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Description of hard-sphere crystals and crystal-fluid interfaces: A comparison between density
functional approaches and a phase-field crystal model
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In materials science the phase-field crystal approach has become popular to model crystallization processes.
Phase-field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the
underlying microscopic description of the system in question. We present a study on classical density functional
theory in three stages of approximation leading to a specific phase-field crystal model, and we discuss the limits
of applicability of the models that result from these approximations. As a test system we have chosen the three-
dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are
fundamental measure theory, a second-order Taylor expansion thereof, and a minimal phase-field crystal model.
We have computed coexistence densities, vacancy concentrations in the crystalline phase, interfacial tensions,
and interfacial order parameter profiles, and we compare these quantities to simulation results. We also suggest a
procedure to fit the free parameters of the phase-field crystal model. Thereby it turns out that the order parameter
of the phase-field crystal model is more consistent with a smeared density field (shifted and rescaled) than with
the shifted and rescaled density itself. In brief, we conclude that fundamental measure theory is very accurate and
can serve as a benchmark for the other theories. Taylor expansion strongly affects free energies, surface tensions,
and vacancy concentrations. Furthermore it is phenomenologically misleading to interpret the phase-field crystal
model as stemming directly from Taylor-expanded density functional theory.
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I. INTRODUCTION

In materialsscience, the modeling of dynamic processes
involving the growth of solid phases in melts or in the
environment of another solid phase has been advanced using
phase-field models in the past years [1,2]. Here the phase field
ϕ is associated with an order parameter field that distinguishes
between a solid and a liquid phase, and it is usually coupled
with a density or concentration field � for that phase. The
dynamics of � is conserved, following the equation

∂�

∂t
= ∇ · (��j�), (1)

j�(r,t) = ∇ δF[�,ϕ]

δ�(r,t)
. (2)

Here the density current j� is the gradient of a chemical
potential function which is assumed to be derivable from a
free energy functional F . �� is a mobility. In contrast to this,
there is no conservation law for the order parameter, and thus
one can generically assume a nonconserved dynamic evolution
of ϕ of the form

∂ϕ

∂t
= �̃ϕ

δF[�,ϕ]

δϕ(r)
. (3)

In order to briefly explain the approach, we consider a
one-component system able to form one fluid and one solid
phase. The simplest free energy functional which gives us
phase coexistence associated with smoothly varying profiles
for � and ϕ across the phase boundary follows from a gradient
expansion in the specific truncation

F[�,ϕ] = F0

kBT

∫
d3r[c2(∇ϕ)2 + f (�,ϕ)]. (4)

Here it is assumed that any inhomogeneity costs free energy
through the gradient term in the order parameter field. Since
there is no corresponding gradient term in the density, the
free energy penalty corresponding to a change in the density
field must be small, and this appears to be possible only if �

is suitably coarse-grained from the microscopic density field.
Consequently the variations in the microscopic density field
relevant for the free energy must be contained in the phase field
ϕ, which in turn should be derivable from the microscopic
density through another coarse-graining procedure. We will
return to that point below. The potential function f (�,ϕ)
contains a double-well-type expression with minima at ϕ =
−1 (fluid) and ϕ = 1 (solid), modified such that minimization
with respect to � gives the input fluid and crystal coexistence
densities �fl(T ) and �cr(T ), which in general depend on the
temperature T . A possible form is [2]

f (�,ϕ) = g1(ϕ) + 1
2 [1 + g2(ϕ)]fcr(�) + 1

2 [1 − g2(ϕ)]ffl(�),

(5)

with g1(ϕ) = (ϕ + 1)2(ϕ − 1)2, (6)

and g2(ϕ = ±1) = ±1, g′
2(ϕ = ±1) = 0. (7)

Thus, the phase-field approach is nothing but a slightly
rewritten Landau-Ginzburg model for the fluid-solid phase
transition. The formulation accommodates an empirical free
energy density for the fluid phase [ffl(�)] and the crystal phase
[fcr(�)], yielding the required input coexistence densities. In
the form of Eq. (4), the free energy contains the parameters F0

related to is the free energy scale in units of the thermal energy
kBT (should be adjusted to the bulk free energy difference
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of solid and liquid) and the constant c2, which can be fixed
through the value of the liquid-solid surface tension.

In such a way, nucleation and growth in simple systems can
be addressed without resolving the details of the free energy
for inhomogeneous systems. For the widely used hard-sphere
reference system (which will be examined more in detail in
this work), this has been done in, e.g., Ref. [3].

Such a minimal Landau-Ginzburg description can be
extended to more complex systems. For each new material
component of the system, one needs to introduce a corre-
sponding density field, and new phase fields for the fluid and
solid phases, even when the solid phases differ just by their
crystalline orientation. Thus the number of free energy and
surface tension parameters quickly grows when the complexity
of the system is increased. Even for the one-component system,
empirical information on the anisotropy of the surface tension
for different crystal faces in equilibrium with the fluid needs
to be taken into account to set the parameters. Hence an
important question is whether the phase field itself can be
consistently treated in terms of the density field which stems
from a microscopic foundation.

In this paper we investigate three formulations (or approxi-
mations) to classical density functional theory which deal with
the microscopic particle density field and thus, in principle,
constitute the underlying theoretical framework from which a
consistent phase-field crystal description should arise. In our
explicit calculations, we examine the coexistence properties,
surface tensions, and interface density modes in the hard-
sphere system. Understanding surface tensions for different
interface orientations and the associated surface structure are
important prerequisites for further studies. There are three
main reasons to choose the hard-sphere system for method
comparison: (1) availability of very precise density functionals
(fundamental measure theory, our first formulation); (2)
empirical evidence that the crystal-liquid surface tensions of
fcc(hcp)-forming metals are largely of entropic origin, and
thus the packing of impenetrable cores plays an important
role for the surface structure of these metals [4]; and (3) the
athermal nature of the hard-sphere system, which reduces the
parameters for describing the coexistence to just the pair of
coexistence densities for the liquid and solid phase.

Our second formulation is Taylor-expanded density func-
tional theory, which neglects the density fluctuations with
respect to a reference density beyond second order in the free
energy formulation. It constitutes already a drastic approxima-
tion in density functional theory; nevertheless it is occasionally
depicted in the literature as “the” density functional theory
from which the third formulation investigated here, the phase-
field crystal model of the simplest type, can be derived. In
short, the phase-field crystal model can be viewed as a local
expansion in density fluctuations and in their gradients of
Taylor-expanded density functional theory. The model (see
below for its description and references, but here we want
to draw the reader’s attention to the very recent review [5])
has lately come to some prominence in the materials science
community mainly for the reason alluded to a microscopic
foundation of phase-field descriptions (see Ref. [6] for a
systematic attempt in that direction).

The paper is structured as follows. Section II introduces
briefly the foundations of classical density functional theory

and describes the formal approximation steps leading to
Taylor-expanded density functionals and phase-field crystal
models. In Sec. III, the explicit functionals are given, and they
are applied to the hard-sphere system. In calculating surface
tensions and the interface structure, no further approximations
are made in order to avoid uncertainties in interpreting the
results. We concisely discuss the problem of parameter fixing
for the phase-field crystal model. Section IV contains our
summary and conclusions.

II. DENSITY FUNCTIONAL THEORY AND PHASE-FIELD
CRYSTAL MODELS

As discussed before, the phase and the density field in
the phase-field formulation should be both obtainable through
a suitable coarse graining of the microscopic density field.
Thus one may be tempted to forego the artificial distinction
between (coarse-grained) phase and (coarse-grained) density
field entirely in favor of the microscopic density ρ(r). Indeed,
in equilibrium the basic theorems of density functional theory
assure us that there is a unique free energy functional of the
one-particle density field ρ(r),

F[ρ] = F id[ρ] + F ex[ρ], (8)

with βF id[ρ] =
∫

d3rρ(r)[ln(ρ(r)	3) − 1], (9)

which can be split into the exactly known ideal gas part F id

[	 is the de Broglie wavelength, β = 1/(kBT ) is the inverse
temperature] and a generally unknown excess part F ex. The
equilibrium density ρeq in the presence of an external (one-
particle) potential V ext(r) is then given by

δF[ρ]

δρ(r)

∣∣∣∣
ρ=ρeq

= μ − V ext(r), (10)

where μ is the imposed chemical potential (e.g., by requiring
a certain bulk density far away from the region where the
external potential acts). For diffusive dynamics, the time
evolution of this microscopic one-particle density field obeys
the type of dynamics as in Eqs. (1) and (2):

∂�

∂t
= �∇ ·

{
ρ(r,t)∇

[
δF[ρ]

δρ(r,t)
+ V ext(r,t)

]}
. (11)

To show this, one needs the possibly severe approximation that
the time-dependent density-density correlation function can be
approximated by the corresponding equilibrium object, which
in turn is obtainable from the equilibrium density functional
F[ρ] [7]. Note that the density field ρ(r,t) is an ensemble-
averaged quantity with no coarse-graining in space and time,
and there is no noise term in Eq. (11).

