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Preface

These are notes of a one-term course (12-14 lectures of 90 min each) taught at the University of

Luxembourg for students in the second semester of the Master Programme. The lecture builds on

the lecture Commutative Algebra from the first semester, the lecture notes of which are available on

http://maths.pratum.net.

The lecture provides an introduction to the most basic classical topics of (global) algebraic number

theory:

first cases of Fermat’s Last Theorem,

norms, traces and discriminants of field extensions,
rings of integers,

ideal arithemtic and ideal class groups,

Dedekind rings,

fundamentals of the geometry of numbers,
finiteness of the class number,

Dirichlet’s Unit Theorem.

In preparing these lectures we used several sources:

Neukirch: Algebraische Zahlentheorie, Springer-Verlag.
Washington: Introduction to Cyclotomic Fields, Springer-Verlag.
Samuel: Algebraic Theory of Numbers.

Bas Edixhoven: Théorie algébrique des nombres (2002), Lecture notes available on Edix-
hoven’s webpage.

Peter Stevenhagen: Number Rings, Lecture notes available on Stevenhagen’s webpage.
Lecture notes of B.H. Matzat: Algebra 1,2 (Universitit Heidelberg, 1997/1998).

Lecture notes of lectures on Algebraische Zahlentheorie taught at Universitit Duisburg-Essen
in Winter Term 2009/2010.
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1 Fermat’s Last Theorem

Nowadays, algebraic number theory has been very far developed and is even applied in real life ap-
plications due to its predominant use in cryptography and coding theory. A very important motivation
for the development of algebraic number theory was the challenge posed by Pierre de Fermat who
claimed (in the 17th century) that for all n > 3, there are no z, y, 2 € N+ such that

xn_i_yn :ZTL'

However, he did not write a proof, and nowadays we are certain that he did not possess any.

The aim of this motivational part is to prove the following special case (called the first case for regular
primes) of Fermat’s Last Theorem. We follow the presentation in Washington’s book Introduction to
Cyclotomic Fields.

Theorem 1.1. Let p be an odd prime.
Assume

(H) p does not divide the class number of Q((,) with ¢, = e*milp,

Then the equation
2P 4 P = 2P

does not admit any solution with x,y, z € 7 such that p { xyz.
Only in 1995 Fermat’s Last Theorem could be settled in all cases:

Theorem 1.2 (Wiles, Fermat’s Last Theorem). Let n > 3 be an integer.
Then the equation

l,n_’_ynzzn

does not admit any solution with x,y, z € 7 such that 0 # xyz.

Note that it suffices to prove Fermat’s Last Theorem with n = p a prime at least 3; so this is not
a restriction. There are two restrictions: p 1 xyz instead of 0 # zyz; this can be taken care of by
more advanced Algebraic Number Theory: the theory of cyclotomic fields. However, it seems that
Hypothesis (H) cannot be removed by Algebraic Number Theory only; Wiles had to develop totally
new techniques.

Let us explain the Hypothesis (H). This, however, takes some time. We have to recall definitions from
Commutative Algebra, and we have to introduce some new ones. Along the way we will state some
of the main theorems of this lecture (which will, of course, be proved in the weeks to come).

Definition 1.3. A number field is a finite field extension of Q.

The field Q((p) is a number field. It is generated by the element (. In fact ¢, is integral over Z, i.e.
it’s the zero of a monic polynomial with coefficients in Z, namely X?~! + XP=2 4+ ... 4 X + 1.
In order to see this, we multiply this polynomial by X — 1 and get X? — 1, which clearly admits ¢,
as zero. As (, # 1, we find indeed that ¢, is a zero of X?~! + XP~2 + ... + X + 1. In fact, this
polynomial is irreducible. Thus the field extension Q((,)/Q is of degree p — 1.
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Definition 1.4. Let K be a number field. The ring of integers of K is the integral closure of 7, in K,
ie.

Zk = {z € K | z is integral over Z}.
For abbreviation, let us now only write ¢ instead of .
Proposition 1.5. (a) The ring of integers of Q(() is Z[(].
(b) Any subset of p — 1 elements of 1,(, (%, ..., (P~ forms a Z-basis of the free Z-module Z|(].
(¢) The principal ideal (1 — C) of Z[(] is a prime ideal whose (p — 1)-st power equals (p).

The proof will be given later in this course.
For the sequel, we need an important fact about rings of integers, already announced in the lecture on
Commutative Algebra.

Theorem 1.6. The ring of integers Zx of any number field K is a Dedekind ring.
Moreover, L is free as a Z-module of rank [K : Q.

The first part of this theorem has already almost been proved in Commutative Algebra. The only
thing we are still lacking is that it is Noetherian. This will be established in the next section, where we
introduce linear algebra tools. For that purpose, we will introduce the discriminant of ring/field exten-
sions that generalises the discriminant of polynomials (recall that the discriminant of the polynomial
X2 4 aX + bis a® — 4b, telling us the number of roots).

Dedekind rings have actually been introduced because of their main feature: unique ideal factorisa-
tion. Before we explain what that means, we recall the notion of UFD: unique factorisation domain.
Those are integral domains such that any non-zero element can be written as a finite product of prime
elements. Examples are Z, K[X1, ..., X,] with K a field, any PID (principal ideal domain), hence
also any Euclidean ring. However, Z[(] is not a UFD for all p > 19.

We also know simpler examples of rings, even rings of integers of number fields, which are not UFDs.

Example 1.7. (a) Z[\/—5] is not a UFD because
6=2-3=(14+vV-5)(1—-v-5)

are two factorisations into non-associate irreducible elements (that’s an easy check). This is the

ring of integers of Q(v/=5).

(b) In fact, one knows:
The ring of integers of the imaginary quadratic field Q(v/—d) with squarefree d € N> is a UFD
ifandonly if d € {1,2,3,7,11,19,43,67,163}.
This is a celebrated and difficult theorem (proved, among others, by Heilbronn and Baker (fields
medal, 1970)), which was only proved at the end of the 1960s. The traditional statement of this
theorem is for PIDs, but we use that Dedekind rings which are UFDs are PIDs (the proof is not
so hard, but uses things we have not yet established).
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For a ring of integers it is thus exceptional if it is a UFD. Most are not so nice. This means:

In general number fields, one cannot make use of arguments involving unique factorisation!. It
was Eduard Kummer’s idea to consider factorisation of ideals instead of factorisation of numbers.
We will prove the following theorem in the lecture:

Theorem 1.8. Let K be a number field and Z i its ring of integers. Then every nonzero ideal I <\ Z
can be written in a unique (up to permutation) way as a product of prime ideals

I=9p1-p2-... pr

As in the lecture Commutative Algebra the proof will then follow from a local-global analysis, i.e.
we’ll study the ideal theory in the localisations of the ring of integers at all maximal ideals, and derive
the ‘global’ result from the local data.

Let us now for a moment dwell on the relation between unique factorisation of numbers and unique
factorisations of ideals. Start with Z. In Z we have unique factorisation of numbers, i.e. any n € Z
(say positive) can be written in a unique (up to permutation) way as

n=pir-p2:...Pr

with py, p2, ..., pr primes. Taking ideals (all principal, of course) on both sides gives

(n) = (p1) - (p2) -+ (pr)-

This is the unique ideal factorisation of (n) into prime ideals (recall that prime elements generate
prime ideals, so that indeed all (p;) are prime ideals).
Let’s now start from the other side. Suppose that we have a number field K with integer ring Z . Two

nonzero elements z,y € Zy generate the same ideal (z) = (y) if and only if !

is a unit in Zg.
Recall that a principal ideal (x) is prime if and only if z is a prime element (that is, for all a,b € Z g

such that z|ab, one has x|a or x|b). Hence, we have the bijection
{ principal prime ideals of Zx } x Zj > { prime elements of Zx }.

This leads to the study of the unit group Z .. In the lecture, we will prove Dirichlet’s unit theorem
which describes the structure of the unit group completely. It will, however, not be needed to finish
the special case of Fermat’s Last Theorem.

As we said, Z g is in general not a PID. The ‘deviation’ from being a PID is measured in a very elegant
way by the class group (or Picard group), which we describe now. Consider the set of nonzero ideals
of Zy. Note that one can multiply any pair of its elements to get a third one, and (1) = Zy is the
neutral element for this multiplication: it is a monoid. The monoid of ideals contains the submonoid
of all principal ideals.

By introducing the natural notion of fractional ideals in order to define inverses to ideals, one actually
obtains the group Zx: the group of all fractional ideals of Z; it is abelian and contains the subgroup
of principal fractional ideals P . The class group is the quotient group CLx = Zx /P

Towards the end of the lecture, we will prove the following important result about class groups.

Theorem 1.9. The class group of any number field is finite.
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Definition 1.10. The cardinality of the class group of a number field is called the class number.

Let’s now state two simple consequences: the first one tells us how to find back the class of UFDs
among all Dedekind rings; the second one will be used in the proof of the special case of Fermat’s
Last Theorem.

Proposition 1.11. Let K be a number field.
(a) Zk is a UFD < the class number of K is 1.

(b) Let I <1 Zy be a non-zero ideal, and let p be a prime number such that I? is principal.
If p does not divide the class number of K, then I is a principal ideal.

For the sequel of this section, we need the following characterisation of divisibility of ideals in Dede-
kind rings.

Lemma 1.12. Let I, J be non-zero ideals in a Dedekind ring. Then

ICJ&s J|1

Proof of Theorem[[ Il Let us start with a potential solution of the Fermat equation: zP + yP = 2P.
Without loss of generality, we may assume that x, y are coprime, i.e. ged(x,y) = 1.
By two exercises, we may (and do) also assume

e p>>5and
e x %y mod p.
We factor the Fermat equation over the number field Q(() as follows:

p—1
=2y =[x+ y). (1.1)
=0

If you have never seen this factorisation, just consider x as a variable and observe that —(’y are n
distinct roots of the polynomial zP + y” and recall that a polynomial of degree p over an integral
domain has at most p zeros.

If Z[¢] were a UFD, we could prove that the elements z + 7y are coprime for distinct j and conclude
that each x + (7 is a p-th power. Since Z[(] is not a UFD in general, we have to proceed differently:
we will consider the corresponding equality of principal ideals:

p—1

() =[] (= + y). (1.2)

=0

Lemma 1.13. The principal ideals (x + (7%y) of Z[(] are pairwise coprime for j = 0,...,p — 1.
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Proof. Leti # jin {0,1,...,p — 1} and consider a prime ideal p dividing both (x + ('y) and
(z + (Jy),ie.z + C'y € pand z + (Yy € p, whence

PR Eych
Cy—CJyZCﬁ(l—é)yze(l—@yep,

where ¢ = (! 1_133: is a unit by an exercise. Hence p divides the product of ideals (1 — () - (y). It

follows that either p = (1 — () (because (1 — () is a prime ideal) or p | (y), i.e. y € p.
Similarly we have

1— ¢t

¢+ Cy) =l Oy) = 0= = 02

(1-Qz=06(1-Qzep,

where § = ¢/ 1;94_ " is again a unit. Thus we obtain that p divides the product of ideals (1 — ) - (x).
It follows again that either p = (1 — ) or p | (z).

If p # (1 — (), then we get that p divides both (z) and (y). This is excluded because z, y are coprime.
We hence find p = (1 — ().

Now consider

t+y=xz+Cy=0 modp,

where the first congruence is because we work modulo (1 — ¢), and the second one because we work
modulo p. Because of (z 4+ y)P~' = 0 mod p¢~! = (p), it follows that p divides (z + y)?~! and
hence p divides x + y. Finally we see

=P +yP=x+y=0 modp,
contradicting the assumption p 1 z. O

We return to the main proof. The coprimeness from the previous lemma allows us to conclude from
equation (L.2) that each of the principal ideals (z + (’y) is a p-th power of some ideal I;. Now we
make use of the assumption on the class number and conclude from Proposition[L.TT]that I} is actually
principal, say I; = («;). We thus have

(z + ij) = (;)? and thus = + ij = Ejag

with a unit €; € Z[(].
In order to continue, we need the following two results:

Proposition 1.14. Let ¢ € Z[(] be a unit. Then there are ¢; € Q(C + (1) and r € Z such that

€ =("e.
Proof. Omitted. O

Lemma 1.15. For all o € Z[(), there is a € Z such that

o’ =a mod (p).
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Proof. Write o = by + b1 + - - - + b,—2(P~2. Then we have
apzbg—i—b]fﬁp—i—-”—i-b];_%p(p*z) :b§+bﬁ°+---+b§;_2:a mod (p)
Witha:b€+b€+~--+b§_2€Z. O
We return to the main proof and consider the index 7 = 1 and drop it from the notation. We thus have
x+ Cy = eal.

Now by Proposition [[L14] we write ¢ = ("e; with e; = € (complex conjugation). Furthermore, by
Lemmal[l.I3] there is a € Z such that o = ¢ mod (p). We summarise

x4+ Cy=C_ea? =("ea mod (p).
Now we take complex conjugation on both sides
4+ ly=C"e@ = "ea mod (p).
Combining these two equations, we obtain

(M +Cy) = (@+¢y) mod (p),

which we rewrite as
T+ Cy—CTr— ¢y =0a mod (p). (1.3)

Now we use that any subset of p — 1 elements of 1,(, (2, ..., (P72, ¢P~! forms a Z-basis of Z[(]. It
is thus natural to distinguish two cases:

(I) The elements 1, ¢, ¢2"~1, ¢?" are distinct.

In this case, equation (L.3)) implies that both x, y are divisible by p since all coordinates of any
multiple of p are multiples of p, when we consider 1, ¢, (2", ¢?" as part of a Z-basis of Z|(].

(I) The elements 1, ¢, (> 1, ¢?" are not distinct.

We further distinguish cases as follows.

() 1=¢¥
Now equation (I3) becomes

Cy—Cly=(C-¢CHy=0 mod (p).

Since ¢ and ¢! are part of a Z-basis of Z[(], the coordinates z, y are both divisible by p,
contrary to our assumptions.

(b) 1=¢""1(e¢=¢")
Now equation becomes

r+Cy—Cr—y=(r—y)—((z—y)=0 mod (p).

As before, we obtain z = y mod p contrary to the assumptions at the beginning of the
proof.
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() ¢=¢¥ !

Now equation (I.3]) becomes

z+Cy—Cr—Cy=01-¢)r=0 mod (p).
As before, we obtain x = 0 mod p contrary to our assumptions.

This finishes the proof of Theorem L1l O

Appendix: The solutions of the Fermat equation for n = 1,2, 4

Let n € N. The n-th Fermat equation is
F,(a,b,c) =a" + 0" —c".

What are the zeros of this equation in the (positive) integers?
n = 1: For any ring R, there is the bijection

{(a,b,c) € R’ | Fi(a,b,c) =0} + R,

given by sending (a, b, ¢) with F(a,b,c) = a+b—c = 0to (a,b). Its inverse clearly is the map that
sends (a, b) to (a,b,a + b). This clearly describes all solutions.

n = 2: A triple (a, b, ¢) € N3 such that Fy(a, b, c) = a® + b* — ¢? = 0 is called a Pythagorean triple.
It is called primitive if gcd(a, b, c) = 1 and a is odd (whence b is even). It is an exercise to prove that
there is the bijection

{(u,v) € N? | u > v, ged(u,v) =1, 2| uv}
< {(a,b,c) € N*| (a,b,c) primitive Pythagorean triple },

sending (u,v) to (u? — v2, 2uv, u? + v?).
n = 4:

Theorem 1.16. There is no (a,b,c) € N2 such that a* + b* = ¢*, i.e. Fy has no solution in positive
integers [recall that positive means strictly bigger than 0].

This will immediately follow from the following Proposition.
Proposition 1.17. Let (a,b, c) € Z3 be such that a* + b* = c2. Then abc = 0.

Proof. Since the exponents are all even, we can without loss of generality assume that all a, b, c are
non-negative. We assume that the assertion of the proposition is wrong and want to get a contradiction.
For that we let ¢ be minimal such that there are a, b > 0 satisfying a* + b* = ¢2.

