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Abstract

Today’s Android ecosystem is a growing universe of a few billion devices, hundreds of millions of users,
and millions of applications targeting a wide range of activities where sensitive information is collected
and processed. The security of Android apps is thus of utmost importance and needs to be addressed
carefully. In the last decade, several studies have investigated Android applications from a security
point of view, focusing on the detection of vulnerabilities or the appropriate usage of cryptography
APIs. However, with the Android framework’s rapid iteration, new issues are continuously popping
up while some old issues may not have been detected. As a result, security studies on Android apps
have never been stopped.

Meanwhile, Android applications, just like other software, are developed by following an iterative
process. Indeed, applications are updated regularly to fix bugs or introduce new features. In practice,
to release a new version of their applications, developers need to provide a brand new installation
package, which is known as an apk file. Therefore, each of these apk files stands for one version of a
specific application, and the evolution of an application can be obtained by collecting all these apks.
Nevertheless, the collection of these apk files are not straightforward because Android markets such as
GooglePlay do not preserve the history of apk files. Instead, only the latest version of an app, i.e., the
most recent apk, is provided. This fact challenges studies focusing on Android application evolution.
However, history and past experiences allow us to learn from past mistakes. That is why evolutionary
studies can potentially benefit both developers and users in many ways, such as: discovering trends
for security issue predictions or policy evaluations, unveiling fundamental causes of vulnerabilities for
prevention.

In this dissertation, by leveraging AndroZoo, a popular Android application dataset made available
to researchers, the versioned lineages of Android apps are re-constructed. Then several security-
relevant aspects of Android applications are investigated from an evolutionary perspective. Our study
begins with a wide-range investigation in which we take a deep insight into the evolution of several
vulnerabilities of Android applications. Then we focus on the vulnerabilities related to crypto-APIL.
We present our attempt to learn cryto-APIs usage from the crowd, i.e., by mining crypto-APIs usage
rules from app lineages. Finally, we further narrow down the scale to a new security breach spotted
by us. We elaborate on the mechanism of the breach and investigate its evolution patterns. The
detailed contributions include:

e Re-construction of app lineages: Android developers update their apps by providing new apk
files which are the installation packages, and these apks have to be published via relevant
markets. Nevertheless, mainstream Android application markets including the official market
GooglePlay provide applications as a fleeing data stream where only the latest version of an
application is available. This causes one of the main difficulties to re-construct the lineage of
Android applications. Moreover, to build an app lineage dataset of large scale, besides the
collection of millions of apk files, it also requires a considerable amount of computation capacities
for feature extraction and matching. In this dissertation, we take advantage of the AndroZoo
dataset and the High Performance Computing (HPC) clusters of the University of Luxembourg
to re-construct the first large scale app lineage dataset and publicly share it with the community.
Furthermore, a primary study based on the lineage dataset has been done to investigate the
evolution of Android app complexity by leveraging six well-established complexity metrics.



e Understanding the evolution of Android app vulnerabilities: The community is still lacking

comprehensive studies exploring how vulnerabilities have evolved and how they evolve in
a single app across developer updates. In this dissertation, we fill this gap by leveraging
the re-constructed app lineages. We apply state-of-the-art vulnerability-finding tools and
systematically investigate the reports produced by each tool. In particular, we study which
types of vulnerabilities are found, how they are introduced in the app code, where they are
located, and whether they foreshadow malware. We provide insights based on the quantitative
data reported by the tools, but we further discuss the potential false positives. Our findings
and study artifacts constitute tangible knowledge to the community.

Mining crypto-API usage rules by analyzing app updates: Android app developers recurrently
use crypto-APIs to provide data security to app users. Unfortunately, misuse of APIs only
creates an illusion of security and even exposes apps to systematic attacks. It is thus necessary
to provide developers with a statically-enforceable list of specifications of crypto-API usage
rules. On the one hand, such rules cannot be manually written as the process does not scale
to all available APIs. On the other hand, a classical mining approach based on typical usage
patterns is not relevant in Android, given that a large share of usages include mistakes. In this
dissertation, building on the assumption that “developers update API usage instances to fix
misuses”, we propose to mine the app lineages dataset to infer API usage rules. Eventually, our
investigations yield negative results on our assumption that API usage updates tend to correct
misuses. Actually, it appears that updates that fix misuses may be unintentional: subsequent
updates quickly re-introduce the same misuses patterns.

Direct inter-app code invocation in Android apps and its evolution: The Android ecosystem offers
different facilities to enable communication among app components and across apps to ensure
that rich services can be composed through functionality reuse. At the heart of this system is the
Inter-component communication (ICC) scheme, which has been largely studied in the literature.
Less known in the community is another powerful mechanism that allows for direct inter-app
code invocation which opens up for different reuse scenarios, both legitimate or malicious. In this
dissertation, we expose the general workflow for this mechanism, which beyond ICCs, enables
app developers to access and invoke functionalities (either entire Java classes, methods or object
fields) implemented in other apps using official Android APIs. We experimentally showcase
how this reuse mechanism can be leveraged to “plagiarize" supposedly-protected functionalities.
Typically, we could leverage this mechanism to bypass security guards that a popular video
broadcaster has placed for preventing access to its video database from outside its provided
app. We further contribute with a static analysis toolkit, named DICIDER, for detecting direct
inter-app code invocations in apps. An empirical analysis of the usage prevalence and evolution
of this reuse mechanism is then conducted.
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1 Introduction

In this chapter, we first introduce the motivation of evolutionary security analysis for Android apps.
Then, we summarize the challenges people face when conducting security and evolutionary analysis of
Android apps, respectively, and finally, we present the contributions and roadmap of this dissertation.
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1 Introduction

1.1 Motivation

Mobile software has been overtaking traditional desktop software to support citizens of our digital era
in an ever-increasing number of activities, including for leisure, internet communication or commerce.
In this ecosystem, the most popular and widely deployed platform is undoubtedly Android, powering
more than 1.6 billion active users, taking over 74% of worldwide mobile operating system market
share and contributing to over 3 million mobile applications, hereinafter referred to as apps, in online
software Storesﬂ Yet from a security standpoint, the Android stack has been pointed out as being
flawed in several studies: among various issues, its permission model has been extensively criticized
for increasing the attack surface [2, [ 4]; the complexity of its message-passing system has led to
various vulnerabilities in third-party apps allowing for capability leaks [5] or component hijacking
attacks [6]. Moreover, as the Android framework evolves rapidly, new security issues have been
continuously popping up while existing issues are still waiting for discovery. Therefore, attention is
still required to be paid to the security of Android apps.

Meanwhile, Android has been attracting the interest of developers since its early days. This also
creates the situation of high competition in Android app development. Consequently, to keep up,
developers are engaged in a frenzy of updates [7, [8, [0, [10]. In general, developers update their apps
for (1) keeping up with the evolution of Android APIs (e.g., discarding the use of deprecated ones [11]
while accessing early-release ones [12]), (2) adapting to new requirements or providing new features
to keep the app competitive, (3) fixing bugs that may cause runtime crashes, or that make the app
vulnerable to security threats, (4) improving the performance or maintainability, either by removing
unnecessary code or by refactoring existing functionalities. Hence, evolutionary studies of Android
apps become essential. From the security point of view, the evolutionary studies are potentially
beneficial in many ways, for example: 1) Trends of certain issues could be discovered and these trends
can be used to measure the effectiveness of relevant security policies or taken as an indicator for focus
shifting to certain security issues. 2) As solving security issues is one of the primary purposes of app
updates, fixing patterns could be learned by mining from the updates. However, investigating the
evolution of Android apps is challenging. In the quasi-totality of apps available in the marketplace,
the history of development is a fleeing data stream: at a given time, only a single version of the app
is available in the market; when the next updated version is uploaded, the past version is lost. A few
works [13], T2, [I0] involving evolution studies have proposed to “watch” a small number of apps for
a period of time to collect historical versions, and the insight observed by such studies may not be
representative of that of the whole Android ecosystem.

To sum up, there is still a lot to explore in Android app security, while evolutionary studies will
provide us a new angle to look at these issues and learn from history. Because of the limited number
of literature focusing on such a topic so far, we are highly motivated to take action on the evolutionary
study of Android app security.

1.2 Challenges

In this section, we introduce the technical challenges we face when conducting evolutionary security
analysis of Android apps. More specifically, we introduce these challenges from two different aspects,
which are software engineering and static analysis.

1Published by Shanhong Liu, Jun 2, 2020. Android - Statistics & Facts. https://www.statista.com/topics/876/
android/#dossierSummary__chapterll Accessed: Oct. 2020


https://www.statista.com/topics/876/android/#dossierSummary__chapter1
https://www.statista.com/topics/876/android/#dossierSummary__chapter1

1.2 Challenges

1.2.1 Software Engineering Challenges

From a software engineering point of view, dealing with tasks of large-scale is one of the main
challenges. The purpose of this is to make our studies be representative of the whole Android
ecosystem. Moreover, the lack of open source apps in Android markets also leads to difficulties in
some cases. We discuss these challenges in detail as shown in the following:

e App lineage re-construction. Although the open ecosystem strategy is adopted by Android,
which leads to the prosperity of Android apps as well as its markets. In the quasi-totality of
apps available in the marketplace, the history of development is a fleeing data stream: at a
given time, only a single version of the app is available in the market; when the next updated
version is uploaded, the past version is lost. Thus, the re-construction of a large scale dataset
of Android app lineages requires a continuous scraping of a decent amount of apps through a
long time span. Consequently, so far, a few works [I3] [12] [T0] involving evolution studies have
proposed to “watch” a small number of apps for a period of time to collect historical versions.
However, the insight observed by such studies may not be representative of that of the whole
Android ecosystem.

e Large scale analysis. As the results concluded from studies with small datasets could be
potentially lacking statistical significance. Our empirical studies are all based on datasets
of large scales, such as our app lineage dataset, which contains around half a million apks.
Moreover, our studies are leveraged by self-developed as well as state-of-the-art analysis tools,
and for some cases, several tools need to be used in sequence or parallel. Therefore, how to
compute such big datasets within a limited time budget is a major challenge. Although, we are
benefiting from our High Performance Computing (HPC) clusters. There are still several things
that need to be considered. The first one is task distribution. For those tasks which can run in
parallel, server nodes of the clusters need to cooperate. The second is task cooperation, which
is to deal with tasks that need to run in sequence. Following are the storage considerations.
Since analysis tools commonly generate reports for each apk file. The total size of the reports in
both volume and number of files could be easily over the limitation. Last but not least, crashes
and exceptions are not rare when executing analysis tools. Thus, we need to either avoid the
global crashes caused by local exceptions or restore from such a global crash.

e Verification of tools. Android embraces an open system model, which makes the initiative of
Android app development easier and costless. It is indeed probably one of the primary cause
of Android apps’ pervasiveness, which also fosters more open source app projects compared
to markets of other systems (e.g., I0S). However, the majority of applications is still close-
sourced. Thus, to check the correctness of a new tool, reverse-engineering is mostly required,
and manual verification is based on the intermediate representation (IR) generated from the
reverse-engineered sample apps. As IRs are commonly assembly-like languages, it is much more
difficult for a human to understand. Therefore, verification is always a challenging task.

1.2.2 Static Analysis Challenges

On the one hand, as Android apps are mainly written in Java, most of its features are also inherited
by Android apps. Although these features provide lots of flexibility to developers. From a static
analysis point of view, they also introduce many challenges. On the other hand, Android apps are
different from traditional software in many ways because of the different operation mechanism of
Android framework. Some of these differences also lead to new challenges in static analysis of Android
apps. Thus, we list some main challenges which we encounter in the studies of this dissertation
below:
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e Call graph construction. In this dissertation, we mainly use static analysis to study the
security evolution of Android apps and call graph is one of the most crucial techniques of static
analysis. Therefore, how to correctly construct the call graph of Android apps becomes critical
to our studies. Although Android apps are primarily developed in Java. The construction of
the call graph of Android apps is much more complicated than traditional Java programs. The
reasons that lead to this difficulty are: 1) The entry point of an app is not definite. Traditional
Java programs have a single entry point, which is the main method. However, Android apps do
not have such a method. Instead, each app could indicate several methods as a candidate, and
the Android framework decides the entry point at runtime. 2) Component life-cycle is managed
by the Android framework. In Android, apps are mainly composed of 4 kinds of components:
Activity, Service, BroadcastReceiver and ContentProvider. These components have their own
life-cycle controlled via methods such as onStart, onStop, onResume. Since the life-cycle of each
component is managed by the Android framework. All these life-cycle related methods are not
directly connected to the execution flow, which could lead to missing parts in the call graph. 3)
Inter-component communication (ICC). Android introduces a unique mechanism for messages
exchanging between different components. However, this mechanism is based on the Android
framework as the intermediate. Therefore, from the application call graph point of view, the
execution flow is hindered again by the Android framework.

e Libraries. App development based on third-party libraries is a common practice. Nevertheless,
an apk, the Android installation file, is a standalone package containing code from current
developer as well as libraries, and libraries could contribute to a significant proportion of the
app size. Even worse, there are no reliable methods to distinguish between developer code and
library code. This situation leads to three major difficulties: 1) as many apps could share with
the same libraries, analyzing these apps will wast a considerable amount of time on duplicated
libraries. 2) Duplicated libraries could cause re-calculations, which could threaten the validation
of statistical results. 3) Most of the time, libraries are partially used in the app. Thus, those
unused “dead code” are also threats to the correctness of statistical results.

e Native code. By taking advantage of Java Native Interface (JNI) APIs, Android apps can be
coded in both Java and C/C++, and the C/C++ part of the code is named as native code.
However, reverse engineering and static analysis techniques for the native part are entirely
different from the Java part. As the research community has been mainly focusing on the Java
part so far, Few techniques and tools are available for native code analysis. Hence, dealing with
native code in Android app studies becomes a thorny problem.

e Reflection. Reflection is a feature provided by Java, which is inherited by Android as well.
It is used to load, inspect and manipulate Java code at runtime. While introducing flexibility
to development, reflection also results in challenges in static analysis. Because of the nature
of dynamic loading, the dynamically loaded part cannot be statically analyzed. Consequently,
the call graph will be incomplete, for example. Moreover, points-to analysis is a static analysis
technique to track reference passing. Since the tracking begins at an allocation site (i.e., a
statement creating an object with new keywords in Java), while reflection creates objects
without such a statement. Analyses of this kind will be completely failed in facing reflection.

e Obfuscation. The purpose of obfuscation is to make either source or machine code incompre-
hensible to humans. It becomes a common practice for more and more developers out of security
consideration and also, creates many troubles for static analysis. Take the string constant as
an example. It is not difficult to understand that to know constant strings are critical hints
to understand programs. However, string obfuscation techniques transform comprehensive
string constants into random character sequences, therefore concealing these constants’ original
meaning and deter specific analyses.



1.3 Contributions

1.3 Contributions

The main contributions of this dissertation are listed as follows:

e Re-construction of Android app lineages. By leveraging (1) our AndroZoo dataset, which
is so far the most prominent and continuous growing Android app repository, and (2) High
Performance Computing (HPC) clusters of the University of Luxembourg, we carefully proceed
to reconstruct the version lineages of Android apps at an unprecedented scale. These app
lineages not only serves the purpose of this dissertation, but also are a valuable artefact for
diverse research fields in our community. Meanwhile, we present a preliminary study with the
newly re-constructed app lineages. We discuss insights of complexity evolution in Android apps
and enumerate its implications as well as the limitations based on six well-established metrics.
Last but not least, we make our toolset publicly available to compute complexity metrics for
Android apps readily .

This work has led to a research paper published to the 24th International Conference on
Engineering of Complex Computer Systems (ICECCS 2019)

e Understanding the Evolution of Android App Vulnerabilities. We present a large scale
study on the evolution of Android app vulnerabilities by applying state-of-the-art vulnerability
finding tools on all app versions of our app lineage dataset and record the alerts raised as
well as their locations. We investigate specifically 10 vulnerability types associated with 4
different categories related to common security features (e.g., SSL), its sandbox mechanism (e.g.,
Permission issues), code injection (e.g., WebView RCE vulnerability) as well as its inter-app
message passing (e.g., Intent spoofing). Correlating the analysis results for consecutive app
pairs in lineages, we extract a comprehensive dataset of reported vulnerable pieces of code in
real-world apps, and, whenever available, the subset of changes that were applied to fix the
vulnerabilities. Finally, we perform several empirical analyses to (1) highlight statistical trends
on the temporal evolutions of vulnerabilities in Android apps, (2) capture the common locations
(e.g., developer vs. library code) of vulnerable code in apps, (3) comprehend the vehicle (e.g.,
code change, new files, etc.) through which vulnerabilities are introduced in mobile apps, (4)
investigate via correlation analysis whether vulnerabilities foreshadow malware in the Android
ecosystem.

This work has led to a research paper accepted by the IEEE Transactions on Reliability in 2020

e Mining Crypto-API Usage Rules. We proposed a novel approach for inferring the rules of
using cryptography APIs based on an intuitively reasonable assumption: “API usage updates
generally transform incorrect usages into correct usages”. We report the negative result of such
an approach, and in detail, we discuss why the assumption is invalid. We notice that most of
the misuse-fixing updates may not have been made intentionally.

This work has led to a technical paper published to the 16th International Conference on Mining
Software Repositories (MSR 2019)

e Code Reuse in Android via Direct Inter-app Code Invocation. We expose a little-
advertised reuse mechanism within the Android ecosystem. In particular, we demonstrate
how it can be leveraged to perform stealthy functionality plagiarism that may not be covered
by a standard licensing scheme. Then, we develop a static analysis tool, DICIDER, for the
detection of DICIs in Android apps, and perform an empirical analysis on the prevalence of
DICIs among a large dataset of apps as well as the app lineages to investigate its common usage
and evolutionary characteristics. We further provide extensive discussions on how and why
developers use DICIs through an analysis of sample cases. Eventually, we propose an example
of a countermeasure that developer could used to protect their apps against DICI.



1 Introduction

This work has led to a research paper published to 28th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2020)

1.4 Roadmap

The structure of this dissertation is organized as follows. A brief introduction on the necessary
background information, including Android, app lineage and static analysis is given in Chapter 2.
Followed by Chapter 3, we first introduce the re-construction of app lineages in detail and present a
preliminary study of the evolution of Android app complexity by leveraging the newly constructed
lineages. In the following three chapters, we take a width-to-depth approach to introducing our
evolutionary study journey on Android app vulnerabilities. In Chapter 4, we systematically investigate
the evolution of several vulnerabilities reported by state-of-the-art vulnerability-finding tools. Then
we focus on vulnerabilities in using cryptography APIs. We propose a novel approach to infer the
rules of cryptography API usages by mining the updates of real-world app lineages in Chapter 5.
Chapter 6 reveals a new vulnerability caused by a less known mechanism named direct inter-app
code invocation (DICI) and its evolution. Finally, in Chapter 7, we conclude this dissertation and
discuss some potential future works.



2 Background

In this chapter, we provide the preliminary details that are necessary to understand the purpose,
techniques and related research studies that we have conducted in this dissertation. Mainly, we
introduce the primary dataset we used and the definition of app lineages, revisit some concepts of
Android and static analysis, and go through some evolution studies, respectively.
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2 Background
2.1 Android

In this section, we introduce several background knowledge about Android. We first briefly go through
the Android operating system (OS) about its different versions and architecture. Then we talk about
the manifest file of Android apps, which contains important information and is essential for static
analysis. Finally, we introduce the inter-component communication mechanism of Android apps.

2.1.1 Android OS

The Android mobile operating system is built on top of the Linux kernel and provides a framework
to facilitate the development of Android apps. As the framework evolves, the provided Software
Development Kit (SDK), including the Application Programming Interfaces (APIs), is regularly
updated. To better track and reflect those changes, each major release of the Android framework is
tagged with multiple names: (1) its version number (e.g., Android 4.4); (2) its API level (e.g., 19);
and (3) a name of sweet (e.g., KitKat). Figure presents an example of API levels with respect to
their adoption by millions of Android-powered devices using the official Google Play store as of April

20201

Jelly Bean Lollipop Nougat Pie
1.7% 9.2% 13.9% 31.3%
Android 4.1/4.2/4.3 Android 5.0/5.1 Android 7.0/7.1 Android 9
Level 16/17/18 Level 21/22 Level 24/25 Level 28
KitKat Marshmallow Oreo Q
4% 11.2% 21.3% 8.2%
Android 4.4 Android 6.0 Android 8.0/8.1 Android 10
Level 19 Level 23 Level 26/27 Level 29

Figure 2.1: Distributions of API levels supported by current Android-powered devices (versions with
less than 1% are not shown).

It is worth to mention that around every half year, the API level is upgraded. As every Android
device only provides exactly one API level, it is commonly used to determine the compatibility of an
application.

As we know that Android OS is developed based on the Linux kernel, it is actually composed of five
layers of software as shown in Figure Hereafter, we briefly go through these layers from bottom
to top:

e Linux kernel. This layer is the foundation of the Android OS. It provides functionalities such
as threading and low-level memory management. All drivers here are allowed the system to
access all relevant hardware as well.

e Hardware Abstraction. The purpose of this layer is to expose device hardware capabilities
to the API framework layer in a standard way.

e Android runtime and native libraries. This layer, as it is named, is actually divided into
two parts. Android Runtime, before Android 5.0 is known as Dalvik, runs each app in its own
process and with its own runtime instance. While native libraries provide the ability to access
functionalities in C/C++ libraries to android applications.

e API framework. The APIs in this layer is written in Java language. By using these APIs,
Android applications can access all the features provided by the OS, such as utilize the camera
to take photos as well as building UI via the Android view system.

1Data obtained from: https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
accessed on Oct. 2020
2Referred to: https://developer.android.com/guide/platform
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2.1 Android

e Application layer. This is the layer with a set of core apps for email, short message, contact,
etc. These apps can be provided officially from Android as well as third-parties.

Application
Dialer Email Calender SMS
Java API Framework
Content Providers Managers
‘ Activity ‘ ‘ Location ‘ ‘ Package ‘ ‘Notification‘
View System ‘ Resource ‘ ‘Telephony‘ ‘ Window ‘
Native Libraries Android Runtime
Webkit OpenMAX AL Libc Android Runtime (ART)
Media OpenGL ES Core Libraries
Framework
Hardware Abstraction
Audio Bluetooth Camera Sensors
Linux Kernel
Drivers
Audio | | Dispay | | wr | | uss ||
Power Management

Figure 2.2: Android OS Architecture

2.1.2 App Manifest

An Android app is installed with an Android Application Package (APK) file, which is actually a zip
archive file. The main content of this file is shown in Table[2.1] From the static analysis point of view,
the most important files are the DEX files, the files under the lib directory and AndroidManifest.xml.
The previous two contain the real code of the application, while the last one describes essential
information about the app to build tools, Android OS as well as some markets. In this section, we
introduce some of the key attributes of the manifest file.

Table 2.1: Content of Android Application Package

Content Description

AndroidManifest.xml  Application configuration file.

classes.dex Compiled bytecode, commonly generated from Java. Multiple DEX files is possible.
resources.arsc Compressed resource file.

META-INF/ The directory contains relevant meta-data of the app, such as app certificate.

res/ The directory of resources such as images which not compiled into resources.arsc file.
assets/ The directory containing application assets.

lib/ The directory of native libraries.

Listing [2.T] illustrates a simplified manifest file of a real project, and we discuss the following attributes
base on this example:
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e Package name. The package name in the manifest file is the name of an application (cf. line
4). Android build tools use this to determine the location of code entities when building a
project. Android OS and GooglePlay leverage this name to distinguish between apps.

e Components. Android components include activities (for UI), services (for background long-
running operations), broadcast receivers (for listening to broadcast events and intents) and
content providers (for data access), and Android apps are the composition of these components.
Commonly, all components of an app need to be declared in the manifest file, and if any of
these components need to be accessible by other apps, they have to be exported further. In the
example, it contains 3 components which are 2 activity components and a service component. As
declared in line 32 that the exported attribute is assigned with false, the service ExoPlayerSeruvice
cannot be accessed from another application. For activity MainActivity, though the exported is
not declared, since there are no intent-filters declared for this activity, the default value for
exported is false as well.

e Permission. In order to access protected parts of the system, certain permission requirements
need to be declared in the manifest file. These permissions will be consented during installation
by the user normally. As shown in the example, from line 8 to 9, it requires 2 permissions which
are for the access of the internet and Bluetooth state.

e Features. The access to hardware and some software features has to be declared as well. Such
as cameras, Bluetooth and microphones. In line 6 of the example, it asks for access to the
Bluetooth device.

<?7xml version="1.0" encoding="utf-8"7>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
package="com.example.myapp">

<uses-feature android:name="android.hardware.bluetooth" />

<uses-permission android:name="android.permission.INTERNET" />
<uses -permission android:name="android.permission.BLUETOOTH" />

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"
android:theme="@style/AppTheme">
<activity
android:name=".activities.splash.SplashActivity"

android:finishOnTaskLaunch="true"
android:label="@string/app_name"
android:launchMode="singleTask">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity
android:name=".activities.main.MainActivity"
android:launchMode="singleTask" />
<service

android:name="

.services.ExoPlayerService"
android:enabled="true"
android:exported="false" />

</application>

</manifest>

Listing 2.1: Android Manifest File Example



2.2 Dataset

2.1.3 Inter-Component Communication

As we mentioned in the previous section, Android components are the essential elements of Android
applications. Therefore, inter-component communication (ICC) becomes the fundamental way to
communicate within an app as well as between different apps.

There are dedicated methods for this purpose to start a communication between components, such as
startActivity() which is one way used to communicate with another activity component. Meanwhile, we
need to emphasize that the Android framework is in charge of the coordination between components.
Thus, the intention of communication is always passed to the framework as an Intent object, in
which besides message information, the target component has to be declared. There are two ways of
specifying the target and they define two types of ICC. The first one is known as explicit ICC which
provides the exact class name of a component as the communication target. While the other only
defines the action wanted to take and leaves the framework to decide what component to communicate
to achieve the action. The alternative way is known as implicit ICC. As the example shown in
Listing from line 2 to 4 are the code snippet of explicit ICC. We can see that in line 2, it is
specified the class of NewRecipeActivity as the target component when instantiating the Intent object.
However, for the code snippet of implicit ICC from line 7 to 11, there is no specification of the target
class. Instead, it specifies the action in line 8.

1|// Explicit ICC, to invoke NewRecipeActivity

2| Intent intent = new Intent(this, NewRecipeActivity.class);
3|intent .putExtra("recipeID", recipelD);

4|startActivity (intent);

5

6|// Implicit ICC, to invoke a component which can deal with action ACTION_SEND
7|Intent sendIntent = new Intent();

8| sendIntent.setAction(Intent.ACTION_SEND);

9| sendIntent .putExtra(Intent.EXTRA_TEXT, textMessage);

10| sendIntent.setType ("text/plain");

11| startActivity (sendIntent);

Listing 2.2: Code Snippet for Triggering ICC Calls

Moreover, for those components declared as exported in manifest files, ICC can be used to communicate
with these exported components from other apps. This kind of communication is also known as
Inter-App Communication (IAC). Hence, implicit ICC is commonly used in TAC scenarios since most
of times, developers do not know the class names of other apps. On the contrary, explicit ICC is
highly recommended to be used for component communications within an app. Otherwise, implicit
ICC could lead to unexpected results and vulnerability to attacks such as intent interception.

2.2 Dataset

In this section, we introduce two datasets, which are the important building ingredients of this
dissertation. More specifically, we present the AndroZoo dataset and our app lineage dataset, which
is re-constructed based on apps from AndroZoo.

2.2.1 AndroZoo

AndroZoo [I4], [15] is so far one of the most extensive Android app collection and is continuously
growing by collecting Android apps from various sources, including the official Google Play app
market and third party alternative markets such as AppChina. So far, AndroZoo repository contains

11



2 Background

over 13 milliorﬂ Android apks and has been successfully leveraged to support the analysis of various
research studies [16}, [I7].

2.2.2 App Lineage

An apk represents a released package of an app. So, app version refers to a specific apk released in
the course of development of an app and the nth apk of an app is denoted as apk,,. Thus, we define
an app lineage as the consecutive series of its versions that is: L = {apky, apka, ..., apk,}.