A. Functional Taylor expansion

Since the excess free energy functional F ex is unknown in
general, many practical applications of DFT have started from
an expansion of F ex around a background reference density
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profile ρ0(r) which, in general, can depend on the position:

βF ex = βF ex
0 [ρ0] −

∫
d3rc(1)(r; ρ0)
ρ(r)

− 1

2

∫
d3rd3r ′c(2)(r,r′; ρ0)
ρ(r)
ρ(r′) + · · · .

(12)

Here F ex
0 [ρ0] is the excess free energy pertaining to the

background profile, 
ρ(r) = ρ(r) − ρ0(r), and c(1) and c(2)

are the first two members in the hierarchy of direct correlation
functions c(n), defined by

c(n)(r1, . . . ,rn; ρ0) = −β
δ(n)F ex

δρ(r1) · · · δρ(rn)

∣∣∣∣
ρ=ρ0(r)

. (13)

In most practical applications, ρ0 ≡ const. is taken to be a
reference bulk density, in which case −c(1) = βμex = βμ −
log(ρ0	

3) and c(2)(r − r′; ρ0) depends only on the coordinate
difference of the two positions r and r′. To evaluate the
functional in Eq. (12), the correlation function c(2) has to be
determined as an external input, provided, e.g., by integral
equation theory or by simple approximations of RPA type [8].

It is perhaps somewhat surprising that the functional in
Eq. (12) (with ρ0 being a bulk density) is capable of describing
fluid-solid coexistence. This has been shown first in Ref. [9]
for the case of hard spheres (for an fcc crystal structure)
with c(2) taken to be the analytically known solution of
the Percus-Yevick closure to the integral equations. After
all, the direct correlation function in the solid phase should
be very distinct from the one in the liquid phase, as can
be inferred from the definition in Eq. (13). Consequently
the expansion should hold only for modest departures from the
reference bulk density, which is not the case when comparing
the density distribution in the crystal and the liquid, owing
to the occurrence of sharply peaked crystal density profiles.
However, the fcc crystal density profile probes the Fourier
transform c̃(2)(k; ρ) at discrete points in k-space [the reciprocal
lattice vectors (RLV)], which include the points where the
structure factor has its maxima. Furthermore, the k vectors of
the RLV are distributed fairly isotropically (see also a more
detailed discussion in Ref. [10]).

With suitable input for c(2), the Taylor expanded functional
in Eq. (12) is also capable of describing the fluid-bcc transition
(relevant for the description of, e.g., iron). See Ref. [11] for a
recent study. However, the numerical results for free energies
and for crystal-liquid surface tensions obtained in such studies
do not compare well with simulation results; e.g., the surface
tensions from Ref. [11] deviate by a factor of 2. Thus, the
Taylor-expanded functional appears to be merely a suitable
qualitative tool to explore basic features of dense liquids in the
vicinity of the solid or glass transition (see, e.g., Refs. [12,13]).

B. The phase-field crystal model

The Taylor expanded functional in Eq. (12) is nonlocal in
the densities. Through an additional approximation (gradient
expansion) it can be cast into a local form. We consider
again a constant reference density ρ0 and the following power
expansion of the Fourier transform of the direct correlation

function:

c̃(2)(k; ρ) = −c0 + c2 k2 − c4 k4 · · · . (14)

Using this, the Taylor-expanded functional becomes

βF ex
loc = βF ex

0 (ρ0) + βμex
∫

d3r
ρ(r)

+ 1

2

∫
d3r
ρ(r)(c0+c2∇2+c4∇4 · · · )
ρ(r)+· · · .

(15)

We observe that the excess free energy density contains local
terms up to order 2 in 
ρ and up to order 4 in ∇(
ρ). The
total free energy contains additionally the ideal gas term,
F id[ρ] from Eq. (9). One may expand also this term in 
ρ

in order to obtain a consistently power-expanded free energy
density. It has been customary in the literature to introduce the
dimensionless density difference as an order parameter:

φ(r) = ρ(r) − ρ0

ρ0
. (16)

In terms of φ, the power-expanded total free energy up to order
4 in φ and ∇φ reads

βF ≈ βF0(ρ0) +
∫

d3r

[
ρ0βμφ(r) + aidφ

2(r)

2

− bidφ
3(r)

3
+ gidφ

4(r)

4

]

+ ρ2
0

2

∫
d3rφ(r)(c0 + c2∇2 + c4∇4)φ(r). (17)

The coefficients aid = ρ0, bid = ρ0/2, and gid = ρ0/3 stem
from the expansion of the ideal gas part of the free energy.
The reference free energy F0 contains the ideal gas part by
F0(ρ0) = F ex

0 (ρ0) + F id(ρ0). The model defined in Eq. (17)
looks like a straightforward extension of standard square-
gradient Ginzburg-Landau models. It has been formulated in
Ref. [14]; however, earlier work has established the usefulness
of such a free energy to describe the transition between
a homogeneous and a periodically ordered system [15,16].
For a considerably earlier application to phase transitions in
amphiphilic systems, see Ref. [17]. Its central features are:

(1) For c2,c4 > 0, the term ∝ φ∇2φ favors a periodically
varying φ and the term ∝ φ∇4φ punishes a spatially varying φ

(2) Depending on the parameters, it may have as equilibrium
states periodically ordered phases in one dimension (stripes),
two dimensions (rods), and three dimensions (bcc, fcc, hcp)

(3) The characteristic wave number of the order parameter
field is q0 = √

c2/(2c4), which follows from

φ(r)(c2∇2 + c4∇4)φ(r) = φ(r)
[−c4q

4
0 + c4

(
q2

0 + ∇2
)2]

φ(r).

It turns out that the phase diagram of the above model is
equivalent to the formulation of a reduced model with the free
energy according to [18]

FPFC =
∫

d3xfPFC

=
∫

d3x

{
�(x)[−ε + (1 + ∇)2]�(x) + �(x)4

4

}
, (18)
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which we call the (actual) phase-field crystal (PFC) model.
Indeed, we can define the dimensionless coordinate x, a
free energy scale E0, and the reduced field � through the
transformations

x = q0r =
√

c2

2c4
r, E0 = ρ4

0c2
4q

5
0

gid
,

(19)

� =
√

gid

ρ2
0c4q

4
0

(
� − bid

3gid

)
,

and the free energy in Eq. (17) becomes

βF = E0

∫
d3x (B0 + B1�(x) + fPFC) (20)

with the value of ε [see Eq. (18) for the definition of fPFC]
given by

ε = 1

ρ2
0c4q

4
0

[
− aid − ρ2

0

(
c0 − c4q

2
0

) + b2
id

3gid

]
. (21)

The constants B0 and B1 are given by

B0 = 108g3
idβF0 + 36g2

idbidρ0βμ + b2
id

(
6aidgid − b2

id + 6gidρ
2
0c0

)
108g2

idq
8
0ρ4

0c2
4

, (22)

B1 =
√

ρ2
0c4q

4
0gid

27g2
idρ0βμ + bid

(
9aidgid − 2b2

id + 9gidρ
2
0c0

)
27g2

idq
8
0ρ4

0c2
4

. (23)

The term B0 + B1� in the free energy Eq. (20) does not
influence the location of the phase boundaries since it is linear
only in �, but it affects the values of the free energy density and
the chemical potential at coexistence. Since we will determine
these values explicitly later, we have given the expressions for
B0 and B1 explicitly. Thus the phase diagram is determined
by the variables occurring in fPFC, i.e., only by the parameter
ε and �̄, the average value of �(x). The associated phase
diagram has been calculated in Ref. [18] and is depicted in
Fig. 1.

In the next section, we turn to an exemplification of DFT,
Taylor-expanded DFT, and PFC for the hard-sphere system. In
particular, we will examine minimized solutions for crystals
and values for crystal-liquid coexistence and crystal-liquid
surface tensions as well as interfacial profiles for density
modes. It will turn out that the apparent straightforwardness of
the PFC derivation from Taylor-expanded DFT is misleading
and cannot be upheld, if one likes to describe crystals with
PFC.
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hcp
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FIG. 1. (Color online) Phase diagram of the PFC free energy (18).
�̄ denotes the average order parameter in the bulk phase. Data are
taken from Ref. [18]. The horizontal lines mark the values ε = 0.5,
0.65, and 0.8 for which explicit results are discussed (see below).

III. RESULTS FOR HARD SPHERE CRYSTALS AND
CRYSTAL-LIQUID INTERFACE

A. DFT: fundamental measure theory

For hard spheres, fundamental measure theory (FMT)
allows the construction of very precise functionals [19–22].
Essentially FMT postulates an excess free energy with a local
free energy density expressed in a set of weighted densities nα:

F ex[ρ] =
∫

d3r�[nα(r)]. (24)

The weighted densities are constructed as convolutions of
the density with weight functions, nα(r) = ρ ∗ wα(r). The
weight functions reflect the geometric properties of the hard
spheres. For one species, the weight functions include four
scalar functions w0, . . . ,w3, two vector functions w1,w2, and
a tensor function wt defined as

w3 = θ (R − |r|), w2 = δ(R − |r|),
w1 = w2

4πR
, w0 = w2

4πR2
,

(25)

w2 = r
|r|δ(R − |r|), w1 = w2

4πR
,

wt
ij = rirj

r2
δ(R − |r|).

