) (X —a) + %ﬁkaﬁ)(y —b) + terms of higher degree in (X — a) and (Y — b).

Let (a,b) € C be a point. The tangent equation to C at (a, b) is defined as

of

To(ap)(X,Y) = X

l(@p) (X — @) + 25 (@p) (Y —b) € K[X,Y].

If Tc (o) (X,Y) is the zero polynomial, then we call (a,b) a singular point of C.
If (a,b) is non-singular (also called: smooth), then Vr, , , (K) is a line (instead of A%(K)), called the
tangent line to C at (a, b).

A curve all of whose points are non-singular is called non-singular (or smooth).

Example 2.17. (a) Let f(X,Y) =Y? — X3 € K[X,Y] with K a field (say, of characteristic 0).

We have g—)é = —3X? and g—)f( = 2Y. Hence, (0,0) is a singularity and it is the only one. (Draw a
sketch.)

This kind of singularity is called a cusp (Spitze/pointe) for obvious reasons. The tangents to the two
branches coincide at the cusp.
(b) Let f(X,Y)=Y?— X3 - X? ¢ K|X,Y] with K a field (say, of characteristic 0).

We have % = —3X? - 2X and % = 2Y. Hence, (0,0) is a singularity and it is the only one.
(Draw a sketch.)

This kind of singularity is called an ordinary double point. The tangents to the two branches are
distinct at the ordinary double point.
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We now prove the following theorem, which relates a geometric property (a point on a curve is nonsingu-
lar) and an algebraic property (the localisation of the coordinate ring is regular).

Theorem 2.18. Let K be an algebraically closed field, f € K[X,Y] a non-constant irreducible polyno-
mial, C = V4 (K) the associated plane curve and K[C] = K[X,Y|/(f(X,Y)) the coordinate ring. Let
(a,b) € Cbeapointandm = (X —a+ (f),Y — b+ (f)) < K[C] be the corresponding maximal ideal
(see Lemmal2.4).

Then the following two statements are equivalent:
(i) The point (a,b) is non-singular.
(ii) K[C]m is a local ring such that its maximal ideal is principal.
Proof. After a linear variable transformation we may assume (a, b) = (0,0). Then
f(X,Y)=aX + Y + higher terms.

It is a fact (that is not hard to prove using the so-called Nakayama Lemma) that the maximal ideal m K [C,
of the localised ring K [C]y, is principal if and only if the K = K[C]/m-vector space m/m? is of dimen-
sion 1. Note that m? is generated by X2 + (f), Y2 + (f), XY + (f), so that the K -vector space m/m? is
generated by X + (f) and Y + (f). Hence, the minimal number of generators is at most 2, but could be 1.

‘(i) = (ii)’: We assume that (0, 0) is not a singular point. Then v # 0 or 5 # 0. After possibly exchanging
X and Y we may, without loss of generality, assume « # 0. It follows:

X+(f)= é(—BY— higher terms + (f)) = —gY—i—(f) (mod m?).

So, Y + (f) generates m/m? as K -vector space, whence the dimension of this space is 1.
‘(i) = (i)’: We now assume that (0, 0) is a singular point. Then « = 5 = 0. So, X + (f) and Y + (f)

are K-linearly independent in m/m?, whence the K -dimension of m/m? is bigger than 1. O
2.3 Local properties, smooth curves and Dedekind rings

Definition 2.19. As for rings, if p C R is a prime (or maximal) ideal and M an R-module, then we write
M, for T~YM with T = R\ p, and call it the localisation of M at p.

A property P that a module M may or may not have is called a local property if
M has property P <> Vp C R prime: M, has property P.

Lemma 2.20. Let R be a ring and M an R-module. Then being the zero module is a local property. More
precisely, the following statements are equivalent:

(i) M is the zero module.
(ii) For all prime ideals p < R, the localisation My, is the zero module.
(iii) For all maximal ideals m < R, the localisation My, is the zero module.

Proposition 2.21. Let R be a ring and  : M — N an R-homomorphism. For a prime ideal p <| R, denote
by pp : My — Ny the localisation at p. Then being injective/surjective/bijective is a local property. More
precisely, the following statements are equivalent:

(i) @ is injective (surjective).
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(ii) For all prime ideals p < R, the localisation gy, is injective (surjective).
(iii) For all maximal ideals m < R, the localisation v, is injective (surjective).