Our app lineage dataset is re-constructed based on AndroZoo, and it includes 28,564 app lineages
of app versions no less than 10, which contains 465,037 app versions. The details about the re-
construction are presented in Section [3.3] Figure shows the distribution of the releasing years
of the apks. The releasing time is obtained from the last modification time of the “classes.dex” files
decompressed from apks. While Figure [2.3]] exhibits its target API level distribution.
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Figure 2.3: Statistics of Lineage Dataset

Notice that, for this dataset, one lineage may include only a subset of the apks that the app developers
have released since our dataset, although massive, is not exhaustiveﬂ

2.3 Static Analysis

Static analysis consists in examining the code of apps without execution but checking the code
structure, logic between statements, etc. Static analysis techniques are widely used in the literature
for scaling various investigations on Android apps to large datasets. As the majority of Android
apps are not open-sourced, the analyses are commonly based on an intermediate representation (IR)
produced via reverse engineering of the byte code of the apps. Meanwhile, since Android apps are
primarily developed in Java, many tools initially designed for Java programs could also be applied to
Android apps with or without modifications. Among most of the static analysis tools, we mainly
leverage Soot [18] and Apktooﬂ in this dissertation. They use Jimple and smali as the IR, respectively.
In this section, we briefly go through two static analysis techniques which closely related to this
dissertation.

2.3.1 Call Graph

A call graph (CG) is a directed graph showing the invocation relationships between one method to
other methods. To construct the CG of a traditional Java program, as it always starts with a single
entry point which is the main method, the construction also starts with this method. By inspecting
its method body, all the methods invoked by it can be found, and in the graph, the connections

3 As of December 2020
4Therefore, for a certain app lineage, there could be missing versions here and there.
Shttps://ibotpeaches.github.io/Apktool/
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2.4 Related Works of Evolution Study

between the main method and these methods can be constructed. Iteratively doing the same process
with all methods found will lead to the whole CG of the program (e.g., see the example shown in
Figure . However, in Android apps, there is no main method. Instead, Android apps can contain
several entry points which are called by the Android framework at runtime. Also, invocations within
an app can be done via ICC. Therefore, the construction of CG for Android apps becomes more
complicated. In practice, original apps are firstly instrumented with a dummy main method and
other relevant invocation methods to mimic conventional invocation relations. Then, CG can be
constructed with the instrumented apps in the traditional way.

1| class Example {

2 public static void main() { main

3 int x = foo0(100);

4 int y = 03

5 y = bar(x);

6 G.print (y)

7 }

8

9 private static int foo(int q) {

10 int r = q; G.print O %foo

11 if (@ %7 t=0) {

12 r = foo(q - 1);

13 } O bar

14 return r;

15 }

16

17 private static int bar(int p) {

18 int 9@ = G.random();

19 return q;

20 }

211}

22 O G.random
(a) Source Code (b) Call Graph

Figure 2.4: Call Graph Example

2.3.2 Points-to Analysis

The points-to analysis is one of the most fundamental static analysis and enables a variety of other
analyses. Mostly, it is also inter-related with the construction of CG and affects the accuracy of
the final CG. Initially, it is designed for the C language, which provides pointer variables. As
object-oriented languages became mainstream, the points-to analysis had adapted to languages such
as Java. For Java, the analysis aims to determine the set of objects whose addresses may be stored in
a given reference variable or reference object field. Therefore, an abstraction of the run-time memory
states could be constructed by computing such a set for all app variables. It is also a core analysis
for Android app security in finding information leaks, inferring ICC calls, etc. Figure [2.5] shows a
simple example. In Figure [2.5b] 01 and o stand for objects initiated in line 8 and 9, respectively,
this stands for this pointer used in line 5, and f is the field of class B which is declared in line 4. The
arrows in the figure indicate the points-to relationships between reference variables and its pointing
objects, such as variable a refers to object o;.

2.4 Related Works of Evolution Study

Several researchers studied the general laws of software evolution [19, 20} 2], which show that software
will continuously change and so does its complexity, demonstrating that software evolution analysis is
essential in our community.

13
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Figure 2.5: Points-to Analysis Example

Software evolution analysis has been widely adopted to understand the evolutionary process of a
software system and hence to predict its future evolution [22] 23] 24]. Generally, software evolution
analysis investigates the evolution of a software system to identify potential shortcomings in its
architecture. Those identified shortcomings can then be addressed specifically to improve the quality
of the software system.

Neamtiu et al. [22], by studying nine open-source projects covering 705 official releases, they confirmed
Lehman’s two laws of software evolution (i.e., software continuing change and continuing growth).
Behnamghader et al. [24] argued that studying software quality before and after each commit can
reveal how each change impacts the overall quality.

However, Android apps are generally released as APKs which do not contain commit messages.
Therefore, research leveraged the difference between two subsequent app releases to investigate the
evolution of Android apps [25] [12] [13], 10]. Calciati et al. [I3] have investigated the evolution of
permissions. Taylor et al. [I0] investigated the evolution of app vulnerabilities. Hecht et al. [26]
investigated the evolution of Android poor design choices based on 3,568 versions of 106 Android

apps.
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3 App Lineage Re-construction and App
Complexity Evolution

In this chapter, we overview our methodology to yield the app lineage dataset summarized in Chapter[d
The dataset includes 28,564 app lineages (i.e., successive releases of the same Android apps) with more
than 10 app versions each, corresponding to a total of 465,037 apks. We then take the opportunity of
this large-scale dataset of app lineages to attempt a comprehensive study on the evolution of apps,
notably in terms of complexity. The investigation is based on six well-established, maintainability-
related complexity metrics commonly accepted in the literature on app quality, maintainability etc.
The result reveals that, overall, while Android apps become bigger in terms of code size as time goes
by, the apps themselves appear to be increasingly maintainable and thus decreasingly complez.

This chapter is based on the work published in the following research paper:

e J. Gao, L. Li, T. F. Bissyandé, and J. Klein. On the evolution of mobile app complexity. In
2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS),
pages 200-209, 2019
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3 App Lineage Re-construction and App Complexity Evolution

3.1 Overview

Android has been attracting the interest of developers since its early days. This also creates the
situation of high competition in Android app development. Consequently, to keep up, developers are
engaged in a frenzy of updates [7, [8, @, 10]. In general, developers update their apps for (1) keeping
up with the evolution of Android APIs (e.g., discarding the use of deprecated ones [IT] while accessing
early-release ones [12]), (2) adapting to new requirements or providing new features to keep the app
competitive, (3) fixing bugs that may cause runtime crashes, or that make the app vulnerable to
security threats, (4) improving the performance or maintainability, either by removing unnecessary
code or by refactoring existing functionalities.

Standing out among other apps requires app developers to guarantee a level of quality in their app
code. Unfortunately, in the absence of a concrete guideline for maintaining quality, it is difficult to
measure to what extent quality is taken into account with respect to update changes. Instead, and as
the first step towards building such a guideline, it is important to investigate some quality properties
of various app versions in order to draw insights from the practice of real-world app development.
Our objective is thus to conduct a large-scale empirical study on the quality evolution of Android

apps.

To that end, we focus on measuring maintainability of app code. Software maintainability is indeed
considered today as one of the most important concerns in the software industry [28] 29]. Corbi, a
recognized expert in the field, has even elevated maintainability as a major challenge for program
understanding since the 1990s. Generally, code complexity is accepted to provide a good proxy for
measuring maintainability [30]. Given the pervasiveness of mobile software in our daily life today, it
is important to study how complexity has evolved in order to build knowledge towards improving
quality in software development.

In this work, we first re-construct an unprecedented large dataset of 28,564 app lineages and investigate
evolution trends of complexity, relying on six metrics proposed by Chidamber et al. [31]. We implement
a process where each app is analyzed and six renowned maintainability-related complexity metrics
are computed, trends are highlighted and outliers are summarized.

To summarize, this chapter focuses on the following contributions of our dissertation:

e We carefully proceed to reconstruct the version lineages of Android apps at an unprecedented
scale, based on a dataset of over 10 million apps collected from a continuous crawling of Android
markets (including the official Google Play). Since market scraping opportunistically follows
links in online store webpages, no explicit identifier could be maintained to track app versions.
Therefore, we rely on heuristics to conservatively link and order app versions to retrieve lineages,
leading to the selection of 28,564 app lineages containing each at least 10 versions of a given
app. Although this contribution serves the purpose of our study, it is a valuable artefact for
diverse research fields in our community, notably software quality and its sub-fields of testing,
repair and evolution studies.

e We share with the community all complexity metric values for a large dataset of Android apps
where each app is associated with several of its release versions.

e We present an empirical study on the evolution of complexity in Android apps based on six
well-established metrics (such as NOC, Number of Children or LCOM, Lack of cohesion in
Methods), and from different perspectives such as median and standard deviation values.

e We discuss insights from our study and enumerate its implications as well as the limitations.

e We make our toolset publicly available to readily compute complexity metrics for Android app
APKs.
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3.2 Background of Complexity Metrics

The remainder of this chapter is organized as follows. Section presents background information
on the metrics leveraged in our work. Then, we introduce the re-construction of app lineages in
Section [333] Section [3.4] overviews the experimental setup for answering the research questions.
Section [3.5] details the results of our study while Section [3.6] discusses some insights as well as the
limitations. Finally, we discuss related work in Section and sum up this chapter in Section [3.8

3.2 Background of Complexity Metrics

Chidamber et al. [3T] have introduced six metrics to “measure the complexity in the design of
classes”. Since Android apps, as mentioned before, are written in Java and thereby have extended
Java’s object-oriented features, the proposed six metrics should also be able to reliably improve the
development processes of Android apps. State-of-the-art studies such as Jost et al. [32] B3] have
also leveraged those metrics for Android app developers to consider so as to write high-quality code.
We note that these metrics are highly related to complexity concerns, and thus, we adopt them to
measure the complexity of Android apps.

1. Weighted methods per class (WMC) is the sum of the complexities of all methods in a
class. It is used to measure the effort required for developing and maintaining a particular class
as well as the inheritability and reusability of a class. A high WMC score of a class means that
the class is complex that hence is difficult to reuse and maintain. To simplify the calculation,
in this work, we consider the complexity of all methods to be unity. Then WMC is simply a
method counter of each class.

2. Depth of inheritance tree (DIT) is used to measure the depth of a given class based on
the inheritance tree. Ideally, the value of DIT metric should be kept low as the complexity
of developing, testing and maintaining a class would significantly increase if the depth of
inheritance tree increases. As DIT defined, the inheritance tree of each class is calculated and
the maximum length is set as the value of DIT.

3. Number of children (NOC) is another metric leveraged to measure the “width” of a given
class (i.e., the number of direct sub-classes) based on the inheritance tree. The value of NOC
approximately indicates the reuse degree of a given class. While the reusability of a class
increases if more children are introduced, the responsibility required to maintain the class not
to break the children’s behavior also increases.

4. Lack of cohesion in methods (LCOM) is a metric used to measure the cohesiveness between
methods and attributes of a given class. A higher LCOM value indicates a low cohesion between
the methods and data, which hence increases the complexity of the class and subsequently
increasing the possibility of introducing errors during the development of software. There are
two ways to calculate the value according to Linda et al. [34] and in this work, we choose the
first one which is based on the average percentage of each data field used by the methods of a
class.

5. Coupling Between Object classes (CBO) measures the dependency of a class on other
classes. High CBO value indicates excessive dependency which means lower reusability and
higher testing complexity. It is calculated by counting the number of other classes used by a
class.

6. Response For a Class (RFC) reflects the potential invocation of methods of a class on
responding to a message. A low value of RFC is preferred since it indicates short possible
invocation chain which makes debugging and testing easier. RFC is calculated by counting all
the methods invoked in a class. For methods invoked more than once, only the first time will
be counted.
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3 App Lineage Re-construction and App Complexity Evolution

Initially, we have considered the 22 quality metrics proposed by Mercaldo et al. [35]. However, our
preliminary experiments have revealed that many of them are highly correlated with each other as
demonstrated in Figure [3.I] Moreover, because of space limitations to present the results of all the
22 metrics, Therefore, for this study, we decide to focus only on the six classic metrics. We believe
that the other metrics, especially the ones that are recently introduced, are also worth to explore and
hence we will consider them in our future works.

1.0
0.8
0.6
0.4
0.2

LOC NOCL NOM CC WMC INOC DIT LCOM

LoC

NOCL

NOM

cC

WMC

NOC

DIT

LCOM

Figure 3.1: Metrics Correlation Map

3.3 Re-construction of App Lineages

We now describe the process (illustrated in Figure [3.2)) that we followed to re-construct app lineages
from AndroZoo’s data heap.
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App IDs by Version [l
Ly

Figure 3.2: App Lineages Re-construction Process.

To re-construct app lineages, we need first conservatively identify unique apps and then link and
order their app versions (i.e. apks) into a set of lineages. The objective is to maximize precision (i.e.,
a lineage will only contain apks which are actually different versions of the same app) even if recall
may be penalized (i.e., not all apk versions might be included in a lineage). Indeed, missing a few
versions will not threaten the validity of our study as much as linking together unrelated apps. Hence,
we implement the following four steps:

1. Application Id Extraction. Google recommends [36] that each app should be named, in all its
versions, following the usual Java package naming conventiorﬂ This avoids the collision in app
names, which the market must avoid since two different apps with the same name cannot be
installed on the same device. App name is indicated uniquely in the Manifest file with the attribute

IDevelopers should use their reversed internet domain name to begin package names
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3.3 Re-construction of App Lineages

applicationld. We group together apks with the same application id as candidate versions of a given
app.

2. App Grouping by Certificate. Since Android apps are prone to repackagingﬂ attacks [16], 37,
different apks in a group sharing the same app name may actually be different branches by different
“developers”. We do not consider in our study that repackaged apps should appear in a lineage since
the changes that are brought afterward may not reflect the natural evolution of the app. Thus, we
group apks in each group based on developer signatures. Meanwhile, during the implementation
of this step we also noticed that most of the markets, even for Google Play (the official market),
do not emphasize a unique certificate (i.e., only one certificate for each app). For these cases, we
found that there are around 0.064% apks which include more than one certificates. Since, for these
apks, we cannot uniquely distinguish their ownership, we dropped them in the final dataset.

3. App Grouping by Market. We further constrained our lineage construction by assuming that
developers distribute their app versions regularly in the same market. From each group obtained
in the previous step, we again separate the apks according to the market from which they were
crawled. As a result, at the end of this step each group only includes apks that are (1) related to
the same app (based on the name), (2) from the same development team (based on the signatures),
and (3) were distributed in the same market (based on AndroZoo metadata). Each group is then
considered to contain a set of apks forming an unique lineage.

4. App Version Sorting. In order to make our dataset readily usable in experiments, we proceed to
sort all apks in each lineage to reflect the evolution process. We rely on the versionCode attribute
which is set by developers in the Manifest file. We further preserve our dataset from potential noise
by dropping all apks where no versionCode is declared.

To avoid toy apps, we adopted the strategy used in [38] to set a threshold of at least 10 apks before
considering a lineage in our study. And during this step almost 92% of apks were filtered out.
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Figure 3.3: Statistics of App Lineages

Overall, we were able to identify 28,564 lineages and the five-number summary of lineage size are 10,
11, 13, 18 and 219 respectively. Figure shows that the largest proportion of apks are included in
smaller-size lineages. This also explained why large portion of apks were removed during toy app
filtering. Table presents the top 5 lineages w.r.t. the number of apks. In total, our lineage dataset
includes 465,037 apks. Figure [3.3b| compares dex sizes of APKs between the original dataset and the
re-constructed lineage dataset. It can be noticed that apks of small size has been removed mostly
during lineage re-construction, as the median value increased from around 2.6 to 3.3 MB.

For the toy apps we removed from our dataset, there are still chances that they are highly used by
smartphone users. To further study such a possibility, we investigate the installation situations of

2An apk can be disassembled, slightly modified and reassembled into another apk

19



3 App Lineage Re-construction and App Complexity Evolution

Table 3.1: Top Five App Lineages.

Lineage #apks Market Developer
com.knightli.book.jokebookseries.m3 172 appchina knightli
wp.wpbeta 164 google play WP Technology
com.manle.phone.android.yaodian 162 appchina manle
com.imo.android.imoimbeta 143 google play imo.im
com.knightli.ebook.zyys 134 appchina knightli

the apps removed and compare it with the situation of kept apps. Since there are almost 3 million
removed apps, we randomly sampled 200 thousand Google Play apps for this investigation. We
successfully crawled the “installs” metadata for 29,30(E| apps and the installation situation for both
removed and kept apps are shown in Figure [3:4] We observe that compared to kept apps, the whole
shape of removed apps is remarkably shifted to the left, which indicates that removed apps are much
less installed by app users. Thus, we can confirm that our study focuses on apps that are more likely
to be downloaded and installed by users.
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Figure 3.4: Intallation Comparison between Removed and Kept Apps

To assess the diversity of our lineage dataset, we first explore the categories of the concerned apps.
Since this information is not available from the AndroZoo repository, we took on the task of crawling
market web pages to collect meta-data information for each lineage. We focused on our study on
the official Google Play. Out of the 16,074 lineages which were crawled from Google Play, we were
able to obtain category information for 14,208 lineages. 1098 lineages were no longer available in the
market while the market page for 768 lineages could not be accessed because of location restrictions.
Figure [3.5] illustrates the high diversity in terms of category through a word cloud representation.

Second, we investigate the API levels (i.e., the Android OS version) that are targeted by the apps in
our dataset. Since the Android ecosystem is fragmented with several versions of the OS being run
on different proportions of devices, it is important to ensure that our study covers a comprehensive
set of Android OS versions. Figure [3.6] presents the distribution of API level span of lineages of the
dataset. The API level span of a lineage indicates the range between the minimum and maximum
targeted API level found in the lineage. In the figure, the X-axis is the lower bound of the API level

3Because of app off-shelf and region-based access control of Google Play Store, the metadata for some apps cannot be
collected.
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Figure 3.5: Word Cloud Representation of Categories Associated with Our Selected Lineage Apps.

of a lineage while the Y-axis stands for the upper bound. Therefore, for each square, it indicates an
APT level span from the lower bound to upper bound. Meanwhile, the color of a square reflects the
number of lineages of this API level span. According to the figure, it is easy to find out that most
of the deep colored squares are located either on the diagonal or on the right lower corner. This
phenomenon suggests that most apps tend to stay within one API level. For such app lineages that
have their apps initiated with latest API levels, they are more likely to be upgraded with higher API
levels. But still, apps of other API level spans can also be spotted in our dataset. Thus, our lineage
dataset is quite diverse in terms of API level span.
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Figure 3.6: API Level Span Distribution of Lineages

3.4 Experiment Setup

To set up the empirical experiments related to the complexity evolution of Android apps, we present
the main research questions this work explores and the computation of the metrics this work stands
upon in Section [3.4.1) and Section [3.:4.2] respectively.

3.4.1 Research Questions

Our objective is to understand the evolution of Android apps’ complexity and hence to empirically
observe practical insights for guiding the evolution of Android apps towards engineering more reliable
apps. To fulfill this objective, we plan to perform an exploratory study to answer the following
research questions:
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3 App Lineage Re-construction and App Complexity Evolution

e RQ1: How does the code of Android apps generally evolve? As the first research question, in
order to have an overall understanding of the general evolution of Android apps, we empirically
investigate the changes in terms of code size (i.e., DEX size and class number) of Android apps
over time.

e RQ2: How does the complexity of Android apps evolve as time goes by? The complexity
evolution within this research question will be investigated year by year. For each app lineage,
we choose one app version for each year: the latest one released in that year. The chosen apps
from the same year (different lineages) will be considered as a whole and the extracted metric
values will be leveraged to represent app complexity of that year.

e RQ3: How do Android API level updates impact on app complexity? Android framework is
recurrently updated to introduce new features or fix critical bugs. To benefit from these updates,
Android apps need to be correspondingly changed. Hence, the complexity evolution within this
research question will be investigated based on the targeted API levels of the considered apps.

e RQ4: What are the patterns of complexity evolution? By defining feature patterns, the
evolution of complexity will be investigated in the manner of individual app lineage. Then, how
Android apps evolves normally as well as what is the uncommon pattern during complexity
evolution can be spotted.

3.4.2 Metrics Computing

In this work, the metric values are computed at the smali code level. All the considered lineage
apps are disassembled by Apktool, a well-known static analysis tool for reverse engineering Android
APK ﬁlesE| Apktool will translate the executable part of an app, namely the DEX bytecode into the
so-called smali code.

Because the considered complexity metrics are measured at class levels, while Android apps normally
are made up of multiple classes, for a given metric, we regard its value for a given Android app as the
median and standard deviation value among that of all the classes of the app. Statistically speaking,
these two values have characterised the majority of the sample population (i.e., median) and their
spreads (i.e., standard deviation). Indeed, for a certain app, the median value can represent the app
in most of its classes while the standard deviation reflects the extent the complexity of the classes
can go, e.g., either better or worse.

In this work, we rename these two values (median and standard deviation) as feature and variatio
which are explained as follows:

Given an app a, C' = {c1,¢a,...,c,} is the set of its classes, for a certain metric m, the value of ¢; is
vm(c;), where ¢; € C, then

e feature value: feature(a) = M, where M is the median value of {v,,(¢1), ..., Um ()}

e variation value: variation(a) = o, where o is the standard deviation of {v,,(c1), ..., vm(cn)}.

During our experiments, we have found that the android.support package has been widely presented
in some Android apps. Since this package is provided by Google as an official library for resolving
issues such as compatibilityﬂ we do not take this package into consideration when computing the
values of metrics.

It is also worth to mention that not all lineage apps can be successfully reverse engineered by our
tool for computing the values of our selected metrics. The main reasons led to the failures are 1)
Apktool crashes due to exceptions such as no smali code generated, (2) null values are returned by

4https:/ /ibotpeaches.github.io/Apktool /
5The rationale behinds this renaming is to avoid confusions about expressions such as “median of the median values”.
Shttps://developer.android.com/topic/libraries/support-library /index.html
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3.5 Results

our tool because the number of classes is too small (e.g., less than three for some app versions) or
there is no field defined by some classes (i.e., this will lead to null value for metric LCOM). Moreover,
since date information is also important to this study, (e.g., we leverage it to perform the year-based
evolution study), we further remove such app lineages that have incomplete DEX date associated,
i.e., we cannot extract a validated assembly time from the app.

To conclude, among the 28,559 lineages (464,649 app versions in total), 1,389 app lineages (23,451
apps versions) that have confronted the aforementioned issues are ignored in this study. In other
words, our study is conducted based on 27,170 app lineages (441,198 app versions).

3.5 Results

We now present our investigation details towards answering the aforementioned research questions.

3.5.1 RQ1: General Evolution of Android Apps
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Figure 3.7: Cumulative distribution function (CDF) of the update frequency of selected lineage apps.
Given a frequency (e.g., x = 365 days), the probability for an app to have an update
within = 365 days can be quickly observed from the CDF (i.e., the corresponding value
in the Y-axis).

Since it is non-trivial to select the time interval for re-aligning lineage apps, we resort to a simple
empirical study to select such time interval. The study looks into the update frequency of all the
selected lineage apps. Figure illustrates the Cumulative Distribution Function (CDF) of the
update frequency, where the frequency is counted in days (as shown in the X-axis). For about a year
(e.g., 365 or 366 days), more than 95% of considered apps have been updated at least once, presenting
a great time interval to build our time-based evolution dataset. Therefore, we select a year as the
time interval to investigate the complexity evolution of Android apps.

To understand the general evolution of Android apps, we first look into the evolution of size and the
number of Java classes of Android apps. Figure [3.8a] shows how are the median value of app size and
the number of classes evolved as time goes by. For each median value, it is calculated based on all
apps of that year.
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Figure 3.8: Statistics of App Size and # Classes

Quite clearly, both app sizes and class numbers were increasing, especially, from 2014 to 2015, the
rise was dramatic. This evidence suggests that Android apps become bigger and bigger in both size
and the number of classes.

Furthermore, as demonstrated in Fig. [3.8b] there is also a strong correlation between app size and
the number of classes. This strong correlation is also confirmed to be statistically significant via the
Pearson’s correlation coefficient (p > 0.9, showing a strong positive correlation). This strong positive
correlation implies that app updates are more likely to add new classes than simply add codes to
existing classes. Indeed, in our selected app lineages, 80.73% of them have their apps eventually
become bigger (comparing the last app version with the first one) in terms of the number of classes,
while the percentage is even higher when talking about the app size: 83.4% of selected lineages.

As app size and the number of classes getting bigger and bigger, intuitively, apps are becoming more
complex and more difficult to maintain. Consequently, a detailed study on app complexity evolution
is expected. This research question actually motivated us to perform an in-depth analysis of the
complexity evolution of Android apps.

During the evolution, app developers are more likely to introduce new classes rather than
adding code to existing ones, as shown by the strong correlation of changing in app size and
number of classes.

3.5.2 RQ2: Complexity Evolution via Time

We investigate the complexity evolution of Android apps via their release timeﬂ State-of-the-art
approaches for time-based evolution normally choose random apps for different time-points. As a
result, the apps chosen in different time-points could be different. On the contrary, our lineage based
time evolution approach is expected to always select app versions from same app lineages. By doing
this, the consistency of samples between different time-points can be well reserved, which makes the
final result more reliable. To support this kind of investigation, we need to re-construct a fine-grained
dataset where the considered lineage apps are aligned via time. To this end, we re-align our lineage
apps by selecting the last app version of each year from each app lineage.

Figure [3.9a presents the evolution of the metrics feature value from 2011 to 2016. The median value of
metrics NOC, DIT, WMC and CBO exhibit as horizontal lines with very low values, which indicates
that app complexity in terms of these 4 metrics has kept very low and constant for past 6 years.

7Since AndroZoo does not collect the release date metadata for Android apps, and it is virtually impossible to retrieve
such metadata for previous app versions, as these metadata have already been overwritten by the data of updated
app versions, in this work, we consider the assemble DEX time as the app release time.
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Figure 3.9: Lineage based evolution with the central lines depict the trend of median value while
the ribbons show the changing of standard deviation and the boxplots illustrate the
distribution of each year

These values tell us that for most classes of an app, they were not sub-classed (i.e., 0 of NOC), they
had shallow inheritance trees (i.e., 1 of DIT), their method complexities are low (i.e., 3 of WMC) and
they were not coupled with other classes (i.e., 0 of CBO). Regarding the standard deviations shown
as the ribbons, NOC, DIT and CBO show no ribbon at all while WMC shows an observable ribbon
with a narrow-down trend. Since the standard deviations reflect the difference between different
apps, we can say that the vast majority of apps exhibit no difference of complexity in terms of NOC,
DIT and CBO. Meanwhile, in terms of WMC, there are apps with different feature values, but the
difference is not big (£1 on average) and getting smaller.

On the other hand, RFC and LCOM show more changes as they evolving. The drop of RFC in 2012
indicates a clear improvement of this metric for most of the apps. While a slight deterioration of
LCOM happened in 2013 can be observed as well. Furthermore, the difference between apps in these
2 metrics was getting narrower too.

Because the feature values only reflect app complexity in major situations as explained in Section [3.4.2
To have a more comprehensive understanding of apps complexity evolution, we further resort to an
investigation into the evolution of variation values of Android apps.

Figure [3.95 shows the evolution of app variation values. From the median value perspective, 4 of the
metrics show a clear decline trend which are NOC, DIT, RFC and LCOM. While for CBO and WMC,
they were slightly increased over the years. As the variation of a metric measures the differences of
the metrics among different classes of an app, Thus, a decreasing in trend is preferred. On the other
hands, the differences of variation values between different apps are exhibited by the ribbons in the
figure. Therefore, for past 6 years, the differences of NOC and CBO have been increased while DIT
and LCOM have been decreased. For RFC and WMC, the differences kept almost the same.

As time goes by, the complexity in terms of RFC has been mitigated but deteriorated in
LCOM. Out of the six metrics, nature updates (update via time) have only impacted these two
metrics, although the impacts are quite limited. It is worth to highlight that the complexity
difference between different apps is getting closer during the evolution.
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3.5.3 RQ3: Complexity Evolution via API Level

In order to understand the possible impact of API levels on the evolution of app complexity, we
conduct another study that specifically looks into the complexity difference between such apps that
target different Android API levels. To this end, for each app lineage, we pair up adjacent app
versions, which target different API levels, for difference examination. Given a pair of app versions
(ai,a;41) and their targeted API levels (L;, L;11), we define level skip as the difference between the
two targeted API levels (i.e., level skip := L;11 — L;). Figure illustrates the distribution of API
level skips summarized from our app lineage dataset. The level skips vary from —16 to 19 while
the majority app pairs fall into the category of level skip equals to 1, followed by 2 and 3 skips
respectively. The reasons causing minus level skips could be: (1) to support previous users or features
requiring old API, (2) version code assigned reversely, (3) some other unknown purposes. As these
cases are rare and abnormal, they will not be considered here. In this work, we take into account
all the app pairs that have API level skip between 1 and 3. Based on this criterion, we form a new
dataset containing three types of app pairs: S1, S2 and S3 for app pairs with one, two and three level
skips, respectively,

Figure illustrates the distribution of feature value differences of app pairs via level skip. Since
metrics NOC, DIT, WMC and CBO are quite stable during the evolution of Android apps, as shown
in Section [3.5.2] we only present the distribution of metrics REFC and LCOM in the figure.