Here R = σ/2 is the hard-sphere radius. Using these weight
functions, corresponding scalar weighted densities n0, . . . ,n3,
vector weighted densities n1,n2, and one tensor weighted
density nt are defined. In constructing the free energy density
�, arguments concerning the correlations in the bulk fluid
and arguments for strongly inhomogeneous systems are used
(for reviews see Refs. [21,22]). For the bulk, � is required to
reproduce exactly the second and third virial coefficent of the
direct correlation function. Furthermore, consistency with a
scaled particle argument and/or imposition of the Carnahan-
Starling equation of state leads to the following form of
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the excess free energy density [22]:

�({n[ρ(r)]}) = −n0 ln(1 − n3) + ϕ1(n3)
n1n2 − n1 · n2

1 − n3
+ ϕ2(n3)

3(−n2 n2 · n2 + n2,int,ij n2,j + n2 nt,ij nt,j i − nt,ij nt,jknt,ki)

16π (1 − n3)2
.

(26)

Here ϕ1(n3) and ϕ2(n3) are functions of the local packing
density n3(r). With the choice

ϕ1 = 1 and ϕ2 = 1 (27)

we obtain the Tarazona tensor functional [20], which is built
upon the original Rosenfeld functional [19]. The latter gives
the fluid equation of state and pair structure of the Percus-
Yevick approximation. Upon setting

ϕ1 = 1 + 2n3 − n2
3 + 2(1 − n3) ln(1 − n3)

3n3
,

(28)

ϕ2 = 1 − 2n3 − 3n2
3 + 2n3

3 + 2(1 − n3)2 ln(1 − n3)

3n2
3

,

we obtain the tensor version of the recently introduced White
Bear II (WBII) functional [23].

For bulk crystals, very accurate free energy results can
already be obtained using a Gaussian approximation for the
density,

ρ(r) =
∑

lattice sites i

(1 − nvac)

(
α

π

) 3
2

exp[−α(r − ri)
2/σ 2],

(29)

and minimizing the total free energy with respect to the
width parameter α and the vacancy concentration nvac at
a fixed bulk density. At coexistence α ∼ 80, in accordance
with simulations and free energies per particle between
Gaussian parametrized DFT and simulations agree on the
level of 0.01 kBT [10]. However, the Tarazona functional (27)
yields nvac → 0, while the WBII functional Eq. (28) gives
a finite equilibrium vacancy concentrations nvac = O(10−5),
which is about a factor 10 smaller than in the simulation

results [26]. This fine difference has important consequences:
performing an unconstrained minimization [see Eq. (10) with
vanishing external potential] only the WBII functional gives
an absolute minimum for the free energy with a value for
the chemical potential which is consistent with the derivative
of the crystal free energy density with respect to the bulk
density (see Ref. [10] for further details). This implies that a
free minimization for the crystal-fluid interface can only be
performed using the WBII functional.

The free minimization of the crystal-fluid interface is
a nontrivial task; a brief description of the method (also
applicable in the case of Taylor-expanded DFT) is given in
Appendix A. Results for the surface tension with crystal
faces in different orientations have been reported in Ref.
[27] and are also given in Table I. There is agreement with
simulations in the ordering γ[100] > γ[110] > γ[111] and as far as
the accuracy of the data permits also in the values of the relative
anisotropies [i.e., the values of (γ[100] − γ[110])/γ[100] and
(γ[100] − γ[111])/γ[100]]. There is no clear consensus between
different simulation methods on the absolute values of γ , but
the latest results are closer to the DFT values, however.

Overall these results corroborate what is known from many
applications of FMT on (dense) liquids [22,29,30]: It is a quan-
titative theory, and the accuracy also extends to the description
of crystalline systems. Therefore we can consider FMT as
a benchmark theory against which subsequent approximative
approaches should be tested.

B. Taylor-expanded DFT

We consider the Taylor-expanded functional Eq. (12) of the
FMT functionals, Eq. (27) (Tarazona functional), and Eq. (28)

TABLE I. Results for coexistence properties and crystal-fluid surface tension using the different approaches considered in this work. The
PFC results have been obtained using the fitting procedure described in Sec. III C for the reference density ρ0σ

3 = 0.94 with the crystal and
fluid coexistence densities as input (in italics).

FMT T–DFT T–DFT
(WBII) (PY) (WBII) PFC SIM

ρ0σ
3 0.9461 1.026 0.94

ε 0.50 0.65 0.80
ρcrσ

3 1.039 1.049 1.123 1.04 1.041 [24] 1.039 [25]
ρflσ

3 0.945 0.944 1.021 0.94 0.940 [24] 0.938 [25]
(βF/N )cr 4.96 5.33 7.23 5.20 4.96a

(βF/N )fl 3.82 3.99 5.05 3.93 3.75b

βμcoex 16.38 17.44 21.51 17.16 16.09b

nvac 2 × 10−5 0.10 0.09 −0.11 −0.12 −0.13 3 × 10−4 [26]
βσ 2γ[100] 0.69 [27] 0.89 1.31 0.140 0.074 0.046 0.58 [25] 0.63 [27] 0.64 [28]
βσ 2γ[110] 0.67 0.85 1.21 0.132 0.070 0.043 0.56 0.61
βσ 2γ[111] 0.64 0.78 1.09 0.105 0.055 0.034 0.54 0.60

aFree energy for ρcrσ
3 = 1.041 [24] using an improved fit in the form of the Speedy equation of state from Ref. [10].

bFree energy and chemical potential for ρflσ
3 = 0.940 [24] from the Carnahan-Starling equation of state.

021404-5



OETTEL, DOROSZ, BERGHOFF, NESTLER, AND SCHILLING PHYSICAL REVIEW E 86, 021404 (2012)

(WBII functional). The nontrivial, second-order term in the
functional involves the direct correlation function c(2)(r; ρ0).
It is the second derivative of the excess free energy functional
and is given in both cases by the polynomial form

c(2)(r; ρ0) = [a1 + a2r/σ + a3(r/σ )3]θ (σ − r). (30)

Using the packing fraction η = πσ 3/6 ρ0, the coefficients for
c(2) of the Tarazona functional are those of the famous Percus-
Yevick solution,

a1 = − (1 + 2η)2

(1 − η)4
, a2 = 6η

(1 + η/2)2

(1 − η)4
(Tarazona),

(31)
a3 = η

2
a1.

The coefficients for c(2) of the WBII functional are given by

a1 = −1 + 4η + 4η2 − 4η3 + η4

(1 − η)4
,

a2 = −2 + 25η + 12η2 − 10η3 + 2η4

3(1 − η)4
+ 2 ln(1 − η)

3η
(32)

(White Bear II),

a3 = 1 − 4η + 2η2 − 3η3 + η4

(1 − η)4
+ ln(1 − η)

η
.

Both forms approximate the simulation results for c(2)

reasonably well (see Fig. 2), with the WBII form matching
more closely. As we will see, this does not imply better results
for the Taylor-expanded functional in the WBII case.

The Taylor-expanded functional contains the reference
density ρ0 as an additional parameter. It would be desirable
to choose it such that it also recovers the fluid density at
coexistence. In this way it is guaranteed that at least the fluid
properties are almost exact if the Taylor-expanded functional
is fixed adequately. In order to determine ρ0 with moderate
effort, we employ the approach already taken in Ref. [32]. For a
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c
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FIG. 2. (Color online) Direct correlation function for hard spheres
at a density ρσ 3 = 0.9, somewhat below freezing. Simulation data
are taken from Ref. [31].

given bulk density ρb, we parametrize the density profile in the
Gaussian form Eq. (29) and determine the three free parameters
α (Gaussian width), nvac (vacancy concentration), and ρ0 by
minimizing the functional for the grand potential difference per
particle between crystal and liquid at the chemical potential
μ(ρ0):

β
�(ρb)

N

= minα,nvac,ρ0

{
1

ρbV

∫
V

d3r

[
ρ(r) ln

ρ(r)

ρ0
− ρ(r) + ρ0

]

− 1

2ρbV

∫
V

d3rd3r ′c(2)(r,r′; ρ0)
ρ(r)
ρ(r′)
}

, (33)

where 
ρ(r) = ρ(r) − ρ0 is defined as before. In practice, the
space integrations can be restricted to one cubic fcc unit cell.
Finally, the bulk density ρb is varied until 
�(ρb) = 0; i.e.,
at this point ρb and ρ0 (from the minimization) correspond to
the coexisting crystal and fluid densities within the Gaussian
approximation. We pick this ρ0 as the reference density for the
unconstrained minimization, and redetermine the bulk crystal
and fluid densities at coexistence through a full minimization
and a subsequent Maxwell construction. These densities
are only slightly shifted from the ones obtained within the
Gaussian approximation (see Table I).