Proposition 2.22. Let R be an integral domain. Then being integrally closed is a local property. More
precisely, the following statements are equivalent:

(i) R is integrally closed.
(ii) Ry is integrally closed for all prime ideals p <1 R.
(iii) Ry is integrally closed for all maximal ideals m <1 R.

Recall that by definition, a curve is non-singular (smooth) if it is non-singular at all its points. So, already
‘in spirit” smoothness is a local property. But we can make even phrase this in terms as above.

Proposition 2.23. Let K be an algebraically closed field and C = Vy(K) be an affine plane curve. Then
the following statements are equivalent:

(i) C is smooth.

(ii) For all maximal ideals wm in the coordinate ring K [C|, the maximal ideal of the localisation K[Cy
is principal.

Proof. This is a combination of Theorem 2.8 with the description of the maximal ideals of K [C] from
Corollary n

Definition 2.24. A ring R is said to be of Krull dimension 1 if there is a maximal ideal m which strictly
contains another prime ideal p C w, but there are no three prime ideals po C p1 C po.

Example 2.25. (a) The Krull dimension of 7 and of any other principal ideal domain (such as K[X]
with a field K) is 1 because the prime ideals are exactly the zero ideal and all maximal ideals, so that
every maximal ideal strictly contains exactly one other prime ideal, namely the zero ideal.

(b) The main property is the following. If R C S is an integral ring extension and R is of Krull dimen-
sion 1, then so is S.

(c) The main property implies that the ring of integers Z of a number field F' and all orders in it are of
Krull dimension 1.

(d) An important lemma in the theory of plane curves states that the coordinate ring of a plane curve is an
integral extension of a polynomial ring in one variable. Hence, the coordinate ring of a plane curve
is of Krull dimension 1.

Proposition 2.26. Let R be a local Noetherian ring with maximal ideal m of Krull dimension 1. Then the
following statements are equivalent:

(i) R is an integrally closed integral domain.

(ii) R is regular, i.e. m is a principal ideal (equivalently, m/m? can be generated by one element as
R/m-vector space).

(iii) R is a principal ideal domain.

A ring satisfying these conditions is also called regular.
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In this case, one has the following very simple description.

Proposition 2.27. Let R be a regular local ring as in the previous proposition.

(a) There is x € R such that all non-zero ideals are of the form (z™) for some n € N.
(b) Every non-zeror € R can be uniquely written as uxz™ withu € R* and n € N.

Definition 2.28. A Noetherian integrally closed integral domain of Krull dimension 1 is called a Dedekind
ring.

We can now conclude from our previous work the following local characterisation of Dedekind rings.

Proposition 2.29. Let R be a Noetherian integral domain of Krull dimension 1. Then the following
assertions are equivalent:

(i) R is a Dedekind ring.
(ii) R is integrally closed.
(iii) Ry is integrally closed for all maximal ideals m <1 R.

(iv) Ry, is regular, i.e. mR is a principal ideal, for all maximal ideals m <1 R.

(v) Ry is a principal ideal domain for all maximal ideals m <1 R.

We now state and prove our main theorem about coordinate rings of plane curves. It again relates a
geometric statement (smoothness of a curve) and an algebraic statement (coordinate ring is Dedekind).

Theorem 2.30. Let K be an algebraically closed field, f € K[X,Y] a non-constant irreducible polyno-
mial, C = V5 (K) the associated plane curve and K[C] = K[X,Y]/(f(X,Y)) the coordinate ring.

Then the following two statements are equivalent:

(i) The curve C is smooth.
(ii) K|[C] is a Dedekind ring.
Proof of Theorem[2.301 This is just a combination of Proposition[2.23]and Proposition 2.291 ]

Example 2.31. Let K be a field. Let g(X) € K[X] be a polynomial and consider the affine plane curve
E defined by f(X,Y) =Y? — f(X) € K[X,Y]. We compute the singular points of this curve.

Let (0, yo) be a point on that curve. Then the tangent line to E at (xq, yo) is given by the equation

of of
T, (w0.90) (X5 Y) = 5 |wo.w0) (X = 0) + 55| @o.00) (V= 90) = ¢ (0) (X = 70) + 2y0(Y" — 3.

It is the zero equation if and only if yo = 0 and ¢'(xg) = 0. Note that yo = 0 implies g(zo) = 0.

We conclude: the point (xq,vo) is a singular point if and only if yo = 0 and (X — x¢)? divides g(X).
This means: E is smooth if and only if the polynomial g(X') does not have any multiple root. By properties
of the discriminant of g(X), this is the case if and only if the discriminant of g(X) is non-zero.

