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ASYMPTOTIC ERROR DISTRIBUTION FOR THE RIEMANN

APPROXIMATION OF INTEGRALS DRIVEN BY FRACTIONAL

BROWNIAN MOTION

VALENTIN GARINO, IVAN NOURDIN, AND PIERRE VALLOIS

Abstract. We consider Riemann sum approximations of stochastic in-
tegrals with respect to the fractional Browian motion of index H ≥ 1

2
.

We show the convergence of these schemes at first and second order.
The processes obtained in the limit in the second case are stochastic
integrals with respect to the Rosenblatt process if H > 3

4
and the stan-

dard Brownian motion otherwise. These results are obtained under the
assumption that the integrand is a “controlled” process. We provide
many examples of such processes, in particular fractional semimartin-
gales and multiple Wiener-Itô integrals.

1. Introduction

Fractional Brownian motion was introduced by Kolmogorov [14] in the
40’s. Mandelbrot and Van Ness [18] popularized it and gave some quan-
titative properties. Since then, its range of applications has been steadily
growing: for example, nowadays it can serve to recreate certain natural
landscapes (such as submarine floors, see [26]) or to model rainfalls (see
[32]). It also often serves as a model in hydrology (e.g. [20]), telecommuni-
cations (e.g. [15, 19]), finance (e.g. [3]) or physics (e.g. [33]), to name but a
few. Since the explicit calculation of stochastic integrals driven by fractional
Brownian motion is impossible except in very particular cases, it is natural
to try to approximate these integrals by Riemann sums and to study their
convergence.

In [29], Rootzén considered the Itô integral
∫ t

0 usdBs of an adapted inte-
grand u with respect to a standard Brownian motion B, and investigated the

asymptotic behavior of the approximation error
∫ t

0 usdBs −
∫ t

0 u
n
s dB when

un are approximating integrands (for instance, we can choose un so that∫ t

0 u
n
s dBs corresponds to the Riemann sum associated with

∫ t

0 usdBs). Us-
ing Itô stochastic calculus, Rootzén [29] exhibits after proper normalisation

a stable limit of the form
∫ t

0 asdWs, with W a Brownian motion independent
of B. As an illustration, he applied his abstract result to prove a func-
tional central limit-type theorem in the space DR([0, T ]) of càdlàg functions
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equipped with the Skorohod topology, and with us = f(Bs) (provided f is
smooth and bounded enough):

√
n



∫ t

0
f(Bs)dBs −

⌊nt⌋−1∑

k=0

f(B k
n
)(B k+1

n
−B k

n
)




t∈[0,T ]

stably−→
n→∞

(√
1

2

∫ t

0
f ′(Bs)dWs

)

t∈[0,T ]

.(1)

Rootzén’s work [29] paved the way for a new area of research on the
subject and related topics. For example, we can mention multidimensional
extensions (see [16]), generalizations to the case of random discretisation
times (see [7]), applications in finance (see [9]) and approximation schemes
of stochastic differential equations (SDEs) driven by semimartingales (see
[12]). The recent paper [1] provides an asymptotic expansion for the weak
discretization error of Itô’s integrals.

Approximation schemes for SDEs driven by a fractional Brownian mo-
tion has been addressed in [11, 21]. But Riemann sums approximations of
stochastic integrals with respect to fractional Browian motion, as done by
Rootzén [29] in the case of the standard Brownian motion, had not yet been
studied; the aim of this article is to fill this gap.

In the present paper, we deal with a fractional Brownian motion B of
Hurst index H ∈

[
1
2 , 1
)
. All the processes considered in this paper will

always be implicitly assumed to be measurable with respect to B. Also,
note that the range of H includes 1

2 (corresponding to Brownian motion),
which will allow us to compare our results with those of [29]. Our goal is
to analyze the fluctuations around the approximation by Riemann sums of
stochastic integrals with respect to a fractional Brownian motion. We will
set up an approach based on two main steps.

• Step 1: weighted limit theorem. Let (un) be a sequence of processes

of the form un =
∑⌊n·⌋

k=1X
n
k for which a functional convergence un →

w holds. We extend this convergence to

⌊n·⌋∑

k=1

h k
n
Xn

k −→
∫ ·

0
hsdws

for a given class of appropriate random processes h, and where the
nature of the integral with respect to w (Itô, Young, etc.) is chosen
according to the features of w. When the sequence (Xn

k ) is built
from the increments of a fractional Brownian motion, this type of
questions has received some important contributions in recent years,
see e.g. [17] and the references therein. We also mention [11], which
was actually our main inspiration for this step.
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• Step 2: Taylor expansion. To perform Step 1, we assume that our
integrand u is ‘controlled’ by the increments of the integrator B,
in the sense that there is a process h and a remainder r such that
ut = us+hs(Bt−Bs)+ rs,t for any t ≥ s. These types of Taylor-like
expansions are strongly related with the notion of controlled paths
studied in the rough path theory, see [10]. We will characterize
precisely the set of such processes below.

The statement of the two main Theorems 1.2 and 1.3 require the intro-
duction of notations:

(i) a d-dimensional fractional Brownian motion B (for some d ∈ N∗) of
Hurst index H ∈

[
1
2 , 1
)
(as already mentioned, all the processes considered

in this paper are implicitly assumed to be measurable with respect to B);
(ii) an m-dimensional process u, with the property that the stochastic

integrals
∫ t

0 u
i
sdB

j
s , 1 ≤ i ≤ m, 1 ≤ j ≤ d, are well-defined. At this stage,

we note that the integrals
∫
uidBj must be understood in the Young sense

when H > 1
2 and in the Itô sense when H = 1

2 . Precise statements will be
given later on.

(iii) our quantity of interest: for t ∈ [0, T ], 1 ≤ i ≤ m, 1 ≤ j ≤ d,

(2) Mn,i,j
t = n2H−1

(∫ t

0
uisdB

j
s −

ntn∑

k=0

uik
n

(
Bj

k+1
n

∧t
−Bj

k
n

))
.

In (2) and in all what follows, we write tn = ⌊nt⌋
n

when t ∈ R+ and n ∈
N \ {0}.

(iv) the correlation function: for all t ≥ s and all y ≥ x,

rH(s, t, x, y) = E
[
(B1

t −B1
s )(B

1
y −B1

x)
]

=
1

2

(
|t− x|2H + |s− y|2H − |s− x|2H − |t− y|2H

)
;

(v) the rate function at zero

κH(v) :=





√
v if H ∈ [12 ,

3
4)√

v ln 1
v

if H = 3
4

v2−2H if H ∈ (34 , 1)

, v ∈ (0, 1];

(vi) the rate function at infinity

νH(n) :=





√
n if H ∈ [12 ,

3
4)√

n/ lnn if H = 3
4

n2−2H if H ∈ (34 , 1)

, n ≥ 1.

In addition, we assume that the process u considered in point (ii) satisfies
a structural condition, that we describe now. Set

f1(s, t, x, y) = |t− s|2H−1|x− y|2H−1rH(s, t, x, y);

f2(s, t, x, y) = f1(s, t, x, y)κH (|t− s|)κH(|x− y|).
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We introduce the two following spaces C1 and C2 of pseudo-controlled paths.

Definition 1.1. Fix a ∈ {1, 2}. We say that the pair (u, P ) belongs to Ca

if:

• P = (P i,j
t )t∈[0,T ],1≤i≤m,1≤j≤d is an (m× d)-dimensional process ;

•
∫ t

s
uirdB

j
r is well-defined for any 1 ≤ i ≤ m and 1 ≤ j ≤ d;

•
(3) E

[
Li,j
s,t L

i,j
x,y

]
= o(fa(s, t, x, y))

for all 1 ≤ i ≤ m and 1 ≤ j ≤ d, uniformly on (s, t, x, y) ∈ [0, T ]4

such that s ≤ t and x ≤ y as |t− s|+ |x− y| → 0, where

(4) Li,j
s,t =

∫ t

s

{
uir − uis −

d∑

k=1

P i,k
s (Bk

r −Bk
s )

}
dBj

r .

We note the obvious inclusion C2 ⊂ C1. We give two examples to un-
derstand Definition 1.1. For the first one, we consider the case where each
component ui of u is a “fractional semimartingale”, namely

uit = ui0 +

d∑

j=1

∫ t

0
ai,js dBj

s +

∫ t

0
bisds, t ∈ [0, T ].

Then, under certain assumptions on a and b (see Section 3.1 for precise
statements), the pair (u, a) belongs to C2 with a = P .

For the second one, we assume that m = d = 1 (for simplicity) and
that u has the form of a multiple Wiener-Itô integral of order q ≥ 1; then,
with Ps = Dsus (where D indicates the Malliavin derivative) and under
some conditions, the pair (u, P ) belongs to C2, see Section 3.2 for precise
statements.

We can now state our two main results. The framework of Theorem 1.2
is general (assuming that the pair (u, P ) belongs to C1 and satisfies other
technical conditions) and concerns the convergence of Mn,i,j as n → ∞ in
probability, towards an identified limit. The situation where H > 1

2 differs

significantly from H = 1
2 , because in this latter case Mn,i,j converges in law

(but not in probability, because of the creation of an independent alea, see
e.g. (1)).

Theorem 1.2. (First order convergence) Fix H ∈ (12 , 1) and let (u, P ) ∈ C1

be such that P is a.s. continuous and satisfies E
[
‖P‖2+γ

∞

]
< +∞ for some

γ > 0. (Here and throughout the paper, we write ‖ · ‖∞ to indicate the
uniform norm over [0, T ].) Then, uniformly on [0, T ] in probability,

(5)
{
Mn,i,j

·

}
1≤i≤m,1≤j≤d

−→
n→∞

{
1

2

∫ ·

0
P i,j
s ds

}

1≤i≤m,1≤j≤d

.

Moreover, this convergence also holds in L2(Ω) for any fixed t ∈ [0, T ].
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Theorem 1.2 give sufficient conditions for (5) to take place. These condi-
tions are however not necessary: we develop in Section 3.4 an example where
the assumptions of Theorem 1.2 are not satisfied whereas the convergence
(5) holds.

Let us now study the fluctuations of Mn,i,j
· around its limit.

Theorem 1.3 (Second order convergence). Fix H ∈ [12 , 1), and let Z =

(Zk,j)1≤k,j≤d (resp. W = (W k,j)1≤k,j≤d) denote the matrix-valued Rosen-
blatt process measurable with respect to B (resp. the matrix-valued Brownian
motion independent from B) constructed in Section 2.5.

(A) [non-Brownian case H > 1
2 ] Assume (u, P ) ∈ C2, u is α-Hölder

continuous for some α > 1 − H and P is β-Hölder continuous over [0, T ]
for some β > 1

2 .

• If 1
2 < H ≤ 3

4 then, stably in CRm×d([0, T ]),
{
νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0
P i,j
s ds

)}

1≤i≤m,1≤j≤d

−→
n→∞

{
d∑

k=1

∫ ·

0
P i,k
s dW k,j

s

}

1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as Wiener
integrals.

• If 3
4 < H < 1, assume in addition that

∑d
j=1

∑m
i=1 E‖P i,j‖2+γ

β < ∞
for some γ > 0 where, here and throughout the paper, ‖·‖β indicates
the usual β-Hölder seminorm (see also (6)). Then, uniformly on
[0, T ] in probability,

{
νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0
P i,j
s ds

)}

1≤i≤m,1≤j≤d

−→
n→∞

{
d∑

k=1

∫ ·

0
P i,k
s dZk,j

s

}

1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as Young
integrals. Moreover, this convergence also holds in L2(Ω) for any
fixed t ∈ [0, T ].

(B) [Brownian case H = 1
2 ] Assume that (u, P ) ∈ C2, that u and P

are progressively measurable, and that P is a.s. piecewise continuous with

E
[
‖P‖2+γ

∞

]
< +∞ for some γ > 0. Then, stably in CRm×d([0, T ]),

{
νH(n)Mn,i,j

·

}
1≤i≤m,1≤j≤d

−→
n→∞

{
d∑

k=1

∫ ·

0
P i,k
s dW k,j

s

}

1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as Wiener integrals.
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In Theorem 1.3, we could have considered non-uniform or even random
subdivisions (like done in [7] in the semimartingale context) but this would
have led to significant technical complications due to the non-stationarity
of the resulting sequence of increments. Similarly, we could also have re-
place the fractional Brownian motion by a general Gaussian processes with
a covariance function assumed to behave locally as that of the fractional
Brownian motion.

The rest of the paper is organized as follows. Section 2 contains some
reminders and useful results about Malliavin calculus and fractional inte-
gration. In Section 3, we discuss in details some examples. Finally, the
proofs of the main results are given in Section 4.

2. Preliminaries

2.1. Notation. In the sequel, N (resp N∗) will denote the space of nonega-
tive (resp strictly positive) integers, Ck([0, T ]) (resp Ck

b ([0, T ])) the space of
k-times continuously differentiable functions (resp k-times continuously dif-
ferentiable with bounded derivatives) over [0, T ], and Cθ([0, T ]) the space of
θ-Hölder continuous functions (with θ ∈ (0, 1)) endowed with the θ-Hölder
seminorm, i.e

(6) ‖f‖θ = sup
0≤s<t≤T

|f(t)− f(s)|
|t− s|θ .

We also consider the space CRp([0, T ]) of functions [0, T ] → Rp endowed with
the norm ‖ · ‖∞ of uniform convergence over [0, T ], the space DRp([0, T ]) of
càdlàg functions endowed with the Skorokod topology J1 and, for p > 0, the
space Lp(Ω) of random variables endowed with the Lp(Ω)-norm ‖ · ‖p.

2.2. Reminders of Malliavin calculus. This section is a condensed sum-
mary of some notions presented in [23, 24, 27]. It is the occasion to fix the
notation used in the paper. For more details or missing proofs, we refer the
reader to the aforementioned references.

Starting from now, we fix once for all an horizon time T > 0 and a

complete filtered probability space
(
Ω, (Ft)t∈[0,T ] ,F = FT ,P

)
. We consider

a d-dimensional fractional Brownian motion (Bt)t∈[0,T ] = (B1
t , . . . , B

d
t )t∈[0,T ]

defined on Ω. We assume that the filtration (Ft)t∈[0,T ] is generated by B.

Let B be the Gaussian space spanned by the (one-dimensional) fractional
Brownian motion B1. Let E be the linear space of step functions over [0, T ]
and let H be the Hilbert space obtained as the completion of E with respect
to the inner product induced from B1:

〈I[0,t], I[0,s]〉H = E[B1
tB

1
s ], 0 ≤ s, t ≤ T.
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The linear map defined on E by Φ : I[0,t] → B1
t is an isometry from (E , 〈., .〉H)

to (B,E[., .]), and can thus be extended to an isometry from the whole space
H.

For H = 1
2 , we have H = L2([0, T ]). When H > 1

2 , it is well known that
H contains distributions, and therefore is not a subspace of some convenient
functional space, see [27]. This is why we introduce the subspace |H| of
H, which is defined as the set of measurable functions f : [0, T ] → R such
that

∫
[0,T ]2 |f(x)||f(y)||x − y|2H−2dxdy < +∞. From [27], we have that

(|H|, ‖ · ‖|H|) is a Banach space with respect to the norm ‖ · ‖|H|, defined as

‖f‖2|H| = cH

∫

[0,T ]2
|f(x)||f(y)||x− y|2H−2dxdy,

with cH = H(2H − 1). We observe that ‖f‖|H| ≤ ‖f‖H for all f ∈ |H|.
Still for H > 1

2 , we define |H|⊗p, p ∈ N∗, to be the Banach space of
measurable functions f : [0, T ]p → R such that

∫

[0,T ]2p
|f(x1, . . . , xp)||f(y1, . . . , yp)|

p∏

i=1

|xi − yi|2H−2dxidyi < +∞.

