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ABSTRACT

In this paper, we provide a framework for the direction of arrival
(DOA) estimation using a single moving sensor and evaluate perfor-
mance bounds on estimation. We introduce a signal model which
captures spatio-temporal incoherency in the received signal due to
sensor motion in space and finite bandwidth of the signal, hitherto
not considered. We show that in such a scenario, the source signal
covariance matrix becomes a function of the source DOA, which is
usually not the case. Due to this unknown dependency, traditional
subspace techniques cannot be applied and conditions on source co-
variance needs to imposed to ensure identifiability. This motivates
us to investigate the performance bounds through the Cramer-Rao
Lower Bounds (CRLBs) to set benchmark performance for future
estimators. This paper exploits the signal model to derive an ap-
propriate CRLB, which is shown to be better than those in relevant
literature.

Index Terms— DOA estimation, moving sensor, incoherence,
multiplicative noise, sub-diagonal sums

1. INTRODUCTION

DOA estimation using a single moving sensor is an interesting prob-
lem because of its applicability in diverse areas including speaker
and underwater localization as well as interference localization us-
ing satellite drifts [1–7]. As a special case, satellite systems are in-
terfered by unintentional/ malicious transmissions requiring rather
precise localization on-board; the satellite drift offers a virtual array
to solve this issue [7]. Further, the proliferation of sensing capabili-
ties in a variety of devices (i.e. Internet of Things- IoT components)
or platforms (i.e. automotive) motivates a revisit to this already well-
established topic.

The works [1], [2], focused on DOA estimation with time vary-
ing sensor arrays, such as array mounted on a moving platform.
In these arrangements, the received signal is assumed to be per-
fectly coherent throughout the sensor array. When the bandwidth
of the source signal is quite large, such as in satellite (few MHz to
GHz) [7], coherency across the array cannot be assumed. Further,
such loss in coherency is a function of DOA and the signal band-
width. Another line of work focused on the signal propagation in
a random in-homogeneous medium [8, 9]. These works consider a
multiplicative noise model to account for wavefront distortion across
the array when dealing with a single source. However their model
considers a static array; thus the nuances induced by the moving sen-
sor (DOA dependent coherency loss) are not captured. Further, the
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extension to multiple sources [10], imposes certain structure on the
nature of perturbations to ensure identifiability. However, this struc-
ture is not considered in evaluating the Cramer-Rao Lower Bound
(CRLB). In addition to these aspects, many applications like inter-
ference detection on a moving satellite or low complexity solutions
using IoT devices at high frequencies involve only one sensor in mo-
tion; one then needs to form a virtual array through spatio-temporal
sampling.

In this paper, we consider the practically relevant problem of
estimating DOA of finite bandwidth signals using a single moving
sensor. In this framework, the wavefront amplitude sampled at two
different time instants need not be the same. In this context, rele-
vant works include [8, 9] and their findings can be used as a basis
to model the loss in coherency for single source scenarios. How-
ever, as mentioned earlier, their model does not assume a moving
array where the loss in coherency is primarily due to finite band-
width of the signal (correlated source) rather than an independent
multiplicative noise. Further, this multiplicative noise is assumed to
be independent of the source DOA, which is restrictive for practical
applications [8]. Specifically, for the case of moving sensor where
the signal sampled at two-time instants are different, additionally,
the effect is more pronounced if there are random fluctuations from
the environment. Thus, the existing models do not provide adequate
approximations for considered application. Thus, despite the rich
literature in DOA, there seems to be an interesting research gap and
the current work aims to address.

Our contributions include an appropriate signal model taking
into account the direction dependent incoherency in the received sig-
nal due to sensor movement, and evaluation of the theoretical per-
formance through CRLB evaluation. The latter helps to evaluate the
opportunities and limitations of the framework. To ensure identifia-
bility, the source covariance is modelled as an auto-regressive AR(1)
process with real correlation [10] to simulate the finite bandwidth.
Exploiting this, the CRLB is derived for the signal model developed
and is seen to be different from that in [11], [10]. This difference
arises from the exploitation of the model; as a consequence, the
benchmark performance can be further improved compared to these
works.