As c is minimal, we have that ged(a, b, ¢) = 1; for, if d is the greatest common divisior, then we have

a4 by at+vt 2 C .2
@ Q) == —a= @)

because d? has to divide c.
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Now we can reinterpret the equation as (a?, b2, c) being a primitive Pythagorean triple (after possibly
exchanging a and b so that a? is odd). Hence, we may apply the case n = 2. This means that there
are u, v € N such that u > v, ged(u,v) = 1 and

a2 =u? =0 b =2uw, & =u®+%
Hence, a? + v? = w2, which gives yet another primitive Pythagorean triple, namely (a, v, u) (note
that since a is odd, v is even). So, we can again apply n = 2 to obtain r > s such that ged(r, s) = 1
and

a:r2—s2, v = 2rs, u=r?+ s

Plugging in we get:
b
b? = 2uv = 4urs, and hence (5)2 = urs. (1.4)
As ged(u, v) = 1, we also have that ged(u, rs) = 1 (note: w is odd). As, furthermore, ged(r, s) = 1,
it follows from Equation (I.4) that u, r and s are squares:

u =22 r:yQ, s =22

They satisfy:
x2:u:r2+52:y4+z4.
So, we have found a further solution of our equation. But:
c=u?+0? =zt 402 >:E423:,

contradicting the minimality of c. O

In this proof, the gcd played an important role and we used at several places that Z is a unique
factorisation domain (UFD), that is, that every non-zero integer is uniquely the product of prime
numbers (and —1).

Appendix: Analog of Fermat’s Last Theorem over C[.X]

In order to illustrate that the above approach (factorising the Fermat equation) actually works IF one
happens to be in a UFD, we now work for a moment over C[ X |, where this strategy actually succeeds.
Recall that C[X] is a Euclidean ring, just like Z. Below we will show that this strategy also works
for the Fermat equation F3 over Z because the ring Z[(3] with (35 = e2™/3 is a unique factorisation
domain and has ‘few’ roots of unity.

Theorem 1.18. Let n > 3 and let a,b,c € C[X] be such that a" + b" = ¢". Then a, b and c form
a trivial solution: they are scalar multiples of one polynomial (a(X) = af(X), b(X) = Bf(X),
co(X) =~vf(X) for some f(X) € C[X] and a, 3,y € C).

Proof. We prove this by obtaining a contradiction. Let us, hence, assume that there are a, b, ¢ € C[X]
satisfying a™ + b" = ¢" such that

max{deg(a), deg(b),deg(c)} > 0 and is minimal among all solutions.
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As C[X] is factorial (because it is Euclidean), we can always divide out common divisors. Thus, by
the minimality assumption the polynomials a, b, ¢ are pairwise coprime. Also note that at most one of
the polynomials can be constant, unless we have a trivial solution.

Recall once more that C[X] is a factorial ring. We are going to use this now, starting from the

factorisation
n—1

'=a"+0" = H(c+ ¢Ib).
§=0
As C[X] is a UFD, it makes sense and is natural to ask whether the above factorisation is into pairwise
coprime factors. We claim that this is indeed the case. In order to verify this, let j, k € {0,...,n—1}
be distinct. We have:
= i G ((c—¢7b) = (¢ — ¢*b)) and c = Cjick(g—ﬂ(c — ) — ¢F(e — ¢Fp)).

Thus, any common divisor of (¢ — ¢(7b) and (¢ — ¢¥b) necessarily divides both b and c. As these are

b

coprime, the common divisor has to be a constant polynomial, which is the claim.
We now look again at the factorisation and use the coprimeness of the factors. It follows that each
factor ¢ — (/b has to be an n-th power itself, i.e. there are yj € C[X] such that

y?zc—(jb

forall j € {0,...,n — 1}. Of course, the coprimeness of the ¢ — (?b immediately implies that y; and
yx for j # k have no common non-constant divisor. If the degrees of ¢ and b are different, then the
degree of y; is equal to the maximum of the degrees of ¢ and b divided by n for all j. If the degrees
are equal, then at most one of the y; can have degree strictly smaller than the degree of b divided by n
because this can only happen if the leading coefficient of ¢ equals (7 times the leading coefficient of b.
As n > 3, we can pick three distinct j,k,¢ € {0,...,n — 1}. We do it in such a way that y; is
non-constant. Now consider the equation

ay} + Byp = alc+ ¢Ib) + Blc+ ¢Fb) = ¢+ (b =y,
which we want to solve for 0 # «, 8 € C. Thus, we have to solve
a+ 8 =1and o’ + p¢k = ¢t

A solution obviously is
Cf _ Ck
a= =
¢ =k

In C we can draw n-th roots: o« = +" and 8 = d". Setting r = vy;, s = dy; and ¢ = y,, we obtain

and5=1- .

4 st =1t",

with polynomials r, s,t € C[X]. Let us first remark that r is non-constant. The degrees of r, s, ¢ are
less than or equal to the maximum of the degrees of b and ¢ divided by n, hence, the degrees of r, s, t
are strictly smaller than the degrees of b and c. As the degree of a has to be at most the maximum of
the degrees of b and c, the degrees of r, s, ¢ are strictly smaller than the maximum of the degrees of
a, b, c. So, we found another solution with smaller maximum degree. This contradiction proves the
proposition. O
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2 Linear algebra in field extensions

Let L/ K be a field extension, i.e. K is a subfield of L. Recall that multiplication in L makes L into a
K -vector space. We speak of a finite field extension if [L : K| := dimg (L) < oo. Recall, moreover,
that an element a € L is called algebraic over K if there is a non-zero polynomial m,(X) € K[X]
such that my(a) = 0. If m, is monic (leading coefficient equal to 1) and irreducible, then m, is
called the minimal polynomial of a over K. It can be characterised as the unique monic generator of
the kernel of the evaluation map

] f(X)=f(a)

K[X L,

which is trivially checked to be a K-algebra homomorphism (i.e. a homomorphism of rings and of
K -vector spaces).
We now assume that L/K is a finite extension of degree [L : K] = n. Later we will ask it to be
separable, too (which is automatic if the characteristic of K (and hence L) is 0). Let a € L. Note that
multiplication by a:

T,:L—>L, x+— ax

is L-linear and, thus, in particular, K -linear. Once we choose a K -basis of L, we can represent T}, by
an n X n-matrix with coefficients in K, also denoted T,.

Here is the most simple, non-trivial example. The complex numbers C have the R-basis {1,7} and
with respect to this basis, any z € C is represented as (3 ) = x+ yi. Now, take a = (%) = b+ci € C.

We obtain: T, = (©7¢), as we can easily check:

To(2) = az = (b+ ci)(z + yi) = (bx — cy) + (cx + by)iand T,(z) = (2 ¢) (§) = (gi;gg) :

As an aside: You may have seen this matrix before; namely, writing z = 7(cos(¢) +isin(yp)), it looks

like r ( <°5(#) —5in(@) ) 4 6 it is a rotation matrix times a homothety (stretching) factor.
sin(p) cos(y)

We can now do linear algebra with the matrix 7, € Mat,, (K).

Definition 2.1. Let L/ K be a finite field extension of degree [L : K| = n. Let a € L. The trace of a
in L/ K is defined as the trace of the matrix T, € Mat,,(K) and the norm of a in L/ K is defined as
the determinant of the matrix T, € Mat,,(K):

Try i (a) := Tr(T,) and Normy, /x (a) := det(7,).
Note that trace and norm do not depend on the choice of basis by a standard result from linear algebra.

Let L/K = C/Rand z = +yi € C. Then Tr¢g(2) = 2z = 2R(z) and Normg g (2) = #>+y* =
|22

Lemma 2.2. Let L/ K be a finite field extension.

(a) Trp k defines a group homomorphism (L, +) — (K, +), i.e.

TI'L/K(CL + b) = TI'L/K(G) + TrL/K(b)forall a,be L.
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(b) Normy, i defines a group homomorphism (L*,-) — (K*,-), i.e.

Normyp, /g (a - b) = Normy, /i (a) - Normy /i (b) for all a,b € L.

Proof. (a) The trace of a matrix is additive and T4, = Tj, + T} because Ty p(z) = (a + b)x =
az + bxr = Ty () + Ty(x) for all z € L.

(b) The determinant of a matrix is multiplicative and T,, = T, o T} because Ty.;(z) = abr =
To(Ty(z)) forall z € L. O

Lemma 2.3. Let L/ K be a finite field extension of degree [L : K| = n. Let a € L.

(a) Let fo = X" + b, 1 X" 14+ + b1 X + by € K[X] be the characteristic polynomial of T, €
Mat,,(K). Then Try /i (a) = —by—1 and Normyp, i (a) = (—1)"bo.

(b) Let mg = X%+ cq 1 X1 + - + 1 X + ¢g € K[X] be the minimal polynomial of a over K.
Then d = [K(a) : K] and withe = [L : K(a)] one has mq(X)¢ = fo(X).

Proof. (a)is a general fact from linear algebra that can, for example, be checked on the Jordan normal
form of T}, over an algebraic closure of K, using the fact that trace and determinant are conjugation
invariants, that is, do not depend on the choice of basis.

(b) It is obvious that the evaluation map K [X]| M) L defines a field isomorphism

K[X]/(ma(X)) = K(a),

whence the degree of [K (a) : K| equals the degree of m4(X) and, moreover, {1,a,a?,...,a% '}
forms a K -basis of K (a).

We now compute the matrix 77, for the map K (a) =% K (a) with respect to the chosen K -basis.
Very simple checking shows that it is the following matrix:

00 - 0 —co
10 0 —c1
01 0 —c2

T, =

60 1—cas

Note that its characteristic polynomial is precisely m,(X).
Now let {s1,...,S.} be a K(a)-basis of L. Then a K-basis of L is given by

{31, s1a, 31a2, ceey sladfl, S92, 820, 32a2, e ,SQCLdil, ce. Se, Seq, seaQ, ey seadfl}.
K-linear independence is immediately checked and the number of basis elements is OK; this is the
way one proves that the field degree is multiplicative in towers: [L : K| = [L : K(a)|[K(a) : K].
With respect to this basis, the matrix 7} is a block matrix consisting of e blocks on the diagonal, each
of them equal to 7. This proves (b). O

We need to use some results from field theory. They are gathered in the appendix to this section.

Proposition 2.4. Let L/K be a finite separable field extension, K an algebraic closure of K con-
taining L. Let, furthermore, a € L and f, the characteristic polynomial of T,. Then the following
statements hold:
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(a) fa(X) = HUEHomK(L,f) (X - U(a))’
(b) Trp/r(a) =3 enomy (1,7 @ (a). and

(c) Normp,x(a) = [ enomy (1,7 (@)

Proof. Let M = K (a). We use Lemma[2.10/ from the appendix and its notation. By Proposition
in the appendix, the minimal polynomial of a over K is

ma(X) == [[(X = ai(a)).

i€l

Let e = #J. We obtain from Lemma 2.3}

folX) = ma(X)* = [T(X = 01(a))® = [[(X —7i(a))®

iel iel
_HH —G;07j(a)) = H (X —o(a)).
el jeJ o€Homg (L,K)

This shows (a). Multiplying out, (b) and (c) are an immediate consequence of the preceding lemma.
O

Corollary 2.5. Let L/M /K be finite separable field extensions. Then
TrL/K = TrM/K o TrL/M and NOI‘IHL/K = NOI‘IDM/K o NOI‘I’I]L/M.

Proof. We use Lemma [2.10/from the appendix and its notation. Then

Trai (Trpn(a)) = Z@(TYL/M Zal ZTJ

el el JjeJ

= Zai(ZTj(a)) = ZZ@ o7j(a) = Trp/k(a).

iel jeJ iel jeJ
In the same way, we have

NormM/K(NormL/M Hal Normyp, /s (a) Hal HTJ
el el JjeJ

:Ha(HTj(a) HHUZOTJ = Normy, /g (a),

i€l jeJ i€l jed

showing the statement for the norm. O

Definition 2.6. Let L/K be a finite separable field extension of degree n = [L : K|. Further, let

Homg (L, K) = {o1,...,0n} and let aq, . .., € L be a K-basis of L. Form the matrix
oi(aq) o1(ag) -+ o1(an)
oa2(aq) o2(ag) -+ oa(an)

D(ai; .. om) = (oi(aj)h<ijen =

on(ar) op(ag) -+ op(an)
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The discriminant of (av, . . ., ay,) is defined as
disc(ov, ..., o) == (det D(av, ..., an))2.
The trace pairing on L/ K is the bilinear pairing
LxL—K, (z,y) Trp/g(vy).

Example 2.7. (a) Let0,1 # d € Z be a squarefree integer and consider K = (@(\/&) Computations
(exercise) show:
1+Vd
2

disc(1, Vd) = 4d and disc(1, ) =d.

(b) Let f(X) = X3+ aX + b € Z[X] be an irreducible polynomial and consider K = Q[X]/(f).
Let o € C be any root of f, so that we can identify K = Q(a) and 1, o, & is a Q-basis of K.
Computations also show disc(1, o, o) = —4a3 — 27b2.

(One can make a brute force computation yielding this result. However, it is easier to identify this
discriminant with the discriminant of the polynomial f(X), which is defined by the resultant of f
and its formal derivative f'. This, however, was not treated in last term’s lecture and we do not
have time for it here either.)

Proposition 2.8. Ler L/ K be a finite separable field extension of degree n = [L : K|. Then the
following statements hold:

(a) Let D :== D(ay,...,ay). Then D D is the Gram matrix of the trace pairing with respect to any

K-basis a, . .., o, That is, D' D = (TrL/K(aiaj))1<ij<n'

(b) Let ay,...,ay be a K-basis of L. Then

disc(ay, ..., o) = det(D)? = det(D" D) = det (TI“L/K(Oéz‘Oéj))1<ij<n-

(c) Let ay, ..., be a K-basis of L and C' = (c¢; j)1<i j<n be an n x n-matrix with coefficients
in K with det C # 0 and put 3; := Cay fori =1,...,n. Then

disc(B1, . - -, Bn) = det(C)? disc(ar, . . ., o).
(d) If L = K(a), then

disc(l,a,...,a"_l): H (O'j(a)_o'i(a))27

1<i<j<n
where o1, . .., 0, are the K -homomorphisms L — K.

(e) The discriminant disc(au, . .., ) is non-zero and the trace pairing on L/ K is non-degenerate.
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Proof. (a) Let oy, ..., 0, be the K-homomorphisms L — K. Then we have

o1(ar) o2(a1) - oplar)) foi(ar) oi(az) - o1(an)

DD — o1(ag) oo(ag) -+ op(az) oa(ay) oo(ag) -+ oa(an)
o1(ay) oo(an) -+ oplan) on(ar) op(ag) -+ op(an)
Y ok(eaan) Yh_gok(araz) oo Dp ok(anan)

_ | Xkronlozar) 3opyok(azaz) o Yk ok(azen)
22:1 ok (anar) ZZ:I op(anag) - Zzzl ok (anomn)
Trpk(anar) Trpjg(arag) - Trpg(onon)

_ Trp g (a2a1) Trpg(agas) -+ Trp g (aoan)
TI‘L/K.(anal) Trp/k(anag) -+ TYL/K&OZnOm)

So, the (i, j)-entry of the matrix D" D equals Tr(c; ;). Hence, D™ D is the Gram matrix of the trace
pairing with respect to the chosen K -basis.

(b) is clear.

(c) Exercise.

(d) Exercise.

(e) We may always choose some a € L such that L = K (a) (this is shown in any standard course
on Galois theory). From (d) it is obvious that the discriminant disc(1, a,...,a" 1)
hence, by (c) disc(ai,...,a,) # 0. Consequently, the trace pairing on L/K is non-degenerate
(because by a standard result from linear algebra a bilinear pairing is non-degenerate if and only if its

is non-zero and,

Gram matrix with respect to any basis is invertible). O

Appendix: Some Galois theory

Let L/K be an algebraic extension of fields (not necessarily finite for the next definition) and K
an algebraic closure of K containing L. We pre-suppose here the existence of an algebraic closure,
which is not quite easy to prove. However, in the number field case we have C, which we know to be
algebraically closed, and in C we can take Q = {z € C | z algebraic over Q}, which is an algebraic
closure of Q and also of all number fields.

Let f € K[X] be a polynomial of degree n. It is called separable if it has n distinct roots in K. It is
very easy to see that

f is separable < 1 = ged(f', f),

where f’ is the formal derivative of f. Otherwise, we say that f is inseparable.