Let n ∈ N∗ and let Sn be the space of infinitely differentiable functions
f : Rnd → R such that f and all its derivatives have at most polyno-
mial growth. We consider the Schwartz space C composed of all cylin-
drical random variables, that is, of all random variables F of the form
F = f(Bt1 , . . . , Btn), with n ∈ N∗, f ∈ Sn, and t1, . . . , tn ∈ [0, T ].

The pth-order Malliavin derivative of F ∈ C is the element

DpF = {Dp,j1,...,jp
l1,...,lp

F : l1, . . . , lp ∈ [0, T ]}1≤j1,...,jp≤d

belonging to ∩r≥1L
r(Ω,H⊗p2×d) defined as

D
p,j1,...,jp
l1,...,lp

F =

n∑

k1,...,kp=1

∂pf

∂xk1,j1 . . . ∂xkp,jp
(Bt1 , . . . , Btn)

p∏

i=1

I[0,tki ]
(li).

Since these operators are closable in Lr(Ω,H⊗p2×d) for all r ≥ 1, we can
consider the Sobolev space Dp,r as the closure of C with respect to the norm

‖F‖rDp,r = E[|F |r] +
p∑

m=1

d∑

j1,...,jm=1

E
[
‖Dm,j1,...,jmF‖rH⊗m

]
.

In the same way, it is possible to define the Malliavin derivative for step

processes u of the form u =
n−1∑
i=0

FiI[ti,ti+1] (where n ∈ N∗, t0 = 0, t1, . . . , tn ∈
[0, T ] and F1, . . . , Fn ∈ C), and to consider the associated spaces Dp,r(H).
In order to only deal with functions (and not distributions), we consider the
subspace Dp,r(|H|) of Dp,r(H), which is by definition the set of u ∈ Dp,r(H)
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that are such that u ∈ |H| a.s., D1u ∈ (|H|⊗2)d a.s., . . ., Dpu ∈ (|H|⊗p+1)pd

a.s.. This subspace is endowed with the norm

‖u‖rDp,r(|H|) = E‖u‖r|H| +

p∑

m=1

d∑

j1,...,jm=1

E
[
‖Dm,j1,...,jmu‖r|H|⊗m

]
.

Let u ∈ L2(Ω,H) be such that |E[〈D1,jF, u〉H]| ≤ Ku

√
E[F 2] for all F ∈ C

and j ∈ {1, . . . , d}, for some constant Ku depending only on u. We then
say that u belongs to the domain Dom(δ1,j), and we define the Skorohod
integral δ1,j as the adjoint of D1,j, that is, δ1,j(u) is the uniquely determined
random variable in L2(Ω) verifying the duality relationship:

(7) E[〈D1,jF, u〉H] = E[Fδ1,j(u)] for all F ∈ D1,2.

In the same way, if u is an element of L2(Ω,H⊗p) (p ≥ 2) we define the op-
erator δp = (δp,j1,...,jp)1≤j1,...,jp≤d as the adjoint ofD

p = (Dp,j1,...,jp)1≤j1,...,jp≤d

through the identity:

E[〈Dp,j1,...,jpF, u〉H⊗p ] = E[Fδp,j1,...,jp(u)] for all F ∈ Dp,2.

We can show that Dp,2(H) ⊂ Dom(δp).
The following two results will be also useful. The first one is a straightfor-

ward consequence of the Hardy-Littlewood-Sobolev inequality (see [2, The-
orem 6]), whereas the second one corresponds to [24, Proposition 1.3.1].

Proposition 2.1. (1) Fix an integer k ≥ 1. There exists M > 0 such
that, for all u ∈ L2(Ω, L2([0, T ]k)),

(8) E
[
‖u‖2|H|⊗k

]
≤ ME

[
‖u‖2L2([0,T ]k)

]
.

(2) For all u, v ∈ D1,2(H) and j ∈ {1, . . . , d}, we have

(9) E[δ1,j(u)δ1,j(v)] = E [〈u, v〉H] + E
[
〈D1,j

· u··,D
1,j
· v··〉H⊗H

]
.

2.3. Multiple Wiener-Itô integrals. Throughout all this section, we as-
sume for simplicity that the underlying fractional Brownian motion is one-
dimensional, i.e. that d = 1. We write Dk (resp. δk) instead of Dk,1,...,1

(resp. δk,1,...,1).
When the process u is deterministic in H⊗k, its Skorohod integral δk(u) is

called the kth-order Wiener-Itô integral of u. If ũ denotes the symmetriza-
tion of u (see the footnote 1), we have δk(u) = δk(ũ); we can therefore
assume without loss of generality that u is symmetric. In what follows, we
denote by H⊙k the set of symmetric elements in H⊗k.

The following statement summarizes what is needed about multiple Wiener-
Itô integrals in this paper. We refer e.g.to [23] for the proofs.

1If {ej}j≥1 denotes an orthonormal basis of H and if u is given by u =∑
j1,...,jk≥1 aj1,...,jkej1 ⊗ . . .⊗ ejk , then ũ = 1

k!

∑
σ

∑
j1,...,jk≥1 aj1,...,jkejσ(1)

⊗ . . .⊗ ejσ(k)
,

where the first sum runs over all permutation σ of {1, . . . , k}.
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Proposition 2.2. (1) (Isometry) For all integers k, l ≥ 1, all f ∈ H⊙k

and all g ∈ H⊙l,

E[δk(f)δl(g)] = k!〈f, g〉H⊗k I{k=l}.

(2) (Hypercontractivity) For all r ≥ 2 and all integer k ≥ 1, there exists
Ck,r > 0 such that, for all f ∈ H⊙k,

E
[
|δk(f)|r

]
≤ Ck,rE[|δk(f)|2]

r
2 .

(3) (Malliavin derivative) If us = δk(f(., s)) with f ∈ H⊗(k+1) symmet-
ric in the k first variables, then u ∈ D1,2(H), with

Dsut = kδk−1(f(., t, s)).

(4) (Product formula) Fix f ∈ H⊙k and g ∈ H⊙l and, as usual, let ⊗r

(resp. ⊗̃r) denote the contraction operator (resp. the symmetrization
of the contraction operator) of order r, see [23, Appendix B] for a
precise definition. Then,

δk(f)δl(g) =
k∧l∑

r=0

r!

(
k

r

)(
l

r

)
fδk+l−2r(f⊗̃rg).

2.4. Fractional Integration. This section gives a brief summary of the
useful properties related to the Young integral when the Hurst index H is
strictly bigger than 1

2 , see [34, 36] for more details.
The following result extends the Riemann integral to a larger class of

integrands and integrators. For p > 0, we use the classical notations
Cp−var([0, T ]) to denote the space of functions f : [0, T ] → R with finite
p-variations. It is well known that θ-Hölder continuous functions have 1

θ
-

finite variations.

Proposition 2.3. Suppose p, q > 0 are such that 1
p
+ 1

q
> 1. If f ∈

Cp−var([0, T ]) and g ∈ Cq−var([0, T ]) (with g continuous), then the limit of
Riemann sums

n−1∑

k=0

f

(
kT

n

)(
g

((
(k + 1)T

n
∨ a

)
∧ b

)
− g

((
kT

n
∨ a

)
∧ b

))

exists for all 0 ≤ a < b ≤ T , and is called the Young integral
∫ b

a
fdg of f

against g. It is compatible in the sense that, if 0 ≤ a < c < d < b ≤ T , then∫ d

c
fdg =

∫ b

a
fI[c,d]dg. Moreover, it satisfies the chain rule and the change

of variable formula.
Moreover, if f (resp g) are 1

p
-Hölder continuous (resp 1

q
-Hölder continuous),

we have the Young-Loeve estimates:
∣∣∣∣
∫ b

a

fdg − f(a)(g(b) − g(a))

∣∣∣∣ ≤ cµ,β‖f‖ 1
p
‖g‖ 1

q
|b− a|

1
p
+ 1

q ,

∣∣∣∣
∫ b

a

fdg

∣∣∣∣ ≤ cµ,β

(
‖f‖∞‖g‖ 1

q
|b− a|

1
q + ‖f‖ 1

p
‖g‖ 1

q
|b− a|

1
p
+ 1

q

)
,
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where cµ,β is a constant depending only on p and q.

When f : [0, T ]2 → R is such that f(t, t) = 0, we write f ∈ Cκ([0, T ]2) if

(10) ‖f‖κ := sup
0≤s 6=t≤T

|f(s, t)|
|t− s|κ < ∞.

Recall that, for each i, the fractional Brownian motion Bi has a.s. κ-
Hölder continuous paths for every κ < H. Therefore, if the process u has
a.s. finite α-variations for some α > 1 −H, it is an immediate consequence
of Proposition 2.3 that the Young integral

∫ ·
0 udB

i is well-defined pathwise

on [0, T ]; this makes the Young integral a suitable integral when H > 1
2 . In

contrast, it is not a suitable integral when H = 1
2 because, for instance, we

cannot deal with integrals as simple as
∫
BjdBi.

Another way to define the Young integral is to make use of the forward
integration à la Russo-Vallois [30]. Their forward integral is defined, for
fixed j, as

(11)

∫ ·

0
usdB

j
s = lim

ǫ→0

1

ǫ

∫ ·

0
us

(
Bj

s+ǫ∧· −Bj
s

)
ds,

provided the limit exists uniformly in probability over the interval [0, T ].
When H > 1

2 and u ∈ Cθ([0, T ]) with θ > 1−H, then the limit (11) exists

and coincides with the Young integral. When H = 1
2 and u is progressively

measurable, then the limit (11) exists and coincides with the Itô integral.
In [24], the following relationship between the forward and Skorohod in-

tegrals is shown.

Proposition 2.4. Assume that H > 1
2 , and let u ∈ D1,2(|H|) be a scalar

process. In addition, suppose that u verifies the following condition:

(12) ∀j ∈ {1, . . . , d},
∫ T

0

∫ T

0
|D1,j

s ur||r − s|2H−2dsdr < ∞ a.s..

Then, the limit (11) exists and verifies the relation

(13)

∫ T

0
usdB

j
s = δ1,j(u) +H(2H − 1)

∫ T

0

∫ T

0
D1,j

s ur|r − s|2H−2dsdr,

where the integral in the left-hand side is in the Russo-Vallois sense.

2.5. Matrix-valued Brownian motion and matrix-valued Rosenblatt
process. We introduce some probabilistic objects, taken from [11, Sections
2.4 and 2.5] when H > 1

2 , which we complete when H = 1
2 . For more

information about the Rosenblatt process, one can e.g. refer to [31].
(a) Assume first that H ∈

[
1
2 ,

3
4

]
. For H 6∈ {1

2 ,
3
4}, define

qH =
∑

p∈Z

∫ 1

0

∫ t

0

∫ p+1

p

∫ v

p

|s− u|2H−2|v − t|2H−2dsdvdudt

rH =
∑

p∈Z

∫ 1

0

∫ t

0

∫ p+1

p

∫ v

p

|s− t|2H−2|v − u|2H−2dsdvdtdu,
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and let q 1
2
= 1

2 , r 1
2
= 0 and q 3

4
= r 3

4
= 1

2 . We have qH ≥ rH by [11,

Lemma 2.1]. Let {W 0,i,j}1≤i≤j≤d and {W 1,i,j}1≤i,j≤d be two independent
families of independent standard Brownian motions, both independent of
our underlying process B. We set W 0,i,j = W 0,j,i for j < i. The matrix-
valued Brownian motion (W i,j)1≤i,j≤d is then defined as follows:

W i,j =

{
cH

√
qH + rH W 1,i,j if i = j

cH
√
qH − rHW 1,i,j + cH

√
rHW 0,i,j if i 6= j

,(14)

with the convention that c 1
2
= 1.

(b) Assume now that H ∈ (34 , 1). For any fixed t ∈ [0, T ], the sequence of
(d× d)-matrix-valued processes


n

⌊nt⌋−1∑

k=0

δ1,i
((

Bj
. −Bj

k
n

)
I[ kn , k+1

n ](.)

)


1≤i,j≤d

converges for all fixed t ∈ [0, T ] to some Zt. The continuous version of
the process (Zt)t∈[0,T ] is called the matrix-valued Rosenblatt proces of order
H. Each component of this matrix-valued process is α-Hölder continuous
for every α < 2H − 1. Moreover, the diagonals elements are independent
Rosenblatt processes with selfsimilarity index 2H − 1.

3. Examples

We start by defining the notion of controlled process. This notion plays a
key role because such a process verifies the conditions of Definition 1.1. We
then give two classes of examples: fractional semimartingales (i.e. processes
with decomposition (18)) and multiple Wiener-Itô integrals.

3.1. Controlled process. Throughout all this section, we assume H > 1
2 .

Recall that Cκ([0, T ]) denotes the set of κ-Hölder continuous functions f :
[0, T ] → R, whereas Cκ([0, T ]2) denotes the set of κ-Hölder continuous func-
tions f : [0, T ]2 → R such that f(t, t) = 0 for all t, see (10).

Definition 3.1 (Controlled process). Consider κ ∈ (12 , 1). The set D2κ([0, T ])
is defined as the set of pairs (u, P ) with u (resp. P ) an m-dimensional pro-
cess (resp. (m × d)-dimensional process) belonging a.s. to Cκ([0, T ]) and
such that the m-dimensional remainder process R defined by

(15) Ri
s,t = uit − uis −

d∑

j=1

P i,j
s (Bj

t −Bj
s), 0 ≤ s ≤ t ≤ T,

belongs a.s. to C2κ([0, T ]2).

For all (u, P ) ∈ D2κ([0, T ]), for all s, t ∈ [0, T ] and all j ∈ {1, . . . , d},
Theorem 4.10 in [6] implies:

(16) |Li,j
s,t| ≤ C (‖B‖κ‖R‖2κ + ‖P‖κ‖B‖2κ) |t− s|3κ
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where B is defined as Bk,j
s,t =

∫ t

s
(Bk

l −Bk
s )dB

j
l , L is given by Li,j

s,t =
∫ t

s
Ri

s,rdB
j
r

(or equivalently by (4)), and C is a constant depending only on κ and T . The
following proposition gives an explicit link between the notion of controlled
path à la Gubinelli [10] (Definition 3.1) and our notion of pseudo-controlled
path (Definition 1.1).

Proposition 3.2. Assume that κ >
2(H∧ 3

4
)

3 + 1
6 , (u, P ) ∈ D2κ([0, T ]) and,

for some θ > 0 and all j ∈ {1, · · · , d},

(17)

m∑

i=1

E


‖Ri‖2+θ

2κ +

d∑

j=1

‖P i,j‖2+θ
κ


 < ∞,

with R defined by (15). Then (u, P ) ∈ C2.

Proof. The proof is a straightforward combination of the identity (16), the
Hölder inequality and the forthcoming Lemmas 4.1 and 4.2. �

As a consequence of Theorem 1.3 and Proposition 3.2, we deduce the
following statement.

