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Abstract. Marked mix-nets were introduced by Pereira and Rivest as
a mechanism to allow very efficient mixing that ensures privacy but at
the cost of not guaranteeing integrity. This is useful in a number of e-
voting schemes such as STAR-Vote and Selene. However, the proposed
marked mix-net construction comes with no proof of security and, as we
show in this paper, does not provide privacy even in the presence of a
single corrupt authority. Fortunately, the attack that we present is easy
to prevent and we show several possible ways to address it. Finally while
the original marked mix-net paper worked with ElGamal, we identify
conditions that the adopted encryption scheme should satisfy in order
to be appropriate for a marked mix-net. This opens the possibility of
building marked mix-nets based on intractability assumptions which are
believed to hold in the presence of a quantum computer.

1 Introduction

Marked mixnets [9] are a technique proposed by Pereira and Rivest to enable
faster mixing by only restricting attacks on privacy but not integrity attacks. At
first it may seem strange to even consider a mix-net which only provides privacy
but not integrity. However, in a variety of applications, we can (and sometimes
must) independently check the output of a mix-net for correctness, and it then
suffices to have privacy. This is notable the case in e-voting which schemes like
STAR-vote [3] and Selene [11]. Another possible use case is to produce election
results fast for public elections where tally time is often critical, and postpone the
verifiability proofs until after the election result. In this case, the marked mixnet
process constitute an accountable commitment to the result from each mixer
server’s side, and already offers some verifiable privacy guarantees (compared to
a solution in which each mixer would simply shuffle ciphertexts).

The main idea of the marked mix-net is to have a sequence of mixing nodes
that shuffle and reencrypt ciphertexts (as usual in any reencryption mixnet),
with the twist that each mix node also a secret mark on its output ciphertexts.
This mark prevents a later mix node from bypassing one or more earlier mixers



by using their input ciphertexts. On top of this, voters are required to include a
random value in each of their ciphertext, and to make each ciphertext somehow
non-malleable, so that ciphertext copies (which could be a threat to privacy) can
be identified at decryption time. This identification is expected to be a sufficent
deterrent for cheating mixers (this is often called the covert adversary model [1]).

At present there is no rigorous security definition, and even less proof of cor-
rectness for the marked mix-net technique and, in this paper, we indeed present
an attack. The essence of the attack is to exploit the homomorphic properties
of ElGamal used in prime order groups to circumvent the marking mechanism,
hence making it possible for the last mixer to bypass the earlier mixers and
completely break privacy. We elaborate on the attack in Section 3.

We present two options that make it possible to prevent our attack: one is
generic, and requires each mixer to add an extra dummy ciphertext as part of
their mixing process. This should restore security as long as no adversary can
guess which ciphertext is dummy with overwhelming probability. Our second
option is to perform ElGamal encryption in a group of unknown order: it is
not generic anymore, but keeps the marked mix-net protocol unchanged. We
elaborate on this in Section 4.

Finally, whereas the original marked mix-net construction is based on a cryp-
tosystem relying on classical hardness problems, we suggest that it would be
possible to apply that construction to any publicly rerandomizable RCCA cryp-
tosystem [5] meeting some minor additional constrains. This includes possible
cryptosystems built on lattice based assumptions which are believed to hold even
in the presence of large scale quantum computers. In the classical setting marked
mixnets are only a small factor faster overall, though they are faster in the online
phase by a factor of at least 100 compared to fully verifiable mixnets.4 In the
post-quantum setting, this efficiency gain is likely to be much higher.5 Since we
generalise a scheme with no rigorous security definition or proof of correctness,
we claim only that our generalisation does not break the completeness of marked
mix-nets nor does it invalidate any of the security arguments presented in the
original paper.

2 Marked Mix-Net Construction

The original paper describes the scheme for the specific case of ElGamal en-
cryption of OAEP3 transformed messages [10]. In this work we generalise this
to (publicly) randomizable RCCA secure encryption schemes [5]; we make two
additional requirements on the scheme but these appears to be hold for most
currently known instantiations.

4 This speed-up occurs because every verifiable mix requires at least one online expo-
nentiation per ciphertext, while the marked mix-net only requires one online cipher-
text multiplication per ciphertext.