The results are partially surprising (see Table I). For the
Taylor-expanded Tarazona functional (i.e., employing the c(2)

of Percus-Yevick), the coexisting densities are still very close
to the simulation and FMT (0.944 and 1.049). In the Gaussian
approximation, similar values have been already obtained in
1985 by Jones and Mohanty [32]. The crystal free energy is too
big (βF/N = 5.33 vs 4.96 from simulation and FMT), and the
width of the Gaussian peaks is much too narrow (α ∼ 600 vs
80 from simulation and FMT). For the WBII functional (i.e.,
the better functional, with a more precise c(2)) the coexistence
densities are considerably off (1.021 and 1.123); consequently
the crystal free energy is too big by 40%, and the Gaussian
width parameter α ∼ 1000 stands for even narrower peaks.
For both functionals, the vacancy concentrations are too large
by three orders of magnitude.

As before for FMT, we determine the surface tensions using
a full minimization (see Appendix A). It is gratifying that
the ordering γ[100] > γ[110] > γ[111] is upheld, but the relative
anisotropies are too large by approximately a factor of 2 and
the average value of the surface tension is too large [Taylor-
expanded Tarazona functional: 0.84, Taylor-expanded White
Bear II functonal: 1.2 vs 0.67 from full FMT, all values in units
of 1/(βσ 2)].

In conclusion, it is apparent that through Taylor expansion
of the precise FMT functionals, crystal free energies, surface
tensions, and vacancy concentrations are severely affected.
Nevertheless, a qualitative description is still achieved. The
reason for the quantitative failure of the Taylor-expanded
functionals is most likely due to the fact that the packing
constraints or free energies for highly localized states are not
respected very well. This is in contrast to the FMT functionals
which have incorporated the correct description of localized
states [20,21].
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C. Phase-field crystal modelling

1. Fixing parameters using bulk properties

From the phase diagram of the PFC model (Fig. 1) with
free energy density

fPFC = �(x)[−ε + (1 + ∇)2]�(x) + �(x)4

4
,

one infers that, for the description of stable fluid-crystal(fcc)
coexistence, a parameter range of ε ∼ 0.5, . . . ,1 is necessary.
For lower ε, fcc is metastable only with respect to bcc, and for
ε < 0 there are no ordered phases at all. However, following
the derivation of PFC from the Taylor-expanded functional,
one is led to the free energy in Eq. (17) with coefficients aid,
bid, gid from the expansion of the ideal gas free energy and
the Taylor coefficients c0, c2, c4 from the expansion of the
Fourier transform of the direct correlation function c̃(2)(k; ρ).
Using the explicit form for c(2)(r) = a1 + a2(r/σ ) + a3(r/σ )3

(r/σ < 1), we find

c0 = 4π
(a1

3
+ a2

4
+ a3

6

)
,

c2 = 4π

6

(a1

5
+ a2

6
+ a3

8

)
, (34)

c4 = 4π

120

(a1

7
+ a2

8
+ a3

10

)
,

and inserting into the equation (21) for ε we obtain ε =
−0.6 · · · − 0.7 (ρ0σ

3 = 0.94, . . . ,1.04, Percus-Yevick direct
correlation function). Thus, the naive gradient expansion of
the Taylor-expanded functional produces a free energy which
shows no sign of a liquid-solid transition. The reason is es-
sentially that the gradient expansion roughly approximates the
Fourier transform of the direct correlation function c̃(2)(k; ρ)
and consequently also the structure factor defined by

S(k; ρ) = 1

1 − ρc̃(2)(k; ρ)
. (35)

The gradient expansion leads to a structure factor which clearly
violates the empirical Verlet-Hansen freezing criterion [height
of first peak in S(k) � 2.8], whereas S(k) from the PY direct
correlation function fulfills it.

Such a failure of the naive gradient expansion has been
noted and discussed before in a case study on the applicability
of PFC for bcc metals [11]. The remedy proposed was to fit c0,
c2, c4 to the first maximum of c̃(2)(k; ρ) [or S(k; ρ)] at around
kσ ∼ 7 and also to fit the coefficients aid, bid, gid in order to
achieve a reasonable description of coexistence. The results
from this procedure can be considered as partially successful:
The correct description of the first peak of the structure
factor needs a value for c0 which is too small and hence
causes deviations of the liquid isothermal compressibility
β(∂p/∂ρ)−1 = 1/[1 − ρc̃(2)(0; ρ)] = S(0; ρ). Also, bulk free
energies are not well captured [11].

Another serious problem is related to the identification of
the order parameter �(r) = ρ(r)/ρ0 − 1 [see Eq. (17)] with
the shifted dimensionless density. The order parameter �

of the PFC model is related to a rescaling and shift of the
order parameter φ. Numerical solutions of the PFC model
for ε > 0 show that the order parameter solutions for bulk
crystals can still be approximated by Gaussians [Eq. (29)],
but they are much more spread out (width parameter α ∼ 10,
compared to 80 (for the case of FMT) and 500...1000 (for the
case of Taylor-expanded DFT). Consequently �(r) has to be
interpreted rather as a smeared-out reduced density. We will
model this idea using a simple, normalized Gaussian smearing
function with width α′ leading to the following reinterpretation
of �(r):

�(r) = ρ̄(r)

ρ0
− 1, (36)

with ρ̄(r) =
∫

dr′
(

α′

π

) 3
2

exp(−α′r ′2/σ 2)ρ(r − r′). (37)

Inserting this ansatz into the approximative free energy in
Eq. (17) and applying c(2) = −δ2F ex/(δρδρ), we find the
following Fourier transform for the direct correlation function:

c̃(2)(k; ρ) = exp

(
− k2

2α′

)
(−c0 + c2k

2 − c4k
4 · · · ). (38)

Treating α′,c0,c2,c4 as fitting parameters, we obtain very ac-
curate fits of both, c̃(2)(k; ρ) and S(k) in the “long wavelength”
region kσ � 10 for different choices of the reference density
ρ0, see Fig. 3 and Table II. The good matching properties are

0 5 10 15 20
 k σ
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3

4 ρ0 = 0.94, PY
                PFC fit
ρ0 = 1.04, PY
                PFC fit

(a)

0 0.5 1 1.5 2
 r / σ

-150

-100

-50

0

ρ0 = 0.94, PY
                PFC fit
ρ0 = 1.04, PY
                PFC fit

(b)

FIG. 3. (Color online) Comparison between Percus-Yevick results (full lines) and PFC fits (dashed lines). (a) Structure factor S(k; ρ0). (b)
Direct correlation function c(2)(r; ρ0). Thin lines are for a reference density ρ0σ

3 = 0.94 and thick lines for ρ0σ
3 = 1.04.
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TABLE II. PFC fitting parameters and results for the bulk liquid and crystal phases at coexistence.

ρ0σ
3 ε α′ c0σ

3 c2σ
5 c4σ

7 aσ 3 bσ 3 gσ 3 E0

(
βF

N

)
cr

(
βF

N

)
fl

βμcoex nvac

Simulation 3.75 4.96 16.1 10−4

0.94 0.5 14.21 61.93 2.567 0.0249 23.45 69.75 33.13 0.279 3.93 5.20 17.16 −0.11
0.65 32.40 112.0 62.75 0.147 3.93 5.20 17.16 −0.12
0.8 42.02 160.5 101.0 0.091 3.93 5.20 17.16 −0.13

1.0 0.5 13.93 80.36 3.201 0.03013 21.04 98.19 54.57 0.342 3.99 5.06 15.06 −0.06
0.65 26.75 154.9 103.4 0.181 4.01 5.01 14.48 −0.07
0.8 32.42 218.6 166.3 0.112 4.02 4.97 13.90 −0.08

1.04 0.5 13.99 96.56 3.745 0.03458 16.58 122.9 76.15 0.397 4.11 4.94 12.77 −0.03
0.65 18.40 191.1 144.2 0.209 4.15 4.89 11.92 −0.04
0.8 19.53 266.5 232.1 0.130 4.18 4.84 11.07 −0.05

a result of the fit with α′ ≈ 14. This value naturally accounts
for the extended width of the bulk crystal solutions for �(r).
Additionally we also have the qualitatively correct behavior for
c(2)(r) for short distances r � σ (see Fig. 3). Furthermore, in
line with the previous studies [11,33], we treat the coefficients
aid,bid,gid → a,b,g as free parameters since the ideal gas free
energy cannot be applied to a smoothed density field ρ̄ as
defined above. A direct way to fix these parameters is by
using the physical hard-sphere coexistence densities ρcr and
ρfl as input. Since the PFC phase diagram is described by
the reduced PFC free energy in Eq. (18) (see Fig. 1), the triple
ε,�̄cr(ε),�̄fl(ε) fixes the three coefficients a,b,g using the third
relations of Eqs. (19) and (21). Here �̄cr(ε) and �̄fl(ε) are the
coexistence values for the average order parameter of the fcc
crystal and of the fluid, respectively.