Proposition 3.3. Fix H > 1
2 , and let

(18) uit = ui0 +

d∑

j=1

∫ t

0
ai,js dBj

s +

∫ t

0
bisds, t ∈ [0, T ], i ∈ {1, . . . ,m},

where the ai,j are a.s. κ-Hölder continuous for some κ >
2(H∧ 3

4
)

3 + 1
6 and

the bj are β-Hölder continuous for some β > H − 1
2 . Assume moreover that

there exists θ > 0 such that
d∑

j=1

E

[
|bj0|2+θ + ‖bj‖2+θ

β +

m∑

i=1

‖ai,j‖2+θ
κ

]
< ∞.

Then, with Mn,i,j defined by (2) and W and Z the matrix-valued processes
of Section 2.5,

• if H ≤ 3
4 , then, stably in CRm×d([0, T ]),

{
νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0
ai,js ds

)}

i,j

−→
n→∞

{
d∑

k=1

∫ ·

0
ai,ks dW k,j

s

}

i,j

.

• if H > 3
4 , then, uniformly on [0, T ] in probability,

{
νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0
ai,js ds

)}

i,j

−→
n→∞

{
d∑

k=1

∫ ·

0
ai,ks dZk,j

s +
1

2

∫ ·

0
bisdB

j
s

}

i,j

.

Proof. Set vit = uit −
∫ t

0 b
i
sds = ui0 +

∑d
j=1

∫ t

0 a
i,j
s dBj

s . For any i, j, we have

νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0
ai,js ds

)
= An,i,j

· + Cn,i,j
·



RIEMANN APPROXIMATION OF FRACTIONAL INTEGRALS 13

with, for t ∈ [0, T ],

An,i,j
t = νH(n)

{
n2H−1

(∫ t

0
visdB

j
s −

ntn∑

k=0

vik
n

(
Bj

k+1
n

∧t
−Bj

k
n

))

−1

2

∫ t

0
ai,js ds

}

Cn,i,j
t = νH(n)n2H−1

(∫ t

0

∫ s

0
birdrdB

j
s −

ntn∑

k=0

∫ k
n

0
birdr

(
Bj

k+1
n

∧t
−Bj

k
n

))
.

We will show that (v, a) ∈ C2 and we will deduce from Theorem 1.3 the con-
vergence of (An,i,j)i,j . Then we will prove that (Cn,i,j)i,j converges either

to 0 in Cm×d([0, T ]) (when H ≤ 3
4) or uniformly in probability to 1

2

∫ ·
0 bsdBs

(when H > 3
4 ). The continuous mapping theorem will then allow to con-

clude.
We start by showing that (v, a) ∈ C2. For 0 ≤ s ≤ t ≤ T , set

Ri
s,t = vit − vis −

d∑

j=1

ai,js (Bj
t −Bj

s) =
d∑

j=1

∫ t

s

(ai,jr − ai,js )dBj
r .

Using the Young-Loeve inequality (Proposition 2.3), we have

|Ri
s,t| ≤ |t− s|2κ × cκ

d∑

j=1

‖ai,j‖κ‖Bj‖κ

‖vi‖κ ≤
d∑

j=1

(
‖ai,j‖∞‖Bj‖κ + cκ,κ‖ai,j‖κ‖Bj‖κT κ

)

≤
d∑

j=1

(
(1 + cκ,κ)T

κ‖ai,j‖κ + |ai,j0 |
)
‖Bj‖κ

where the last inequality comes from the fact that ‖ai,j‖∞ ≤ |ai,j0 |+T κ‖ai,j‖κ.
Thus, v verifies the condition of Proposition 3.2, with P i,j = ai,j. We deduce
that (v, a) ∈ C2, and we can apply Theorem 1.3 to (v, a), after observing
that v is α-Hölder continuous for all α = κ > 1

2 > 1 −H. This shows the

convergence of (An,i,j)i,j .
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We now study the convergence of Cn,i,j. Set sn = ⌊ns⌋/n. We have

Cn,i,j
t = νH(n)n2H−1

(∫ t

0

∫ s

0
birdrdB

j
s −

∫ t

0

∫ sn

0
birdrdB

j
s

)

= νH(n)n2H−1

(∫ t

0

∫ s

sn

(
bir − bisn

)
drdBj

s

+

ntn∑

k=0

bik
n

∫ k+1
n

∧t

k
n

(s− sn)dB
j
s

)

=: Rn,i,j
t +Dn,i,j

t .

Lemma 4.10 provides the desired convergence for Dn,i,j. It remains to show
that Rn,i,j is negligible. We have

Rn,i,j
t = νH(n)n2H−1

ntn∑

k=0

∫ k+1
n

∧t

k
n

(∫ s

k
n

(bir − bik
n

)dr

)
dBj

s .

Fix ε > 0 small enough. We can write, using the Young-Loeve inequalities
(Proposition 2.3) and denoting by c a constant independent of n (whose
value can change from line to another)

∫ k+1
n

∧t

k
n

(∫ s

k
n

(bir − bik
n

)dr

)
dBj

s

≤ c n−H+ε

∥∥∥∥∥

∫ ·

k
n

(bir − bik
n

)dr

∥∥∥∥∥
∞,
[
k
n
, k+1

n
∧t
] ‖B

j‖H−ε

+ c n−1−H+ε

∥∥∥∥∥

∫ ·

k
n

(bir − bik
n

)dr

∥∥∥∥∥
1,
[

k
n
, k+1

n
∧t
] ‖B

j‖H−ε

≤ c n−1−H−β+ε ‖bi‖β ‖Bj‖H−ε.

We deduce that ∣∣Rn,i,j
t

∣∣ ≤ c νH(n)nH−1−β+ε ‖bi‖β ‖Bj‖H−ε,

and then E
[
supt∈[0,T ](R

n,i,j
t )2

]
→ 0 (chosing ε small enough), proving the

convergence of this remainder to zero uniformly in probability. This con-
cludes the proof of Proposition 3.3. �

We now state a corollary of Proposition 3.3, which extends to the case
H > 1

2 a similar statement proved in [16] when H = 1
2 .

Corollary 3.4. Fix H > 1
2 , and let F : Rd → Rm be a C2-function

satisfying the following growth condition: for some K1,K2 > 0 and some
0 < γ < 2, one has, for all x ∈ Rd,
(19)

max
i∈{1,...,m}

max
j,k∈{1,...,d}

max

{
|F i(x)|,

∣∣∣∣
∂F i

∂xj
(x)

∣∣∣∣ ,
∣∣∣∣
∂2F i

∂xk∂xj

∣∣∣∣
}

≤ K1e
K2‖x‖

γ

Rd .
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Let ut = F (Bt). We have, with W and Z the matrix-valued processes of
Section 2.5:

• if H ≤ 3
4 , then, stably in CRm×d([0, T ]),

{
νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0

∂F i

∂xj
(Bs)ds

)}

i,j

−→
n→∞

{
d∑

k=1

∫ .

0

∂F i

∂xk
(Bs)dW

k,j
s

}

i,j

;

• if H > 3
4 , then, uniformly on [0, T ] in probability,

{
νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0

∂F i

∂xj
(Bs)ds

)}

i,j

−→
n→∞

{
d∑

k=1

∫ .

0

∂F i

∂xk
(Bs)dZ

k,j
s

}

i,j

.

Proof. The change of variable formula for the Young integral leads to

uit = F i(0) +

d∑

j=1

∫ t

0

∂F i

∂xj
(Bs)dB

j
s , 1 ≤ i ≤ m.

Then, u is of the type (18), with ai,j· = ∂F i

∂xj
(B·) and bi ≡ 0. The regularity

condition (19) implies that ai,j is α-Hölder continous for every α < H and
that

‖ai,j‖α ≤ K1

d∏

j=1

eK2T
γ(‖Bj‖α)γ

d∑

k=1

‖Bk‖α.

Lemma 4.1 then guarantees the existence of moments of any order for this
random variable, so that the desired conclusion follows from Proposition 3.3.
�

3.2. Multiple Wiener-Itô integrals. Assume H > 1
2 and, for simplicity,

d = m = 1. Let k ≥ 1 be an integer and let fk : [0, T ]k+1 → R be
measurable and symmetric in the first k variables (this latter condition is of
course immaterial when k = 1). Assume finally that fk(x1, . . . , xk, s) = 0 if
xl > s for at least one l. In that setting, Theorems 1.2 and 1.3 apply.

Proposition 3.5. Let the previous notation prevail, as well as the notation
from Section 2.2.

(1) Assume that fk is α-Hölder continuous on

D = {(x1, . . . , xk, s) ∈ [0, T ]k+1, s ≥ max(x1, . . . , xk)},
for some α > H. Set us = δk (fk(·, s)). Then, uniformly on [0, T ] in
probability,

Mn
· −→

n→∞

k

2

∫ ·

0
δk−1(fk(., s, s))ds.

(2) Assume 1
2 < H ≤ 3

4 . Assume moreover that the hypothesis of the
previous point holds, and that in addition

fk(x1, . . . , xk, s) = gk(x1, . . . , xk)I[0,s]k(x1, . . . , xk)
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with gk symmetric and β-Hölder continuous for some β > 1
2 . Then,

stably in CR([0, T ]) and with W an independent standard Brownian
motion,

νH(n)

(
Mn

· − k

2

∫ ·

0
δk−1(fk(·, s, s))ds

)

−→
n→∞

cH
√
qH + rH

∫ ·

0
δk−1(fk(·, s, s))dWs,

where qH and rH as defined in Section 2.5.

Proof. We only do the proof of point (2), since the proof of point (1) (which
requires to show that (u, P ) with Ps := Dsus verifies the assumptions of
Theorem 1.2) is very similar and easier. Before going into the details, let us
explain the main steps we are going to follow:

• in the first step, we show that u and P are β′-Hölder continuous for
some β′ > 1

2 > 1−H;
• in the second step, we provide a suitable decomposition of Ls,tLx,y.
We recall that Ls,t is defined as

(20) Ls,t =

∫ t

s

(ul − us −Dsus(Bl −Bs)) dBl;

• finally, in the remaining steps, we analyze each term of the previous
decomposition and show that the stuctural condition (3) is verified,
i.e, for all 0 ≤ s ≤ t ≤ T and all 0 ≤ x ≤ y ≤ T ,

(21) E [Ls,tLx,y] = o|s−t|+|x−y|→0(f2(s, t, x, y)) uniformly in s, t ∈ [0, T ].

Step 1: Hölder continuity. The process u is adapted with respect to B and

belongs to D1,2(|H|) with Dsut = kδk−1 (fk(., s, t)) Is≤t by Propostion 2.2.
Using the hypercontractivity and isometry properties (again Proposition
2.2), we obtain, for a > 1 and s ≤ t,

E[|us − ut|a] ≤ Ck,aE[(us − ut)
2]

a
2

= Ck,a‖fk(·, s)− fk(·, t)‖aH⊗k

≤ Ck,a‖fk(·, s)− fk(·, t)‖a|H|⊗k ,

thanks to the continuous embedding |H|⊗k ⊂ H⊗k in the last line.
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Let ∆s,tfk(·) = fk(·, t) − fk(·, s). We have

‖fk(·, s)− fk(·, t)‖2|H|⊗k

= ckH

∫

[0,t]2k
|∆s,tfk(x)||∆s,tfk(y)|

k∏

m=1

|xm − ym|2H−2dxmdym

= ckH

k∑

i,j=1

∫

[0,t]2k
I[s,t](xi)I[s,t](yj)|gk(x)||gk(y)|

k∏

m=1

|xm − ym|2H−2dxmdym

= ckH

k∑

i,j=1
i 6=j

∫

[0,t]2k
I[s,t](xi)I[s,t](yj)|gk(x)||gk(y)|

×




k∏

m=1
m6=i,j

|xm − ym|2H−2dxmdym


 (|xi − yi||xj − yj|)2H−2dxidyidxjdyj

+ckH

k∑

i=1

∫

[0,t]2k
I[s,t](xi)I[s,t](yi)|gk(x)||gk(y)|

×




k∏

m=1
m6=i

|xm − ym|2H−2dxmdym


 |xi − yi|2H−2dxidyi.

From Lemma 4.2), we have
∫

[0,t]×[s,t]
|x− y|2H−2dxdy ≤ K|t− s|

for some constant K. Note that we take the liberty to change the value of
K from line to line in the rest of the proof. We deduce, for i 6= j, that

ckH

∫

[0,t]2k
I[s,t](xi)I[s,t](yj)|gk(x)||gk(y)|

k∏

m=1
m6=i,j

|xm − ym|2H−2dxmdym

≤ ‖gk‖2∞|t− s|2ck−2
H

∫

[0,t]2k−2

k∏

m=1
m6=i,j

|xm − ym|2H−2dxmdym.

As a result,

‖fk(·, s)−fk(·, t)‖2|H|⊗k ≤ K‖gk‖2∞
(
(k−1)2|t−s|2t2H(k−2)+k|t−s|2Ht2H(k−1)

)
.

Since |t− s| ≤ K|t− s|H on [0, T ]2, this leads to

E[|us − ut|a] ≤ K‖gk‖a∞|t− s|Ha.
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We can show a similar bound for the derivative Du:

E[|Dsus −Dtut|a] ≤ E[|Dsus −Dsut|a] + E[|Dsut −Dtut|a]
≤ Ck−1,a

(
‖fk(·, s, s) − fk(·, s, t)‖a|H|⊗k−1 + ‖fk(·, s, t)− fk(·, t, t)‖a|H|⊗k−1

)

and

‖fk(·, s, s)− fk(·, s, t)‖2|H|⊗k−1 + ‖fk(·, s, t) − fk(·, t, t)‖2|H|⊗k−1

≤ K‖gk‖2∞(k|t− s|2H t2H(k−1) + (k − 1)2t2H(k−2)|t− s|2)
+t2Hk‖gk‖2β |t− s|2β,

where ‖gk‖β is the Hölder seminorm of gk over [0, T ]k. Then,

E[|Dsus −Dtut|a] ≤ K(‖gk‖a∞|t− s|Ha + ‖gk‖aβ|t− s|βa).

Finally, for all a > 1 we have

E[|us − ut|a + |Dsus −Dtut|a] ≤ C
(
|t− s|aH + |t− s|aβ

)

= C
(
|t− s|a′+1 + |t− s|a′′+1

)
,

with a′ = aH − 1, a′′ = aβ− 1 and the constant C depending on k, a, ‖gk‖∞
and T .
Observe that a′

a
→ H and a′′

a
→ β when a → ∞. The Kolmogorov-Censov

criterion applies and yields that u and s → Dsus verifies the Hölder semi-
norm condition in Theorem 1.3, namely: u and P are β′-Hölder continuous
for all β′ such that β ∧H > β′ > 1

2 > 1−H.

Step 2: Decomposition of Ls,tLx,y (recall the definition of L from (20)). The

product formula (4) yields, for s ≤ t,

kδk−1 (fk(·, s, s)) (Bt −Bs) = kδk
(

˜fk(·, s, s)⊗ I[s,t](··)
)

+ k(k − 1)δk−2
(
fk(·, s, s)⊗1 I[s,t]

)
.

Then, ut − us −Dsus(Bt −Bs) = As,t − Cs,t, with

(22)

{
As,t = δk

(
fk(·, t) − fk(·, s)− k ˜fk(·, s, s)⊗ I[s,t](··)

)

Cs,t = k(k − 1)δk−2
(
fk(·, s, s) ⊗1 I[s,t]

)
.