If char(K) = 0, then every irreducible polynomial f is separable because ged(f/, f) = 1, as the
only monic divisor of f of degree < n is 1 and deg(f’) = n — 1. Moreover, if K is a finite field
of characteristic p, then every irreducible polynomial f € K[X] is also separable. The reason is that
the finite field L := K[X]/(f(X)) is a splitting field of the polynomial X?" — X € F,[X], where
#L = p™. This implies that f(X) divides X?" — X. As the latter polynomial is separable (because
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ged((XP" = X), XP" — X) = ged(—1, XP" — X)) = 1), also f is separable. A field over which every
irreducible polynomial is separable is called perfect. We have just seen that fields of characteristic 0
and finite fields are perfect. However, not every field is perfect. Consider K = F,,(T") = Frac(F,[T)
and f(X) = XP — T € K[X]. The Eisenstein criterion shows that f is irreducible, but, ged(f’, f) =
ged(pXP~1, XP —T) = ged(0, XP — T) = XP — T # 1, whence f is not separable. In this lecture,
we shall almost entirely be working with number fields, and hence in characteristic 0, so that the
phenomenon of inseparability will not occur.

Next we explain how irreducible separable polynomials are related to properties of field extensions.
We let Homg (L, K) be the set of field homomorphisms (automatically injective!) 7 : L — K
such that 7| = idg, i.e. 7(x) = x for all z € K. Such a homomorphism is referred to as a K-
homomorphism. We write [L : K|sep := #Homp (L, K) and call it the separable degree of L/ K, for
reasons to become clear in a moment.

Let now f € K[X] be an irreducible polynomial and suppose L = K[X]/(f). We have the bijection

{o € K| f(a) =0} — Homg(L, K),
given by sending « to the K-homomorphism
oot K[X]/(f) = K, g(X)+(f) = g(a).

Note that it is well-defined because f(«) = 0. The injectivity of the map is clear: @ = oo (X +(f)) =
o3(X + (f)) = B. For the surjectivity consider any o : K[X]/(f) — K and put vy = o(X). As
o(f) =0, we have f(v) = 0 and it follows that o = 0., because the X" + (f) form a K-generating
system of K[X]/(f) on which o and o, agree. We have shown for L = K[X]/(f):

[L: Klsep = #{a € K | f(a) =0} < deg(f) = [L: K].

Now we consider a general algebraic field extension L/ K again. Anelement a € L is called separable
over K if its minimal polynomial f, € K[X] is separable. The algebraic field extension L/K is
called separable if every element a € L is separable over K. As an immediate consequence every
subextension of a separable extension is separable.

The most important technical tool in Galois theory is the following proposition.

Proposition 2.9. Let L/ K be an algebraic field extension and K an algebraic closure of K contain-
ing L. Then any K -homomorphism o : L — K can be extended to a K -homomorphism & : K — K.

In order to explain the idea behind this proposition, let us take M = L(a) for some a € K, whence
M = L[X]/(f) with f the minimal polynomial of a over L, and let us extend o to M, call it 0.
The polynomial f factors into linear factors over K, whence we may choose some a € K such that
f(a) = 0. Any element of M is of the form Z?:o a; X'+ (f) and we send it via o/ to Z?:o o(a;)a’
in K. Using a Zorn’s lemma argument, one obtains that o can indeed be extended to K.

Lemma 2.10. Let L/M /K be algebraic field extensions contained inside K and let
HomK(M,?) ={o;|i€l} Lﬂ IandHomM(Ljf) —{rj|jeJ} 'gg J

By Proposition2.9we may choose 7; : K — K extending o; fori € I.
Then the following statements hold.
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(a) Homg (L, K) ={c,01; |i€l,j€ J}

(b) The map
IxJ—Homg(L,K), (i,j)— ;o

is a bijection.
(c) The separable degree is multiplicative in towers of algebraic field extensions:
[L: Klsep = [L: Msep - [M : Klsep-

Proof. (a) is easy to see: ‘D’ is clear. ‘C’: Let 7 € Homg (L, K), then 7|y € Homg (M, K),
whence 7|y = o; for some i € I. Now consider ; ' o 7 € Homy (L, K), whence there is j € .J
such that 7 = 7; o 7;.

(b) The surjectivity is precisely the inclusion ‘C” shown above. For the injectivity suppose 7; o 7j =
o o 7¢. Restrict this equality to M and get o; = o, whence ¢ = k. Having this, multiply from the
left by o, ! and obtain T; = Ty, whence j = /.

(c) This is a consequence of the preceding statements. O

The multiplicativity of the separable degree combined with our calculations for L = K[X]/(f) im-
mediately give for a finite extension L/K:

L/K is separable < [L: K| = [L : K]sp,

and the inequality [L : K] > [L : K]sp always holds.

One more definition: the set K*P := {x € K | x is separable over K} is called the separable
closure of K in K. It can be seen as the compositum of all finite separable subextensions L/K inside
K, whence it clearly is a field. Note that for a perfect field K one has K = K*°P.

Proposition 2.11. Let a € K*%® such that o0(a) = a for all o € Homp (K, K), thena € K.

Proof. Suppose a is not in K. We let f € K[X] be its minimal polynomial and we let o € K be a
different root of f. Then we have o, : K(a) — K (defined as above, sending a to c) a non-trivial
K-homomorphism, which we may extend to &, : K — K, which does not fix a, contradiction. [

This allows us to write down the minimal polynomial of a separable element x € K*°P as follows.
Proposition 2.12. Let a € K*°°P and consider the set

{o1,09,...,0,} = Homg (K (a), K)
withn = [K(a) : K| = [K(a) : K|sep. Then the minimal polynomial of a over K is

n
fa(X) = [[(X = 0i(a)).
i=1
Proof. We extend o; to 0; : K — K and observe 7 (fa) = fa (Where 7 is applied to the coefficients
of f,) for all K-homomorphisms & : K — K, whence f, € K[X]. Here we have used that every &
restricted to K (a) is one of the o4, and, hence, application of & just permutes the o; in the product.
Proposition 2. 1Tl now implies that the coefficients of f, are indeed in K.
It remains to see that the polynomial is irreducible. But that is clear for degree reasons. Of course, a
is a zero of f, (one of the o; is the identity on a), f, is monic and its degree is that of [K (a) : K|. [



3 RINGS OF INTEGERS 20

3 Rings of integers

We recall central definitions and propositions from last term’s course on commutative algebra.

Definition 3.1. Ler R be a ring and S an extension ring of R (i.e. a ring containing R as a subring).
An element a € S is called integral over R if there exists a monic polynomial f € R[X| such that

f(a)=0.

Note that integrality is also a relative notion; an element is integral over some ring. Also note the
similarity with algebraic elements; we just added the requirement that the polynomial be monic.

Example 3.2. (a) The elements of Q that are integral over Z are precisely the integers of Z.
(b) V2 €Ris integral over 7 because X? — 2 annihilates it.

(c) 1-&—27\/5 € R is integral over 7 because X2 — X — 1 annihilates it.

(d) a:= % € C is not integral over 7 because f = X? — X + % annihilates it. If there were
a monic polynomial h € Z[X] annihilating a, then we would have h = fg with some monic
polynomial g € Q[X]. But, now it would follow that both f and g are in Z[X| (see Sheet 4 of last
term’s lecture on Commutative Algebra), which is a contradiction.

(e) Let K be a field and S a ring containing K (e.g. L = S a field) and a € S. Then a is integral
over K if and only if a is algebraic over K.

Indeed, as K is a field any polynomial with coefficients in K can be made monic by dividing by
the leading coefficient. So, if we work over a field, then the new notion of integrality is just the

notion of algebraicity from the previous section.
Definition 3.3. Ler S be a ring and R C S a subring.

(a) The set Rg = {a € S | aisintegral over R} is called the integral closure of R in S (compare
with the algebraic closure of R in S — the two notions coincide if R is a field).

An alternative name is: normalisation of R in S.

(b) S is called an integral ring extension of R if Rg = S, i.e. if every element of S is integral over R
(compare with algebraic field extension — the two notions coincide if R and S are fields).

(c¢) R is called integrally closed in S if Rg = R.

(d) An integral domain R is called integrally closed (i.e. without mentioning the ring in which the

closure is taken) if R is integrally closed in its fraction field.

(e) Let a; € S fori € I (some indexing set). We let R[a; | i € I] (note the square brackets!) be the
smallest subring of S containing R and all the a;, i € 1.

Note that we can see R[a] inside S as the image of the ring homomorphism

d d
o, : R[X] — S, ZciXi — Zciai.
i=0 i=0
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Proposition 3.4. Let R C S C T be rings.
(a) For a € S, the following statements are equivalent:

(i) a is integral over R.

(ii) R[a] C S is a finitely generated R-module.

(b) Let ay,...,a, € S be elements that are integral over R. Then Rlay,...,a,] C S is integral
over R and it is finitely generated as an R-module.

(c) Let R C S C T be rings. Then ‘transitivity of integrality’ holds:

T/Risintegral < T'/S isintegral and S/R is integral.

(d) Rg is a subring of S.

(e) Any t € S that is integral over Rg lies in Rg. In other words, Rg is integrally closed in S
(justifying the name).

Definition 3.5. Recall that a number field K is a finite field extension of Q. The ring of integers of K
is the integral closure of Z in K, i.e. Z k. An alternative notation is Ok.

Example 3.6. Let d # 0, 1 be a squarefree integer. The ring of integers of Q(+/d) is
(1) Z[Vd), ifd = 2,3 (mod 4),

(2) Z[H4] ifd =1 (mod 4).

Proposition 3.7. Every factorial ring (unique factoriation domain) is integrally closed.

Proposition 3.8. Let R be an integral domain, K = Frac(R), L/K a finite field extension and
S := Ry the integral closure of R in L. Then the following statements hold:

(a) Every a € L can be written as a = > with s € Sand 0 # r € R.

(b) L = Frac(S) and S is integrally closed.

(c) If R is integrally closed, then SN K = R.

The following proposition was stated but not proved in last term’s lecture.

Proposition 3.9. Let R be an integral domain which is integrally closed (recall: that means integrally
closed in K = Frac(R)). Let K be an algebraic closure of K and let a € K be separable over K.
Then the following statements are equivalent:

(i) ais integral over R.

(ii) The minimal polynomial m, € K[X] of a over K has coefficients in R.



3 RINGS OF INTEGERS 22

Proof. ‘(ii) = (i)’: Since by assumption m, € R[X] is a monic polynomial annihilating a, by defini-
tion a is integral over R.
‘(i) = (ii)’: From Proposition[2.12] we know that the minimal polynomial of a over K is

n

ma(X) = [[(X = oi(a)),

=1

where {0 = id,09,...,0,} = Homg (K (a), K).

We assume that a is integral over R, so there is some monic polynomial g, € R[X] annihilating a. It
follows that m,, divides g,. Consequently, g,(ci(a)) = 0i(ga(a)) = 0;(0) = O0foralli = 1,...,n,
proving that also o3(a),03(a),...,o0,(a) are integral over R. Hence, m, has integral coefficients
over R (they are products and sums of the o;(a)). As R is integrally closed in K, the coefficients lie
in R. O

We now apply norm and trace to integral elements.

Lemma 3.10. Let R be an integrally closed integral domain, K its field of fractions, L/ K a separable
finite field extension and S the integral closure of R in L. Let s € S. Then the following statements
hold:

(a) Trpk(s) € Rand Normyp i (s) € R.
(b) s € S* < Normp /i (s) € R.

Proof. (a) directly follows from S N K = R.
(b) ‘=": Let s,t € S* such that ts = 1. Then

1 = Normyp, g (1) = Normp, /i (st) = Normp /i (s)Normp /i (),

exhibiting an inverse of Normy, / (s) in R.
‘«=": Assume Normy,/x(s) € R*. Then

1 =rNormyp,/k(s) =r H o(s)=(r H o(s))s = ts,
o€Homg (L,K) id#c€Hom g (L, K)
exhibiting an inverse to s in S. O

Next we use the discriminant to show the existence of an integral basis. The discriminant will also be
important in the proof of the Noetherian-ness of the ring of integers of a number field.

Lemma 3.11. Let R be an integrally closed integral domain, K its field of fractions, L/ K a separable
finite field extension and S the integral closure of R in L.

(a) For any K-basis oy, ..., of L, there is an element v € R\ {0} such that ra;; € S for all
1=1,...,n.

(b) Let vy, ... 00, € S be a K-basis of L and let d = disc(ay, . .., ay) be the discriminant of this
basis. Then dS C Rajg + -+ + Ray,.
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Proof. (a) By Proposition[3.§] (a), we can write o;; = % withr; € Rand s; € Sforalli =1,... n.
Hence, we may take r =ry - ... rp.

(b) Let s = Z?Zl x;o; be an element of S with x; € K for j = 1,...,n. We show ds € Roy +
.-+ + Ray,. Note that the elementary properties of the trace yield

Trr/k(qis) = ZTr(aiaj)xj €R.
j=1

Trp g (caar) - Trp g(aion)
We can rewrite this in matrix form using M = D% D = : - : . Now:

Trp /g (ana1) - Trp/k(omon)

> i Tr(arey)w;

@
M( : ) = : € R".
Tn i1 Tr(anay)z;

j=1

Multiplying through with the adjoint matrix M7 yields

M# M Cl) = det(M) Cl> :d<:31> € R".

Thus, dz; € Rforalli = 1,...,n and, consequently, ds € Raj + - - - + Ray,. O

We now need a statement that is very simple and could have been proved in last term’s course on
commutative algebra (but, it wasn’t). We give a quick proof.

Theorem 3.12. Let R be a principal ideal domain and M a finitely generated R-module. Then the
following statements hold:

(a) Assume that M is a free R-module of rank m. Then any submodule N of M is finitely generated
and free of rank < m.

(b) An element m € M is called a torsion element if there is 0 # r € R such that rm = 0. The set
Miorsion = {m € M | m is a torsion element } is an R-submodule of M.

(¢) M is afree R-module < Moysion = {0}
(d) There is an integer m such that

M = Miorsion PR® ... D R.

m times

The integer m is called the R-rank of M.

(e) Let 0 - N — M — @Q — 0 be a short exact sequence of finitely generated R-modules. Then
I'kR(M) = rkR(N) + rkR(Q)
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Proof. (a) We give a proof by induction on m. The case m = 0 is clear (the only submodule of the
zero-module is the zero-module).

Now let m = 1. Then M = R and the submodules of M are the ideals of R under the isomorphism.
As R is a principal ideal domain, the rank of the submodules of M is thus equal to 1, unless it is the
zero-ideal.

Now, suppose we already know the statement for all ranks up to m—1 and we want to prove it for M of
rank m. After an isomorphism, we may suppose M = R& ... R. Letn: M =R&... R — R

~—_———

m times
be the m-th projection. It sits in the (trivial) exact sequence

0>R®..OR—- M R—0.
—_—

m—1 times

Let now N < M be a submodule and set

Ni=NNnkerr=NNR®...®R.
—_——

m—1 times

By the induction assumption, N; is a free R-module of rank at most n — 1. Moreover, 7(N) is a
submodule of R, hence, by the case m = 1, it is free of rank 0 or 1. We have the exact sequence:

0— N — N5 7a(N)—D0.
As m(N) is free, it is projective and this sequence splits, yielding
N 2 Ny @ w(N),

showing that N is free of rank at most (m — 1) + 1 = m.
(b) is trivial.

(c) ‘=": Let x1,...,x, be a free system of generators of M. Let x = Z?:l rixv; € M. Ifre =0
with R 5 r # 0, then rr; = 0 for all ¢, thus r; = 0 for all 4, whence x = 0.
‘<’: Letxy,...,x, be any system of generators of M and let z1, ..., x,, with m < n be a maximal

free subset (possibly after renumbering). If m = n, then M is free, which we want to show. Assume,
hence, that m < n. Then for all m + 1 < ¢ < n, there is 0 # r; € R such that r;x; = Z;n:l ERETR
Setting r := 7441 - ... Ty, weobtain foralli = 1,... n:

re; € Rey ® Reg @ ... D Ry,
and, consequently, for all x € M:
re € Reiy ® Rro @ ... & Rxy,.
As Miorsion = {0}, it follows that the map
M — Rr1 & Reao® ... Rxy,, x> 1z,

gives an isomorphism between M and an R-submodule of the free R-module Rx1® Rxo®...H Rxp,
whence by (a) M is free.
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(d) We consider the trivial exact sequence
0— Mtorsion — M — M/Mtorsion — O,

and claim that M /Miosion is a free R-module. By (c) it suffices to show that the only torsion element
in M /M;orsion 18 0, which works like this: Let z + Miorsion € M /Miorsion and 0 # r € R such that
T(x + Mtorsion) = 1T+ Miorsion = 0+ Miorsion € M/Mtorsion' Then, clearly, rz € Miorsion, Whence
there is 0 # s € R such that s(rz) = (sr)x = 0, yielding © € M;oysion, as desired.