Recall that the discriminant of g(X) = X3 + aX + b € K[X] equals —4a® — 27b. This explains the

condition one finds in the definition of elliptic curves.
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2.4 Ideals in Dedekind rings
Definition 2.32. Let R be an integral domain and K = Frac(R).

(a) An R-submodule I < K is called a fractional ideal of R (or: fractional R-ideal) if

o [ #(0)and
o thereis x € K* such that xI C R.

Note that x can always be chosen in R\ {0}. Note also that xI is an ideal of R (in the usual sense).

(b) A fractional R-ideal I is called an integral ideal if I C R.
Note that for a subset (0) # I C K, one trivially has:

I < Ris anideal of R in the usual sense <> [ is an integral fractional R-ideal.

(c) A fractional R-ideal I is called principal if there is x € K* such that I = Rx.
(d) Let I,J be fractional R-ideals. The ideal quotient of I by J is defined as

I:J={:J)={x€ K |zJ CI}.

(e) The inverse ideal of the fractional R-ideal I is defined as

I'V'=(R:I)={x € K|xI CR}.

(f) The multiplier ring of the fractional R-ideal I is defined as
r(l):={I:1)={xe K|zl CI}.

Example 2.33. The fractional ideals of 7 are all of the form I = $7 with a,b € Z\ {0}. Hence, all
fractional Z-ideals are principal.

Itis clear that 5 Z is a fractional ideal. Conversely, let I be a fractional ideal such that bl is an ideal of Z,
whence bl = (a) = aZ, so that I = {Z.

Let I = %Z and J = gZ, then

c a ad ad
I: frd 7ZC*Z: Z: Z'
(I:J) {we@\xd _b} {xe@]mebc } T

In particular, I 7' = EZ and 1171 = 7 (because, clearly Cand 1 € I1171).

The next three lemmas are simple exercises.

Lemma 2.34. Let R be an integral domain and K = Frac(R). Let I,J C K be fractional R-ideals.
Then the following sets are fractional R-ideals: I +J = {z+y |z e l,ye J}, IJ={)"" zy;|ne
Nyzi,...;,on€l,yr,...;yn€J, " =1-1-...- L INJ, (I:J).

n times

Lemma 2.35. Let R be an integral domain and H,I,J C K fractional R-ideals. Then the following
properties hold:

(a) I1J C INJ (assume here that I and J are integral ideals),

() H+(I+J)=(H+1)+J=H+T+J,
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(c) H(IJ) = (HI)J,
(d) HI+J)=HI+HJ.

Lemma 2.36. Let R be an integral domain and I, J < R be ideals (in the usual sense). If [ +J = R,
then we call I and J coprime ideals.

Suppose now that I and J are coprime. Then the following statements hold:

(a) I™ and J™ are coprime for all n,m € N.
(b) INJ =1J.
(¢) R/(IJ)= R/I x R/J (Chinese Remainder Theorem).

(d) If IJ = H" for somen € N, then I = (I + H)", J = (J+ H)"and (I + H)(J+ H) = H.

In words: If an ideal is an n-th power, then so is each of its coprime factors.

Proposition 2.37. Let R be a Noetherian integral domain, K = Frac(R) and (0) # I C K a subset.
Then the following two statements are equivalent:

(i) Iis a fractional R-ideal.
(ii) 1 is a finitely generated R-submodule of K (this is the definition in Neukirch’s book).

Proof. ‘(i)=-(ii)’: By definition, there is » € R \ {0} such that I C R, hence, [ is an ideal of R in the

usual sense. As R is Noetherian, r/ is finitely generated, say by a1, ..., a,. Then [ is finitely generated
as R-submodule of K by °%,..., %=,

‘(i1)=-(1)’: Suppose I is generated as R-submodule of K by %, cee ;‘f—: Thenr = rq-...-r, is such that
rl C R. O

This proposition also shows us how we must think about fractional R-ideals, namely, just as R-linear
combinations of a given set of fractions %, ey ‘;—" (where we may choose a common denominator).

Definition 2.38. Let R be an integral domain and K = Frac(R). A fractional R-ideal I is called an
invertible R-ideal if there is a fractional R-ideal J such that [J = R.

Note that the term ‘invertible -ideal” applies only to fractional R-ideals (which may, of course, be integ-
ral).

Lemma 2.39. Let R be an integral domain, K = Frac(R) and I a fractional R-ideal. Then the following
statements hold:

(a) II"' C R

(b) 1 is invertible < 1171 = R.