Interestingly, the median values stay closely to 0 suggests that the changes are quite small despite
the targeted API level is updated. The fact that the major parts of the boxes fall into the negative
side of Y-axis and larger level skips seem to yield larger ranges of the negative parts indicates that
the changes do not seem to increase the app complexity (at least for RFC and LCOM).

Figure illustrates the distribution of variation value differences via level skip. Similarly, except
for metric WMC, where the median values are generally decreasing when level skip increases, the
median values of other metrics are very close to 0. Regarding the body of the boxes, the major parts
for metrics DIT, WMC, RFC and LCOM fall into the negative side of Y-axis while for metrics NOC
and CBO, they fall into the positive side. The body size is increased as level skip increasing. For
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Figure 3.11: API Level based Evolution of Feature Values

NOC and CBO, they increase mainly on the positive side of Y-axis. But the rest four metrics increase
mainly on the negative side.
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3 App Lineage Re-construction and App Complexity Evolution

As the interpretation of these patterns, updates of API levels may effect on different metrics differently.
A bigger level skip normally causes a larger increase in the complexity difference within an app from
the aspect of NOC and CBO (remind that the definition of variation value in Section . However,
from the aspect of DIT, WMC, RFC and LCOM, the complexity difference shrinks mostly.

APIT level updates could cause the complexity of Android apps to decrease, although the
extent is quite limited. Also, for most of the metrics, API level updates shrink the complexity
difference within apps.

3.5.4 RQ4: Patterns of Complexity Evolution
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Figure 3.13: Real world examples of patterns of complexity evolution with the name of patterns as
x-axis labels and application names as y-axis labels

We remind the readers that in this work we use lineage apps rather than randomly selected apps to
investigate the complexity evolution of Android apps, where the dataset allows us to have a deeper look
at how each app lineage evolves. Consider an app lineage with n app versions app1, apps, . - ., aPPxy-
Let set M = {my,ma,...,m,} stand for the feature or variation values of a metric of these app
versions and o be the standard deviation of set M. The possible evolution patterns that each app
lineage may fall into are defined as follows:

e overall patterns

— flat: |m; — m,,| < o, which means the difference between the first and last app version is less
than the standard deviation of the app lineage.

— decrease: mj — m,, > o, which means the value of the first app version is greater than the value
of the last one and the difference is bigger than the standard deviation.

— increase: m,, —mj > o, which means the value of the last app version is greater than the value
of the first one and the difference is bigger than the standard deviation.

e detail patterns

— constant: patterns between adjacent app versions are consistent with the overall pattern. For flat
pattern, it means m; = m;. For decrease pattern, m; > m;,1. For increase pattern, m; < m;4q.
Where 4,5 € {1,...,n}.

— hill: max M € {ma,...,my,_1} and max M — max {my, m,} > o, which means maximum value
happens in an app version which is not the first or the last app version. Additionally, the
maximum value needs to be greater than the maximum value of the first and the last app version
and the difference need to be bigger than the standard deviation of the app lineage.

— valley: this is the opposite situation of hill and it expresses as min M € {ma,...,m,_1} and
min {m,m,} —min M > o
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3.5 Results

— wave: other cases where no constant, hill and valley patterns can be observed.

The overall patterns are the patterns defined by the starting and ending points. They are designed
to give a brief concept of what is the evolution trend. While detail patterns are meant to reflect
the feature patterns during the evolution. To give a complete evolution pattern, one of the overall
patterns combined with one or two detail patterns is required and the possible combination patterns
are shown in Table[3:2] Figure [3.I3| further shows the real world examples of each defined pattern
from our dataset.

Table 3.2: Possible Patterns & Abbreviation

Pattern Abbreviation
Flat Constant fc
Increase Constant ic
Decrease Constant de
Flat Wave fw
Increase Wave w
Decrease Wave dw
Flat Hill fh
Increase Hill ih
Decrease Hill dh
Flat Valley fu
Increase Valley W
Decrease Valley dv
Flat Hill & Valley fho
Increase Hill & Valley thv
Decrease Hill & Valley dhv

According to the patterns defined, we analyze each app lineage to obtain their evolution patterns
and then calculate the frequency of each pattern. The final result is displayed by a heat map in
Figure Likewise, frequencies of NOC, DIT and CBO feature values are removed from the figure
because all their values keep constant (cf. Section .
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Figure 3.14: Frequency distribution of patterns of complexity evolution with feature and variation
value parts divided by a red horizontal dash line

Regarding the evolution pattern summarized via feature values (the part under the red horizontal
dash line), undoubtedly, fc is the most evident column, followed by column dc and ic sequentially. On
the other hand, in the variation value part (the part above the red horizontal dash line), although the
column of fe is still noticeable, there are only 2 tiles (which are DIT and NOC) with a very dark color,
while the rest tiles are quite bright. Meanwhile, column dw and iw are also very distinguishable and
with much even darkness. Moreover, 3 brightest columns are also spotted which are dhv, fw and thv
and both median value and standard deviation parts are consistent in these 3 brightest columns.
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So far, we can observe that the complexity of major Android apps tends to stay constant (do not
forget that the median values of the 3 removed metrics are even more constant). Nonetheless, there
are still many apps tend to decrease constantly in complexity while others may increase constantly.
However, except for metrics DIT and NOC, where the evolution pattern of most apps is still, the
complexity difference within an app lineage is more likely to either decrease or increase wavily.

According to the patterns of complexity evolution, wavily increasing and decreasing have
dominated the trend of complexity difference during the evolution of Android apps. This
empirical evidence suggests that app developers might not really be aware of controlling the
complexity of their apps.

3.6 Discussion

In this section, we discuss several implications that this study can lead to and disclose the potential
threats to validity.

3.6.1 Implication

Towards Engineering Better Metrics Our experimental results suggest that app complexity does
not significantly change during app updates. This evidence can be explained by the fact that, as
shown in Section Android app updates usually do not simply add codes to existing classes
but are more likely to add new classes. Unfortunately, the six metrics we used in this study are all
based on classes. They might not be representative to fully capture the complexity of Android apps.
Therefore, we argue that there is still a lot of space to improve towards engineering better metrics for
characterizing the development of mobile apps. To this end, designing a new set of complexity-related
metrics (e.g., to take into account invocation chains) is needed. Moreover, neglecting the complexity
conducted by the interaction between classes is not reasonable, so comprehensive application level
metrics are also needed.

Best Practice to Guide Future Quality Evolutions Generally, preserving and improving software
quality is a long-time challenge that is difficult to resolve. Due to software aging, without active
countermeasures, the quality of applications slowly degrades during their evolutions [20] [39]. As
argued by Mens et al., there is a need to provide tools and techniques that preserve or even improve
the quality characteristics of software systems [40]. In this study, around 9% of our selected app
lineages are always in line with that of the mainstream. For our future work, good practices could be
learned based on these apps. If so, we subsequently present automated tools to apply the obtained
good practices, e.g., by instrumenting directly the bytecode of Android apps [41].

Observing differences between developer capabilities Since an Android app is likely developed by
multiple developers, who might have different abilities to control the quality of their implemented
code, we believe that standard deviation value could be a good means to capture the differences
among developers in a team which can further provide insights to optimize development teams.
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3.6.2 Threats to Validity

The study conducted in this work has presented several threats to validity.

First, the considered six metrics may not be fully representative of the quality of Android apps. For
example, compared to the six metrics proposed by Jost [32], we have missed four of them although
have additionally considered 2 metrics. Also, many metrics are highly correlated with others. Hence,
as suggested by Mourad et al. [42], there is a need to invent new quality metrics that attempt to
unify similar metrics so as to simplify further analysis and make interpretation concise. We consider
this as our future work.

For an app lineage, some versions could be missing without our awareness. Also, the order of app
versions may not be correct if the version code in the manifest is assigned randomly. However,
the impact of missing versions on this study is limited while given random version is not common
practice.

Finally, our time-based evolution study is at year level, although we have empirically shown that a
year is actually a reasonable interval, it might still be too long for this study as in practice popular
apps are updated more frequently. To mitigate this potential threat, we plan to design and implement
a generic framework for supporting more advanced evolution analyses of mobile apps, where different
parameters such as time interval, level skips and metrics can be easily configured and adjusted.

3.7 Related Work

Various studies have investigated the problem of observing reliable metrics for characterizing the
quality of mobile apps. Chidamber and Kemerer [31] introduce six metrics for guiding the design
of object-oriented programs and four of them have been considered by Jost et al. [32] and hence by
this work. Thomas McCabe [43] further introduced Cyclomatic Complexity (CC) for measuring the
complexity. Fenton and Neil [44] argued that the future for software metrics lies in using them to
develop decision-support tools to support risk assessment.

Several researches have focused on quality metrics related to Android apps. Tian et al. [45] investigated
the characteristics which make Android apps high-rated. They found that metrics such as app size,
target SDK version are influential factors contributing to the success of Android apps. Protsenko et
al. [46] also leverage software metrics to detect Android malware. Experimental results show that
software metrics are reliable for distinguishing malware and resilient against common obfuscation.

3.8 Summary

Evolution studies are important for assessing software development process and measure the impact
of different practices. However, such studies, to be meaningful, must scale to the size of the artifact.
For Android apps, this was so far a challenge due to the lack of significant records on market apps.
Our work first addresses these challenges by re-constructing 28,564 lineages formed in total by 465,037
apks. We have then conducted a large-scale empirical study of the complexity evolution of Android
apps. We select six metrics that have been successfully leveraged by literature works for quantifying
the complexity of Android apps. Based on the evolution of these six metrics, we eventually find that
(1) Android apps usually become bigger during their evolutions and updates are tend to add new
classes, (2) nature updates do not really impact on the complexity of Android apps, (3) the update of
Android framework could mitigate app complexity but very limited, (4) complexity evolution is more
like to wavily increase or decrease.
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4 Understanding the Evolution of Android
App Vulnerabilities

In this chapter, we explore the constructed app lineages to investigate the presence of vulnerabilities
and their evolution across app versions. By leveraging state-of-the-art static vulnerability detection
tools, we extract a comprehensive dataset of reported vulnerable pieces of code in real-world apps.
Several findings from the analyses, such as some vulnerabilities reported by detection tools may
foreshadow malware are also reported.

This chapter is based on the work published in the following research paper:

e J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein. Understanding the evolution of android
app vulnerabilities. IEEFE Transactions on Reliability, pages 1-19, 2019
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4 Understanding the Evolution of Android App Vulnerabilities

4.1 Overview

Mobile software has been overtaking traditional desktop software to support citizens of our digital era
in an ever-increasing number of activities, including for leisure, internet communication or commerce.
In this ecosystem, the most popular and widely deployed platform is undoubtedly Android, powering
more than 2 billion monthly active users, and contributing to over 3 million mobile applications,
hereinafter referred to as apps, in online software stores [48]. Yet from a security standpoint, the
Android stack has been pointed out as being flawed in several studies: among various issues, its
permission model has been extensively criticized for increasing the attack surface [2 B, 4]; the
complexity of its message passing system has led to various vulnerabilities in third-party apps
allowing for capability leaks [5] or component hijacking attacks [6]; furthermore, the lack of visible
indicatorsﬂ for (in)secure connections between apps and the internet is exposing user communication

to Man-In-The-Middle (MITM) attacks [49].

Vulnerabilities of mobile apps, in general, and of Android apps, in particular, have been studied
from various perspectives in the literature. Security researchers have indeed provided comprehensive
analyses [50, 511, 52, 53| [54] of specific vulnerability types, establishing how they could be exploited
and to what extent they are spread in markets at the time of the study. The community has also
contributed to improve the security of the Android ecosystem by developing security vulnerability
finding tools [55] (56} 57, 58] and by proposing improvements to current security models [59 60} [611 62].
Although advanced techniques have been employed by malicious developers such as packer and
obfuscation, countermeasures such as [63] [64, [65] have also been proposed. Unfortunately, whether
these efforts have actually impacted the overall security of Android apps, remains an unanswered
question. Along the same line of questions, little attention has been paid to the evolution of
vulnerabilities in the Android ecosystem: which vulnerabilities developers have progressively learned
to avoid? have there been trends in the vulnerability landscape? Answering these questions could
allow the community to focus its efforts to build tools that are actually relevant for developers and
market maintainers to make the mobile market safer for users.

Investigating the evolution of vulnerabilities in Android apps is however challenging. In the quasi-
totality of apps available in the marketplace, the history of development is a fleeing data stream:
at a given time, only a single version of the app is available in the market; when the next updated
version is uploaded, the past version is lost. A few works [I3] 12} [10] involving evolution studies
have proposed to “watch” a small number of apps for a period of time to collect history versions.
However, the insight observed by such studies may not be representative of that of the whole Android
ecosystem.

In this study, we set to perform a large scale investigation on how vulnerabilities evolve in Android
apps. We fully rely on static vulnerability detection tools and report their results on consecutive
versions of Android apps. We refer the reader to the discussion section on false positive detections by
the state-of-the-art tools that were used. Our contributions are as follows:

e We apply state-of-the-art static vulnerability finding tools on all app versions and record the alerts
raised as well as their locations. We investigate specifically 10 vulnerability types associated to
4 different categories related to common security features (e.g., SSL), its sandbox mechanism
(e.g., Permission issues), code injection (e.g., WebView RCE vulnerability) as well as its inter-app
message passing (e.g., Intent spoofing). Correlating the analysis results for consecutive app pairs
in lineages, we extract a comprehensive dataset of reported vulnerable pieces of code in
real-world apps, and, whenever available, the subset of changes that were applied to fix the
vulnerabilities.

e We perform several empirical analyses to (1) highlight statistical trends on the temporal
evolutions of vulnerabilities in Android apps, (2) capture the common locations (e.g., developer vs

le.g., padlock and HTTPS in url input field

34



4.2 Study Design
library code) of vulnerable code in apps, (3) comprehend the vehicle (e.g., code change, new files,
etc.) through which vulnerabilities are introduced in mobile apps, (4) investigate via correlation
analysis whether vulnerabilities foreshadow malware in the Android ecosystem.

And the main findings are:

e Most vulnerabilities will survive at least 3 updates.

Some third-party libraries are major contributors to most vulnerabilities detected by static tools.

Vulnerability reintroduction occurs for all kinds of vulnerabilities with Encryption-related vulnera-
bilities being the mostly reintroduced type in this study.

Some vulnerabilities reported by detection tools may foreshadow malware.

Noticeably, this is the largest scale Android vulnerability study so far. Meanwhile, we novelly analyze
vulnerabilities from the aspect of app lineages and certain patterns (e.g., vulnerability reintroduction)
are firstly spotted in this study.

The artifacts of our study, including the constructed app lineages as well as the harvested vulnerability
detection tool reports, are made publicly available to the community in the following anonymous
repository:

https://avedroid.github.io

The remainder of this chapter is organized as follows: Section describes the experimental setup,
including an introduction of the vulnerability finding tools, and the research questions. Section
unfolds the empirical analyses. Section discusses some promising future works. Section [£.4.2]
enumerates threats to validity, while Section [I.5] discusses related work and Section [4.6] concludes this
work.

4.2 Study Design

In this section, we first define and clarify some terms used in the study. Second, we provide some
background information on the security vulnerability detection tools that we leveraged in Section [1.2.2}
Then, we outline the research questions as well as the motivations behind them (cf. Section .
Finally, we talk about the experimental setup in Section

4.2.1 Terminology

A vulnerability location [ is specified by the class and method in which the vulnerability is spotted
in an apk by a vulnerability detection tool.

Vulnerability Reintroduction is to check whether fixed vulnerabilities reappear in app lineages.
For a certain type of vulnerability v, we denote that a vulnerability v is found at location [ as v;.
if 3,5, k|1 <1i < j <k <n, where v; is found in apk; and apks, but not in apk;. v; is said to be
reintroduced at location {. Moreover, if v is found in apk; and apky but not in apk;, then we say
vulnerability type v is reintroduced.
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4 Understanding the Evolution of Android App Vulnerabilities
4.2.2 Vulnerability Scanning Tools

Vulnerabilities, also known as security-sensitive bugs [66], could be statically detected based on rules
modeling vulnerable code patterns. They are typically diverse in the components that are involved,
the attack vector that is required for exploitation, etc. In this work, we focus on selecting common
vulnerabilities with a severity level that justifies that they are highlighted in security reports and in
previous software security studies. Before enumerating the vulnerabilities considered in our work, we
describe the vulnerability detection tools (detection tools for short hereafter) that we rely upon to
statically scan Android apps.

We stand on three state-of-the-art, open source and actively used detection tools: FlowDroid,
AndroBugs, and IC3.

e FlowDroid [55] — In the literature on Android, FlowDroid has imposed itself as a highly reputable
framework for static taint analysis. It has been used in several works [56] [67, 68] for tracking
sensitive data flows which can be associated with private data leaksﬂ The tool is still actively
maintained [69]. Moreover, since the original version of FlowDroid can only analyze intra-component
data flows. In order to further consider the inter-component data flows, in this work, we used an
ICCTA [56] enhanced version of FlowDroid.

e AndroBugs [70] was first presented at the BlackHat security conference, after which the tool was
open sourced [7I]. This static detection tool was successfully used to find vulnerabilities and other
critical security issues in Android apps developed by several big players [72]: it is notably credited
in the security hall of fame of companies such as Facebook, eBay, Twitter, etc.

e IC3 [57] is a state-of-the-art static analyzer focused on resolving the target values in intent message
objects used for inter-component communication. The tool, which is maintained at Penn State
University, can be used to track unauthorized Intent reception [50], Intent spoofing attacks [60],

etc.
Table 4.1: List of Considered Vulnerabilities.
Type Vulnerability checking description Detection Tool
Security features
SSL Connection AndroBugs
SSL Certificate Verification AndroBugs
SSL_Security[73 SSL Implementation (Hostname Verifier of ALLOW _ALL_ HOSTNAME_VERIFIER) AndroBugs
- *  SSL Implementation (Verifying Host Name in Custom Classes) AndroBugs
SSL Implementation (WebViewClient for WebView) AndroBugs
SSL Implementation (Insecure component) AndroBugs
Encryption[74] Base64 String Encryption AndroBugs
KeyStore|75] KeyStore Protection AndroBugs
Permissions, privileges, sandbox, access-control
Permission|[75] App Sandbox Permission AndroBugs
IntentFilter[3] Unauthorized Intent Reception 1C3
Injection flaws
Runtime Command AndroBugs
Command |76] Runtime Critical Command AndroBugs
WebView|[77] WebView RCE Vulnerability AndroBugs
Fragment|[78)] Fragment Vulnerability AndroBugs
Data and Communication Handling
Intent[79] Intent Spoofing 1C3
Leak[55] Sensitive Data Flow FlowDroid

Table summarizes the vulnerability checks that we focus on, in accordance with the capabilities of
selected detection tools. Overall, we consider 10 vulnerability types. For AndroBugs, not like other
detection tools, it reports on dozens of issues. To focus on those vulnerabilities having a high level of

2We remind the readers that FlowDroid is mainly designed for detecting sensitive data flows, which may not necessarily
be privacy leaks (e.g., it can be intended behaviours). Nonetheless, since such sensitive data flows indeed send
private data outside the device, and it is hard to know how these private data will be used, we consider in this work
such sensitive data flows as privacy leaks.
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criticality, we only considered the issues which are marked as critical by AndroBugs. Furthermore,
several critical issues are also discarded, such as cases where exploitation scenario was not clearly
defined (e.g., checking for SQLiteDatabase transaction deprecated) and a few other issues which were
not explicitly about executable code (e.g., relevant to Manifest information), to eliminate the share
of noise that they can bring to the study.

We now detail the different vulnerabilities and explicate their potential exploitation scenarios. Due to
space constraints, we provide actual vulnerable code examples for only a few cases. For other cases,
we provide references to the interested reader. Since all apps are collected from markets without
source code, we use Soot [I8], reverse engineering apps to obtain their code. So the code snippets in
the following part are Jimple code, the default intermediate representation of Soot for representing
decompiled dex code of real apps.

SSL Security Vulnerabilities related to SSL are a common concern in all modern software accessing
the Internet [80], 8T [82] [83] [84]. In its basic form, any access to the Internet using the HTTP protocol
without encryption (i.e. without using https), as in the code example in Listing line 4, could be
subjected to man-in-the-middle (MITM) attacks [49].

1|{//8SL Connection Checking

2|private void c(Activity, Bundle, IUilListener) {

3 $r6 = new java.lang.StringBuffer;

4 specialinvoke $r6.<init>( "http://openmobile.qq.com/api/check?page=
shareindex.html&style=9");

5 $r10 = virtualinvoke $r6.toString();
6 $z0 = staticinvoke Util.openBrowser ($rl, $r10);
p;

Listing 4.1: SSL Vulnerability Related to Insecure Connection.

In some cases, although the app code is using SSL, the Certificate Verification is sloppy, still presenting
vulnerabilities. As the example shown in Listing [£.2] the app developer implements the required
X509TrustManager interface in line 6. Nevertheless, from line 7 to 9, the 3 implemented methods are
empty, which only ensures that the app compiles, but creates vulnerabilities for MITM attacks.

//8SL Certificate Verification Checking
class cn.domob.android.ads.r {
public void <init>(android.content.Context) {

$r3 = new cn.domob.android.ads.r$b;
}}
class r$b implements X509TrustManager {
public void checkClientTrusted (X509Certificate[],String) {}
public void checkServerTrusted (X509Certificate([],String) {}
public Xb509Certificate[] getAcceptedIssuers() {return null;}
}

O © 00O U W
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Listing 4.2: SSL Vulnerability Related to Certificate Verification.

Vulnerability detection tools further ensure that hostnames are properly verified before an SSL
connection is created. Vulnerable apps generally accept all hostnames, e.g., by setting hostname verifier
with either an SSLConnectionSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER or implementation of
Hostname Verifier interface which overrides verify method with a single “return TRUE;” statement,
creating opportunities for attacks with redirection of the destination host.

Another reported vulnerability, specific to mobile apps, is related to the widespread use of Web-
ViewClient. WebViewClient is an event handler for developers to customize how should a WebView
react to events. For SSL connections, developer suppose to deal with SSL errors within method
onReceiveSsiError() of WebViewClient. However, if a developer chooses to ignore the errors when
implementing this method, then it introduces a vulnerability to MITM attacks[85].

Finally, still with regards to SSL security, Listing [£.3]illustrates a classic vulnerability where developers
bring development test code into production. The well-named getInsecure method in line 7 for creating
unsafe sockets, when used in a market app, offers immediate paths to MITM attacks.
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//E6: SSL Implementation Checking (Component)
class org.jshybugger.ji {
public void <init>(Context) {
$r2 = new android.net.SSLSessionCache;
$r1 = $r0.b;
specialinvoke $r2.<init>($r1);
$r3 = staticinvoke SSLCertificateSocketFactory.getInsecure (5000, $r2);
3}

00 3 O U W N~

Listing 4.3: SSL Vulnerability Related to Insecure Component.

Command. Android apps can be vulnerable to a class of attacks known as Command injection
where arbitrary commands, e.g., passed via unsafe user-supplied data to the system shell, are executed
using the Runtime API. Such vulnerabilities can appear in unsuspected scenarios: in a recent study,
Thomas et al. [76] discussed a case where a remote attacker could use a WebView executing dynamic
HTML content driven by JavaScript to reflectively call the Java Runtime.ezec() method for executing
underlying sensitive Shell commands such as ‘id’ or even ‘rm’.

Permission. The Android application sandbox security feature isolates each app data and code
execution from other apps. However, the documentation explicitly recommends to avoid permissions
MODE_WORLD_READABLE and

MODE_WORLD_WRITEABLE for inter-process communication files (i.e., sharing data between applications
using files), since, in this mode, Android cannot limit the access only to the desired apps [86].
Nevertheless, the secure alternative of implementing Content Provider may be too demanding for
developers, leading to the development of many vulnerable apps.

WebView. The example vulnerability described for the Command case reflects a more generalized
security issue with WebView’s capability to render dynamic content based on JavaScript. Until
Android Jelly Bean, i.e., API level 17 (included), JavaScript code reflectively access public fields
of app objects. This is problematic since an attacker may leverage this security hole to remotely
manipulate the host app into running arbitrary Java code. [T7] detailedly described this kind of
attacks.

KeyStore. Android relies on the KeyStore API to manage highly sensitive information such as
cryptographic keys for banking apps, certificates for virtual private networks, or even pattern sequences
or PINs used to unlock devices. Unfortunately, a recent study has confirmed that developers may
not use the API very well, opening doors to attacks [75]. In any case, some developers continue to
directly hard code certificate information in their app. Others who use the KeyStore end up exposing
the so-far secured information by saving the keystore object into an unprotected file, or by loading it
into as an ordinary byte array which can then be obtained by attackers.

Fragment. A specific case of code injection can be implemented in apps running earlier versions of
the Android OS: fragment injection, reported by researchers at IBM [78], exploits the fact that any
UI class (i.e., Activity extending PreferenceActivity) can load any other arbitrary class in a Fragment
(i.e., sub-Activity). When the UI class is exported (i.e., can be reused by other apps — for example, a
mail app may directly allow viewing a PDF attachment by calling a reader app activity), malicious
apps can break the sandbox mechanism by accessing information pertaining to the vulnerable apps
or abuse its permissions. Roee Hey has demonstrate(ﬂ how this vulnerability could be exploited to
attack the Android Settings app to enable an unauthorized and effortless change of device password.
Fortunately, this vulnerability was patched starting with Android Kit Kat (API level 19), where all
apps including the concerned activities must implement a specific behavior for properly checking the
code to be run via the isValidFragment() AP

Shttps://goo.gl/zQnpTq - Retrieved August 17, 2017
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Encryption. It is a standard practice to encrypt sensitive information when they are hard-coded
within app code. Unfortunately, developers often confuse encryption with simple encoding: in both
cases, the string may appear unreadable (e.g., in base 64 representation); however simply encoded
strings can be decoded by anyone using the standard API without the need of a key. Listing [£.4]
illustrates an example of vulnerable code. In line 4, where base 64 encoded information is hardcoded
in the program which the developer believes it is safe as it is decoded on-the-fly at runtime, is actually
accessible to any attacker.

1|//Base64 String Encryption

2|public static bytel[]l b(bytel[l) {

3| bytel]l $r0, $ri1;

4| $r1 = staticinvoke <android.util.Base64: byte[] decode(java.lang.String,int)>
("MDNhOTc2NTExZTJjYmUzYTdmMjY4MDhmY3jdhZjNjMDU=", 0);

5 $r0 = staticinvoke <com.tencent.wxop.stat.b.g: bytel[]l] a(bytel[l,bytel]l)>($r0,
$r1);

6 return $r0;

p;

Listing 4.4: Vulnerable Encryption Using Base64 String Encoding

The next two vulnerability cases that we consider are related to the pervasive use of Inter-Component
Communication (ICC) for enabling interaction and information exchange between Android app
components (within and across apps). Two Android concepts are key in these scenarios: the intent
object, which is created by a component to hold the data and action request that must be transferred
to another component, and the intentfilter attribute, which specifies the kind of intents that the
declaring component can handle. When intents are implicit, i.e., they do not name a recipient
component, they are routed by the system to the appropriate components with matching intent filters.
Security of intents can then be compromised by malicious apps which may exploit vulnerabilities to
intercept intents intended for another, or by sending malformed data to induce undesired behavior in
a vulnerable app. These attacks, known as intent interception and intent spoofing attacks, have been
studied in detail in the literature [50, [74], [79) 87 [8§].

Intent. Tmplicit intents, although they provide flexibility in run-time binding of components, are
often reported to be overused or inappropriately used [79]. For example, attackers may simply
prepare malicious apps with intents matching the actions requested (e.g., PDF reader capability) by
vulnerable apps, to divert the data as well as prevent other legitimate components to be launched. In
our study, following security recommendations in [79], we consider an app to be vulnerable w.r.t. to
Intent when it uses implicit intents to communicate with its own components: the developer should
have used explicit intent, thus avoiding potential interception by unexpected parties.

IntentFilter. Android apps may declare their capabilities via intent filters. However, when faced
with an incoming intent, a component cannot systematically identify which component (trusted or
untrusted) sent it. In that case, a vulnerable app may actually be implementing a re-delegation [3] of
permissions to perform sensitive tasks. Best security practices require app developers to protect the
offered capabilities with the relevant (or some ad-hoc) permissions; thus, the attacker would need
the user to grant permission for accessing the sensitive resources he was attempting to abuse. We
otherwise consider the app to be vulnerable.

