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Abstract. Anonymous veto networks (AV-nets), originally proposed by
Hao and Zielinski (2006), are particularly lightweight protocols for eval-
uating a veto function in a peer-to-peer network such that anonymity
of all protocol participants is preserved. Prior to this work, anonymity
in all AV-nets from the literature relied on the decisional Diffie-Hellman
(DDH) assumption and can thus be broken by (scalable) quantum com-
puters. In order to defend against this threat, we propose two practical
and completely lattice-based AV-nets. The first one is secure against pas-
sive and the second one is secure against active adversaries. We prove
that anonymity of our AV-nets reduces to the ring learning with er-
rors (RLWE) assumption. As such, our AV-nets are the first ones with
post-quantum anonymity. We also provide performance benchmarks to
demonstrate their practicality.

1 Introduction

In many jury or executive committee votings, certain results are only effective if
supported by all members. Such votings, of which there are many instances in the
real world, are called veto votings. Very recently, for example, the Supreme Court
of the United States ruled that guilty verdicts for criminal trials be unanimous.3

In order to protect each voter’s freewill, veto votings are often required to not
reveal any sensitive information except for the final result, i.e., whether or not
at least one voter vetoed. Such votings are called anonymous veto votings.

Solutions for electronic anonymous veto protocols have a long history. In fact,
David Chaum proposed the first such protocol, named dining cryptographers
network (DC-net), more than three decades ago [5, 6]. Since Chaum’s original
protocol returns the correct result if and only if an odd number of voters decides
to veto, modifications of Chaum’s protocol have been proposed to solve these
and further issues (see, e.g., [11]).

However, DC-nets assume pairwise shared keys among the voters and their
complexity is quadratic in the number of voters. In order to overcome these lim-
itations, Hao and Zielinski introduced the concept of anonymous veto networks

3 Ramos v. Louisiana, No. 18-5925, 590 U.S. (2020).



(AV-nets) (originally proposed in [13], with some extensions in [1]). In contrast
to DC-nets, AV-nets are very lightweight, both regarding the number of rounds,
computation, bandwidth and system complexity.

Anonymity of existing AV-nets from the literature relies on the hardness
of the decisional Diffie-Hellman (DDH) problem. Since this problem could effi-
ciently be solved by (scalable) future quantum computers, no AV-net with post-
quantum anonymity has been proposed prior to our work. Unfortunately, as we
will explain in Section 2.3, the fact that previous AV-nets are tailored specifically
to the DDH problem makes it infeasible to transform them into AV-nets with
post-quantum anonymity in a straightforward way.

Our contributions. We present the first completely lattice-based AV-nets. Our
protocols are efficient and practically realizable. Anonymity of voters relies on
the decisional ring learning with errors (RLWE) assumption. Using the RLWE
assumption in our protocol is inspired from [17, 18] in which an RLWE analogue
of the Diffie-Hellman key exchange was proposed. Our protocols do not require
a central tallying authority; instead the voters themselves securely compute the
final result. More precisely, we provide the following contributions:

1. We propose a 2-round lattice-based AV-net that is secure against passive
(honest-but-curious) adversaries (Section 4). We first precisely describe this
protocol (Section 4.1), then show that it produces the correct final result
(Section 4.2), and that anonymity/privacy of the voters is guaranteed un-
der RLWE if all but two voters are corrupted by a passive adversary (Sec-
tion 4.3).

2. We propose a 4-round lattice-based AV-net that is secure against active (ma-
licious) adversaries (Section 5). We first precisely the describe this protocol
(Section 5.1), then show that the correctness of the final result can publicly
be verified (Section 5.2), and that anonymity/privacy of the voters is guaran-
teed under RLWE if all but two voters are corrupted by an active adversary
(Section 5.3).

3. We provide experimental performance benchmarks of our lattice-based AV-
nets (Section 6).

4. We discuss the properties of the two lattice-based AV-nets as well as possible
alternative approaches (Section 7).

We note that, in the remainder of this paper, we use the expressions “privacy”
and “anonymity” interchangeably.

2 AV-Net by Hao and Zielinski

In this section, we first describe the original AV-net proposed by Hao and Zielin-
ski [13] which provides anonymity under the DDH assumption. We then elabo-
rate on why building AV-nets with lattice-based anonymity is challenging and
requires careful attention.