5 To our knowledge there is no published post-quantum verifiable mixnet with clear
benchmarks and hence providing a concrete efficiency comparison is left as an inter-
esting open problem.
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2.1 Primitives

Definition 1. Rerandomisable Public Key Encryption scheme (Rand-PKE). A
re-randomisable PKE is a tuple of five algorithms (Setup, KGen, Enc, Dec,
Rand).

– Setup(1λ) on input the security parameter λ outputs the public parameters
prm.

– KGen(prm) on input the public parameters prm, outputs a key pair (pk, sk).
– Enc(pk,M) on input a public key pk and message M outputs a ciphertext
C.

– Dec(sk, C) on input a public key pk, correponding secret key sk, and cipher-
text C, outputs a message M or error symbol ⊥.

– Rand(pk,C) on input a public key pk and ciphertext C, outputs another
ciphertext C ′.

Definition 2. Rand-PKE correctness, We say a PKE scheme PKE is correct
if

∀λ, prm← Setup(1λ), (pk, sk)← KGen(prm),∀M ,

Dec(sk,Enc(pk,M)) = M .

We will now define the security properties for Rand-PKE. The first definition,
Def. 3, is the standard definition of indistinguishability for Rand-PKE from
Canetti et al.’s original paper [5]. The adversary chooses two messages based on
the public key and with access to the decryption oracle Dec�. A ciphertext C
is then created for the message Mb. The adversary must guess if b is equal to
0 or 1, it does this with the state st it gave when it created the messages, the
ciphertext C and with access to the decryption oracle which will decrypt any
ciphertext which does not decrypt to either M0 or M1.

The second definition, Def. 4, from Groth [8] captures the ability of an adver-
sary who constructed the ciphertext to tell the difference between a re-encryption
of the ciphertext or a new fresh encryption of the same message; the definition
we use is weak in the sense that it does not capture an adversary that knows the
private key material. Marked mixnets provide privacy under the first definition
but cannot provide receipt-freeness without the second.

Definition 3 (Replayable CCA Security, [5]). Consider the experiment in
Fig 1. We say a PKE scheme PKE is indistinguishable secure under replayable
chosen-ciphertext attacks (RCCA-secure) if for all PPT adversaries A:

AdvRCCAA,PKE(λ) :=

∣∣∣∣∣Pr[ExpRCCAA,PKE(λ) = 1]− 1

2

∣∣∣∣∣ ∈ negl(λ).

Definition 4 (Weak Rerandomisabilty [8]). Consider the experiment in
Fig. 2. Let PKE be a re-randomisable PKE scheme. PKE is rerandomizable
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ExpRCCAA,PKE(λ)

prm← Setup(1λ), b←r {0, 1};
(pk, sk)← KGen(prm);

(M0,M1, st)← ADec(sk,·)(pk);

C ← Enc(pk,Mb);

b′ ← ADec�(sk,·)(st, C);

return(b′ = b∗).

Dec�(sk, ·)

Upon input C;

M ′ ← Dec(sk, C);

if M ′ ∈ {M0,M1} then output �,
else output M ′.

Fig. 1. The RCCA Security Experiment

ExpRand−wRCCAA,PKE (λ)

prm← Setup(1λ), b←r {0, 1};
(pk, sk)← KGen(prm);

C ← ADec(sk,·)(pk);

M ← Dec(sk, C);

if M =⊥ return b;

if b = 0 then C∗ ← Enc(pk,M),

else C∗ ← Rand(pk, C);

b′ ← ADec
⊥(sk,·)(pk, C∗);

return(b′ = b∗).

Dec⊥(sk, ·)

Upon input C;

M ′ ← Dec(sk, C);

if M ′ = M then output ⊥,
else output M ′.

Fig. 2. Weak Re-randomizable RCCA encryption
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under weak replayable chosen-ciphertext attacks (Rand-wRCCA secure) if for all
PPT adversaries A:∣∣∣∣∣Pr[ExpRand−wRCCAA,PKE (λ) = 1]− 1

2

∣∣∣∣∣ ∈ negl(λ).

In addition to the standard properties of RCCA schemes, we additionally re-
quire that with knowledge of the secret key material it is possible to check if two
ciphertexts are re-encryptions of the same original ciphertext (we note that this
rules out anything stronger than Weak-RCCA Re-randomisabilty and hence re-
ceipt freeness in regards to the authorities is not possible to achieve if the input
ciphertexts are directly linked to the voters.).

Marked mixnets, further, require that some subsection of the RCCA cipher-
text space forms a homomorphic IND-CPA scheme. We note that this is almost
always true since RCCA schemes are constructed from IND-CPA by adding a
transform, a hash, or a signature.