Notice that Cs,t = 0 when k = 1. We also use the convention that
As,t = Cs,t = 0 if s > t.
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One can see2 that (u, P ) does not a priori belongs to D2κ for some κ > 1
2 ,

and therefore we cannot directly apply the results of Section 3.1.
To prove that (u, P ) ∈ C2 we will proceed as follows.
The hypothesis of Proposition 2.4 are verified by A and C. Indeed,

As,·, Cs,· ∈ D1,2(|H|) for all s ∈ [0, T ]. Moreover, using the same arguments
as in Step 1, one can show that DAs,· and DCs,· have almost continuous
paths in [0, T ]2, implying in turn that

∫ T

0

∫ T

0
(|DwAs,l|+ |DwCs,l|)|l − w|2H−2dldw < ∞ a.s.

for all s ∈ [0, T ].
Formula (13) allows to write

(23)

∫ t

s

Cs,ldBl = δ
(
Cs,· × I[s,t](·)

)
+ cH

∫ t

s

∫ t

0
DwCs,l|l − w|2H−2dwdl

as well as

(24)

∫ t

s

As,ldBl = δ
(
As,· × I[s,t](·)

)
+ cH

∫ t

s

∫ t

0
DwAs,l|l − w|2H−2dwdl.

2Indeed, assuming gk = 1, i.e fk(x1, . . . , xk+1) = I[0,xk+1]
k(x1, . . . , xk) we can

write Cs,t = δk−2
(
I[0,s]k−2(·)

∫ s

0

∫ t

s
|l − r|2H−2dldr

)
= rH(0, s, s, t)δk−2(I[0,s]k−2). Since

rH(0, s, s, t) > s|t − s| thanks to Lemma 4.2, we have
∣∣∣ Cs,t

|t−s|2κ

∣∣∣ ≥
s|δk−2(I

[0,s]k−2 )|

|t−s|2κ−1 for any

κ > 1
2
. We have δk−2(I[0,s]k−2) = Hk−2(Bs) (with Hk the k-th Hermite polynomial).

Since B as a Gaussian law, there is a real number l > 0 and a set Ω0 ⊂ Ω such that

P(Ω0) > 0 and ∀ω ∈ Ω0, |δ
k−2(I[0,s]k−2)(ω)| > l. Then

∣∣∣Cs,t(ω)

|t−s|2κ

∣∣∣ −→
s→t

+∞ for all fixed s > 0

and ω ∈ Ω0.
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For any 0 ≤ s ≤ t ≤ T and 0 ≤ x ≤ y ≤ T , we can then write Ls,tLx,y =∑4
i,j=1R

i,j(s, t, x, y), with

R1,1(s, t, x, y) = δ
(
Cs,·I[s,t](·)

)
δ
(
Cx,·I[x,y](·)

)

R1,2(s, t, x, y) = c2H

∫ t

s

dl

∫ t

0
dw

∫ y

x

dr

∫ y

0
dz

×DwCs,lDzCx,r|w − l|2H−2|z − r|2H−2

R1,3(s, t, x, y) = R1,4(x, y, s, t)

= cHδ
(
Cs,·I[s,t](·)

) ∫ y

x

∫ y

0
DwCx,l|l − w|2H−2dwdl

R2,1(s, t, x, y) = δ
(
As,·I[s,t](·)

)
δ
(
Ax,·I[x,y](·)

)

R2,2(s, t, x, y) = c2H

∫ t

s

dl

∫ t

0
dw

∫ y

x

dr

∫ y

0
dz

×DwAs,lDzAx,r|w − l|2H−2|z − r|2H−2

R2,3(s, t, x, y) = R2,4(x, y, s, t)

= cHδ
(
As,·I[s,t](·)

) ∫ y

x

∫ y

0
DwAx,l|l − w|2H−2dwdl

R3,1(s, t, x, y) = R4,1(x, y, s, t)

= δ
(
As,·I[s,t](·)

)
δ
(
Cx,·I[x,y](·)

)

R3,2(s, t, x, y) = R4,2(x, y, s, t)

= δ
(
As,·I[s,t](·)

) ∫ y

x

∫ y

0
DwCx,l|l − w|2H−2dwdl

R3,3(s, t, x, y) = R4,3(x, y, s, t)

= δ
(
Cs,·I[s,t](·)

) ∫ y

x

∫ y

0
DwAx,l|l − w|2H−2dwdl

R3,4(s, t, x, y) = R4,4(x, y, s, t)

= c2H

∫ t

s

dl

∫ t

0
dw

∫ y

x

dr

∫ y

0
dz

×DwCs,lDzAx,r|w − l|2H−2|z − r|2H−2.

We can easily check that

E
[
R1,3

]
= E

[
R2,3

]
= E

[
R3,1

]
= E

[
R3,2

]
= E

[
R3,4

]
= 0.

Indeed, these expectations reduce to a sum of expectations of products of
two multiple Wiener integrals of different orders, which are orthogonal in
L2(Ω) by Proposition 2.2. More precisely, Lemma 4.3 allows to show that
all the expectations in play vanish. For example,

E[R1,3] = cH

∫ y

x

∫ y

0
E[δ(Cs,·I[s,t](·))DwCx,l]|l −w|2H−2dwdl

which corresponds exactly to a term of the form (32).
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We will now apply Proposition 2.4, together with several inequalities, to
show that all the remaining terms satisfy the condition (3), namely

E[Ri,j(s, t, x, y)] = o|t−s|+|x−y|→0(f2(s, t, x, y))

for all (i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 3)} and uniformly in [0, T ]2.
(Starting from now, note that every time we write o|t−s|+|x−y|→0(f2(s, t, x, y)),
it is implicitely assumed that it takes place uniformly in s, t ∈ [0, T ].)

Whatever the value of (i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 3)}, de-
riving a bound for E[Ri,j] requires similar arguments. For this reason, in
what follows we will fully develop the cases (i, j) = (1, 1), (i, j) = (1, 2) and
(i, j) = (2, 1), then we will only explain the differences for the remaining
cases.

For notational simplicity, we will also write Ri,j instead of Ri,j(s, t, x, y).

Step 3: Bound on E[R1,2]. First, we give an upper bound for E[(DwCs,l)
2]:

for all w ∈ [0, t] and l ∈ [s, t],

E
[
(DwCs,l)

2
]

= k2(k − 1)2(k − 2)2 E

[(
δk−3

(
fk(·, w, s, s) ⊗1 I[s,l]

))2]

= k!k(k − 1)(k − 2)
∥∥fk(·, w, s, s) ⊗1 I[s,l]

∥∥2
H⊗k−3

≤ k!k(k − 1)(k − 2)‖gk‖2∞
∥∥∥I[0,T ]k−2 ⊗1 I[s,l]

∥∥∥
2

|H|⊗k−3
,

where, in the last inequality, we have used that |h1 ⊗1 h2| ≤ |h1| ⊗1 |h2| for
all h1, h2 ∈ D1,2(|H|). Moreover, according to Lemma 4.2,

∣∣I[0,T ]k−2 ⊗1 I[s,l]
∣∣ =

∣∣E[BT (Bs −Bl)]I[0,T ]k−3

∣∣ ≤ K|s− l|I[0,T ]k−3 .

Plugging this identity into (25) leads to

E
[
(DwCs,l)

2
]
≤ K|s− l|2.

As a result, and using the Hölder inequality, we have, for all s ≤ t and x ≤ y,
∣∣∣∣E
[∫ t

s

∫ t

0
DwCs,l|w − l|2H−2dwdl

∫ y

x

∫ y

0
DwCx,l|w − l|2H−2dwdl

]∣∣∣∣

≤
∫ t

s

∫ t

0

∫ y

x

∫ y

0
E
[
(DwCs,l)

2
] 1

2
E
[
(DzCx,r)

2
] 1

2

×|w − l|2H−2|z − r|2H−2dzdrdwdl

≤ K|t− s|2|x− y|2 = o|t−s|+|x−y|→0f2(s, t, x, y)

where, in the last identity, we made use of the following two facts: on one
hand |t − s||x − y| ≤ rH(s, t, x, y) according to Lemma 4.2; on the other
hand, and since H ≤ 3

4 ,

|t− s||x− y| = o|t−s|+|x−y|→0

(
|t− s|2H−1|x− y|2H−1κH(|x− y|)κH(|t− s|)

)
.
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Step 4: Bound on E[R1,1]. This term can be handled similarly, with the
help of Proposition 2.1:

∣∣E
[
δ(Cs,·I[s,t](·))δ(Cx,·I[x,y](·))

]∣∣

≤
∫

[s,t]×[x,y]
I[s,t](l)I[x,y](r)|E[Cs,lCx,r]||l − r|2H−2drdl

+

∫

[s,t]×[x,y]

∫

[0,s]×[0,t]
|E[DwCs,lDzCx,r]||l − r|2H−2|z − w|2H−2dzdwdrdl

≤ K‖gk‖2∞|t− s||x− y|rH(s, t, x, y),

where E[Cs,lCx,r] and E[DuCs,lDvCx,r] are computed by means of Proposi-
tion 2.2. Again, |t− s||x− y|rH(s, t, x, y) = o|t−s|+|x−y|→0(f2(s, t, x, y)).

Step 5: Bound on E[R2,1]. Using Proposition 2.1, we can write

|E[R2,1]| =
∣∣E
[
δ(As,·I[s,t](·))δ(Ax,·I[x,y](·))

]∣∣

≤
∫

[s,t]×[x,y]
dldrI[s,t](l)I[x,y](r)

∣∣E[As,lAx,r]
∣∣ |l − r|2H−2

+

∫

[s,t]×[x,y]
dldr

∫

[0,t]×[0,y]
dwdz

∣∣E[DwAs,lDzAx,r]
∣∣ |l − r|2H−2|z − w|2H−2.

Let us define the following function:

hsk(x1, . . . , xk, l)

:=

k∑

i=1

I[0,s]k−1(x1, . . . , xi−1, xi+1, . . . , xk)I[s,l](xi)

× (gk(x1, . . . , xk)− gk(x1, . . . , xi−1, xi+1, . . . , xk, s))

+gk(x1, . . . , xk)
k∑

i=1

I[s,l](xi)I[0,l]k−1\[0,s]k−1(x1, . . . , xi−1, xi+1, . . . , xn).

Since s ≤ l, we have:

fk(x1, . . . , xk, l)− fk(x1, . . . , xk, s)

= gk(x1, . . . , xk)

k∑

i=1

I[s,l](xi)I[0,s]k−1(x1, . . . , xi−1, xi+1, . . . , xk)

+gk(x1, . . . , xk)
k∑

i=1

I[s,l](xi)I[0,l]k−1\[0,s]k−1(x1, . . . , xi−1, xi+1, . . . , xk)

and

k ˜fk(·, s, s)⊗ I[s,l](x1, . . . , xk)

=

k∑

i=1

I[s,l](xi)I[0,s]k−1gk(x1, . . . , xi−1, xi+1, . . . , xk, s).
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We obtain, for all x1, . . . , xk ∈ [0, T ], that

fk(x1, . . . , xk, l)− fk(x1, . . . , xk, s)− k ˜fk(·, s, s)⊗ I[s,l](x1, . . . , xk)

= hsk(x1, . . . , xk, l).

Then, As,l = δk(hsk(·, l)), Ax,r = δk(hxk(·, r)) and, by Proposition 2.2 (isom-
etry),

∫

[s,t]×[x,y]
I[s,t](l)I[x,y](r)

∣∣E[As,lAx,r]
∣∣ |l − r|2H−2drdl

≤ k!ck+1
H

∫ t

s

dl

∫ y

x

dr

∫

[0,t]k×[0,y]k
|hsk(x1, . . . , xk, l)| |hxk(y1, . . . , yk, r)|

×
k∏

i=1

|xi − yi|2H−2|l − r|2H−2dx1 . . . dxkdy1 . . . dyk.

On the other hand, observe the following facts:

• hsk(x1, . . . , xk) = 0 if (x1, . . . , xk) ∈ [0, s]k;
• if there is a unique index i such that xi ∈ [s, l], then

|hsk(x1, . . . , xk)| = |gk(x1, . . . , xk)− gk(x1, . . . , xi−1, xi+1, . . . , xk, s)|
≤ ‖gk‖β|s− l|β;

• if there is more than one index i such that xi ∈ [s, l], then

|hsk(x1, . . . , xk, l)| ≤ ‖gk‖∞I[0,l](x1, . . . , xk)

k∑

i 6=j=1

I[s,l]2(xi, xj).

As a result,

|hsk(x1, . . . , xk, l)|

≤
k−1∑

i=1

I[0,s]k(x1, . . . , xi−1, xi+1, . . . , xk)I[s,l](xi)|xi − s|β‖gk‖β

+‖gk‖∞
k∑

i 6=j=1

gk(x1 . . . , xk)I[s,l]2(xi, xj)I[0,l]k(x1 . . . , xk).

We then have

ck+1
H

∫ t

s

∫ y

x

∫

[0,l]k×[0,v]k
|hsk(x1, . . . , xk, l)| |hxk(y1, . . . , yk, r)|

×
k∏

i=1

|xi − yi|2H−2|l − r|2H−2dx1 . . . dxkdy1 . . . dykdrdl

≤ (A+B + C +D)rH(s, t, x, y),
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with

A = ckH‖gk‖2β |t− s|β|x− y|β
k∑

i,j=1

∫

[0,t]k×[0,y]k
I[s,t](xi)I[x,y](yj)

×
k∏

m=1

|xm − ym|2H−2dx1 . . . dxkdy1 . . . dyk

B = ckH‖gk‖2∞
k∑

ii 6=i2,j1 6=j2=1

∫

[0,t]k×[0,y]k
I[s,t]2(xi1 , xi2)I[x,y]2(yj1 , yj2)

×
k∏

m=1

|xm − ym|2H−2dx1 . . . dxkdy1 . . . dyk

C = ckH |x− y|β‖gk‖β‖gk‖∞
k∑

ii 6=i2,j=1

∫

[0,t]k×[0,y]k
I[s,t]2(xi1 , xi2)I[x,y](yj)

×
k∏

m=1

|xm − ym|2H−2dx1 . . . dxkdy1 . . . dyk

D = ckH |t− s|β‖gk‖β‖gk‖∞
k∑

i,j1 6=j2=1

∫

[0,t]k×[0,y]k
I[s,t](xi)I[x,y]2(yj1 , yj2)

×
k∏

m=1

|xm − ym|2H−2dx1 . . . dxkdy1 . . . dyk.

We only write down the details for the upper bound of A, since the technique
is similar for the three other terms.

Two cases should then be analyzed to handle the integral A:

• i 6= j:

ckH

∫

[0,t]k×[0,y]k
I[s,t](xi)I[x,y](yj)×

k∏

m=1

|xm − ym|2H−2dx1 . . . dxkdy1 . . . dyk

= E[BtBy]
k−2E[By(Bt −Bs)]E[Bt(By −Bx)] ≤ K2

TT
2H(k−2)|t− s||x− y|,

where the last inequality follows from Lemma 4.2.