Leak. Sensitive data flows across app components and outside an app have been extensively studied
in the literature [55] [56] 89, 0, OT, 92]. When such flows depart from known sensitive sources (e.g.,
API methods for obtaining user private data) and end up in known unsafe sinks (e.g., methods
allowing to transfer data out of the device by logging, HTTP transferring, etc.), these are privacy
leakages. When such data flow paths are found in an app, a vulnerability alert should be raised.
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4 Understanding the Evolution of Android App Vulnerabilities

4.2.3 Research Questions

The goal of this work is to explore the evolution of vulnerabilities in the ecosystem of Android apps.
Our purpose is to highlight trends in the vulnerability landscape, gain insights that the community
can build on, and provide quantitative analysis for support the research and practice in addressing
vulnerabilities. We perform this study in the context of Android app lineages, and investigate the
following research questions:

RQ1: Hawve there been vulnerability “bubbles” in the Android app market? The literature
of Android security appears to explore vulnerabilities in waves of research papers. Considering that
many of the vulnerabilities described above have been, at some periods, trending topics in the research
community [93], 04, 05, 96], [O7], we investigate whether they actually correspond to isolated issues
in timeﬂ In other words, we expect to see the disappearing of some vulnerabilities just like the
explosion of bubbles. This question also indirectly investigates whether measures taken to reduce
vulnerabilities have had a visible impact in markets.

RQ2: What is the impact of app updates w.r.t. vulnerabilities? Few studies have shown
that Android developers regularly update their apps for various reasons (including to keep up with
users’ expectations). A recent paper by Taylor et al. has concluded that apps do not get safer as
they are updated [I0]. We do not only investigate the same question with a significantly larger and
more diversified dataset, but also find detailed patterns of the survivability of vulnerabilities.

RQ3: Do fixzed vulnerabilities reappear later in app lineages? One of the main reason for
software updates is to patch security flaws (i.e., vulnerabilities). Nevertheless, there could be chances
for updates to introduce vulnerabilities as well, especially for those that had been fixed in previous
updates. With RQ3, we study the phenomenon of vulnerability reintroductions in Android apps.

RQ4: Where are vulnerabilities mostly located in programs and how do they get intro-
duced into apps? The recent “heartbleed” [98] and “stagefright” [99, [T00, [TOT] vulnerabilities in
the SSL library and the media framework have left the majority of apps vulnerable and served
as a reminder on the unfortunate reality of insecure libraries [I02]. A recent study by Watanabe
et al. [I03] has even concluded that over 50% of vulnerabilities of free/paid Android apps stem
from third-party libraries. We partially replicate their study at a larger scale. Furthermore, to help
researchers narrow down searching range for vulnerabilities we investigate whether vulnerabilities get
introduced while developers perform localized changes (e.g., code modification to use new APIs), or
whether they come in with entirely new files (e.g., an addition of new features).

RQ5: Do wvulnerabilities foreshadow malware? Although vulnerabilities do not represent
malicious behavior, they are related since attackers may exploit them to implement malware. We
investigate whether some vulnerability types can be associated more with some malware types than
others. Considering evolution aspects, we study whether some malware apps appear to have been
“prepared” with the introduction of specific vulnerabilities.

4.2.4 Experimental Setup
Execution Environment

Experiments at the scale considered in our study are challenging, requiring a significant amount
of memory, storage disk as well as computing power. The retrieval of apks from the AndroZoo
repository alone took 7 days and occupied 56 terabytes (TB) of local storage space. Among the
vulnerability detection tools, FlowDroid and IC3, as previously reported in the literature [67], are
heavy in terms of resource consumption. Fortunately, we were able to leverage a high performance
computing (HPC) platform [104], using up to 80 nodes, to run as many analyses as possible. We use

4We use the Dalvik executable code compilation timestamp as the packaging date to implement this study.
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the fully parallel capability of the HPC platform and we automated the analysis scenarios with Python
scripts: FlowDroidﬂ analyses occupied 500 cores and consumed 240 CPU hours to scan 223,474 apks;
1C3 occupied 200 cores and consumed 360 CPU hours to scan 72,983 apps. AndroBugs light scanning
only took 13 CPU hours with 500 cores to go through 458,814 apks.

Overall, we obtained results for 454,799 apks of 27,974 lineages by AndroBugs, 37,736 apks by
FlowDroid and 30,042 apks by IC3 with 3357 and 2048 lineages respectivelyﬁ The final raw results
hold in about 40GB of disk space. There are 2 reasons that caused the different numbers in the result
of different tools. One is because of the limited time budget for running analysis. As we know from
the previous paragraph that AndroBugs is the lightest tool in resource requirement, we collected the
most results from its analysis. On the contrary, IC3 is the heaviest tool which got the least results.
Meanwhile, some apks could cause crashing of certain detection tools and, normally, different tools
crash on different apks. This is another reason that leads to a different number of analysis results in
different tools.

False positives of the selected static analysis tools. It is known that static analyzers will likely
yield false positive results. Towards evaluating the severity of this impact, we resort to a manual
process to verify some of the results. Because manual verification is time-consuming and may require
training in understanding vulnerability types, we restrict ourselves within a working day to conduct
the manual verification of a sampled set of vulnerabilities.

Specifically, we invited 2 PhD students who have been working on Android and static analysis related
topics to work on the reports of the three selected tools, respectively. One student spent one day on
sampled reports EIof AndroBugs and another one spent two days on the reports of IC3 and FlowDorid
respectively. They are able to check 711 vulnerabilitiesﬂ for AndroBugs, 275 vulnerabilities (98 of
intent spoofing and 177 of unauthorized intent reception) for IC3 and only 78 leaks for FlowDroid.
The manual verification process confirms that, at least from the syntactic point of view (i.e., these
vulnerabilities are in conformance with the definition of vulnerabilities as proposed in the tools
documentation), the results reported by the adopted static analyzers are all true positive results.
The students, however, admit that they are only able to focus on checking simple syntactic rules for
validating the results. It is time-consuming and sometimes very hard to follow the semantic data
flows within the disassembled Android bytecode. Indeed, Android apps are commonly obfuscated,
making it difficult to understand the code manually. Even without obfuscation, it is also non-trivial
to understand the intention behind the code if no prior knowledge is applied.

Moreover, in addition to checking real-world Android apps via disassembled bytecode, which is known
to be difficult, we conducted another experiment with a set of open-source apps, in the hope that
these apps could help us better validate the reported static analysis results. To this end, we randomly
selected 200 apps from F-Droid and conducted the same experiments as for the close-source apps.
Interestingly, the results of this experiment are more or less the same to that of close-source apps. We
have only observed one false positive for FlowDroid. Among the 200 open-source apps, FlowDroid
reported that 45 of them contain sensitive data flows. We manually investigated 15 of them (i.e.
developers’ codel4 were manually checked) accounting for 29 leaks. Out of 29 reported leaks from
these apps, we spot one false positive, which was found in app idv.markkuo.ambitsync. The false
positive is caused by an incorrectly generated dummyMainMethod. For FlowDroid to construct call
graphs for Android apps, a dummyMainClass containing several dummyMainMethods is required
to be instrumented. However, in this case, the dummyMainMethod is incorrectly generated which
further leads to a non-exist path, and hence a false-positive result. Similar validations were done for
Androbugs and IC3 as well, while no false positives were spotted.

5Default sources and sinks configuration file provided with FlowDroid source code was used in this study. It can be
obtained from the GitHub repository under directory "soot-infoflow-android".

6Since the obtained results for different vulnerabilities (i.e. tools) are different, the percentages calculated afterwards
are based on the analyzed apks of a certain vulnerability.

7Sampling by using find path/to/reports -type f | shuf -n sampleNumber

8Vulnerabilities of non-HTTPS links are not considered since these vulnerabilities are pervasive in our dataset and are
relatively straightforward to identify statically (hence, less likely to be false positives).
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Furthermore, it is worth to mention that the three static analyzers we selected in this work have
been recurrently leveraged by a significant number of state-of-the-art approaches to achieve various
purposes. For example, FlowDroid’s results have been leveraged by Avdiienko et al. [67] to mine
abnormal usage of sensitive data, Cai et al. [I05] leverage IC3 to understand Android application
programming and security, while Taylor et al. [I0] have leveraged AndroBugs to investigate the
evolution of app vulnerabilities. Moreover, there are studies focusing on analyzing and comparing
analysis tools too. Qiu et al. [I06] compared the three most prominent tools which are FlowDroid,
AmanDroid and DroidSafe and discussed their accuracy, performances, strengths and weaknesses etc.
Meanwhile, Ibrar et al. [I07] studied vulnerability detectors of Mobile Security Framework (MobSF),
Quick Android Review Kit Project (QARK) and AndroBugs Framework with banking apps. In the
aforementioned two works, they all discussed the false positive issues of the tools. According to their
results, FlowDroid and Androbugs both performed the best among their kind of tools in terms of
false positives. Therefore, from the false positive point of view, we can conclude that the tools we
have chosen are the most reliable among other counterpart tools.

Study Protocol
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Figure 4.1: Distributions of Vulnerable APKs and of Vulnerabilities
Each of the vulnerability detection tools outputs its results in an ad-hoc format. We build dedicated
parsers to automatically extract relevant information for our study. Figure provides quantitative

details on the distributions of vulnerable apks in the lineages dataset. SSL vulnerabilities are
widespread among Android apps and across several apk locations. We also note that a large majority

42



4.3 Results

of apps may include a large number of sensitive data flows. As these leaks reveal private information,
although for most of them, how the sensitive data will be used is unknown, we should consider them
as vulnerabilities.

For the evolution study, Vulnerable pieces of code are extracted from the location [ of an apk indicated
by the vulnerability detection tools. These vulnerable pieces of code are collected and released as
a valuable artifact for the community. Real-world examples from this artifact were presented in
Section

Finally, we monitor and record how vulnerabilities change at these locations that is: given the analysis
results for an apk v, and its successor v of a lineage, we track the differences in terms of vulnerability
locations; when a given vulnerability type is identified in a location but is no longer reported at the
same location, we compute the change diff between the two apk versions and refer to it as potential
vulnerability fix changeﬂ

4.3 Results

We now investigate the evolution of Android app vulnerabilities. Our objective in this work is
to understand the evolution of Android app vulnerabilities and thereby to recommend actionable
countermeasures for mitigating the security challenges of Android apps.

4.3.1 Vulnerability “Bubbles” in App Markets

To answer RQ1: Have there been vulnerability “bubbles” in the Android app market? We
first compute, for each vulnerability type, the percentage of apks which are infected in a given year.
Figure outlines the evolution of vulnerable apks in the space of 6 years. Clearly, we do not see
any steady trend towards less and less proportions of vulnerable apks. A more specific investigation
is conducted to further explore the expected pattern. The same computation is repeated with apps
only debuted on year 2010. This limits to a dataset containing only 3109 apks of 141 app lineages.
Nevertheless, very similar patterns have been observeﬂ Since apks are built to target specific
Android OS versions (i.e., API level targets), the availability of specific features and programming
paradigms may influence the share of vulnerable apks. Thus we present in Figure [£.2b] the evolution
of the percentage of vulnerable apks across different API level targets. We note an interesting case
with the Command vulnerability: the percentage of vulnerable apks has steadily dropped from 60% in
apks targeting first OS versions to about 10% for the more recent OS version. This evolution is likely
due to the various improvements made in the OS as well as in the app markets towards preventing
capability and permission abuse.

We further investigate (1) whether the overall evolutions depicted previously break down differently
in specific markets, given that markets do not implement the same security checking policies; and
(2) whether evolution trends are visible inside the apps, since developers may make efforts to at
least reduce their numbers. Figure [£:2d]illustrates the evolution of three dominant markets, namely
the official Google Play store, and the alternative markets AppChina and Anzhi. We note that the
rate of vulnerable apks in all three markets has remained high throughout the considered historyﬂ
Evolution trends in Figure reveal how Leak vulnerabilities have significantly dropped in 2011:
from an average 120 vulnerabilities per apk, it came to about 40 before slowly increasing again. We
remind the reader that these vulnerabilities found using FlowDroid are computed as possible paths
from sensitive data to sinks such as log files. Such a drop in the number of leak vulnerabilities per apk

9Since the change could be only related to program refactoring, we cannot say if the change is a real fix or not.

L0yulnerabilities of Intent and IntentFilter contains missing data in certain years. Therefore, these 2 vulnerabilities are
not discussed here.

1A given apk is considered to be vulnerable if it includes any case of our selected vulnerability types.
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Figure 4.2: Evolution of Android App Vulnerabilities.

may be explained by the wide interest of the community. TaintDroid [108], the first state-of-the-art
tool for tracking data flows has just been proposed, and the first comprehensive study on Android
security issues (which put leaks as a priority concern) was made available [109]. MIT technology
review had also realized on the wave of apps leaking private info [I10].

Figures [4.2¢| and further depict interesting evolution cases for the Command and KeyStore
vulnerability types between markets. While the official Google Play has seen Command-vulnerable
apks drop and KeyStore-vulnerability remain low, alternative markets have accepted more and more
Command-vulnerable apks, and still include a large share of KeyStore-vulnerable apks. These findings
may suggest that the security mechanisms implemented by some markets might be effective against
frequently exploited vulnerabilities. Indeed, let us take Google Play as an example, Google has
introduced Google Play Protect'El for continuously pinpointing potentially harmful applications (such
as apps with SMS fraud, phishing, or privilege escalation, etc.). As revealed in the Android Security
2017 year in review report, Google Play Protect had actually disabled potentially harmful apps from
roughly 1 million devices with approximately 29 million apps removed.

Insights from RQ1: Our analyses did not uncover any vulnerability bubble in the history of
app markets. Instead, we note that vulnerabilities have always been widespread among apps and
across time. Nevertheless, the case of Leaks suggests that wide and intense researching focus can

significantly impact the number of vulnerabilities in apps.

2https://www.android.com/play-protect/
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4.3.2 Survivability of Vulnerabilities
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Figure 4.3: Survivability of Vulnerabilities in APKs

To answer RQ2: What is the impact of app updates w.r.t. vulnerabilities? We investigate
whether a given vulnerability type identified at a location remains or is removed from the successor apk
in the lineage. Similarly, we investigate whether new vulnerability types appear in updated versions of
the app. Figure summarizes the impact that app updates have on the vulnerabilities in a lineage.
On average, for most vulnerabilities, more than 50% of vulnerable locations remain. The number of
vulnerabilities related to Encryption and Inter-component communication (i.e., Leaks, Intent and
IntentFilter) has evolved substantially across app versions (e.g., only 20% of Leak vulnerabilities
kept untouched). Figure presents the distribution of delay (in terms of apk versions) before a
vulnerability is removed from its location. Survivability appears to be similar across vulnerability
types. Furthermore, the median delays indicate that most vulnerabilities will not be fixed until three
version updates later.
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Figure 4.4: Distribution of Added and Removed in a Numbers of Vulnerabilities between Consecutive
APK Versions. Numbers represent p-values from MWW tests on the statistical significance
of the differences.
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We further detail in Figure [I.4] the distribution of the numbers of vulnerabilities added and removed
in apps. Except for the Permission case, we note that the median number of vulnerabilities added
is equal or higher to the number of vulnerabilities that are removed. This confirms a finding in a
recent study by Taylor et al. [I0] on a smaller set of apps: “Android apps do not get safer as they
are updated”. The p-values of Mann-Whitney-Wilcoxon (MWW) test with null hypothesis of equal
distribution, alternative hypothesis of not equal distribution and confidence level of 0.95, indicated
above each box plot pair, however, show that the difference is statistically significant only for the
three ICC-related vulnerabilities.

-2
-4
X e A e s e s &
& & L S @e‘\ SO & X
W FE LS FYE S
g O QQ’(' &7 g <& \,{\@
(a) Between Consecutive APK Pairs.
201 —
101

—101

> & Q& o>
(b\? @ & .%éx,o 4@) (o&oﬂ &Q)Q ,{}OI\)@’D &Q,Q &
O F& &S $ &
o @ Q7 L S & \&e

(b) Between Initial and Latest Versions.

%
SN

Figure 4.5: Variations in # of Vulnerabilities Following Updates.

We now investigate the general trend in vulnerability evolutions, comparing the impact of updates
between consecutive pairs and the impact of all updates between the beginning and the end of a
lineage. We expect to better highlight the overall evolution of vulnerabilities as several changes have
been applied. The box plots in Figures [£.5] highlight a simple reality: commonly vulnerabilities are
neither removed nor introduced during app updates (i.e., all median values equal to 0 in Figure
and when they happen, their chances are quite equal as well (i.e., all mean values are very close
to 0 too). When looking at the distribution obtained based on the initial/latest versions shown in
Figure the major pattern stays similarly (i.e., all median values are still 0 only except for Leak
which is 1 and for most of the mean values, they increased slightly but still between around 0.5 to 0.
the exceptions are Leak and IntentFilter which are 3.8 and 2.3 respectively), but observable differences
are exhibited as well. Several vulnerabilities expand in size and the scale increases obviously. The
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main parts of all boxes are on the positive side of y-axis, which indicates that there are more cases of
adding vulnerabilities than removing.

Insights from RQ2: As more than 50% of vulnerabilities stay untouched during 1 update and
the possibility of fixing and introducing vulnerabilities during updates does not show a significant
difference, app updates indeed do not make apps safer. Moreover, vulnerabilities can normally
survive 3 updates and even longer, this suggests developers haven’t been paying enough attention

on vulnerability issues.

4.3.3 Vulnerability Reintroductions

To answer RQ3: Do fized vulnerabilities reappear later in app lineages? We track all vulner-
ability alerts (associated with their locations) and cross-check throughout the lineages. We found
342,809 distinct cases of location-based vulnerability reintroductions (i.e., vulnerable code removed
and reappeared in the same method of the same class of an app, as specified in Section
for 15,375 distinct apps. On average, a given app is affected by 6.7 vulnerability reintroductions.
Figure further breaks down reintroduction cases and their proportions among all vulnerability
alerts. Encryption-related vulnerabilities (2.97%) are the most likely to be reintroduced, in contrast
to SSL Security-related vulnerabilities (0.77%).
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Figure 4.6: Statistics on Reintroduction Occurrences.

We investigate whether, in some lineages, a vulnerability type may completely disappear at some
point and later re-appear. Figure [£.6D] provides statistics on proportions of lineages where a given
vulnerability type is reintroduced (note that this type-based vulnerability reintroduction is only
discussed here, for the rest of this chapter, without specification, the reintroduction should be
location-based).

Figure [4.7] details, for each vulnerability type, the proportion of cases where a vulnerability was
removed in an apk version following a complete deletion of its location file, or following code changes
in its location (at method level or file level depending on the vulnerability type). File deletion and
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Figure 4.7: Statistics on How Vulnerabilities Are Removed (during file deletion or code change within
vulnerability location file) or Introduced (during new file insertion or code change within
vulnerability location file).

new file insertion occupy a big portion suggests that vulnerabilities are probably fixed or introduced
with third-party code. Our in-depth analysis reveals that those deleted and inserted files are indeed
mostly from libraries. For example, we have found that file com.tencent.open.SocialApilml has been
deleted and newly inserted 3,730 and 6,012 times respectively.

Insights from RQ3: Vulnerability reintroductions occur in Android apps and Encryption-related
vulnerabilities are the most like to be reappeared with the possibility of around 3%.

4.3.4 Vulnerability Introduction Vehicle

We answer RQ4: Where are vulnerabilities mostly located in programs and how do they get
introduced into apps? By first providing a characterization of code locations where vulnerabilities
are found. We focus on two main location categories: library code and developer code. We attempt
to provide a fine-grained view on vulnerable-prone code by distinguishing between:

e Dewveloper code, approximated to all app components that share the same package name with the
app package (i.e., app id).

o Official libraries, which we reduce in this work to only Android framework packages (e.g., that
start with com.google.android or android.widget).

o Common libraries, which we identify based on whitelists provided in the literature [I7].
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e Reused or other Third-party code, which we defined as all other components that do not share the
app package name, but are neither commonly known library code.
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Figure 4.8: Distribution of Vulnerable Code in Developer Code, Official Libraries, Common Libraries
and Reused/Third Party Code.

Figure [£.§] details the distribution of vulnerable code in different locations. For most vulnerability
types, it stands out that third-party code (including common libraries) is the main carriers of app
vulnerabilities. Developer code is more affected by ICC data handling vulnerabilities. Android
“ofﬁcial’ﬁ libraries are however affected by Fragment vulnerabilities. This could be explained by the
fact that several of such libraries are widely used to implement ads display in app foreground Uls.
Although such vulnerabilities may be fixed by Google library maintainers, it is commonly known that
update propagations can be slow in Android [76].

We investigate the correlation between the size of apps and the number of vulnerabilities to assess
a literature intuitively-acceptable claim that larger apps are more vulnerable. Then, we study how
this reflects in evolution via apk updates, by checking whether the number of new code packages
added in an app during an update correlates with the number of newly appearing vulnerabilities.
Table [4.2] provides Spearman correlation computation results. All correlation appear to be ‘Negligible’.
IntentFilter shows the highest correlation close to being categorized as ‘Moderate’ w.r.t. the size of

the apps.

Table 4.2: Spearman Correlation Coefficient (p) Values. With experiments Exp.1: # of packages vs.
# of vulns. per apk; Exp.2: # of new packages vs. # of vulns. per update.
Type SSL Security Command Permission WebView  KeyStore

Exp.1 0.08 0.07 -0.11 0.08 0.08
Exp.2 0.14 0.06 -0.02 0.07 0.02
Type Fragment Encryption Leak Intent IntentFilter
Exp.1 0.19 -0.02 0.05 0.06 0.22
Exp.2 0.17 -0.00 0.04 0.10 0.12

Interestingly, computation of LOESS regression [111] shown in Figure further highlights that
while a positive correlation, although ‘negligible’, may exist between added packages and the number
of added vulnerabilities, no correlation can be observed between removing packages and variations in

vulnerability numbers.

B0Our heuristics are solely based on package name and thus may actually include abusively named packages. See
package list on artefact release page.
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Figure 4.9: Overall Regression.

As numbers of the vulnerabilities are not correlated with both apk size and package numbers. We
can deduce that not all packages commonly introduce vulnerabilities yet only for certain packages.

Insights from RQ4: Although third-party libraries are the main contributor of vulnerabilities,
it is quite possible that the major contribution is only from part of these libraries. Therefore
more focus should be given on the analysis of libraries and market maintainers could draw policies
rejecting apps using non-vetted libraries. Moreover, the claim made in [I03] that more code and

libraries imply more vulnerabilities may not be always true.

4.3.5 Vulnerability and Malware

To answer RQ5: Do vulnerabilities foreshadow malware? We investigate relationships between
app vulnerabilities and malware. One way for malware to achieve their malicious behaviors is by
leveraging vulnerabilities. Reasonably, malware can deliberately implement vulnerabilities for their
own use as presented in [I12]. Moreover, to distinguish malware from benign apks, the common
practice is using anti-virus(AV) flagging reports. AndroZoo provides these reports E as metadata for
all its apks and in this study, we treat an apk as malware as long as one or more AVs gave positive
reports.

Table 4.3: Benign and Malware in Vulnerable APK Sets
SSL Security Command  Permission WebView  KeyStore

Malware 42.17% 56.00% 62.90% 44.73% 35.79%

Benign 57.83% 44.00% 37.10% 55.27% 64.21%
Fragment Encryption Leak Intent IntentFilter

Malware 14.28% 58.82% 38.12% 37.96% 43.85%

Benign 85.72% 41.18% 61.18% 62.04% 56.15%

Table reports the proportion of benign and malware which are detected as vulnerable for each
vulnerability type. Malware are not more likely to contain a given vulnerability than benign apps. We
further perform a correlation study on these malware to assess whether the number of vulnerabilities
in an apk can be correlated to the number of AVs that flag it. This is important since AVs are

14 AndroZoo provides, for each apk, AV reports of dozens of AV engines hosted by VirusTotal (https://www.virustotal)}
com)
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4.4 Discussion

known to lack consensus among themselves [113, [I14]. For every vulnerability type we found that the
Spearman’s p was below 0.30, implying negligible correlation.

E3 benigne3 adwar@® trojan
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Figure 4.10: Vulnerability VS Malwar@

We now carry an evolution study to investigate whether certain vulnerabilities may foreshadow certain
type of Android malware. To this end, we rely on type information provided in AndroZoo based on
the Euphony tool [I15]. A malware can be labeled with various types, including trojan, adware, etc.
Given an app lineage, when a single apk is flagged by AVs, we consider its non-flagged predecessors in
the lineage and count cumulatively how many vulnerabilities were included in them. For each lineage
where all apks are benign we also count the number of vulnerabilities per vulnerability types. We
then perform the MWW test, for each vulnerability type, to assess whether the difference between,
on the one hand, the median number of vulnerabilities for malware of a given type, and, on the
other hand, the median number of vulnerabilities in benign apps, is statistically significant. In most
cases, this difference is not statistically significant, suggesting that most types of Android malware
cannot be readily characterized by vulnerabilities within the malware itself. Nevertheless, we find
four interesting cases of vulnerability types (namely, Command, KeyStore, Fragment and Encryption),
where vulnerabilities are suggestive of malicious behavior. Figure [£.10] illustrates the distribution
of vulnerabilities across benign, trojan, and adware. Vulnerabilities of these types are significantly
less in benign lineages than in earlier apks of lineages where malware of type trojan or adware will
appear as shown in the figure and further proved by the 0 valued p-values between benign and adware
and between benign and trojan of all 3 types except Encryption, while the absence of benign of type
Encryption in the figure reflects that benign apks does not contain any of such vulnerability.

Insights from RQ5: Our study finds similar rates of vulnerabilities in malware as well as benign
apps. However, we uncovered cases where vulnerable apks were updated into malicious versions
later in the app lineage.

4.4 Discussion

We now discuss the potential implications and future works, as well as the possible threats to the
validity of this study.

4.4.1 Implication and Future Work

The datasets and empirical findings in this work suggest a few research directions for implications
and future works in improving security in the Android ecosystem.

e Understanding the genesis of mobile app vulnerabilities. Since app lineages represent
the evolution of apps, they could contain the information about “when” and “how” is a given
vulnerability initially introduced. This information could then be leveraged to understand the
genesis of the vulnerability and thereby help researchers and developers invent better means to
locate and defend such vulnerabilities.

150ther vulnerabilities are ignored due to insignificant differences observed between benign, adware and malware
samples. Hence, they are omitted from the figure to give a clear exhibition.
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e Tools to address vulnerability infections. By leveraging app lineages, the corrected pieces
of code of a vulnerability happened in a certain app version could be spotted and extracted
from its subsequent app versions with the fixes. Indeed, the vulnerable code snippets disclosed
in this work could be leveraged to mine fix patterns for certain vulnerabilities and subsequently
enable the possibility of automated vulnerability fixes.

¢ Reintroduction analysis for app updates. As revealed in the answer to RQ3, the fact that
vulnerabilities can be reintroduced into apps during their updates, it is essential to perform
reintroduction analysis (either statically or dynamically) for Android apps. These analyses later
could be immediately adopted by app markets to guarantee that app updates do not introduce
more (known) vulnerabilities.

e Library screening strategies. As concluded in Section[f:3.4] third-party libraries are the main
contributor of vulnerabilities in an app. Thus, when libraries containing serious vulnerabilities
get to be popular, the aftermath will be difficult to estimate. Such incident happened once on
August 21, 2017, Bauer and Hebeisen [116], from the Lookout Security Intelligence team, have
reported that their investigation of a suspicious ad SDK (i.e., ad library) revealed a vulnerability
that could allow the SDK maintainer to introduce malicious spyware into apps. After it was
alerted, Google has then removed from the market over 500 apps containing the affected SDK:
those apps were unfortunately already downloaded over 100 million times across the Android
ecosystem. Therefore, strategies of selective screening of libraries could be investigated to clean
app markets with apps which unnecessarily ship vulnerable libraries.

e Understanding the pervasiveness of vulnerabilities. According to this study, each apk
contains more than 60 vulnerabilities on average. Although intensive studies have been done
on different kinds of vulnerabilities, no vulnerability “bubble” explosions have been observed
as we studied in RQ1. However, detection tools targeting on these vulnerabilities have been
made publicly available and free for quite a long time such as the tools we used in this study.
Therefore, why developers did not using these tools to protect their apps could be an interesting
question to answer in future work.

e A correlation study of vulnerabilities and malware. In this study, the cases where APKs
containing certain vulnerabilities were updated into malware have been spotted. Khodor et al.
[112] also observed similar cases that malware deliberately implements vulnerabilities for its
malicious purpose. This phenomenon implies that there could be correlations between certain
vulnerabilities and malware. Nonetheless, more thoroughly defined experiments are needed to
confirm this hypothesis. We believe that app lineages, introduced in this work, can be leveraged
to implement such studies.