2.1 Protocol description

The main idea behind the AV-net protocol by Hao and Zielinski [13] is the follow-
ing one. The protocol is divided into an offline and an online phase. In the offline
phase, the voters collaboratively generate certain related blinding elements, one
individual element yi for each voter Vi. In the subsequent online phase, voters
can then decide to either veto or not. If Vi decides not to veto, then she raises
yi (as generated in the offline phase) to a specific integer si, and to a random
integer ri, otherwise. After that, all blinded choices are homomorphically ag-
gregated. Furthermore, both in the offline and the online phase, zero-knowledge
proofs (ZKPs) of knowledge are integrated to guarantee that voters choose their
(otherwise malleable) messages pairwise independently.

The specific structure of the blinding elements y1, . . . , ym generated in the
offline phase ensures that the result of the homomorphic aggregation equals 1
if and only if all voters choose “no veto”. The technical mechanism behind this
concept is based on the following result (details will become clear further below).

Lemma 1. Let R be a commutative ring. Let r1, . . . rm be elements in R. Then
the following equation holds true:

m∑
i=1

i−1∑
j=1

ri · rj =

m∑
i=1

m∑
j=i

ri · rj

Proof. See [13].

Let us now describe the AV-net protocol by Hao and Zielinski [13] with full
technical details.

Protocol participants. The AV-net protocol is run among the following partici-
pants:

– Voters V1, . . . ,Vm.

– Bulletin board B.

We assume that for each voter Vi, there exists a mutually authenticated
channel between Vi and the bulletin board B.

Parameters. Let G be finite cyclic group of prime order q with generator g. We
assume that the decisional Diffie-Hellman (DDH) assumption holds true in G,
i.e., the following two distributions are computationally indistinguishable:

– (ga, gb, gab), where a, b
r←− Zq.

– (ga, gb, gc), where a, b, c
r←− Zq.



Offline phase. Each voter Vi runs the following program:

1. si
r←− Zq

2. hi ← gsi

3. π1
i ← ZKP of knowledge of logg hi

4. Publish (π1
i , hi)

After all voters have published their hi’s (equipped with valid ZKPs), each
voter Vi (locally) computes her individual blinding element yi as follows:

yi ←

i−1∏
j=1

hj

 ·
 m∏
j=i+1

hj

−1 .
Online phase. Voter Vi computes her “encrypted” choice as follows:

1. If “no veto”, then set ci ← ysii .

2. If “veto”, then choose ri
r←− Zq, and set ci ← yrii .

3. π2
i ← ZKP of knowledge of logyi ci

4. Publish (π2
i , ci)

After all voters have published their ci’s (equipped with valid ZKPs), each
voter (locally) computes the final result as follows:

res←

{
no veto if

∏m
i=1 ci = 1

veto otherwise
.

2.2 Correctness and anonymity

We now describe why the AV-net by Hao and Zielinski is correct and provides
anonymity under the DDH assumption. We focus on the case of passive adver-
saries; the ZKPs invoked ensure that the AV-net is also secure against active
adversaries (see [13] for details).

Correctness. Let us first assume that all voters choose “no veto”. Then, we have
that

m∏
i=1

ci =

m∏
i=1

ysii =

m∏
i=1


∏
j<i

hj

∏
j>i

hj

−1

si

= g(
∑m
i=1

∑
j<i sisj)−(

∑m
i=1

∑
j>i sisj) = g0 = 1

holds true, where the second but last equality follows from Lemma 1. Conversely,
assume that (at least) one voter vetoes, say voter Vl. Then, we have that

m∏
i=1

ci = yrll ·
m∏
i6=l

ci

is distributed uniformly at random in G. Hence, if |G| is sufficiently large, then
the probability that this product equals 1 is negligible.



Anonymity. Let Vi be an arbitrary (honest) voter. Assume that at least one
further voter Vj is honest, too. Then, the sum

∑
j<i sj −

∑
j>i sj is distributed

uniformly at random in Zq. Hence, if Vi does not veto, then the triple

(hi, yi, ci) = (gsi , g(
∑
j<i sj)−(

∑
j>i sj), gsi·((

∑
j<i sj)−(

∑
j>i sj)))

is a DDH-triple, and otherwise a random triple

(hi, yi, ci) = (gsi , g(
∑
j<i sj)−(

∑
j>i sj), gsi·ri).

Under the assumption that the DDH problem is intractable inG, it is not possible
to distinguish between these two distributions.

2.3 Challenges for lattice-based anonymity

As we have seen in Section 2.2, the design of [13] is tailored specifically to
reduce anonymity to the DDH-assumption. Therefore, if we want to design an
AV-net whose anonymity reduces to a different (e.g., lattice-based) hardness
assumption, then we have to adapt all technical details accordingly. This is
even more challenging in the case of lattice-based anonymity: controling the
noise of lattice-based cryptographic primitives is non-trivial and requires careful
attention.

