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In these lectures (8 hours taught in November 2020), we mention some topics from (algebraic) number

theory as well as some related concepts from (algebraic) geometry that can be useful in cryptography. We

cannot go deeply into any of the topics and most results will be presented without any proofs.

One of the things that one encounters are ‘ideal lattices’. In the examples I saw, this was nothing but (an

ideal in) an order in a number field, which is one of the concepts that we present here in its mathematical

context (i.e. embedded in a conceptual setting). It has been noted long ago (already in the 19th century)

that number fields and function fields of curves have many properties in common. Accordingly, we shall

also present some basic topics on affine plane curves and their function fields. This leads us to mention

elliptic curves, however, only in an affine version (instead of the better projective one); we cannot go

deeply into that topic at all.

The material presented here is classical and very well known. Large parts of these lecture notes are taken

from my lecture notes for the lectures Commutative Algebra and Algebraic Number Theory (the latter

written in collaboration with Sara Arias-de-Reyna) for the Master in Mathematics at the University of

Luxembourg [Wie]. They were, in turn, heavily influenced by a number of sources, such as Neukirch:

Algebraic Number Theory [Neu99], Lorenzini: An Invitation to Arithmetic Geometry [Lor96], Atiyah-

Macdonald: Introduction to Commutative Algebra [AM69], Stevenhagen: Number Rings [Ste17].

1 Integers and functions

1.1 Number fields and field extensions

Example 1.1. Let d ∈ Z be different from 0, 1 and not a square. Put

Q(
√
d) = {a+ b

√
d ∈ C | a, b ∈ Q} ⊆ C.

We say that Q(
√
d) is a quadratic field.

In particular, Q(
√
d) is a field: we can add, substract, multiply and divide elements of Q(

√
d) without

leaving this set (except division by zero, of course).

Exercise: Make these four operations explicit.

Example 1.2. Let n ∈ Z≥1 be a positive integer. Let ζn = exp(2πi/n) = cos(2π/n) + i sin(2π/n) ∈ C.

Note that ζn lies on the unit circle. It is a primitive n-th root of unity, meaning ζnn = 1 and ζjn 6= 1 for all

1 ≤ j ≤ n− 1. Put

Q(ζn) = {
n−1∑

j=0

ajζ
j
n ∈ C | a0, . . . , an−1 ∈ Q}.
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We say that Q(ζn) is the n-th cyclotomic field. In Cryptography, one sometimes encounters Q(ζ2m) and

its ‘ideal lattice’ (ring of integers, see below).

In particular, Q(ζn) is a field. If it’s not clear here, it will be clear below.

Both these examples are number fields.

Definition 1.3. A number field is a field F ⊂ C which is a finite dimensional Q-vector space. That means

that there are elements y1, . . . , yn ∈ F such that every x ∈ F can be written as

x =

n−1∑

j=0

ajyj

with unique a0, . . . , an−1 ∈ Q.

Even though number fields (and ideal lattices) are one of the principal motivations for these objects in this

course, we shall work more abstractly so that we are flexible and can transport results to other settings.

Definition 1.4. Let F be a field. If K ⊆ F is a subfield of F , then we say that K ⊆ F is a field extension.

A different piece of notation (used in mathematical literature) for a field extension is F/K.

The following lemma is fundamental because it allows us to use linear algebra in number theory!

Lemma 1.5. Let K ⊆ F be a field extension. Then F is a K-vector space.

More precisely: As a field F has addition and multiplication (and also their ‘inverses’: substraction and

division). To make F into aK-vector space, we need an addition; we just take the addition that we already

have. We also need a ‘scalar multiplication’, i.e. we must be able to multiply an element of K with an

element of F ; we again take the multiplication that we already have. Then it’s very easy to check that the

associativity, commutativity and distributivity relations that one has in a field imply all the axioms in the

definition of vector space.

Definition 1.6. Let K ⊆ F be a field extension. The degree of the field extension is defined as

[F : K] := dimK(F ),

the dimension of F as K-vector space. This can be finite or infinite.

If [F : K] is finite, then we say that K ⊆ F is a finite field extension.

Remark 1.7. A number field F is hence a field (subfield of C) such that Q ⊆ F is a finite field extension.

Definition 1.8. Let K ⊆ F be a field extension. A polynomial f ∈ K[X] is said to be the minimal

polynomial of a ∈ F over K if

• it is monic, i.e. its leading coefficient is 1,

• a is a root of f , i.e. f(a) = 0,

• any polynomial g ∈ K[X] such that g(a) = 0 is a multiple of f (in particular, if g 6= 0, then

deg(f) ≤ deg(g).

Example 1.9. Let a ∈ Q. Its minimal polynomial over Q is ma(X) = X − a ∈ Q[X].

Example 1.10. Let us consider quadratic fields.

(a) Consider
√
2 ∈ C. Its minimal polynomial over Q is m√

2(X) = X2 − 2 ∈ Q[X].
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(b) Consider 1+
√
5

2 ∈ C. Its minimal polynomial over Q is X2 −X − 1 ∈ Q[X].

(c) Consider 1+
√
−5

2 ∈ C. Its minimal polynomial over Q is X2 −X + 3
2 ∈ Q[X].

Example 1.11. Let p be a prime number and ζp = exp(2πi/p) ∈ C. Its minimal polynomial over Q is

Xp−1 +Xp−2 + · · ·+X + 1 ∈ Q[X]. This is the p-th cyclotomic polynomial.

More generally, the minimal polynomial of ζn for n ∈ Z≥1 exists and can be written down rather explicitly.

It is called the p-th cyclotomic polynomial.

Definition 1.12. Let K ⊆ F be a field extension. An element a ∈ F is called algebraic over K if it has a

minimal polynomial in K[X].

The field extension K ⊆ F is called algebraic if every a ∈ F is algebraic over K.

Example 1.13. In all preceding examples, we saw numbers that are algebraic over Q.

The famous number π, defined as the ratio of the circumference of a circle over its diameter, is not al-

gebraic over Q by a famous theorem of Lindemann. One says that it is a transcendental number (over

Q).

Proposition 1.14. Any finite field extension K ⊆ F (in particular, any number field F ) is algebraic, so

a ∈ L has a minimal polynomial ma ∈ K[X].

Proof. The powers 1 = a0, a = a1, a2, a3, . . . must be K-linearly dependent because the dimension is

finite. The minimal polynomial is the shortest non-zero equation of the form

an + cn−1a
n−1 + · · ·+ c1a

1 + c0a
0 = 0

with ci ∈ K.

1.2 Integers

Example 1.15. The minimal polynomial of a ∈ Q over Q isma(X) = X−a ∈ Q[X]. Note the following:

a ∈ Z ⇔ ma(X) ∈ Z[X].

So, we have

Z = {a ∈ Q | ma(X) ∈ Z[X].

Definition 1.16. If S is a ring and R ⊆ S is a subring, then we also speak of a ring extension (in analogy

to the terminology used for field extensions).

In the sequel, we shall often be concerned with a number field F and consider the ring extension Z ⊂ F .

Definition 1.17. Let R ⊆ S be a ring extension. Then a ∈ S is called integral over R if there is a monic

polynomial f ∈ R[X] such that f(a) = 0.

We first clarify which algebraic elements are integral in the case of interest to us.

Lemma 1.18. Let F be a number field. Then a ∈ F is integral over Z if and only if its minimal polynomial

ma has coefficients in Z.

More generally, let R be an integrally closed integral domain (see below; Z is an example) with field of

fractionsK. LetK ⊆ F be a finite field extension. Then a ∈ F is integral overR if and only if its minimal

polynomial ma(X) has coefficients in R.
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Proof. We only prove the first statement. The general statement requires more technology and will be

skipped.

One implication is clear (and works without any assumption on R in the general case). For the other one,

let f ∈ Z[X] be any monic polynomial such that f(a) = 0. Consider f as an element of Q[X]. As such,

it is a multiple of the minimal polynomial ma(X) ∈ Q[X], i.e.

f(X) = ma(X) · h(X)

for some polynomial h(X) ∈ Q[X]. Note that h(X) is necessarily monic. Now, a theorem of Gauß tells

us that if a monic polynomial with coefficients in Z factors into two monic polynomials, then both of them

also have coefficients in Z, proving ma(X) ∈ Z[X].

We reconsider the same examples as above.

Example 1.19. Let a ∈ Q. As its minimal polynomial over Q is ma(X) = X − a ∈ Q[X], we have:

a ∈ Z if and only if a is integral over Q.

Example 1.20. Let us consider quadratic fields.

(a) Consider
√
2 ∈ C. As its minimal polynomial over Q is m√

2(X) = X2 − 2 ∈ Z[X], it follows that√
2 is integral over Z.

(b) Consider 1+
√
5

2 ∈ C. As its minimal polynomial over Q is X2 − X − 1 ∈ Z[X], it follows that
1+

√
5

2 ∈ C is integral over Z.

(c) Consider 1+
√
−5

2 ∈ C. As its minimal polynomial over Q is X2 − X + 3
2 6∈ Z[X], it follows that

1+
√
−5

2 ∈ C is not integral over Z.

Example 1.21. Let p be a prime number and ζp = exp(2πi/p) ∈ C. As its minimal polynomial over Q

is Xp−1 +Xp−2 + · · · +X + 1 ∈ Q[X], it follows that ζp is integral over Z. More generally, the same

conclusion holds for all ζn for n ∈ Z≥1.

1.3 Ring of integers and integral ring extensions

Definition 1.22. For a number field F , define the ring of integers of F as

ZF := {a ∈ F | a is integral over Z}.

We revisit again the above examples.

Example 1.23. Ring of integers of Q: As seen above: ZQ = Z, i.e. Z is the ring of integers of Q.

Example 1.24. Let d 6= 0, 1 be a squarefree integer. The ring of integers of Q(
√
d) is

(1) Z[
√
d], if d ≡ 2, 3 (mod 4),

(2) Z[1+
√
d

2 ], if d ≡ 1 (mod 4).

Example 1.25. Let n ∈ Z≥1 and ζn = exp(2πi/n) ∈ C. The ring of integers of the n-th cyclotomic field

Q(ζn) is

ZQ(ζn) = Z[ζn] = {
n−1∑

j=0

ajζ
j
n ∈ C | a0, . . . , an−1 ∈ Z}.
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Attention: if n is not prime, then the powers ζjn for 0 ≤ j ≤ n − 1 do not form a basis (there’s linear

dependence). For instance, for n = 4, we have ζ4 = i and 1, i, i2 = −1, i3 = −i are not Q-linearly

independent.

Exercise: Work our a basis for n = 2m.

Let us add an abstract definition, which we will mostly (but not exclusively) use with R = Z and S = ZK

with a number field K.

Definition 1.26. Let S be a ring and R ⊆ S a subring.

(a) The set RS = {a ∈ S | a is integral over R} is called the integral closure of R in S (compare with

the algebraic closure of R in S – the two notions coincide if R is a field).

An alternative name is: normalisation of R in S.

(b) S is called an integral ring extension of R if RS = S, i.e. if every element of S is integral over R

(compare with algebraic field extension – the two notions coincide if R and S are fields).

(c) R is called integrally closed in S if RS = R.

(d) An integral domain R is called integrally closed (i.e. without mentioning the ring in which the closure

is taken) if R is integrally closed in its fraction field.

(e) Let ai ∈ S for i ∈ I (some indexing set). We let R[ai | i ∈ I] (note the square brackets!) be the

smallest subring of S containing R and all the ai, i ∈ I .

Note that we can see R[a] inside S as the image of the ring homomorphism

Φa : R[X] → S,
d∑

i=0

ciX
i 7→

d∑

i=0

cia
i.

Remark 1.27. The ring of integers of K is the integral closure of Z in K, this explains the piece of

notation ZK . An alternative notation that one often encounters in mathematical texts is OK .

Example 1.28. Every UFD (unique factoriation domain) is integrally closed. In particular, Z and poly-

nomial rings F [X1, . . . , Xn] are integrally closed.