(c) Let J be an invertible R-ideal. Then (I : J) = IJ 1.
(d) If0 # i € I suchthati=' € I, then I = (4).

Corollary 2.40. Let R be an integral domain. The set Z(R) of invertible fractional R-ideals forms an

abelian group with respect to multiplication of ideals, with R being the neutral element, and the inverse
of I € I(R) being 1.
The set P(R) := {xR | x € K*} of principal fractional R-ideals forms a subgroup of Z(R).
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Proof. This just summarises what we have seen. That P(R) is a subgroup is clear. O

Definition 2.41. Let R be an integral domain. One calls T(R) the group of invertible R-ideals and P(R)
the subgroup of principal invertible RR-ideals.

The quotient group Pic(R) := Z(R)/P(R) is called the Picard group of R.
If K is a number field and Ly its ring of integers, one also writes CL(K) := Pic(Zx), and calls it the
ideal class group of K.

Corollary 2.42. Let R be an integral domain and K = Frac(R). Then we have the exact sequence of
abelian groups

1= R* - K* 5 7(R) 2% pic(R) — 1,

where f(z) is the principal fractional R-ideal zR.

Proof. The exactness is trivially checked. Note, in particular, that xR = R (the neutral element in the
group) if and only if z € R*. O

Corollary 2.43. Let R be a principal ideal domain. Then Pic(R) = {R} (the group with one element).

Proof. This is the case by definition: that every ideal is principal implies that every fractional ideal is
principal, i.e. Z(R) = P(R), whence their quotient is the group with one element. O

Example 2.44. The groups CL(Q) = Pic(Z) and Pic(K X)) (for K a field) are trivial.

The next statement says that being an invertible ideal is a local property.

Theorem 2.45. Let R be a Noetherian integral domain and I a fractional R-ideal. Then the following
statements are equivalent:

(i) I is invertible.
(ii) I is a principal fractional Ry,-ideal for all maximal ideals m <1 R.

Corollary 2.46. Let R be a Dedekind ring. Then any fractional R-ideal is invertible.

Proof. By Proposition [2.29) we know that Ry, is a principal ideal domain for all maximal ideals m <1 R.
Hence, given any fractional R-ideal I, we have that I, is principal for all m, which by Theorem [2.45
implies that [ is invertible. O

Remark 2.47. Corollary2.46lapplies in particular to rings of integers Z of number fields F, as well as
to coordinate rings of smooth curves.

However, it fails for orders O C Z (for example, in general, it fails for equation orders). It also fails for
coordinate rings of curves that have singular points.

The meaning of the next theorem is that any non-zero invertible ideal I <1 R is uniquely determined by all
its localisations I, (at the non-zero prime ideals of ).

Theorem 2.48. Let R be a Noetherian integral domain of Krull dimension 1. Then the map

®:I(R) — &y P(Ry), I (...\1p,...),
0#p<IR prime ideal

is an isomorphism of abelian groups.
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Lemma 2.49. Let R be a regular local ring of Krull dimension 1 and let p be its maximal ideal. Recall
from Proposition2.27 that then there is x € R such that all fractional ideals of R are of the form (x)™ =
p" for some n € 7. Moreover, the map

Z—1I(R), n—p"
is an isomorphism of abelian groups.

Definition 2.50. Let R be a Dedekind ring and I be an invertible R-ideal. For a maximal ideal p < R, by
Lemmal2.49 there is a unique integer n > 0 such that I, = (pRy,)". We write ordy(I) := n.

Now we can prove unique ideal factorisation.

Theorem 2.51. Let R be a Dedekind ring. The map

®:Z(R) — $ Z, I (...,ordy(I),...)
0#p<IR prime ideal

is an isomorphism of abelian groups. Every I € Z(R) can be uniquely written as

I = H pordp (1)

0#p<1R prime ideal
(note that the product is finite).

Remark 2.52. Theorem[2.31is a generalisation of unique factorisation in a principal ideal domain.

3 Geometry of numbers

This part was partly written by Sara Arias-de-Reyna.

3.1 Introduction
Recall (cf. Corollary 2.42)) that, for any integral domain S, we have the following exact sequence

!

1 S Fx 7(S) 2L Pic(S) — =1

where:

e [ is the field of fractions of \S.

e 7(S) is the group of invertible ideals of S.

Pic(9) is the Picard group of S, that is to say, the quotient of Z(.S) modulo the group P(S) of
principal fractionals ideals of S.

f: F* — Z(S) maps an element = € F' to the principal fractional ideal xS.
e proj : Z(S) = Z(S)/P(S) = Pic(S) is the projection.