Furthermore, the original AV-net [13] includes ZKPs of knowledge to defend
against active adversaries which choose their messages in relation to the honest
voters’ ones. Even though there exist efficient lattice-based ZKPs in the litera-
ture, these ZKPs are tailored to specific lattice-based primitives. Unfortunately,
it is not immediately clear how to employ these primitives to construct a lattice-
based AV-net. Therefore, we decided to construct an actively secure lattice-based
AV-net without ZKPs altogether (Section 5).

3 Cryptographic Primitives

In this section, we introduce the cryptographic primitives that we later employ
in our lattice-based veto protocols (Section 4 and 5). Throughout this paper, we
use the following parameters and conventions:

– Let n be a power of 2.
– Let R be the cyclotomic ring Z[X]/f(X) where f(X) = Xn + 1.
– Let q be a prime such that q ≡ 1 mod 2n.
– Let Rq be the quotient ring R/qR.
– Let the coefficients of a polynomial in Rq be in the interval [− q−12 , q−12 ].
– Let ‖ · ‖ be the `2−norm on Rq and ‖ · ‖∞ be the `∞−norm on Rq.
– Let m be an integer. (This will be the number of voters.)
– Let Λ = Zn.
– Let ρσ(x) = e−π‖x‖

2/σ2

be the Gaussian function on Rn with center at the
zero vector and the parameter σ.



– Let ρσ(Λ) =
∑
x∈Λ

ρσ(x) be the discrete integral of ρσ over Λ.

– Let DΛ,σ be the discrete Gaussian distribution over Λ with center at zero

vector and parameter σ. For all y ∈ Λ, we have DΛ,σ(y) = ρσ(y)
ρσ(Λ)

.

– Let χ be the discrete Gaussian distribution DZnq ,σ.

The decisional ring learning with errors (RLWE) problem is about determin-
ing whether a list of polynomial pairs (ai, bi) ∈ Rq×Rq were generated uniformly
at random or were constructed such that ai is chosen uniformly at random while
bi = ai · si + ei, where si ∈ Rq is the secret and ei ← χ is the error.

The parameters are chosen to satisfy the theorem below:

Theorem 1 ([20]). For n, R, q and β as defined above, there is an efficiently
samplable distribution χ over R with Pr[‖x‖ > β : x ← χ] ≤ negl(n), such

that if there exists an efficient algorithm that solves RLWE
(m)
n,q,χ, then there is an

efficient quantum algorithm for solving n2.5(q/β)(nm/ log(nm))1/4-approximate
worst-case SVP for ideal lattices over R.

We recall some useful lemmas.

Lemma 2 ([16], Lemma 2.5). For σ > 0, r ≥ 1/
√

2π, Pr[‖x‖ > rσ
√
n : x←

DZn,σ] < (
√

2πer2 · e−πr2)n.

Lemma 3 ([19], Lemma 2). For a, b ∈ Rq, ‖a · b‖∞ ≤ ‖a‖ · ‖b‖.

In addition, we let β = rσ
√
n and we need to carefully choose r ≥ 1/

√
2π

so that choosing x from DZn,σ with `2−norm greater than β has negligible
probability according to Lemma 2.

Furthermore, to ensure the correctness of our veto protocol, we require that

q

4
− 2 ≥ m(m− 1)β2 +mβ

holds true.

4 Passively Secure Lattice-Based AV-Net

The following AV-net protocol provides privacy in the presence of passive (honest-
but-curious) adversaries. In Section 5, we show how to extend the this AV-net
such that privacy can be guaranteed even if all but two voters actively deviate
from their specified programs.

In what follows, we first describe the passively secure AV-net protocol with
full technical details (Section 4.1), then we prove that this protocol is correct
(Section 4.2), and eventually elaborate on the privacy it provides (Section 4.3).

4.1 Protocol description

We use the same protocol participants as in the original AV-net (Section 2.1).



Parameters. We briefly recall the main parameters from Section 3 that we use
in the passively secure veto protocol. Essentially, all computation is done in the

ring Rq. The distribution χ samples elements from Rq such that RLWE
(m)
n,q,χ

holds true. Let a be an element from Rq chosen uniformly at random. In what
follows, we implicitly assume that all protocol participants take these parameters
as input.

Offline phase. If, in the online phase (see below), voter Vi chooses “no veto”,
then she uses a specific element yi ∈ Rq to blind her choice, and a random
element otherwise. The elements y1, . . . , ym (for voters V1, . . . ,Vm) will have a
specific structure such that

– the distribution of blinded “veto” choices is indistuingishable from the uni-
form distribution over Rq (under RLWE) which itself is the distribution of
“no veto” choices, and

– all blinding elements collectively equal out if and only if all voters choose
“veto”.