In the next statements, we will speak of R-modules for a ring R. An R-module is nothing else than a

vector space (exactly the same definition), except that we allow the coefficients to be in a ring, where as

the notion of vector space is restricted to coefficients in fields.

Proposition 1.29. Let R ⊆ S ⊆ T be rings.

(a) For a ∈ S, the following statements are equivalent:

(i) a is integral over R.

(ii) R[a] ⊆ S is a finitely generated R-module.

(b) Let a1, . . . , an ∈ S be elements that are integral over R. Then R[a1, . . . , an] ⊆ S is integral over R

and it is finitely generated as an R-module.

(c) Let R ⊆ S ⊆ T be rings. Then ‘transitivity of integrality’ holds:

R ⊆ T is integral ⇔ S ⊆ T is integral and R ⊆ S is integral.
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(d) RS is a subring of S.

(e) Any t ∈ S that is integral over RS lies in RS . In other words, RS is integrally closed in S (justifying

the name).

Proposition 1.30. Let R be an integral domain, K = Frac(R), K ⊆ F a finite field extension and

S := RF the integral closure of R in F . Then the following statements hold:

(a) Every a ∈ F can be written as a = s
r with s ∈ S and 0 6= r ∈ R.

(b) F = Frac(S) and S is integrally closed.

(c) If R is integrally closed, then S ∩K = R.

1.4 Trace and norm in field extensions

We now systematically do linear algebra in field extensions. Let K ⊆ F be a finite field extension of

degree [F : K] = n. Let a ∈ L. Note that multiplication by a:

Ta : F → F, x 7→ ax

is F -linear and, thus, in particular, K-linear. Once we choose a K-basis of F , we can represent Ta by an

n× n-matrix with coefficients in K, also denoted Ta.

Example 1.31. The complex numbers C have the R-basis {1, i} and with respect to this basis, any z ∈ C

is represented as ( xy ) = x + yi. Now, take a = ( bc ) = b + ci ∈ C. We obtain: Ta =
(
b −c
c b

)
, as we can

easily check:

Ta(z) = az = (b+ ci)(x+ yi) = (bx− cy) + (cx+ by)i and Ta(z) =
(
b −c
c b

)
( xy ) =

(
bx−cy
cx+by

)

.

As an aside: You may have seen this matrix before; namely, writing z = r(cos(ϕ)+ i sin(ϕ)), it looks like

r
(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

, i.e. it is a rotation matrix times a homothety (stretching) factor.

We can now do linear algebra with the matrix Ta ∈ Matn(K).

Recall that the trace of a matrix M = (mi,j)1≤i,j≤n ∈ Matn(K) is defined as

Tr(M) =
n∑

i=1

mi,i,

the sum of its diagonal entries.

Definition 1.32. Let K ⊆ F be a field extension of degree [F : K] = n. Let a ∈ F . The trace of a in

K ⊆ F is defined as the trace of the matrix Ta ∈ Matn(K) and the norm of a in K ⊆ F is defined as the

determinant of the matrix Ta ∈ Matn(K):

TrF/K(a) := Tr(Ta) and NormF/K(a) := det(Ta).

Note that trace and norm do not depend on the choice of basis by a standard result from linear algebra.

Example 1.33. Let us continue the example above. Let z = x+ yi ∈ C. Then TrC/R(z) = 2x = 2Re(z)

and NormC/R(z) = x2 + y2 = |z|2.

Lemma 1.34. Let K ⊆ F be a finite field extension.
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(a) TrF/K defines a group homomorphism (F,+) → (K,+), i.e.

TrF/K(a+ b) = TrF/K(a) + TrF/K(b) for all a, b ∈ F.

(b) NormF/K defines a group homomorphism (F×, ·) → (K×, ·), i.e.

NormF/K(a · b) = NormF/K(a) ·NormF/K(b) for all a, b ∈ F.

Proof. (a) The trace of a matrix is additive and Ta+b = Ta + Tb because

Ta+b(x) = (a+ b)x = ax+ bx = Ta(x) + Tb(x)

for all x ∈ F .

(b) The determinant of a matrix is multiplicative and Ta·b = Ta ◦ Tb because

Ta·b(x) = abx = Ta
(
Tb(x)

)

for all x ∈ F .

Lemma 1.35. Let K ⊆ F be a finite field extension of degree [F : K] = n. Let a ∈ F .

(a) Let fa = Xn + bn−1X
n−1 + · · · + b1X + b0 ∈ K[X] be the characteristic polynomial of Ta ∈

Matn(K). Then TrF/K(a) = −bn−1 and NormF/K(a) = (−1)nb0.

(b) Let ma = Xd + cd−1X
d−1 + · · · + c1X + c0 ∈ K[X] be the minimal polynomial of a over K.

Then {1, a, a2, . . . , ad−1} forms a K-basis of K(a) and [K(a) : K] = d. Moreover, the matrix T ′
a

representing the map K(a)
x 7→ax−−−→ K(a) with respect to this K-basis equals

T ′
a =






0 0 ··· 0 −c0
1 0 ··· 0 −c1
0 1 ··· 0 −c2
...

...
. . .

...
0 0 ··· 1 −cd−1




 .

(c) Then d = [K(a) : K] and with e = [F : K(a)] one has ma(X)e = fa(X).

Proof. Exercise.

We need some important pieces of terminology from field theory.

Definition 1.36. Let K ⊆ F and K ⊆ L be field extensions. Denote

Homfield
K (F,L) = {ϕ : F → L | field homomorphism s.t. ∀x ∈ K : ϕ(x) = x},

the set of field homomorphisms from F to L that are the identity on K.

Let K be an algebraic closure of K (i.e. and algebraic extension K ⊆ K such that every non-constant

polynomial in K[X] has a zero (and hence all zeros) in K.

We say that a finite field extension K ⊆ F is separable if [F : K] = #Homfield
K (F,K).

Example 1.37. If K is a field of characteristic 0, i.e. a field that contains (a subfield isomorphic to) Q,

then any field extension K ⊆ F is separable. If K is a finite field, the same conclusion holds.

However, if K is an infinite field of characteristic p > 0, then there are non-separable extensions. One

encounters this when working with elliptic curves over finite fields.
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Proposition 1.38. Let K ⊆ F be a finite separable field extension, K an algebraic closure of K con-

taining F . Let, furthermore, a ∈ F and fa be the characteristic polynomial of Ta. Then the following

statements hold:

(a) fa(X) =
∏

σ∈Homfield
K (F,K)(X − σ(a)),

(b) TrF/K(a) =
∑

σ∈Homfield
K (F,K) σ(a), and

(c) NormF/K(a) =
∏

σ∈Homfield
K (F,K) σ(a).

Corollary 1.39. Let K ⊆ F ⊆ L be finite separable field extensions. Then

TrL/K = TrF/K ◦TrL/F and NormL/K = NormF/K ◦NormL/F .

We now apply norm and trace to integral elements. We again state the result in general, but one can think

of R = Z, F a number field and S = ZK its ring of integers.

Lemma 1.40. Let R be an integrally closed integral domain, K its field of fractions, K ⊆ F a separable

finite field extension and S the integral closure of R in F . Let s ∈ S. Then the following statements hold:

(a) TrF/K(s) ∈ R and NormF/K(s) ∈ R.

(b) s ∈ S× ⇔ NormF/K(s) ∈ R×.

Proof. (a) directly follows from S ∩K = R.

(b) ‘⇒’: Let s, t ∈ S× such that ts = 1. Then

1 = NormF/K(1) = NormF/K(st) = NormF/K(s)NormF/K(t),

exhibiting an inverse of NormF/K(s) in R.

‘⇐’: Assume NormF/K(s) ∈ R×. Then

1 = rNormF/K(s) = r
∏

σ∈HomK(F,K)

σ(s) =
(
r

∏

id 6=σ∈HomK(F,K)

σ(s)
)
s = ts,

exhibiting an inverse to s in S.

1.5 Discriminant

Definition 1.41. Let K ⊆ F be a finite separable field extension of degree n = [F : K]. Let K be an

algebraic closure ofK. Further, let Homfield
K (F,K) = {σ1, . . . , σn} and let α1, . . . , αn ∈ F be aK-basis

of F . Form the matrix

D(α1, . . . , αn) := (σi(αj))1≤i,j≤n =









σ1(α1) σ1(α2) · · · σ1(αn)

σ2(α1) σ2(α2) · · · σ2(αn)
...

...
. . .

...

σn(α1) σn(α2) · · · σn(αn)









.

The discriminant of (α1, . . . , αn) is defined as

disc(α1, . . . , αn) :=
(
detD(α1, . . . , αn)

)2
.

The trace pairing on K ⊆ F is the bilinear pairing

F × F → K, (x, y) 7→ TrF/K(xy).
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Example 1.42. (a) Let 0, 1 6= d ∈ Z be a squarefree integer and consider K = Q(
√
d). Computations

(exercise) show:

disc(1,
√
d) = 4d and disc(1,

1 +
√
d

2
) = d.

(b) Let f(X) = X3 + aX + b ∈ Z[X] be an irreducible polynomial and consider K = Q[X]/(f). Let

α ∈ C be any root of f , so that we can identify K = Q(α) and 1, α, α2 is a Q-basis of K.

Computations (exercise) show disc(1, α, α2) = −4a3 − 27b2.

Remark 1.43. The discriminant of a polynomial f can also be computed as the resultant of f and its

formal derivative f ′.

Proposition 1.44. Let K ⊆ F be a finite separable field extension of degree n = [F : K]. Let α1, . . . , αn

be a K-basis of F . Then the following statements hold:

(a) Let D := D(α1, . . . , αn). Then DtrD is the Gram matrix of the trace pairing with respect to the

chosen K-basis. That is,

DtrD =
(
TrF/K(αiαj)

)

1≤i,j≤n
.

(b) We have

disc(α1, . . . , αn) = det(D)2 = det(DtrD) = det
(
TrF/K(αiαj)

)

1≤i,j≤n
.

(c) Let C = (ci,j)1≤i,j≤n be an n × n-matrix with coefficients in K with detC 6= 0 and put βi := Cαi

for i = 1, . . . , n. Then

disc(β1, . . . , βn) = det(C)2 disc(α1, . . . , αn).

(d) If F = K(a), then

disc(1, a, . . . , an−1) =
∏

1≤i<j≤n

(
σj(a)− σi(a)

)2
,

where σ1, . . . , σn are the K-field homomorphisms F → K.

Proof. (a) Let σ1, . . . , σn be the K-field homomorphisms F → K. Then we have

DtrD =









σ1(α1) σ2(α1) · · · σn(α1)

σ1(α2) σ2(α2) · · · σn(α2)
...

...
. . .

...

σ1(αn) σ2(αn) · · · σn(αn)

















σ1(α1) σ1(α2) · · · σ1(αn)

σ2(α1) σ2(α2) · · · σ2(αn)
...

...
. . .

...

σn(α1) σn(α2) · · · σn(αn)









=









∑n
k=1 σk(α1α1)

∑n
k=1 σk(α1α2) · · · ∑n

k=1 σk(α1αn)
∑n

k=1 σk(α2α1)
∑n

k=1 σk(α2α2) · · · ∑n
k=1 σk(α2αn)

...
...

. . .
...

∑n
k=1 σk(αnα1)

∑n
k=1 σk(αnα2) · · · ∑n

k=1 σk(αnαn)









=









TrF/K(α1α1) TrF/K(α1α2) · · · TrF/K(α1αn)

TrF/K(α2α1) TrF/K(α2α2) · · · TrF/K(α2αn)
...

...
. . .

...

TrF/K(αnα1) TrF/K(αnα2) · · · TrF/K(αnαn)









.

So, the (i, j)-entry of the matrixDtrD equals TrF/K(αiαj). Hence, DtrD is the Gram matrix of the trace

pairing with respect to the chosen K-basis.
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(b) is clear.

(c) Exercise.

(d) Exercise.

Proposition 1.45. Assume the setting of the previous proposition. The discriminant disc(α1, . . . , αn) is

non-zero and the trace pairing on K ⊆ F is non-degenerate.