Finally we assume that all the methods can be efficiently distributed among
the authorities in a threshold way, which is also true of most RCCA schemes.
Some examples of RCCA secure encryption schemes with Weak-RCCA are OAEP3
transformed ElGamal [10], the scheme of Faonio and Fiore [7], and the post
quantum construction of [2].

We leave a formal definition of these requirements as future work.

2.2 Construction

We present the construction in a slightly simplified form; for most RCCA schemes
it is possible to compute ahead of time most of Rand before seeing the particular
ciphertext being re-randomised, this should be done in the setup phase. We refer
the reader to the original paper [9] for the description in the concrete case of
OAEP3 transformed ElGamal.

Setup The authorities jointly run Setup(1λ) to produce the public parameters
prm. They then run KGen(prm) to produce the keys pk and sk. pk is
published to the bulletin board.

Submission Each sender encrypts their input Mi by running Enc(pk,Mi) and
receiving Ci. They then post their ciphertext to the bulletin board.

Mixing In the mixing phase, each mixer chooses a single mark ai—from the
message space of RCCA scheme, and posts Enc(pk, ai) to the bulletin board.
They then permute the list of inputs (or the output of the previous mix
server), rerandomize them using Rand, and adds—in the case of OAEP3
transformed ElGamal multiplies—the plaintext mark to the homomorphic
space.

Decryption Once mixing is over, the authorities decrypts all the marks, which
are then homomorphically removed from the ciphertexts. The authorities
then check that the ciphertexts are valid and are independent.
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Intuitively, it is expected that this mixing processes guarantees that all the
decrypted ciphertexts have being rerandomized and shuffled by all the mixers,
since the mark of every mixer appears on each ciphertext at decryption time. No
correctness guarantee is offered, though: the first mixer, for instance, is perfectly
free to mix whatever list of ciphertexts he likes, independently of its expected
inputs.

3 Attack

For simplicity we present both the attack and the fix for the concrete RCCA
scheme of OAEP3 transformed ElGamal which was suggested in the original
marked mix-nets paper. We do not enter into the details of OAEP3-ElGamal
encryption: for our purpose, it is sufficient to know that it is identical to the tra-
ditional ElGamal encryption algorithm, except that messages are preprocessed
using the OAEP3 injective mapping before being encrypted with regular ElGa-
mal: a ciphertext then looks like a pair (gr, OAEP3(m) · hr).

The proposed attack works by allowing any mixer, or indeed any party, to
calculate the ciphertext of the mark of a previous mix using the homomorphic
property of ElGamal. They are then free to use this ciphertext containing the
previous mixer’s mark to emulate the mixer and hence bypass these mixers
without detection.

The initial input to the mix is a vector of N ciphertexts c1, . . . , cN , containing
the message m1, ...,mN encrypted using randomness r1, ..., rN . If we multiply
the ciphertexts together, we obtain c∗0 =

∏N
i=1 ci, an encryption of the message∏N

i=1OAEP3(mi) using the randomness
∑N
i=1 ri.

Consider the state after the first (presumed honest) mix, using a permutation
π and whose mark was a1, has occurred. We now have a vector of N ciphertexts
c′1, ...., c

′
N , containing the message a1 ·OAEP3(mπ1

), ..., a1 ·OAEP3(mπN
) using

randomness r′1, ..., r
′
N . If we multiply the ciphertexts together, we obtain c∗1 =∏N

i=1 c
′
i, an encryption of the message

∏N
i=1 a1 ·OAEP3(mi) using randomness∑N

i=1 r
′
i.

If we now take compute caN1 = c∗1/c
∗
0 we have an encryption of the message

aN1 with randomness
∑N
i=1 ri −

∑N
i=1 r

′
i. Now, if the encryption is performed in

a typical group of public prime order q, it is clear that gcd(N, q) = 1, and it is
therefore easy to compute N−1 mod q (using the extended Euclidean algorithm)

and to obtain an encryption of a1 as ca1 = (caN1 )N
−1

.
Now, ca1 is precisely the rerandomization factor that an attacker would need

to apply if he wants to bypass M1. This attack continues to work for all follow-
ing mixers. As a result, the last mixer Mk can de-anonymize all the ballots as
follows: (1) Obtain encryptions ca1 , . . . , cak−1

of all the marks produced by the
previous mixers, as described above; (2) multiply all these ciphertexts, as well as
fresh encryptions of its own mark, in order to obtain a rerandomization factor
ca = Enc(pk,

∏k
i=1 ai); (3) take all the ciphertexts that were the inputs of M1,

rerandomize them, multiply them by ca, shuffle them, and output the resulting
ciphertexts.
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The resulting ciphertexts are perfectly valid and contain all the expected
marks, but Mk knows the exact mapping between the ciphertexts submitted by
the voters and those that will be decrypted by the trustees, since he is now the
only person having actually shuffled those ciphertexts. Decryption would then
break the secrecy of the votes for everyone.