In fact, each voter’s blinding element yi is a specific linear combination of ele-
ments bj that are generated by all the other voters Vj (i 6= j). More precisely,
each voter Vi generates bi as follows:

1. Choose si, ei ← χ2.
2. Set bi ← a · si + ei.

After all voters have published their bi’s, each voter Vi (locally) computes
her individual blinding element yi as follows:

yi ←

i−1∑
j=1

bj

−
 m∑
j=i+1

bj

 .

Online phase. Voter Vi computes her “encrypted” choice as follows:

1. If “no veto”, then choose e′i ← χ, and set ci ← siyi + e′i.

2. If “veto”, then choose ri
r←− Rq, and set ci ← ri.

After all voters have published their ci’s, each voter (locally) computes the
final result as follows:

res←

{
no veto if ‖

∑m
i=1 ci‖∞ ≤

q

4
− 2

veto otherwise
.

4.2 Correctness

In this section, we show that the veto protocol, as defined in Section 4.1, is
correct, i.e., it outputs the correct result (with overwhelming probability) if all



participants follow the protocol specification correctly (Theorem 2). To this end,
we use the following result which ensures that the error terms introduced (for
privacy reasons) do not undermine correctness of the veto protocol except for
with negligible probability.

Lemma 4. The probability that a uniformly chosen random element r ∈ Rq has
max norm less than or equal to N ≥ 1 is given by

Pr[‖x‖∞ ≤ N : x← Rq] =
(2N + 1)n

qn
.

Theorem 2 (Correctness). Let P be the veto protocol defined in Section 4.1.
Assume that all voters V1, . . . ,Vm (and the bulletin board B) are honest, i.e.,
run their programs as specified by the protocol. Then, we have that for all runs
(of this instance) of P , the following equivalence holds true with overwhelming
probability: The final result res is “veto” if and only if there exists (at least) one
voter Vi who chooses “veto”.

Proof. Let us start with a variant of the veto protocol without error terms, i.e.,
ei, e

′
i = 0 for all voters Vi.

4 Now, if all voters choose “no veto”, we have that

m∑
i=1

ci =

m∑
i=1

si · yi =

m∑
i=1

si ·

i−1∑
j=1

bj

−
 m∑
j=i+1

bj


=

m∑
i=1

si ·

a ·
i−1∑

j=1

sj

−
 m∑
j=i+1

sj


= a ·

 m∑
i=1

i−1∑
j=1

si · sj

−
 m∑
i=1

m∑
j=i+1

si · sj

 = 0

holds true, where the last equation follows from Lemma 1.

Conversely, if (at least) one voter vetoed, then the sum
∑m
i=1 ci is distributed

uniformly at random over Rq. Hence, res correctly reflects how voters voted in
the veto protocol (without error terms).

4 We note that, in this case, the protocol would not guarantee privacy.



Now, let us return to the actual veto protocol, including error terms. Assum-
ing that all voters choose “no veto”, we have that

m∑
i=1

ci =

m∑
i=1

(si · yi + e′i)

=

m∑
i=1

si ·

i−1∑
j=1

bj

−
 m∑
j=i+1

bj

+

m∑
i=1

e′i

=

m∑
i=1

si ·

i−1∑
j=1

a · sj + ej

−
 m∑
j=i+1

a · sj + ej

+

m∑
i=1

e′i

=

 m∑
i=1

i−1∑
j=1

si · ej −
m∑
i=1

m∑
j=i+1

si · ej

+
m∑
i=1

e′i

holds true, where the last equality follows from what we have shown above for
the variant without error terms.

Recall that all si, ei and e′i are chosen according to χ, hence their norm
is bounded by β (with overwhelming probability in the security parameter n).
Therefore by Lemma 3, we have that (with overwhelming probability after care-
fully choosing r in Lemma 2)

∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
 m∑
i=1

i−1∑
j=1

si · ej −
m∑
i=1

m∑
j=i+1

si · ej

+

m∑
i=1

e′i

∥∥∥∥∥∥
∞

≤
m∑
i=1

∑
j 6=i

‖si · ej‖∞ +

m∑
i=1

‖e′i‖∞

≤
m∑
i=1

∑
j 6=i

‖si‖ · ‖ej‖+

m∑
i=1

‖e′i‖

≤m · (m− 1) · β2 +m · β

≤q
4
− 2.