In summary, a reasonable procedure to fix the PFC
parameters is as follows:

(1) Fix a reference density ρ0, fit S(k; ρ0) = 1/[1 −
ρ0c̃

(2)(k; ρ0)] using Eq. (38) in the wave vector region including
the first peak of the structure factor (kσ � 10).

(2) Fix the PFC parameter ε and require coexistence at
the physical coexistence densities: This determines a,b,g and
consequently also the length scale q0 and the free energy scale
E0 of the PFC model.

We have gathered the results of this procedure for some
combinations of reference densities and ε parameters in
Table II. Note that the fitted values of a,b,g are one to
two orders of magnitude larger than the ideal gas values
aid = ρ0, bid = ρ0/2, gid = ρ0/3. This is a consequence of
the fact that the PFC order parameter should be considered as
a smeared-out density.

In Table II we also give the free energy per particle for
the coexisting bulk liquid and crystal phases, their chemical
potential, and the vacancy concentration of the coexisting
crystal, obtained from a minimization of the PFC free energy
of Eq. (18) for bulk crystal states. For the absolute values of the
free energy and the coexisting chemical potential, one needs
to determine the constant and linear terms in the PFC order
parameter � (see Eq. (20)). We find that, for the reference
density ρ0σ

3 = 0.94, the coexistence free energies and the
chemical potential are well recovered in this case ρ0 = ρfl,
the liquid free energy and the chemical potential are those of
the PY theory and are hence reasonably accurate. The good
approximation of the crystal-fluid free energy difference is in
contrast to the findings in Ref. [11].

However, the order parameter profiles � from FMT and
PFC in the crystal unit cell at coexistence agree only qualita-
tively; see Fig. 4. Here the FMT solution for � is calculated

0 0.1 0.2 0.3 0.4 0.5 0.6
r / a

-1

0

1

2

3

4

5

Ψ

FMT - [100]
            [110]
            [111]
PFC  - [100]
            [110]
            [111]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
r / a

-1.5

-1

-0.5

0

0.5

1

1.5

Ψ

FMT - [100]
            [110]
            [111]
PFC  - [100]
            [110]
            [111]

(b)

FIG. 4. (Color online) Comparison between FMT (thin lines) and PFC (thick lines) for the order parameter � in the bulk crystal at
coexistence, for three different lattice directions in the fcc cubic unit cell of side length a. The order parameter is calculated from the FMT
density profile ρ(r) by �(r) =

√
g/(ρ2

0c4q
2
0 )[ρ̄(r)/ρ0 − 1 − b/(3g)] with q2

0 = c2/(2c4) and ρ̄(r) given by the convolution in Eq. (37). Values
for b,g,c2,c4 are obtained for the data set ρ0σ

3 = 0.94 and ε = 0.5 (see Table II), and the smearing width for ρ̄ is α′ = 14.0 in (a) and α′ = 7.0
in (b).
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via the third expression of Eq. (19), but with the smeared
density profile defined in Eq. (37). Using a smearing parameter
α′ = 14.0, consistent with the structure factor fit in Table II,
yields order parameters that vary more strongly in FMT than in
PFC [Fig. 4(a)]. Although in Fig. 4(a) the comparison is shown
only for one choice of ρ0 and ε, the differences between FMT
and PFC are also found for other parameter combinations.
Only by choosing α′ = 7.0 (stronger smearing) do the order
parameter profiles agree almost quantitatively [see Fig. 4(b)].
For such low values of α′, the fitting procedure gives too
large values for the inverse PFC length scale q0 and too small
values for the free energy scale E0. Thus, the order parameter
description in PFC is somewhat defective.

The relative vacancy concentration nvac can be calculated
via the number of particles Ncell = ρcr(amin/q0)3 in the fcc
cubic unit cell by nvac = 1 − Ncell/4. Here amin is the cubic
unit cell length in dimensionless PFC units, which follows
from minimizing the PFC free energy density at the value for
the average order parameter �̄ at coexistence. The resulting
nvac is negative (see Table II) and of order 0.1, which
implies a considerable concentration of interstitial particles.
This is, of course, unphysical, but it simply follows from
fixing PFC coexistence to the correct physical densities.
This observation reflects once more the difficulties in fixing
parameters. Similarly to the case of the Taylor-expanded
functional, it cannot be expected that a “generic” free energy
functional like the PFC functional can capture the correlations
in the nearest-neighbor shell of a crystalline particle correctly,
especially the condition of no overlap between particles. These
correlations determine the precise value of nvac.

2. Crystal-fluid surface tensions

We have determined the equilibrium order parameter profile
and the associated PFC free energy for the crystal-fluid
interface as the long-time limit of the solution to the dynamic
equation

∂�(x,t)

∂t
= ∇2 δFPFC

δ�(x,t)
(39)

[see Eqs. (1) and (2)], with initial conditions given by a trial
profile for a crystal slab in the simulation box filled otherwise
with liquid. Any mobility coefficient, relating the PFC time
t in the above equation to real time, is unimportant for the
discussion of equilibrium properties. The order parameter
profiles and the PFC free energy can be converted to density
profiles and physical free energies using Table II. We have
noted a certain sensitivity of the surface tensions and the
order parameter profiles to the grid spacing and the precise
extensions of the simulation box. These details are discussed
in Appendix B.

We have calculated the dimensionless PFC surface tension
γ̂ for the three different orientations [100], [110], and [111],
each for the values of the PFC parameter ε = 0.5, 0.65, and
0.8. In this sequence of orientations the results are 0.0097,
0.0092, 0.0073 (ε = 0.5), 0.0132, 0.0129, 0.0102 (ε = 0.65),
and 0.0165, 0.0163, 0.0129 (ε = 0.8). The conversion to
physical surface tensions of the hard-sphere system is given
by γ = γ̂ q2

0E0 with the free energy scale E0 and the inverse
length scale squared q2

0 = c2/(2c4) given in Table II. This
results in different γ for different reference densities ρ0, which
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FIG. 5. (Color online) Surface tension from the PFC model
for different orientations and different reference densities ρ0. For
different ρ0, the physical surface tensions γ = γ̂ q2

0 E0 differ since
the free energy scale E0 and the inverse length scale squared
q2

0 = c2/(2c4) differ (see Table II). The dimensionless PFC surface
tension γ̂ is only a function of ε (values given in text).

are depicted in Fig. 5. For the reference density ρ0σ
3 = 0.94

(where PFC bulk crystal data are in good agreement with
FMT and simulation) the surface tension values are given in
Table I as well. The physical surface tensions are largest for
highest reference density ρ0 and the lowest PFC parameter
ε and decrease for decreasing ρ0 and/or increasing ε. Still,
on average for the three different orientations the surface
tensions are too low compared to FMT/simulation values
between a factor of about 3 (ρ0σ

3 = 1.04, ε = 0.5) and about
15 (ρ0σ

3 = 0.94, ε = 0.8). The ordering of surface tensions
γ[100] > γ[110] > γ[111] is correct for the PFC results but γ[111]

is smaller than γ[100] by about 30%, which differs considerably
from the 5%,...,8% as found in simulation and FMT. Likewise
a strong qualitative difference between the order parameter
profiles of the [111] interface compared to the [100], [110]
interfaces is also found: The width of the [111] interface is
considerably wider than of the [100], [110] interfaces (see
below). This feature is not present in FMT.