2. SYSTEM MODEL
2.1. Scenario and Signal model

Consider a sensor moving with velocity v, receiving signals from P
sources in the far-field, {xi(t)}Pi=1, at M time instants. Let K =
{1, 2, . . . , N}, denote the set indicating time indices. The sensor
output at time instant ti is,

ỹ(ti,θ) =

P∑
k=1

xk(ti − τi(θk))ej2πf(ti−τi(θk)) + ñ(ti), i ∈ K,



where f is the centre frequency of source signal, xk(t) repre-
sents the amplitude of k-th signal arriving from the direction
θk. Here, θk ∈ R3 is the DOA of k-th signal, the vector
θ = [θT1 ,θ

T
2 , . . . ,θ

T
P ]T consists of P source DOAs. Further,

τi(θk) is time required by the kth signal to arrive at the sensor and
depends on the direction of propagation and sensor position. Fur-
thermore, ñ(ti) ∈ CN (0, σ), ∀i ∈ K, is temporally i.i.d. complex
zero-mean Gaussian noise samples with variance σ. The sensor
output after demodulation is,

y(ti,θ) =

P∑
k=1

xk(ti − τi(θk))e−j2πfτi + n(ti). (1)

Collecting N measurements, [y(θ)]i = y(ti,θ), and writing them
in compact form yields,

y(θ) =

P∑
k=1

xk(θk) ◦ a(θk) + n, (2)

where [xk(θk)]i = x(ti − τi(θk)), [a(θk)]i = e−j2πfτi(θk), and
[n]i = n(ti). The symbol ◦ denotes element-wise product between
the two vectors/matrices. The covariance matrix of the measurement
vector y(θ) can be readily written as,

R(θ) =

P∑
k=1

Rxk (θk) ◦ a(θk)aH(θk) + σI, (3)

where Rxk (θk) = E{[xk(θk)][xk(θk)]H} is the source covari-
ance matrix evaluated at certain lags (given by ti, τi). Details on
obtaining sampled covariance matrix is presented in Section 3.

While (3) is valid for any sampling and direction of motion, we
assume a linear sensor motion. We further assume that the sen-
sor samples the wavefront uniformly at distances d = λ

2
, where

λ = c
f

, and c is the signal propagation speed. The sampling in-
stances are then given by ti = t1 + (i − 1) d

v
. Let δ = ti+1 −

ti = d
v
,∀i. The phase difference for the k-th signal received at i-th

time instant with respect to the first sampling instant can be writ-
ten as τi(θk) − τ1(θk) = (i − 1) d sin θk

c
. We further assume that

(M − 1) d sin θk
c

<< δ.

2.1.1. Spatio-Temporal Incoherency

The received covariance in (3) has a form similar to the works con-
sidering waveform distortion across a static array [8, 9]. However,
it can be inferred from (3) that Rxk depends on the source DOA,
which is not the case in the aforementioned works. The exact form
of Rxk depends the source modelling. The dependence of the am-
plitude of xk(t) on θk differentiates the proposed model from DOA
independent perturbation in [12], [10]. This results in DOA depen-
dent perturbations associated with each source; this effect has been
mentioned but not investigated in literature e.g. [8].

2.2. Covariance Model

Similar to [10], we consider the kth source to be a zero-mean circu-
larly symmetric Gaussian AR(1) process, xk(ti) = αkxk(ti−1) +
nk(ti), where −1 < αk < 1 and {nk(ti)} ∈ N (0, σsk ) are sam-
ples of a temporally and spatially independent Gaussian noise with
variance, {σsk}. The condition |αk| < 1, ensures stability of the
process. Using the sampling assumptions in Section 2.1 including
(M − 1) d sin θk

c
<< δ and the AR(1) model for sources, it follows

that, Rxk (θk) is a Hermitian Toeplitz matrix whose first row is,

βk

[
1, α

δ+
d sin θk

c
k , . . . , α

(M−1)
(
δ+

d sin θk
c

)
k

]
, where βk =

σsk
1−α2

k
,

is the variance of xk(t). When αk ∈ (−1, 0) and ∆ ∈ R, then α∆
k

can be complex, resulting in phase ambiguity. Thus, we constrain
αk ∈ (0, 1),∀k so that each entry of Rxk (θk) is a real number.

Since the source signals have a real correlation, it can be shown
that the real and imaginary parts of the source signal are indepen-
dent of each other and identically distributed. Hence, it can be
shown that E{[xR

k (θk)][xR
k (θk)]T } = E{[xI

k(θk)][xI
k(θk)]T } =

1
2
Rxk (θk), where, xRk (θ) = Re{xk(θ)} and xIk(θ) = im{xk(θ)}.

To exploit this fact, we obtain the covariance matrix of ỹ(θ) =
[yTR(θ),yTI (θ)]T ∈ R2M×1,yR(θ) = Re{y(θ)} and yI(θ) =
im{y(θ)}. Towards this, we first let ãk(θk) = [aTR(θk),aTI (θk)]T ∈
R2N×1,aR(θk) = Re{a(θk)} and aI(θk) = im{a(θk)}. The
covariance matrix of the vector ỹ after some manipulations takes the
form,

R̃ =
1

2

P∑
k=1

Ãk (I2 ⊗Rxk ) ÃT
k +

σ

2
I, (4)

where Ãk =

[
diag (aR(θk)) −diag (aI(θk))
diag (aI(θk)) diag (aR(θk))

]
, I2 is a 2× 2

identity matrix and ⊗ is the Kronecker product. The model in (4)
differs from the earlier works, both in the dependence of Rxk on
DOA as well as the exploitation of the source modeling; these have
not been considered hitherto. The rank of each (Rxk (θk)) = N
and hence the signal subspace dimension can be greater than P [13].
This results in ambiguity in detection even in the absence of noise,
and one cannot estimate the number and DOA of sources using con-
ventional subspace methods [14], [15]. Towards formulating the
DOA estimation algorithms, we now focus on understanding the
benchmark performance through the derivation of CRLB.