1.6 Integral bases, orders and lattices in number fields

For going on, we need to introduce some more terminology on modules (‘vector spaces over rings’). It is

again the same as for vector spaces.

Definition 1.46. Let R be a ring and let M be an R-module.

Let mi ∈M with indices i ∈ I (some set) be a collection of elements.

The collection (mi)i∈I is called a generating set ofM if for everym ∈M there is a finite subset of indices

J ⊆ I and for every j ∈ J there is rj ∈ R such that m =
∑

j∈J rjmj .

If M possesses a generating set that is finite, then M is called finitely generated as R-module.

The collection (mi)i∈I is called R-linearly independent or R-free if for all finite subsets of indices J ⊆ I

the only linear combination equal to zero:

0 =
∑

j∈J
rjmj

with rj ∈ R for j ∈ J is the one where rj = 0 for all j ∈ J .

An R-free generating set of M is called an R-basis of M .

An R-module M that possesses an R-basis is called R-free.

The number of elements in an (and any) R-basis of M is called the R-rank of M , denoted rkR(M).

Remark 1.47. If R = K is a field, then any R-module is a K-vector space and by results form linear

algebra it is automatically free and possesses a K-basis. Moreover, in that case, dimension and rank are

the same.

However, if R is not a field, then there are in general non-free modules, which also don’t have any basis

(but they all have generating sets).

We include the structure theorem of finitely generated modules over PIDs (principal ideal domains). The

main example is R = Z or a polynomial ring in one variable over a field. The proof is not very difficult,

but not included here.

Theorem 1.48. Let R be a principal ideal domain and M a finitely generated R-module. Then the

following statements hold:

(a) Assume that M is a free R-module of rank m. Then any submodule N of M is finitely generated and

free of rank ≤ m.

(b) An element m ∈ M is called a torsion element if there is 0 6= r ∈ R such that rm = 0. The set

Mtorsion = {m ∈M | m is a torsion element } is an R-submodule of M .

(c) M is a free R-module ⇔Mtorsion = {0}.

10



(d) There is an integer m such that

M ∼=Mtorsion ⊕R⊕ . . .⊕R
︸ ︷︷ ︸

m times

.

We need one more piece of terminology for modules.

Definition 1.49. An R-module M is called Noetherian if all its submodules are finitely generated. A ring

R is Noetherian if it is Noetherian asR-module; this is equivalent to asking that all ideals ofR are finitely

generated.

Example 1.50. Every principal ideal domain (PID) is Noetherian, so, in particular, Z is Noetherian.

Moreover, the polynomial ring in n-variables over a Noetherian ring is Noetherian (this is called Hilbert’s

Basissatz).

Definition 1.51. Let R ⊆ S be an integral ring extension. If S is free as an R-module, then, by definition,

an R-basis of S (i.e. a free generating system) exists and is called an integral basis of S over R.

We point out that, if S is an integral domain (as it always will be in this lecture), then an R-basis of S is

also a K-basis of F = Frac(S) with K = Frac(R).

Note that, in general, there is no reason why an integral ring extension S should be free as an R-module.

This is, however, the case for the rings of integers, as the following proposition shows. We first need a

lemma.

Lemma 1.52. Let R be an integrally closed integral domain, K its field of fractions, K ⊆ F a separable

finite field extension and S the integral closure of R in F .

(a) For any K-basis α1, . . . , αn of F , there is an element r ∈ R \ {0} such that rαi ∈ S for all i =

1, . . . , n.

(b) Let α1, . . . , αn ∈ S be a K-basis of F and let d = disc(α1, . . . , αn) be the discriminant of this basis.

Then dS ⊆ Rα1 + · · ·+Rαn.

Proof. (a) By Proposition 1.30 (a), we can write αi =
si
ri

with ri ∈ R and si ∈ S for all i = 1, . . . , n.

Hence, we may take r = r1 · . . . · rn.

(b) Let s =
∑n

j=1 xjαj be an element of S with xj ∈ K for j = 1, . . . , n. We show ds ∈ Rα1+· · ·+Rαn.

Note that the elementary properties of the trace yield

TrF/K(αis) =

n∑

j=1

Tr(αiαj)xj ∈ R.

We can rewrite this in matrix form using M = DtrD =





TrF/K(α1α1) ··· TrF/K(α1αn)

...
. . .

...
TrF/K(αnα1) ··· TrF/K(αnαn)



. Now:

M

( x1

...
xn

)

=





∑n
j=1 TrF/K(α1αj)xj

...∑n
j=1 TrF/K(αnαj)xj



 ∈ Rn.

Multiplying through with the adjoint matrix M# yields

M#M

( x1

...
xn

)

= det(M)

( x1

...
xn

)

= d

( x1

...
xn

)

∈ Rn.

Thus, dxi ∈ R for all i = 1, . . . , n and, consequently, ds ∈ Rα1 + · · ·+Rαn.
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Proposition 1.53. Let R be a principal ideal domain, K its field of fractions, K ⊆ F a finite separable

field extension and S the integral closure of R in F .

(For instance, we can take R = Z, K = Q, F a number field and S = ZF its ring of integers.)

Then every finitely generated S-submodule 0 6=M ⊆ F is a freeR-module of rank [F : K]. In particular,

S possesses an integral basis over R. Moreover, S is a Noetherian ring.

Proof. As principal ideal domains are unique factorisation domains and, hence, integrally closed, we may

apply Lemma 1.52 to obtain a K-basis α1, . . . , αn ∈ S of F and we also have dS ⊆ Rα1+ · · ·+Rαn =:

N with d = disc(α1, . . . , αn). Note that N is a free R-module of rank n = [F : K].

Let m1, . . . ,mk ∈ M be a generating system of M ⊆ F as S-module. As the mi are elements of F , by

Proposition 1.30 (a) there is r ∈ R such that rmi ∈ S for all i = 1, . . . , k, whence rM ⊆ S. Hence,

rdM ⊆ dS ⊆ N . Consequently, Theorem 1.48 yields that rdM is a free R-module of rank at most n.

Of course, the R-rank of rdM is equal to the R-rank of M . Let 0 6= m ∈ M . Then Nm ≤ Sm ≤ M ,

showing that n, the R-rank of N (which is equal to the R-rank of Nm) is at most the R-rank of M . Since

finite direct sums of Noetherian modules are Noetherian, it follows that S is Noetherian.

For the rest of this section we specialise to the case of number fields.

Definition 1.54. Let F be a number field. A subring O of ZF is called an order of F if O has an integral

basis of length [F : Q]. Equivalently, the index (ZF : O) as abelian groups is finite.

Corollary 1.55. Let F be a number field and ZF the ring of integers of F . Then the following statements

hold:

(a) ZF is an order of F , also called the maximal order of F .

(b) Let O be an order of F and 0 ( I E O be an ideal. Then I is a free Z-module of rank [F : Q] and

the quotient O/I is finite (i.e. has finitely many elements; equivalently, the index (O : I) is finite).

Proof. (a) It is a trivial consequence of Proposition 1.53 that ZF is a free Z-module of rank [F : Q]

because ZF is a ZF -module generated by a single element, namely 1. In particular, ZF has an integral

basis and, hence, is an order of F .

(b) Since I ⊆ O is a subgroup and O is a free abelian group, I is free of rank rk(I) ≤ rk(O) = [F : Q].

Let 0 6= x ∈ I , then xO ⊆ I . As rk(O) = rk(xO) ≤ rk(I), it follows that rk(I) = rk(O) = [F : Q].

The quotient of any two free Z-modules of the same rank is Z-torsion by Theorem 1.48. Hence, O/I is

an abelian group generated by finitely many elements of finite order, hence, it is a finite group.

Example 1.56. Let f ∈ Q[X] be an irreducible monic polynomial and let F = Q[X]/(f) be the number

field defined by f . Then Z[X]/(f) is an order in F , called the equation order of f . Note that is usually

is NOT the maximal order, i.e. it is usually not the ring of integers. It may have some kind of ‘singular

points’. More on that later.

Definition 1.57. Let F be a number field with ring of integers ZF and 0 6= a ⊂ F be a finitely generated

ZF -module. The discriminant of a is defined as disc(α1, . . . , αn) for any Z-basis of the free Z-module a

(see Proposition 1.53). (By Proposition 1.44 (c), this definition does not depend on the choice of Z-basis

because the basis transformation matrix is invertible with integral entries and thus has determinant ±1.)

The discriminant of F is defined as disc(ZF ).

Proposition 1.58. Let F be a number field and ZF its ring of integers. Let 0 6= a ⊆ b ⊂ F be two finitely

generated ZF -modules. Then the index (b : a) is finite and satisfies

disc(a) = (b : a)2 disc(b).
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1.7 Fields and rings of functions (on a plane curve)

In order to keep the technicalities low, we shall only work in an affine setting and not in a projective one.

Definition 1.59. Let K ⊆ F be a field extension. Let n ∈ Z≥1. The set of F -points of affine n-space is

defined as An(F ) := Fn (i.e. n-dimensional F -vector space).

Let S ⊆ K[X1, . . . , Xn] be a subset. Then

VS(F := {(x1, . . . , xn) ∈ An(F ) | f(x1, . . . , xn) = 0 for all f ∈ S}

is called the set of F -points of the affine (algebraic) set belonging to S.

If the set S consists of a single non-constant polynomial, then VS(K) is also called a hyperplane in A(K).

If n = 2 and S = {f} with non-constant f , then VS(K) is called a plane curve (because it is a curve in

the plane A2(K). Its F -points are defined as VS(F ) for K ⊆ F a field extension.

Convention: When the number of variables is clear, we write K[X] for K[X1, . . . , Xn]. In the same way

a tuple (x1, . . . , xn) ∈ An(K) is also abbreviated as x if no confusion can arise.

The letter ‘V’ is chosen because of the word ‘variety’ or ‘vanishing set’.

Example 1.60. (a) K = R, n = 2, K[X,Y ] ∋ f(X,Y ) = aX + bY + c non-constant. Then V{f}(R) is

a line (y = −a
bx− c

b if b 6= 0; if b = 0, then it is the line with x-coordinate − c
a and any y-coordinate).

(b) K = R, n = 2, K[X,Y ] ∋ f(X,Y ) = X2 + Y 2 − 1. Then V{f}(R) is the circle in R2 around the

origin with radius 1.

(c) K = Q, f(X,Y ) := X2 + Y 2 + 1. Note V{f}(R) = ∅, but (0, i) ∈ V{f}(C).

(d) K = F2, f(X,Y ) := X2+Y 2+1 = (X+Y +1)2 ∈ F2[X]. Because of f(a, b) = 0 ⇔ a+b+1 = 0

for any a, b ∈ L, L/F2, we have

V{f}(L) = V{X+Y+1}(L),

which is a line.

Example 1.61. (a) LetK = Q and consider f(X,Y ) = X2+Y 2−1 and the Q-points of the associated

curve C = S1 = V{f}(Q). They correspond in a precise way to primitive pythagorean triples (a, b, c)

for a, b, c ∈ Z and a2 + b2 = c2. For details see an exercise.

Note that this is a nice and first illustration of the deep relations between geometry and number theory

(algebra). We will encounter several in this course.

(b) Let K be a field and consider f(X,Y ) = X2 + Y 2.

The only solution of the form (x, 0) is (0, 0) in any field K. Suppose now (x, y) is a solution with

y 6= 0. Then x2 = −y2, or z2 = −1 with z = x
y .

Hence, V{f}(K) = {(0, 0)} if and only if X2 = −1 has no solution in K.

In particular, V{f}(R) = {(0, 0)} (but: V{f}(C) = V{X−iY }(C) ∪ V{X+iY }(C), union of two lines)

and V{f}(Fp) = {(0, 0)} if and only if p ≡ 3 (mod 4).

Example 1.62. Let K be a field and f(X) = X3 + aX2 + bX + c be a separable polynomial (meaning

that it has no multiple zeros over K).