4.4.2 Threats to Validity

Like most empirical investigations, our study carries a number of threats to validity. We now briefly
summarise them in this subsection.

Threats to external validity are associated with our study subjects as well as to the vulnerability
detection tools that are selected. To provide reasonable confidence in the generalizability of our
findings, this study leverages the most comprehensive dataset of Android apps. Threats to external
validity are further minimized by considering a variety of vulnerability detection tools (hence of
vulnerability types) for our study.

The main threat to internal validity is related to the process that we have designed for re-constructing
app lineages. To minimize this threat, we have implemented constraints that are conservative in
including only relevant APKs in a lineage.
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In terms of threats to construct validity, our analyses assume that all vulnerability types are of the
same importance and that every APK can be successfully analyzed. Yet, since the IC3 and FlowDroid
successfully analyzed fewer APKs than AndroBugs, the scale of the significance of the findings may
vary. Nevertheless, we have focused more on assessing proportions related to available data per
vulnerability types (instead of immediate averages).

Also, code obfuscation is not considered in this study. As it is more and more common for developers
to obfuscate their code because of security or malicious consideration. This could introduce some
impacts on our results. However, many of our analyses are naturally obfuscation immune (e.g., leak
analysis checks the data flows from sources to sinks, while sources and sinks are normally Android API
calls which cannot be obfuscated.). Therefore, the impact of code obfuscations should be limited.

Furthermore, the experimental results may be impacted by the validity of the results of the selected
vulnerability detection tools. Given that these are static analysis tools, it is known that they may
yield false positives. We attempt to mitigate this impact by performing a manual verification to some
of the randomly selected vulnerabilities yielded by the three analyzers. As discussed in Section [4.4.1
the naive verification process does not spot any clearly false positive results (i.e., the vulnerabilities are
at least in conformance with the definition of vulnerabilities as proposed in the tools documentation).
However, since the verification was implemented by 2 PhD students, their experiences could have a
direct impact on the verification result. Thus, lack of proof of the authenticity of the vulnerabilities is
the main threats to the validity of this study. Moreover, during the manual verification, vulnerabilities
of non-HTTPS links are not considered. The main reasons are: 1) they are quite straightforward to
be identified, and 2) these links can be changed over time and thereby are difficult to be verified (e.g.,
for an HTTP link, if an HTTPS page and redirect were added just before the verification, should we
consider it as a false positive?). The pervasiveness of such vulnerabilities also makes it hard to be
manually checked. But we still have to be aware of the possibility of the impact on the results.
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Figure 4.11: Trends Comparison between the Original Dataset (imbalanced) and the Common Sampled
Dataset (balanced).

Finally, due to constraints such as time budgets and computation resources, the results yielded by
the three selected static analyzers are for a different number of apps. Since the results obtained by
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the static analyzers are not always from the same samples, different vulnerabilities could be collected
from different datasets. Therefore, our empirical observations could have been impacted by such
inconsistent datasets. However, as we have not attempted to compare the results between different
static analyzers, we believe that such an impact should be negligible Nevertheless, to empirically
demonstrate this, we go one step deeper to revisit the aforementioned studies with a common corpus.
Specifically, we conduct our revisit study on 356 app lineages, which correspond to 3984 APKs, having
all these apps successfully analyzed by the three tools. Our revisit study reveals that the empirical
findings observed from a common app lineage set are more or less similar to that of imbalanced
datasets. For example, regarding the evolving patterns of vulnerable apps, as illustrated in Figure 4.11
the results observed from the imbalanced dataset (above sub-figure) and the common corpus (bottom
sub-figure) more or less follow similar trends, indicating that the empirical results observed will
unlikely be impacted by the dataset chosen in this study.

4.5 Related Work

Our work is related to several contributions in the literature. In previous sections, we have discussed
the case of data leaks vulnerability in Android investigated by the authors of TaintDroid [I0§],
FlowDroid [55] and IccTA [56]. Other analyzers have been proposed based on static analysis [6}, 89 [T17],
dynamic analysis [TT8], 119, 120} 12T}, [122] or a combination of both [54] to find security issues in
apps. In view of the amount of literature that relates to our work, we focus on three main topics:

Android security studies Subsequent to the launch of Android, several comprehensive studies have
been proposed to sensitize on security issues plaguing the Android ecosystem. Enck et al. [109]
have provided the first major contribution to understanding Android application security in general
with all potential issues. However, compared to the dataset used in this study, the number of their
samples was limited. Felt et al. [3] have then focused on permission re-delegation attacks while Grace
et al. [5] focuses on capability leaks. They unveiled vulnerabilities related to permissions. While
this work studied different kind of vulnerabilities from the evolution aspect. Zhou et al. [37] have
later focused on manually dissecting malicious apps to characterize them and discuss their evolution.
The MalGenome dataset produced in this study has since been used as a reference dataset by the
community. We mainly focus on the vulnerabilities of Android. More recently, Li et al. [I6] have
performed a systematic study for understanding Android app piggybacking: they notably pointed
out libraries as a primary canal for hooking malicious code. Although piggybacking is different
from updating, as it is a tempering by other developers, there are some similar mechanisms and we
borrowed some ideas from their study.

Vulnerability studies Vulnerabilities, also known as security-sensitive bugs, have been extensively
studied in the literature [123] for different systems [124] 25| 126, 127, 128] and languages [80L
129| 130}, 131]. Camilo et [66] have recently investigated the Chromium project to check whether
bugs foreshadow vulnerabilities. Researchers have also proposed approaches to automatically patch
them [132, [133).

In the Android literature, several studies have already been performed: Bagheri et al. [134] have
recently analyzed the vulnerabilities of the permission system in Android OS; Huang et al. [135] have
studied so-called Stroke vulnerabilities in the Android OS which can be exploited for DoS attacks and
for inducing OS soft-reboot; Similarly Wang et al. [I36] have analyzed Android framework and found
6 until-then unknown vulnerabilities in three common services and 2 shipped apps, while Cao et al.
[137] focused on analyzing input validation mechanisms. Qian et al. [58] have developed a new static
analysis framework for vulnerability detection. Thomas et al. [76] have analyzed 102k+ apks to
study a CVE reported vulnerability on the JavaScript-to-Java interface of the WebView API. Jimenez
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et al. [138] have attempted to profile 32 CVE vulnerabilities by characterizing the OS components,
the issues, the complexity of the associated patches, etc. Linares-Vasquez et al. [I39] have then
presented a larger-scale empirical study on Android OS-related vulnerabilities. OS vulnerabilities
have also been investigated by Thomas et al. [140] to assess the lifetime of vulnerabilities on devices
even after OS updates are provided. Closely related to our work is the study by Watanabe et al.
[103] where authors investigated the location of vulnerabilities in mobile apps. Our work extends and
scales their study to a significantly larger dataset. Finally, Mitra and Ranganath recently proposed
the Ghera [I41] repository with a benchmark containing artifacts on 25 vulnerabilities. Our work is
complementary to theirs as we systematically collect thousands of pieces of code related to a few
vulnerabilities, from which researchers can extract patterns, and help validate detection approaches.

Table 4.4: Related Works in Vulnerability Study

‘Work

APK #

Type #

Detail

Year

Fahl et al. [52]

13,500

1

Studied only SSL security vul-
nerabilities

2012

Jiang et al. [53]

62,519

2 vuls stem from content
provider components which
are called passive content leaks
and content pollutions

2013

Sounthiraraj
al. [54]

et

23,418

Studied SSL security by using
both static and dynamic anal-
ysis

2014

Watanabe et al.

[103]

30,000

3 vuls of information disclo-
sure, 6 vuls of SSL security, 5

2017

vuls of inter-component com-
munication and 4 vuls of web-
view

Studied 3 wvuls of informa-
tion disclosure, 3 vuls of inse-
cure network communication,
2 vuls of cryptography, 2 vuls
related to intent spoofing and
debuggability and 1 vuls of bi-
nary protection and did and
evolutionary study based on 1
update comparison.

Taylor et al. [10] | 30,000 5 2017

Table [4.4] lists the works which are similar to this study. It is noteworthy that the number of APKs
considered in these reported studies is much less (by an order of magnitude) than the number of
APKs considered in this study. Moreover, most of the studies focused on one specific vulnerability
type. Although, the latest two works studied Android vulnerabilities more generally and the last
one even considered about app updates. None of them studied vulnerabilities from the aspect of app
lineages. Therefore, some evolution patterns of vulnerabilities can only be found in this study such as
vulnerability reappearing.

4.6 Summary

We have run computationally expensive vulnerability scanning experiments on app lineages providing
a view vulnerability evolution, which is so far the largest scale of this kind studies. Moreover, investi-
gating Android vulnerabilities from app lineage point of view is the major novelty of this study, which
allows us to yield several newly spotted findings: 1) most vulnerabilities can survival at less 3 updates;
2) part of third-party libraries are the major contributors of the most vulnerabilities; 3) vulnerability
reintroduction occurs for all kinds of vulnerabilities while Encryption-related vulnerabilities are the
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most reintroduced within all types of this study; and 4) some vulnerabilities may foreshadow malware.
In addition to new findings, this large scale study also confirms most of the conclusions from previous
studies with relatively small datasets. However, the result of this study also suggests that the recent
claim made by Watanabe et al. [103] that more code and libraries imply more vulnerabilities may
not be always true. Finally, 2 valuable artifacts produced by this study: 1) the complete dataset of
vulnerability scanning reports, 2) recorded vulnerable pieces of code, are shared.
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5 Negative Results on Mining Crypto-API
Usage Rules in Android Apps

A common vulnerability in Android apps is related to mishaps with cryptography and associated
failure to ensure confidentiality and authentication. Relevant APIs are indeed commonly misused by
developers. Therefore, having clear specifications about how crypto APIs should be used is essential
for both training developers during development and for systematizing checks to validate code in
production. Since such rules are not fully available in the documentation, there is a need to extract
them from code artefacts. We propose, in this dissertation, considering code changes associated with
API usages are a potential source for capturing API usage rules. While we see that mining API usage
rules from app updates is intuitively reasonable, the hypothesis needs to be confirmed. In this chapter,
we test this hypothesis by performing a large-scale investigation with the app lineage dataset. Although
we produce a negative result, we elaborate our analysis with insight and make available the artefact of
the study.

This chapter is based on the work published in the following research paper:

e J. Gao, P. Kong, L. Li, T. F. Bissyandé, and J. Klein. Negative results on mining crypto-api
usage rules in android apps. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), pages 388-398, 2019
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5 Negative Results on Mining Crypto-API Usage Rules in Android Apps

5.1 Overview

Although software systems have greatly impacted the efficiency of transactions and communications
in our digital world, the security and privacy issues that they carry have been raising concerns among
all stakeholders. In this context, the software development community is now urged to implement
means to protect user assets, most notably by using cryptography for ensuring confidentiality of
data and transactions, as well as the authenticity of information. Unfortunately, several recent
studies [143] [144], [T45] have revealed that developers often make mistakes when using cryptography
APIs (hereafter, crypto-APIs is used for short), even those APIs implemented in widely used libraries
such as the Java Cryptography Architecture (JCA). These misuses, which may lead to security
mishaps [1406, [I47], actually carry an illusion of safety for users and developers. Consequently, the
research community has started a new effort towards improving the analysis and fix of crypto-APIs
usage [148], [149].

To properly use crypto-APIs, developers must learn the API usage rules. Similarly, to validate code,
the research and practice communities must build tools for checking API calls against a database of
the associated API usage rules. To the best of our knowledge, there are three strategies commonly
adopted in the literature for the inference of general API usage rules:

e manual specification: Recent literature on static analysis for verifying crypto-API usages propose
approaches that are based on manually-written specifications [148 [150]. Although such approaches
offer a high degree of reliability, they may require extensive security expertise, and do not scale to
the sheer number of cryptography libraries (and their associated recurrent API updates).

e majority contest of usage patterns: A trivial approach for systematically finding and updating
API protocols is to mine usage patterns in a representative dataset of developer code [I51], 152].
Most recurrent patterns are considered as the correct protocol. Such approaches have been shown
effective in operating system code [I53| where the majority of developers have a significant level of
expertise [154, [155]. In the Android community, however, most developers are novice and their
usages of crypto-APIs are generally incorrect [156].

e commit log mining: Recently, Paletov et al. [I49] have proposed to mine commit messages from
software version tracking systems to identify fixes of API usages and infer the “correct” usages based
on static code analysis. Theoretically, this strategy is reliable (in contrast to simple popularity
voting of usage patterns). In practice, however, developers often make uninformed updates, and it
is now accepted that commit messages are often less informative than what researchers expect [I57].

This study. Our work is set in the context of the Android development community where millions
of apps are built and regularly updated on markets. Our objective is to present and investigate the
suitability of an approach to infer crypto-API usage rules based on developer updates. Although
most of Android apps are not associated with public source code management systems, their different
apk releases can be readily reverse-engineered into intermediate representations (e.g., smali or Jimple)
by using frameworks such as Apktool and Soot [I58]. These representations can then be statically
analyzed in a straightforward way for extracting usage instances, and comparing usages across updates.
Our approach will leverage the AndroZoo [15] dataset where successive apk releases are continuously
crawled for the research community.

Our main assumption for inferring crypto-API usage rules by mining code updates is that “API
usage updates generally transform incorrect usages into correct usages”. Although this
assumption is intuitively reasonable, our investigations have yielded contradictory results. We thus
report on the negative results of mining crypto-API usage rules by mining Android app updates.
We focus in this study on the widespread JCA APIs used in 598,875 apk releases associated with
39,213 lineages of real world Android apps.
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5.2 Background

5.2 Background

We now provide details on the crypto-APIs studied in this work as well as the tool chain leveraged
for statically checking API usages (i.e., to build the ground truth for the study).

5.2.1 Crypto-APIs

Cryptography is the science that yields algorithms for hiding information from third-parties. En-
cryption and decryption mechanisms are used to support authentication as well as to guarantee the
confidentiality of transactions and information integrity. In software development, crypto-APIs are
provided as part of programming toolkits to accelerate the inclusion of cryptography functionalities
in developer code. For example, in the Java realm, the Java Cryptography Architecture (JCA)
APIs, which are officially provided by Oracle [159], are widely used by developers. Given that most
Android apps are built in Java, the use of JCA APIs is also widespread in the Android community.
Although some alternate crypto-APIs, such as Apache Commons Crypto [I60] APIs, do exist, they
are substantially less widespread. Therefore, our work is focused on JCA to investigate the potential
API misuses among real-world apps.

Table enumerates the 23 API classes implemented in the JCA library, where each class was
designed to address a specific cryptography functionality: for example, the MessageDigest class
includes algorithm implementations for computing the digest of some information (e.g., text message)
which can be used to check its integrity after transmission.

Table 5.1: Java Cryptography Architecture (JCA) APIs.
API Class: Description

java.security.AlgorithmParameters: maintainer for security parameters for specific algo-
rithms

javax.crypto.Cipher: provide encryption and decryption functionality

javax.crypto.spec. DHGenParameterSpec: parameters for generating Diffie-Hellman pa-
rameters for DH key agreement

javax.crypto.spec. DHParameterSpec: parameters used for DH algorithm
java.security.spec. DSAGenParameterSpec: parameters for DSA parameter generation
java.security.spec. DSAParameterSpec: parameters used for DSA algorithm
javax.crypto.spec. GCMParameterSpec: parameters for cipher using Galois/Counter
Mode

javax.xml.crypto.dsig.spec. HM ACParameterSpec: parameters for the XML signature
HMAC algorithm

javax.crypto.spec.IvParameterSpec: Initialization Vector for block cipher
javax.crypto.KeyGenerator: generate keys for encryption-decryption
java.security.KeyPair: holder of a publicprivate key pair
java.security.KeyPairGenerator: create publicprivate key pairs

java.security.KeyStore: a memory storage to maintain keys and certificates for later usage
javax.crypto.Mac: Message Authentication Code for message integrity protection
java.security.MessageDigest: a one-way hash for messages

javax.crypto.spec. PBEKeySpec: specification of a Password Based Encryption key
javax.crypto.spec. PBEParameterSpec : parameters for password based encryption
java.security.spec. RSAKeyGenParameterSpec: parameters for RSA key pair generation
javax.crypto.SecretKey: a symmetric secret key

javax.crypto.SecretKeyFactory: convert key into key specification and vice-versa
javax.crypto.spec.SecretKeySpec: specification of a symmetric secret key
java.security.SecureRandom: generate secured pseudo-random numbers
java.security.Signature: digital signature
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Implementation-wise, to perform a cryptography-related task, an object associated with the relevant
JCA class must first be instantiated. Subsequently, a sequence of the object methods is invoked in
a specific order of steps. Listing [5.1] shows a usage example of API PBEKeySpec retrieved from a
human resource management app named com.successfactors.android. The code snippet is written in
Jimple, the intermediate representation of Soot, which we leveraged in this work to reverse engineering
Android apps.

First, the password (i.e., $r3) and salt (i.e., $r0) parameters of the constructor of PBEKeySpec are
initialized with the passed-in arguments (lines 7-10). Then, an object of PBEKeySpec is constructed
with the password and salt (lines 11-12). There are 2 extra constants of type int used when instantiating
the object (line 12): the first one, (1000 in this example), is used to specified the iteration number,
the second one (i.e., 256) is used to specify the key length. The PBEKeySpec object is used to
further generate a SecretKey object (line 13-14). After using the PBEKeySpec object, for security
consideration, the password is cleared from the memory (line 15). The rest part of the example is to
create a SecretKeySpec by using the previously generated objects and return it for other utilizations.

l|private static javax.crypto.spec.SecretKeySpec deriveEncryptrionKey(char[],
byte [1)

2 {

3 javax.crypto.spec.PBEKeySpec $r2;

4 javax.crypto.SecretKeyFactory $r5;

5 javax.crypto.SecretKey $r6;

6 javax.crypto.spec.SecretKeySpec $r7;

7 byte[] $r0;

8 char [] $r3;

9 $r0 := @parameterl: bytel[];

10 $r3 := @parameterO: char[];

11 $r2 = new javax.crypto.spec.PBEKeySpec;

12 specialinvoke $r2.<javax.crypto.spec.PBEKeySpec: void
<init>(char[],bytel[]l,int,int)>($r3, $r0, 1000, 256);

13 $r5 = <com.sybase.persistence.SharedDataVault:
javax.crypto.SecretKeyFactory secretKeyFactory>;

14 $r6 = virtualinvoke $r5.<javax.crypto.SecretKeyFactory:
javax.crypto.SecretKey generateSecret(java.security.spec.KeySpec)>($r2);

15 virtualinvoke $r2.<javax.crypto.spec.PBEKeySpec: void clearPassword()>();

16 $r7 = new javax.crypto.spec.SecretKeySpec;

17 $r0 = interfaceinvoke $r6.<javax.crypto.SecretKey: byte[]l getEncoded()>();

18 specialinvoke $r7.<javax.crypto.spec.SecretKeySpec: void
<init>(byte[], java.lang.String) >($r0, "AES");

19 return $r7;

20 }

Listing 5.1: JCA API Usage Example (Jimple code representation)

In this example, there are several code locations where developers can make mistakes that would lead
to misuses of the PBEKeySpec API:

o (line 9) - Security strength of a password is heightened when salt is properly generated in a random
way. In practice, however, developers commonly hard code their salt value. In the example code,
salt is specified as parameter of method deriveEncryptrionKey (line 1) and then stored in $r0. So,
a misuse could happen if a constant is passed to deriveEncryptrionKey in the second parameter.

o (line 10) - Often, developers use a String object to hold the password and then use toCharArray()
to convert to the required type (i.e., char/]) when necessary. However, the intention of designing
PBEKeySpec constructor to only accept char/] instead of String is to avoid using String, since
String object is immutable, therefore, they cannot be destroyed or modified after instantiation until
garbage collection revokes the memory. Given that garbage collection occurs randomly and is out of
the control of developers, the password can survive in memory for a long time, increasing the risk
of being exploited by attacks.
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o (line 12) - Documentation of JCA recommends an iteration number above 1000. It is however
common to have cases where developers, with little expertise, assign a smaller iteration rate.

e (line 15) - Password information should be kept in memory only for the duration it is needed,
in order to minimize attack opportunities. Thus it should not be held in a String object and
must be cleared immediately after the use of the PBEKeySpec object. Developers unfortunately
often overlook the call to the clearPassword() of PBEKeySpec. In this example code, the method
clearPassword in line 15 is correctly called, so there is no misuse.

Findings in Java Class: com.umeng.common.util.h

ConstraintError violating CrySL rule for MessageDigest

1

2

3| in Method: java.lang.String a(java.lang.String)

4

5 First parameter (with value "MD5") should be any of {SHA-256, SHA-384,

SHA -512}

6 at statement: $r2 = staticinvoke <java.security.MessageDigest:
java.security.MessageDigest getInstance(java.lang.String)>("MD5")

7

8 TypestateError violating CrySL rule for MessageDigest

9 Unexpected call to method reset on object of type
java.security.MessageDigest. Expect a call to one of the following methods
digest ,update

10 at statement: virtualinvoke $r2.<java.security.MessageDigest: void
reset () >()

Listing 5.2: CogniCrypt SAST Report Example

5.2.2 Static API usage checker

We leverage DICIDER [I61], a static analyzer of the CogniCrypt [162] framework, for detecting JCA
API misuses in Java programs. This analyzer was selected as it has been extended to be compatible
with Android apps as well [161], a static analyzer of the [I63]. DICIDER checks JCA APIs against a set
of rules that were manually specified by security experts using CrySL [148] (CogniCrypt Specification
Language). We consider CrySL rules as a reliable and accurate oracle for deciding whether a JCA
API is misused or not. Concretely, given an Android apk, DICIDER identifies all instances of the 23
JCA API classes and checks the usage against the CrySL rules to generate a report on all detected
misuses. Listing [5.2] showcases an example of a report generated by DICIDER, where misuses are
hierarchically grouped by classes and methods. In this example, 2 misuses are found in method
java.lang.String of class com.umeng.common.util.h of app com.lovinc.radio:

e The first misuse, a ConstraintError of API Messagedigest, is reported in line 4, with details indicating
that argument “MD5” is not recommended when invoking API method getInstance(java.lang.String).

e The second misuse ( TypestateError error) also relates to the same API object $r2 and occurs in the
same method. It specifies that the misuse is caused by the fact that the MessageDigest object had
not been in the state to call method reset(), instead, method digest or update should be invoked
before.

As demonstrated by this example, a single JCA API usage instance can suffer from multiple misuse
errors. Table enumerates and provides brief explanations on 6 misuse types detected by DICIDER.
Actually DICIDER’s reports may include Imprecise ValueExtractionError notifications, which indicate
that DICIDER cannot obtain all the information for the analysis, and thus no clear conclusion can be
given. We do not discuss such cases in this study. Nevertheless, given that we must be able to assess
whether a misuse has actually been fixed in an app update, we must be able to enumerate all usage
locations. To that end, we have developed on top of Soot [I58] a dedicated tool for supporting the
extraction of JCA API usage instances.
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Table 5.2: CogniCrypt Misuse Types.

Type ‘ Explanation

Example

ConstraintError ‘ Unrecommended arguments are given.

e.g., MD5 as hashing algorithm.

RequiredPredicateError ‘ Arguments are not properly created.

e.g., constant values are used while values are required to be randomly generated.
TypestateError A JCA API object is not in the right state to invoke

a certain method
e.g., a method reset() of a MessageDigest object is invoked before passing any information into it via
calls to methods digest or update.

IncompleteOperationError ‘ Tasks are not completed using JCA API objects.
e.g., a MessageDigest object is instantiated by invoking the getInstance method, but no further
method invocation on this object is performed. The digest task will therefore not be achieved.

ForbiddenMethodError ‘ Unrecommended API methods are invoked.

e.g., PBEKeySpec(char(] password) is one of the constructor of JCA APTI PBEKeySpec for deriving
cryptographic keys from a given password. Since a key generated without salt has been proven to be
weak, this constructor should be used in specific scenarios.

NeverTypeOfError Certain types are forbidden when storing sensitive
information.
e.g., password value for PBEKeySpec should never be store as type String, but charf]. Since object
String is immutable in Java, password information in this type cannot be explicitly freed from memory.
The garbage collector is in charging of deleting it, yet it is unpredictable from a user standpoint,
opening opportunities for password leakage.

Finally, we have implemented a crawler for collecting on Google Play some metadata (e.g., category,
rate, etc.) associated to AndroZoo apks. These metadata are leveraged in criteria for comprehensively
dividing the dataset into relevant subsets for further investigations.

5.3 Scope of the Study

In this section, we state the study problem along with the research questions that we intend to
investigate, and describe the data preparation for the study.

5.3.1 Problem Statement and Research Hypothesis

Given a crypto-API usage location, it is possible, with security expertise, to assess whether there is a
misuse or not. Manual specification of usage rules however is tedious to collect over a large set of
APIs. Previous studies have also shown that using a majority voting on usage patterns to conclude on
the correctness of crypto-API usages will lead to poor results given that wrong usages are widespread
in Android apps. Our intuition however is that, as time goes by, developers of a given app learn to
fix API misuses. Thus, it should be possible, by analysing code updates in an app lineage (i.e., the
series of apk versions released for a given app), to infer crypto-API usage rules.

Our hypothesis is thus that: “updates in API usages across an app lineage will tend to fix misuses”.
Consequently, if an extensively large set of app lineages can be collected in the wild, it would be
possible to retrieve a substantially large and diverse set of crypto-API usage fixes. Then, by assessing
recurring patterns, we could infer API usage rules.

This work is about empirically assessing the validity of our hypothesis for the case of the JCA APIs
within Android apps.
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5.3.2 Research Questions

The empirical study mainly aims at (re)investigating the following questions:

1. To what extent do Android developers misuse crypto-APIs? The literature claims, often based on
few example apps, that developers regularly make mistakes in using crypto-APIs. We attempt to
provide a thorough picture of the state of crypto-API usages across a representative dataset of
real-world Android apps.

2. Are crypto-API usage updates fixing misuses? Investigating actual API usages with an oracle,
based on security expert manual specifications, will eventually help to conclude on the validity of
our research hypothesis. We ensure in this study, that the cases of specific app categories (e.g.,
high rating apps, financially sensitive apps, etc.) are also analysed in comparison with the general
trends.

3. What are the impacts caused by API usage updates? This question investigates how crypto-API
usages get updated, in an attempt to derive explanations on the statistical results obtained in the
previous question. Concretely, we study the proportions of updates that either successfully fix
misuses, or (re)introduce mistakes in correct usages, or that fail to fix misuses.

5.3.3 Misuse detection

We assess crypto-API misuses based on the reports of the CogniCryptsast static checker. This tool,
which implements analysis based on expert manual specifications of API usage rules, is used to collect
the oracle to support our empirical assessment. Analyses are performed on a High-Performance
Computing (HPC) platform [I64]. Overall, we leveraged 142 HPC instances, each utilizing 24GB of
memory, to successfully parse all 745 thousands apks in 5 days.

5.3.4 Dataset Curation

We took steps to remove from our study all irrelevant cases of apks or misuses reported by
CogniCryptsasr-

e Apk releases with no JCA API usages are excluded from our study. Thus, 18% of our initial
dataset is left out.

e Apk releases on which CogniCryptsast fails to generate a final report are also dropped from
the study. Such cases often occur when the process runs out of memory. While the recommended
memory size for CogniCryptsast is 8GB, we allocate 24GB in our experiments. Nevertheless,
a few apk analyses are not able to be completed.

e Obfuscated apk releases are left out from the study. Since developers recurrently rely on
obfuscation techniques to prevent reverse engineering of their apps, static checkers such as
CogniCryptsast are challenged in their analyses: CogniCryptsasr reports ’?7’ for erratic
character series that appear as class names. Given that our study of API misuses leverages class
names as the basic unit for localisation, such unidentified class names constitute noise. Thus,
after analysis, when the generated report contains any unlocalised class name, the corresponding
apk is dropped.

Eventually, 146,226 apks are excluded from the dataset of apks. Table [5.3summarizes some statistical
details about our dataset. An apk is removed when the one of the situations above occurs. However,
an app lineage is only removed when all its app versions are excluded.

le.g., an app lineage of 10 app versions, 5 app versions could be removed because of tool failure while the rest could
be caused by obfuscation
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Table 5.3: Number of APKs and lineages in the Dataset

# lineages | # APKs
initial dataset 43 365 745101
remove because JCA API is not used -3882 -135752
remove due to CogniCrypt failures -108 -9374
remove because of obfuscation -7 -1100
remove due to combination of the 3 condition -155
final dataset 39213 598 875

Fig. shows the distribution of the dex size of apks for the initial and the final dataset. Our
statistical tests indicate no difference between the two distributions, implying that our final dataset
is still representative of the initial dataset (at least w.r.t app sizes).
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Figure 5.1: Distribution of Dex Size before-after dataset curation

Metadata Collection. Some of our investigations require up-to-data metadata (e.g., category,
rating, number of installs) from markets. Because GooglePlay implements location restrictions (only
apps targeting a country’s users are made visible in that country), we were able to collect metadata
for around 60% of the lineages.