As M /Miorsion 18 R-free, it is projective and, hence, the above exact sequence splits (see Commutative
Algebra), yielding the desired assertion.

(e) First assume that () is R-free of rank ¢. Then the exact sequence splits and one gets M = N @ Q,
making the assertion obvious. If ) = R? @& Qtorsion, then consider the composite map 7 : M —»
R ® Qiorsion — RL. We get rkp(M) = g+ rkR(ZV ) with N = ker (7). From the snake lemma (see
exercise) applied to the diagram

0—N-—->M-—>Q—0

A I

0—N-—M—R?1—0

it is obvious that N /N = Qorsion. From this we want to conclude that rk(N) = rk(N), then
we are done. Let y; + N,...,ys + N be generators of N /N. Since N /N is torsion, there are
r1,...,7s € R\ {0} such that r;y; € N foralli € {1,...,s}. Hence, withr := 71 -7y - -7, we have
rN < N, showing rk(ﬁ) < rk(N). Since N < N, we have equality, as needed. O

Definition 3.13. Let R C S be an integral ring extension. If S is free as an R-module, then an
R-basis of S (i.e. a free generating system) exists and is called an integral basis of S over R.

We point out that, if S is an integral domain (as it always will be in this lecture), then an R-basis of .S
is also a K-basis of L = Frac(S) with K = Frac(R).

Note that, in general, there is no reason why an integral ring extension S should be free as an R-
module. This is, however, the case for the rings of integers, as the following proposition shows.

Proposition 3.14. Let R be a principal ideal domain, K its field of fractions, L/ K a finite separable
field extension and S the integral closure of R in L.

Then every finitely generated S-submodule 0 # M of L is a free R-module of rank [L : K|. In
particular, S possesses an integral basis over R.

Proof. As principal ideal domains are unique factorisation domains and, hence, integrally closed, we
may apply Lemma[3.1Tto obtain a K-basis a1, ..., a, € S of L and we also have dS C Raj+-- -+
Ra,, =: N with d = disc(ay, .. ., ay). Note that N is a free R-module of rank n = [L : K].

Let my,...,mg € M be a generating system of M C L as S-module. As the m; are elements of L,
by Proposition[3.8](a) there is € R such that rm; € S foralli = 1,...,k, whence rM C S. Hence,
rdM C dS C N. Consequently, Theorem[3.12]yields that rdM is a free R-module of rank at most n.
Of course, the R-rank of rd M is equal to the R-rank of M. Let0 # m € M. Then Nm < Sm < M,
showing that n, the R-rank of IV (which is equal to the R-rank of Nm) is at most the R-rank of M,
finishing the proof. O
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For the rest of this section we specialise to the case of number fields.

Definition 3.15. Let K be a number field. A subring O of Z is called an order of K if O has an
integral basis of length [K : Q).

Corollary 3.16. Any order in a number field K is a Noetherian integral domain of Krull dimension 1.

Proof. Being a subring of a field, O is an integral domain. As the ring extension Z C O is integral
(being contained in the integral extension Z C Zp), the Krull dimension of O equals the Krull
dimension of Z, which is 1 (see Commutative Algebra). As O has an integral basis, we have O &
7.& ...% 7Z. That O is Noetherian now follows because Z is Noetherian and finite direct sums of
—_——

[K:Q] times
Noetherian modules are Noetherian (see Commutative Algebra). ]

Corollary 3.17. Let K be a number field and Z the ring of integers of K. Then the following
statements hold:

(a) Zy is an order of K, also called the maximal order of K.
(b) Zk is a Dedekind ring.

(c) Let 0 C I < Zg be an ideal. Then I is a free Z-module of rank [K : Q| and the quotient Z i |1
is finite (i.e. has finitely many elements; equivalently, the index (Zy : I) is finite).

Proof. (a) It is a trivial consequence of Proposition 3.14 that Z is a free Z-module of rank [K : Q]
because Zp is a Z-module generated by a single element, namely 1. In particular, Z g has an integral
basis and, hence, is an order of K.

(b) From Corollary we know that Zg is a Noetherian integral domain of Krull dimension 1.
It is also integrally closed (being defined as the integral closure of Z in K), hence, by definition, a
Dedekind ring.

(c) As Zk is Noetherian, the ideal I is finitely generated. Hence, Proposition [3.14] again gives that
I is a free Z-module of rank [K : Q]. The quotient of any two free Z-modules of the same rank is
Z-torsion by Theorem Hence, Z /1 is an abelian group generated by finitely many elements of
finite order, hence, it is a finite group. O

Definition 3.18. Let K be a number field with ring of integers Zy and 0 # a C K be a finitely
generated Ly -module. The discriminant of a is defined as disc(au, . .., o) for any Z-basis of the
free Z-module a (see Proposition[3.14)). (By Proposition2.8(c), this definition does not depend on the
choice of Z-basis because the basis transformation matrix is invertible with integral entries and thus
has determinant +1.)

The discriminant of K is defined as disc(Zp).

Proposition 3.19. Let K be a number field and Z its ring of integers. Let 0 # a C b C K be two
finitely generated Zc-modules. Then the index (b : a) is finite and satisfies

disc(a) = (b : a)? disc(b).

Proof. Exercise on Sheet 4. O
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4 Ideal arithmetic

It is useful, in order to make the set of non-zero ideals of a Dedekind ring into a group with respect to
multiplication of ideals, to introduce fractional ideals, which will be needed for the inverses.

Definition 4.1. Let R be an integral domain and K = Frac(R).
e An R-submodule I < K is called a fractional ideal of R (or: fractional R-ideal) if

- I #(0) and
— thereis x € K* such that xI C R.

Note that x can always be chosen in R\ {0}. Note also that xI is an ideal of R (in the usual
sense).

e A fractional R-ideal I is called an integral ideal if I C R.
Note that for a subset (0) # I C K, one trivially has:

I <4 Ris anideal of R in the usual sense <> [ is an integral fractional R-ideal.

e A fractional R-ideal I is called principal if there is © € K> such that I = Rz.

o Let I, J be fractional R-ideals. The ideal quotient of I by J is defined as

I:J=(I:J)={zeK|zJCI}.

o The inverse ideal of the fractional R-ideal I is defined as

I'Y'=(R:I)={2z € K|« CR}.

o The multiplier ring of the fractional R-ideal I is defined as

r(l):={U:1)={ze K|zl CI}.

Example 4.2. The fractional ideals of Z are all of the form I = {Z with a,b € Z\ {0}. Hence, all
fractional Z-ideals are principal.
It is clear that 7 is a fractional ideal. Conversely, let I be a fractional ideal such that bl is an ideal
of Z, whence bl = (a) = aZ, so that I = $7Z.
Let I = %Z and J = 52, then

ad

c a ad
I: g 7Z 7Z: Z: Z'
(I:J) {xe@]md eb} {xe@\xebc } o

In particular, ™' = gZ and I1=' = 7 (because, clearly Cand 1 € I1171).

Lemma 4.3. Let R be an integral domain and K = Frac(R). Let I,J C K be fractional R-ideals.
Then the following sets are fractional R-ideals.
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e [+J={z+yl|lzeclyecl}
o [J={>" zy; | neN,z,....,x, € LLy1,...,yn € J},

e ["=1-T-...-1

n times

e INJ,
o (I:J).
Proof. Exercise. ]

Lemma 4.4. Let R be an integral domain and H, I, J C K fractional R-ideals. Then the following
properties hold:

(a) IJ C INJ (assume here that I and J are integral ideals),

(b) H+(I+J)=H+I1)+J=H+1+J,

(¢c) H(IJ) = (HI)J,

(d) HI+J)=HI+ HJ.

Proof. Exercise. ]

Lemma 4.5. Let R be an integral domain and I, J < R be ideals (in the usual sense). If [ + J = R,
then we call I and J coprime ideals.

Suppose now that I and J are coprime. Then the following statements hold:
(a) I and J™ are coprime for all n,m € N.

(b) INJ =1J.

(¢c) R/(IJ)= R/I x R/J (Chinese Remainder Theorem).

(d) If IJ = H" for somen € N, then I = (I + H)", J = (J+ H)"and (I + H)(J+ H) = H.
In words: If an ideal is an n-th power, then so is each of its coprime factors.

Proof. (a) By assumption 1 = i + j for some i € [ and some j € J. Now 1 = 177 = (j+5)"T™ ¢

I+ Jm.

(b) The inclusion ‘2’ is clear. We now show ‘C’. Let x € I N J. Again by assumption 1 = ¢ + j

for some ¢ € I and some 5 € J. Hence, x = x -1 = xi + xj, whence x € IJ because xi € I.J and

xjelld.

(c) That’s just a reminder. It was proved in some of your Algebra lectures.

(d) We start with the following computation:

(I+H)n21n+ln_1H+In_2H2++1Hn_1+Hn
:I<In_l+In_2H+"'+Hn_1+J)
=IR=1
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because H™ = I.J and J and I"~! are coprime by (a). Define A = I + H and B = .J + H. Then
AB=(I+H)J+H)=1J+IH+JH+H*=H"+1H + JH + H*
=HH"'+I1+J+H)=HR=H,
as required. O

Example 4.6. Let us consider the ring R = Z[\/—19|. In this ring, we have the following factorisa-
tions:

182 +19 = (18 ++/—19)(18 — v/—19) = 343 = 73
Let us take the principal ideals I = (18 + \/—19) and J = (18 — \/—19), then
IJ = (7)3.
The previous lemma now gives:
I=I+(7)>=18++v=19,7)3and J = (J + (7))® = (18 — v/—19,7)3.

But, one can check, by hand, that the elements 18 ++/—19 and 18 — /—19 are not third powers in R
(just take (a + b@)“ = 18 — /=19 and work out that no such a,b € 7 exist).

In this example we see that ideals behave better than elements. We will extend the phenomenon that
we just saw to the unique factorisation of any ideal in a Dedekind ring into a product of prime ideals.

Proposition 4.7. Let R be a Noetherian integral domain, K = Frac(R) and (0) # I C K a subset.
Then the following two statements are equivalent:

(i) I is a fractional R-ideal.
(ii) 1 is a finitely generated R-submodule of K (this is the definition in Neukirch’s book).

Proof. ‘(i)=-(ii)’: By definition, there is » € R\ {0} such that rI C R, hence, rI is an ideal of R

in the usual sense. As R is Noetherian, 7/ is finitely generated, say by a1, ..., a,. Then [ is finitely
generated as R-submodule of K by 21, ... =,

‘(i1)=-(i)’: Suppose I is generated as R-submodule of K by %, ey ‘;—Z Thenr =ry-... -7y, 1s such
that rI C R. O

This proposition also shows us how we must think about fractional R-ideals, namely, just as R-linear
combinations of a given set of fractions %, cee ﬁ—: (where we may choose a common denominator).

Definition 4.8. Let R be an integral domain and K = Frac(R). A fractional R-ideal I is called an
invertible R-ideal if there is a fractional R-ideal J such that IJ = R.

Note that the term ‘invertible R-ideal’ applies only to fractional R-ideals (which may, of course, be
integral).

Lemma 4.9. Let R be an integral domain, K = Frac(R) and I a fractional R-ideal. Then the
following statements hold:
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(a) II7' C R.

(b) I is invertible < I[I~' = R.

(c) Let J be an invertible R-ideal. Then (I : J) = IJ 1.
(d) If0 # i € I suchthati=' € I71, then I = (i).

Proof. (a) holds by definition.

(b) ‘=": Let J be a fractional R-ideal such that IJ = R (exists by definition of I being invertible).
Then, on the one hand, by the definition of 1 ~lwehave J C I~1. Onthe otherhand, I=! = I~11.J C
RJ = J, showing J = I

‘<’ is trivial.

(c) We show both inclusions of {z € K |xJ C I} =I1J %

‘C’: Let x € K such that J C I. This implies x € xR = 2JJ ' C IJ~ %

‘D’: Wehave (IJ 1J =1(JJ 1) =1C I, whence IJ 1 C (I:J).

(d) We have I = i(i711) CiI~'I CiR = (i) C I. O

We include the next lemma to avoid writing down the Noetherian hypothesis in the next corollary and
the subsequent definition.

Lemma 4.10. Let R be an integral domain with K = Frac(R). Then any invertible R-ideal is finitely
generated.

Proof. Let IJ = R. In particular, 1 is in IJ, whence there are i;, € [ and j;, € Jfork =1,...,n
(some n € N)such that 1 = Y}, ij;. Let z € I. Then

n

r=x-1= (2j)ix € Y _ Rip,

k=1 k=1
hence, I = >"}_, Rij. O

Corollary 4.11. Let R be an integral domain. The set Z(R) of invertible fractional R-ideals forms
an abelian group with respect to multiplication of ideals, with R being the neutral element, and the
inverse of I € Z(R) being I™1.

The set P(R) := {xzR | x € K*} of principal fractional R-ideals forms a subgroup of Z(R).

Proof. This just summarises what we have seen. That P(R) is a subgroup is clear. 0

Definition 4.12. Let R be an integral domain. One calls Z(R) the group of invertible R-ideals and
P(R) the subgroup of principal invertible R-ideals.

The quotient group Pic(R) := Z(R)/P(R) is called the Picard group of R.

If K is a number field and 7 its ring of integers, one also writes CL(K) := Pic(Zg), and calls it
the ideal class group of K.

Corollary 4.13. Let R be an integral domain and K = Frac(R). Then we have the exact sequence
of abelian groups
1 R* - K> L 7(R) 2% pic(R) — 1,

where f(x) is the principal fractional R-ideal xR.
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Proof. The exactness is trivially checked. Note, in particular, that x R = R (the neutral element in the
group) if and only if x € R*. O

Corollary 4.14. Let R be a principal ideal domain. Then Pic(R) = {R} (the group with one ele-

ment).

Proof. This is the case by definition: that every ideal is principal implies that every fractional ideal is
principal, i.e. Z(R) = P(R), whence their quotient is the group with one element. O

Example 4.15. The groups CL(Q) = Pic(Z) and Pic(K[X]) (for K a field) are trivial.

5 Ideals in Dedekind rings

We will now give a ‘local characterisation’ of invertible ideals. Recall that, if R is a ring and p is a
prime ideal, we defined the localisation of R at p as R, := S ~1 R, where the multiplicatively closed
subset S C R is given as S = R\ p (the multiplicative closedness being precisely the property
of p being a prime ideal). For any R-module, we defined its localisation at p as M, = S—IM.
Consequently, if [ is a fractional R-ideal, then I, C K (note that S~1K = K and thus the embedding
I — K gives rise to an embedding I, — K). If I < R is an ideal in the usual sense, then I, =
S™1I C S7'R = R, C K. See the lecture on Commutative Algebra for more details on localisation.
Very concretely, we have R, = {{ € K |r € R,s € Stand [, = {{ € K | i € I,s € S}.
Moreover, we have (I,)~1 = (I71),.

We first prove that the invertibility of an ideal is a local property.

Theorem 5.1. Let R be an integral domain and I a fractional R-ideal. Then the following statements

are equivalent:
(i) I isinvertible.

(ii) o [ is finitely generated as R-submodule of K := Frac(R) (this assumption is unnecessary
if R is Noetherian by Proposition4d.7) and

e [ is a principal fractional Ry,-ideal for all maximal ideals m < R.

Proof. ‘=": Let I be invertible. Then Lemma . I0limplies that I is finitely generated. Since I1-1 =
R, there are i, € I and j, € I~! for k = 1,...,n and for some n € N such that 1 = ZZ:1 kK-
Let m be any maximal ideal. There is some index k such that ij; ¢ m, as otherwise 1 € m. Hence,
ikjr =: s € R\ m, so that i,;l = % € I;'. Lemma[ 9l (d) implies Iy = iy Ri.

‘<": Let us assume the contrary, i.e. II=! C R. Then there is a maximal ideal m <I R such that
IT-' C m. By assumption we have I, = 2R, with some z € I (after clearing denominators). The
finite generation of I implies I = (i1, ...,4,) forsomen € N. Foreachk =1,...,nwefindry € R
and we find s € R\ m such that

. r . . .
i = = (same denominator without loss of generality).
s

Hence, we have R 3 7, = sizz— ! forall k = 1,...,n. Thus, we have sx~'I C R, whence
st™! € I™1. We conclude s € zI~! C II~! C m, which is a contradiction because s is not
in m. ]
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The property (ii) is called: ‘I is locally free of rank 1’. In Algebraic Geometry one usually takes this
property as the defining property of invertibility: one defines invertible sheaves as those sheaves that
are locally free of rank 1.