We want to study this exact sequence in the particular case where S = Zp is the ring of integers of a
number field F. Since Zp is a Dedekind domain, all fractional ideals are invertible (see Corollary 2.46]).
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Hence Z(Zr) is the set of all fractional ideals. Recall also that we denote Pic(Zp) = CL(F') and call it
the class group of F'. The exact sequence boils down to:

f proj

1 7 P I(Zp) 224 CL(F) —=1 3.1)

The group CL(F') measures the failure of Z to be a principal ideal domain. More precisely, if CL(F") has
just one element, then the map f : F'* — Z(.S) is surjective, so that each fractional ideal can be expressed
as =S for some x € F*. In other words, every fractional ideal is principal. On the other hand, the greater
CL(F) is, the further is f from being surjective, meaning there will be “many” fractional ideals which are
not principal.

One of the fundamental results that we will prove is that CL(F") is finite (hence, although Zp is not a
principal ideal domain, it is also “not too far” from it). Another important result will be that Z . is finitely
generated.

The tool that we will use to study the exact sequence (B.I)) is called Geometry of Numbers. This consists
of viewing rings of integers as special subsets of S™ (namely lattices), and using some analytic tools
(computing volumes) to obtain results concerning Z .

3.2 Lattices

Definition 3.1. A lattice in R" is a Z-module generated by n linearly independent vectors. A basis of a
lattice H C R™ is a basis of H as a Z-module.

Note that a basis of a lattice H consists of n linearly independent vectors of R™, so in particular is a basis
of R"™ as R-vector space.

Definition 3.2. A half-open parallelotope (resp. closed parallelotope) is a subset of R™ of the form

m
P:={v ER":U:Zaiviwithogai < 1forall i},

i=1
m
<resp. P={veR":v= Zaivi with 0 < a; < 1 for all z})
i=1
where v1, ..., vy € R™ are linearly independent. We say that P is the half-open parallelotope determined
by v1, ..., v, (resp. closed parallelotope determined by vy, ..., vy)

Let H C R" be a lattice, and U = {uy,...,u,} a basis of H. We will say that the (half-open) parallelo-
tope P determined by U is a fundamental domain for H.

We will denote by p the Lebesgue measure on R™. We will not recall here its definition, but just one
very important property: it is invariant under translation; that is, for all measurable sets A and all vectors
v e R theset A+ v:={w+v:w € A} is measurable and we have

H(A) = (A + ).

Moreover the measure is normalized so that the measure of the standard cube {>"" ; Aie; : 0 < \; < 1}
is equal to 1.

Remark 3.3. (a) Fundamental domains of a lattice are not unique.
(b) Let P be the parallelotope defined by n linearly independent vectors vy, . ..,v, € R", where each

vi = > 5 aijej. Then p(P) = | det((aij)1<i,j<n)l-
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(c) Let H C R™ be a lattice, P, P' fundamental domains for H. Then p(P) = p(P’).

Definition 3.4. Let H C R" be a lattice. We define the volume of H as

for some fundamental domain P of H.

Definition 3.5. A subgroup H C R" is called discrete if, for any compact subset K C R", H N K isa
finite set.

Remark 3.6. Let H C R" be a discrete subgroup of R". The H is a lattice if and only if H is generated
by n linearly independent vectors.

Now we will state the fundamental result of this section. The idea is the following: given a lattice H, if
a measurable set S C R" is big enough (with respecto to y), no matter what it looks like, it must contain
two elements which are “equivalent modulo H”, that is to say, two different elements v1,v9 € S with
vy — vy € H.

Theorem 3.7 (Minkowski). Let H C R" be a lattice and S C R"™ be a measurable subset of R™ satisfying
p(S) > v(H). Then there exist v, vy € S different elements with v — vy € H.

We will use a particular case of this theorem, when S has some special properties.

Definition 3.8. Ler S C R™.

e S is centrally symmetric if, forall v € S, —v € S.
e S isconvex if, for all vi,vy € S, forall A € [0,1], Avy + (1 — N)vg € S.

Corollary 3.9. Let H C R" be a lattice and S C R" be a centrally symmetric, convex, measurable set
such that pu(S) > 2"v(H). Then S N (H \ {0}) # 0.

3.3 Number rings as lattices and finiteness of the class group

In this section we want to study number fields of degree n by embedding them into R", in such a way that
the ring of integers corresponds to a lattice.