5.4 Methodology of the Study

We carry experiments to assess the hypothesis behind relying on usage updates to mine crypto-API
usage rules. We explore usage updates:

e with an analysis of pairwise comparisons among apks successive releases within the lineages in
our dataset;

e with an overall lineage-wise study of the recurrence of misuses in an app across its entire lineage.

We further investigated updates for selected subsets of apps to confront the general trends against
specific cases for popular apps, or sensitive apps.

5.4.1 Pairwise comparisons of apks from the same lineage

Given an app lineage [;, its associated apk releases are combined into pairs (apk;_1,apk;), where
1 < j < n, for the purpose of checking differences between misuses in apk; and apk;_;. The
comparison takes into account only usage instances that are found at the same code location in both
apps and that are relevant to the same API In this study, a code location (lo) is represented by both
the class and method in which the API usage is found. We consider the following cases which may
occur:

o misuse fizing (MF) update: the CogniCryptsasr analysis flags an issue with a usage in apk;_1
but not with the usage at the same location in apk;. We conclude that the misuse has been
fixed by the update.
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o misuse introducing (MI) update: the CogniCryptsast analysis flags an issue with a usage in
apk; but not with the usage at the same location in apk;_;. In contrast to a MF update, such
an update introduces misuses.

e misuse fizing and introducing (MFI) update: the CogniCryptsasr analysis flags an issue with
a usage at a given location in both apk; and apk;_1, but the misuses are different. This suggests
that developers corrected the previous misuse during the update, but somehow made another
mistake.

e none update: the CogniCryptsasr analysis flags the same issue with a usage in apk;_, and
apk; at the same location. We conclude that the developers did not notice the issure during
app updates.

To distinguish among different usages of the same API at the same location, one should take into
account variables names associated to instantiated objects from API classes. In practice, however,
the reverse-engineering of apks assigns random names to variables, making these names differ across
the pair of apps. We use simple heuristics to match relevant pair of usage instances and iteratively
start with identifying none update cases, then MFI updates, before MF updates and MI updates.

MI update and MFI update constitute two cases of mis-updates, as they result in API misuses in the
most recent version of the app.

5.4.2 Investigations of updates across lineages

We investigate the overall evolution of a given app w.r.t. its misuses of crypto-APIs. We then study
the trends of usage issues in app lineages. To that end, first, for each app version apk; in an app
lineage I;, we compute a misuse ratio r; defined in equation

m;j < total _number_API misuses(apk;)

uj < total _number_API _usages(apk;) (5.1)
ry = %
We consider the ordered ratio list R; of app lineage l; as R; := {r1,r2, -+ ,7n}, a list of misuse ratio

of all apk releases included in [; with r; being the misuse ratio of the first apk of [;, ro the misuse
ratio of the second apk, etc. We then compute the slope s; = linear _regress(R;) of the regressed
between all points of R;. In this study, s; is used to characterize the misuse trend: a negative s;
indicates that lineage [; is evolving towards a better usage of crypto-APIs, while a positive s; suggests
that the usage of crypto-APIs is worsening with app updates. A null s; indicates a status quo. The
bigger the value of |s;|, the faster the evolution in a lineage.

5.5 Study Results

We now provide experimental results obtained while investigating the research questions enumerated
in Section [5.3:2] In particular, we show statistics on crypto-API misuses in the wild, summarize the
success rates in API misuse updates between apk releases, reveal the evolution of misuses across
lineages, and eventually discuss the difference between the whole dataset and selected categories of

apps.
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Figure 5.2: Distribution of JCA API usages in the study dataset

5.5.1 RQ1: Crypto-API misuses in Android apps

Crypto-APIs are widely used in Android apps. Statistics presented earlier (Table indicated that
over 80% (or 598 thousands apks) of the app versions in our sample dataset of 745 thousands apks
include code with JCA API usages. Fig. further shows the distribution of JCA API usages in our
dataset of 598k apks. The usage statistics are collected from the analysis reports of CogniCryptsast.
On median average, 10 JCA API usage instances can be identified per app, while 75% of apks include
at least 5 usage instances.

Table 5.4: Statistics on API Misuses in the dataset apks

Types Numbers | Related Information

Percentage of APKs with mis- | 96% number of APKs without misuses is

use 24,880

Percentage of app lineages | 97.6% number of lineages without misuses is

with misuse 942

misuse to usage ratio 1:5.53 total number of APT usages is 23,281,216
and misuses is 4,210,667

Table summarizes the statistics on API misuses among the apks that include JCA API usages.
96% of apks include misuses, and 97.6% of lineages include at least an apk version with a misuse. On
average 1 misuse is found among 6 usages of JCA APIs.

—1 N |

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
# of misuse per APK

(a) Distribution of # of Misuse per APK

125000 1

100000 A

750001

# of APK

50000 1

250001

0

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
Ratio per APK

(b) Distribution of Misuse to Usage Ratio per APK

Figure 5.3: API Misuse Distribution

We detail the misuse spread in Fig. [5.3] As shown by the misuse distributions in apks represented in
Fig. a given apk contains commonly between 2 to 9 misuse cases. On median average, 4 misuses
can be found per app. We further show in Fig. the distribution of the ratio (as defined in Eq.1)
between misuses and usages within apks. Interestingly, there are cases with the ratio is bigger than 1,

66



5.5 Study Results

i.e., there are more misuse instances than usages. This suggests that developers can make several
mistakes when using a single crypto-APIL.

MessageDigest
Cipher
Signature
SecretKeySpec
IvParameterSpec
PBEKeySpec
Mac
KeyGenerator
PBEParameterSpec
KeyStore
SecureRandom
KeyPairGenerator
SecretKeyFactory
AlgorithmParameters
GCMParameterSpec
KeyPair . . . . . . .
0% 10% 20% 30% 40% 50% 60%

Percentage

¥290¥9¢

Figure 5.4: Misuse Ranking based on JCA APIs

The preponderance of the different APIs to be affected by misuses is detailed in Fig. Over 60% of
apks include instances of the MessageDigest crypto-API with a misuse. This is due to the widespread
issue of using weak hashing algorithms. While the percentage for Cipher, the API in the second
place, is around 21% for which the main misuse is incompleted operation indicating that some further
method calls (e.g., update, doFinal) are expected but never achieved.

Table 5.5: Ranking of Misuses
Ranking by Types

Type % Misuse #
ConstraintError 60.93% 2,565,892
RequiredPredicateError 14.63% 615,921
TypestateError 12.27% 516,758
IncompleteOperationError 11.64% 490,157
ForbiddenMethodError 0.51% 21,565
NeverTypeOfError <0.01% 374
Top 10 by API Methods

API Method \ % \ Misuse #
MessageDigest.getInstance(java.lang.String) 48.43% | 2,039,428
Cipher.getInstance(java.lang.String) 8.80% 370,354
MessageDigest.reset|() 8.06% 339,305
SecretKeySpec.<init>(byte[|,java.lang.String) | 3.79% 159,594
MessageDigest.digest() 3.78% 159,205
Cipher.init(int,java.security.Key, .... E| 2.95% 124,274
IvParameterSpec. <init>(byte||) E| 2.92% 122,749
Cipher.init(int,java.security.Key) 2.50% 105,208
Signature.getInstance(java.lang.String) 1.99% 83,704
Signature.init Verify (java.security. PublicKey) 1.80% 75,705

2init(int,java.security.Key,java.security.spec. Algorithm ParameterSpec)
3Note: method <init> is the constructor of the class while method init is a common method of the class
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Table further provides statistical details on the types of errors that are raised by CogniCryptsasrt
as well as on the top API methods that are concerned by misuses. Method getInstance(java.lang.String)
of crypto-API MessageDigest takes as argument a String specifying the hashing algorithm. This
algorithm must offer a strong protection and thus should be one of the recommended algorithms
(e.g., SHA-256, SHA-384 and SHA-512). When weak algorithms are used (e.g., MD5 or SHA-1), it
represents a ConstraintError which makes the app exposed to attacks.
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Figure 5.5: Misuse Ratio Distribution based on APIs

Nevertheless, we find that although MessageDigest is the API with the overall highest number misuses,
it is not the most misuse-prone API. Crypto-API PBEKeySpec has a higher misuse ratio. Table [5.6]
ranks the JCA APIs based on such a ratio. We provide details of misuse ratio distributions for
each API in Fig.[5.5] The median value of misuse ratio for most of APIs is 0. For these APIs, only
ITvParameterSpec, KeyGenerator and SecretKeySpec are showing clear boxes and whisker lines while
the rests only show outliers (which is not shown in the figure for clearity reason). This suggests that
mistakes are quite rare for such APIs. In contrast, 5 APIs show relatively high misuse ratios. Based
on their median values, PBEParameterSpec is the most error-prone (0.67), followed by PBEKeySpec

(0.5), MessageDigest (0.24) and Cipher (0.9).

Table 5.6: JCA API Misuse to Usage Ratio Ranking. The misused apk % is calculated by number of
apks containing the misuse divided by number of apks containing the relevant API usage.

API Misuse Ratio Misused APK %
PBEKeySpec 0.462098 55.50%
MessageDigest 0.287114 93.02%
Cipher 0.271808 50.77%
PBEParameterSpec 0.251944 57.26%
Signature 0.204835 23.76%
KeyGenerator 0.171380 27.74%
IvParameterSpec 0.102394 27.58%
SecretKeySpec 0.070372 27.81%
Mac 0.067249 3.05%
KeyStore 0.028322 9.12%
GCMParameterSpec 0.008141 0.79%
KeyPairGenerator 0.005865 0.60%
SecretKeyFactory 0.003974 0.35%
AlgorithmParameters 0.003307 3.46%
SecureRandom 0.003244 0.94%
KeyPair 0.000019 0.01%

We further investigated PBEKeySpec and PBEParameterSpec as they stand out in terms of misuse
ratio distributions. For PBEKeySpec, we found that the main misuse type is IncompleteOperationError
which is mainly caused by missing of calling method clearPassword() to clear the password from the

68



5.5 Study Results

memory. PBEParameterSpec misuses only occur with type ConstraintError(80%) or RequiredPred-
icateError (20%). ConstraintError generally refers to the small iteration numbers as discussed in

Listing [5.1]

Three JCA APIs (namely, SecretKey, HMACParameterSpec and DSAGenParameterSpec) are missing
from the API usage list of our dataset. Four other APIs (namely DHGenParameterSpec, DHPa-
rameterSpec, DSAParameterSpec, and RSAKeyGenParameterSpec) although they have usage cases
in our dataset, no misuses have been reported for them. Further investigations suggest that these
four APIs are actually seldom used, and their usage rules are in any case straightforward. Indeed,
except DHParameterSpce, these APIs are ranked at the bottom of the API usage ranked list. Their
usage rules are only about the invocation of constructors with a number of constraints. Although
other APIs, such as GCMParameterSpec and KeyPair, having similar simple rules, can be found
with misuse cases, the occurrences are very low. In conclusion, these findings suggest that, since
developers cannot avoid using crypto-APIs, simplifying the usage rules during API design could be
an effective way to avoid misuses.

The JCA APIs for implementing cryptography are widely misused across Android apps. Usage
mistakes range from issues with parameter initialisation to mishaps with the sequence of API
method invocations. Nevertheless, all crypto-APIs are not similarly affected by misuse cases.

5.5.2 RQ2: Impact of crypto-API usage updates on misuse cases

From our dataset of 39,213 lineages accounting for about 598K apks, we collected 559,662 apk pairs
(apkj_1,apk;), where apk; is the updated version of apk;_,. From these apk pairs, we were able to
extract 3,291,723 crypto-API usage pairs that fall into the four categories defined in Subsection [5.4.1
MF update, MI update, MFI update, and none update. Among 559,662 apk pairs, around 75% (or
410,587) of them fall into the none update category. This situation is even worse if we count the none
update rate at the crypto-API uasge pair level, over 95% of the 3,291,723 misuses are not touched by
app developers during the evolution of Android apps. This finding suggests that app developers are
unlikely to update crypto-API usages when updating their apps or may not be even aware of the
misuses in their app code.

For the remaining 162970 crypto-API usage pairs involved with developer updates (e.g., not in the
none update category), surprisingly, only 76,341 of them (less than 47%) have successfully fixed
the misuse issues (i.e., falling into the MF update category). Over half of the crypto-API updating
attempts fall into either MI update category (e.g., 72,143, around 44%) or MFI update category
(e.g., 14,486, around 9%). At the apk level, the MF, MI, and MFI attempts are 53,030, 50,183, and
4,483, respectively, resulting in still over 50% of mis-update rate. This surprising result indicates
that even in the cases that app developers are aware of crypto-API misuse and are attempting to fix
such misuses, most of them do not have the right knowledge to properly fix the misuse issues. As
a result, our previous assumption on mining crypto-API usage rules from the evolution of Android
apps cannot be easily realised in practice.

Because the overall dataset leveraged, although very big, is collected from various sources, we
hypothesise that the selected datasets (or app lineages) contain a broad set of apps with varying
quality. Consequently, the large mis-update rate might be impacted directly by the selection of poor
quality apps. If we focus our experiments on high-quality apps only, we might be able to observe
clear trends that app developers are recurrently and successfully fix crypto-API misuse issues. To
this end, we resort to two specific subsets to reconduct our empirical experiments.

e Reputed Apps. Updates of reputed apps are selected only within lineages where the app has
high rates (i.e., > 4.5) and large installs (i.e., > 1000000). With this subset, we assess whether
widely used apps are similarly affected by crypto-APIs misuses.
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e Finance Apps. Updates of finance apps are focused on app lineages tagged in GooglePlay as

being for financial services. In this case, we again constrain this selection to apps with high
rates and large installs as the case of Reputed apps. Because finance apps are critical to security
issues, with this subset, we assess whether app developers of finance apps have special treatment
to crypto-API misuse.

Table 5.7: Misuse Update Statistics

MF MI MFI Mis-update

Rate

Overall APK level | 53,030 50,183 4,483 50.76%
Usage level | 76,341 72,143 14,486 53.16%

Reputed APK level 4,300 3,934 446 50.46%
Usage level | 5,809 5,204 1,862 54.88%

Finance APK level 179 153 30 50.55%
Usage level 232 192 195 62.52%

Table [5.7] summarises the experimental results we observed for the different sub-datasets. For
comparison purpose, we also present the Overall results representing the statistics computed for the
whole dataset of apks. Following the same strategy, we also provide data on the number of MF, MI
and MFI updates. The statistics are computed at the apk level (i.e., given a pair of successive apks
in a lineage, how many of these pairs contain at least one MFI update, at least one MF update, etc.)
and at the usage level (how many updates turned out to be a MF, a MFI case, etc., i.e., we count
the number of MF update, MFI update, etc.). Unfortunately, compared to the mis-update rates of
the Owerall set, the results observed on that of the selected subsets do not suggest any substantial
difference, only about 1 out of 2 updates will yield a correct fix for a crypto-API misuse.
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Figure 5.6: Distribution of Slopes (Misuse Trend)

Fig. [5.6] further illustrates the distribution of slopes (i.e., misuse trends as defined in Subsection
across the different subsets. We consider the evolution of misuse rate across each app lineage. When
the mis-update rate is stable across the lineage, the slope metric evaluates to 0. A negative slope
implies that the situation is getting better along the lineage: latest updates in the lineage are more
successful. In contrast, a positive slope suggests that the situation is getting worse along the lineage.

We observe that, for all three datasets, the distribution of trend slopes presents more or less a
symmetric pattern around a median value at 0. The fact that the distribution spans are relatively
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narrow further suggests that for most lineages, crypto-API usage updates are rather stable. In
the overall dataset, we can find 10,316 (26.31%) lineages with a negative trend of misuse update.
Nevertheless, the successful cases in recent updates are still not more numerous: the mis-update rate
amounts to 53.66% when we consider these lineages apps altogether.

Based on Table it is noteworthy that the MT update (i.e., where a mistake is made on a usage
that was previously correct) cases are the major contributors to the mis-update rate. There are often
as many MI updates as MF updates in each dataset. We further investigate the recurrence of misuses
across the different datasets and found 19,392, 1,332 and 65 recurrent misuse cases respectively in
the overall, reputed and finance datasets. Concretely, we consider a misuse to be recurrent when,
within an app lineage, an update has eliminated it (i.e., MF update), and then it has been later
introduced (i.e., MI update). Overall, we find that 25% of MI updates actually represent recurring
misuses, suggesting that the associated MF updates may have been unintentional (which made them
likely to be reintroduced).

Table details the misuse update results for the different APIs with their rankings. Even at the
level of each API, MF and MI updates appear to compensate each other. This can be observed
by the similar numbers of updates as well as their ranks across the API list, with APIs Cipher
and MessageDigest leading the statistics (consistently with the misuses preponderance shown in

Table [5.5).

Table 5.8: Misuse Update Ranking by APIs

API MF MI MFI
# Rank # Rank # Rank

Cipher 20,574 1 21,751 1 2,549 2
MessageDigest 17,668 2 20,451 2 1,283 3
IvParameterSpec 14,300 3 14,150 3 17 10
SecretKeySpec 14,085 4 14,126 4 71 7
KeyGenerator 3,372 5 3,465 5 65 8
Mac 878 6 860 6 9,382 1
Signature 504 7 516 7 864 4
KeyStore 278 8 268 9 153 5
PBEKeySpec 155 9 304 8 83 6
SecureRandom 131 10 180 11 0 12
PBEParameterSpec 123 11 212 10 0 12
AlgorithmParameters 47 12 22 12 2 11
KeyPairGenerator 14 13 20 13 0 12
GCMParameterSpec 13 14 13 14 0 12
SecretKeyFactory 1 15 3 15 17 10
KeyPair 16 0 16 0 12

Statistical data in Table show that none of these three update kinds happened with KeyPair
as shown in the last line of the table. This is likely due to its low misuse occurrences (i.e., 19
according to Table . Moreover, API SecureRandom, PBEParameterSpec, KeyPairGenerator and
GCMParameterSpec do not show any cases of MFI updates. Nevertheless, we still cannot learn from
their changes as they can either be MF or more like MT updates.

Android app developers are generally unaware of crypto-API misuses and hence will unlikely fix
such issues. Unexpectedly, usage updates are evenly distributed between successful fixes and failures.
The recurrence of misuses further imply that most of the successful updates may have not been
made intentionally.
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5.5.3 RQ3: Errors and methods impacted by misuse updates

We now investigate the types of errors that are concerned by MF, MI and MFI updates. Table
indicates that MF updates are dominated by misuses cases of type RequiredPredicateError (67%)
followed by ConstraintError (29%). Counsistently with the previous finding on recurrence of misuses,
we note that MI updates follow a similar pattern. We recall that both RequiredPredicate Error and
ConstraintError generally concern the initialization or the selection of proper arguments to API
methods.

Table 5.9: Misuse Update Ranking by Types
MF MI MFI

% Rank % Rank % Rank
RequiredPredicateError 66.78% 1 69.99% 1 3.86% 4

API

ConstraintError 29.10% 2 25.73% 2 7.08% 3
TypestateError 3.35% 3 3.38% 3 12.07% 2
IncompleteOperationError | 0.71% 4 0.84% 4 76.67% 1
NeverTypeOfError 0.05% 5 0.05% 5 0.05% 6
ForbiddenMethodError 0.02% 6 0.01% 6 0.27% 5

MFI updates show a different pattern, where IncompleteOperationError becomes the major misuse
type: in 77% of cases, the update does not properly fix the errors. TypeState misuses then account
for 12% of misuses that are difficult to fix. Both are about the sequence of API method invocations,
either about missing certain method calls or related to a wrong order of invocation. For example,
we note that in several cases, developers invoke the method doFinal immediately after getting an
object instance of the Mac API class. However, they are supposed to start with the invocation
of method init and, occasionally perform an update before calling doFinal: this leads to a misuse
of type TypestateError. During the updates, it appears that most developers are trying to fix the
problem by adding invocations of method update. Nevertheless, they generally still do not call
init which leaves the issue improperly addressed. More strangely, we noted that in many cases,
instead of further completing the fix, developers simply reverted back to the previous misuse version.
IncompleteOperationError is seen an opposite scenario: after generating the instance of Mac, method
doFinal is never called. Developers update the usage by adding method calls such as init or update
but never add doFinal call, which again leaves this issue unresolved.

Table 5.10: The Most Common MFI Update Methods

API Missing Method # % Explanation
From To
Mac | update init 4,182  28.87%
ac gf) a;lo;'inal e | before update, init was call but missing method
call of update or doFinal. However, update even
removed method call of init.
. — - &
Mac | init gf d;;;inal 3,971 27.41% expected method call of init was added during up-
date but still require further method call of update
or doFinal which is missing.

From the perspective of crypto-API methods, Table [5.11] exhibits details about the top API method
invocations which are involved in MF or MI updates. Note that the top 9 methods for the two kinds
of updates are exactly the same. The last two lines of the table are the 10th methods for the two
update kinds. As the most commonly misused method (cf., Table , getInstance of MessageDigest
is also the most often updated method for fixing but also for introducing misuses. The recurrent
misuse with this method is about the parameter specifying the hashing algorithm. Weak algorithms
such as SHA1 and MDJ5 or sometimes even wrong values, like SHA, are used.

Finally, MFI updates are generally related to IncompleteOperationError and TypestateError types,
which are all caused by incorrect API method invocation sequences. Due to space limitation, Table
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only shows a couple of example cases of how MFI updates occur. These examples show that misuses
can be bounced back and forth when API usages require several steps in the invocation sequence.

Table 5.11: Top 10 MF & MI Update Methods

MF MI
API Method # % Rank # % Rank
MessageDigest.getInstance(java.lang.String) [ 19,183 25.13% 1] 16,331 22.64% 1
Reason: parameter with value: MD5, SHA1, SHA
IvParameterSpec. <init>(byte|]) [ 14,070 1843% 2 [ 14,234 19.73% 2
Reason: parameter is not randomized
SecretKeySpec.<init>(byte[] java. lang.String) | 13,681 17.92% 3 | 13,636 18.90% 3
Reason: first parameter is not randomized
Cipher.init(int,java.security.Key, 12,207  15.99% 4 | 12,097 16.77% 4
java.security.spec. AlgorithmParameterSpec)
Reason: second parameter is not properly generated
Cipher.init(int,java.security. Key) | 6559 859% 6 6274 870% 5
Reason: second parameter is not properly generated
KeyGenerator.init(int,java.security. SecureRan- | 3,363  4.41% 6| 3,285 4.55% 6
dom)
Reason: second parameter is not properly randomized (e.g., fixed seed)
Cipher.getInstance(java.lang.String) | 2,553  3.34% 7] 1,888 2.62% 7

Reason: parameter with not recommended algorithm (e.g., DES), unappropriated combination of
algorithm and feedback mode (e.g., AES/EBC) or with without padding scheme

MessageDigest.reset() [ 604 0.79% 8] 630 0.87% 8
Reason: missing method call of digest or update
SecretKeySpec.<init>(bytel],int,int, 445  0.58% 9| 449  0.62% 9

java.lang.String)

Reason: first parameter is not randomized

Mac.doFinal() | 366 0.48% 10 |
Reason: expected to call method init before.

Signature.initSign(java.security. PrivateKey) ‘ ‘ 391 0.54% 10
Reason: private key (first parameter) is not properly generated

Misuses caused by missing steps when using crypto-APls appear to be difficult to fiz. In turn this
difficulty is manifested by recurrent failures in API usage updates.

5.5.4 Discussion

Initially, we planned to build on the assumption that app developers are likely to fix crypto-API
misuse issues during app evolution. Hence, by mining lineages of a large set of Android apps, one can
summarise the crypto-API usage rules. Unfortunately, and also surprisingly, our investigations reveal
that :

e crypto-API misues are very common in Android apps.
e app developers are not likely to fix misuses when they update app code.

e For the cases where developers try to fix such misuses, they are often not able to make correct
fixes.

e some misuses are recurrently fixed and reintroduced, implying that most of the successful
updates might not be performed intentionally to fix the relevant misuses.

e some APIs are more impacted by misuses than others. Misuse updates are however likely to
fail as much as to succeed.
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We showed that even reputable or sensitive apps are substantially suffering from crypto-API misuses,
suggesting that our community is still lacking reliable means to address this problem. Therefore,
immediate actions are needed. From app developer side, the recurrence of misuses suggests a need
to provide better developer education on how to correctly use crypto-APIs. Similarly, crypto-API
providers also need to find better ways to design crypto-APIs to reduce the error margins. Finally,
app markets must pay special attention to such apps with misused crypto-APIs, which will create a
momentum of developers addressing them seriously.

More concretely, developers should pay extra attention when using MessageDigest, PBEKeySpec and
Mac, as they are the widest misused, most misuse-prone and most difficult to be corrected APIs
respectively. Choosing algorithms like SHA-256 instead of SHA-1 or M D5 can quickly avoid most
of the misuses in MessageDigest. While generating salt randomly and remembering to call method
clearPassword() at the end can make usage of PBEKeySpec safe and sound. Finally, the key to use
Mac correctly is the order of method invocations. Methods getInstances and init should be always
used in the first 2 steps. Method update could be invoked more than once afterwards. And doFinal
should always be called once at last.

5.6 Threats to Validity

For internal threats to validity, our results may be impacted by the dataset selected, which might not
be representative. We attempt to mitigate this impact by considering a large set of Android apps.
Furthermore, the app versions in a lineage are sequenced based on their version code, which however
may not be always true as the version code is configured by app developers. We did not however find
any false positives by sampling lineages.

Regarding external threats to validity, our results may be impacted by the false alarms of
CogniCryptsasT. We have actually benchmarked a set of apps to check the false positive rates of
CogniCryptsasT. Our manual verification confirms that CogniCryptsasr is effective. We have
only observed one case where CogniCrypts st may yield false positives, which is related to the
artificially created dummyMainMethod method (because Android apps do not have a single main()
like traditional Java code). We have reported this issue to the authors of CogniCryptsasr and
excluded such cases from consideration in this work.

Furthermore, negative result normally refers to a statistical null hypothesis is accepted or an approach
is not better than the baseline. While, in this work, we use this term to emphasise the difference
between the assumption and the surprising empirical results. Meanwhile, although we investigated
our assumption from serval different angles, we did not exhaust all possible ways. Therefore, there
are still chances for the assumption to be ture for certain elaborate sub-datasets.

Finally, we have only conducted our experiments on APIs and a few sub-datasets of apps. It might
be still possible to mine usage rules on other datasets or other crypto-APIs. More sophisticated
approaches may be successful for mining crypto-API usage patterns from the evolution of Android

apps.

5.7 Related Work

Crypto-APIs have become a major feature in modern programming languages for encrypting/de-
crypting sensitive messages, while the misuses of such APIs have also been extensively studied in our
community. In this section, we briefly discuss the representative ones.

Misuses of crypto-APIs. CryptoLint is a tool that performs lightweight syntactic analyses for
pinpointing violations of hard-coded crypto-API usage rules in Android apps [165]. Similar to
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CryptoLint, Crypto Misuse Analyzer (CMA) [166] is also based on hard-coded rules to flag misuses
of crypto-APIs. In this work, we leverage CogniCryptsasT to detect misuses of crypto-APIs in
Android apps. To the best of our knowledge, CogniCryptsast is so far the most advanced tool for
detecting misuses of crypto-APIs. Indeed, the rules hard-coded in CryptoLint and CMA are also
contained in the rules of CogniCryptsast. Therefore, the misuses of crypto-APIs leveraged in this
work should be representative and suitable for this study. Also, by manually exploring 49 Android
apps, Chatzikonstantinou et al. [I67] confirm that at least 88% of the studied apps have misused at
least one crypto-API. The ratio obtained in this work is even slightly higher, showing that misuses of
crypto-APIs are indeed very common in Android apps.

Mining Usage Patterns in Android Apps. Researchers have reported various pattern mining
approaches in the field of Android analyses. For example, Linares-Vasquez et al. [I68] have conducted
an empirical investigation to mine the energy-greedy API usage patterns in Android apps as well as
mine the app usages for generating actionable GUI-based execution scenarios [169]. Similarly, Karim
et al. [I70] mine Android apps for recommending permissions while Moonsamy et al. [I71] aim at
mining permission patterns for contrasting clean and malicious Android apps.