Conversely, assume that one of the voters vetoes, hence chooses ci uniformly
at random from Rq. From Lemma 4, it follows that the probability that

∑m
i=1 ci

has max norm ≤ q

4
− 2 is negligible:

Pr[‖r‖∞ ≤
q

4
− 2 : r ← Rq] = 2−n

(
q − 6

q

)n
< 2−n. (1)

Hence, altogether, we can conclude that (with overwhelming probability) the
final result res equals “veto” if and only if at least one voter vetoes. This proves
the correctness of the veto protocol defined in Section 4.1.



4.3 Privacy

In this section, we show that the veto protocol, as defined in Section 4.1, provides
privacy in the presence of honest-but-curious adversaries. The privacy notion we
apply follows [3].

Theorem 3 (Privacy). Assume that RLWE
(m)
n,q,χ holds true. Let A be an arbi-

trary passive ppt adversary which controls (at most) all but two voters (Vi)i∈Idis .
Let (Vi)i∈Ihon denote the remaining (uncorrupted) voters. Let (vi)i∈Ihon and
(v′i)i∈Ihon be two arbitrary vectors of choices that yield the same result res. Then,
the probability that the adversary A can distinguish between the set of runs in
which the honest voters (Vi)i∈Ihon vote according to (vi)i∈Ihon or to (v′i)i∈Ihon
is negligible.

Proof. We distinguish between the following two cases:

1. (vi)i∈Ihon and (v′i)i∈Ihon yield the result “no veto”.
2. (vi)i∈Ihon and (v′i)i∈Ihon yield the result “veto”.

In the first case, both (vi)i∈Ihon and (v′i)i∈Ihon consist of “no veto” choices
only, hence (vi)i∈Ihon = (v′i)i∈Ihon . In particular, it is impossible to distin-
guish between runs in which the honest voters vote according to (vi)i∈Ihon or to
(v′i)i∈Ihon .

To prove indistuingishability in the second case, we use the following hybrid
argument. To this end, we simulate the protocol as follows: if there exists at
least one honest voter who chooses to veto, then all honest voters (Vi)i∈Ihon
veto. Under the assumption that RLWE

(m)
n,q,χ holds true, it follows that for any

possible set of choices (ṽi)i∈Ihon which contains at least one “veto”, the simulated
protocol is indistuingishable from the original veto protocol in which the honest
voters vote according to (ṽi)i∈Ihon . Due to the symmetry of this argument, we
can conclude that no ppt adversary A can distinguish between runs in which the
honest voters vote according to (vi)i∈Ihon or to (v′i)i∈Ihon if there exist j, k ∈ Ihon
such that vj = veto and v′k = veto.

5 Actively Secure Lattice-Based AV-Net

In this section, we describe how to extend the veto protocol from Section 4
such that it provides privacy and verifiable correctness in the presence of active
adversaries.

Let us first explain why the protocol from Section 4 does neither protect
privacy nor correctness if (some) voters do not follow their prescribed programs:

– Privacy : Assume that we have three voters V1,V2,V3, where V1 and V2

are honest, and V3 is malicious and aims to actively break privacy of, say,
voter V1. Now, V3 waits until V2 has published b2 and then simply publishes
b3 ← −b2. By this, we have that y1 = 0. Hence, if V1 does not veto, it follows



that c1 = e′1 is chosen according to χ, and that c1 = r1 is chosen uniformly
at random otherwise. Therefore, the adversary (controling V3) knows that
(with high probability) V1 did not veto if ‖c1‖∞ < β. This breaks V1’s
privacy.

– Correctness: Assume that we have two voters V1,V2, where V1 is honest and
decides to veto, and V2 is malicious and aims to actively cancel out V1’s
veto. Now, V2 waits until V1 has published c1 and then simply publishes c2
such that ‖c1 + c2‖∞ < q

4 − 2. Therefore, the final result is “no veto” even
though V1 had chosen “veto”.

At a high level, what both attacks have in common is that the adversary
can adaptively choose the corrupted voters outputs depending on the honest
voters’ ones. In order to eliminate this vulnerability, we employ a lattice-based
commitment scheme as described in Section 5.1. We will then demonstrate that
the resulting veto protocol in fact provides verifiable correctness (Section 5.2)
and privacy (Section 5.3) against malicious adversaries.

5.1 Protocol description

We now explain how the passively secure veto protocol from Section 4 can be
extended in order to defend against active adversary that aim to undermine
privacy or verifiable correctness. More precisely, we need to ensure that vot-
ers choose their messages pairwise independently. To this end, we additionally
employ an arbitrary lattice-based commitment scheme (KeyGencom,Com,Open)
which is (at least) computationally hiding and (at least) computationally bind-
ing under standard lattice hardness assumptions. More concretely, one could, for
example, instantiate this generic commitment scheme with the highly efficient
lattice-based commitment scheme by Baum et al. [2].