Any plane curve of the form VY 2−f(X) is called an elliptic curve.
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Definition 1.63. Let X be a subset of An(K).

The coordinate ring of X is the ring of functions X → K that are described by polynomials. More

precisely, it is the image of the ring homomorphism

ϕ : K[X] → Maps(X ,K), f 7→
(
(x1, . . . , xn) 7→ f(x1, . . . , xn)

)

(with + and · on Maps(X ,K) defined pointwise: (f+g)(x) := f(x)+g(x) and (f ·g)(x) := f(x)·g(x)).
The kernel of ϕ is called the vanishing ideal of X :

IX := ker(ϕ) = {f ∈ K[X] | f(x) = 0 for all x ∈ X}.

By the isomorphism theorem, we have K[X ] = K[X]/IX .

Proposition 1.64. Let K be a field and f ∈ K[X,Y ] a nonconstant irreducible polynomial. Let C =

Vf (K) be the associated plane curve. Assume that Vf (K) is infinite (which is automatic if K = K is

algebraically closed).

Then the vanishing ideal IC is (f) and the coordinate ring K[C] is isomorphic to K[X,Y ]/(f).

Example 1.65. • Line f(X,Y ) := X − Y + 2 ∈ R[X,Y ], L := Vf (R):

We have IL = (X − Y +2), i.e. that the vanishing ideal of L is the principal ideal generated by f .

This is a consequence of Proposition 1.64.

We compute the structure of the coordinate ring in this case. Consider the ring homomorphism:

ϕ : R[X,Y ] → R[T ], g(X,Y ) 7→ g(T, T + 2).

Note that this homomorphism is chosen such that X − Y + 2 gets mapped to T − (T + 2) + 2 = 0

and so lies in the kernel. We now prove that the kernel is equal to IL (and hence to (X − Y + 2)).

Let g ∈ ker(ϕ). This means g(T, T + 2) is the zero polynomial. If we now take a point (x, y) ∈ L,

then it satisfies y = x + 2, whence g(x, y) = g(x, x + 2) = 0 because it is equal to g(T, T + 2)

evaluated at T = x. This means g ∈ IL, as claimed.

From the isomorphism theorem, we now obtain that the coordinate ring is just the polynomial ring

in one variable:

R[L] = R[X,Y ]/IL = R[X,Y ]/(X − Y + 2) ∼= R[T ].

In other words, the coordinate functions satisfy the equality x2 = x1 + 2.

• Parabola f(X,Y ) := X2 − Y + 2 ∈ R[X,Y ], P := Vf (R):

Again by Proposition 1.64 we have IP = (X2 − Y + 2).

With arguments similar to those used before, we conclude that the coordinate ring is

R[P] = R[X,Y ]/IP = R[X,Y ]/(X2 − Y + 2) ∼= R[T ],

where the last isomorphism is given by sending the class of g(X,Y ) to g(T, T 2 +2). So, it is again

isomorphic to the polynomial ring in one variable.

• Hyperbola f(X,Y ) := XY − 1 ∈ R[X,Y ], H := Vf (R):

We again have IH = (XY − 1) by Proposition 1.64. This time we obtain

R[H] = R[X,Y ]/(XY − 1) ∼= R[X,
1

X
]

= {
f
∑

i=e

aiX
i | e, f ∈ Z, ai ∈ R} ⊂ R(X) := Frac(R[X]).
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Note that this ring is not isomorphic to the polynomial ring in one variable. For, suppose to the

contrary that there is a ring isomorphism ϕ : R[X, 1
X ] → R[T ]. As X is a unit, so is ϕ(X).

Thus, ϕ(X) ∈ R[T ]× = R× is a constant polynomial. Consequently, the image of ϕ lands in R,

contradicting the surjectivity.

Definition 1.66. Let X ⊆ An(K) be a subset. We say that X is reducible if there are two affine subsets

X1 = VS1 ,X2 = VS2(K) ⊆ An(K) such that

X ⊆ X1 ∪ X2

and

X 6⊆ X1 and X 6⊆ X2.

An affine set X ⊆ An(K) is called an affine variety if X is irreducible (i.e. not reducible).

Example 1.67. • Let f(X,Y ) = XY ∈ R[X,Y ]. Then Vf (R) is the union of the x-axis and the

y-axis, so clearly Vf (R) is reducible. More precisely,

Vf (R) = VX(R) ∪ VY (R).

• The line X − Y + 2 is irreducible. Attention: it is reducible for the usual real topology (take two

closed ‘half lines’ overlapping).

• The hyperbola H is also irreducible. This is a consequence of the next proposition, since the co-

ordinate ring R[H] is an integral domain.

We can now formulate a topological statement on an affine algebraic set as a purely algebraic statement on

the coordinate ring! This kind of phenomenon will be encountered all the time in the sequel of the lecture.

Proposition 1.68. Let ∅ 6= X ⊆ An(K) be an affine set. Then the following statements are equivalent:

(i) X is irreducible (i.e. X is a variety).

(ii) The coordinate ring K[X ] is an integral domain.

Definition 1.69. Let X ⊆ An(K) be an affine variety (so that its coordinate ring K[X ] is an integral

domain).

Then the function field of X is the field of fractions of K[X ]. It is denoted K(X ).

The elements in the function field are thus fractions f
g with f, g ∈ K[X ].

IMPORTANT: We cannot view these fractions inside Maps(X ,K) because the denominator
f(x1,...,xn)
g(x1,...,xn)

may be zero for some (x1, . . . , xn) ∈ X . So, an element f
g of the function field only gives us a map

X \ Vg(K) → K, (x1, . . . , xn) 7→
f(x1, . . . , xn)

g(x1, . . . , xn)
.

It is not everywhere defined. If one introduces a suitable topology, one can see that it is defined on an open

set.

We will go more into that when we discuss local vs. global below.

15



1.8 Morphisms between curves

Definition 1.70. Let C1 = Vf (K) and C2 = Vg(K) be affine plane curves. A map ϕ : C1 → C2 is a

morphism of curves if it is given by polynomials in the following sense: there are ϕ1, ϕ2 ∈ K[C1] such

that for all (x, y) ∈ C1 we have

ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)) ∈ C2.

We speak of an isomorphism if there is also a morphism ψ : C2 → C1 such that ψ◦ϕ = id and ϕ◦ψ = id.

Example 1.71. Let f(X,Y ) = X2+Y 2−1 and g(X,Y ) = X+Y −1 be polynomials (say in R[X,Y ]).

The associated curves Vf (R) and Vg(R) are the unit circle and the line through (0, 1) and (1, 0) (of slope

−1). Then

ϕ : Vf (R) → Vg(R), (x, y) 7→ (x2, y2)

is a morphism of curves.

Proposition 1.72. Let ϕ : C1 → C2 be a morphism of curves given by ϕ1, ϕ2 ∈ K[C1].

Then the map

ϕ∗ : K[C2] → K[C1], g 7→ ϕ∗(g) := g ◦ f
is a K-algebra homomorphism.

Explicitly, we have ϕ∗(g)(x, y) = g(ϕ(x, y)) = g(ϕ1(x, y), ϕ2(x, y)).

We also have a converse.

Proposition 1.73. Let C1, C2 be affine plane curves. Let ψ : K[C2] → K[C1] be a K-algebra homo-

morphism. Put ϕ1 := ψ(X + IC2) ∈ K[C1] and ϕ2 := ψ(Y + IC2) ∈ K[C1].

Then the map

ϕ : C1 → C2, (x, y) 7→ (ϕ1(x, y), ϕ2(x, y))

is well-defined and ϕ∗ = ψ.

Proof. We must check that (ϕ1(x, y), ϕ2(x, y)) lies in C2 whenever (x, y) lie in C1. For that purpose, let

g ∈ IC2 be any polynomial in the vanishing ideal of C2. Note that

g(X + IC2 , Y + IC2) = g(X,Y ) + IC2 = 0 + IC2 .

Consequently, we have

0 = ψ
(
g(X + IC2 , Y + IC2)

)
= g
(
ψ(X + IC2), ψ(Y + IC2)

)
= g
(
ϕ1, ϕ2

)
∈ K[C1].

Hence,

g
(
ϕ1(x, y), ϕ2(x, y)

)
= 0 ∀(x, y) ∈ C1.

This implies (ϕ1(x, y), ϕ2(x, y)) lies in C2.

It suffices to check the equality ϕ∗ = ψ on generators: X + IC2 , Y + IC2 ∈ K[C2].

ϕ∗(X + IC2)(x, y) = ϕ1(x, y) = ψ(X + IC2)

and similarly for the other one.

Now we do the same thing again, but not with the coordinate rings, but their quotient fields, i.e. function

fields. In order for the latter to be defined, we will impose that the curves are irreducible.
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Definition 1.74. Let C1 = Vf (K) and C2 = Vg(K) be irreducible affine plane curves.

A rational map ϕ of curves from C1 to C2 is given by rational functions ϕ1, ϕ2 ∈ K(C1) such that for all

(x, y) ∈ C1 where both ϕ1 and ϕ2 are defined, we have

ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)) ∈ C2.

We use the piece of notation ϕ : C1 99K C2.

Proposition 1.75. Let ϕ : C1 99K C2 be a rational map of irreducible affine plane curves given by

ϕ1, ϕ2 ∈ K(C1).

Then the map

ϕ∗ : K(C2) → K(C1), g 7→ ϕ∗(g) = g ◦ f

is a K-field homomorphism, i.e. a (necessarily injective) field homomorphism that is the identity on K. In

other words, we have field extensions

K ⊂ ϕ∗(K(C2)
)
⊆ K(C1).

The extension ϕ∗(K(C2)
)
⊆ K(C1) is finite.

Explicitly, we have ϕ∗(g)(x, y) = g(ϕ(x, y)) = g(ϕ1(x, y), ϕ2(x, y)).

Also as before, we also have a converse with a similar proof.

Proposition 1.76. Let C1, C2 be irreducible affine plane curves. Let ψ : K(C2) → K(C1) be a K-field

homomorphism. Put ϕ1 := ψ(X + IC2) ∈ K(C1) and ϕ2 := ψ(Y + IC2) ∈ K(C1).

Then the map

ϕ : C1 → C2, (x, y) 7→ (ϕ1(x, y), ϕ2(x, y))

is well-defined and ϕ∗ = ψ.

Example 1.77. Let F be a field and letE1 andE2 be two elliptic curves over F . In line with the approach

in these lectures, we see the elliptic curves as affine plane curves, but we equip them with ‘a point at

infinity’ O. Then they have the structure of an abelian group with O as neutral element.

An isogenies between E1 and E2 is a morphism of curves

ϕ : E1 → E2

such that ϕ(O) = O. It is known that if ϕ is not the zero map, then it is surjective with finite kernel and in

that case we obtain the injection of function fields

ϕ∗ : F (E2) → F (E1).

The degree of this field extension is called the degree of the isogeny. Moreover, the isogeny is called

separable if the function field extension has this property.

The most important isogenies are those given by multiplication by an integer m ∈ Z.

[m] : E → E, P 7→ mP

for any elliptic curve. Its degree is m2.
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2 Local versus global

2.1 Local rings and localisation

Definition 2.1. Let R be a ring. An ideal m ( R is called maximal if there is no ideal J ( R such that

m ( J ( R.

An ideal p ( R is called prime if whenever rs ∈ p with r, s ∈ R one has r ∈ p or s ∈ p.

Lemma 2.2. Let R be a ring and I ( R be an ideal.

(a) I is a prime ideal ⇔ R/I is an integral domain.

(b) I is a maximal ideal ⇔ R/I is a field.

(c) If I is maximal, then it is also prime.

Example 2.3. The prime ideals of Z (or any other PID) are exactly the ideal (0) and all ideals generated

by prime numbers/elements. The maximal ideals are the same, with the exception of (0).

Lemma 2.4. Let L/K be a field extension and X ⊆ An(L) be a subset.

(a) Every L-point (a1, . . . , an) ∈ X gives rise to the K-algebra homomorphism

ev(a1,...,an) : K[X ] = K[X1, . . . , Xn]/IX → L, g(X1, . . . , Xn) + IX 7→ g(a1, . . . , an).