4 Fixes

The attack described in the previous section relies upon the fact that product of
all ciphertexts has a known relationship which allows computing an encryption
of the mark. The intuition behind the fixes is to spoil this clean relationship.
However, significant care must be taken not to introduce new problems while
doing this.

4.1 Addition of dummy ciphertexts

A first possible approach is to require each mixer to add extra ”decoy” cipher-
texts to its output, placed in a random position, which would be an encryption
of a specified plaintext (think “decoy mixer k”) OAEP3-transformed, so that
the ElGamal plaintext is unknown (the OAEP3 transformation is probabilistic).
And adversary attempting to perform the attack described above would recover
Enc(aN1 ·OAEP3(“decoy mixer k”), from which—due to the probabilistic nature
of OAEP3—it could not recover the mark.

Once mixing is over all the ciphertexts are decrypted. It is expected that the
dummy ciphertexts initially fail to open. They are then isolated and checked to
ensure that after removing the marks added by latter mix servers they decrypt
to the expected message. If this check fails then an investigation is launched.

This fix prevents the attack described above, because the product of the
output ciphertexts now contains the extra decoy ciphertext, whose content is
unknown thanks to the probabilistic nature of OAEP3. As a result, the attacker
becomes unable to obtain an encryption of the marks (raised to a known power):
doing so would require guessing the position at which the dummy ciphertext
is added. However, the probability of guessing this position wrongly is non-
negligible, actually close to one for a large number of ciphertexts to be mixed.
Specifically, if n is the number of senders and d is the number of decoys the
adversaries chance is 1−

(
n+d
d

)
.

4.2 DDH in groups of unknown order

Another possibility to fix this issue is to prevent deriving an encryption of ai
from an encryption of aNi . This operation is easy to perform in the prime order
groups that are typically used for ElGamal encryption.

The picture changes if we compute in groups of hidden order in which DDH
is believed to be secure. A classical example [6, 4] of such groups would be the
group of quadratic residues modulo an RSA modulus n = pq such that (p−1)/2
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and (q − 1)/2 are prime. Here, the order of the DDH group is (p− 1)(q − 1)/4,
which is unknown to anyone ignoring the factors of n, and extracting N -th roots
becomes a hard problem.

This solution makes it possible to use the marked-mixnet protocol without
any change, but requires the generation of an RSA modulus of unknown factori-
sation, which may be an inconvenience, even though it can be performed using
standard MPC protocols.

5 Remarks on Security

In this short paper, we refer to the original Marked Mix-net paper for further
security discussions: they remain valid for our modified version of the protocol,
both when generalising to RCCA Encryption systems, and when we include the
fixes to the attacks.

To achieve a quantum-safe system we need to use a quantum safe RCCA
encryption system which meets our additional constraints. The only quantum
safe RCCA encryption scheme [2] in the literature does not appear to work. It
is an interesting area of future work to modify or create a PQ RCCA encryp-
tion scheme to meet our constraints. Since the mix-net construction is simple
compared to full verifiable mix-nets, especially not employing non-interactive
zero-knowledge proofs, the marked mix-nets provide a good opportunity for an
efficient way of quantum-safe privacy-preserving mixing, and the first fix sug-
gested above should work with any PQ safe encryption system.

A full detailed security analysis of marked mix-nets is out of the scope of this
short paper and remains an important piece of future work.

6 Conclusion and Future Work

We have shown that marked mix-nets as original presented are not secure but
that there are straightforward fixes for the construction to prevent this attack.
We also show that it is straightforward to generalise the construction to work
with most rerandomisable CCA cryptosystems. In particular, this will also enable
quantum-safe versions of marked mix-nets. It is an area of ongoing work to
rigorously define and prove the security of the marked mix-nets construction.
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