5.8 Summary

Crypto-API misuses are common in Android apps. Mining usage rules is thus challenging given the
noise in developer code. We hypothesise in this study that usage updates are likely fixing misuses,
and may thus be efficiently leveraged for mining usage rules. We perform a large-scale investigation
of thousands of Android app lineages and fail to confirm our initial hypothesis. We report these
negative results to the community and make available the artefacts of the study.

Availability: https://negative-crypto-api-mining.github.io/

(6]
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6 The Case of Code Reuse in Android via
Direct Inter-app Code Invocation

While in previous chapters, we focused on existing vulnerabilities and attempted to study them. This
last chapter presents a mechanism for code reuse that is less invasive and thus most challenging to
code with by developers, including by industry practitioners. Code reuse is the foundation of software
development acceleration, and Inter-Component Communication (ICC) is a standard way to achieve
the reuse in Android. However, in this study, we unveil a less known mechanism named Direct
Inter-app Code Invocation (DICI) which also can be used to access the code of other apps. We first
showcase 2 proof-of-concept apps developed by us to elaborate the mechanism as well as verify its
practicality. Furthermore, we develop a tool to detect the use of the mechanism in real world apps.
We analyze a large-scale of Android apps with this tool and conclude the situation nowadays. Last
but not least, we propose several countermeasures to protect apps from unwanted code access via this
mechanism.

This chapter is based on the work published in the following research paper:

e Jun Gao, Li Li, Pingfan Kong, Tegawendé F Bissyandé, and Jacques Klein. Borrowing your
enemy’s arrows: the case of code reuse in android via direct inter-app code invocation. In The
28th ACM Joint Meeting on Furopean Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020), 2020
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6 The Case of Code Reuse in Android via Direct Inter-app Code Invocation

6.1 Overview

Code reuse, a.k.a. software reuse, is a form of knowledge reuse in software development that is
fundamental to accelerate innovation. Its practice in software engineering is as old as programming
itself [I73], and has been exacerbated recently within mobile programming frameworks to respond to
the needs for keeping up with market requirements of up-to-date functionalities. The facilities offered
by Android in this respect have even enabled a large number of software authors to contribute to the
application ecosystem, often with little professional training [174].

Reusability is at the core of the Android ecosystem, which builds on the popular Linux kernel and
the Java and XML languages to benefit of the extent of device drivers and software libraries to
bootstrap functionality development. Unfortunately the staged compilation process as well as the
packaging model makes Android apps straightforward to reverse engineer and copy. This has led
to a situation where cloning (a.k.a., repackaging) is commonplace [I75, [16] 176l 177, [I78]. At an
inner-level, Android intents and intent-filters facilitate decoupling and assembling of app components,
providing opportunities for reuse of existing components to interact with new components. For
example, malware writers are extensively exploring these reuse facilities to piggyback malicious code
on legitimate app by leveraging events (e.g., SMS incoming broadcast) to trigger malware execution.
More generally, component hijacking in Android has been largely investigated in the literature [133] [6]:
by evading permission checks, an Android app may access resources that it is not allowed to. In
this respect, Inter-Component Communication (ICC) analyses [T79, [I80] 18Tl 56, [68), 182, [I83] have
been proposed to track data leaks as well as to detect permission redelegations attacks [3]. Further
investigations were performed in the literature towards uncovering potential app collusion [184], [185],
i.e., cases where a set of apps are able to carry out a threat in a collaborative fashion. App collusion
is indeed generally associated to information leakage and inter-app communication where developers
leverage Android implicit and explicit messaging services to orchestrate legitimate rich scenarios or
devise sophisticated attacks.

In this study, we dissect a less-advertised reuse mechanism that is available in the Android framework,
through which developers can invoke a given functionality code implemented in another app. We refer
to it as Direct Inter-app Code Invocation (DICI). To the best of our knowledge, this mechanism
was never mentioned in the Android research literature. DICI is often used in legitimate contexts
such as across Google Mobile Servicesﬂ to enable functionality reuse among apps. Nevertheless, as
we will demonstrate in Section [6.2] DICI can be used maliciously to plagiarize other-wise protected
functionalities and by-pass standalone app analysis.

The DICI mechanism achieves inter-app interactions without leveraging the Android standard inter-
component communication primitives. This mechanism builds on Java reflection and a set of dedicated
API methods that are provided within the Android framework. DICI differs from existing reuse
mechanisms in various ways: (1) In contrast to cloning of entire apps or copy/paste of code fragments,
DICI does not require including the targeted functionality code in the attacking app. This property
is leveraged by attackers to bypass security assessment where the attacking app is analysed. It
also results in an app of smaller size, while avoiding potential decompilation issues (e.g., some code
cannot be decompiled properly) with the attacked app. Finally, the attacking app is easy to maintain
when the attacked app is updated. Last but not lest, DICI also requires little understanding of the
implementation details of the leveraged apps since developers only need to know and invoke the
entry method for a given functionality: relevant methods and classes will be loaded and invoked
automatically even for native methods. (2) Unlike ICC, DICI can allow the invocation of functionality
that is not implemented within an Android component, such as a library function in another app. In
other words, DICI widens the reuse surface: with DICI any code can be invoked, not only code that
is in specific components such as with ICC. (3) Finally, DICI can be leveraged to implement stealthy
code reuse. Indeed, while with ICC the developer of the reuse target may be aware that her code

1GMS are the apps by Google that often come pre-installed on Android devices. They are not part of the Android
Open Source project
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could be reused, it is not necessarily the case for DICI. In Android, a component, such as an Activity
or a Service, has its “exported” attribute set as “True” when the developer wishes to allow ICC from
another app. Such a developer may then take appropriate measures to ensure component security. In
the case of DICI, a developer of an app is not aware that her code will be invoked by a third party.

The main contributions of this work are:

e We expose a little-advertised reuse mechanism within the Android ecosystem. In particular we
demonstrate how it can be leveraged to perform stealthy functionality plagiarism that may not
be covered by standard licensing scheme.

e We develop a static analysis tool, DICIDER, for the detection of DICIs in Android apps. We
perform an empirical analysis on the prevalence of DICIs among a large dataset of apps retrieved
from the AndroZoo repository [I86]. We further provide extensive discussions on how and why
developers use DICIs through an analysis of sample cases.

e We propose an example of countermeasure that could be used by developers to protect their
apps against DICL.

6.2 Dissection of the DICI Mechanism

We provide a problem statement for the direct inter-app code invocation mechanism (Section [6.2.1])
and showcase some motivating examples of reuse based on this mechanism (Section [6.2.2)).

6.2.1 Direct Inter-App Code Invocation in Android

Given the lack of related information on the mechanism of Direct Inter-app Code Invocation within
the Android research literature, we contribute to the body of knowledge by presented an overview
of the mechanism. DICI is a mechanism for inter-app communication (i.e., the possibility for one
app to leverage resources, either functionality or information, from another app during its execution).
Figure [6.1] summarizes how inter-app communication works in Android by illustrating DICI in
comparison with the standard ICC (i.e., inter-component communication).

DICI

—

Android Framework

Figure 6.1: The two types of inter-app communication: Android ICC and DICI.

ICC is the standard mechanism used by developers (as recommended in the Android documentation)
to achieve inter-app communication. Its capabilities and challenges have been (and still remain)
intensively studied in the research literature. ICC is an Android-specific mechanism that was
implemented to enable interaction among Android components, i.e., the basic units that are composed
to form apps. Indeed, the four types of components, namely Activity, Service, Broadcast Receiver,
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and Content Provider, which are responsible for different tasks, cannot directly invoke each other’s
functionalities. Developers must then rely on specific ICC methods, such as startActivity(), to
achieve this interaction. As illustrated in Figure [6.1} an Android ICC is triggered by the Android
framework. Thus, there is no direct connection between the source and target components at the
code implementation level. When the target component of an ICC belong to a different app than the
source component, an inter-app communication is implemented.

Beyond ICC, we have come across cases in the practice of Android app development where inter-app
communication can be achieved through direct code invocation. We refer to such a mechanism as
DICI. As illustrated in Figure DICI can not only (1) bypass the Android ICC mechanism to
realize inter-app communication, but also (2) directly invoke non-component code (e.g., standard
Java class Cls2 in Figure . The latter capability is not available through the recommended ICC
mechanism.

Problem statement. To date, ICC-based inter-app communication has been widely investigated by
the research community [187] [I85] (188, 179, [56], 189]. The literature provides extensive results on
tracking information flow through ICC, statically flagging how such inter-app communications are
leveraged by attackers to achieve malicious behaviours (e.g., privacy leaks). Studies of how malware
is written in bulk through reusing legitimate apps (i.e., piggybacking [16]) have mainly focused on
investigating how ICC is relied upon to trigger malicious payload.

Our hypothesis is that DICI, yielding a larger reuse surface, poses challenges that are at least as acute as
for ICC. Indeed, DICI may be used by attackers to achieve malicious code invocations while bypassing
the security analysis tools which have been focused on ICC-based scenarios. Furthermore, our work
raises awareness among the developer community on the possibility of having their functionalities
reused without their knowledge by either plagiarists or malicious attackers. Finally, for the research
community, exposure to this reuse mechanism in the Android realm re-opens a variety of research
directions.

6.2.2 DICI in Action

We highlight the possibilities that offer the DICI mechanism with two motivational use cases. Both
cases involve the development of apps that reuse code available in other apps.

1. StealthApp is designed to orchestrate an app collusion scenario for private data leak. In this
example, we focus on the possibility of leveraging DICI to hide malicious code in order to
increase the chances of escaping detections that are attempted via static analyses.

2. TikTokDownloader showcases the critical possibilities that DICI provides in terms of plagiarism.
In this example, functionalities (including backend infrastructure) of one of the most popular
apps in the world, namely TikTok [I90], are reused to build at no-cost a video-sharing app. In
particular, we show that (1) we can reuse several TikTok functionalities, (2) we can provide
additional functionalities that are initially forbidden by TikTok, (3) we can even leverage the
full infrastructure of TikTok.

Malicious Code Hiding

The International Mobile Equipment Identity (IMEI) is a number used as a standard to identify mobile
phones. It is considered to be a key private information and should be kept private [I91], 192} 193].
Consequently, APIs to obtain the IMEI are classically considered in the list of “sources” for data-flow
analyses [55] 194], thus facilitating detection of leaks, even when ICC are used. We propose to
leverage DICI to orchestrate the leakage of the IMEI via SMS: the goal is to build exclusively on code
that is implemented from other apps (1) to retrieve then (2) to leak the IMEL. We consider this use
case to be reasonable since on a given device it is highly likely to identify other apps that implement
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a code fragment for sending SMS and another app that has code where the IMEI is retrieved. By
doing so, we ensure that there is no explicit code in our developed app (i.e., StealthApp) where
neither IMEI collection can be matched (e.g., via tracking calls to API) nor leaking via SMS can be
identified. Therefore our implementation of such a collusion, with DICI, challenges the detection of
security leaks in StealthApp.

Listing [6.1] provides an excerpt of the code used in StealthApp to invoke a method (getDevicelD
at line 13) from another app (org.communicorpbulgaria.bgradio at line 4). Note that in this
code the actual API provided by the framework (i.e., android.telephony.TelephonyManager) is
hidden. DICI is implemented in this case through reflection after obtaining the context of the app
that implements the code to reuse (lines 3-7). Based on this context, the class loader of the app can
be obtained (line 8) and used to load relevant classes in the app (line 9-11). The method object is
acquired with the class object containing it (line 12-15). Since getDevicelD, which is implemented by
the target app, is a static method, it is invoked directly to finally get the IMEI number (lines 16).

l|private String getImei () {

2 String imei = null;

3 Context invokee = this.createPackageContext (
4 "org.communicorpbulgaria.bgradio",

5 Context.CONTEXT_INCLUDE_CODE |

6 Context .CONTEXT_IGNORE_SECURITY

7 )

8

ClassLoader loader = invokee.getClassLoader();
9 Class util = loader.loadClass(
10 "org.ccb.radioapp.components.Utils"
11 )
12 Method getDeviceId = util.getDeclaredMethod(
13 "getDeviceID", Context.class);
14 imei = (String) getDeviceld.invoke(null, this);
15 return imei;
16|}

Listing 6.1: Retrieval of IMEI through reflection for third-party code reuse

Similarly, a method from another third-party app is invoked to send the obtained IMFEI via SMS
as showrﬂ in Listing ﬂ This method is named sendSms (line 12), but it cannot be confused with
framework APIs for sending APIs. Instead, this method is contained in class CommonUtils (line 9)
from app com.globalcanofworms.android.simpleweatheralert (line 3).

l|private void sendMsg(String num, String msg) {

2 Context invokee = this.createPackageContext (

3 "com.globalcanofworms.android.simpleweatheralert",

4 Context .CONTEXT_INCLUDE_CODE |

5 Context .CONTEXT_IGNORE_SECURITY

6 )

7 ClassLoader loader = invokee.getClassLoader ();

8 Class util = loader.loadClass(

9 "com.globalcanofworms.android.coreweatheralert.CommonUtils"
10 )

11 Method sendSms = util.getDeclaredMethod(

12 "sendSms", Context.class, String.class, String.class);
13 sendSms . invoke (null, this, num, msg);

14|

Listing 6.2: Data transfer via SMS through reflection for third-party code reuse

StealthApp performs a malicious behavior, through app collusion, without explicitly implementing
any malicious code. As long as all the apps targeted for reuse are available on the users device, its
IMEI can be leaked and yet, both dynamic and static scanning techniques will systematically fail to
spot this leak if apps are analyzed individually. In any case, even when the apps are available, it is

2The aforementioned code snippets are simplified with absence of exception handling.
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important to note that the use of reflection makes the use static analysis techniques challenging. While
some techniques (e.g., code instrumentation of reflective calls into direct calls with DroidRA [195])
have been proposed in the literature to overcome limitations raised by reflection, these techniques
generally target in-app code (e.g., dynamically loaded classes from an extra dex file) Such method
would not work for DICI since the method that should be called is not present in the analyzed app.

A Limitations of the StealthApp use case: We have developed a naive app collusion system
with StealthApp as a proof-of-concept of hiding malicious code with DICI. The goal, with this use
case, is not to implement a sophisticated attack. Besides its simplicity, this use case presents several
limitations:

o Awailability of target apps. The implementation of the malicious behavior depends on the
installation status of other apps to orchestrate the app collusion. Their probability of availability
on the device could lower the possibility of the execution of the malicious code. Nevertheless,
we can expect attackers to leverage the diversity of apps that are shipped with new devices.
For example, hackers could list all the functionalities offered by the apps that are already
installed on all devices from a specific manufacture, or consider only focusing on popular apps
to increase the probability of being able to realise the scenario on millions of devices. Finally,
note that the official API PackageManager.queryIntentActivities with Intent category set
to CATEGORY_LAUNCHER can be used to retrieve at runtime the relevant information on installed
apps on the current device.

e Permissions. Another limitation is that permissions of other apps will not be granted to
StealthApp when StealthApp is invoking their code. Therefore, when a method is protected by
a permission, this permission must be granted as well to the app before invoking the third-party
code. For our IMEIleakage example, the READ PHONE STATEand SEND SMS permissions
are required in StealthApp. Nevertheless, because of the recurrence of permission over-privilege
(i.e., apps ask for more permissions than they need) in the Android ecosystem [196] [197], attacks
such as the one perpetrated by StealthApp can go unnoticed.

e Process access. Finally, it is noteworthy that in the case of ICC, when an app A is “calling” a
component of an app B, that component is launched in the process of B, i.e., the target code
that is run in B can access the internal data of B. With DICI, when an app A invokes code
from B, this code is launched in the process of A, meaning that this code cannot actually access
internal data of B. Nevertheless, despite this limitation for accessing more resources, accessing
functionality implementation poses different threats as we will show in the second use case.

Functionality Plagiarism

TikTok is a highly popular video-sharing app. It has more than 500 million installs on Google Play
alone. In line with the necessity to control copyrights of video submitters as well as due to commercial
needs to strongly bind users, all the shared videos can only be viewed and downloaded through the
single TikTok app. Among other constraints, TikTok does not allow allow batch downloading (i.e.,
the possibility to download all of the videos of a single user at once). In order to block download
requests originating from third-party interfaces, each request need to be appended with a one-time
“signature” for the Tiktok server to verify the legitimacy of the request. This “signature” is calculated
by an algorithm implemented within the user app with certain information such as user ID, time
stamps, etc. These mechanisms are rather effective against the typical cloning (i.e., repackaging
attack) or the reverse engineering of the TikTok app in order to exploit the backend infrastructure
and resources of Tiktok, notably the database of videos.

We will show now that, with DICI, it is actually possible to reuse the code of TikTok to achieve
the objective of exploiting the TikTok infrastructure. Typically, we were able to implement our
own batch downloader, that we call TikTokDownloader, to download T%kTok videos by accessing
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and plagiarizing the signing algorithm implementation in the TikTok app. As shown in Figure
the developed app will require just to input a user ID to specify the videos of which user must be

downloaded.
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Plagiarist Plagiarist
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(a) Search User ID ) Downloaded Videos

Figure 6.2: Batch Downloader Snapshots

TikTok implements video search and download via REST endpoints (i.e., an URL where requests
can be specified for actions or resources). However, as endpoints are accessed via requests that
are transmitted in plain text with logical structures, they can be obtained, manipulated and used
easily by third parties. Thus, to reserve the exclusive use of these endpoints to TikTok itself, a
one-time “signature” is required to be appended to each endpoint when requesting the server. After
investigating the DEXE| code of TikTok, we identified a method whose obfuscated name is “a’ within
class com.ss.android.ugc.aweme.app.a.c, which computes the signature for the app to access the
TikTop server resources. Listing [6.3] presents the implementation code of method “a” which is the
target of our plagiarism scenario.

TikTokDownloader implements the DICI mechanism to invoke the method illustrated in Listing [6.3]
in order to sign the endpoints and then request the server with the signed endpoints. It is worth to
mention that all of the relevant classes, such as NetworkUtils in line 6, will be automatically loaded
as well. This constitutes a powerful capability of the DICI mechanism since even native libraries
(generally preserved from reverse-engineering due to their machine binary format) can also be reached:
for example, in the sample code, getUserInfo (line 32), byteArrayToHexStr (line 38) and e (line 39)
are all sensitive code that are embedded in native code.

3 JADX is used here for the decompiling, it can be found at https://github.com/skylot/jadx
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l|private String a(String str) {

2 int i;

3 String userInfo;

4 String str3;

5

6 int serverTime = NetworkUtils.getServerTime();

7 if (serverTime < 0) {

8 i = 0;

9 } else {

10 i = serverTime;

11 }

12 String str4 = str + "&ts=" + ij;

13

14 HashMap hashMap = new HashMap();

15 d.a(hashMap, true);

16 String[] strArr = new String[(hashMap.size() * 2)]1;
17 int i2 = 0;

18 for (String str5 : hashMap.keySet()) {

19 String str6 = (String) hashMap.get(strb5);

20 if (str5 == null) {

21 strb = "";

22 }

23 if (str6 == null) {

24 str6 = "";

25 }

26 int i3 = i2 + 1;

27 strArr[i2] = strb5;

28 strArr[i3] = stré6;

29 i2 = i3 + 1;

30 }

31

32 userInfo = UserInfo.getUserInfo(i, URLDecoder.decode(str4), strArr, "");
33

34 int length = userInfo.length();

35 String substring = userInfo.substring(0, length >> 1);
36 str3 = (str4 + "&as=" + substring + "&cp=" +

37 userInfo.substring(length >> 1, length)) + "&mas=" +
38 com.ss.android.common.applog.i.byteArrayToHexStr (
39 com.ss.sys.ces.a.e(substring.getBytes()));
40 return str3;

41)}

Listing 6.3: Simplified Signing Method from TikTok

The usage scenario of our TikTokDownloader app is that it is installed on a device where the user
already has an account on TikTok. The DICI mechanism in this case has led to the implementation of
copyright infringement attacks (since video uploaders did not provide any rights to TikTokDownloader
to access their content). Another critical point is that DICI allowed to easily plagiarized the TikTok
code in a stealthy: TikTokDownloader did not copy the code, nor did it rewrite in some way; instead
it just invokes it at runtime, a case that is not comprehensively studied in the literature of code
plagiarism.

Apps availability and responsible disclosure: We provide on GitHub the source code
of both use-case apps as artefacts for further research: |https://github. com/gaojun0816/
FSE-anonymous-artefact. Both apps have been tested on a Nezus 5 device running Android
version 8.1.0. We have also responsibly informed TikTok owner company about the risk posed by
DICI with respect to the possibility to bypass their security infrastructure to access users copyrighted
videos.
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6.3 Tool Design

6.3 Tool Design

Aiming at automatically inferring the usage of DICIs in Android apps, we design and implement a
prototype tool called DICIDER, which takes as input an Android APK file and outputs a list of DICI
paths that trace how direct inter-app code invocations are planned in the analyzed app. An overview
of the working process of DICIDER is presented in Figure[6.3] Overall, DICIDER follows four steps to
pinpoint DICI instances. We now briefly introduce these steps.

@) DICI

Detection =\ pici
Y4 Android APK Call Contexts —————— |=| pans
JY
. (3) Context-aware
géf;':uftﬁiﬁh Flow-sensitive Not all levels of APls
Data-flow Analysis found, or Level-1
Y API flags invalid
Call Graph (@) APIScan | DICl-relevant »(x) End
P API Calls Analysis

Figure 6.3: Static Analysis for Uncovering DICIs.

6.3.1 Step (1): Call-Graph Construction

DICIs are implemented following a sequence of API calls (e.g., to obtain the third party app context,
load the relevant class, invoke the target code, etc.). We thus propose to construct the call graph
of the input Android app to facilitate further analyses. To that end, DICIDER relies on the Soot
Framework [198] as well as the FlowDroid [55] precise taint analysis tool. To realize this analysis, the
apk is first disassembled and the app Dalvik bytecode is transformed into Jimple, the intermediate
representation that is leveraged in Soot. Then, this Jimple code is analyzed by Soot to yield a call
graph of the app.

We recall that Android apps do not come with a single entry-point (e.g., main in classical Java
applications) to start app execution. Instead, the app can be started from different entry points,
from any app components, which complexifies the construction of a single call graph. To address this
problem, FlowDroid constructs a dummy main method for analysis. This dummy main method takes
into account all the possible entry-points of the app (i.e., components) and their lifecycle methods
(e.g., onStart(), onStop()) as well as all the leveraged callback methods (onClick()). The reason why
lifecycle methods and callback methods are needed to be explicitly included is that these methods
are not explicitly connected at the code level. The prepared dummy main method then enables the
Soot to construct the call graph of the app and subsequently to traverse all the app code in their
possible execution contexts. Note that Soot implements several in-house call graphs construction
algorithms such as CHA and SPARK. While the CHA algorithm is faster than SPARK, it is rather
more imprecise [I98]. Given that in our work, precision of call graph is a key property to ensure
that DICIDER yields good performance, we choose to leverage the SPARK algorithm to build the call
graph (with the correct API calling sequences modeled).

6.3.2 Step (2): API Scan

Once the call graph is constructed, the second step that is unfolded is to identify the relevant APIs
that contribute to the realization of DICIs. Then, one must assess the parameters of these API calls
to further confirm potential code reuse scenarios.

API presence detection: DICIDER performs a quick scan over the call graph to check if DICI-
relevant APIs of the Android framework are leveraged by the app. The presence of such APIs is a
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primary condition for the presence of DICIs in the analyzed app. If such APIs do not exist, there is
no need to proceed further, and the analysis of the app is safely halted.

Table 6.1: DICI-relevant APIs

Level [ Class [ Signature [ Return [ Description

1 android.content.Context createPackageContext (java.lang.String,int) android.content.Context used to create a new con-
text object of a specified
application. The arguments
are application name and
creation flags. With flag CON-
TEXT INCLUDE_CODE
and CON-
TEXT IGNORE_SECURITY,
the code of another application
can be loaded.

2 android.content.Context getClassLoader() java.lang.ClassLoader get the class loader.

3 java.lang.ClassLoader loadClass(java.lang.String) java.lang.Class get a specified class object by
passing the name of the class.

4 java.lang.Class getConstructor(java.lang.Class|]) java.lang.reflect. Constructor ge.t the constructor of a (.:15155

- with the argument specifying
getDeclaredConstructor(java.Jang. Class[[) the sienature
sig; .
4 java.lang.Class getDeclaredMethod (java.lang.String,java.lang.Class|[]) java.lang.reflect. Method get the method of a cl.ass with
getMethod (java.lang.String,java.lang.Class|[]) the arguments specifying the
) i i} i ! signature.
R etDeclaredField(java.lang.Strin, R . et the field of a class by

4 java.lang.Class ietField(java.langString)' 5 Java.lang reflect. Field gassing the name. Y

5 java.lang.Class newlInstance() java.lang.Object instantiate a class with its zero-
argument constructor.

5 java.lang.reflect.Constructor | newlInstance(java.lang.Object[]) java.lang.Object instantiate a class with the
specified constructor.

5 java.lang.reflect. Method invoke(java.lang.Object,java.lang.Object[]) java.lang.Object invoke the method. The first ar-
gument specifies the instance of
the class and passing null indi-
cates a class method.

set(java.lang.Object, java.lang.Object) set the field with a certain
value. The first argument

indicates the object to which
void the field belongs and null

5 java.lang.reflect. Field means the field is static. For

) : : set*(java.lang.Object, *) set*(java.lang.Object, *), the
asterisk can be replaced with
boolean, byte, char, double,
float, int, long and short. For
example, setInt(int).

get(java.Jang.Object) java.lang.Object get the value of a field. The
asterisk stands for the same
get*(java.Jang.Object) * primary types mentioned in
set*(java.lang.Object, *).
ava.lang reflect Method ) void set the accessibility of the

5 ava.lang.reflect.Field set Accessible(boolean) N R R
method, field or constructor.

ava.lang.reflect.Constructor

Which are the DICI-relevant APIs? In Section [6.2.2] our use-case description highlighted a sample
sequence call of specific Android APIs. Following up on this example, we have carefully investigated
APITs that are used in the same principles, and tag them as DICI-relevant. Table [6.1] enumerates all
DICI-relevant APIs considered by DICIDER, along with their implementation class, signature, return
type and a textual description. Since DICIs are performed through a sequence of calls of several
DICI-relevant APIs, each API may be necessary at different position/level within the sequence. We
indicate for each DICI-relevant API the level of that API, which represents the position of its call
within an instance of DICI call sequence. Generally, a successful DICI needs to involve at least one
API in each of the five levels’ APIs.

e Level 1: Obtain the context of another app.

e Level 2: Obtain the corresponding class loader using the obtained contezt of the other app.

e Level 3: Load the class (to be directly invoked) of the other app through the obtained class
loader.

e Level 4: Locate the constructor, method, or field (to be directly reused) from the loaded class.

e Level 5: Finally, access the previously located constructor, method, or field reflectively. If the
method or field is not declared as static, an additional step is needed to instantiate an object of
the class.

DICIDER uses the list of DICI-relevant APIs to check whether the analyzed apk contains such APIs.
In particular, if the analyzed apk does not contain at least one DICI-relevant API of each of the five
levels enumerated previously, the API call sequence is ignored at this stage and DICIDER terminates
with no DICI paths detected.
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---+ CONTEXT_DEVICE_PROTECTED_STORAGE
-~-# CONTEXT_RESTRICTED
---» CONTEXT_IGNORE_SECURITY
i r---» CONTEXT_INCLUDE_CODE
.
.

...... NULL

FE F4 F2 F1  FO

Figure 6.4: Example options that can be applied when creating contexts via package names.

API parameter checking: There is another constraint that may keep DICI from happening in
practice. This constraint is brought by the second parameter of the createPackage Context() API. This
second parameter, known as flags, allows developers to specify (via bitwise operators) how should
the package context be created. Some of the options that developers can specify are highlighted in
Figure and briefly explained below.

e FO (or 0000). The default option. None of the other options are enabled.

e F1 (or 0001). If enabled, it allows the context to access the code implemented in the
loaded package. Otherwise, only resource files are allowed to be accessed.

e F2  (or 0010). This  option  will ask  the context to  ig-
nore any security restrictions. When enabled along with
CONTEXT INCLUDE CODE, it will allow code to be loaded into a process even
when it is not safe to do so. As recommended by Google, developers should use this option
with extreme card’l

e Fj (or 0100): This option will allow the context to disable specific features of its accessed
resources.

e '8 (or 1000). This option allows the context to access APIs even at device-protected storage.

In order to invoke the code of other apps, when creating the context via createPackageContext(), the
F1 option has to be enabled. Therefore, in this step, we further take efforts to trace the value of the
flags parameter (through backward constant propagation) of located createPackageContext() usages.
If the F1 option is not enabled, the corresponding API call will not be considered, so as to avoid
false-positive results.