Example 5.2. We continue Example Hence, R = 7Z[\/—19] and we consider the ideal I :=
(18 ++/—19,7) = (7,3 —/—19) (to see the equality, just substract 21 from the first generated in the
first ideal).

We first show that I is maximal. That we do as follows. Consider the ring homomorphism

X—3
—_—

a: Z[X] Fr.

Its kernel clearly is (7, X — 3). Moreover, consider the natural projection
7 ZIX] — Z[X)/(X2 + 19) 22XV, 71/ 1),
Also consider the surjection
¢:ZV—19] = F7,  a+by/—19 — a+ b3.

We note that o = ¢o, from which we conclude that the kernel of ¢ is the image under 7 of (7, X —3),
hence, is equal to (7,+/—19—3) = I as claimed. Hence, I is maximal because the quotient R/I = F7
is a field.

Next, we compute the localisation of I at a maximal ideal m <1 Z[v/—19).

First case: m # I. Then there is x € I \ m, so that Iy = Ry, because Iy, contains a unit of Ry,
Second case: m = I. Then we claim that I, = 7Rn. For this, we have to show that 3—+/—19 € 7TRp.
We have:

7:§i§:9@—¢i@y

Note that 4 & I and 3 + /—19 & I (to see the former, observe that in the contrary case 2 -4 — 7 =
1 € I; to see the latter observe that in the contrary case 7 — (3 ++/—19) — (3 —v/—19) =1 € I).

3+v—19
4

Hence, is a unit in Ry, proving the claim.

Lemma 5.3. Let R be a Noetherian integral domain with field of fractions K. For every ideal 0 #+
I < R, there is n € N and there are non-zero prime ideals 1, . . ., pp, such that

pr-p2-...opn C 1L
Proof. Consider the set
M :={0+#1 < R| the assertion is wrong for I}.

We want to show M = (). So, let us assume M # (). We want to apply Zorn’s lemma to obtain a
maximal element J in M, i.e. an element J € M such that for all ideals J C I we have I & M.
Note that M has a partial ordering given by C. For Zorn’s Lemma we have to check that every
ascending chain

I 1 C IQ C ...
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with I; € M for i = 1,2, ... has an upper bound, that is, an element / € M containing all the ;.
That is the case since R is Noetherian and, thus, the ideal chain becomes stationary. So, let J € M
be such a maximal element. We distinguish two cases.

First case: J is a prime ideal. Then J C J implies J ¢ M, contradiction. Hence, we are in the
Second case: J is not a prime ideal. Consequently, there are two elements x,y € R such that xy € J
but x,y ¢ J. This allows us to consider the ideals

Jy:=(J,z) 2 Jand Jo := (J,y) D J.

Due to the maximality of J € M, we have that J; and J> are not in M. Consequently, there are
P1,...,pn and qq, ..., g, non-zero prime ideals of R such that

plpnngandqlmeJQ

This implies
P Pnqre...qm C S1Jo = (J,2)(J,y) C J,

which is also a contradiction. Hence, M = (). L]

Corollary 5.4. Let R be a local Noetherian integral domain of Krull dimension 1. Then every non-
zero ideal I < R contains a power of the maximal ideal p.

Proof. Since R is a local Noetherian integral domain of Krull dimension 1, its only non-zero prime
ideal is p. Hence, the assertion follows directly from Lemma[5.3l O

Corollary 5.5. Let R be a Noetherian integral domain of Krull dimension 1. Then every non-zero
ideal I < R with I # R is contained in only finitely many maximal ideals of R. More precisely, if

P1-... pn C I, then I is not contained in any maximal ideal different from p1, ..., pp.
Proof. By Lemmal5.3|there are non-zero prime ideals p1, ..., p, such thatpy - ... p, C I. Let now

m be a maximal ideal of R containing I. We want to show that m is equal to one of the p;, which
proves the assertions. Assume, hence, that m is none of the p;. As the Krull dimension is 1, none of
the p; can be contained in m. Consequently, for each 7 = 1, ..., n the ideal p; is coprime to m. There
are thus x; € p; and y; € m such that 1 = x; + y;. We conclude

mopr-... P32y =1=y1) ... (I—yn) €14+m,
which is the desired contradiction. O
Lemma 5.6. Let R be an integral domain and I a fractional R-ideal. Then I = [, 4k maximal dm C

K. In particular, R = C K (see also the lecture on Commutative Algebra).

m<]R maximal Rm

Proof. We show both inclusions.

‘C’: is trivial because I C I, for all prime ideals (and, hence, in particular, all maximal ideals) m, as
K is an integral domain.

‘2% Let € [\wqr maximal Im and consider the ideal J := {r € R | rz € I} < R. We want to show
J = Rbecause thenx € I. If J # R, then J is contained in some maximal ideal m <t R. Write x = ¢
witha € I and s € R \ m. Because sz = a € 1, it follows s € J C m, which is a contradiction. [
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Recall that for a prime ideal p <1 R, the equality p R, N R = p was shown in the lecture on Commutative
Algebra. This equality can also be checked directly, like this: if T = 7 withx € p, r € R and
s € R\ p, then x = rs € p, whence r € p by the prime ideal property of p.

Lemma 5.7. Let R be a Noetherian integral domain of Krull dimension 1.

(a) Let p < R be a maximal ideal and a < Ry, any nonzero ideal. Let J := RN a. Then J, = a and
Jm = R for all maximal ideals m # p.

(b) Lety be a maximal ideal of R. Then " = p"R, N R = (pRy)" N R foralln € N.

Proof. (a) We first prove J, = a:

‘C: Letr € RNa=J,that means € a, whence © € aforalls € S =R\ p.

‘D% Let% €awitha € Rands € S =R\ p. Thens% = % canNnk= J,whence% € Jp.

That Jy, = Ry, for all maximal ideals m # p follows like this: By Corollary [5.4] there is n € N such
that (pR,)" C a. We have p” C (pR,)" N R. Consequently, p" C (pR,)"NR CanR=J. By
Corollary [5.5] we have that J € m for all maximal ideals m # p, whence Jy, = Rp.

(b) Put I = p™ for some n € N. Then by Corollary 5.5/ [y, = Ry if m # p and I, = p"R,. The
equality p” R, = (pR,)" is clear. Now we obtain from Lemma[5.6]

pn:]: ﬂ Im:( ﬂ Rm)ﬂanp

m<JR maximal m<]R maximal, m#p

=( (] Bw)Np"R,=RNp"R,,

m<]R maximal

as claimed. O

Theorem 5.8. Let R be a Noetherian integral domain of Krull dimension 1. Then the map

®:Z(R) — &y P(Ry), I+ (..., 1p,...),
0#p<IR prime ideal

is an isomorphism of abelian groups.

The meaning of this theorem is that any non-zero invertible ideal I <1 R is uniquely determined by all
its localisations I, (at the non-zero prime ideals of R).

Proof. There are four things to show.

e & is well-defined. First recall that Theorem[S.1lshows that I, is a principal ideal. Second, recall

that an element of a direct sum only has finitely many components different from the identity;
the identity of P(R;) is (1) = R,.
We first show that the statement is correct for any integral ideal 0 # I < R. By Corollary
I is contained in only finitely many maximal ideals p. For all others, we have I ¢ p, hence
I, = R, = (1). Now let us suppose that I is a fractional R-ideal. Then there is some r €
R\ {0} such that 0 # rI < R is an integral ideal. Thus, we may (and do) apply the previous
reasoning to the integral ideals I and (r) = rR, and we obtain that for all prime ideals but
possibly finitely many (1), = Ry and (1), = 7R, = R,. For any such p we hence have
Ry, = (rl)y = (rRy) - I, = Ry - I, = I, proving the assertion.
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o ® is a group homomorphism. This is a property of localisations (already used in the previous
item): Let S = R\ p. Then (S711)(S71L) = S™YI1 1), ie ®(I11) = ®([)®(I5).

e & isinjective. Suppose I, = R, for all non-zero prime ideals p of R. Then we have

I= N I, = N R,=R

0#p<IR prime ideal 0#p<IR prime ideal
by Lemma

o ® is surjective. As ® is a group homomorphism, it suffices to construct an invertible ideal
J € Z(R) such that, for given maximal ideal p < R and given principal ideal a < R,,, we have
Jm = Ry, for all nonzero prime ideals p # mand J, = a. Lemmal[5.7](a) shows that J := RNa
does precisely this.

This concludes the proof. O

We are now going to apply the above to Dedekind rings. For this, we recall the following character-
isation from the lecture on Commutative Algebra.

Proposition 5.9. Let R be a Noetherian integral domain of Krull dimension 1. Then the following
assertions are equivalent:

(i) R is a Dedekind ring.

(ii) R is integrally closed.
(iii) R is integrally closed for all maximal ideals m <1 R.
(iv) Ry, is regular for all maximal ideals m < R.

(v) Ry is a principal ideal domain for all maximal ideals m <1 R.

Corollary 5.10. Let R be a Dedekind ring. Then any fractional R-ideal is invertible.

Proof. By Proposition[5.91we know that Ry, is a principal ideal domain for all maximal ideals m <1 R.
Hence, given any fractional R-ideal I, we have that I, is principal for all m, which by Theorem [5.1]
implies that [ is invertible. O

We will mostly be interested in (iv) of Proposition Hence, it is useful to quickly recall the
definition of a regular local ring and the main property of such rings in our case of Krull dimension 1.

Definition 5.11. A Noetherian local ring with maximal ideal w is called regular if dimp /y, (m/m?)
equals the Krull dimension of R.

Proposition 5.12. Let R be a regular local ring of Krull dimension 1. Then there is x € R such that
all non-zero ideals are of the form (z™) for some n € N.
Such a ring is called a discrete valuation ring.
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Corollary 5.13. Let R be a regular local ring of Krull dimension 1 and let p be its maximal ideal.
Then there is x € R such that all fractional ideals of R are of the form (z)"™ = p" for some n € 7.
Moreover, the map

Z—ZI(R), n—p"

is an isomorphism of abelian groups.

Proof. By Proposition [5.12] the unique maximal ideal p is equal to (x), and, hence, all nonzero

integral ideals of R are of the form p” for some n € N. It is clear that (z™) = p" is invertible with
1

inverse (()") = (x)~". The final statement is an immediate consequence. O

Definition 5.14. Let R be a Dedekind ring and I be an invertible R-ideal. For a maximal ideal p < R,
by Proposition[5.12) there is a unique integer n > 0 such that I, = (pRy,)". We write ord,(I) := n.

Now we can prove unique ideal factorisation.

Theorem 5.15. Let R be a Dedekind ring. The map
®:I(R) — 4 Z, I (...,ordy(I),...)
0#p<1R prime ideal
is an isomorphism of abelian groups. Every I € Z(R) can be uniquely written as
I = H pordp (1)
0#p<IR prime ideal
(note that the product is finite).
Proof. The first statement follows from composing the isomorphism of Theorem [5.8] (which also
implies the finiteness of the product) with the isomorphism P(R,) — Z, given by ord, (the inverse
to the isomorphism from Corollary 5.13)).
It suffices to show the final claim for invertible integral ideals because we can write any fractional

R-ideal as a quotient of two integral ones: 71 < R for some 7 € R\ {0}, whence I = (rI) - (r)~L.
To see the final claim, for I < R we compute

I= N I = ( N L)NR= N (I, N R)

0#p<IR prime ideal 0#p<1R prime ideal 0#p<1R prime ideal
ordy (I ordy (I ordy (1
= ﬂ ((pRp) n()ﬂR): ﬂ p p(I) — H p p()7
0#p<IR prime ideal 0#p<1R prime ideal 0#p<1R prime ideal

where we used Lemmas 3.6 and [5.7] and the pairwise coprimeness of the maximal ideals, so that the
intersection becomes a product. O

Remark 5.16. Theorem is a generalisation of unique factorisation in a principal ideal domain.

Remark 5.17. Let I be an invertible integral R-ideal of a Noetherian integral domain of Krull di-
mension 1. For a maximal ideal p < R we define the p-primary component of I as I,y := I, N R.
Lemma (a) shows that the localisation at a maximal ideal w is the following one:

1, ifp=m,
(p))m = ’ .
Ry ifp#m
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Moreover, the primary components behave ‘multiplicatively’:

L)@y = L) Jip)

for any invertible integral R-ideals I and J. This is easy to see by working locally at all maximal
ideals p (which suffices by Theorem[5.8): the ideals on both sides have the same local components at
all maximal ideals m.

6 Geometry of Numbers

6.1 Introduction

Up to this point, we have been studying Dedekind domains in quite some generality. In this last part
of the series of lectures, we will focus on the case of rings of integers of number fields.
Recall (cf. Corollary 4.13) that, for any integral domain R, we have the following exact sequence

f

1 R~ K~ T(R) L Pic(R) — 1

where:

K 1s the field of fractions of R.

e Z(R) is the group of invertible ideals of R.

Pic(R) is the Picard group of R, that is to say, the quotient of Z(R) modulo the group P(R) of
principal fractionals ideals of R.

e f: K* — Z(R) maps an element € K to the principal fractional ideal = R.
e proj: Z(R) — Z(R)/P(R) = Pic(R) is the projection.

We want to study this exact sequence in the particular case where R = Zp is the ring of integers of
a number field K. Since Z is a Dedekind domain, all fractional ideals are invertible (see Corollary
[5.10). Hence Z(Z) is the set of all fractional ideals. Recall also that we denote Pic(Zx) = CL(K)
and call it the class group of K. The exact sequence boils down to:

!

1 Zx K~ T(Zg) 2L CL(K) — 1 6.5)

The group CL(K) measures the failure of Zx to be a principal ideal domain. More precisely, if
CL(K) has just one element, then the map f : K* — Z(R) is surjective, so that each fractional ideal
can be expressed as R for some x € K *. In other words, every fractional ideal is principal. On the
other hand, the greater CL(K) is, the further is f from being surjective, meaning there will be “many”
fractional ideals which are not principal.

One of the fundamental results that we will prove is that CL(K) is finite (hence, although Z is not
a principal ideal domain, it is also “not too far” from it). Another important result will be that Zj; is

finitely generated. As a motivation to study Z -, consider the following example.
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Example 6.1. Let d be a rational integer which is not a square. Consider the equation x* = dy?® + 1.
Question: Find all the solutions (z,y) € Z x Z of x* = dy* + 1.

This equation is called Pell’s equation, and was already considered by Archimedes (2877 BC-
212?BC). Actually, Exercise Sheet 8 is devoted to the Problem of the Cattle of the Sun, that Archimedes
proposes in a letter to Eratdstenes of Cirene.

If d < 0, then we can rewrite the equation as x* + (—d)y? = 1, and it only has the trivial solutions
(£1,0) for d # —1 and (£1,0), (0, £1) for d = —1. But if d > 0, it is not obvious whether this
equation has a solution (different from (£1,0)) or not, much less to find all solutions of the equation.

Actually, without making use of any machinery at all, we can prove that for d > 0 Pell’s equation
always admits a nontrivial solution. We need the following auxiliary lemma.

Lemma 6.2. Ler d be a positive rational integer which is not a square. There exist infinitely many
pairs of integers (x,y) such that 0 < |z — dy?| < 1+ 2V/d.

Proof. First let us see that there exists a pair of positive integers (z, y) with 0 < |22 —dy?| < 1 +2V4d,
later we will see there are infinitely many. Let m > 1 be a positive integer. For each j € {1,...,m},
let z; € Z be such that 0 < z; — j\/& < 1; namely, take x; := [j\/&], that is, the smallest integer
which is greater than or equal to jv/d.

Now divide the interval

0,1) = [O,ml_l)u [ml_l,m2_1>u--.u [m_f 1)

There are m — 1 intervals, but m pairs (x;, j). Hence (by Dirichlet’s Pidgeonhole Principle), there

is one interval which contains both z; — j Vd and zj, — k+/d for some j, k with j # k. Assume
Tj — jvd > z, — k\/d (otherwise swap j and k). Call z = xrj — x, y = j — k. We will see that
x? — dy? satisfies the desired inequalities.