However, we need to be careful since commitment schemes like [2] are mal-
leable. Even though there are generic compilers for transforming malleable com-
mitment schemes into non-malleable ones (see, e.g., [8]), we are not aware of
any existing work that analyzes such compilers in a quantum setting. Therefore,
we will specify that voters open their commitments exactly in the reverse order
according to which they published them. With this simple trick, we can still use
malleable commitment schemes (see Section 7 for a discussion).

More precisely, we extend the veto protocol from Section 4 as follows. We
refer to Appendix A for the notation related to the generic commitment scheme
(KeyGencom,Com,Open).

Parameters (extended). We denote by prmcom the joint public parameters of the
commitment scheme (computed by running KeyGencom).

Offline phase (extended). Each voter Vi, after having computed bi, executes the
following steps:

3. Compute (γi, ρi)← Com(prmcom, bi).
5

5 In other words, γi is the commitment to bi using randomness ρi (see Appendix A).



4. Publish γi.
5. Wait until all γj were published (j ∈ {1, . . . ,m}).
6. Set σ ← order of published γj ’s (according to their time stamps).
7. Wait until all (bj , ρj) were published for σ(j) > σ(i).
8. Publish (bi, ρi).
9. Wait until all (bj , ρj) were published for σ(j) < σ(i).

10. If Open(prmcom, bj , γj , ρj) = 0 for some j 6= i, then abort.

Online phase (extended). Each voter Vi, after having computed ci, executes the
following steps:

3. Compute (γ′i, ρ
′
i)← Com(prmcom, ci).

4. Publish γ′i.
5. Wait until all γ′j were published (j ∈ {1, . . . ,m}).
6. Set σ′ ← order of published γ′j ’s (according to their time stamps).
7. Wait until all (cj , ρ

′
j) were published for σ′(j) > σ′(i).

8. Publish (ci, ρ
′
i).

9. Wait until all (cj , ρ
′
j) were published for σ′(j) < σ′(i).

10. If Open(prmcom, cj , γ
′
j , ρ
′
j) = 0 for some j 6= i, then abort.

5.2 Verifiable correctness

In this section, we show that the veto protocol defined in Section 5.1 is verifiably
correct [7] even if an arbitrary adversary actively corrupts (a subset of) voters.

We note that we can restrict our attention to the case that an adversary aims
to swap an honest “veto” into “no veto”. In fact, if an adversary (controling at
least one voter) wants the final result to be “veto”, then he can simply let the
corrupted voter run her “veto” program.

Theorem 4 (Verifiable correctness). Let P be the veto protocol defined in
Section 5.1. Assume that the bulletin board B is honest. Assume that the com-
mitment scheme is computationally binding and hiding. Then, we have that for
all runs (of these instances) of P , the following implication holds true with over-
whelming probability: If there exists an honest voter who chooses “veto”, then
the final result is “veto” (or the protocol aborts prematurely).

Proof. We assume w.l.o.g. that there exists one honest voter, namely, V1. This
voter always chooses “veto”. Furthermore, we first restrict our attention to the
case in which there exists one more voter, V2, which is controled by an arbitrary
ppt adversary A. Now, we distinguish between the following two sets of protocol
runs:

1. Voter V1 publishes γ′1 before voter V2 has published γ′2.
2. Voter V2 publishes γ′2 before voter V1 has published γ′1.

In the first set of protocol runs, the probability that there is a final result and
that this result is “no veto” equals to the probability that an arbitrary adversary
A′ can win the following game (run with challenger C):



1. C: choose c1
r←− Rq

2. C: compute (γ1, ρ1)← Com(prmcom, c1)
3. C: return γ1
4. A′: return c2
5. A′ wins if and only if ‖c1 + c2‖∞ < q

4 − 2

Since we assume that the commitment scheme is computationally hiding and
since Lemma 4 holds true, any ppt A′ can win this game only with at most
negligible probability.

In the second set of protocol runs, the probability that there is a final result
and that this result is “no veto” equals to the probability that an arbitrary
adversary A′ can win the following game (run with challenger C):

1. A′: return γ2
2. C: choose c1

r←− Rq
3. C: return c1
4. A′: return (c2, ρ2)
5. A′ wins if and only if ‖c1 + c2‖∞ < q

4 − 2 and Open(prmcom, c2, γ2, ρ2) = 1.