(b) If L = K, then the kernel of ev(a1,...,an) is the maximal ideal equal to (X1 − a1, . . . , Xn − an) + IX .

Proof. (a) is clear.

(b) The ideal (X1 − a1, X2 − a2, . . . , Xn − an) is clearly maximal because the quotient by it is K. As

(X1 − a1, X2 − a2, . . . , Xn − an) ⊆ ker(ev(a1,...,an)) it follows that the two are equal (as ev(a1,...,an) is

not the zero-map – look at constants).

We now determine the maximal ideals of the coordinate ring of any affine algebraic set over an algebraic-

ally closed field.

Corollary 2.5. Let K be an algebraically closed field and a✁K[X1, . . . , Xn] a proper ideal.

(a) The maximal ideals m✁K[X1, . . . , Xn] are precisely (X1−a1, . . . , Xn−an) for (a1, . . . , an) ∈ Kn.

(b) The maximal ideals m ✁K[X1, . . . , Xn] which contain a are precisely (X1 − a1, . . . , Xn − an) for

(a1, . . . , an) ∈ Va(K).

(c) The maximal ideals ofK[X1, . . . , Xn]/a are (X1−a1+a, . . . , Xn−an+a) for (a1, . . . , an) ∈ Va(K).

Definition 2.6. A ring R is called local if it has a single maximal ideal.

Example 2.7. (a) Every field K is a local ring, its unique maximal ideal being the zero ideal.

(b) Let p be a prime number. The ring Z/(pn) is a local ring with unique maximal ideal generated by p.

Reason: (p) is a maximal ideal, the quotient being Fp, a field. If a ( Z/(pn) is a proper ideal and

x ∈ a, then x = py+(pn), as otherwise x would be a unit. This shows that x ∈ (p), whence a ⊆ (p).

(c) {a
b ∈ Q | a, b ∈ Z, gcd(a, b) = 1, 2 ∤ b} is a local ring (see Example 2.12, where one also finds a

geometric example).
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Example 2.8. Let X ⊆ An(F ) be an algebraic variety and F (X ) = Frac(F [X ]) be its function field.

Recall that its elements are fractions of functions given by polynomials, and since the denominator may

vanish at some points, a rational function is not everywhere defined, in general.

Let P ∈ X be a point. Consider the subring

F [X ]P = {f ∈ F (X ) | f is defined at P} ⊂ F (X ).

It is a local ring. Its maximal ideal is

{f ∈ F (X ) | f is defined at P and f(P ) = 0} ⊂ F (X ).

We will encounter this ring later again as the localisation of the coordinate ring F [X ] at P , from which

we already borrowed the piece of notation.

We will now introduce/recall the process of localisation of rings and modules, which makes modules/rings

local.

Proposition 2.9. Let R be a ring, T ⊂ R a multiplicatively closed subset (i.e. for t1, t2 ∈ T we have

t1t2 ∈ T ) containing 1.

(a) An equivalence relation on T ×R is defined by

(t1, r1) ∼ (t2, r2) ⇔ ∃s ∈ T : s(r1t2 − r2t1) = 0.

The equivalence class of (t1, r1) is denoted by r1
t1

.

(b) The set of equivalence classes T−1R is a ring with respect to

+ : T−1R× T−1R→ T−1R,
r1
t1

+
r2
t2

=
r1t2 + r2t1

t1t2

and

· : T−1R× T−1R→ T−1R,
r1
t1

· r2
t2

=
r1r2
t1t2

.

Neutral elements are 0 := 0
1 and 1 := 1

1 .

(c) The map µ : R→ T−1R, r 7→ r
1 , is a ring homomorphism with kernel {r ∈ R | ∃t ∈ T : rt = 0}. In

particular, if R is an integral domain, then this ring homomorphism is injective.

Proof. Easy checking.

Note that for an integral domain R, the equivalence relation takes the easier form

(t1, r1) ∼ (t2, r2) ⇔ r1t2 − r2t1 = 0,

provided 0 6∈ T (if 0 ∈ T , then T−1R is always the zero ring, as any element is equivalent to 0
1 ).

If R is an integral domain and 1 ∈ T ′ ⊂ T is a multiplicatively closed subset, then T ′−1R is the subring

of T−1R the elements of which can be written as fractions r
t′ with denominator t′ ∈ T ′.

Example 2.10. Let R be an integral domain. Then T = R \ {0} is a multiplicatively closed subset. Then

Frac(R) := T−1R is the field of fractions of R.

Subexamples:

(a) For R = Z, we have FracZ = Q.
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(b) Let K be a field and R := K[X1, . . . , Xn]. Then FracK[X1, . . . , Xn] =: K(X1, . . . , Xn) is the

field of rational functions over K (in n variables). To be explicit, the elements of K(X1, . . . , Xn) are

equivalence classes written as
f(X1,...,Xn)
g(X1,...,Xn)

with f, g ∈ K[X1, . . . , Xn], g(X1, . . . , Xn) not the zero-

polynomial. The equivalence relation is, of course, the one from the definition; as K[X1, . . . , Xn]

is a UFD, we may represent the class
f(X1,...,Xn)
g(X1,...,Xn)

as a ‘lowest fraction’, by dividing numerator and

denominator by their greatest common divisor.

Definition 2.11. Let R be a ring and p✁ R be a prime ideal. Then T := R \ p is multiplicatively closed

and 1 ∈ T and 0 6∈ T .

Then Rp := T−1R is called the localisation of R at p.

Example 2.12. (a) Let R be an integral domain. Then (0) is a prime ideal and Frac(R) = R(0) (hence

the examples above can also be seen as localisations).

In that case, we also have T = R \ p ⊆ R \ {0} and so the localisation Rp at any prime ideal p is the

subring of R(0) = Frac(R) consisting of fractions r
t that can be written with denominator t ∈ T , i.e.

t 6∈ p.

(b) Let R = Z and p a prime number, so that (p) is a prime ideal. Then the localisation of Z at (p) is

Z(p) and its elements are { r
t ∈ Q | p ∤ t, gcd(r, t) = 1}. Here we used that Z is an integral domain

and so Z(p) ⊂ Frac(Z) = Q.

(c) Let K be a field and consider An(K). Let a = (a1, . . . , an) ∈ An(K).

Let p be the kernel of the ring homomorphism

K[X1, . . . , Xn] → K, f 7→ f(a1, . . . , an).

Explicitly, p = {f ∈ K[X1, . . . , Xn] | f(a) = 0}. As this homomorphism is clearly surjective (take

constant polynomials as preimages), we have that K[X1, . . . , Xn]/p is isomorphic to K, showing

that p is a maximal (and, hence, a prime) ideal.

The localisation K[X1, . . . , Xn]p is the subring of K(X1, . . . , Xn) consisting of elements that can be

written as
f(X1,...,Xn)
g(X1,...,Xn)

with g(a1, . . . , an) 6= 0.

This is the same as the set of rational functions K(X1, . . . , Xn) that are defined in a Zariski-open

neighbourhood of a. Namely, let
f
g ∈ K[X1, . . . , Xn]p so that g(a) 6= 0. Then the function x 7→ f(x)

g(x)

is well-defined (i.e. we do not divide by 0) on the Zariski-open set An(K)\V(g)(K), which contains a.

On the other hand, if for
f
g ∈ K(X1, . . . , Xn) the function x 7→ f(x)

g(x) is well-defined in some Zariski-

open neighbourhood of a, then, in particular, it is well-defined at a, implying
f
g ∈ K[X1, . . . , Xn]p.

In conclusion,K[X1, . . . , Xn]p is the ring of rational functions that are well-defined in a Zariski-open

neighbourhood of a.

Corollary 2.13. Let R be a ring and p✁R be a prime ideal. Then the localisation Rp of R at p is a local

ring (in fact, its maximal ideal is T−1p, in the notation of Proposition 2.14).

Proposition 2.14. Let R be a ring, T ⊂ R a multiplicatively closed subset containing 1. Let M be an

R-module.

(a) An equivalence relation on T ×M is defined by

(t1,m1) ∼ (t2,m2) ⇔ ∃s ∈ T : s(t1m2 − t2m1) = 0.
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(b) The set of equivalence classes T−1M is an T−1R-module with respect to

+ : T−1M × T−1M → T−1M,
m1

t1
+
m2

t2
=
t2m1 + t1m2

t1t2

and scalar-multiplication

· : T−1R× T−1M → T−1M,
r

t1
· m
t2

=
rm

t1t2
.

The neutral element is 0 := 0
1 .

(c) The map µ : M → T−1M , m 7→ m
1 , is an R-homomorphism with kernel {m ∈ M | ∃t ∈ t : tm =

0}.

Remark 2.15. A concept related to localisation is completion. For example, completing Q with respect to

the ‘usual’ absolute value, one obtains the real numbers R. Completing with respect to the p-adic absolute

value for a prime number p, one obtains the p-adic numbers. Completing a ring of functions at a point,

one gets a power series ring, allowing one to consider the Taylor expansion, for example. We won’t have

the time to look into this at all during these lectures.

2.2 Singular and non-singular points on a curve

Let f(X,Y ) ∈ K[X,Y ] and a, b ∈ K such that f(a, b) = 0. Recall the Taylor expansion of f :

∂f

∂X
|(a,b)(X − a) +

∂f

∂Y
|(a,b)(Y − b) + terms of higher degree in (X − a) and (Y − b).

Definition 2.16. Let K be a field, f ∈ K[X,Y ] a non-constant irreducible polynomial and C = V(f)(K)

the associated plane curve.

Let (a, b) ∈ C be a point. The tangent equation to C at (a, b) is defined as

TC,(a,b)(X,Y ) =
∂f

∂X
|(a,b)(X − a) +

∂f

∂Y
|(a,b)(Y − b) ∈ K[X,Y ].

If TC,(a,b)(X,Y ) is the zero polynomial, then we call (a, b) a singular point of C.

If (a, b) is non-singular (also called: smooth), then VTC,(a,b)
(K) is a line (instead of A2(K)), called the

tangent line to C at (a, b).

A curve all of whose points are non-singular is called non-singular (or smooth).

Example 2.17. (a) Let f(X,Y ) = Y 2 −X3 ∈ K[X,Y ] with K a field (say, of characteristic 0).

We have
∂f
∂X = −3X2 and

∂f
∂X = 2Y . Hence, (0, 0) is a singularity and it is the only one. (Draw a

sketch.)

This kind of singularity is called a cusp (Spitze/pointe) for obvious reasons. The tangents to the two

branches coincide at the cusp.

(b) Let f(X,Y ) = Y 2 −X3 −X2 ∈ K[X,Y ] with K a field (say, of characteristic 0).

We have
∂f
∂X = −3X2 − 2X and

∂f
∂X = 2Y . Hence, (0, 0) is a singularity and it is the only one.

(Draw a sketch.)

This kind of singularity is called an ordinary double point. The tangents to the two branches are

distinct at the ordinary double point.
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We now prove the following theorem, which relates a geometric property (a point on a curve is nonsingu-

lar) and an algebraic property (the localisation of the coordinate ring is regular).

Theorem 2.18. Let K be an algebraically closed field, f ∈ K[X,Y ] a non-constant irreducible polyno-

mial, C = V(f)(K) the associated plane curve andK[C] = K[X,Y ]/(f(X,Y )) the coordinate ring. Let

(a, b) ∈ C be a point and m = (X − a+ (f), Y − b+ (f))✁K[C] be the corresponding maximal ideal

(see Lemma 2.4).

Then the following two statements are equivalent:

(i) The point (a, b) is non-singular.

(ii) K[C]m is a local ring such that its maximal ideal is principal.

Proof. After a linear variable transformation we may assume (a, b) = (0, 0). Then

f(X,Y ) = αX + βY + higher terms.