• i = j:

ckH

∫

[0,t]k×[0,y]k
I[s,t](xi)I[x,y](yj)×

k∏

m=1

|xm − ym|2H−2dx1 . . . dxkdy1 . . . dyk

= E[BtBy]
k−1E[(Bx −By)(Bt −Bs)]

≤ T 2H(k−1)rH(s, t, x, y) ≤ T 2H(k−1)|t− s|H |x− y|H ,
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where the last inequality comes from Lemma 4.2. We then have

A ≤ K(|t− s||x− y|+ |t− s|H |x− y|H)|t− s|β|x− y|β.
Similar arguments for handling the integrals B,C,D lead to

B ≤ K(|t− s|2H |x− y|2H + |t− s|H |x− y|H |t− s||x− y|+ |t− s|2|x− y|2)
C ≤ K|x− y|β(|x− y|H |t− s|1+H + |x− y||t− s|2)
D ≤ K|t− s|β(|t− s|H |x− y|1+H + |t− s||x− y|2).

Since β,H > 1
2 , we have

∣∣∣∣∣

∫

[s,t]×[x,y]
I[s,t](l)I[x,y](r)|E[As,lAx,r]||l − r|2H−2drdl

∣∣∣∣∣
≤ rH(s, t, x, y)(A +B + C +D) = o|t−s|+|x−y|→0(f2(s, t, x, y)).

We have DwAs,l = δk−1(hsk(x1, . . . , xk−1, u, l)). Similar computations allow

to treat the trace term:∫

[s,t]×[x,y]

∫

[0,s]×[0,t]
|E[DwAs,lDzAx,r]||l − r|2H−2|z − w|2H−2dzdwdrdl

= o|t−s|+|x−y|→0(f2(s, t, x, y)).

Putting all these facts together, we obtain

E[R2,1] = o|t−s|+|x−y|→0(f2(s, t, x, y)).

Step 6: Bound on E[R2,2 +R3,3 +R4,3]. We use similar arguments here as
in Step 5: we can obtain trough easy but tedious computations, and distin-
guishing again several cases,

E
[
R2,2 +R3,3 +R4,3

]
= o|t−s|,|x−y|→0f2(s, t, x, y).

Step 7: Conclusion . We have shown that

E [Ls,tLx,y] = o|t−s|,|x−y|→0(f2(s, t, x, y))

implying that (u, P ) ∈ C2. �

3.3. Examples in the Brownian motion case. Since this section only
concerns the standard Brownian motion case, in the following H = 1

2 . To
illustrate the novelty of our approach compared to that followed by Rootzén
in [29], we develop specific examples which cannot be obtained from [29].

In Proposition 3.3, we considered fractional semimartingales of the form
(18). Here, we take advantage of the standard Brownian framework, to

consider processes of the form (25). Note that the integrand V i,j
s,t is allowed

to depend on t in (25), making useless to consider a drift term as in (18).
Let

(
(uit)t∈[0,T ]

)
1≤i≤m

be a collection of square integrable and progres-

sively measurable processes, i.e. E
[
(uit)

2
]
< ∞ for all i and t. According to

the representation theorem for square integrable random variables, for all
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i and t there exists progressively measurable processes
(
(V i,j

s,t )0≤s≤t

)
1≤j≤d

such that, for all i and t:

(25) uit = E[uit] +

d∑

j=1

∫ t

0
V i,j
s,t dB

j
s a.s.,

and E
[ ∫ t

0 (V
i,j
s,t )

2ds
]
< ∞. We assume moreover:

(H1) (V i,j
s,t )0≤s≤t≤T is measurable for all i and j, and (i) (s, t) 7→ Vs,t has

a progressively measurable version, (ii) E[|V i,j
s,s − V i,j

s,t |2] + E[|V i,j
s,s −

V i,j
t,t |2] −→

s→t−
0 for all i, j uniformly in s ≤ t ∈ [0, T ] and (iii)

(V i,j
s,s )s∈[0,T ] is piecewise continuous.

(H2) For all i, j, the family
(
|V i,j

s,t |
)
s,t∈[0,T ]

is bounded by a square inte-

grable random variable S such that E[S2+γ ] < ∞ for some γ > 0.
(H3) One has, for all 0 ≤ s ≤ t ≤ T and all i ≤ m and j ≤ d

E

[∫ s

0
(V i,j

l,s − V i,j
l,t )

2dl

]
+
(
E[uis − uit]

)2 ≤ |s− t|µ(s, t),

where µ is a bounded function which is continuous on [0, T ]2 and
such that µ(s, s) = 0 for all s ∈ [0, T ].

As an application of Theorem 1.3 (with Ps = Vs,s), we can state the
following proposition.

Proposition 3.6. Assume (H1)−(H3) and recall that H = 1
2 . Then, stably

in CRm×d([0, T ]),

{
√
nM

n,(i,j)
· }1≤i≤m,1≤j≤d −→

n→∞

{
d∑

k=1

∫ ·

0
V i,k
s,s dW

k,j(s)

}

1≤i≤m,1≤j≤d

,

where W is the independent matrix-valued Brownian motion of Section 2.5.

Proof. To simplify, without loss of generality we assume that m = 1. We
then write P j = P 1,j, V j = V 1,j and Lj = L1,j for all 1 ≤ j ≤ d.

Given (H1), (iii) and (H2), we have that s 7→ Ps is piecewise continuous

over [0, T ], with E
[
‖P.‖2+γ

∞

]
< +∞. Thus, it remains to check that (u, P ) ∈

C2. Since we are dealing with the standard Brownian case and since s ≤ t
and x ≤ y, we note that rH(s, t, x, y) = ((t ∧ y)− (s ∨ x))+. Thanks to the
independence of increments, we are then left to check that ∀j ∈ {1 . . . , d},

E[Lj
s,tL

j
x,y] =

√
|t− s||x− y| × o|t−s|+|x−y|→0

(
((t ∧ y)− (s ∨ x))+

)
.
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We have, for all 1 ≤ j ≤ d and with B
i,j
s,t =

∫ t

s
(Bi

l −Bi
s)dB

j
l ,

Lj
s,t =

∫ t

s

uldB
j
l − us(B

j
t −Bj

s)−
d∑

i=1

P i
sB

i,j
s,t

=

∫ t

s

(E [ul]− E [us]) dB
j
l

+

∫ t

s

(
d∑

i=1

∫ l

0

((
V i
x,l − V i

x,s

)
I[0,s](x) +

(
V i
x,l − V i

s,s

)
I[s,l](x)

)
dBi

x

)
dBj

l

=: L1,j
s,t + L2,j

s,t .

Let s ≤ t and x ≤ y be such that s ∨ x ≤ t ∧ y. The hypothesis (H3)
allows us to write

E[L1,j
s,tL

1,j
x,y] =

∫ t∧y

s∨x
E[ul − us]E[ul − ux]dl

≤
√∫ t∧y

s∨x
(E[ul − us])

2 dl

∫ t∧y

s∨x
(E[ul − ux])

2 dl

≤ ((t ∧ y)− (s ∨ x))+
√

|t− s||x− y|
√

sup
l∈[s∨x,t∧y]

µ(s, l)µ(x, l).(26)

We also have:

E[L2,j
s,tL

2,j
x,y] =

∫ t∧y

s∨x
dl

d∑

i=1

E

[∫ l

0
((V i

r,l − V i
r,s)I[0,s](r) + (V i

r,l − V i
s,s)I[s,l](r))dB

i
r

×
∫ y

0
((V i

r,l − V i
r,x)I[0,x](r) + (V i

r,l − V i
x,x)I[s,l](r))dB

i
r

]
.

Moreover, thanks to the isometry property, the Cauchy-Schwarz inequality
and the assumption (H3), we can write, for all i ≤ d,

E

[∫ t

0
((V i

r,l − V i
r,s)I[0,s](r) + (V i

r,l − V i
s,s)I[s,l](r))dB

i
r

×
∫ y

0
((V i

r,l − V i
r,x)I[0,s](r) + (V i

r,l − V i
x,x)I[s,l](r))dB

i
r

]

≤
√

|t− s|µ(s, t) + sup
r∈[s,l]

E[V i
r,l − V i

s,s]
2
√

|x− y|µ(x, y) + sup
r∈[x,l]

E[V i
r,l − V i

x,x]
2.

(27)
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Using the Cauchy-Schwarz inequality and then (26) and (27), we finally
obtain

E[L1,j
[s,t]L

2,j
[x,y] + L2,j

[s,t]L
1,j
[x,y]]

≤ ((t ∧ y)− (s ∨ x))+
√

|t− s|(µ(s, t) + sup
l∈[s,t],r∈[s,l]

E[V i
r,l − V i

s,s]
2)

×
√

|x− y| sup
l∈[x,y]

µ(x, l)

+((t ∧ y)− (s ∨ x))+
√

|t− s|(µ(s, t) + sup
l∈[s,t],r∈[s,l]

E[V i
r,l − V i

s,s]
2)

×
√

|x− y| sup
l∈[x,y]

µ(x, l).

Thanks to (H3) we have that the function (s, t) → supx∈[s,t] µ(s, t) is uni-

formly continuous on [0, T ]2 and since µ(t, t) = 0 for all t,

sup
s,t∈[0,T ],|s−t|≤δ

sup
x∈[s,t]

µ(s, t) −→
δ→0

0.

On the other hand, we have thanks to (H1),

sup
s,t∈[0,T ],s≤t,|s−t|≤δ

sup
x∈[s,t]

E[(V i
x,l − V i

s,s)
2] −→

δ→0
0.

Finally, (u, P ) ∈ C2. �

We obtain a result analogous to Proposition 3.3 for semimartingale pro-
cesses but with weaker hypotheses on the volatility a and the drift b.

Corollary 3.7. Assume m = 1, and consider

ut = u0 +

d∑

j=1

∫ t

0
ajsdB

j
s +

∫ t

0
bsds.

Assume that aj is progressively measurable and piecewise continuous for any

j, that b is progressively measurable, that g(s, t) =
∑d

k=1 E
[
(aks − akt )

2
]
is

continuous as a function of two variables, that u0 is independent of B and
that for some γ > 0,

E

[
max
1≤j≤d

‖aj‖2+γ
∞

]
+ E

[
‖b‖2+γ

∞

]
< +∞.

Then, with Mn,1,j defined by (2), we have, stably in CRd([0, T ])

{√
nMn,1,j

·

}
1≤j≤d

−→
n→∞

{
d∑

i=0

∫ ·

0
aisdW

i,j
s

}

1≤j≤d

where W is the independent matrix-valued Brownian motion of Section 2.5,
see (14).
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Proof. We have that the function f : t →
∫ t

0 bsds is a.s. continuous and

satisfies E[‖f‖2+γ
∞ ] < ∞. Using Jensen inequality and the isometry property,

we easily see that
∣∣∣∣E
[∫ t

s

(∫ l

s

budu

)
dBj

l

∫ y

x

(∫ l

x

budu

)
dBj

l

]∣∣∣∣
≤ |x− y||t− s|(t ∧ y − s ∨ x)+ sup

l∈[0,T ]
E[b2l ],

that is, (
∫ ·
0 bsds, 0) ∈ C2. Then, Theorem 1.3 applies, and

∀j ∈ {1 . . . , d},
∫ t

0
dl

∫ l

0
bs dB

i
s −

ntn∑

k=1

∫ k
n

0
bldl(B

j
k+1
n

∧t
−Bj

k
n

)
C([0,T ])−→
n→∞

0.

Moreover, we can apply Proposition 3.6 to
∫ ·
0 asdBs with V 1,j

s,t = ajsI[0,t](s)
(all its assumptions are satisfied). Slutsky’s lemma allows finally to conclude.
�

Unlike the case H > 1
2 , here we can allow the volatility process a to

be discontinuous. An illustration of this fact is given by choosing d = 1,
(Ti)i≥1 a sequence of increasing stopping times such that Ti −→

i→∞
∞ a.s, a

sequence (xi)i≥1 ∈ RN∗
of progressively measurable processes on [0, T ] such

that
∑

i ‖xi‖2∞ < ∞, and

ut =
∑

i≥1

∫ t∧Ti

0
xisdBs.

We then have, stably in CR([0, T ]),
√
nMn

· −→ 1√
2

∫ ·

0

∑

i

xisI[0,Ti](s)dWs.

3.4. Irregular processes. In this section, H ∈ (12 ,
2
3). We state a first

order convergence for a general class of processes possessing mild regularity
properties.

Although the process u considered in Proposition 3.8 is of the form
us = F (Bs), the fact that F is supposed to be convex allows potential
discontinuities for F ′, and it becomes hopeless to expect a second order
result as obtained in Corollary 3.4 in a seemingly similar framework.

Proposition 3.8. Let us = F (Bs), s ∈ [0, T ], with F a real convex function
such that, for some K > 0 and γ ∈ (0, 2),

|F (x)| + |F ′(x)|+
∫ |x|

−|x|
(|a|+ 1)dF ′′(a) ≤ Ke|x|

γ

, x ∈ R,

where F ′ is the right derivative of F and F ′′ denotes its second derivative in
the distributional sense (a simple ‘non-smooth’ example is given by x → |x|).
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Then, for all t ∈ [0, T ],

Mn
t := n2H−1



∫ t

0
F (Bs)dBs −

⌊nt⌋∑

k=0

F (B k
n
)(B k+1

n
∧t −B k

n
)




L2(Ω)−→
n→∞

1

2

∫ t

0
F ′(Bs)ds.

Proof. The proof is divided into two steps: in the first one, we will first
show that us = F (Bs) belongs to D1,2(|H|) and give a suitable expression
for its Malliavin derivative. This is then in Step 2 that we will show the
L2(Ω)-convergence of Mn, with the help of Proposition 2.4 and of Lemma
4.6.

Step 1: u belongs to D1,2(|H|). Consider the truncated function

Fn : x → F (x)I|x|≤n + F (n)Ix>n + F (−n)Ix<−n.

Every convex function is locally Lipschitz continuous so the previous se-
quence is Lipschitz continuous. Then, by a slight extention of [23, Propo-
sition 2.3.8], we know that the process uns = Fn(Bs) belongs to D1,2(|H|),
and Dsu

n
t = (Fn)′(Bt)Is≤t. Moreover, Fn → F and (Fn)′ → F ′ point-

wise as n → ∞, and the growth condition on F and F ′ ensures that, for
all p > 2, the sequences Fn(Bs) and (Fn)′(Bs) are bounded in Lp(Ω, |H|)
and Lp(Ω, |H|× |H|) respectively. Then, these sequences are both uniformly
integrable in L2, and the bounded convergence theorem ensures that, as
n → ∞,

un → u in Lp(Ω, |H|)
I{·≤··}D·u

n
·· → I{·≤··} F

′(B··) in Lp(Ω, |H| × |H|).

Then, u ∈ D1,2(|H|), with Dsut = Is≤tF
′(Bt). Since F ′ is locally bounded,

the process u verifies the assumptions of Proposition 2.4.

Step 2: L2 convergence. By e.g. [28, page 224], we know that, for all
k ∈ N∗, there exist αk, βk ∈ R such that

F (x) = αk + βkx+
1

2

∫ k

−k

|x− a|dF ′′(a), x ∈ [−k, k].

Then, for all x ∈ R,

F (x) =

+∞∑

k=0

(
αk+1 + βk+1x+

1

2

∫ k+1

−k−1
|x− a|dF ′′(a)

)
I[−k−1,−k)∪[k,k+1)](x).