Let F C Q C C be a number field of degree [F : Q] = n, where Q = {z € C | z is algebraic over Q}
is the algebraic closure of Q in C. Let us enumerate the n field homomorphisms in Homg’ld(F ,C) in the
following way:

e Letoy,..., o, beall field homomorphisms F' — C with image contained in R.

e Let us enumerate the r pairs {0, a o o} and, for each pair, choose one of the two homomorphisms.
The chosen homomorphism of the i-th pair (1 < 7 < 79) will be o0, 4;, the other one will be

Ori+ra+i-

Note that n = [F': Q] = 71 + 2.

Now we can define a ring homomorphism

D F >R xC™

T = (0'1(33), s Oy ((E), Ori+1 (LU), < Orpdrg (l‘))
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Definition 3.10. Define the injective group homomorphism

d:F — R x R?

T = (01(1‘)7 <oy Ory (‘T)a Re(aﬁ-l-l (x))7 Im(ah-‘rl(‘r)) s )Re(UTH—T’z (‘/L‘))v Im(UT‘H-?“Q (x)))

Proposition 3.11. Let M C F be a free Z-module of rank n, say with basis {x1, ..., xn}. Then

(a) ®(M) is a lattice in R™.

(b) Let D = (Ui(xj))lgi,jgn- Then ’U((I)(M)) =27 | det D‘ =27 \/| diSC(ZEl, ... ,fL‘n)|
Definition 3.12. (a) Let a C Zp be a nonzero integral ideal. We define the norm of a as N (a) = [Zp : a.

(b) Let I C F be a fractional ideal. We define the norm of I as N(I) = N(xI)/|Np/g(z)
x € L is some element different from zero such that x1I is an integral ideal.

, where

Corollary 3.13. Let F'/Q be a number field of degre n = ri + 2r9 and a an integral ideal of Zp. Then
we have that ®(Zr), ®(a) are lattices of R™ and

v(®(Zr)) =27"/|disc(Zr)|, v(P(a)) =2""2+/|disc(ZF)|N(a).

Proof. We know that both Z and a are free Z-module of rank n. The formula for the volume of ®(Zp)
follows directly from the definition of disc(Zp); the formula for the volume of ®(a) follows from Pro-
position [1.58} 0

Proposition 3.14. Let a C Zp be a nonzero integral ideal. There exists a € a different from zero such
that

2\ -
|Npjgla)| < <7r> |disc(Zp)|N(a).
We do not give the proof, but state that the key ingredient in it are Corollaries 3.91and .13

Theorem 3.15 (Dirichlet). Let F' be a number field. The class group CL(F) = Z(Zp)/P(ZF) is finite.

Before proceeding to the proof, let us establish a technical lemma.

Lemma 3.16. Let C € CL(F) be a class of ideals. Then there exists a nonzero integral ideal a of Zp
which belongs to C' and satisfies

2

NG < (2) Vidsetzel

™

Proof. Let I be a fractional ideal in C. Then I~ = {a € Zp : al C Zp} is also a fractional ideal.
Therefore there exists a nonzero # € F such that b = xI~! is a nonzero integral ideal. We can apply
Proposition 3.14]to the ideal b; there exists b € b nonzero such that

Nee®l < () ViEse@AING) = (2) VI Ve o N (D)

The ideal a = g[ belongs to the class C, is contained in Z and furthermore

N(a) = WN(I) < (i>r2 V|disc(ZF)|.

 |Npjg(2)]
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Proof of Theorem[3.13] Since every class C' € CL(F) contains a nonzero integral ideal of norm smaller
than ( %)m /|disc(Zr)| (because of Lemmal[3.16), it suffices to prove that, for any M € N, there are only
finitely many integral ideals of norm smaller than M . First of all, note that it suffices to see that there are
only finitely many prime integral ideals of norm smaller than A/; indeed if a = [[;_, p* is a factorisation
of a into a product of prime ideals, then N(a) = [[;_; N(p;)%, so if N(a) is smaller than M, the only
prime ideals that can occur in the factorisation of a are those with norm smaller than A, and the exponents
e; that can occur must also be smaller than M.