Since we assume that the commitment scheme is computationally binding
and since Lemma 4 holds true, any ppt A′ can win this game only with at most
negligible probability.

This proves that Theorem 4 holds true for one honest plus one dishonest
voter. It is easy to see that the more general result, i.e., Theorem 4 with an
arbitrary number of dishonest voters, effectively reduces to the two cases with
one dishonest voter discussed above.

5.3 Privacy

In this section, we show that the veto protocol, as defined in Section 5.1, provides
privacy in the presence of malicious adversaries.

Theorem 5 (Privacy). Assume that RLWE
(m)
n,q,χ holds true. Assume that the

commitment scheme is computationally binding and hiding. Let A be an arbitrary
malicious ppt adversary which controls (at most) all but two voters (Vi)i∈Idis .
Let (Vi)i∈Ihon denote the remaining (uncorrupted) voters. Let (vi)i∈Ihon and
(v′i)i∈Ihon be two arbitrary vectors of choices that yield the same result res. Then,
the probability that the adversary A can distinguish between the set of runs in
which the honest voters (Vi)i∈Ihon vote according to (vi)i∈Ihon or to (v′i)i∈Ihon
is negligible.

Proof. Using a similar argument as in the proof of Theorem 4, any adversary’s
advantage of winning the privacy game (i.e., being able to distinguish between
runs with (vi)i∈Ihon or with (v′i)i∈Ihon) in the veto protocol from Section 5.1 is
negligibly close to any adversary’s advantage of winning the privacy game in the
following modification of this protocol. In fact, we modify the offline phase of
protocol from Section 5.1 such that it is the same as the one of the passively



secure one (Section 4) but where first all dishonest voters publish their bi’s and
afterwards all honest ones. Now, even if all corrupted voters are (potentially)
malicious, it follows from the privacy proof of the passively secure veto protocol
(Theorem 3) that any adversary’s advantage in winning the privacy game in this

modified version is negligible under RLWE
(m)
n,q,χ.

6 Experimental results

We have implemented the passively secure AV-net described in Section 4. Since
the commitment scheme that is additionally required in the actively secure AV-
net (Section 5) is generic and independent of the rest of the protocol, any efficient
lattice-based commitment scheme can be chosen (e.g., [2]).

Our implementation uses C++ language and NTL library. We run 10,000
times experiments using the parameters (the same as in [19]) n = 512, σ =
4.19, q = 120833 on a computer with Intel Core i7-6500U CPU @ 2.50 GHz, run-
ning Cygwin version 3.1.5, g++ compiler version 9.3.0. Then we evaluate average
runtime for discrete Gaussian sampling based on [21] (TimeDGS), polynomial
multiplication (TimePoly), and vote tallying (TimeVeto) respectively. We show
the experimental results with two decimal precision in Table 1.

Table 1: Runtime (millisecond) of our implementation.

m TimeDGS TimePoly TimeVeto

3 0.42 0.89 0.24
10 2.44 8.44 6.94
15 5.60 23.49 16.51
20 8.69 39.44 24.35

The optimizer used was -O2. GCC basically performs almost all the sup-
ported optimizations that do not involve a space-speed tradeoff. This option is
to benefit the compilation time and performance of the generated code. -O2 flags
the compiler mainly to inline functions when able. -O3 adds some flags for loop
unrolling and tree distribution and -Ofast disregards standards compliance and
adds a couple extra flags like -ffast-math.

We just tested this code and it also works with -O3 as well as -Ofast, but at
m = 3 and 10, 000 runs, it does not appear to have any noticeable impact on the
execution time of the code. We also tried several values for m and experimentally,
no error showed up when m = 100 but errors start to show up when m is
approximately 125.



7 Discussion

In this section, we elaborate on the properties of the AV-nets proposed and
analyzed above.

Post-quantum anonymity. We have proven that the 2-round AV-net (Section 4.1)
and the 4-round AV-net (Section 5.1) guarantee anonymity under the decisional
RLWE assumption in the presence of arbitrary passive or active adversaries,
respectively. The decisional RLWE assumption is a well-studied lattice-based
hardness assumptions and commonly believed to be intractable even by quantum
algorithms. Since anonymity of previous AV-nets [1, 13] relies on the DDH-
assumption, our AV-nets are the first ones with post-quantum anonymity.

Observe that, both the two AV-nets proposed in this work as well as the
previous one by Hao and Zielinski [13] have the following property: if there is
a single voter who vetoes, then this voter knows that she is the only one who
vetoed.