Since F is convex, dF ′′ can be identified with a Radon measure, which is
σ-finite. This allows us to interchange the integrals and derivatives. Since
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D·u·· = F ′(B··)I·≤·· we can then rewrite Du as:
(28)

Dsut = It≥s

+∞∑

k=0

(
βk+1 +

1

2

∫ k+1

−k−1
sign(Bt − a)dF ′′(a)

)
I[−k−1,−k)∪[k,k+1)](Bt),

where sign is the left derivative of x → |x|.
Let 0 ≤ t ≤ T . We have, thanks to Proposition 2.4 and recalling that

sn = 1
n
⌊ns⌋,

Mn
t − 1

2

∫ t

0
F ′(Bs)ds

= n2H−1
[ ∫ t

0
(F (Bs)− F (Bsn))δBs

+cH

∫ t

0

∫ s

0

(
F ′(Bs)I[0,s](l)− F ′(Bsn)I[0,sn](l)

)
|l − s|2H−2dlds

]

−1

2

∫ t

0
F ′(Bs)ds

=
1

2

∫ t

0

(
F ′(Bsn)− F ′(Bs)

)
ds

+n2H−1cH

∫ t

0

∫ sn

0

(
F ′(Bs)− F ′(Bsn)

)
|l − s|2H−2dlds

+n2H−1cH

∫ t

0

∫ s

sn

(
F ′(Bs)− F ′(Bsn)

)
|l − s|2H−2dlds

+n2H−1

∫ t

0
(F (Bs)− F (Bsn))δBs,

where we used the fact that cH
∫ tn+1

tn

∫ s

tn
|l − s|2H−2dlds = 1

2n
−2H .

We have

E

[(
n2H−1cH

∫ t

0

∫ sn

0

(
F ′(Bs)− F ′(Bsn)

)
|l − s|2H−2dlds

)2
]

≤ Kn4H−2E

[(∫ t

0
(F ′(Bs)− F ′(Bsn))ds

)2
]
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and

E

[(
n2H−1cH

∫ t

0

∫ s

sn

(
F ′(Bs)− F ′(Bsn)

)
|l − s|2H−2dlds

)2
]

= n4H−2c2H

∫ t

0

∫ t

0
E
[
(F ′(Bs)− F ′(Bsn)(F

′(Bx)− F ′(Bxn)
]

×
(∫ s

sn

∫ x

xn

|θ − s|2H−2|µ − x|2H−2dµdθ

)
dsdx

≤ E

[(∫ t

0
(F ′(Bs)− F ′(Bsn))ds

)2
]
,

and

E

[(
n2H−1

∫ t

0
(F (Bs)− F (Bsn))δBs

)2
]

≤ Kn4H−2E

[∫ t

0
(F (Bs)− F (Bsn))

2ds

]

+Kn4H−2E

[∫ s

0

∫ s

0
(Dlus −Dlusn)

2dlds

]

≤ Kn4H−2E

[∫ t

0
(F (Bs)− F (Bsn))

2ds

]

+Kn4H−2

(
E

[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))

2dlds

]

+E

[∫ t

0

∫ s

sn

F ′(Bs)
2dlds

])

with K depending only on T . We used (8) then (9) in Proposition 2.1, and
the fact that Dlus −Dlusn = F ′(Bs)Il≤s − F ′(Bsn)Il≤sn to obtain the last
inequality.

We have

n4H−2E

[∫ t

0

∫ s

sn

F ′(Bs)
2dlds

]
≤ n4H−3

2
E

[∫ t

0
F ′(Bs)

2ds

]
−→
n→∞

0

(because H < 2
3 ). We have

E

[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))

2dlds

]

= E

[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))

2I⌊Bs⌋=⌊Bsn⌋
dlds

]

+E

[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))

2I⌊Bs⌋6=⌊Bsn⌋
dlds

]
.
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Using (28), we have:

E

[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))

2I⌊Bs⌋=⌊Bsn ⌋dlds

]

=
1

4
E

[∫ t

0

∫ sn

0
dldsI[−k−1,−k]∪[k,k+1](Bs)

(∫ k+1

−k−1
(sign(Bs − a)− sign(Bsn − a))dF ′′(a)

)2

I⌊Bs⌋=⌊Bsn ⌋

]
.

Moreover, since dF ′′ is σ-finite, we can use Fubini’s theorem and Jensen’s
inequality to get that

E

[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))

2dlds

]
≤ t(Cn

t +Dn
t ),

with

Cn
t =

+∞∑

k=0

F ′′([−k − 1, k + 1))

×
∫ k+1

−k−1

∫ t

0
E
[
(sign(Bs − a)− sign(Bsn − a))2

× I[−k−1,−k)∪[k,k+1)](Bs)I⌊Bs⌋=⌊Bsn⌋

]
dsdF ′′(a);

Dn
t = E

[∫ t

0
(F ′(Bs)− F ′(Bsn))

2I⌊Bs⌋6=⌊Bsn ⌋ds

]
.

Let γ > 0 and let p, q > 0 be two conjugate exponents such that H−γ
p

>

4H − 2. (Notice that γ, p, q exist if and only if H < 2
3 .) We apply Hölder’s

inequality to obtain:

E
[
(sign(Bs − a)− sign(Bsn − a))2 I[−k−1,−k)∪[k,k+1)](Bs)I⌊Bs⌋=⌊Bsn ⌋

]

≤ E
[
|sign(Bs − a)− sign(Bsn − a)|2p

] 1
p
E
[
I[−k−1,−k)∪[k,k+1)](Bs)

] 1
q .

We know that E
[
I[−k−1,−k)∪[k,k+1)](Bs)

] 1
q = Ok→∞(e

− k2

2qT2H ) for all s ∈
[0, T ]. We also have that (by hypothesis on F ′′),

∞∑

k=0

F ′′([−k − 1, k + 1))e
− k2

2qT2H = Ok→∞(1).

By Lemma 4.6, for all a ∈ R,
∫ t

0
E
[
(sign(Bs − a)− sign(Bsn − a))2p

] 1
p
ds = on→∞(n2−4H),

where the o does not depend on t.
We then obtain:

(29) n4H−2Cn
t = on→∞(1).
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A similar use of Lemma 4.6 shows that, for all t,

n4H−2Dn
t + n4H−2E

[(∫ t

0
(F (Bs)− F (Bsn))ds

)2
]
= on→∞(1).

Putting these facts together leads to:

Mn
t

L2(Ω)−→
n→∞

1

2

∫ t

0
F ′(Bs)ds.

�

4. Proofs of the main Theorems and other results

Throughout all this section, we denote by B a fractional Brownian motion
of Hurst index H.

4.1. Miscellaneous. We start by giving a collection of technical results
that are used throughout the paper.

The following lemma is an easy consequence of Fernique’s theorem (see
e.g. [35] and the references therein), and represents a very useful tool for
proving the existence of moments for Hölder modulus of Gaussian function-
als.

Lemma 4.1. (Fernique) Assume that H > 1
2 and let B be the associated

Lévy area of B, defined as B
k,j
s,t =

∫ t

s
(Bk

l − Bk
s )dB

j
l . For all γ ∈ (0, 2)

and all κ ∈ (0,H), and for all function f satisfying the growth condition
|f(x)| ≤ exp |x|γ , we have

E[f(‖B‖κ + ‖B‖2κ)] < ∞,

where ‖ · ‖θ is the Hölder seminorm, see (6)-(10).

We also have the following elementary lemma.

Lemma 4.2. Assume H > 1
2 . There exists a constant kT > 0 such that,

for all x, y, s, t ∈ [0, T ]4 such that t ≥ s and y ≥ x,

(30) kT |t− s||y − x| ≤ rH(s, t, x, y) ≤ |t− s|H |x− y|H ,

(31) |E[Bt(Bx −By)]| ≤ |x− y|.
Proof. For the sake of simplicity, we will consider T = 1 (which only mod-
ifies the constants). In the expression (30), the right inequality is a simple
consequence of the Cauchy-Schwarz inequality. For the proof of the left
inequality, six cases must be analyzed carefully.

(i) case where t ≥ s ≥ y ≥ x. For fixed s, y, x, let

f(t) = (2H − 1)(t − s)(y − x) and g(t) = rH(s, t, x, y).

We have f(s) = g(s) = 0 and

g′(t)− f ′(t) = 2H
(
−(t− y)2H−1 + (t− x)2H−1

)
− (2H − 1)(y − x).
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We see that −(t − y)2H−1 + (t − x)2H−1 ≥ (2H − 1)(y − x) thanks
to an elementary function study, so

g′(t)− f ′(t) ≥ (2H − 1)2(y − x) ≥ 0,

so g(t) ≥ f(t) and then (2H − 1)|t− s||y − x| ≤ rH(s, t, x, y).

(ii) case where t ≥ y > s ≥ x. For fixed t, y, x, we see (thanks to
an elementary function study) that the quantity rH(s, t, x, y)− (t−
s)(y − x) decreases with s and then reaches its minimum for s = y.
Assume then s = y and let δ = t− x and a = y − x. Then

rH(s, t, x, y)− (t− s)(y − x)

≥ h(a) = δ2H − (a2H + (δ − a)2H + a(δ − a)).

We have h(δ) = h(0) = 0, and the function h is increasing over (0, δ2)
then decreasing, so is always positive.

(iii) case y > t ≥ x > s. This is similar to (ii).

(iv) case y ≥ x > t ≥ s. This is similar to (i).

(v) case t ≥ y ≥ x > s. Write Bt−Bs = (Bt−By)+(By−Bx)+(Bx−Bs)
and then combine the inequalities from (i) and (iv).

(vi) case y > t ≥ s ≥ x. This is similar to (v).

Finally, the proof of inequality (31) can be found in [22, Lemma 6]. �

The following lemma is used in Step 2 of the proof of Proposition 3.5.

Lemma 4.3. Let m,n ∈ N with m > n, f ∈ H⊙m ⊗ H, g ∈ H⊙n, h ∈
H⊙n ⊗ H. Let x ∈ [0, T ], Fx = δm(f(·, x)), G = δn(g),Hx = δn(h(·, x)).
Then, for all s ≤ t and u ≤ v,

(32) E[δ(F·I[s,t](·))G] = 0

(33) E[δ(F·I[s,t](·))δ(H·I[u,v](·))] = 0.

Proof. If n = 0, the result is immediate. Otherwise, thanks to Proposition
2.1, we can write:

E[δ(F·I[s,t](·))G]

=

∫

[0,T ]2
E[FxI[s,t](x)δ

n−1(g(·, y))]|x − y|2H−2dxdy

+

∫

[0,T ]4
E[Dw(FxI[s,t](x))Dz(δ

n−1(g(·, y)))]|x − y|2H−2

×|w − z|2H−2dxdydwdz.
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Thanks to Proposition 2.2, we have, for all x, y ∈ [0, T ],

E[Fxδ
n−1(g(·, y))] = 0.

Moreover, Dw(FxI[s,t](x)) = mδm−1(f(·, w, x))I[s,t](x), and
Dz(δ

n−1)(g(·, y)) = (n−1)δn−2(g(·, z, y)) if n ≥ 2 and Dz(δ
n−1(g(·, y))) = 0

otherwise. In any case, we have thanks to Proposition 2.2,

E[Dw(FxI[s,t](x))Dz(δ
n−1(g(·, y)))] = 0.

Equality (33) can be obtained by the same way. �

The following lemma provides a tightness criterion for two sequences of
processes in D([0, T ]) whose sum belongs to C([0, T ]). Recall the notation
sn = 1

n
⌊ns⌋ and tn = 1

n
⌊nt⌋.

Lemma 4.4. Let (Xn) ⊂ CR([0, T ]) be a sequence of continous stochas-
tic processes such that Xn

t = An
t + Cn

t for all t ∈ [0, T ], where An, Cn ∈
DR([0, T ]). Assume also the existence of α0, β0 > 0 such that

(34) E
[
|An

t −An
s |β0

]
≤ K|tn − sn|1+α0 , 0 ≤ s, t ≤ T,

and

(35) sup
t∈[0,T ]

|Cn
t |

P−→
n→∞

0.

Then the sequence Xn is tight in CR([0, T ]).
Proof. In [5], it is proved that the sequence (An) is tight in D([0, T ]). More-
over, the sequence (Cn) is also tight in D([0, T ]). As a result, (Xn) is tight
in D([0, T ]) as a sum of two tight sequences. Since the uniform and the
Skorohod topologies coincide on C([0, T ]), we deduce that (Xn) is tight in
C([0, T ]). �

The following lemma is used in the proof of the forthcoming (41).

Lemma 4.5. Let (Xn) ⊂ CR([0, T ]) be a tight sequence of continous sto-

chastic processes such that ∀t ∈ [0, T ], Xn
t

P−→ 0 as n → ∞. Then, as
n → ∞,

(36) sup
t∈[0,T ]

|Xn
t |

P−→ 0.

Proof. Let 1 > ǫ > 0. Since the function defined by x → 1∧ supt∈[0,T ] |xt| on
C([0, T ]) is continuous and bounded, we deduce that E

[
1 ∧ supt∈[0,T ] |Xn

t |
]
→

0 as n → ∞. Then, by Markov’s inequality and as n → ∞,

P

[
sup

t∈[0,T ]
|Xn

t | > ǫ

]
= P

[
sup

t∈[0,T ]
|Xn

t | ∧ 1 > ǫ

]
≤ 1

ǫ
E

[
sup

t∈[0,T ]
|Xn

t | ∧ 1

]
−→ 0.

�



RIEMANN APPROXIMATION OF FRACTIONAL INTEGRALS 37

The following lemma gives technical estimates used in the proof of Propo-
sitions 3.6 and 3.8.

Lemma 4.6. Assume H > 1
2 . Then, for all 0 ≤ t ≤ T , a ∈ R, γ > 0, p > 0

and θ ≥ 1, we have

(37)

∫ t

0
E
[∣∣∣sign(Bs − a)− sign(B ⌊ns⌋

n

− a)
∣∣∣
p] 1

θ
ds ≤ Kn

−H+γ
θ ,

and

(38)

∫ t

0
E
[
I⌊Bs⌋6=⌊Bsn⌋

] 1
θ ds ≤ Kn

−H+γ
θ (where sn = 1

n
⌊ns⌋),

with K depending only on T, δ, p, θ and where sign is the left derivative of
the function x → |x|.

Proof. We only do the proof of the first inequality, the proof of the second
one being similar. Moreover, for simplicity we reduce to a = 0 and θ = 1.

We have

sign(Bs)− sign(B ⌊ns⌋
n

) = 2I{
Bs≥0,B ⌊ns⌋

n

<0

} − 2I{
Bs<0,B ⌊ns⌋

n

≥0

}.

Plugging this identity into the integral yields

∫ t

0
E
[∣∣∣sign(Bs)− sign(B ⌊ns⌋

n

)
∣∣∣
p]

ds ≤ 2p+1

∫ t

0
E

[
I{Bs≥0,B ⌊ns⌋

n

<0}

]
ds.

On the other hand, for all k ∈ {2, . . . , nTn} and s ∈ [ k
n
, k+1

n
∧ T ),

• if s = k
n
, then P

[
I{Bs≥0,Bsn<0}

]
= 0

• else,

P
[
I{Bs≥0,Bsn<0}

]
= P

[
IB k

n
<0, Bs−B k

n
≥−B k

n

]

≤
+∞∑

i=0

E

[
I{

B k
n
∈[− i+1

n
,− i

n
]

}I{
Bs−B k

n
> i

n

}

]

=

+∞∑

i=0

E

[
I{

B1∈
[

− i+1

n1−H kH
,− i

n1−H kH

)}I{
Bns

k
−B1>

i

n1−H kH

}

]

(using the self-similarity of B)

=
1

2π
√

det(Σ)

+∞∑

i=0

∫ i+1

kH n1−H

i

kH n1−H

∫ −i

kHn1−H

−∞
e
−

(ns
k

−1)2H

2 det(Σ)
x2− 1

2 det(Σ)
y2+

cs,k
det(Σ)

xy
dydx

with cs,k = E
[
B1

(
Bns

k
−B1

)]
> 0, Σ =

(
1 cs,k
cs,k

(
ns
k
− 1
)2H

)
.
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We have det(Σ) = (ns
k
−1)2H − c2s,k. According to Lemma 4.2, cs,k ≤ ns

k
−1.