Assume now that p is a prime integral ideal of norm smaller than M, say m. Then 1 € Zp /p satisfies that
m-1=0 € Zp/p, thus m € p. But we know that that there are only a finite number of maximal ideals of
Z containing a given ideal I. In particular, for I = (m), we get that there are only finitely many prime
ideals p of Z of norm m. O

Remark 3.17. (a) Let F' be a number field. Then CL(F) is generated by the classes of the prime ideals
p € Z(Zp) such that N(p) < (%)T2 V|disc(Zg)|. This allows one to compute explicitly the class
group of a given number field, provided one knows how to compute the prime ideals of given norm.

(b) There are better bounds. For instance, one can show that CL(F) is generated by the classes of the

prime ideals p € I(Zp) such that N (p) < (£)" 7%\/ |disc(ZF)|.

3.4 Dirichlet’s Unit Theorem
The aim of this section is to prove the following result:

Theorem 3.18 (Dirichlet). Let F' be a number field of degree n = r1 + 219 as above. Then there is a
group isomorphism
75~ pp x 2

between the (multiplicative) group of units of Z and the direct product of the finite (multiplicative) sub-
group pr of Ly, consisting of all roots of unity contained in F, and the (additive) group Zritra—l

Remark 3.19. More precisely, there exist &1, . .., & 4ro—1 € L7 such that every element u € 7y, can be
written in a unique way as
_ ni Nry+rog—1
w= g€ 6T
for some root of unity . € F and some tuple (ny, ..., Ny 1py_1) € ZH7271

Such elements are called a fundamental system of units.

Definition 3.20. Let F' be a number field of degree n = r1 + 2ra. We define the logarithmic embedding

as the group morphism
Dog : F* — R71H72

a = (10g ‘Ul(a”’ Tt log |0r1+r2 (a’)|)

Proposition 3.21. The kernel of (I)log|Z§ is a finite group, consisting of the roots of unity contained in Z .

One uses Corollary B.9]to prove the following proposition, which is the final step in the proof of Dirichlet’s
Unit Theorem.

Proposition 3.22. We have that ®\,4(Z7.) is a discrete subgroup of rank equal to r1 + 13 — 1.
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4 Analytic aspects

A complete treatment of these topics (with the exception of the effective versions of Chebotarev below)
can be found in Ch. 7].

Proposition 4.1. (a) The Riemann zeta-function is defined as

¢(s) :Z%forseCs.t. R(s) > 1

n=1

and satisfies the Euler product

()= I

— S
p prime 1 p
It has a simple pole at s = 1.

(b) Let m € Z>1 and x : (Z/mZ)* — C* be a Dirichlet character (i.e. a group homomorphism). The
Dirichlet L-function is defined as

L(x,s) = i": x(n) fors € Cs.t. R(s) > 1

nS
n=1
and satisfies the Euler product
1
)= I —==
pprime 1~ X(P)P?

(c¢) Let F' be a number field. The Dedekind zeta-function of F' is defined as

1
Cr(s) = Z NC)T(a)sforséﬁs.t. R(s) > 1
0#aCZp ideal

and satisfies the Euler product

1
os) = H 1 — Norm(p)~*"

p prime ideal of Z

It has a simple pole at s = 1.

Taking the logarithm of the Euler product and remembering that the series anl # converges for any
t > 1, one obtains the following corollary.

Corollary 4.2. (a) log((s) = 3_, srime }% +g(s) = log(-L7) +h(s) in a neighbourhood of s = 1, where

h(s), g(s) are holomorphic at s = 1.

(b) 1og Cr(S) = Dy prime ideal W + g(s) = log(-L7) + h(s) in a neighbourhood of s = 1, where
h(s), g(s) are holomorphic at s = 1.

From an essentially formal computation, one obtains the following proposition.

Proposition 4.3. Let m € Z>; and F' = Q(exp(27mi/m) be the m-th cyclotomic field. Its Galois group

is G = Gal(F/Q) = (Z/mZ)*. Let G = {x : (Z/mZ)* — C*} be the group of Dirichlet characters
(i.e. the character group of G). Then

Cils) = H(s)- [ L)
xe@

1

where H(S) - Hp\m prime ideal 1—Norm(p)—="
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A very important result is the following one.

Corollary 4.4. Let x : (Z/mZ)* — C* be a non-trivial Dirichlet character. Then L(x, 1) # 0.

Proof. Since L(x, s) = ¢(s) - [}, (1 — p™*) for the trivial character x and since both ¢(s) and (k (s)
both have a simple pole at s = 1, the corollary follows from Proposition 3] O

Definition 4.5. Let F' be a number field. Let S be a set of prime ideals of F'.

(a) The Dirichlet density of S is defined as the limit

1

. ZpeS prime ideal Norm(p)*
d(S) = lim i

s\ Ep prime ideal Norm(p)®

if it exists.

