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I. PHONON DISPERSION BY INELASTIC X-RAY SCATTERING
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Figure 1: Dispersion (a) along the h direction and (b) along the l direction measured at room temperature. The solid line is
the result from the fit and the dotted line is a guide for the eye following the soft mode.
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Figure 2: Dispersion along the Γ–Z–U path at 200 and 300 K measured by Inelastic X-Ray Scattering.
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II. CALCULATION DETAILS

The calculations were carried out within the Density Functional Theory framework as implemented in the VASP
code, using the Perdew-Burke-Ernzerhof approximation to the exchange-correlation functional. The strong electronic
correlations were taken into account within the GGA+U approach. The Coulomb repulsion was set to U=9.5 eV
for the d orbitals of Cu, while the exchange coupling was set to J=1.0 eV. We employed a plane-wave energy cutoff
500 eV for the basis set in all our calculations. A 3×2×3 (3×2×1) k-mesh was used in the calculations of the Pmmn
(Pcmn) primitive cell. Atoms were allowed to relax until atomic forces became smaller than 0.01 eV/Å. The phonon
dispersions were calculated using the frozen-phonon approach in 120-atom supercells (2×1×2) supercells with respect
to the Pmmn primitive cell).

Figure 3: Phonon dispersion of Francisite in the high symmetry phase (Pmmn) as computed in its primitive cell.

Figure 4: Phonon dispersion of Francisite in the high symmetry phase (blue) and low symmetry (red) phases. The former has
now been computed in a 1x1x2 supercell with respect to its primitive cell, so that it can be compared to the phonons of the
low symmetry phase. Note that the Z point of the primitive cell of the Pmmn phase is folded onto the Γ point of the supercell
shown here. Thus, the antipolar mode in the primitive Z point is now at the Γ point slightly below the ferroelectric mode. The
low symmetry phase shows no unstable modes.