If k > 2, we have ns
k
− 1 ≤ 1

2 and then

(ns
k

− 1
)2H

≥ det(Σ) ≥
(ns
k

− 1
)2H (

1−
(ns
k

− 1
)2−2H

)

≥
(ns
k

− 1
)2H (

1− 1

22−2H

)
.

For all (x, y) ∈
[

i
kH n1−H , i+1

kH n1−H

]
×
(
−∞, −i

kHn1−H

]
,

cs,k
det(Σ)xy ≤ 0. Then,

P
[
I{Bs≥0,Bsn<0}

]

≤ 1

2π
√

(1− 22H−2)(ns
k
− 1)H

∫ i+1

kHn1−H

i

kHn1−H

∫ −i

kHn1−H

−∞

×e
−x2

2
− 1

2(ns
k

−1)2H
y2

dydx

≤ 1

2πn1−HkH
√

(1− 22H−2)(ns
k
− 1)H

×
+∞∑

i=0

e
−( i

kHn1−H )2
∫ −i

kHn1−H

−∞
e
− 1

2(ns
k

−1)2H
y2

dy

≤ 1

2πn1−HkH
√

(1− 22H−2)(ns
k
− 1)H

+∞∑

i=0

×e
− 1

2
( i

kHn1−H )2
∫ −i

kHn1−H

−∞
e−k2Hy2dy

≤ 1

2πn1−Hk2H
√

(1− 22H−2)(ns
k
− 1)H

+∞∑

i=0

e
− 1

2
( i

kHn1−H )2
∫ −i

n1−H

−∞
e−y2dy

≤ 1

2πn1−Hk2H
√

(1− 22H−2)(ns
k
− 1)H

+∞∑

i=0

e
− 1

2
( i

kHn1−H )2
∫ −i

n1−H

−∞
e−y2dy.

(39)

We have, for all i ∈ N∗, for all α ∈ (0, 1),

e
− 1

2
( i

kHn1−H )2 ≤ (n1−HkH)α

iα
and

∫ −i

n1−H

−∞
e−y2dy ≤ n1−H

i
.

Let α be such that α(2−H) < γ. The right-hand side (39) is then less than

nα(1−H)

2πk2H−α
√

(1− 22H−2)(ns
k
− 1)H

∞∑

i=1

1

i1+α
.
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Finally,
∫ t

0
E
[∣∣∣sign(Bs)− sign(B ⌊ns⌋

n

)
∣∣∣
p]

ds

≤ 2p+1

(
2

n
+

∫ t

2
n

P[Bs ≥ 0, Bsn < 0]ds

)

and
∫ t

2
n

P[Bs ≥ 0, Bsn < 0]ds

≤ 1

2π

ntn∑

k=1

1

k2H−α

∫ k+1
n

∧t

k
n

1√
(1− 22H−2)(ns

k
− 1)H

ds

∞∑

i=1

1

i1+α
nα(1−H)

≤ 1

2π
√

(1− 22H−2)

(
(t− tn)

H

(ntn)2H−α
+

1

1−H

ntn∑

k=2

1

nkH−α

)
∞∑

i=1

1

i1+α
nα(1−H)

≤ Kn−H+α(2−H)

This provides the desired estimate. �

4.2. Weighted quadratic variations of the fractional Brownian mo-
tion. In the proofs of Theorems 1.2 and 1.3, we will see that the announced
convergences are determined by the asymptotic behaviour of the weighted
quadratic variations of the fractional Brownian motion. These variations
have already been extensively studied, for example in [11, 22] and especially
in [4]. In the next three lemmas, we gather the results that are relevant to
us, and we extend them when necessary.

Lemma 4.7. Let x be a scalar process over [0, T ], and assume it is a.s

continuous and satisfies E
[
‖x‖2+γ

∞

]
< +∞ for some γ > 0. Let H > 1

2 .

Then,

(1) For all j ≤ d, for all t ∈ [0, T ]

(40) Sn,j
t,x = n2H−1

⌊nt⌋∑

k=0

x k
n

(
Bj

k+1
n

∧t
−Bj

k
n

)2
L2(Ω)−→
n→∞

∫ t

0
xsds.

(2) For all i 6= j,

(41) n2H−1

⌊nt⌋∑

k=0

x k
n
δ1,i
((

Bj
. −Bj

k
n

)
I[ k

n
, k+1

n
∧t](.)

)
L2(Ω)−→
n→∞

0.

These two convergences also holds UCP as a process over [0, T ].
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Proof. Step 1: Proof of (40). It is well known that (40) is true in the a.s.

sense if x = I[0,t] (see e.g [13]) and then (by substraction) for every process
of the type x = I[s,t] for s ≤ t. Now, consider 0 ≤ a0 ≤ . . . ≤ ap ≤ T and
let (α0, . . . , αp−1) be a collection of F-measurable random variables. For all
1 ≤ i ≤ p, let Ωi be the subset of Ω on which (40) holds true for the process
αiI[ai,ai+1]. Then P(∩p

i=1Ωi) = 1, and (40) holds (pointwise) for the step

process x =
∑p−1

i=0 αiI[ai,ai+1] on ∩p
i=1Ωi.

Moreover, if a process f is bounded for ‖ · ‖∞ in L2+γ then the sequence

{(Sn,j
t,f )

2}∞n=1 is uniformly integrable. Indeed, let A ∈ F and 0 < µ < γ.
Then

E
[
IA(S

n,j
t,f )

2
]

= n4H−2E




⌊nt⌋∑

k,l=0

IAf k
n
f l

n

(
Bj

k+1
n

∧t
−Bj

k
n

)2(
Bj

l+1
n

∧t
−Bj

l
n

)2



≤ n4H−2

⌊nt⌋∑

k,l=0

(
E
[
IA|f k

n
|1+

µ
2 |f l

n
|1+

µ
2

]) 1
1+

µ
2

×
(
E

[(
Bj

k+1
n

∧t
−Bj

k
n

)2q (
Bj

l+1
n

∧t
−Bj

l
n

)2q
]) 1

q

(using Hölder inequality with q the conjugate of 1 + µ
2 )

≤ K sup
s∈[0,T ]

(
E[IA|fs|2+µ]

) 2
2+µ ,

and this quantity converges to 0 as P(A) → 0, because
(
|fs|2+µ

)
s∈[0,T ]

is

uniformly integrable.
Back to the initial process x, we know, by uniform continuity of x on

[0, T ], that ‖x−xm‖∞ −→
m→∞

0 a.s. (where xm is the sampled process x ⌊m·⌋
m

).

As a result,

E

[(
Sn,j
t,x −

∫ t

0
xsds

)2
]

= E

[(
(Sn,j

t,x − Sn,j
t,xm) +

(
Sn,j
t,xm −

∫ t

0
xms ds

)
+

(∫ t

0
xms ds−

∫ t

0
xsds

))2
]

≤ C



n4H−2E



(

ntn∑

k=0

‖x− xm‖∞
(
B k+1

n
∧t −B k

n

)2
)2



+E

[(
Sn,j
t,xm −

∫ t

0
xms ds

)2
]
+ T 2E

[
‖x− xm‖2∞

]
}
,
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where C is a positive constant. The previous arguments, an appropriate

choice of n,m ∈ N∗ and the fact that ‖x−xm‖∞
L2+γ(Ω)−→
n→∞

0 allow to conclude.

Step 2: UCP convergence of Sn,j
·,x . According to Lemma 4.5, the UCP

convergence of Sn,j
·,x to

∫ ·
0 xsds follows from the convergence in probability of

Sn,j
t,x for fixed t and the tightness of the sequence (Sn,j

·,x )n in C([0, T ]). The
convergence in probability for fixed t is shown in Step 1. For the tightness,

this can be checked with Lemma 4.4 applied to Sn,j
t,x = An

t + Cn
t , with

An
t = n2H−1

ntn−1∑

k=0

x k
n

(
Bj

(k+1
n

)∧t
−Bj

k
n

)2

Cn
t = n2H−1xtn

(
Bj

t −Bj
tn

)2

α0 = 1, β0 = 2.

Indeed, using the Hölder inequality, we have for s ≤ t:

E[|An
t −An

s |2]

≤ n4H−2
ntn−1∑

k,l=nsn

(
E
[
‖x‖2+γ

∞

]) 1

1+
γ
2

(
E

[(
Bj

k+1
n

−Bj
k
n

)2p′ (
Bj

l+1
n

−Bj
l
n

)2p′
]) 1

p′

≤ n4H |tn − sn|2
(
E
[
‖x‖2+γ

∞

]) 1
1+

γ
2

(
E
[
(B 1

n
)4p

′
]) 1

p′ ≤ K|tn − sn|2

with p′ the conjugate of 1 + γ
2 and K some constant depending only on γ

and x.
On the other hand, B has (H−ǫ)-Hölder continuous paths for every ǫ > 0,

so that, for all t ∈ [0, T ], |Cn
t | ≤ Kǫn

2ǫ−1‖x‖∞ a.s. for some random variable

Kǫ > 0. Taking ǫ small enough, we have supt∈[0,T ] |Cn
t |

P−→
n→∞

0.

Step 3: Proof of (41). We now turn to the case i 6= j. Similarly to the

proof of (40) (Step 1), we first show (41) for x the function identically one,
in other words:

(42) Sn,i,j
t,1 = n2H−1

ntn∑

k=0

δ1,i
((

Bj
. −Bj

k
n

)
I[ k

n
, k+1

n
∧t](·)

)
L2(Ω)−→ 0.
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Using Proposition 2.1 and taking into account that D1,iBj = 0 if i 6= j, we
have:

E
[
(Sn,i,j

t,1 )2
]

= n4H−2
ntn∑

k,l=0

E

[〈(
Bj

. −Bj
k
n

)
I[ k

n
, k+1

n
∧t](.),

(
Bj

· −Bj
l
n

)
I[ l

n
, l+1

n
∧t](.)

〉

H

]

= n4H−2
ntn∑

k,l=0

cH

∫ k+1
n

∧t

k
n

∫ l+1
n

∧t

l
n

E[(Bx −B k
n
)(By −B l

n
)]|y − x|2H−2dydx

≤ n2H−2
ntn∑

k,l=0

〈I[ k
n
, k+1

n
∧t](.), I[ l

n
, l+1

n
∧t](·)〉H,

where the last inequality follows from the fact that: for all x ∈
[
k
n
, k+1

n

]
and

all y ∈
[
l
n
, l+1

n

]
,

|E[(Bx −B k
n
)(By −B l

n
)]| ≤

(
E[(Bx −B k

n
)2]
) 1

2
(
E[(By −B l

n
)2]
) 1

2 ≤ 1
n2H .

We also have
ntn∑

k,l=0

〈I[ k
n
, k+1

n
∧t](·), I[ l

n
, l+1

n
∧t](.)〉H = t2H ,

and then E
[
(Sn,i,j

t,1 )2
]
= On→∞(n2H−2), implying (42). To prove (41) in

the general case for x, we can then proceed exactly as in the proof of (40),
that is, we show first that (41) holds true for step processes and then, by an
approximation argument, to x. Tightness in C([0, T ]) can also be obtained
as for (40). By Lemma 4.5, this proves the UCP convergence to 0 of each

Sn,i,j
·,x with i 6= j. �

The study of the fluctuations (which are required for the proof of Theorem
1.3) being more delicate, more stringent assumptions on the process x are
required (except when H = 1

2 , see the first point in the proposition below).

Lemma 4.8. Let x = (xi,e)1≤i≤m,1≤e≤d be an (m× d)-dimensional process,
and recall the matrix-valued processes W and Z from Section 2.5. For any
1 ≤ i ≤ m and 1 ≤ e, j ≤ d, set

Sn,i,j,e
t,x =

ntn∑

k=0

xi,ek
n

∫ k+1
n

∧t

k
n

(
Be

s −Be
k
n

)
δBj

s .

We have

(1) If H = 1
2 and if, for all (i, e), xi,e is adapted to Be, piecewise con-

tinuous and satisfies E[supi,e ‖xi,e‖2+γ
∞ ] < ∞ for some γ > 0, then,

stably in C
Rd2×m([0, T ]),

(43)
(√

nSn,i,j,e
·,x

)
i,j,e

−→
n→∞

(∫ .

0
xi,es dW e,j

s

)

i,j,e

.
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(2) If 1
2 < H ≤ 3

4 and if x is β-Hölder continuous for some β > 1
2 , then,

stably in C
Rd2×m([0, T ]),

(
n2H−1νH(n)Sn,i,j,e

·,x

)
i,j,e

−→
n→∞

(∫ ·

0
xi,es dW e,j

s

)

i,j,e

.(44)

(3) If H > 3
4 and if x verifies that E

[
‖x‖2+γ

β

]
< +∞ for some β > 1

2

and γ > 0 then, in probability uniformly on [0, T ] (and also in L2(Ω)
for fixed t),

(45)
(
n2H−1νH(n)Sn,i,j,e

·,x

)
i,j,e

−→
n→∞

(∫ ·

0
xi,es dZe,j

s

)

i,j,e

.

Proof. Even if they are not stated in exactly the same way, the limits (44)
and (45) follow from [4, 11] (see especially [11, Sections 4,5,7]) by means of
fractional integration techniques. This is why we only concentrate on the
case H = 1

2 and the proof of (43), not covered by [4, 11].

Proof of (43). We divide the proof into three steps. In the sequel, ’f.d.d.’
is shorthand for finite dimensional distributions.

Step 1: Convergence of the f.d.d. when x is a step process: Let us first
sketch the proof in the case where x is constant over an interval, without
going too much into the details, since the approach is very similar to that in
[11, Section 4]. Let 0 ≤ s ≤ t ≤ T , let q ∈ N∗, let 0 = t0 ≤ t1 ≤ . . . ≤ tq ≤ t
and let x be the matrix function whose entries are all equal to I[s,t]. It is

immediate that the Rd2m-valued random vector

Xn
x = ((

√
nSn,i,j,e

tl+1,x
−

√
nSn,i,j,e

tl,x
)i,j,e)l∈{0,...,q−1}

has independent entries. We can also check that

E[(Xn
x )

i1,j1,e1
l (Xn

x )
i2,j2,e2
l ] = 0

for all i1, i2, all (j1, e1) 6= (j2, e2) and all l ∈ {0, . . . , q − 1}. Finally, we can
easily show that

E[
(
(Xn

x )
i1,j1,e1
l

)4
] −→
n→∞

3

4
(tl+1 ∨ s− tl ∨ s)2.

Peccati and Tudor’s fourth moment theorem [25] applies, and shows the
stable convergence

Xn
x

L−→
n→∞

((
W e,j

tl+1∨s
−W e,j

tl∨s
)
)
i,j,e

)

l

.