D. Density and order parameter modes at the
crystal-fluid interface

1. General theory and previous FMT results

Consider a generic field ψ(x,y,z) which describes the
crystal-fluid interface with interface normal in the z direction.
In DFT, this field is the density ρ(x,y,z) and in PFC, it is the
order parameter field �(x,y,z). We can parametrize the field
ψ in terms of a modified Fourier expansion

ψ(x,y,z) =
∑

j

exp(iKj · r) pj (z), (40)

where Kj denotes the reciprocal lattice vector (RLV), and j -
and the z-dependent Fourier amplitude pj (z) are modes of the
field. One expects that upon crossing the interface from the
crystal side, all pj (z) relax to zero for nonzero Kj . Only for
Kj ≡ 0, does the value for the associated mode cross from
the average field ψ̄ of the crystal to the average field of the
fluid. It is convenient to group the Kj in shells with index m,
where all Kj belonging to one shell can be transformed into
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FIG. 6. (Color online) Comparison between mode profiles from FMT and Taylor-expanded DFT (T-DFT, using the PY direct correlation
function and ρ0σ

3 = 0.94). Note that the interface position for T-DFT is shifted by about 2a compared to the interface position for FMT to
enhance readability. Real part of leading density modes for (a) the [100] interface and (b) the [111] interface. The density mode p00(z) has been
rescaled and shifted; see tick labels at right y axis. Imaginary parts of leading density modes are displayed in (c) for the [100] interface and in
(d) for the [111] interface.

each other using the discrete symmetry group of the crystal
under consideration. Thus in the bulk crystal, all pj (z) ≡ Pj

associated with these Kj are equal. For the fcc crystal, the
reciprocal lattice is of bcc symmetry. We assume a to be the
side length of the cubic unit cell of fcc and correspondingly b =
2π/a the side length of the cubic unit cell of bcc in reciprocal
space. The reciprocal basis is given in Cartesian coordinates,
where the axes span the cubic unit cell in reciprocal space,
by B1 = b(1,1, − 1), B2 = b(1, − 1,1), and B3 = b(−1,1,1).
An arbitrary RLV is a linear combination of the Bi . The shells
are characterized by a triple (m,n,k) of natural numbers, and
the Kj belonging to this shell have Cartesian components
b(±m, ± n, ± k) and permutations thereof. Thus, if m,n,k

are mutually distinct, there is a maximum of 48 RLV in one
shell. The shells with lowest modulus are given by (1,1,1),
(2,0,0), and (2,2,0). A listing of the RLV triples up to shell 15
is given in Ref. [34] (Table I). At the interface, the degeneracy
of the RLV in one shell is lifted, and we introduce an index n

which distinguishes the possible values of the z component of
the RLV. Thus the decomposition becomes

ψ(x,y,z) =
∑
mn

∑
j

pmn(z) exp[i(Kj )mn · r]. (41)

The sum over j is only for those RLV within shell m which
have a common value of z component, as expressed by the
index n. In the literature, such a decomposition has been

used to parametrize the full 3D density profile using only the
leading mode in order to facilitate a simplified order parameter
description of the crystal-fluid interface. In the context of
PFC, the leading-mode picture has been advanced by Karma
et al. [35]. If the z component of (Kj )mn is zero, the mode will
be purely real, and if that z component is nonzero, the mode
will be in general complex, and we denote by p+

mn(z) its real
part and by p−

mn(z) its imaginary part. The p−
mn(z) have the

obvious interpretation of phase shifts of the associated field
oscillations across the interface.

The technique to perform the mode extraction from a full 3D
solution ψ(x,y,z) of a system with a solid-liquid interface is
described in Ref. [36]. There the density mode properties for
the FMT solutions of the hard-sphere interfaces in different
orientations have been discussed in detail. Some of these
properties can be summarized as follows:

(1) A separation of about one cubic unit cell length a ≈ 1.6
σ between the interface location as determined by the average
density and the interface location as determined by the leading
crystallinity mode [p1n(z)]

(2) A small density depletion zone just in front of the bulk
crystal [dip in profile p00(z)]

(3) Strongly nonmonotonic mode profiles also for next-to-
leading modes, especially for p2n(z)

(4) Kink position for higher modes pmn(z) shifts towards
the bulk crystal for increasing m.
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2. Mode profiles from T-DFT and PFC in comparison with FMT

First, we compare the leading density modes of the [100]
and [111] interfaces for the FMT solutions and the solutions
from Taylor-expanded DFT (T-DFT); see Fig. 6. The meaning
of the different modes is seen best from the associated RLV.
As a basis for the RLV, we choose vectors in direction of
the cartesian axes with lengths 2π/ax , 2π/ay , and 2π/az,
respectively. The quantities ax[y,z] are the side lengths of the
minimal cuboid fcc unit cells fitting the desired interface
orientation in z direction. For a graphical representation,
we refer to Ref. [36] (Fig. 2). In Fig. 6 we illustrate the
leading mode p11(z) for the [100] orientation (corresponding
to K = (1,1,1), the direction of close-packed planes), and the
next-to-leading mode p22(z) [corresponding to K = (0,0,2),
leading oscillation of lateral density average]. For the [111]
orientation, the leading mode splits into p11 ↔ K = (0,2,1)
and p12 ↔ K = (0,0,3). Both RLV correspond to directions of
close packed planes, but the mode p+

11(z) clearly differs from
p+

12(z). Only the latter has a monotonic shape as expected
for a “leading-order” interface profile, similar to p+

11(z) of
the [100] orientation. For the next-to-leading mode, we have
p21 ↔ K = (1,1,2). The FMT results for the real parts of these
leading modes display already all properties 1–4 listed above.
We further remark that the modes from T-DFT compare fairly
well on a semiquantitative level. The density depletion zone
is missed, and the phase shifts are more pronounced. For both
FMT and T-DFT, the mode expansion converges slowly as seen
by the plateau values of the modes in the crystalline bulk. This
is a consequence of the narrow density peaks in the bulk crystal.

Next we compare the interface mode profiles for the order
parameter �(r) from PFC on the one hand and from FMT on
the other hand. Here the FMT order parameter follows from the
smeared density ρ̄(r) [Eq. (37)], which is rescaled and shifted
according to the PFC transformation in Eq. (19). For the PFC
parameter, ε = 0.5, and a reference density of ρ0σ

3 = 0.94,
the results for the real part of the leading modes is shown
in Fig. 7 [part (a) for the [100] interface and part (b) for the
[111] interface]. First, one notes that the absolute magnitude
of the PFC modes is smaller by a factor of about 3 compared
to the FMT modes. This is a consequence of the different

widths of the order parameter peaks in the crystal bulk: They
are more narrow in FMT (see Fig. 4), and consequently their
Fourier amplitudes are larger. Second, except for the “density”
depletion, the mode features identified in FMT are not present
in PFC. This is attributed to the simple free energy of the PFC
model. Our mode results further illustrate that the specificities
of the layered hard-sphere packing cannot be captured by PFC.
Another interesting observation is that the interface width w of
the [100] interface is about 0.24 a for PFC and 0.86 a for FMT
if the leading mode p11(z) is fitted to the simple tanh profile
1 − tanh[(z − z0)/w]. For the [111] orientation we find widths
of 0.47 a (PFC) and 1.05 a (FMT) from a fit to the leading
mode p12(z). In conclusion, we observe that the width of the
interface is much smaller in PFC, and it varies considerably
with the orientation of the interface.

3. Mode profiles from simulations in comparison with FMT

We have carried out Molecular Dynamics simulations of
the [100] interface in order to give a comparison to FMT
data as well as to demonstrate the applicability of the mode
expansion technique to simulation data. The simulations were
carried out in the NV T ensemble at coexistence in cuboid
boxes of cross-sectional area of 5 unit cells × 5 unit cells
(Lx × Ly = 7.84σ × 7.84σ ) and a length of Lz ≈ 205σ with
the crystal occupying about 60% of the box volume and placed
in the middle of it. We have recorded the laterally averaged
density profile

ρav(z) = 1

LxLy

∫ Lx

0
dx

∫ Ly

0
dy ρ(x,y,z) (42)

with a resolution of 64 points per unit cell as a time average
over different time intervals Tav.

From ρav(z) one can extract mode profiles pmn(z) for
which the lateral components of the associated reciprocal
lattice vector are zero: (Kx)mn = (Ky)mn = 0. In particular
we focused on the average density mode p00(z) and the first
two modes appearing for the lateral density average p22(z)
[(K)22 = (0,0,2)] and p62(z) [(K)62 = (0,0,4)].

Due to the periodic boundaries of the simulation box, global
center of mass motion of the system does not cost any free
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FIG. 7. (Color online) Comparison between order parameter mode profiles from FMT and PFC for the [100] interface in (a) and the [111]
interface in (b) for the PFC parameter ε = 0.5 (see Fig. 1). The order parameter resulting from FMT is calculated from the 3D FMT density
profile by �(r) =

√
g/(ρ2

0c4q
4
0 ) [ρ̄(r)/ρ0 − 1 − b/(3g)] [see Eqs. (19) and (37), q2

0 = c2/(2c4)]. We choose the reference density ρ0σ
3 = 0.94.

The remaining parameters are given in Table II. To enhance readability the “density” mode p00(z) is rescaled and shifted (see tick labels at
right y axis) and that the interface position for PFC is shifted by about 3a compared to the interface position for FMT.
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FIG. 8. (Color online) Leading modes extracted from simulated, laterally averaged density profiles in comparison with FMT results. (a)
Average density mode p00(z), (b) real part of p22(z) [(K)22 = (0,0,2)], (c) real part of p62(z) [(K)22 = (0,0,4)], and (d) imaginary part of p22(z).

energy, hence the system diffuses freely. When taking the
time average, we have made no attempt to correct for this
motion, as it was negligibly small on the time scale of Tav.
Furthermore we have not corrected for the zero mode of the
capillary waves at the interfaces. The zero mode corresponds
to a shift 
z of the average interfacial position, which is caused
by fluctuations in the overall amount of crystalline material.
For an infinite system, this zero mode would not incur a
free energy penalty either. For a finite system adsorption or
desorption of crystalline layers results in a density change in
the surrounding liquid reservoir. This is associated with a free
energy cost, which we estimate in quadratic approximation to
be


F = 2LxLy

Lz

(ρcr − ρfl)2μ′
fl(ρfl) (
z)2 , (43)

where μ′
fl(ρ) is the density derivative of the fluid chemical

potential. For our system the broadening of the interface due
to the zero mode contribution is rather small, 〈(
z)2〉 < 1 σ 2.