First note that

x—yVd=(x;—x) — (j — k)Vd = (z; — jVd) — (z — kVd) <

m —

th
us 1

ngv—y\/gé

Since 1 < j, k < m, we have 0 < |y| < m, hence z — yvd < L —5 < ﬁ Now we can bound

0 < |2? —dy?| = |(z + yVd)(z — yVd)| = [(z — yVd + 2yVd)|(z — yVd)

= (z — yVd)? + 2ly|Vd(z — yVd) < 1+2-2— £ | f< 1+2:y:f_1+2f
Moreover we know that, since d is not a square, x> — dy? # 0, and |22 — y%d| # 1 + 2V/d.
Suppose now that the set A = {(x,y)
choosing an m € N such that ﬁ is smaller than z—y+/d for all (z,y) € A, the previous construction

provides us with a pair (2/,y’) € A satisfying 2/ — y 'Vd < —L-, which is a contradiction. O

ml’
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Proposition 6.3. Let d be a positive rational integer which is not a square. There exists a pair of
rational integers (x,y) with y # 0 such that x> — dy? = 1.

Proof. Since the number of integers in (—1 — 2v/d, 1 + 2v/d) \ {0} is finite, by Lemma [6.2] there
exists one k in this set such that there are infinitely many pairs (z,y) with 22 — dy? = k. Note that
k # 0 because d is not a rational square. Moreover, since there are only finitely many residue classes
in Z/kZ, we can assume that there are «, 8 € Z/kZ such that there are infinitely many pairs (z, y)
with 22 —dy? = kand 2 = o (mod k), y = 8 (mod k). Take two such pairs, (21, y1) and (x2,92).
Consider the product

(z1 — y1Vd) (@2 + y2Vd) = (m122 — y1y2d) + (T1Y2 — 22y1)Vd.

Note that k divides both z1 (z2 — x1) +k+dy1 (y1 —y2) = 21 (w2 —21) + (22 — dy?) +dy1 (y1 —y2) =
x129 — dy1yz and (z1 — z2)y2 — (y1 — y2)T2 = x1Yy2 — x2y1. Hence we can write

(z1 — y1Vd) (22 + y2Vd) = k(t + uV/d)
for some integers ¢, u. Moreover note that
(z1+ y1\/g)(x2 — yz\/g) =k(t — ux/g),

thus

K = (af — yid)(a3 — y5d) = k(1 — v?d),
so that dividing by k2 (which is nonzero), we get t* — u?d = 1.
This reasoning is valid for all (z1,y1) and (z2,y2) satisfying y? — dr? = k and z; = a (mod k),
y; = B (mod k) for i = 1,2. It remains to see that we can choose (x1,y1) and (2, y2) so that the
corresponding w is nonzero. Note that, if u = 0, then { = %1, so

(z1 — y1Vd)(z2 + yaVd) = k(t + uVd) = +k
On the other hand we have
(z1 — yl\/g)(fm + y1\/g) = x% — y%d =k.

Therefore we get 21 + y1Vd = +(zg + yg\/&)

Fix one pair (z1,y1). Since we can choose (2, y2) from an infinity of pairs, we can assume, without
loss of generality, that x5 + yov/d # %(x1 + y1V/d) (just take 9 # £x1, yo # 1), and hence the
solution (¢, w) that we obtain satisfies u # 0. O

Remark 6.4. Let d be a positive rational integer which is not a square. So there exists an integer x
such that d = d'z? with d’ a squarefree integer. Consider the ring of integers Ly of K = Q(\/&)
Recall that Zg is Z[Vd'] if d = 2,3 (mod 4), Z[H‘Tﬁ] ifd =1 (mod 4) (see Example[3.6).

In both cases we have that, for any z,y € Z, z = x + yvVd € Zg, and

P —df=1e Normp/g(z) =1

Normpg(2) =1 = 2z € Z.
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Note moreover that the set {x + y\/d such that x,y € 7 and Norm /(7 + yVd) =1} C Z) isa
subgroup.

We will see that the knowledge of the structure group of unities of quadratic fields completely determ-
ines the set of solutions of the Pell equation.

The tool that we will use to study the exact sequence (6.3) is called Geometry of Numbers. This
consists of viewing rings of integers as special subsets of R™ (namely lattices), and using some analytic
tools (computing volumes) to obtain results concerning Z .

6.2 Lattices

In this section we work with (R™), endowed with the following structures:
e A R-vector space structure (R", +, -), where + and - are defined componentwise.

e A Z-module structure (R™, +), obtained from the vector structure above by forgetting the scalar
multiplication.

e A normed vector space structure (R™, +, -, || - ||2), where the R-vector space structure is the one
above and the norm is defined as

-]l : R" = R
I, an)llz = Vaa? + -+ + lan]*.

We will denote by {eq,...,e,} the canonical basis of R™ as R-vector space, so that Z?H a;e; =
(a1,...,ap).

Given a vector v € R™ and a positive real number -, we denote by B(v;7) := {w € R" : |Jw —v|]2 <
7} the open ball of radius r centered at v and B(v;r) := {w € R" : ||w — v||2 < r} the closed ball
of radius r centered at v. The set of all balls {B(v;r) : v € R™,r > 0} is a basis for the topology in
R™. We say that a set A C R" is bounded if it is contained in some ball centered at 0 € R™. Recall
that a set is compact if and only if it is closed and bounded (Theorem of Heine-Borel).

We will usually work with subgroups of (R, +) which are not subvector spaces. For instance, Z" is
one such subgroup. Given vy, ..., v, € R", we will denote by (v1, ..., v, )z the Z-module generated
by v1,...,v, inside R™. Note that (vy, ..., v,)z is a countable subset, while the vector space gener-
ated by vy, ..., v, has cardinality |R|. On the other hand, whenever we talk about linear dependence
of elements of R", we will always be considering R"™ with the structure of R-vector space.

For x € R, we denote by | x| the integer part of x, that is, the maximum m € Z such that m < z.

Definition 6.5. A lattice in R™ is a Z-module generated by n linearly independent vectors. A basis of
a lattice H C R"™ is a basis of H as a Z-module.

Note that a basis of a lattice H consists of n linearly independent vectors of R™, so in particular is a
basis of R™ as R-vector space.
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Definition 6.6. A half-open parallelotope (resp. closed parallelotope) is a subset of R™ of the form

m
P:={v eR”:v:Zawi with 0 < a; < 1 forall i},

i=1
m
(resp. P={veR":v= Zaivi with 0 < a; < 1 for all z})
i=1
where vy, ...,v, € R" are linearly independent. We say that P is the half-open parallelotope de-
termined by vy, ..., v, (resp. closed parallelotope determined by vy, ..., v;)

Definition 6.7. Let H C R" be a lattice, and U = {uy,...,un} a basis of H. We will say that the
(half-open) parallelotope P determined by U is a fundamental domain for H.

Remark 6.8. One lattice has different fundamental domains; in other words, fundamental domains
are not unique.

In this section we need to compute volumes of parallelotopes in R"”. We mean by this the Lebesgue
measure of the parallelotope.

We will denote by p the Lebesgue measure on R™. We will not recall here its definition, but just one
very important property: it is invariant under translation; that is, for all measurable sets A and all
vectors v € R”, the set A+ v := {w + v : w € A} is measurable and we have

H(A) = (A + ).

Moreover the measure is normalized so that the measure of the standard cube {Z?:l Nei 0 <\ <
1} is equal to 1.
The following lemma can be proven in an elementary calculus course.

Lemma 6.9. Let P be the parallelotope defined by n linearly independent vectors v, . ..,v, € R",
where each v; = 37_, ajjej. Then p(P) = | det((ai;)1<ij<n)|-

Lemma 6.10. Let H C R" be a lattice, P, P' fundamental domains for H. Then j(P) = u(P").
Proof. Let B = {u1,...,u,} (resp. B’ = {u),...,u),}) be a basis of H defining P (resp. P’) and
let {e1,...,e,} the canonical basis of R™. Write u} = Z?Zl a;ju; with a;; € Z, u; = Z?Zl bije;,
uj = 3% cijej with bij, ¢ € Roand set A = (ai5)1<ij<n, B = (bij)1<ij<n. C = (¢ij)1<ij<n-
We have C' = AB. Since both B and B’ are Z-bases of H, we have det((a;;)1<ij<n) = £1. And by

Lemmal6.9]
§(P) = | det(B)| = | det(B)| - | det(A)] = | det(C)] = u(P').

Definition 6.11. Let H C R"™ be a lattice. We define the volume of H as

for some fundamental domain P of H.
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Lemma 6.12. Let H C R" be a lattice and P be a fundamental domain.
e foreach v € R" there exists a unique w € P such thatv —w € H.
o R" is the disjoint union of the family {P + u},cq.
Proof. See Sheet 9. O

Definition 6.13. A subgroup H C R" is called discrete if, for any compact subset K C R", H N K

is a finite set.

Remark 6.14. Since a subset of R" is compact if and only if it is closed and bounded, then a subgroup
H C R" is discrete if and only if for every r > 0, H N B(0; ) is finite.

Example 6.15. o Letvy,...,vym € R™ be m linearly independent vectors. Then (vi,...,0m)7
is a discrete subgroup. Indeed, given any v > 0, we can show that (v1, ..., vy)z 0 B(0;7) is
finite as follows:

First of all, complete vy, ..., v, to a basis v, . ..,v, of R™. It suffices to show that the inter-
section (v1, ..., v,)z N B(0;7) is finite.

Consider the linear map
f:R*"—>R"
v = e foralli=1,...n.
Thus f(zzb:1 Aiv;) = 2?21 Ai€;.
Linear maps between finite dimensional finite-dimensional R-vector spaces are bounded oper-

ators, that is to say there exists a constant C such that, for all v € R",
[f(@)ll2 < C - vl

Indeed, we have that

1FO aiei)lla <D lal - [ f(eq)ll2 < max{|a;| : 1< i <n}- > [|f(es)lla
i=1 i=1

i=1

Taking C = 2?21 I|.f(es)

o, it suffices to observe that

n n
D il =11 aeilla.
=1 i=1

max{]a;|: 1 <i<n} <

Therefore, we have that

n n
1) Nieilla < C- 1> Awilla. (6.6)
i=1 i=1
Assume now that v = Z?:l Aiv; with some \;, > rC. Then Equationl6.6 implies that

R 1
loll2 = I > eill2 > il >,
=1
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hence v & B(0;7). Thus

n
(V1,...,0,)z N B(0;r) C {; Aivi t A < Cforallz} ,
which is a finite set.
o Letv € R™ be a nonzero vector. Then (v,~/2v)7 is not a discrete subgroup of R" (see Sheet 9).

We have the following characterisation of discrete subgroups of R".

Proposition 6.16. Let H be a discrete subgroup of R". Then H is generated as a Z-module by m
linearly independent vectors for some m < n.

Proof. We can assume without loss of generality that H # {0}. Let
m := max{r : there exist vy,...,v, € H linearly independent in R"}. (6.7)

Since the numbers r appearing in (6.7) are bounded by n, we have that m is a finite number between

0 and n. Since H # {0}, we have that m > 1. Now let uj,...,u,, € H be m vectors which
are linearly independent in R™. Fix any v € H nonzero. Then the set {uq,...,un,v} is linearly
dependent by the maximality of m, so there exist A1, ..., Ay, € Rsuchthatv = Z;’il A\;u;. For each
j € N, we consider
m
vi= > (A= hiwi = jv— > |jAifu; € H.
i=1

On the other hand, v; € {w € R" : w = > " | a;u; with 0 < a; < 1} =: P, and the set P is compact
(because it is closed and bounded) so v; belongs to the finite set 4 N P. This implies already that
H is a Z-module of finite type (more precisely, we have proven that every v in H can be written as
v1 + Y it [ Ai]ui, so H is generated as a Z-module by the finite set G = (H N P) U {uq, ..., um}).
Since the set {v; : j € N} is finite, there must exist j, k different natural numbers such that v; = vy,
that is Y ;" (A — [JAi])us = doitq (kA — [kAi])u;. Since the w;’s are linearly independent, we
get that for all 4, (j — k)\; = [jA:;] — [k\i]. In particular, for all 4, A; € Q. Since this is valid for
allv € H, we get that H is a finitely generated Z-module contained in the (Q-vector space generated
by u1, ..., un. Pick a finite number of generators of H as Z-module (for example G), write each of
them as 22:1 Aiu; for A; € QQ and pick a common denominator d for all the coefficients A;’s of all the
generators. Then we have dH C (uy, ..., un)z. We now apply Theorem to conclude that d H
is a free Z-module of rank smaller than or equal to m. Since we know that dH contains the free Z-
module generated by dus, . .., du,y,, the rank must be precisely m. Let v}, ..., u,, € dH be such that
(uy,...,ul,)z = dH. Since dH contains the m linearly independent vectors duy, . . . , dy,, it follows
that uf, ..., u,, must span a R-space of dimension m, hence they are linearly independent over R.

Finally, Ju}, ..., Yu/, € H are linearly independent vectors such that (2uf,...,Tul )z = H. O

Corollary 6.17. Let H C R" be a discrete subgroup of R". The H is a lattice if and only if H is
generated by n linearly independent vectors.
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Now we will state the fundamental result of this section. The idea is the following: given a lattice
H, if a measurable set S C R" is big enough (with respecto to p), no matter what it looks like, it
must contain two elements which are “equivalent modulo H™, that is to say, two different elements
v1,v9 € Swithvy — vy € H.

Theorem 6.18 (Minkowsky). Let H C R"™ be a lattice and S C R™ be a measurable subset of R™
satisfying (1(S) > v(H). Then there exist vi,va € S different elements with vy — vy € H.

Proof. Sine P is a fundamental domain for H, Lemma implies that R" = | | (P + u).
Intersecting both sides with .S yields

S=|]n(P+uw).
ueH

Recall that H is countable. Therefore by the countable additivity of u, we get

u(S) = 37 u(S N (P +u)).

ueH

Since p is invariant by translation, we get that, for all u € H, u(SN(P+wu)) = pu((S—u)NP). Now
if the family of sets {(S — u) N P},cq was disjoint, we would get, using the countable additivity of

pagain, that 3 - (S —u) N P) = p(|,c (S —u) N P)) < pu(P). Hence

u(S) =Y uSn(P+u) =Y u((S—u)NP)=pu(||((S—u)nP)) <uP)
ucH ucH ueH
contradicting that 1(S) > v(H). Thus the family {(S — w) N P},cq is not disjoint, that is to
say, there exist uy,us € H, up # ug, with (S —u1) N P)N((S —u) N P) # (. Letw €
(S—wu)NP)N((S—wuz)NP). Then w = vy — u; = vo — uy for some vy,ve € S. And
V1 — V2 = u] — ug € H is nonzero. O

We will use a particular case of this theorem, when .S has some special properties.
Definition 6.19. Ler S C R".

e S is centrally symmetric if, forallv € S, —v € S.

e S isconvex if, for all vi,vy € S, forall X € [0,1], Avy + (1 — N)vg € S.

Corollary 6.20. Let H C R" be a lattice and S C R™ be a centrally symmetric, convex, measurable
set such that (S) > 2"v(H). Then SN (H \ {0}) # 0.

Proof. Let §' = 35 := {3v : v € S}. Note that 14(S’) = 5-(S) > v(H). Hence we can apply
Theorem [6.18]to S” and conclude that there are elements v1,ve € S” with v; — vy € H \ {0}. Note
furthermore that v1,v, € S’ implies that 2v1,2vy € S, and since S is centrally symmetric, also
—2vy € S. The convexity of S now implies that v; — vy = %(21}1) + (1 - %) (—2v9) € S. Hence
v —vp € SN (H\{0}). O
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6.3 Number rings as lattices

In this section we want to study number fields of degree n by embedding them into R"”, in such a way
that the ring of integers corresponds to a lattice.

Let C be the field of complex numbers. Inside C we have the subfield of rational numbers QQ, which
can be characterised as the smallest subfield of C (or, in other words, the prime field of C, that is to
say, the intersection of all subfields of C). We also have the subfield of C defined as Q := {zeC:
z is algebraic over Q}. Q is an algebraically closed field, and clearly it is the smallest subfield of C
containing QQ which is algebraically closed, hence an algebraic closure of Q.

Let K /Q be a number field of degree n and let K be an algebraic closure. Since K is algebraic over
Q, K is also an algebraic closure of Q and hence isomorphic to Q. Fixing one such isomorphism, we
can identify K with Q and K with a subfield of Q C C.