It is a fact (that is not hard to prove using the so-called Nakayama Lemma) that the maximal ideal mK[C]m
of the localised ring K[C]m is principal if and only if the K = K[C]/m-vector space m/m2 is of dimen-

sion 1. Note that m2 is generated by X2 + (f), Y 2 + (f), XY + (f), so that the K-vector space m/m2 is

generated by X+(f) and Y +(f). Hence, the minimal number of generators is at most 2, but could be 1.

‘(i) ⇒ (ii)’: We assume that (0, 0) is not a singular point. Then α 6= 0 or β 6= 0. After possibly exchanging

X and Y we may, without loss of generality, assume α 6= 0. It follows:

X + (f) =
1

α

(
− βY − higher terms + (f)

)
≡ −β

α
Y + (f) (mod m2).

So, Y + (f) generates m/m2 as K-vector space, whence the dimension of this space is 1.

‘(ii) ⇒ (i)’: We now assume that (0, 0) is a singular point. Then α = β = 0. So, X + (f) and Y + (f)

are K-linearly independent in m/m2, whence the K-dimension of m/m2 is bigger than 1.

2.3 Local properties, smooth curves and Dedekind rings

Definition 2.19. As for rings, if p ⊂ R is a prime (or maximal) ideal and M an R-module, then we write

Mp for T−1M with T = R \ p, and call it the localisation of M at p.

A property P that a module M may or may not have is called a local property if

M has property P ⇔ ∀ p ⊂ R prime: Mp has property P.

Lemma 2.20. LetR be a ring andM anR-module. Then being the zero module is a local property. More

precisely, the following statements are equivalent:

(i) M is the zero module.

(ii) For all prime ideals p✁R, the localisation Mp is the zero module.

(iii) For all maximal ideals m✁R, the localisation Mm is the zero module.

Proposition 2.21. LetR be a ring and ϕ :M → N anR-homomorphism. For a prime ideal p✁R, denote

by ϕp :Mp → Np the localisation at p. Then being injective/surjective/bijective is a local property. More

precisely, the following statements are equivalent:

(i) ϕ is injective (surjective).
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(ii) For all prime ideals p✁R, the localisation ϕp is injective (surjective).

(iii) For all maximal ideals m✁R, the localisation ϕm is injective (surjective).

Proposition 2.22. Let R be an integral domain. Then being integrally closed is a local property. More

precisely, the following statements are equivalent:

(i) R is integrally closed.

(ii) Rp is integrally closed for all prime ideals p✁R.

(iii) Rm is integrally closed for all maximal ideals m✁R.

Recall that by definition, a curve is non-singular (smooth) if it is non-singular at all its points. So, already

‘in spirit’ smoothness is a local property. But we can make even phrase this in terms as above.

Proposition 2.23. Let K be an algebraically closed field and C = Vf (K) be an affine plane curve. Then

the following statements are equivalent:

(i) C is smooth.

(ii) For all maximal ideals m in the coordinate ring K[C], the maximal ideal of the localisation K[C]m
is principal.

Proof. This is a combination of Theorem 2.18 with the description of the maximal ideals of K[C] from

Corollary 2.5.

Definition 2.24. A ring R is said to be of Krull dimension 1 if there is a maximal ideal m which strictly

contains another prime ideal p ( m, but there are no three prime ideals p0 ( p1 ( p2.

Example 2.25. (a) The Krull dimension of Z and of any other principal ideal domain (such as K[X]

with a field K) is 1 because the prime ideals are exactly the zero ideal and all maximal ideals, so that

every maximal ideal strictly contains exactly one other prime ideal, namely the zero ideal.

(b) The main property is the following. If R ⊆ S is an integral ring extension and R is of Krull dimen-

sion 1, then so is S.

(c) The main property implies that the ring of integers ZF of a number field F and all orders in it are of

Krull dimension 1.

(d) An important lemma in the theory of plane curves states that the coordinate ring of a plane curve is an

integral extension of a polynomial ring in one variable. Hence, the coordinate ring of a plane curve

is of Krull dimension 1.

Proposition 2.26. Let R be a local Noetherian ring with maximal ideal m of Krull dimension 1. Then the

following statements are equivalent:

(i) R is an integrally closed integral domain.

(ii) R is regular, i.e. m is a principal ideal (equivalently, m/m2 can be generated by one element as

R/m-vector space).

(iii) R is a principal ideal domain.

A ring satisfying these conditions is also called regular.
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In this case, one has the following very simple description.

Proposition 2.27. Let R be a regular local ring as in the previous proposition.

(a) There is x ∈ R such that all non-zero ideals are of the form (xn) for some n ∈ N.

(b) Every non-zero r ∈ R can be uniquely written as uxn with u ∈ R× and n ∈ N.

Definition 2.28. A Noetherian integrally closed integral domain of Krull dimension 1 is called a Dedekind

ring.

We can now conclude from our previous work the following local characterisation of Dedekind rings.

Proposition 2.29. Let R be a Noetherian integral domain of Krull dimension 1. Then the following

assertions are equivalent:

(i) R is a Dedekind ring.

(ii) R is integrally closed.

(iii) Rm is integrally closed for all maximal ideals m✁R.

(iv) Rm is regular, i.e. mR is a principal ideal, for all maximal ideals m✁R.

(v) Rm is a principal ideal domain for all maximal ideals m✁R.

We now state and prove our main theorem about coordinate rings of plane curves. It again relates a

geometric statement (smoothness of a curve) and an algebraic statement (coordinate ring is Dedekind).

Theorem 2.30. Let K be an algebraically closed field, f ∈ K[X,Y ] a non-constant irreducible polyno-

mial, C = V(f)(K) the associated plane curve and K[C] = K[X,Y ]/(f(X,Y )) the coordinate ring.

Then the following two statements are equivalent:

(i) The curve C is smooth.

(ii) K[C] is a Dedekind ring.

Proof of Theorem 2.30. This is just a combination of Proposition 2.23 and Proposition 2.29.

Example 2.31. Let K be a field. Let g(X) ∈ K[X] be a polynomial and consider the affine plane curve

E defined by f(X,Y ) = Y 2 − f(X) ∈ K[X,Y ]. We compute the singular points of this curve.

Let (x0, y0) be a point on that curve. Then the tangent line to E at (x0, y0) is given by the equation

TE,(x0,y0)(X,Y ) =
∂f

∂X
|(x0,y0)(X − x0) +

∂f

∂Y
|(x0,y0)(Y − y0) = g′(x0)(X − x0) + 2y0(Y − y0).

It is the zero equation if and only if y0 = 0 and g′(x0) = 0. Note that y0 = 0 implies g(x0) = 0.

We conclude: the point (x0, y0) is a singular point if and only if y0 = 0 and (X − x0)
2 divides g(X).

This means: E is smooth if and only if the polynomial g(X) does not have any multiple root. By properties

of the discriminant of g(X), this is the case if and only if the discriminant of g(X) is non-zero.

Recall that the discriminant of g(X) = X3 + aX + b ∈ K[X] equals −4a3 − 27b2. This explains the

condition one finds in the definition of elliptic curves.
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2.4 Ideals in Dedekind rings

Definition 2.32. Let R be an integral domain and K = Frac(R).

(a) An R-submodule I ≤ K is called a fractional ideal of R (or: fractional R-ideal) if

• I 6= (0) and

• there is x ∈ K× such that xI ⊆ R.

Note that x can always be chosen in R \ {0}. Note also that xI is an ideal of R (in the usual sense).

(b) A fractional R-ideal I is called an integral ideal if I ⊆ R.

Note that for a subset (0) 6= I ⊂ K, one trivially has:

I E R is an ideal of R in the usual sense ⇔ I is an integral fractional R-ideal.

(c) A fractional R-ideal I is called principal if there is x ∈ K× such that I = Rx.

(d) Let I, J be fractional R-ideals. The ideal quotient of I by J is defined as

I : J = (I : J) = {x ∈ K | xJ ⊆ I}.

(e) The inverse ideal of the fractional R-ideal I is defined as

I−1 := (R : I) = {x ∈ K | xI ⊆ R}.

(f) The multiplier ring of the fractional R-ideal I is defined as

r(I) := (I : I) = {x ∈ K | xI ⊆ I}.

Example 2.33. The fractional ideals of Z are all of the form I = a
bZ with a, b ∈ Z \ {0}. Hence, all

fractional Z-ideals are principal.

It is clear that a
bZ is a fractional ideal. Conversely, let I be a fractional ideal such that bI is an ideal of Z,

whence bI = (a) = aZ, so that I = a
bZ.

Let I = a
bZ and J = c

dZ, then

(I : J) = {x ∈ Q | x c
d
Z ⊆ a

b
Z} = {x ∈ Q | x ∈ ad

bc
Z} =

ad

bc
Z.

In particular, I−1 = b
aZ and II−1 = Z (because, clearly ⊆ and 1 ∈ II−1).

The next three lemmas are simple exercises.

Lemma 2.34. Let R be an integral domain and K = Frac(R). Let I, J ⊂ K be fractional R-ideals.

Then the following sets are fractional R-ideals: I+J = {x+y | x ∈ I, y ∈ J}, IJ = {∑n
i=1 xiyj | n ∈

N, x1, . . . , xn ∈ I, y1, . . . , yn ∈ J}, In = I · I · . . . · I
︸ ︷︷ ︸

n times

, I ∩ J , (I : J).

Lemma 2.35. Let R be an integral domain and H, I, J ⊂ K fractional R-ideals. Then the following

properties hold:

(a) IJ ⊆ I ∩ J (assume here that I and J are integral ideals),

(b) H + (I + J) = (H + I) + J = H + I + J ,
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(c) H(IJ) = (HI)J ,

(d) H(I + J) = HI +HJ .

Lemma 2.36. Let R be an integral domain and I, J E R be ideals (in the usual sense). If I + J = R,

then we call I and J coprime ideals.

Suppose now that I and J are coprime. Then the following statements hold:

(a) In and Jm are coprime for all n,m ∈ N.

(b) I ∩ J = IJ .

(c) R/(IJ) ∼= R/I ×R/J (Chinese Remainder Theorem).

(d) If IJ = Hn for some n ∈ N, then I = (I +H)n, J = (J +H)n and (I +H)(J +H) = H .

In words: If an ideal is an n-th power, then so is each of its coprime factors.

Proposition 2.37. Let R be a Noetherian integral domain, K = Frac(R) and (0) 6= I ⊂ K a subset.

Then the following two statements are equivalent:

(i) I is a fractional R-ideal.

(ii) I is a finitely generated R-submodule of K (this is the definition in Neukirch’s book).

Proof. ‘(i)⇒(ii)’: By definition, there is r ∈ R \ {0} such that rI ⊆ R, hence, rI is an ideal of R in the

usual sense. As R is Noetherian, rI is finitely generated, say by a1, . . . , an. Then I is finitely generated

as R-submodule of K by a1
r , . . . ,

an
r .

‘(ii)⇒(i)’: Suppose I is generated as R-submodule of K by a1
r1
, . . . , anrn . Then r = r1 · . . . · rn is such that

rI ⊆ R.

This proposition also shows us how we must think about fractional R-ideals, namely, just as R-linear

combinations of a given set of fractions a1
r1
, . . . , anrn (where we may choose a common denominator).

Definition 2.38. Let R be an integral domain and K = Frac(R). A fractional R-ideal I is called an

invertible R-ideal if there is a fractional R-ideal J such that IJ = R.

Note that the term ‘invertible R-ideal’ applies only to fractional R-ideals (which may, of course, be integ-

ral).

Lemma 2.39. Let R be an integral domain, K = Frac(R) and I a fractional R-ideal. Then the following

statements hold:

(a) II−1 ⊆ R.

(b) I is invertible ⇔ II−1 = R.

(c) Let J be an invertible R-ideal. Then (I : J) = IJ−1.

(d) If 0 6= i ∈ I such that i−1 ∈ I−1, then I = (i).

Corollary 2.40. Let R be an integral domain. The set I(R) of invertible fractional R-ideals forms an

abelian group with respect to multiplication of ideals, with R being the neutral element, and the inverse

of I ∈ I(R) being I−1.