Besides the zero mode, there are also capillary waves
with a finite wavelength. It is impossible to disentangle the
contribution of capillary interfacial broadening from the width
of a hypothetical “intrinsic” density profile which one would
like to relate to the profile from density functional theory.
However, by studying density averages for different time
intervals, we will obtain some qualitative insight regarding the
contribution that capillary waves make to the density modes.

In Fig. 8 we show the mode profiles extracted from the
simulation data for averaging times of 1, 5, and 50 self-
diffusion times τ as well as the FMT counterparts. (We give Tav

in units of the characteristic self-diffusion time, which it takes
a particle in the coexisting liquid to diffuse over a distance
of σ .) The width of the average density [Fig. 8(a)] compares
well with the FMT profile for Tav = 1 and 5 but shows a
significant broadening for Tav = 50. This we largely ascribe
to finite-wavelength capillary waves which are sampled better
at longer times. The broadening effect on the mode width is
less pronounced for the crystallinity modes [Fig. 8(b)–(d)]. A
strong effect of the sampling time is visible on the plateau value
in the crystalline part of the real parts of mode p22 [Fig. 8(b)]
and of mode p62 [Fig. 8(c)]. This reflects the broadening of
the lattice site density peaks due to diffusion of the crystal
as a whole. Apart from that the behavior of the modes in the
interface region z/a = 7, . . . ,11 compares very well with the
FMT results. In particular the good agreement for the imagi-
nary part of p22 signifies that the wavelength shift of the density
oscillations across the interface is captured correctly by FMT.

IV. SUMMARY AND CONCLUSION

We have studied the crystal-liquid interface in the hard-
sphere system by means of theoretical description on three
approximative levels, all of which are based on classical
density functional theory (DFT):
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(1) Fundamental measure theory (FMT), the currently most
accurate theoretical framework for hard spheres

(2) Second-order Taylor-expanded DFT which truncates
density fluctuations with respect to a reference density beyond
second order

(3) A phase-field crystal (PFC) model which formally can
be viewed as local expansion of the second-order Taylor-
expanded DFT in density fluctuations and in gradients thereof
to fourth order.
Coexistence properties, surface tensions, and interfacial pro-
files for three interface orientations have been determined in all
approximations by free minimization of the associated density
functionals. FMT provides us with benchmark results against
which the other approximations can be measured. For the [100]
interface, we have confirmed that also the interfacial density
mode profiles obtained from FMT show good agreement with
corresponding results of Molecular Dynamics simulations.
Thereby we have demonstrated the applicability of the mode
expansion technique to simulation data.

An important difference between FMT on the one hand and
Taylor-expanded DFT and PFC on the other hand is that the
packing constraints for hard particles are incorporated very
well only in the former. In consequence, the small values for
the relative vacancy concentration for equilibrium crystals and
the relatively small surface tension anisotropy are predicted
correctly. Vacancy concentrations in Taylor-expanded DFT
and PFC are off by orders of magnitude. The surface tension
anisotropy is too large by a factor of two in Taylor-expanded
DFT and much too large in PFC. In Taylor-expanded DFT,
we find a surprising sensitivity of coexistence properties to
details of the direct correlation function. This results in a strong
sensitivity of the average surface tension with respect to the
choice of the direct correlation function.

We have discussed in detail the problem of parameter fixing
in PFC. It turns out that the identification of the PFC order
parameter with a rescaled and shifted smeared density is a
suitable working recipe. The structure factor and coexistence
free energies can be fitted very well. The order parameter
distribution in the bulk crystal compares to FMT well only on
a qualitative level, but with regard to the surface tension and the
interfacial structure there are actually big discrepancies. Our
major conclusion here is that the simple PFC variant consid-
ered here is too generic and needs to be specifically modified in
order to incorporate the hard-sphere like interface structure of
fcc materials (see Ref. [37] for an approach in this direction).

The sensitivity of results in Taylor-expanded DFT to the
choice of the direct correlation function provides a hint that
the specific functional form of the latter should be fitted to
obtain proper coexistence. An attempt to match precise results
for the direct correlation function (obtained by other means) is
perhaps of little practical use. We further discuss that, at least
for the hard-sphere system, the status of Taylor-expanded DFT
as the reference microscopic DFT for the PFC model is not
justified.

The PFC model has become popular also for its compu-
tational simplicity when studying dynamic processes such as
nucleation and growth. Due to the gradient-expanded form of
the free energy, a moderate spatial resolution is needed and
larger domains can be studied. Possible numerical solution
strategies of the dynamic equation (39) benefit from the

experience gained in the study of similar parabolic equations
in the literature. However, from our exemplary study here we
infer that care is required when one likes to associate the results
to particular materials or material classes (such as fcc formers).
The basic PFC model (investigated here) can of course be
extended (e.g., higher orders in the gradient expansion [11],
additional length scales [37]), and these extensions can be used
to be more material-specific and hopefully to be more precise
in the surface tension and structure, for example. Nevertheless
effort is needed for each extension to check and fit the phase
diagram and bulk and surface free energies.

In contrast to the easy-to-handle dynamics of the PFC
model, apparently no attempt has been reported on the numer-
ical solution of the dynamic DFT equation (11) using FMT
functionals for problems involving the solid phase. In view of
the performance of FMT with regard to static properties it will
be worthwhile to invest some effort in investigating solutions
of the dynamic DFT equation. Perhaps it is feasible to combine
dynamic DFT and improved PFC models in “mixed resolution
schemes,” such as has been proposed with the combination of
the PFC and the phase-field approach [6].
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APPENDIX A: FREE MINIMIZATION OF THE
CRYSTAL-FLUID INTERFACE IN DFT

The free minimization of the crystal-fluid interface was
achieved by an iterative solution of the Euler-Lagrange
equation

ρ(r) = exp

[
βμ − δ(βF ex)

δρ(r)

]
= K[ρ], (A1)

where the excess free energy F ex is given by Eqs. (24) and
(26) in the case of FMT and by Eq. (12) in the case of T-DFT,
supplemented with the two choices for the direct correlation
function [Eq. (30)], given by the coefficients in Eqs. (31) and
(32). The density ρ(r) is discretized in a cuboid volume with
edge lengths Lx , Ly , and Lz which contains the fluid in the
middle (z ∼ Lz/2) and the crystal phase at the boundaries
(z ∼ 0 and z ∼ Lz) such that ρ(x,y,z) = ρ(x,y,Lz − z). Lx[y]

are given by the edge lengths in x[y] direction, ax,[y], of the
smallest cuboid unit cell of the crystal which has the desired
orientation in the z direction. The crystal cuboid unit cells
are shown in Fig. 2 of Ref. [36] for the [100], [110], and
[111] orientations. We chose Lz = 32az for the [100] and
[110] orientations and Lz = 16az for the [111] orientation.
The equidistant discretization was usually 64 points per unit
cell length ax[y][z], but was increased to 128 points per unit
cell length ay[z] for the [111] case. All convolution integrals
appearing in δF ex/δρ where calculated using 3D fast Fourier
transforms.
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As a first step for initialization, bulk crystal density profiles
have been determined for the coexisting state. To do so,
we determined the minimal free energy per particle of the
bulk crystal in the cuboid unit cell at a fixed bulk density
ρb by solving Eq. (A1) and also minimizing with respect to
the unit cell length a (corresponding to a minimization with
respect to the vacancy concentration [10]). The coexistence
densities ρcr, ρfl and the associated chemical potential μ =
μcoex were determined using the Maxwell construction. The
cuboid volume was filled with copies of the bulk crystal unit
cell, defining a density profile ρc(r). The initial interface profile
ρ0(r) was generated in the following way:

ρ̄(z) = ρfl + (ρcr − ρfl) p(z,z0,1,w1), (A2)

ρ0(x,y,z) = ρ̄(z) + (ρc(x,y,z) − ρ̄(z)) p(z,z0,2,w2), (A3)

p(z,z0,w) = 1

2

(
2 − tanh

[
z − z0

w

]
− tanh

[
Lz − z − z0

w

])
.

(A4)

The advantage of the above prescription is in the separation of
the interfacial kink of the average density ρ̄ from the kink of
the density oscillations through different choices for z0,1 and
z0,2. This is useful to ensure a smooth start into the iterations
in the case of FMT; for T-DFT it is not that important.