Since char(K) = 0, K is separable, and therefore (see the Appendix to section 2) there exist n
different ring homomorphism (necessarily injective) from K to Q fixing Q. Since the image of any
ring homomorphism ¢ : K — C must be contained in Q, we have that there are exactly n different
ring homomorphisms o : K — C fixing Q. We can consider the ring homomorphism

Py: K — cn
x = (o1(x),...,00(2))

Let o : C — C be the complex conjugation. Then, for all ¢ € Homg (XK, C), we have that a 0 0 €
Homg(K,C), and o o 0 = o if and only if o(K) C R. Call r; the number of ring homomorphisms
o : K — C such that « o 0 = 0. The remaining homomorphisms can be collected in pairs {0, « oo},
so there is an even number of them. Let us call 275 this number, so that n = 1 + 275.

Let us enumerate the n homomorphisms in Hom( X, C) in the following way:

e Letoy,...,op, bethe r; homomorphisms with image contained in R.

e Let us enumerate the ry pairs {0, a o o'} and, for each pair, choose one of the two homomorph-
isms. The chosen homomorphism of the -th pair (1 < ¢ < r9) will be o, 44, the other one will

be 07 iyt

Now we can define a ring homomorphism
d: K >R xC™
x> (o1(z), ... 0r (), 0p 41(X), . ooy Opy 4y (X))

Definition 6.21. For z = = + iy € C, denote by Rez := x the real part of z and Imz := y the
imaginary part of z. The map C — R x R defined as z — (Rez,Imz) is an isomorphism of R-vector
spaces. Define the map

P: K —R™ x R™

x> (o1(2),...,00 (), Reor, +1(x), Imoy, 11(x) . .., Reoy +ry (x), Imoy 4ry (2)).

Remark 6.22. o The map ® above is injective (because each o; is injective), and a group ho-

momorphism (of the additive groups (K, +) and (R",+)). Moreover, both K and R"™ have a
Q-vector space structure, and ® preserves it.
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o & provides us with a way to see number fields inside n-dimensional R-vector spaces. We are
interested in subgroups of K that give rise to lattices in R™.

Proposition 6.23. Let M C K be a free Z-module of rank n, say with basis {x1, ..., z,}. Then
o O(M) is a lattice in R"™.
o Let A= (O'i(xj))lgi,jgn- Then U(@(M)) =27 " ’ det A’

Remark 6.24. With the notations above, the discriminant of the tuple (x1, . .., z,) € K" is defined as
the square of det A. Moreover (see Proposition 2.8-(e)) the discriminant of (x1, ..., xy,) is nonzero.

Proof. ® : K — R”" is an injective morphism from (K, +) to (R™,+), hence it carries free Z-
modules into free Z-modules, and transforms Z-bases into Z-bases. Therefore ®(M) is a Z-module

of rank n in R™ with basis ®(z1),...,®(z,). To prove that it is a lattice, we need to see that the n
vectors ®(z1),. .., P(z,) are linearly independent over R. The coordinates of ®(z;) are
(01(2i), - -y o0 41(@3), Reor, 41 (2i), Imoy, 41 (i) -, Reor, 17y (27), Imo, 4, (2))

Let B be the matrix with i-th row as above, forall i € {1,... ,n}. We will prove that det B # 0, thus
showing that the vectors ®(z1), ..., ®(x,) are linearly independent over R.

For j = 1,...,7y, call z; the column vector with entries (o, 4;(2;))i=1,... n, and denote the column
vector whose entries are the complex conjugates of the entries of z; by z;. Then we have that

B = (1| Reny [ may |1 ) = (2] 282 | 252 [
Hence
detB:det(: z |z :)+det(: z | % :)
: 2 7| 2 24 :
—i—det( Zj | 2 1)—i—det(i Zj | 2 :)
2 |2 |- 2l 2 |
—1 : : 1 S AN : _ -
=gt (a0 ) s g (gl 0) = grae (g ]z )
Repeating this process forall 7 = 1,..., 7, we get

1\
det B = () det A,
21

where A’ is the matrix with i-th row given by

(01 (xl)7 R UT1+1($i)’ UT1+1($1')7 Qo O-T1+1(xi) c s Ot (xl)v QO Tpr +ry (xl))
Since the columns of A and A’ coincide up to a permutation, we have | det A’| = |det A| # 0. This
proves that ® (M) is a lattice. Moreover v(®(M)) = | det B| = 27"2| det A|. O

Definition 6.25. Let K be a number field.
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Let a C Zg be a nonzero integral ideal. We define the norm of a as N (a) = [Zk : a].

Let I C K be a fractional ideal. We define the norm of I as N(I) = N(xI)/|Ngg(z)
x € Z is some element different from zero such that x1 is an integral ideal.

, where

Remark 6.26. Let K be a number field. Then N : Z(Zg) — Q* is a group homomorphism (See
Sheet 9).

Corollary 6.27. Let K/Q be a number field of degre n = r1 + 2r9 and a an integral ideal of L.
Then we have that ®(Zg ), ®(a) are lattices of R™ and

v(P(Zg)) =277/ |disc(Zk)|, v(P(a)) =2""24/|disc(Zgk)|N(a).

Proof. Since Zy is an order of K (see Corollary 3.17-(a)), it is a free Z-modules of rank n. By
Corollary 3.17-(c), a is also a free Z-module of rank n. The formula for the volume of ®(Zj ) follows
directly from the definition of disc(Z ); the formula for the volume of ®(a) follows from Proposition
3.19. O

6.4 Finiteness of the class number

Let K be a number field of degree n. As in the previous section, we denote by r; the number of
embeddings of X' — R and ry = (n —r1)/2.

Proposition 6.28. Letr a C Zx be a nonzero integral ideal. There exists a € a different from zero
such that

Nie(@| < (2) VAN @),

Proof. We will apply Corollary [6.20/ in R™. First we define the measurable set .S as follows: Let
Ai,..., Ay and By, ..., B,, be some positive real numbers. Consider the set S C R" defined by

S = {(xla- . '7x7"17y17y/17' e 7y7‘27y/7'2) :
i < Ajforalli=1,...,r1,/y? +y;> < Bjforallj=1,...,r}. (6.8)

The set S is centrally symmetric (clear) and convex: if we have (z1,..., %, Y1, Y 15«3 Yrgs Y’ 7“2)
and (Z1,..., %, J1,1, - - - > Urs» Urp) in S, then for any X € (0, 1),

[Az; + (1= N)&| <A - | + (1= Al - [3] < Ay,

and

VO + (1= N5 + (g + (1= N)5)? <
Y O)? + )2 + /(L= N)5)% + (1= V)2 <

N8+ + 1= A\ + @) < By,
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Its Lebesgue measure can be computed as

T1 T2

w(S) =J@4) - [[=B}) =2=" [[ 4[] B:.
i=1  j=1

i=1 j=1

On the other hand, we can embed K <— R" via the map ¢ from Definition H = ®(a)isa
lattice of volume v(H) = 272 /|disc(Zk )| N (a) (Corollary [6.27).
Lete > 0. Choose Ay,..., A, , Bi,..., By, (depending on ¢) positive integers such that

T1 T2 2 79
T4 ] B; = <W> V| dise(Zg)|N(a) + ¢,
i=1  j=1

and call S. the set defined by (6.8]).

Then it holds that 2"v(H) < u(S:), so we can apply Corollary and conclude that there exists
some nonzero ve € S:NH. Let a. € asuch that ®(a.) = v.. The fact that (a.) € S, means that, for
alli = 1,...,r1, |oi(ac)] < Aj, and forall j = 1,...,7r9, \/(Reoy, 1;(a:))? + (Imoy, 4j(as))? <
Bj. Therefore

=1

Mialadl = lowtaol - I losa < [LA Q] 8 = (%) ViseZalnG)
j=1 =1 j=1

Let C = (2)" /|disc(Zk)|N(a) € R, |C] the integer part of C, and choose ¢ such that C' + & <
|C] + 1. Then the greatest integer A satisfying that A < C' + ¢ is |C|. But [Nk g(ac)| is an integer
which is smaller than or equal to C' + €. Thus [N /g(a:)| < [C] < C.

0

Proposition 6.29. Let a C Z a nonzero integral ideal. There exists a € a different from zero such

that
4\ n! .
Nigel@l < (1) 2N )

T
Proof. See Sheet 10. [
Proposition [6.28] (or Proposition will be a key ingredient in the proof of the following result.

Theorem 6.30 (Dirichlet). Let K be a number field. The class group CL(K) = Z(Zk)/P(Zk) is
finite.

Before proceeding to the proof, let us establish a technical lemma.

Lemma 6.31. Let K be a number field, and C € CL(K) be a class of ideals. Then there exists a
nonzero integral ideal a of Zy which belongs to C and satisfies

N < (2) Vgl
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Proof. Let I be a fractional ideal in C. Then I~! = {a € Zk : al C Zk} is also a fractional ideal.
Therefore there exists a nonzero € K such that b = 1~ is a nonzero integral ideal. We can apply
Proposition [6.28] to the ideal b; there exists b € b nonzero such that

Nigal®) < (2) VIEERING) = (2) V@RIV oV ()

The ideal a = %I belongs to the class C, is contained in Zx and furthermore

N(a) = MN(I) < <i>’”2 V|disc(Zg)|.

 [Ngjo(@)]
u

Proof of Theorem[6.300 Since every class C' € CL(K) contains a nonzero integral ideal of norm
smaller than (2)" /|disc(Z)| (because of Lemmal[6.31), it suffices to prove that, for any M € N,
there are only finitely many integral ideals of norm smaller than M. First of all, note that it suffices
to see that there are only finitely many prime integral ideals of norm smaller than M indeed if
a = [[;_, p;" is a factorisation of a into a product of prime ideals, then N(a) = [[;_; N(p;)*,
so if N (a) is smaller than M, the only prime ideals that can occur in the factorisation of a are those
with norm smaller than M, and the exponents e; that can occur must also be smaller than M.

Assume now that p is a prime integral ideal of norm smaller than M, say m. Then 1 € Z /p satisfies
thatm -1 =0 € Zg /p, thus m € p. But we know that that there are only a finite number of maximal
ideals of Zx containing a given ideal I (Corollary 5.5). In particular, for I = (m), we get that there
are only finitely many prime ideals p of Zx of norm m. O

Remark 6.32. o Let K be a number field. Then CL(K) is generated by the classes of the prime
ideals p € Z(Z) such that N (p) < (%)T2 V/|disc(Zg)|. This allows one to compute explicitly
the class group of a given number field, provided one knows how to compute the prime ideals
of given norm.

e The same proof, but using the better bound of Proposition[6.29) shows that CL(K) is generated
by the classes of the prime ideals p € Z(Zy) such that N (p) < (%)T2 % V|disc(Zg)|.

Remark 6.33. Let E /K be an extension of number fields, and let p C Z be a nonzero prime ideal.
The ideal pZr generated by the elements of p inside Z g need not be prime anymore, but, since g is
a Dedekind domain, it will factor in a unique way as a product of primes

pZp = | [ B
=1

The ideals *3; are the prime ideals of Z.g containing pZ (Corollary 5.5). We will say that*B1, ..., B,
are the prime ideals of Z g lying above p.

Remark 6.34. Let K be a number field, p € 7 a nonzero prime. Then the prime ideals of Z above
(p) are those whose norm is a power of p.
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Proposition 6.35. Let K be a number field, and assume that there exists o € Zy such that Z[a] =
Zk. Call f(X) € Z[X] be the minimal polynomial of o over Q. Let p be a prime, let f(X) € Fy[X]
be the reduction of f(X) mod p, and let

= H@i(X)
i=1

be a factorisation of f(X) into monic irreducible polynomials in F,[X]. For each i = 1,...,r,
choose q;(X) € Z[X] reducing to G;(x) mod p. Then the prime ideals of Z of norm equal to a
power of p are given by

pi = (P, gi(a))zy, i=1,...,7

Example 6.36. o Let K = Q(\/7). Then Zx = Z[\/7], and disc(Zg) = 4 - 7. Since K C R,
ry = 0and n = 11 = 2. The quantity C = (2 ) |disc(Zk)| satisfies C < 6. Therefore
CL(K) is generated by the classes of the nonzero prime ideals of Zx of norm less than or
equal to 6. In particular, CL(K) is generated by the primes above 2, 3 and 5. Below we
apply Corollary6.33to 7.y = Z[\/T] with o = /7. The minimal polynomial of o over Q is
flx)=22-7.

— Prime ideals of norm a power of 2: f(z) = 2> —7=2>4+1 = (z+1)? (mod 2), hence
the only prime ideal of Zrc above (2) isp = (2,1 ++/7) = (3 + V7).

— Prime ideals of norm a power of 3: f(z) = 2> — 1 = (x + 1)(x — 1) (mod 3), hence
the only prime ideals of T above (3) are p1 = (3,1 +/7) = (5 + 2V/7) and ps =
(3,V/7—1) = (5—2V7).

— Prime ideals of norm a power of 5: f(x)
the only prime ideal of Zy above (5) is p =

-2 (mod 5) which is irreducible. Hence

x?
Therefore CL(K) is generated by the classes of principal ideals. Thus CL(K) = {1}.

Proof of Proposition[6.33] Leti € {1,...,r}, and fix a root 8; € F, of g;(X). Consider the ring
homomorphism

D, : Z[X] — Fp[B;]
X =B,
acZ—aeclF,=(Z/pZ).

Since ®;(f(X)) = 0, we obtain the following commutative diagram for some morphism ¢;:

é . J—

Z1X] =2~ F, [B)
| A
Z[a]

Let p; = ker ¢;. Since F,[3;] C F, is an integral domain, we obtain that Z[a]/p; — F,[B;] is an
integral domain, and p; is thus a prime ideal. We will now show that p; = (p, ¢i(@))z[q)-
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Clearly ¢;(a) = 0 for all a € pZ and ¢;(g;(«)) = g;(3;) = 0, hence we have the inclusion.

3 {(9(0)) = F(6x(a) =
9(B;), where g(X) € IF,[X] is the reduction of g(X') modulo p. Thus g(X) is divisible by the
minimal polynomial of 3; over [, that is g;(X), say g(X) = g;(X)h(X). Taking h(X) €
Z[X] reducing to h(X), we have that g(X) — ¢;(X)h(X) € Z[X] has coefficients in pZ, and
therefore g(a) € (gi(a),p)z[o)- This proves the other inclusion.

U

N

Let b € p, say b = g(«) for some g(X) € Z[X]. Then 0 = ¢;(b) = ¢;

This proves that the r primes p; are primes of Zg above pZ. Reciprocally, let p be a prime over pZ,
and consider the projection ¢ : Z[a] — Z[a]/p. Since p is a proper ideal which contains p, it follows
that the composition ¢ of the natural inclusion Z — Z[«] with ¢,

has kernel ker()) = pZ.

Thus we know that Z[«]/p is a field (all nonzero prime ideals in Z are maximal), and we have a
natural inclusion IF,, = Z/pZ — Z[a|/p. The element @ := ¢(«) is algebraic over [F,, (it satisfies
f(@) = ¢(f(a)) = 0). Thus we have the inclusions F,, C F,[a] C F,, together with an isomorphism
Fp[a] ~ Z[a]/p (obtained by extending the inclusion F,, < Z[a]/p to F,[X] — Z[a]/p C F, by
sending X to @, and observing that the kernel is the minimal polynomial of o over ).

Moreover, from the equation f(@) = 0 we obtain that @ is a root of some of the g;(X). Since
q;(X) € [F,[X] is monic and irreducible, it is the minimal polynomial of & over F,,. This implies that
we have isomorphisms

FplBi] ~ FpX]/(7;(X)) ~ Fplal.
Hence, the map ¢ is the composition of one of the projections ¢; considered above with an isomorph-
ism 7 : Z[a]/p; ~ Z]a]/p. Therefore p = ker(7 o ¢;) = ker ¢; = p;. O

6.5 Dirichlet Unit Theorem
The aim of this section is to prove the following result:

Theorem 6.37 (Dirichlet). Let K be a number field of degree n = r1 + 2rs. Then there is a group
isomorphism
U 7%~ e x LT

between the (multiplicative) group of units of Zy and the direct product of the finite (multiplicative)
subgroup pg of Ly, consisting of all roots of unity contained in K, and the (additive) group Zrtra=l,

Remark 6.38. Note that, in both Zj; and ux the group structure is written multiplicatively, whereas
in Z" 1271 the group structure is written additively.