Robustness. It is obvious that if just a single voter does not participate in the
online phase of our AV-net(s), then the complete protocol needs to restart again.
Therefore, similarly to previous AV-nets [1, 13], our protocols have a low level of
robustness, too. Typically, in order to increase robustness, protocols for secure
computation employ threshold schemes: if at least t out of n parties participate,
then the protocol terminates successfully. On the downside, however, threshold
schemes lead to stronger trust assumptions for anonymity/privacy. In the case of
(our) AV-nets, where we merely require that two voters are honest for anonymity,
introducing a threshold structure would impair this mild trust assumption.

We note that in our actively secure protocol, opening the commitments in
reverse order puts some burden on the underlying infrastructure, more precisely
on the bulletin board. In fact, it is a non-trivial challenge in practice to guarantee
verifiable time-stamps. One possible solution to this problem is to employ a
distributed ledger technology (DLT).

Round complexity. Previous AV-nets [1, 13] require 2 rounds of interaction,
both in the presence of passive and active adversaries. In contrast to that, our
actively secure AV-net requires 4 rounds of interaction. The reason for this are
the different techniques to make the voters’ intrinsically homomorphic outputs
non-malleable. While [1, 13] employ ZKPs for this purpose, it is not immediately
clear how to efficently do this in the lattice-based setting. Therefore, we decided
to add two further rounds of interaction in which the voters first commit to
their outputs before revealing them. Since there are a number of highly efficient
lattice-based commitment schemes (see, e.g., [2]), we argue that our variant is a
reasonable trade-off.

Alternative approaches. AV-nets can be regarded as specific instances of secure
boardroom voting or, more generally, secure multi-party computation (MPC)
protocols. We elaborate on this in what follows.



There are numerous efficient MPC protocols in the literature that could be
used for securely evaluating veto functions, in particular with post-quantum
privacy (see, e.g., [9]). Typically, employing such generic MPC protocols is ad-
vantageous for complex result functions. However, generic MPC protocols are
less well-suited for the specific case of veto protocols, where the result function
is simply Boolean OR.

In a boardroom voting protocol, the voters themselves tally the ballots, with-
out having to rely on a trusted set of talliers or election authorities. Several such
protocols have been proposed so far (see, e.g., [12, 14]). However, these proto-
cols employ specific ZKPs, and therefore, as explained above, transforming them
into a lattice-based setting undermines efficiency. Furthermore, we note that if
we applied one of these boardroom voting protocols to evaluate the veto function,
then the final result would reveal how many voters actually vetoed. In contrast
to that, in an AV-net, the final result merely reveals whether or not at least one
voter vetoed (without revealing the number of vetoing voters). Hence, AV-nets
are tally-hiding [15] and thus provide an essentially perfect privacy level.

We note that existing verifiable post-quantum secure e-voting systems [4, 10]
would not be (immediately) useful for our purposes as well. The reason is that
they are neither tally-hiding nor designed for peer-to-peer elections.

8 Conclusion

We proposed the first AV-nets with post-quantum anonymity. The first variant
of our protocol requires 2 rounds of interaction and is passively secure, whereas
the second one requires 4 rounds of interaction and is actively secure. Anonymity
of our AV-net reduces to the decisional ring learning with errors (RLWE) as-
sumption.
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[3] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. SoK: A Comprehensive Analysis of Game-Based Ballot
Privacy Definitions. In 2015 IEEE S&P, pages 499–516, 2015.

[4] Xavier Boyen, Thomas Haines, and Johannes Müller. A Verifiable and
Practical Lattice-Based Decryption Mix Net with External Auditing. In
ESORICS 2020. To appear.

[5] David Chaum. Security Without Identification: Transaction Systems to
Make Big Brother Obsolete. Commun. ACM, 28(10):1030–1044, 1985.

[6] David Chaum. The Dining Cryptographers Problem: Unconditional Sender
and Recipient Untraceability. J. Cryptology, 1(1):65–75, 1988.

[7] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and
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A Commitment Schemes

A commitment scheme is a tuple of algorithms (KeyGencom,Com,Open) where:

– KeyGencom is a ppt algorithm which takes 1` and outputs the public param-
eters prmcom, containing a definition of the message space Mcom = M `

com, the
commitment space Ccom = C`com, and the opening space R = R`.

– Com is a ppt algorithm which takes prmcom,m ∈ Mcom and outputs values
c ∈ Ccom and r ∈ R.

– Open is a deterministic algorithm polynomial-time algorithm which takes
prmcom,m ∈Mcom, c ∈ Ccom, r ∈ R and outputs a bit b ∈ {0, 1}.
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