The set P(R) := {xR | x ∈ K×} of principal fractional R-ideals forms a subgroup of I(R).
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Proof. This just summarises what we have seen. That P(R) is a subgroup is clear.

Definition 2.41. Let R be an integral domain. One calls I(R) the group of invertible R-ideals and P(R)

the subgroup of principal invertible R-ideals.

The quotient group Pic(R) := I(R)/P(R) is called the Picard group of R.

If K is a number field and ZK its ring of integers, one also writes CL(K) := Pic(ZK), and calls it the

ideal class group of K.

Corollary 2.42. Let R be an integral domain and K = Frac(R). Then we have the exact sequence of

abelian groups

1 → R× → K× f−→ I(R) proj−−→ Pic(R) → 1,

where f(x) is the principal fractional R-ideal xR.

Proof. The exactness is trivially checked. Note, in particular, that xR = R (the neutral element in the

group) if and only if x ∈ R×.

Corollary 2.43. Let R be a principal ideal domain. Then Pic(R) = {R} (the group with one element).

Proof. This is the case by definition: that every ideal is principal implies that every fractional ideal is

principal, i.e. I(R) = P(R), whence their quotient is the group with one element.

Example 2.44. The groups CL(Q) = Pic(Z) and Pic(K[X]) (for K a field) are trivial.

The next statement says that being an invertible ideal is a local property.

Theorem 2.45. Let R be a Noetherian integral domain and I a fractional R-ideal. Then the following

statements are equivalent:

(i) I is invertible.

(ii) Im is a principal fractional Rm-ideal for all maximal ideals m✁R.

Corollary 2.46. Let R be a Dedekind ring. Then any fractional R-ideal is invertible.

Proof. By Proposition 2.29 we know that Rm is a principal ideal domain for all maximal ideals m ✁ R.

Hence, given any fractional R-ideal I , we have that Im is principal for all m, which by Theorem 2.45

implies that I is invertible.

Remark 2.47. Corollary 2.46 applies in particular to rings of integers ZF of number fields F , as well as

to coordinate rings of smooth curves.

However, it fails for orders O ( ZF (for example, in general, it fails for equation orders). It also fails for

coordinate rings of curves that have singular points.

The meaning of the next theorem is that any non-zero invertible ideal I ✁R is uniquely determined by all

its localisations Ip (at the non-zero prime ideals of R).

Theorem 2.48. Let R be a Noetherian integral domain of Krull dimension 1. Then the map

Φ : I(R) →
⊕

06=p✁R prime ideal

P(Rp), I 7→ (. . . , Ip, . . .),

is an isomorphism of abelian groups.
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Lemma 2.49. Let R be a regular local ring of Krull dimension 1 and let p be its maximal ideal. Recall

from Proposition 2.27 that then there is x ∈ R such that all fractional ideals of R are of the form (x)n =

pn for some n ∈ Z. Moreover, the map

Z → I(R), n 7→ pn

is an isomorphism of abelian groups.

Definition 2.50. Let R be a Dedekind ring and I be an invertible R-ideal. For a maximal ideal p✁R, by

Lemma 2.49, there is a unique integer n ≥ 0 such that Ip = (pRp)
n. We write ordp(I) := n.

Now we can prove unique ideal factorisation.

Theorem 2.51. Let R be a Dedekind ring. The map

Φ : I(R) →
⊕

06=p✁R prime ideal

Z, I 7→ (. . . , ordp(I), . . .)

is an isomorphism of abelian groups. Every I ∈ I(R) can be uniquely written as

I =
∏

06=p✁R prime ideal

pordp(I)

(note that the product is finite).

Remark 2.52. Theorem 2.51 is a generalisation of unique factorisation in a principal ideal domain.

3 Geometry of numbers

This part was partly written by Sara Arias-de-Reyna.

3.1 Introduction

Recall (cf. Corollary 2.42) that, for any integral domain S, we have the following exact sequence

1 // S×
// F× f

// I(S) proj
// Pic(S) // 1

where:

• F is the field of fractions of S.

• I(S) is the group of invertible ideals of S.

• Pic(S) is the Picard group of S, that is to say, the quotient of I(S) modulo the group P(S) of

principal fractionals ideals of S.

• f : F× → I(S) maps an element x ∈ F to the principal fractional ideal xS.

• proj : I(S) → I(S)/P(S) = Pic(S) is the projection.

We want to study this exact sequence in the particular case where S = ZF is the ring of integers of a

number field F . Since ZF is a Dedekind domain, all fractional ideals are invertible (see Corollary 2.46).
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Hence I(ZF ) is the set of all fractional ideals. Recall also that we denote Pic(ZF ) = CL(F ) and call it

the class group of F . The exact sequence boils down to:

1 // Z×
F

// F× f
// I(ZF )

proj
// CL(F ) // 1 (3.1)

The group CL(F ) measures the failure of ZF to be a principal ideal domain. More precisely, if CL(F ) has

just one element, then the map f : F× → I(S) is surjective, so that each fractional ideal can be expressed

as xS for some x ∈ F×. In other words, every fractional ideal is principal. On the other hand, the greater

CL(F ) is, the further is f from being surjective, meaning there will be “many” fractional ideals which are

not principal.

One of the fundamental results that we will prove is that CL(F ) is finite (hence, although ZF is not a

principal ideal domain, it is also “not too far” from it). Another important result will be that Z×
F is finitely

generated.

The tool that we will use to study the exact sequence (3.1) is called Geometry of Numbers. This consists

of viewing rings of integers as special subsets of Sn (namely lattices), and using some analytic tools

(computing volumes) to obtain results concerning ZF .

3.2 Lattices

Definition 3.1. A lattice in Rn is a Z-module generated by n linearly independent vectors. A basis of a

lattice H ⊂ Rn is a basis of H as a Z-module.

Note that a basis of a lattice H consists of n linearly independent vectors of Rn, so in particular is a basis

of Rn as R-vector space.

Definition 3.2. A half-open parallelotope (resp. closed parallelotope) is a subset of Rn of the form

P := {v ∈ Rn : v =
m∑

i=1

aivi with 0 ≤ ai < 1 for all i},
(

resp. P := {v ∈ Rn : v =
m∑

i=1

aivi with 0 ≤ ai ≤ 1 for all i}
)

where v1, . . . , vm ∈ Rn are linearly independent. We say that P is the half-open parallelotope determined

by v1, . . . , vm (resp. closed parallelotope determined by v1, . . . , vm)

Let H ⊂ Rn be a lattice, and U = {u1, . . . , un} a basis of H . We will say that the (half-open) parallelo-

tope P determined by U is a fundamental domain for H .

We will denote by µ the Lebesgue measure on Rn. We will not recall here its definition, but just one

very important property: it is invariant under translation; that is, for all measurable sets A and all vectors

v ∈ Rn, the set A+ v := {w + v : w ∈ A} is measurable and we have

µ(A) = µ(A+ v).

Moreover the measure is normalized so that the measure of the standard cube {∑n
i=1 λiei : 0 ≤ λi ≤ 1}

is equal to 1.

Remark 3.3. (a) Fundamental domains of a lattice are not unique.

(b) Let P be the parallelotope defined by n linearly independent vectors v1, . . . , vn ∈ Rn, where each

vi =
∑n

j=1 aijej . Then µ(P ) = | det((aij)1≤i,j≤n)|.
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(c) Let H ⊂ Rn be a lattice, P , P ′ fundamental domains for H . Then µ(P ) = µ(P ′).

Definition 3.4. Let H ⊂ Rn be a lattice. We define the volume of H as

v(H) := µ(P ),

for some fundamental domain P of H .

Definition 3.5. A subgroup H ⊂ Rn is called discrete if, for any compact subset K ⊂ Rn, H ∩K is a

finite set.

Remark 3.6. Let H ⊂ Rn be a discrete subgroup of Rn. The H is a lattice if and only if H is generated

by n linearly independent vectors.

Now we will state the fundamental result of this section. The idea is the following: given a lattice H , if

a measurable set S ⊂ Rn is big enough (with respecto to µ), no matter what it looks like, it must contain

two elements which are “equivalent modulo H”, that is to say, two different elements v1, v2 ∈ S with

v1 − v2 ∈ H .

Theorem 3.7 (Minkowski). LetH ⊂ Rn be a lattice and S ⊂ Rn be a measurable subset of Rn satisfying

µ(S) > v(H). Then there exist v1, v2 ∈ S different elements with v1 − v2 ∈ H .

We will use a particular case of this theorem, when S has some special properties.

Definition 3.8. Let S ⊂ Rn.

• S is centrally symmetric if, for all v ∈ S, −v ∈ S.

• S is convex if, for all v1, v2 ∈ S, for all λ ∈ [0, 1], λv1 + (1− λ)v2 ∈ S.

Corollary 3.9. Let H ⊂ Rn be a lattice and S ⊂ Rn be a centrally symmetric, convex, measurable set

such that µ(S) > 2nv(H). Then S ∩ (H \ {0}) 6= ∅.

3.3 Number rings as lattices and finiteness of the class group

In this section we want to study number fields of degree n by embedding them into Rn, in such a way that

the ring of integers corresponds to a lattice.

Let F ⊂ Q ⊂ C be a number field of degree [F : Q] = n, where Q = {z ∈ C | z is algebraic over Q}
is the algebraic closure of Q in C. Let us enumerate the n field homomorphisms in Homfield

Q (F,C) in the

following way:

• Let σ1, . . . , σr1 be all field homomorphisms F → C with image contained in R.

• Let us enumerate the r2 pairs {σ, α ◦ σ} and, for each pair, choose one of the two homomorphisms.

The chosen homomorphism of the i-th pair (1 ≤ i ≤ r2) will be σr1+i, the other one will be

σr1+r2+i.

Note that n = [F : Q] = r1 + 2r2.

Now we can define a ring homomorphism

Φ1 : F → Rr1 × Cr2

x 7→ (σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x))
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Definition 3.10. Define the injective group homomorphism

Φ : F → Rr1 × R2r2

x 7→ (σ1(x), . . . , σr1(x),Re(σr1+1(x)), Im(σr1+1(x)) . . . ,Re(σr1+r2(x)), Im(σr1+r2(x))).

Proposition 3.11. Let M ⊂ F be a free Z-module of rank n, say with basis {x1, . . . , xn}. Then

(a) Φ(M) is a lattice in Rn.

(b) Let D = (σi(xj))1≤i,j≤n. Then v(Φ(M)) = 2−r2 | detD| = 2−r2
√

| disc(x1, . . . , xn)|.

Definition 3.12. (a) Let a ⊂ ZF be a nonzero integral ideal. We define the norm of a asN(a) = [ZF : a].

(b) Let I ⊂ F be a fractional ideal. We define the norm of I as N(I) = N(xI)/|NF/Q(x)|, where

x ∈ ZF is some element different from zero such that xI is an integral ideal.

Corollary 3.13. Let F/Q be a number field of degre n = r1 + 2r2 and a an integral ideal of ZF . Then

we have that Φ(ZF ), Φ(a) are lattices of Rn and

v(Φ(ZF )) = 2−r2
√

|disc(ZF )|, v(Φ(a)) = 2−r2
√

|disc(ZF )|N(a).

Proof. We know that both ZF and a are free Z-module of rank n. The formula for the volume of Φ(ZF )

follows directly from the definition of disc(ZF ); the formula for the volume of Φ(a) follows from Pro-

position 1.58.

Proposition 3.14. Let a ⊂ ZF be a nonzero integral ideal. There exists a ∈ a different from zero such

that

|NF/Q(a)| ≤
(
2

π

)r2√
|disc(ZF )|N(a).

We do not give the proof, but state that the key ingredient in it are Corollaries 3.9 and 3.13.

Theorem 3.15 (Dirichlet). Let F be a number field. The class group CL(F ) = I(ZF )/P(ZF ) is finite.

Before proceeding to the proof, let us establish a technical lemma.