6.3.3 Step (3): Context-Aware Flow-Sensitive Data-Flow Analysis

While a call-graph is relevant to spot call sequences of DICI-relevant APIs, this sequence may actually
not be about implementing a DICI. Indeed, APIs may be invoked under different contexts, leading to
a situation where there is no actual inter-app interaction. Thus, we need to ensure that the code block
that is eventually invoked is indeed reused from another app. Let us consider the example provided
in Listing This Listing is similar to the beginning of Listing for the case of malicious code
hiding: there is a difference in that the loader is instantiated by calling this.getClassLoader ()
rather than invokee.getClassLoader (). As a result, although the APIs of the first two levels are
invoked following the ideal sequence (i.e., Level-1 method is called before the Level-2 method), they

4https://developer.android.com/reference/android/content/Context
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cannot jointly form a DICI as the loader is not obtained from the context invokee but the current
context (i.e., this).

Context invokee = this.createPackageContext (
"org.communicorpbulgaria.bgradio",
Context .CONTEXT_INCLUDE_CODE |
Context.CONTEXT_IGNORE_SECURITY) ;

ClassLoader loader = this.getClassLoader ();

//ClassLoader loader = invokee.getClassLoader ();

S U W N~

Listing 6.4: An example code showing the necessity of taking context into consideration.

We address the challenging of keeping track of the data-flow between API calls by performing a
context-aware data-flow analysis to ensure that the APIs are all called under the same context.
Nevertheless, instead of performing a generic context-aware data-flow analysis, which tracks all the
flow of all the variables and hence could be compute-intensive, DICIDER implements a dedicated
context-aware data-flow analysis for which only the contexts related to the DICI-relevant APIs are
tracked.

6.3.4 Step (4): DICI Usage ldentification

Finally, in the last step, DICIDER leverages the results of the previous steps to pinpoint DICI paths.
We recall that the output of step 3 is a DICI path which is a sequence of API calls with a least
one API for each defined level and called under the same context. However, at this stage, it is still
not established which app, class and method are invoked via DICI, i.e., what is the target code for
reuse. We introduce a lightweight constant string propagation module in DICIDER, which goes one
step deeper to infer what are the methods/fields that are accessed via DICI. To that end, given a
fifth-level API, such as java.lang.reflect. Method.invoke(), we perform a backward string analysis to
infer which is the reflectively-accessed artifact. Regarding the example shown in Listing [6.1] for the
invoke method illustrated in Line 16, our backward string analysis aims at inferring that the method,
which is called via reflection, is getDeviceID() of the class org.ccb.radioapp.components. Utils in app
org.communicorpbulgaria.bgradio.

6.4 Evaluation

We empirically assess DICIDER, and investigate the use of DICIs in the real-world.

Research questions: The study is driven by the following research questions (RQs).

e RQ1: Can DICIDER spot DICIs in real-world Android apps? To answer this RQ, we investigate
on the one hand the recurrence of DICIs in apps collected from various markets. On the other
hand, we study the prevalence of DICIs among goodware and malware apps respectively.

e RQ2: How DICI usages evolve over time? To answer this RQ, we consider both the evolution
of number of apps leveraging DICIs within markets, as well as the evolution of DICIs usages
within app lineages (i.e., based on their updates).

e RQ3: For what purposes do developers implement DICIs? We consider a number of real-world
examples to dissect the purposes of DICI usages.

Dataset: The evaluation is conducted on apps collected from AndroZoo [I86], a continuously growing
repository of Android apps. At the time of writing, the dataset size was over 10 million apks crawled
from the Google Play official store as well as from alternative markets and repositories. Some metadata
on the apps are also collected via the toolkits provided by Li et al. [199].

88



6.4 Evaluation

Implementation: DICIDER is built based on the Soot Framework and leverages FlowDroid taint
analysis implementation. DICIDER provides reasonable performance on a commodity computer (2.9
GHz quad core Intel Core i7 CPU with 16GB memory): the average time consumption for analysing
a single apk is about 62.72 seconds.

6.4.1 RQ1: DICIs in Real-World Apps

The goal is to run DICIDER in order to attempt the detection of DICIs in real-world Android apps.
To that end, we sample Android apps following their market provenance.

Comparison among Markets. Currently, the top-4 sources ranked based on the number of apps
crawled in AndroZoo are Google Play, PlayDrone, Anzhi and AppChina. However, since PlayDrone
is a specific subset of apps originally crawled from Google Play, we do not consider PlayDrone as a
distinct provenance. Thus, we consider mainly the remaining 3 sources and randomly select 25,000
apps from each provenanceﬂ leading to a total of 75,000 Android apps.

Table 6.2: DICI Comparison among Markets

Google Anzhi AppChina | Total
# of successfully analyzed apps 25,000 25,000 25,000 75 000
# of apps with DICIs 4,344 100 135 4579
Percentage of apps with DICIs 17.38%  0.40% 0.54% 6.11%
# of detected DICIs 4,396 1,051 227 5674

Median # of DICIs per App’| 1 13 1 1

Table provides statistics of the execution of DICIDER on the 75k real-world apps. Overall, DICIDER
is able to detect a significant number of DICIs. At the market level, we notice that apps from the
official market, Google Play, are much more likely to contain DICIs than apps from the alternative
markets. A priori, this is reassuring since alternate markets are known to include more malicious
samples than the official markets [200]. Nevertheless, when looking at the median number of DICIs
per app, apps from market Anzhi exhibit a remarkably higher number of DICIs than for other markets
when considering apps that implement this reuse mechanism. Figure [6.5] gives a more concrete
understanding of the difference between Anzhi and the other markets from the perspective of DICI
per app. Further statistical investigations of Google Play cases reveal that about 97% of DICIs are
from a class named com.google.android. gms.dynamite. DynamiteModule.

Google Mobile Services and DICIs. We focus on the DynamiteModule class that is recurrently
involved with DICIs of GooglePlay apps. Based on its package name, we suspect that it is may be
part of the official Google Mobile Service (GMS) APIs. The official documentation does not however
mention such a package. We postulate that such a package may have been intentionally omitted from
the documentation to avoid uses by third-party developers. Nevertheless, we undertake to confirm the
presence of this class within GMS by explicitly requesting Gradle dependency management to find the
GMS libraries and included them in a toy/demo app. Afterwards, we manually analyzed the content
of the class to further check what it does through DICI. According to the analysis report of DICIDER,
DynamiteModule code instantiates a class named com.google.android.gms.dynamite. IDynamiteLoader
from the app named com.google.android.gms. To further check how this instance is used, we proceed
to reverse-engineer an app that contains GMS APIs the code of such APIs are not open-sourced.
According to the decompiled code, this class implements the interface android.os.IBinder which is
designed for in- and cross- process call{] and is used to query a local interface here. Although this
class is also under the package of GMS dynamite according to its name. It cannot be found in the
GMS libraries. Since there is quite little information about these libraries. We can only infer that

5Since DICIDER may fail to analyze some apps due to unexpected corner cases such as the given APK does not contain
DEX file, in practice, we have randomly listed all apps and sequentially tested them until the quota of 25000 is
reached for each provenance.

7 According to official document at https://developer.android.com/reference/android/os/IBinder
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the app com.google.android.gms is the GMS framework which is supposed to be embedded into the
Android OS, and direct inter-app code invocation is the way to access the framework.

We also consider class org.zwalk.core. X WalkCore Wrapper which contributes to most DICIs in Anzhi
dataset. Class XWalkCore Wrapper is from a project called CrossWalk which was once founded by
Intel’s Open Source Technology Centmﬂ It is a web app runtime to provide manipulability to browser.
The class uses DICIs to access functionalities of its own app.

While we studied the recurrent cases in this RQs, we will consider the remaining 3% in Google Play
datasets for answering RQ3.

googleq |+ ¢¢ )
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Figure 6.5: Distribution of DICI per App

Comparison between Benign Apps and Malware. AndroZoo not only crawls Android apps,
but also the antivirus reports from VirusTotal [201] for each app. For a given app, AndroZoo indicates
the number of anti-virus products which flag the app as a malware (among a total of about 60
anti-virus products). We rely on this information to build our dataset of goodware and malware. For
goodware, we consider 25,000 apps selected from AndroZoo with no flag from any anti-virus product.
For malware, we consider 25,000 apps selected from AndroZoo with at least 30 flags (i.e., at least half
of the anti-virus have a consensus on app maliciousness).

Table 6.3: DICI Comparison between Goodware and Malware
Benign Malware
7## of successfully analyzed apps 25,000 25,000

# of apps with DICIs 5,836 52
Percentage of apps with DICIs  23.34% 0.2%
# of detected DIClIs 5,964 101

Median # of DICIs per Applﬂ 1 1

Table [6.3] presents the comparison between Goodware and Malware. Surprisingly, overall, mal-
ware actually use much less DICIs compared to benign apps. However, by further check-
ing the source package of DICIs, we find that for benign apps, the dominated class is again
com.google.android.gms. dynamite. DynamiteModule While, for malware, this class only contributes a
quarter of DICI usages. This has two implications: the scope of using DICI for benign scenarios is
still limited, although many instances of benign apps, because of their reliance on GMS, are actually
hosting code that use the DICI mechanism; malicious apps on the other hand may have indeed been
leveraging DICIs.

8See project page at https://crosswalk-project.org/
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Answer to RQ1: DICIDER is able to detect DICIs in real-word apps. This reuse mechanism is
actually seen in many apps, although mostly due to the use of the GMS libraries where class
com.google.android. gms. dynamite. DynamiteModule heavily relies on DICI. There are however
cases of malware leveraging DICI outside the scope of GMS libraries.

6.4.2 RQ2: Evolution of DICI Usages

Table 6.4: # APKs considered from the Lineage dataset [I]
2011 2012 2013 2014 2015 2016 2017 2018
3,950 6,252 13,191 23924 17,505 30,690 6,995 3,583

As shown in RQ1, com.google.android.gms.dynamite. DynamiteModule is the major source of DICIs.
We noticed that this class was not present in the Android ecosystem since the beginning of Android.
Thus, we propose to study the evolution in time of the number of DICIs within Android apps. To
perform this experiment, we consider app lineages (i.e., different versions of apps over time). To that
end, we consider a large lineage dataset proposed by Gao et al. [I] based on the AndroZoo repository.
Most of the lineages are spread over several years, but for each year, we consider only the latest apk
version in that year for a given lineage. The statistics of apks per year from the lineage dataset in
the literature is listed in Table
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Figure 6.6: Percentage of APKs Contain DICI

We run DICIDER on this dataset and compute the percentage of apks containing DICIs for each year.
The result is presented in Figure[6.6] A clear increasing trend can be observed after year 2015. By
further investigating the DICI contributors, we notice that the main reason is still the GMS libraries.
We find that before 2016, there are no contributors from GMS libraries. However, starting from 2016,
the main contributors are all from GMS libraries, although the source packages shift from internal
(mainly in 2016) to dynamite (after 2016). Unfortunately, these library not being part of the Android
Open Source Project, we cannot find any information about the APIs publication and update time.
We infer however that, starting from 2016, GMS libraries start to be more and more used Android
applications.

By leveraging lineage, we also have the chance to investigate "update" patterns through checking
the status of DICI usages in different versions of a same app. For this experiment, we consider all
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Table 6.5: # APKs of Each Year
% of lineages in which a DICI has been introduced by an update | 89.38%
% of lineages in which a DICI has been removed after an update | 8.30%
% of lineages in which a DICI has been in all versions 2.07%
% of lineages with DICI added, then removed, and then added 0.26%

lineages with at least one DICI present in at least one apk of the lineage, and lineage with at least 4
apks. Table [6.5| presents the distribution of different update patterns. In a large majority of the cases,
DICIs are not implemented in the initial version of the app. Instead it is added during an update.

Answer to RQ2: Over time, the use of the DICI mechanism has progressively become boomed
among Android apps, mainly due to the availability of the GMS library. Nevertheless, it is
noteworthy that DICIs can be implemented during app updates, which may cause concerns for
update attacks, since it is well-known that users are less wary of apps during updates [202] 203)].

6.4.3 RQ3: Purposes of Using DICls

Table 6.6: Top DICI Contributor Packages

Rank Package Number
1 com.google.android.gms 7,462
2 com.lbe.doubleagent.client 128
3 com.jb.gosms.util 37
4 net.pierrox.lightning launcher.b 30
5 com.dokdoapps.utility. GoogleServiceManager 20
5 com.handcent.common.v 20
7 kl.ime.oh.H 14
8 com.google.android.apps 13
9 org.xwalk.core.ReflectionHelper 12

10 cn.Jongmaster.common.pluginfx 10

Tables and enumerate respectively the top 10 DICI contributor packages where DICIs are
invoked and the top 9 apps that are targeted by DICI reuse cases. These statistics are based on
the lineage dataset described above. We note that, besides the fact that a GMS package is a top
contributor for DICI usage, the GMS app is also the top app whose code is largely targeted for direct
inter-app invocation. From the package and app names, we can notice the connection between some
of them such as package com.jb.gosms.util tries to access code in app com.jb.gosms.emoji. Actually,
by manually checking all the top 10 contributors, we confirm that they all try to access apps with
similar names. For these cases, we can infer that they try to access the code from the app owned by
same developers, to perform app collusion scenarios.

Table 6.7: Top DICI Invoked Apps

Rank Package Number

1 com.google.android.gms 7,469

2 com.jb.gosms.emoji 37

3 klye.hanwriting 14

4 org.xwalk.core 12

5 net.pierrox.lightning locker p 2

5 com.pansi.msg.plugin.custom _notify 2

6 com.pansi.msg.plugin.regins 1

6 com.shocktech.guaguahappy 1

6 com.pansi.msg.plugin.emoji 1

92



6.5 Countermeasures

We take one more step to reveal the purpose of apps using DICIs by deeply exploring some apps.

Plugin implementation through DICI. The app with package name kl.ime.olﬂ is a multi-
language keyboard app developed by Honso with more than 1 million installs on Google Play. It is
found using 5 methods from another app with package name klye.hanwriting, which is a Chinese
keyboard plugin app also can be found on Google Play with the same develope@ By searching apps
from the same developer, more plugins for other languages can be found as well. We further notice
that when the code loading failed, the app will return a string to ask to “Download Chinese plugin”.
Thus, we can infer that this app implemented a plugin functionality by using the DICI code reuse
mechanism. We found several apps performing similar plugin behaviour. App named com.jb.gosms
is found with loading 13 methods from an app with package name com.jb.gosms.emoji and a
BroadcastReceiver is registered to check if the app is newly installed or uninstalled. App com.pansi.msg
loads code from 3 different apps which are com.pansi.msg.plugin.custom_ notify, com. panst. msg.
plugin. emoji| and com.pansi.msg.plugin.regins. And app |net. pierroz. lightning_ launcher
loaded code from net.pierrox.lightning locker p. We further notice that for the value of flags
when creating the app context, some of them used value 1 instead of 3 which omits the flag
of CONTEXT IGNORE SECURITY. This could be because all these apps are from the same
developer (i.e., containing same signatures). Nevertheless, it is an interesting feature to be considered
by static analyzers when assessing the security risks.

Keeping up with best practices through GMS. We find another use of the DICI code reuse
mechanism which is to load up-to-date functionalities matching the best practices of Android
programming available via com.google.android.gms. GMS stands for Google Mobile Services and
com.google.android.gms is the Google Play Services Packages. The loader apps try to invoke the
method insertProvider from class com.google.android.gms.common.security. ProviderInstallerImpl.
According to the official documentation from Googlﬂ the purpose is to update the security provider
to protect against SSL exploits. However, the relevant method mentioned in the document is
installlfNeeded which is different from the one we found. By further checking the source code of
method installlfNeeded, we find that the fundamental method is also insertProvider. Some developers
may also notice this. Thus, instead of invoking the documented method and include all relevant
libraries, they chose to directly invoke the fundamental method. All these loader apps are with package
name of com.monese.monese.live, nya.miku.wishmaster and com.levelup.touiteur respectivelylﬂ

6.5 Countermeasures

We now discuss possible countermeasures that could be leveraged by app developers to protect their
app code from being reused in a stealthy way through DICI.

We found a straightforward countermeasure that, until now, we could not find a way to break. The
idea is to check, with the code to protect, what is the "instance" of the application that is executing
it. Indeed, to the best of our knowledge, there is no means to get or generate an instance of another
app. Listing presents the code that a developer could use to protect her app. First, to record
the app’s instance, a slight modification to the Application class is required (here AntiTheftApp).
Specifically, we create a private instance field (line 2) and assign the current instance to this field
(line 7). Then, we create an empty method called verify (lines 14 to 15). The purpose of this method
is to check the availability of the stored application instance (i.e., thelnstance at line 2), and an

10Tt can be downloaded from AndroZoo by using the SHA256: 04E37D1CE54C7E326A7714F56B35F922DF9EAFSAAD190FC
B5FD61716F84176D3E and the app can be found on Google Play with link: https://play.google.com/store/apps/
details?id=kl.ime.oh

1 The page link is: https://play.google.com/store/apps/details?id=klye.hanwriting

2https://developer.android.com/training/articles/security-gms-provider

13The SHA256s are: E953776572E4E84CB64D0ABF442211FCOASEDDFOBDEF7TESDFC47C94756C714AB, 8B16DBD2D4951BDAB1
6F2AA9AABCBC8BEE91264DAB78F2BCAFD3EE317B84E27C, 06E280B615D5CF68E6BD3F89E27FF11FDBCFCE7DO38AACCFES7C
486F47159EB6
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empty method is already enough. Indeed, when getInstance() .verify() is called in the original
app, nothing happens. However, when this method is called in the plagiarist app, the app will crash
because theInstance has not been initialized, and yet it cannot be instantiated or overwritten by
attacking code in other apps. Finally, to protect from being reused (via DICI), app developer can
simply write AntiTheftApp.getInstance() .verify () at the beginning of each method, she wants
to protect.

1|public class AntiTheftApp extends Application {
2 private static AntiTheftApp thelnstance;

3 @0verride

4 public void onCreate() {

5 super .onCreate(); theInstance = this;

6 }

7 public static AntiTheftApp getInstance () {
8 return thelnstance; }

9 public void verify() { 2}

Listing 6.5: Implementation of Application Instance based Verification

Other Possibilities: So far, we have only attempted to protect DICIs at the app code level. Yet we
believe many other features could also be leveraged to protect DICIs. Indeed, on the one hand, native
libraries (or Javascript code for WebKit-based apps) could be leveraged, as they increase significantly
the complexity of the code, making it non-trivial to be bypassed by attackers. On the other hand,
some system features could be leveraged as well. For example, each Android app will be allocated with
a private directory that cannot be accessed by other apps, and thereby could be leveraged to check
the identity of the active app. Last but not least, from the Android framework point of view, there
are various countermeasures could be applied. For example, Android OS could provide a mechanism
similar to permission and component management for the inter-app code invocation functionality.
It could limit the code access within apps from the same developers, or allow a declaration in the
AndroidManifest file to specify which part of the code (i.e., classes) can be accessed publicly by other
apps through DICIs. It also can be limited based on the privileges of Linux users.

6.6 Limitations

The fact that our prototype tool has revealed various DICI usages in real-world Android apps shows
that our tool is useful to pinpoint them. Nonetheless, the implementation of our tool has come with
various limitations. First of all, since the dummy main method construction approach is borrowed
from FlowDroid, all the relevant limitations reported by FlowDroid also apply to our approach. For
example, unsoundness can arise if certain callbacks in Android lifecycles are overlooked when building
the dummy main method. Second, DICIDER directly adopts the constant propagation approach
provided by Soot which unfortunately only supports intra-procedural analysis. As a result, although
it is not our main focus of this work, certain reflectively accessed methods or fields could be missed
by our approach. We keep this for future work. At the moment, DICIDER does not take into account
native libraries and is oblivious to multiple-threading implementations, which may result in unsound
results as well.

Not only the implementation of our prototype tool comes with limitations, the validity of our
experimental results may also be threatened by the experimental setup we designed in this work. The
major threat to the validity lies in the choice of selected Android apps. Although we rely on a random
selection from AndroZoo to prepare the real-world apps for analysis, since the distributions of apps in
different markets available in AndroZoo vary significantly, we cannot guarantee the representativeness
of these apps. Furthermore, we leverage the app assembly time to build app lineages in this work.
The app assembly time, as experimentally revealed by Li et al. [38], may not be accurate to represent
the app release time. Hence, the app lineages we leverage to study the evolution of DICI usages may
not be reliable as well. In this work, we try to mitigate this by following the same approach of our

94



6.7 Related Work

fellow researchers to build the app lineages, which have been demonstrated to be useful to support
app evolution studies.

6.7 Related Work

To the best of our knowledge, this work presents the first work disclosing the possibility of direct
inter-app code invocation among Android apps and subsequently detecting DICI usages in Android
apps. As a result, there is no related work specifically focusing on this problem. However, the
research community has proposed various contributions in the domain of static analysis of Android
apps. Moreover, some works focused on the problems of Inter-Component Communication (ICC) and
Inter-App Communication (IAC), which are closely related to DICI. We now discuss the representative
ones.

Static Analysis of Android Apps: Many state-of-the-art works have adopted static analysis, as
one of their fundamental parts, to perform their research investigations. As presented in a recent
survey done by Li et al. [204], there are over 100 papers, published mainly in the software engineering
and security community, proposed to analyze Android apps statically. As revealed in their survey,
static analysis has been largely conducted to uncover security and privacy issues such as privacy leaks
detection [56} [55] 205], advertisement violations [206], 207 [208], and malware detection [209] 210} 21T].
Also, the survey discloses that the well-known Soot framework is the most adopted basic support tool
in the community to implement static analysis approaches. We remind that the Soot framework is also
leveraged by DICIDER to detect the usage of DICIs. Static analysis has also been used by researchers
to scan for (1) app defects including energy issues [212] 213], (2) fix runtime crashes [214], 215], (3)
improve the realization of dynamic testing appraoches [216] 217, 218, 2T9].

Focus on Inter-Component Communication: Android apps differ from traditional Java apps in
that there is no single entry point, e.g., the main method, in the apps. Apps are composed of multiple
basic components. To pass on data among these components, Android has a special Inter-component
Communication (ICC) mechanism. However, malware may also use this mechanism to achieve their
malicious behaviors, e.g., steal users’ private data. To this end, our community has proposed various
approaches to mitigate the attacks related to Android ICCs. As an example, Epice [I81] is proposed
to reduce the ICC problem to an instance of the Interprocedural Distributive Environment (IDE)
problem, and finds ICC vulnerabilities with far fewer false positives. IccTA [56] is a static taint
analyzer to detect privacy leaks among components in Android applications. It goes beyond existing
ICC leaks detection tools like [68], 182, 183].

Focus on Inter-Application Communication: Android’s Inter-application communication (IAC)
mechanism allows for reuse of functionality across apps via Intents. Contrary to the technique
described in this study, TAC is intended for functionality sharing. However, this mechanism also
raises concerns for vulnerabilities crossing Android apps. Thereby, the research community has also
proposed various approaches to mitigate possible vulnerabilities brought by IAC. For example, Li
et al. [I89] have proposed a tool called ApkCombiner aiming to combine multiple apps together
to a single app, so as to reduce an IAC problem to an ICC problem. As a result, this tool allows
all the aforementioned ICC-aware approaches to resolving IAC problems without modifications.
PermissionFlow [88] can reliably and accurately detect vulnerable information flows among Android
applications. IntentDroid is a cloud-based testing algorithm for Android apps for automated discovery
of Android TAC vulnerabilities. ComDroid [I19] is another tool to detect ICC related malicious
behaviors in Android apps, e.g., sniffing message contents and injecting forged messages.

Unfortunately, since DICI leverages a totally different channel to implement inter-app communication,
all the aforementioned existing works cannot be directly applied to detect DICT usages in Android
apps. Our prototype tool DICIDER fills this gap by providing a means to statically pinpoint DICI
usages in Android apps, which could be considered as a complement to the state-of-the-art.
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6.8 Summary

In this study, we disclose to the software engineering community a novel mechanism allowing
direct inter-app code invocation (DICI) among installed Android apps on mobile devices. Through
concrete motivating examples, we demonstrate that DICI can be leveraged to successfully perform
malicious attacks and plagiarize the core function of the competitor’s apps. We then introduce to the
community a static analyzer called DICIDER to automatically locate the usage of DICIs in Android
apps. Experiments on a large set of Android apps reveal that DICIDER is indeed capable of detecting
DICIs in Android apps, and the usage of DICIs tends to increase over time, which may cause concerns
for update attacks since users might be less wary of apps during updates.
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7 Conclusions and Future Work

In this chapter, we summarize the main contributions of our dissertation and present potential future
research directions.
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7 Conclusions and Future Work

7.1 Conclusions

This dissertation presented the re-construction of Android app lineages and several Android app
security-related studies based on mining the app lineages. These studies follow a general-to-specific
path. We chose such a topic because 1) re-construction of large-scale Android app lineages is challenge
work. So far, there is no such dataset available, which leads to few works of evolution studies in
Android app security. 2) Attentions are still required on Android app security since new issues
have never been stopping showing up while old issues remain unfixed. 3) Evolutionary studies in
Android app security are potentially beneficial in many ways, such as providing a fundamental
understanding of specific issues. More specifically, we scheduled this dissertation in three parts: 1)
Re-construction of Android app lineages. 2) Evolution study on existing Android app vulnerabilities
to learn trends as well as mine rules. 3) Unveiled a less known code access mechanism that could
cause new vulnerabilities and checked its evolution. We now detail them.

In the first part, by leveraging our AndroZoo dataset, which is so far the largest Android app repository
and HPC clusters, we carefully proceeded to re-construct the dataset of Android app lineages at an
unprecedented scale. This dataset not only served the following studies of this dissertation, but also
is a valuable artefact for various research in our community. We also implemented a primary study
on the evolution of Android app complexity with the newly re-constructed app lineages.

For the second part, we implemented evolution studies on known vulnerabilities. We first investigated
specifically 10 vulnerability types associated with 4 different categories by leveraging three state-
of-the-art, open-source and actively used detection tools to have a general concept of how Android
app vulnerabilities evolve and what we can learn from the evolution. Among all those findings,
we even noticed that some vulnerabilities might foreshadow malware. Afterward, we focused on
particular vulnerabilities caused by the misuse of cryptography APIs in Android apps. Instead of
merely investigating its evolution, we tried to mining the usage rules of such APIs from the app
evolution course. This study is based on an intuitively reasonable hypothesis that API usage updates
generally transform incorrect usage into correct usage. Although we produced a negative result in
this study, we profoundly elaborated the reason behind.

As the final part, we unveiled a less known mechanism used to invoke code of other Android apps. We
exhibited the details of the mechanism and proved its practicality by showcasing two proof-of-concept
applications developed by us. A tool named DICIDER was also developed to detect the use of this
mechanism in real-world applications. We further implemented an empirical study on how this
mechanism was used, and proposed countermeasures to protect apps from undesired inter-app code
access. The evolution of the mechanism uses was also investigated and a progressive booming was
spotted.

7.2 Future Work

We now summarize potential future directions that are in line with this dissertation.

1. Re-constructing App Lineages in Real Time with Metadata. The Android framework
has been rapidly evolving, as well as all Android apps. So for our AndroZoo dataset has also
been continuously growing by non-stopping crawling from different markets. However, the
re-construction of the Android app lineages has not been implemented incrementally yet. Thus,
to follow up with the fast evolution, a real-time updating of the app lineages is also necessary.
Moreover, the metadata of an application (e.g., installs, update time, update log) provides extra
context information about the current version of the application. It can expand the horizons of
Android apps evolution studies. Nevertheless, the collection of these metadata has not been
considered yet. Hence, such a collection should be implemented as soon as possible.
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2. Mining Updates with Knowledge from Update Logs. From the negative result on
mining cryptography API usage rules, we realized that inferring the purpose of app updates is
challenging. However, update logs (i.e., the logs provide detailed information about what have
been fixed or improved in the new version. For apps published on GooglePlay, such information
are normally provided in the description section of the apps’ page.) are normally provided
by the developer to specify the improvements in the latest version of the apps. Thus, mining
updates with relevant knowledge from the corresponding logs instead of hypotheses should
produce more promising results.

3. The Evolution in Android Native Code. Android apps can be developed in Java as well
as native code (i.e., C/C++). Because of the platform-independence of Java, Android apps are
mainly written in Java, while native code is only used when apps need to access platform-specific
features or improve performance. Therefore, security studies have heavily focused on the Java
part of Android apps while left the native code far more behind. Nonetheless, such a situation
causes much less native vulnerabilities spotted and makes malicious behaviors tend to hide in
the native code. Hence, more security studies on the native code and its evolution are needed.
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