(b) The natural density of S is defined as the limit

J(S) = lim

#{p € S prime ideal | Norm(p) < z}
z—oo  #{p prime ideal | Norm(p) < x

}

if it exists.

If a set S of prime ideals has a natural density, then it has a Dirichlet density and the two are the same.
The reverse direction is not always true.

As an illustration, we now prove Dirichlet’s prime number theorem.
Theorem 4.6 (Dirichlet). Let m € Z>1 and a € (Z/mZ)*. Then the set of primes
{pprime |p=a mod m}

has Dirichlet density MW)X‘

Proof. Let y be a Dirichlet character of (Z/mZ)*. Then by taking the logarithm of the Euler product of
L(x, s), we obtain

1
oeLivs) = 3 X2 = T @ Y L)
p prime p a€(Z/mZ)* p=a mod m

where ¢(s) is a function that is holomorphic at s = 1 (in it we collect all fractions that have at least a
square in the denominator). Let b € (Z/mZ)*. We multiply this by x(b~!) and sum over all Dirichlet
characters  to obtain

log(¢(s) + > x(b")log L(x, s)

17$x€@

Y Y e Y pﬂ+h<s>

x€G ac(Z/mZ)* p=a mod m

=#(Z/mZ)* - > i+h(s)

p=b modm

where h(s) is holomorphic at s = 1. We used

Z x(b7'a) = {#(Z/m@X ifa=>0

0 otherwise.

The result is now immediate by Corollary 4.2 O
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In order to formulate Chebotarev’s density theorem, we first have to clarify what we mean by a Frobenius
conjugacy class.

Lemma 4.7. Let F C L be a Galois extension of number fields. Any prime ideal y C Zp factors in L
pLp =P Py

for pairwise distinct prime ideals *Y3; C 7y, and a positive exponent e.

One says that p is unramified in L ife = 1. In that case, for every*B;, there is an element o, € Gal(L/F')
such that on the residue field Zp, /*B; it acts as x — x% with ¢ = Norm(p). It is called the Frobenius of
Bi. All these Oop, are conjugate in Gal(L/F') and they form the Frobenius conjugacy class C, of p.

Theorem 4.8 (Chebotarev’s density theorem). Let ' C L be a Galois extension of number fields with
Galois group G = Gal(L/F). Let C C G be a subset that is stable under conjugation. Let P(C') be the
set of prime ideals p of F' such that the Frobenius conjugacy class Cy lies in C.

Then P(C) has Dirichlet density equal to %

This is a generalisation of Dirichlet’s theorem (take F' = Q and L = Q(exp(27i/m))). The interesting
thing is that one reduces the proof of Chebotarev’s density theorem by rather elementary means to the
abelian case, which works essentially as above (however one needs it over a general number field /' and
not just @@, so one needs some more generalisations).

If one assumes the Generalised Riemann Hypothesis (i.e. the Riemann Hypothesis for the Dedekind zeta-
function of the relevant number field), one obtains a stronger version of Chebotarev’s density theorem
with error bounds.

Define

It satisfies Li(z) ~ Toa(zy for & — oo.
We also set

nc(z) = #{p prime ideal | Norm(p) < z, C, C C}.

Theorem 4.9 (Effective Chebotarev). ( Th. 4, Rem.(1)])

Assume GRH. The for all x > 2, we have

. #C .

mo(r) — ——Li(z)| < Q%ﬁ(log disc(F) + [F : Q] log(z)).

It is also possible to give an upper bound, under GRH, for the norm of the first prime ideal p such that the
corresponding Frobenius conjugacy class C;, lies in C'.

Theorem 4.10. (/Ser97 Th. 5])
Suppose C # (). Then nc(x) > 1 for all x > max(2, 70(log disc(F))?).

A concrete example of an application of Chebotarev’s density theorem is the following one.

Proposition 4.11. Ler f(X) € Z[X] be an irreducible polynomial and let { be a prime such that { does
not divide the discriminant of the equation order Z[X|/(f(X)) and such that f(X) € Fy[X] factors as
a product f(X) = [[\_, fi(X) € F[X] with pairwise distinct irreducible polynomials f;(X) € Fy[X].
Let d; = deg(fi(X)).

Then the set of primes p such that f(X) mod p € F,[X] factors into r factors of degrees d, . .., d, has
a positive Dirichlet density. Moreover, there is an explicit bound for the smallest such prime p.
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