3. CRLB DERIVATION

Under the assumptions on the transmitted signals, the measure-
ment vector ỹ(θ) ∈ N (0, R̃(θ,α,σs, σ)) where 0 denotes
the N dimensional zero vector, α = [α1, α2, . . . , αP ]T , and
σs = [σs1 , σs2 , . . . , σsP ]T . Therefore, the CRLB for the unknown
parameters can be computed by inverting the Fisher information
matrix [16], [17], whose entries can be written as,

F(k, l) = N Tr

{
R−1 ∂R

∂ηk
R−1 ∂R

∂ηl

}
, (5)

where η = [θ,α,σs, σ]T ∈ R5P+1, is the true parameter vector,
N are the number of independent measurements available.

For ease of presentation, we omit the dependence of R and
Rx on θ,α,σs and use ak = a(θk). In this context, the key
derivatives are presented in Table 1 at the top of the next page.
In that table, Toeplitz

(
{qi}Mi=1

)
is a Symmetric Toeplitz matrix

with the first row formed using the elements {qi}. Further, the ele-
ments of ∂Ã

∂θk
can be found by differentiating cos (m−1)d sin θk

c
and

sin (m−1)d sin θk
c

appropriately. .
Evaluating the CRLB expression in closed-form is a difficult

task in general a special case is considered below.

Theorem 1. For the special case of single source, the elements of



Table 1: Derivatives used in the CRLB derivation

R̃′θk , ∂R̃
∂θk

∂Ãk
∂θk

RxkÃT
k + ÃkRxk

∂ÃTk
∂θk

+ ÃkR
′
xk,θk

ÃT
k

R′xk,θk ,
∂Rxk
∂θk

Toeplitz

({
−d(m−1)

c
ln(αk) cos θk α

(m−1)(δ− d sin θk
c

)

k

}M
m=1

)

R′xk,αk , ∂R̃
∂αk

Toeplitz

({[
δ(m− 1) d sin θk

c

]
α

(m−1)(δ− d sin θk
c

)

k

}M
m=1

)
+ −2αk

(1−α2
k

)2
Rxk

R̃′xk,σ , ∂R̃
∂σ

I2M

R̃′xk,σsk , ∂R̃
∂σsk

1
σsk

ÃkRxkÃT
k

the Fischer information matrix can be evaluated as:

F(1, 1) = 4 Tr
{
X−1ΛXΛ

}
− 4 Tr

{
Λ2}

+ 4 Tr
{
X−1R′x1,θ1X−1R′x1,θ1

}
(6)

F(1, 2) = 2 Tr
{
X−1R′x1,θ1X−1R′x1,α1

}
(7)

F(1, 3) = 2 Tr
{

X−1R′x1,θ1X−1R′x1,σs1

}
(8)

F(1, 4) = Tr
{
X−1R′x1,θ1X−1} (9)

F(2, 2) = 2 Tr
{
X−1R′x1,α1

X−1R′x1,α1

}
F(2, 3) = 2 Tr

{
X−1R′x1,α1

X−1R′x1,σs1

}
F(2, 4) = Tr

{
X−1R′x1,α1

X−1}
F(3, 3) = 2 Tr

{
X−1R′x1,σs1 X−1R′x1,σs1

}
F(3, 4) = 2 Tr

{
X−1R′x1,σs1 X−1

}
F(4, 4) =

1

2
Tr
{
X−1X−1}

where X = Rx1 + σ
2
I and Λ is aM ×M matrix which is extracted

from ÃT
1
∂Ã1
∂θ1

as ÃT
1
∂Ã1
∂θ1

=

[
0 Λ
−Λ 0

]
Proof: The derivation follows from standard matrix manipulations
after noting the structure of various matrices and their derivatives
given in Table 1; the details are omitted for brevity.

In the following remarks, some insights drawn from analysing
the aforementioned expressions will be provided. The focus will be
on the performance of DOA estimation in this work.
Remark 1. Dependence on DOA: It should be noted that R′x1,θ1
appears in the CRLB; this term is unique to the model considered in
this paper and arises from the dependence of Rx1,θ1 on DOA. This
term introduces dependence of estimating θ on the other parameters.
This impact can be gauged from the fact that F(1, 2) = F(1, 3) =
F(1, 4) = 0 when R′x1,θ1 = 0.