Lemma 3.16. Let C ∈ CL(F ) be a class of ideals. Then there exists a nonzero integral ideal a of ZF

which belongs to C and satisfies

N(a) ≤
(
2

π

)r2√
|disc(ZF )|.

Proof. Let I be a fractional ideal in C. Then I−1 = {a ∈ ZF : aI ⊂ ZF } is also a fractional ideal.

Therefore there exists a nonzero x ∈ F such that b = xI−1 is a nonzero integral ideal. We can apply

Proposition 3.14 to the ideal b; there exists b ∈ b nonzero such that

|NF/Q(b)| ≤
(
2

π

)r2√
|disc(ZF )|N(b) =

(
2

π

)r2√
|disc(ZF )||NF/Q(x)|N(I)−1.

The ideal a = b
xI belongs to the class C, is contained in ZF and furthermore

N(a) =
|NF/Q(b)|
|NF/Q(x)|

N(I) ≤
(
2

π

)r2√
|disc(ZF )|.
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Proof of Theorem 3.15. Since every class C ∈ CL(F ) contains a nonzero integral ideal of norm smaller

than
(
2
π

)r2
√

|disc(ZF )| (because of Lemma 3.16), it suffices to prove that, for anyM ∈ N, there are only

finitely many integral ideals of norm smaller than M . First of all, note that it suffices to see that there are

only finitely many prime integral ideals of norm smaller than M ; indeed if a =
∏r

i=1 p
ei
i is a factorisation

of a into a product of prime ideals, then N(a) =
∏r

i=1N(pi)
ei , so if N(a) is smaller than M , the only

prime ideals that can occur in the factorisation of a are those with norm smaller thanM , and the exponents

ei that can occur must also be smaller than M .

Assume now that p is a prime integral ideal of norm smaller than M , say m. Then 1 ∈ ZF /p satisfies that

m · 1 = 0 ∈ ZF /p, thus m ∈ p. But we know that that there are only a finite number of maximal ideals of

ZK containing a given ideal I . In particular, for I = (m), we get that there are only finitely many prime

ideals p of ZF of norm m.

Remark 3.17. (a) Let F be a number field. Then CL(F ) is generated by the classes of the prime ideals

p ∈ I(ZF ) such that N(p) ≤
(
2
π

)r2
√

|disc(ZF )|. This allows one to compute explicitly the class

group of a given number field, provided one knows how to compute the prime ideals of given norm.

(b) There are better bounds. For instance, one can show that CL(F ) is generated by the classes of the

prime ideals p ∈ I(ZF ) such that N(p) ≤
(
4
π

)r2 n!
nn

√

|disc(ZF )|.

3.4 Dirichlet’s Unit Theorem

The aim of this section is to prove the following result:

Theorem 3.18 (Dirichlet). Let F be a number field of degree n = r1 + 2r2 as above. Then there is a

group isomorphism

Ψ : Z×
F ≃ µF × Zr1+r2−1,

between the (multiplicative) group of units of ZF and the direct product of the finite (multiplicative) sub-

group µF of Z×
F , consisting of all roots of unity contained in F , and the (additive) group Zr1+r2−1.

Remark 3.19. More precisely, there exist ξ1, . . . , ξr1+r2−1 ∈ Z×
F such that every element u ∈ Z×

F can be

written in a unique way as

u = µ · ξn1
1 · · · · · ξnr1+r2−1

r1+r2−1

for some root of unity µ ∈ F and some tuple (n1, . . . , nr1+r2−1) ∈ Zr1+r2−1.

Such elements are called a fundamental system of units.

Definition 3.20. Let F be a number field of degree n = r1 + 2r2. We define the logarithmic embedding

as the group morphism

Φlog : F× → Rr1+r2

a 7→ (log |σ1(a)|, . . . , log |σr1+r2(a)|).

Proposition 3.21. The kernel of Φlog|Z×

F
is a finite group, consisting of the roots of unity contained in ZF .

One uses Corollary 3.9 to prove the following proposition, which is the final step in the proof of Dirichlet’s

Unit Theorem.

Proposition 3.22. We have that Φlog(Z
×
F ) is a discrete subgroup of rank equal to r1 + r2 − 1.
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4 Analytic aspects

A complete treatment of these topics (with the exception of the effective versions of Chebotarev below)

can be found in [Neu99, Ch. 7].

Proposition 4.1. (a) The Riemann zeta-function is defined as

ζ(s) =
∞∑

n=1

1

ns
for s ∈ C s.t. ℜ(s) > 1

and satisfies the Euler product

ζ(s) =
∏

p prime

1

1− p−s
.

It has a simple pole at s = 1.

(b) Let m ∈ Z≥1 and χ : (Z/mZ)× → C× be a Dirichlet character (i.e. a group homomorphism). The

Dirichlet L-function is defined as

L(χ, s) =
∞∑

n=1

χ(n)

ns
for s ∈ C s.t. ℜ(s) > 1

and satisfies the Euler product

ζ(s) =
∏

p prime

1

1− χ(p)p−s
.

(c) Let F be a number field. The Dedekind zeta-function of F is defined as

ζF (s) =
∑

06=a⊆ZF ideal

1

Norm(a)s
for s ∈ C s.t. ℜ(s) > 1

and satisfies the Euler product

ζ(s) =
∏

p prime ideal ofZF

1

1−Norm(p)−s
.

It has a simple pole at s = 1.

Taking the logarithm of the Euler product and remembering that the series
∑

n≥1
1
nt converges for any

t > 1, one obtains the following corollary.

Corollary 4.2. (a) log ζ(s) =
∑

p prime
1
ps +g(s) = log( 1

s−1)+h(s) in a neighbourhood of s = 1, where

h(s), g(s) are holomorphic at s = 1.

(b) log ζF (s) =
∑

p prime ideal
1

Norm(p)s + g(s) = log( 1
s−1) + h(s) in a neighbourhood of s = 1, where

h(s), g(s) are holomorphic at s = 1.

From an essentially formal computation, one obtains the following proposition.

Proposition 4.3. Let m ∈ Z≥1 and F = Q(exp(2πi/m) be the m-th cyclotomic field. Its Galois group

is G = Gal(F/Q) = (Z/mZ)×. Let Ĝ = {χ : (Z/mZ)× → C×} be the group of Dirichlet characters

(i.e. the character group of G). Then

ζK(s) = H(s) ·
∏

χ∈Ĝ

L(χ, s)

where H(s) =
∏

p|m prime ideal
1

1−Norm(p)−s .
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A very important result is the following one.

Corollary 4.4. Let χ : (Z/mZ)× → C× be a non-trivial Dirichlet character. Then L(χ, 1) 6= 0.

Proof. Since L(χ, s) = ζ(s) ·∏p|m(1 − p−s) for the trivial character χ and since both ζ(s) and ζK(s)

both have a simple pole at s = 1, the corollary follows from Proposition 4.3.

Definition 4.5. Let F be a number field. Let S be a set of prime ideals of F .

(a) The Dirichlet density of S is defined as the limit

d(S) = lim
sց1

∑

p∈S prime ideal
1

Norm(p)s
∑

p prime ideal
1

Norm(p)s

if it exists.

(b) The natural density of S is defined as the limit

δ(S) = lim
x→∞

#{p ∈ S prime ideal | Norm(p) ≤ x}
#{p prime ideal | Norm(p) ≤ x}

if it exists.

If a set S of prime ideals has a natural density, then it has a Dirichlet density and the two are the same.

The reverse direction is not always true.

As an illustration, we now prove Dirichlet’s prime number theorem.

Theorem 4.6 (Dirichlet). Let m ∈ Z≥1 and a ∈ (Z/mZ)×. Then the set of primes

{p prime | p ≡ a mod m}

has Dirichlet density 1
#(Z/mZ)×

.

Proof. Let χ be a Dirichlet character of (Z/mZ)×. Then by taking the logarithm of the Euler product of

L(χ, s), we obtain

logL(χ, s) =
∑

p prime

χ(p)

ps
+ g(s) =

∑

a∈(Z/mZ)×

χ(a)
∑

p≡a mod m

1

ps
+ g(s)

where g(s) is a function that is holomorphic at s = 1 (in it we collect all fractions that have at least a

square in the denominator). Let b ∈ (Z/mZ)×. We multiply this by χ(b−1) and sum over all Dirichlet

characters χ to obtain

log(ζ(s)) +
∑

16=χ∈Ĝ

χ(b−1) logL(χ, s)

=
∑

χ∈Ĝ

∑

a∈(Z/mZ)×

χ(b−1a)
∑

p≡a mod m

1

ps
+ h(s)

=#(Z/mZ)× ·
∑

p≡b mod m

1

ps
+ h(s)

where h(s) is holomorphic at s = 1. We used

∑

χ∈Ĝ

χ(b−1a) =

{

#(Z/mZ)× if a = b

0 otherwise.

The result is now immediate by Corollary 4.2.
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In order to formulate Chebotarev’s density theorem, we first have to clarify what we mean by a Frobenius

conjugacy class.

Lemma 4.7. Let F ⊆ L be a Galois extension of number fields. Any prime ideal p ⊂ ZF factors in L

pZL = Pe
1 · · ·Pe

r

for pairwise distinct prime ideals Pi ⊂ ZL and a positive exponent e.

One says that p is unramified inL if e = 1. In that case, for every Pi, there is an element ΦPi ∈ Gal(L/F )

such that on the residue field ZL/Pi it acts as x 7→ xq with q = Norm(p). It is called the Frobenius of

Pi. All these ΦPi are conjugate in Gal(L/F ) and they form the Frobenius conjugacy class Cp of p.

Theorem 4.8 (Chebotarev’s density theorem). Let F ⊆ L be a Galois extension of number fields with

Galois group G = Gal(L/F ). Let C ⊆ G be a subset that is stable under conjugation. Let P (C) be the

set of prime ideals p of F such that the Frobenius conjugacy class Cp lies in C.

Then P (C) has Dirichlet density equal to
#C
#G .

This is a generalisation of Dirichlet’s theorem (take F = Q and L = Q(exp(2πi/m))). The interesting

thing is that one reduces the proof of Chebotarev’s density theorem by rather elementary means to the

abelian case, which works essentially as above (however one needs it over a general number field F and

not just Q, so one needs some more generalisations).

If one assumes the Generalised Riemann Hypothesis (i.e. the Riemann Hypothesis for the Dedekind zeta-

function of the relevant number field), one obtains a stronger version of Chebotarev’s density theorem

with error bounds.

Define

Li(x) =

∫ x

2

dt

log t
.

It satisfies Li(x) ∼ x
log(x) for x→ ∞.

We also set

πC(x) = #{p prime ideal | Norm(p) ≤ x, Cp ⊆ C}.

Theorem 4.9 (Effective Chebotarev). ([Ser97, Th. 4, Rem.(1)])

Assume GRH. The for all x ≥ 2, we have

∣
∣
∣
∣
πC(x)−

#C

#G
Li(x)

∣
∣
∣
∣
≤ 2

#C

#G

√
x
(
log disc(F ) + [F : Q] log(x)

)
.

It is also possible to give an upper bound, under GRH, for the norm of the first prime ideal p such that the

corresponding Frobenius conjugacy class Cp lies in C.

Theorem 4.10. ([Ser97, Th. 5])

Suppose C 6= ∅. Then πC(x) ≥ 1 for all x ≥ max(2, 70(log disc(F ))2).

A concrete example of an application of Chebotarev’s density theorem is the following one.

Proposition 4.11. Let f(X) ∈ Z[X] be an irreducible polynomial and let ℓ be a prime such that ℓ does

not divide the discriminant of the equation order Z[X]/(f(X)) and such that f(X) ∈ Fℓ[X] factors as

a product f(X) =
∏r

i=1 fi(X) ∈ Fℓ[X] with pairwise distinct irreducible polynomials fi(X) ∈ Fℓ[X].

Let di = deg(fi(X)).

Then the set of primes p such that f(X) mod p ∈ Fp[X] factors into r factors of degrees d1, . . . , dr has

a positive Dirichlet density. Moreover, there is an explicit bound for the smallest such prime p.
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