Remark 6.39. More precisely, we will prove that there exist &1, . .., & 4ro—1 € Lje such that every
element u € Zj. can be written in a unique way as
_ ny Nri4rg—1
w=p G T

for some root of unity i € K and some tuple (ny, ..., My 1ry_1) € ZMH7271
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The remark above motivates the following definition.

Definition 6.40. Let K be a number field of degree n = r1 + 2rs.

We will say that a tuple (&1, . .., &y 4ro—1) € (Z7)™ 27 is a fundamental system of units if; for all
u € ZIX< there exist a root of unity |4 € Zy and ny, ..., Ny 4ro—1 € Z such that
Nri4+ro—1
u=pu- g?l ..... 5T1i—r22—1 .

The proof of this theorem will be given gradually through a series of steps (Lemmas
and Corollaries [6.43).
Consider the following map

K R™ x C" RT1+T2
at——=>®y(a) = (01(a), ., Or 45y (@) == ([o1(a) ;.. . |07, 43 (a)]),
where @ is the map considered before Definition [6.21] and, in the second map, | - | : R — R is the

usual absolute value, and | - | : C — R is the norm given by |z + iy| = /22 + y? forall 2,y € R.

Definition 6.41. Let K be a number field of degree n = r1+2ry. We define the logarithmic embedding
as the group morphism
Prog 1 K™ — R71H72
a (logloi(a)l, ..., log|or 1r,(a)]).

Recall that, if K is a number field and a € Zg, then a € Zj if and only if Ng/g(a) = +1 (cf.
Lemma 3.10).

Lemma 6.42. Let K be a number field of degree n = r1 + 2r9 and B C R %" g compact set.
Consider the set
B':={a € Z) : Piog(a) € B}.

Then there exists an M > 1 such that, forall a € B' and all i = 1,... 1 + 1y,
1
M < ‘O’Z(a)‘ < M.

Proof. Since B is bounded, there exists an NV such that, forall y = (y1,...,Yr,4r,) € B, lyi| < N
foralli = 1,...,r1 + 7. If a € B’, then ®1o4(a) € B, and therefore |log |o;(a)|| < N for all
1=1,...,7r1 + 2. Hence

e N <loi(a)| < e foralli=1,...,r +ro.

Lemma 6.43. Let K be a number field of degree n = r1 + 2ry and B, B’ as in Lemma Then
B’ is finite.
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Proof. By Lemmal6.42] there exists M > 1 such that, foralli = 1,...,71 + 9, |0i(a)| < M for all
a € B'. Since 04, +r, () is the complex conjugate of o1, (z) forall i = 1,..., 7y, the inequality
|oi(a)| < M actually holds forall i = 1,...,71 + 2ra = n.

For any = € K, the minimal polynomial of x over QQ is given by

n

FX) =T[(X = oi(x))

i=1
(cf. Proposition 2.4). Therefore the coefficients of f(X) are given by the elementary symmetric
polynomials S;(X1,...,X,) € Z[X1,...,Xy], j =1,...,n, evaluated at 01 (z), ..., on(x). These
polynomials are homogeneous polynomials of degree 7, and they do not depend on z € K. Therefore,
for all a € B’, we have that the coefficients of the minimal polynomial of a over Q are of the form
Sj(o1(a),...,on(a)), and therefore can be bounded in terms of  and M. But these coefficients must
belong to Z. Hence there are only a finite number of possible minimal polynomials over QQ for the
elements of B’, thus B’ is finite. O

Corollary 6.44. ®,.(Z}) is a discrete subgroup, hence a free Z-module of rank less than or equal
tory + ro.

Proof. This follows from Proposition O

Corollary 6.45. The kernel of ®1,g] ) is a finite group, consisting of the roots of unity contained in
L.

Proof. Take any compact B of R™ "2 containing 0. Then ker(®jog| Z;{) C B’, hence it is finite. If

a € 7y belongs to a finite subgroup, it must have finite order, so there exists s € N with ® = 1. In
other words, a is a root of unity.

Reciprocally, if a € Zx is a root of unity, then it satisfies that, for some s € N, a® = 1. Therefore, for
alli=1,...,7 + 12, 0i(a)’ =1, thus log|o;(a)| =log1 = 0, and ®je(a) = 0. O

Lemma 6.46. Let K be a number field. Then
Ly ~ px X Prog(Zi)
Proof. We have the exact sequence of groups
1— ker((Plog’Z;() — Ly = Prog(Zy) — 0.

By Corollary we know that ker(@log\zlx{) = k., and by Corollary we know that ®o(Z )
is a free Z-module, hence the exact sequence splits. 0

Lemma 6.47. Let K be a number field of degree n = 11 + 2ra. The rank of ®io5(Z};) is less than or
equal tory + 19 — 1.

Proof. Let a € Zj.. Then the norm of a is £1, thus

r1+r2

+1 = Nggla) = [Joila) J] oila)(aoai)(a)
=1

i=r1+1
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where o : C — C denotes the complex conjugation. Applying log | - | to both sides, we get

r1 r1+72
0="> loglo(a) +2 Y logloi(a)
=1 i=r1+1
Therefore P4 (a) belongs to the subspace
r1+r2
W= {(y1, - Yri+r) ERITT2: Zyz +2 > g =0}
i=r1+1
Therefore <I>10g(ZIX<) must have rank smaller than or equal to dimg W = r1 + 179 — 1. O

Up to this point, we have proven that Z - is not very big, that is, it is finitely generated, and we even
have a bound for the number of generators of the free part. That was the easy part. Note that, up to
now, we have not used Minkowsky’s Theorem or its corollary. The hard part is to show that,
indeed, the torsion-free part of the group Zj; has 1 42 — 1 free generators; and for this we will need
Corollary

Lemma 6.48. Let K be a number field of degree n = 11 + 2ry. The rank of ®iog(Z ) is equal to
r1+ry— 1.

Proof. We already know one inequality by Lemmal[6.47] To show the other inequality, we will prove
that ®1,4(Z ) cannot be contained in any proper vector subspace of W = {(y1,...,Ypr 4r,) €
Rtz s 3T g+ 230 g = 0}

Assume then that there exists W, C R"*"2 a proper subvector space of IV containing ®j4(Z5-). The

projection W — R™ 72~ given by (y1,.. ., Yry4r) = (Y1, - -+ Yrytro—1) is an isomorphism of R-
vector spaces. Via this projection, Wy corresponds to a subvector space of R" "2~  In particular,
there exists a vector (c1, ..., Cr1m—1) € R™1T7271 guch that, for all w € W, Z;;{”_l ciw; = 0.
We will find an u € Zj such that
ri+reo—1
Z ¢ilog |oi(u)| # 0.
i=1
Let us fix some constant
2\ "
M > () |disc(Zg)|-
7
The main step in the proof of this lemma is to show that, for any tuple A = (Ay,..., Ay 4ry—1) €
RZ 271 of positive real numbers, there exists an a € Zg such that [Ny /0(a)| < M and
r1+ra—1 ri+ro—1 r1+ro—1
Z ¢ilogloi(a)| — Z cilog A;| < Z |ci| log M. (6.9)
i=1 i=1 i=1
We proceed as follows: given A = (Ay, ..., Ap4ry—1), set

7’1+7“2 = 1
\/H 2A H? T1+1
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Then, like in the proof of Proposition we consider the set S C R"1+2"2 defined by

S: {(xla"'axruylay/la‘"7y7‘27y/7’2):
|z §Aif0ralli:1,...,r1,\/yj2+y;2 < Ajforallj =7 +1,...,71 +r2}.

We already saw in the proof of Proposition [6.28] that .S is a centrally symmetric and convex set of
Lebesgue measure

T1 T2 71 r1+72
w(S) =J@4) - [[(=B}) =27 [[ 4 [ 4F=2"7"M > 277 20(D(Zk)).
=1 7j=1 =1 j=r1+1

Therefore by Corollary [6.20] there exists ap € Z such that ®(aa) € S. That means that
loi(aa)| < Ajforalli=1,....711 + 19

Now we will play around with these inequalities. First note that

n r1 r1+r2 r1+72
INkjalaa)l = [ loi(aa)l = [Jloi(aa)l J] loi(an)l <HA [ 47=Mm (610
i=1 =1 i=r1+1 =1 1=r1+1

To complete the main step, we need to check that Equation (6.9) holds for a = a .
On the one hand, since ap € Zg, its norm satisfies | V. K/Q(a A)| > 1, and on the other hand, since
aa € S, we have that

-1 -1

loi(aa)| = [Ngglaa)l - | []loj(aa)l >1- | []loj(an)l > AM
i j#i

Therefore we have, forall: = 1,...,n,
AMT < |oi(an)| < A;
We now take logarithms in this equation (recall that all A; are positive numbers)
log A; —log M <log|oi(aa)| < log A;
Multiplying by —1 and summing log A; we obtain that, foralli =1,...,n
0 <log A; — log|oi(aa)| < log M.

Now we can estimate the difference between 711271 ¢; log |o;(aa)| and 3717271 ¢ log A; as
follows:

r1+ro—1 ri+ra—1
Z cilogloi(aa)| — Z cilog A;
i=1 i=1

rit+re—1 ritra—1

Z i(log|oi(aa)| —log A;)| < Z |lci| log M.

=1 =1
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This completes the main step.
Let M; > Zf;{”*l |ci| log M. Now we will apply the main step to the following tuples A: For

each m € N, choose Agm), e Ag’ﬁzm_l > 0 such that 3721271 ¢; log Al(m) = 2mM, and set
Alm) .— (Agm), ey A,(flnlrrl). Then (by the main step) there exists a,, € Zj satisfying that
|Nk/g(am)| < M and Equation (6.9), that is to say,
ri+reo—1
Z cilogloi(am)| — 2Mim| < M.
i=1
Therefore we have that
ri+reo—1
Z cilogloi(am)| € ((2m — 1)My, (2m + 1)M;).
i=1
This implies that the sequence of numbers {37127 ¢;10g | (am )| }men is strictly increasing.

But, on the other hand, the principal ideals a,,Zx have all norm bounded by M, and we know that
there are only a finite number of integral ideals with bounded norm (see the proof of Theorem [6.30).
Therefore there exist m; # mg such that a,,, Zg = a,,ZK. Hence there is a unit u € Z? such that
G, = UG, and

r1+ra—1 ri+ra—1
Z cilogloi(am,)| = Z cilogloi(uam,)| =
i=1 i=1
ri1+ro—1 r1+ra—1
Z cilog o (u)| + Z cilog |oi(am,)|,
i=1 1=1
thus
ri+ra—1 ri+re—1 ri+re—1
Y clogloi(w)| = Y cilogloilam) — Y eilogloi(amy)| # 0.
i=1 i=1 i=1

This shows that u ¢ Wy, and concludes the proof of Theorem [6.371
O

To finish this section we will see how Dirichlet Unit Theorem applies to the case of real quadratic
fields, allowing a complete description of the solutions of the Pell equation considered in Example
6.1]

Let d € Z be a squarefree, positive number, and let K = Q(+/d). For the rest of the section, fix an
embedding K — R. We have that n := [K : Q] = 2, and, since K C R, 7o = Oand r; = 2.
Therefore r1 + ro — 1 = 1, and from Dirichlet Unit Theorem we obtain:

Corollary 6.49. Let K be a real quadratic field. Then 75 ~ jix X 7.

2mir

Note that the only roots of unity in R are +1 (since the m-th roots of unity in C are e m , rr =

1,...,m, and of these only £1 are real). In particular, since K C R, the only roots of unity of K are
+1. Hence
Ly ~{£1} x Z.
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1

For each z € Z7, we have that —z, 2~ 1, —z~! also belong to Z[X(. Assume that z > 0 (otherwise,

interchange z and —z). Then 21 >0, —Z, —z~1 < 0. Moreover, if z # 1, one of the two numbers

1

z, 2”1 must be greater than 1, the other smaller than 1. Interchanging z and 2! if necessary, we can

assume z > 1. Then

1

2>1>21>0>—2"1> 1> —2.

If we consider only the units which are > 0, then these form a group isomorphic to Z, say Z[X{,>0.
There are two elements z, 27! € ZIX<7>O that generate the group (those corresponding to +1 € Z).
The neutral element in Z, which is 0, corresponds to the neutral element of ZIX{7>O, which is 1, so
z # 1, and therefore one of the two numbers z, 2~ € R is greater than 1, and the other smaller than
1. Denote by Zp -1 the units that are > 1. We call the fundamental unit of Z i the generator of ZIX(7>0
that belongs to Z ~1 (note that this terminology differs slightly from Definition and note also
that it depends on our choice of embedding X' C R). Thus in order to find all units of Z, it is enough

to find the fundamental unit z; = a; + b1Vd € ZIX( >1; then

Ly = {*(a1 + bl\/g)m :m € L}

LY oo = {(ar + V)™ : m € Z}

L sy = {(a1 + biVd)™ : m € N}
Note that, since

Ngjo(21) = (a1 + b1Vd)(a1 — b1Vd) = £1,
either zfl = a; —byV/d (and —21—1 — —ay+b1Vd), or Z1—1 — 4y +by/d (and —2’1_1 bV,
We have
{21,277, =21, =271} = {a1 + biVd, a1 — b1Vd, —ay + b1V d, —ay — by Vd}.

Of these four numbers the biggest is |ay| 4 |b1[v/d. Therefore we conclude that a3, b; > 0, and the
equation +1 = a? — b3d, together with the fact that z; # 0, implies that b; > 0.
Call 2, = @, + by V/d, then

Gm+1 = ama1 + dbpyby

bmt1 == ambr + a1by,
Note that the sequence {b,, }men is increasing. Hence by := min{b € N : Ja € N such that a®> —
db® = 41}. In this way one can explicitly find the fundamental unit z1.

We now focus on the solution to Pell’s equation. We distinguish two cases:

e d=2,3 (mod 4). Then Zy = Z[\/d]. For any m € Z, define z,,, = a,, + by Vd := 2.

There are two possibilities:

- If Ng/g(z1) = 1, then for all m € Z we have a?, — db;,, = Ngg(z1)™ = 1. The
solutions of the equation 22 — dy? correspond to the elements in L.

— If Ngg(21) = —1, then for all m € Z we have a2, — dbZ, = N g(z1)™ = (=1)™. The
solutions of the equation 22 — dy? correspond to the elements in (—1, 27) C Z..
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e d=1 (mod 4). Then Zg = Z[15Y4].

Write

1+ d
21:(1'1+b'< +2f>:”;1+y21\/&.

For each m € N, define z,, = (2,,/2) + (ym/2)Vd := 2}". Now we have to distinguish cases,
according to the parity of b:

— Assume b is even. Then for all m € Z, a,, := x,,/2 and by, := y,,,/2 are integers, and
they satisfy a2, + db?, = Ngg(z1)™ = (£1)™.
* Assume Ny /g(z1) = 1. Then all units correspond to solutions of 2 —dy? = 1.

+ Assume N g(z1) = —1. The solutions of > — dy* = 1 correspond to the units in
(—1,2%) C Zj.

— Assume that b; is odd. Then

1 1 22 +vy2d 2z 1 (22 +y2d
22:2—2(381-1-?41\/&)2:5( L 2y1 + ;yl\/g)=2<12yl+fc1y1\/g>

Note that, since d = 1 (mod 4), :c% + y%d is divisible once and only once by 2, hence

z3+yid

x9 = =L57= and yo = x1y1 are both odd.

1 1
Z3 = 273(x1 +yVd)? = §($? + 3a1ytd + (3aiy: +yid)Vd) =

1
g(xl(ﬁ + 3yid) + y1 (322 + yid)Va)

Now both 22 + 3y?d = (£4 + y2d) + 3yid = 4(£1 + y1d) and 32% + y?d = 322 +
(£4 4 2%) = 4(23 £ 1) are divisible by 8, hence x3,y3 are both even, and a3 = % and
bs = % is a solution of z? — dy* = +1.
In other words, we have shown that a,,, := x;,,/2 and b,,, := y,,, /2 are integers if and only
if 3|m, and they satisfy a2, + db3, = N g(z1)" = (—1)™.
* Assume Ng/g(21) = 1. The solutions of 22 — dy? = 1 correspond to the units in
(—1,23) C Zk.
+ Assume Ny g(2z1) = —1. The solutions of % — dy* = 1 correspond to the units in
(—1,29) c Z%.

Remark 6.50. The smallest solution to the Problem of the Cattle of the Sun (see Example and
Sheet 8) has 206545 digits (in base ten).
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