Remark 2. CRLB performance with SNR: When Rx1,θ1 is neg-
ligible (ideally zero), CRLB of θ1 is independent of the other esti-
mation variables. Further, F(1, 1) exists even in the absence of the
noise term as R is full rank. Under such conditions, CRLB of θ1

approaches a finite value away from zero asymptotically in SNR.

Remark 3. CRLB performance with α1: It is difficult to establish
an elegant closed-form relation between α1 and CRLB of θ1. It can
however, be argued that, as α increases, the source tends to become
narrow band and the CRLB improves.

Multiple sources: Simplification of CRLB of θ is cumbersome in
this case. However, as in many studies, the CRLB also depends on
the difference between the different θk’s.

Now, we numerically evaluate the CRLB for various SNR under
different choices of the source parameters. We note that the sensor
has N samples of the wavefront corresponding to the scenario under
test. We now begin with the simulation set-up.

4. NUMERICAL EVALUATION

We consider a sensor linearly moving with v = 3km/s and sam-
pling a far-field signal. Both single and dual source scenarios are
considered with f = 30GHz which corresponds to a typical satel-
lite operation. Unless mentioned otherwise M = 10 is chosen and
N = 1000 samples chosen. The SNR (in dB) is calculated using
the relation 10 log10

(
β
σ

)
and σ = 1. The RMSE in DOA estimates

refers to the CRLB of θ.
As a benchmark, the CRLB derived in [10] is appropriately used.

That work does not consider the simplification of the CRLB due to
the exploitation of the real AR(1) parameters (in the noise model
of [10]). This is denoted as benchmark in the results.

Performance of Single Source versus SNR

Fig. 1 depicts the performance of a single source for different source
parameters. It should be noted that a smaller α refers to a wide band
source. Clearly, the CRLB degrades when the α reduces to zero.
As mentioned in previous works, it also floors to a non-zero value.
Further, we also note that a better performance can be targetted when
exploiting the source model.

Performance of Two Sources versus SNR

Fig. 2 depicts the performance of two sources (10o, 2o) for different
source parameters; the sum RMSE for the two angles is considered.
The influence of one source distribution on the other is clearly seen.
Further, when α2 is increased keeping α1 fixed, like in the single
source case, the CRLB improves. Finally, we also note that a better
performance can be targetted when exploiting the source model.

Further Fig. 3 shows the variation in the sum of CRLB(θ1)
and CRLB(θ2) for different source separations. This shows that the
CRLB depends on the angular separation of the sources, a matter
that needs further investigation.

Performance with fixed number of time samples

Fig. 4 depicts the relative CRLB for a single source when the sensor
aims to utilize N = 10000 samples as N/M independent realiza-
tions of the wavefront on M sensors. It should be noted that the
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Fig. 1: Variation of RMSE (in radians) of a single source at 10o as a
function of AR parameter; proposed and benchmark values included
with SNR measured in dB.
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Fig. 2: Variation of RMSE (in radians) of two sources at 10o, 2o

as a function of AR parameters; proposed and benchmark values
included. SNR measured in dB

bound need not be attained since the samples are correlated (AR(1)
modelling), while they are assumed independent. This bound gives
an insight to practical set-ups where a case where the sensor has a
fixed number of samples and then splits it into blocks of M sam-
ples, with each block corresponding to an array. While it is better
to use a large M , the lack of available samples make it difficult to
estimate statistics; the complexity tends to be higher as well. On the
other hand, lower number of arrays, naturally limit the performance.
These aspects are captured in Fig. 4, where, the performance im-
proves with the number of sensors first (due to increased aperture)
followed by a degradation (due to lower number of samples). In
Fig. 4, the relative loss in CRLB with regards to M = 25 sensors
is considered; both the proposed and benchmark techniques provide
similar result and only one is depicted.

Performance with varying number of time samples

The scenario considered here is similar to one considered earlier,
however, with M fixed to 10 and N is varied. Fig. 5 depicts the
CRLB of θ1 and it follows the trend of gradual decay.

5. CONCLUSION

This paper considered the problem of estimating the finite bandwidth
source DOA using single moving sensor. A key motivation is the
proliferation of sensing capabilities in cheap IoT devices as well
as novel applications including satellite communication. The de-
rived signal model was presented and takes into account the spatio-
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temporal incoherency in the wavefront sampled by the sensor at dis-
tinct time instants due to non-zero bandwidth of the signals. This
model generalizes the existing work on incoherency. Based on iden-
tifiability, certain structure is imposed on the source covariance and
is exploited by the current work to further refine the CRLB avail-
able in literature. Using the derived CRLB, numerical evaluations
are resorted to understand the influence of various system parame-
ters on performance and provide system designers information about
the system limitations. An analytical treatment and derivation of es-
timators is left for future work.
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