Iteration was done using a combination of Picard steps with
variable mixing and DIIS steps (discrete inversion in iterative
subspace) [38]. The Picard steps were performed according to

ρi+1(x,y,z) = α(z) K[ρi(x,y,z)] + (1 − α(z)) ρi(x,y,z),

(A5)

α(z) = αmin + (αmax − αmin)p′(z,z0,w), (A6)

p′(z,z0,w) = 2 − tanh2

[
z − z0

w

]
− tanh2

[
Lz − z − z0

w

]
.

(A7)

The mixing function α(z) ensures that there are substantial
changes within one iteration step only in the interfacial region,
since we chose αmin ∼ 10−5 and αmax ∼ 0.001, . . . ,0.01.
Choosing α(z) = const. is not practical since the constant
would be limited to values below 10−4, otherwise the iteration
fails due to instabilities in the bulk crystalline region. The
DIIS steps were performed using between nDIIS = 7, . . . ,10
previous profiles.

A typical FMT run consisted of an initial Picard sequence
with about 50 steps and αmax = 0.01. Then we alternated
between Picard sequences of a minimum of 10 steps and
one DIIS step (which needs another nDIIS Picard initialization
steps). We decreased αmax after each switch from DIIS to
Picard by a factor 1.5 until αmax = 0.001 was reached. Also,
we varied the maximum position of the mixing function α(z)
by choosing z0 randomly in a certain interval (located in the
interface region) with a width of about 2 σ after each switch
from DIIS to Picard. This was done to overcome being trapped
at intermediate profiles where the surface tension

γ = 1

2axay

∫ ax

0
dx

∫ ay

0
dy

∫ Lz

0
dz[β−1ρ(r)(ln ρ(r) − 1]

+ f ex[ρ(r)] − μρ(r) + pcoex) (A8)

hardly changes between iteration steps (f ex is the excess free
energy density and pcoex is the coexistence pressure). The
condition for switching from Picard to DIIS was that after the
minimum of 10 steps the convergence parameter

εi = 1

axayLz

∫ ax

0
dx

∫ ay

0
dy

∫ Lz

0
dz{K[ρi(r)] − ρi(r)}2 (A9)

was decreasing between subsequent steps. If not, the Picard
iterations were repeated with another 10 steps until that
condition was met. Otherwise DIIS might take one away from
the equilibrium solution easily. The DIIS step usually resulted
in a very noticeable change in γ and also in εi in the subsequent
Picard steps. It was, however, not possible in general to perform
a second DIIS step immediately after the first one since the
density profile obtained after this DIIS step lead to singularities
in the free energy (local packing fraction n3 > 1). We stopped
the run when εi � 10−3.

We emphasize that only through the procedure outlined
above we were able to determine equilibrium profiles for
FMT. The standard method for solving DFT, simple Picard
iterations with possibly variable, but spatially constant mixing
α, simply fails. Also without DIIS we were not able to arrive
at equilibrium profiles within a reasonable time.

For T-DFT, the above procedure does not seem to be
necessary but resulted in a very quick convergence.

APPENDIX B: MINIMIZATION OF THE PFC FREE
ENERGY FOR THE CRYSTAL-FLUID INTERFACE

In PFC we perform simulations with periodic boundary
conditions in each direction, as we do in DFT. In the crystal
phase, this implies that a stress will be acting on the crystal
unless the dimensions Lx[y][z] of the cuboid simulation box
fit exactly multiples of the corresponding unit cell lengths
of the equilibrium crystal. In order to avoid this stress, we
use a simulation box which is minimizing the free energy
of the crystal; i.e., we determine the minimizing length of
the cubic unit cell amin := 2π/q of the fcc crystal (given in
dimensionless PFC coordinates, x = q0r). For a given average
order parameter �̄cr, we apply Brent’s method to find the box
length which minimizes the free energy.

A test for a single crystal cubic unit cell in [100] orientation
(for ε = 0.5 at coexistence, �̄cr = −0.448336) with numbers
of points per direction N = 8, 16, 32, and 64 has shown that
numerical box effects disappear for cubes of edge length 16
and larger. The results for the reciprocal lattice parameters q

are q(8) = 0.539898, q(16) = 0.539469, q(32) = 0.539476, and
q(64) = 0.539468. It is interesting to compare these numbers to
the corresponding numbers obtained by expanding the crystal
order parameter in reciprocal lattice vectors (see Sec. III D1)
and cutting the expansion at a maximum number nsh for the
reciprocal lattice vector shells. We find for nsh = 4, 6, 8, and
10 the values q(4) = 0.53990, q(6) = 0.53989, q(8) = 0.53956,

and q(10) = 0.53948. This demonstrates that nsh corresponds
roughly to N/2 and that for precise numerical results the few-
mode approximation is not quite sufficient.

In order to avoid numerical artifacts, we determine the
minimal reciprocal lattice parameters q separately for each
orientation; we simulate one unit cell of the crystal with
N = 32 for the [100] and the [110] interface. The crystal
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unit cell in [111] orientation is simulated in a box with
discretization 32 × 64 × 64. The cuboid crystal unit cells for
the different orientations are the same as used in the DFT
calculations (see Fig. 2 of Ref. [36]).

For the initialization of simulations of the crystal-liquid
interface, half of the simulation box is filled with a one-mode
approximation of the crystal, in [100] orientation given by

�(x) = �̄cr + A cos(qx) cos(qy) cos(qz), (B1)

and the liquid part in the other half has the constant value at
coexistence �̄fl. The box length in the z direction (perpendic-
ular to the interface) is 32 crystal unit cell lengths for the [100]
and [110] orientation, resulting in a simulation box with a total
number of points of 32 × 32 × 1024. For the [111] interface,
we use 16 unit cell lengths resulting in a box with a total
number of points of 32 × 64 × 1024. The crystal resides in
one half of the box, so that one interface is in the middle of the
box and the other near the periodic boundary.

The PFC simulation evolves according to the dynamic
equation (39) until the system relaxes. As an indicator for
the relaxation, we use the average deviation δμ of the local
chemical potential μ(x) = δFPFC/δ�(x) from the coexistence
value μcoex and stopped the computation when δμ ∼ 10−4.

For the calculation of the dimensionless surface tension γ̃

we use the formula

2γ̃ = 1

�

∫
d3x

[
f −

(
fcr

� − �̄fl

�̄cr − �̄fl
− ffl

� − �̄cr

�̄cr − �̄fl

)]
(B2)

from Ref. [33], Eq. (50)], where f is the PFC free energy
density (fcr for the crystal at coexistence and ffl for the liquid
at coexistence). � denotes the PFC order parameter with �̄cr

the order parameter average in the coexisting crystal and �̄fl

the corresponding average in the coexisting liquid. � is the
interface area (in dimensionless PFC units). Upon reordering
Eq. (B2) we find

2γ̃ = 1

�

∫
d3x

[
f + fcr�̄fl − ffl�̄cr

�̄cr − �̄fl
− �

�̄cr − �̄fl
(fcr − ffl)

]
(B3)

= 1

�

( ∫
d3x[f ] + fcr�̄fl − ffl�̄cr

�̄cr − �̄fl
− fcr − ffl

�̄cr − �̄fl

∫
d3x[�]

)
(B4)

TABLE III. Surface tension γ̃ for ε = 0.53 in the [100] direction.

N γ̃[100]

8 0.00913
16 0.01041
32 0.01041
64 0.01052

define f̄ , �̄ as volume averages of the free energy density and
order parameter

= 1

�

∫
d3x

[
f̄ + fcr�̄fl − ffl�̄cr

�̄cr − �̄fl
− fcr − ffl

�̄cr − �̄fl
�̄

]
(B5)

= V

�

[
f̄ + fcr�̄fl − ffl�̄cr

�̄cr − �̄fl
− fcr − ffl

�̄cr − �̄fl
�̄

]
, (B6)

where V = ∫
d3x = Lx · Ly · Lz so V

�
= Lz, and we obtain

γ̃ = Lz

2

[
f̄ + fcr�̄fl − ffl�̄cr − �̄(fcr − ffl)

�̄cr − �̄fl

]
. (B7)

Note that the factor 1
2 is needed due to the presence of two

interfaces in the simulation.
To calculate the surface tension with Eq. (B7) we calculate

f̄ ,�̄ in the whole domain. �̄fl, �̄cr, fcr, and ffl are calculated by
convoluting f and � with normalized Gaussians of sufficient
width such that the resulting profile is locally constant. This is
equivalent to peak to peak averaging of the f and � profiles
on the crystal side.

For ε = 0.53, results for the surface tension have been
reported previously in Ref. [39]. We checked the convergence
of the surface tension for different number of points N per
unit cell length. For the [100] orientation, the results are given
in Table III and should be compared with γ[100] = 0.0113
from Ref. [39]. For the [111] direction Ref. [39] provides
γ[111] = 0.0082, whereas our result is γ[111] = 0.0079 (using
N = 32). It is not clear which precise discretization was used
in Ref. [39], but we can conclude that typical discretizations of
about 10,...,15 points per unit cell used in the PFC community
leave a residual error of about 5% in the value of the surface
tension.
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