Since the increments are independent, this gives the convergence of the finite
dimensional distributions in (43) when x = I[s,t].

Now, let [s1, t1], . . . , [sq, tq] be q mutually disjoint intervals. Due to the
independence of Brownian increments, the process

(√
nSn,i,j,e

·,I[s1,t1]
, . . . ,

√
nSn,i,j,e

·,I[sq,tq ]

)
i,j,e



44 VALENTIN GARINO, IVAN NOURDIN, AND PIERRE VALLOIS

has independent entries, so we have the stable convergence of its f.d.d. to the

f.d.d. of the process
(∫ T

0 I[s1,t1]dW
e,j
s , . . . ,

∫ T

0 I[sq,tq ]dW
e,j
s

)
i,j,e

. This implies

in turn the convergence of the f.d.d. of
√
nSn

·,x for processes x of the form:

x =

q−1∑

l=0

FlI[tl,tl+1],

where q ∈ N∗ and Fl is a Rm×d valued and Ftl-measurable random variable.

Step 2: Convergence of the f.d.d in the general case: We now turn to the
general case. Let x be an adapted, almost surely piecewise continuous pro-
cess such that E[supi,e ‖xi,e‖2∞] < ∞, and set

∆e,j,k,n(t) =

∫ k+1
n

∧t

k
n

(
Be

s −Be
k
n

)
δBj

s .

As is the proof of Lemma 4.7, we can rely on the small blocks / big blocks
technique by considering the approximation

(46)
√
nSn,i,j,e

t,x =
√
nSn,i,j,e

t,xm +
√
n
(
Sn,i,j,e
t,x − Sn,i,j,e

t,xm

)
=

√
nSn,i,j,e

t,xm +Ri,j,e
t,m,n,x,

with m ≤ n and xm the sampled process x ⌊m·⌋
m

.

Fix m ∈ N∗. Since xm is a step process, we have by Step 1 that

f.d.d.− lim
n→∞

(√
nSn,i,j,e

·,xm

)
i,j,e

=

(∫ ·

0
(xm)i,es dW e,j

s

)

i,j,e

.

Morever, for all t ∈ [0, T ],

L2(Ω)− lim
m→∞

(∫ t

0
(xm)i,es dW e,j

s

)

i,j,e

=

(∫ t

0
xi,es dW e,j

s

)

i,j,e

,

thanks to the isometry property of Itô integral. Putting these two facts
together , we deduce that

f.d.d.− lim
m→∞

lim
n→∞

(√
nSn,i,j,e

·,xm

)
i,j,e

=

(∫ ·

0
xi,es dW e,j

s

)

i,j,e

.

To conclude that f.d.d.− limn→∞

(√
nSn,i,j,e

·,x

)
i,j,e

=
(∫ .

0 x
i,e
s dW e,j

s

)
i,j,e

, and

given the decomposition (46), it remains to show that

(47) lim
m→∞

sup
n≥m

sup
t∈[0,T ]

E[(Ri,j,e
t,m,n,x)

2] = 0,

which we do now.
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We have, for all t,

E[(Ri,j,e
t,m,n,x)

2]

= n

ntn∑

l,k=1

E

[
(xi,ek

n

− (xm)i,ek
n

)(xi,el
n

− (xm)i,el
n

)∆e,j,k,n(t)∆e,j,l,n(t)

]

= n

⌊nt⌋∑

k=1

E

[
(xi,ek

n

− (xm)i,ek
n

)2∆e,j,k,n(t)
2

]

(since x is adapted and the increments of the

Brownian motion are independent)

≤ n

⌊nT ⌋∑

k=1

E
[
‖xi,e − (xm)i,e‖2∞

]
E
[
∆e,j,k,n(t)

2
]

≤ T

2
E
[
‖xi,e − (xm)i,e‖2∞

]
.

Let

N i,e = Card
{
t ∈ [0, T ], |xi,et − xi,et−|+ |xi,et − xi,et+| > 0

}
,

which is almost surely finite because x is piecewise continuous. Let T i,e
l be

the l-th (random) discontinuity of xi,e (T i,e
l (ω) = +∞ if xi,e(ω) has less than

l discontinuities over [0, T ]). It is clear that T i,e
l is measurable as a stopping

time. Let Em
i,e = ∪l∈N∗(T i,e

l − 1
m
, T i,e

l + 1
m
) ∩ [0, T ]. Then,

lim
m→∞

sup
n>m

Card{k, k
n
∈ Em

i,e}
n

= lim
m→∞

(
2N i,e

m
∧ 1) = 0 a.s..

Observe that xi,e is a.s.uniformly continuous on [0, T ] \ ∪l{T i,e
l }. Moreover,

if s ∈ (Em
i,e)

c for some m, then there is no discontinuities between sm = ⌊ms⌋
m

and s. Then,

|xi,es − (xms )i,e| ≤ Xi,e
m I(Em

i,e)
c(s) + 2‖xi,e‖∞IEm

i,e
(s),

with
Xi,e

m = sup
s∈(Em

i,e)
c

|xi,es − xi,esm |.

Note that Xi,e
m is a sequence of square integrables random variables, which

converges a.s. to 0 as m → ∞ and is bounded by the square integrable
random variable 2‖xi,e‖∞. Finally, we can write

E[(Ri,j,e
t,m,n,x)

2] ≤ T

2
E

[
(Xi,e

m )2 + (
4N i,e

m
∧ 1)‖xi,e‖2∞

]
.

The sequence
(
(Xi,e

m )2 + (2N
i,e

m
∧ 1)‖xi,e‖2∞

)
m

converges to 0 as m → ∞,

and is bounded by a square integrable random variable. The conclusion
(47) then follows by dominated convergence.
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Step 3: Tightness. Let 0 < µ < γ. We have, for all i, j, e, all s ≤ t and
all n ∈ N∗,

E

[∣∣∣Sn,i,j,e
t,x − Sn,i,j,e

s,x

∣∣∣
2+µ
]

≤ |t− s|µ2
∫ t

s

E
[∣∣xn,i,jsn

(Bj,e
s −Bj,e

sn
)
∣∣2+µ

]
ds

≤ K|t− s|1+µ
2E[‖xi,j‖2+γ ]

2+γ
2+µ

where the first inequality is obtained by applying the Burkholder and Jensen
inequalities, and the second inequality is obtained by applying the Hölder
inequality. This prove the tightness in CR([0, T ]) of each component of Sn

x ,
and conclude the proof of (43).

�

Remark 4.9. In the case H = 1
2 , notice that the hypothesis E[‖x‖

2+γ
∞ ] < ∞

is only needed to obtain the tightness of the process. For the convergence
of the f.d.d., the hypothesis E[‖x‖2∞] < ∞ is sufficient.

Finally, the following lemma is used in the proof of Proposition 3.3.

Lemma 4.10. Let b be a piecewise continuous process such that E[‖b‖2+γ
∞ ] <

∞ for some γ > 0. Then:

• For H > 3
4 , in probability uniformly on [0, T ],

νH(n)n2H−1

⌊n·⌋∑

k=0

b k
n

∫ k+1
n

∧·

k
n

(s− sn)dB
i
s −→

1

2

∫ ·

0
bsdB

i
s.

• For 1
2 ≤ H ≤ 3

4 , in probability uniformly on [0, T ],

νH(n)n2H−1

⌊n·⌋∑

k=0

b k
n

∫ k+1
n

∧·

k
n

(s − sn)dB
i
s −→ 0.

Proof. The proof in the case b = I[0,t] is done in [11]. Similar arguments as
in Lemma 4.7 allow to conclude. �

4.3. Proof of Theorem 1.2 and 1.3.

Proof of Theorem 1.2: For s ∈ [0, T ], recall that sn = ⌊ns⌋
n

and

Mn,i,j
t = n2H−1



∫ t

0
uisdB

j
s −

⌊nt⌋∑

k=0

uik
n

(
Bj

k+1
n

∧t
−Bj

k
n

)
 .
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We have

Mn,i,j
t = n2H−1

∫ t

0
(uis − uisn)dB

j
s

= n2H−1

∫ t

0

d∑

e=1

P i,e
sn

(Be
s −Be

sn
)dBj

s

+n2H−1

∫ t

0

(
uis − uisn −

d∑

e=1

P i,e
sn (B

e
s −Be

sn)

)
dBj

s

= An,i,j
t +

∑

e 6=j

Rn,e
t +Rn,i,j

t ,

with

An,i,j
t =

1

2
n2H−1

ntn∑

k=0

P i,j
k
n

(
Bj

k+1
n

∧t
−Bj

k
n

)2

Rn,e
t = n2H−1

ntn∑

k=0

P i,e
k
n

∫ k+1
n

∧t

k
n

(
Be

s −Be
k
n

)
dBj

s , e 6= j

Rn,i,j
t = n2H−1

∫ t

0

(
uis − uisn −

d∑

e=1

P i,e
sn (B

e
s −Be

sn)

)
dBj

s .

Lemma 4.7 implies the L2(Ω)-convergence of An,i,j
t to 1

2

∫ t

0 P
i,j
s ds. We

show that all the additional terms converge to 0 in L2(Ω)-norm as n → ∞.
If e 6= j, D1,jBe = 0, so according to Proposition 2.4

∫ k+1
n

∧t

k
n

(
Be

s −Be
k+1
n

)
dBj

s =

∫ k+1
n

∧t

k
n

(
Be

s −Be
k+1
n

)
δBj

s .

Lemma 4.7 then implies the L2(Ω) and UCP convergence of every Rn,e
t to

0 for all e 6= j and t ∈ [0, T ]. Moreover, (u, P ) ∈ C1, so the equation (3)
implies that

E

[(
Rn,i,j

t

)2]
= n4H−2E



(

ntn∑

k=0

Li,j
k
n
, k+1

n
∧t

)2



= n4H−2
ntn∑

j=0

ntn∑

k=0

E

[
Li,j

k
n
, k+1

n
∧t
Li,j

l
n
, l+1

n
∧t

]

= ǫ(n)

ntn∑

j=0

ntn∑

k=0

rH

(
k

n
,
k + 1

n
∧ t,

j

n
,
j + 1

n
∧ t

)
≤ T 2Hǫ(n),

with ǫ(n) −→
n→∞

0.

Thanks to Lemma 4.5, we can now show that, for all i, j ∈ {1, . . . , d},
the sequences (Rn,i,j

t )n converges UCP to 0 as n → ∞, by checking their
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tightness in CR([0, T ]). We have

(48) Rn,i,j
t = n2H−1

ntn−1∑

k=0

Li,j
k
n
, k+1

n

+ n2H−1Li,j
tn,t

Thanks to (3), we have

E




n2H−1

ntn−1∑

k=nsn

Li,j
k
n
, k+1

n




2
 ≤ K

ntn−1∑

j,k=nsn

rH

(
k

n
,
k + 1

n
,
j

n

j + 1

n

)

= K(tn − sn)
2H ,

for some K > 0. Moreover, let ǫ ∈ (0, α − (1−H)) be small enough (let us
recall that α (resp β) is the Hölder exponent of u (resp P )). The second term
in the right-hand side of (48) verifies (due to the regularity and integrability
assumptions on u and P , as well as the Young-Loeve inequality):

sup
t∈[0,T ]

(
n2H−1

∣∣Li,j
tn,t

∣∣
)

≤ cα− ǫ
2
,H− ǫ

2
n2H−1n−(H+α−ǫ)‖B‖H− ǫ

2
‖ui‖α− ǫ

2

+cH− ǫ
2
,H− ǫ

2
n−1+ǫ‖P i,j‖∞‖B‖2H− ǫ

2
−→
n→∞

0 a.s..

Then, the sequence Rn,i,j
t verifies the assumptions of Lemma 4.4, with

An,i,j
t = n2H−1

∑ntn−1
k=0 Li,j

k
n
, k+1

n

, Cn,i,j
t = n2H−1Li,j

tn,t
, α0 = 2H − 1, β0 = 2,

which proves the tightness. �

Proof of Theorem 1.3: 1. Let H > 1
2 . Again, we can write

Mn,i,j
t − 1

2

∫ t

0
P i,j
s ds = Mn,i,j

j,t +
∑

e 6=j

Mn,i,j
e,t +Rn,i,j

1,t +Rn,i,j
2,t ,

where, for 1 ≤ i ≤ m and 1 ≤ j 6= e ≤ d,

Mn,i,j
j,t = n2H−1

ntn∑

k=0

P i,j
k
n

(∫ k+1
n

∧t

k
n

(
Bj

s −Bj
k
n

)
dBj

s −
((k + 1) ∧ t− k)

2n2H

)

Mn,i,j
e,t = n2H−1

ntn∑

k=0

P i,e
k
n

∫ k+1
n

∧t

k
n

(
Be

s −Be
k
n

)
dBj

s

Rn,i,j
1,t =

1

2

(
1

n

ntn−1∑

k=0

P i,j
k
n

+ P i,j
ntn

(t− tn)−
∫ t

0
P i,j
s ds

)

Rn,i,j
2,t = n2H−1

∫ t

0

(
uis − uisn −

d∑

e=1

P i,e
sn (B

e
s −Be

sn)

)
dBj

s .
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Since (u, P ) ∈ C2, we have that νH(n)Rn,i,j
2,t

L2(Ω)−→
n→∞

0 by using again the

formula (3). The tightness of the sequence (νH(n)Rn,i,j
2,t )n can be proved by

using the same argument as in the previous proof.

On the other hand, since P is β-Hölder continuous for some β > 1
2 we

have that supt∈[0,T ]

∣∣∣νH(n)Rn,i,j
1,t

∣∣∣→ 0 a.s., which guarantees the convergence

of νH(n)Rn,i,j
1,· to 0 in CR([0, T ]). When H > 3

4 , since we have the additional

hypothesis that
∑

i,j E[‖P i,j‖2+γ
β ] < ∞ for some γ > 0, we can further prove

the L2(Ω) convergence: for each t ≤ T , νH(n)Rn,i,j
1,t

L2(Ω)−→
n→∞

0.

Finally, using Proposition 2.4 we observe that

∫ k+1
n

∧t

k
n

(
Bj

s −Bj
k
n

)
dBj

s −
(nt− ntn)

2n2H
=

∫ k+1
n

∧t

k
n

(
Bj

s −Bj
k
n

)
δBj

s

and, if e 6= j,

∫ k+1
n

∧t

k
n

(
Be

s −Be
k
n

)
dBj

s =

∫ k+1
n

∧t

k
n

(
Be

s −Be
k
n

)
δBj

s .

Since P verifies the regularity assumptions of Lemma 4.8, we get the stated
convergence for all values of H > 1

2 :

• If 1
2 < H ≤ 3

4 ,

{
νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0
P i,j
s ds

)}

i,j

−→
n→∞

{∫ ·

0
P i,e
s dW e,j

s

}

e,i,j

where the convergence holds in CRd×m([0, t]).
• If H > 3

4 ,

{
νH(n)

(
Mn,i,j

· − 1

2

∫ ·

0
P i,j
s ds

)}

i,j

−→
n→∞

{∫ ·

0
P i,e
s dZe,j

s

}

e,i,j

where the convergence holds UCP (and in L2(Ω) for fixed t).

2. Once the necessary modifications are made, the proof is the same for
Brownian motion. �
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[5] C. Döbler, M. Kasprzak and G. Peccati: Functional Convergence of U-processes
with Size-Dependent Kernels Ann. Appl. Probab., to appear.

[6] P. K. Friz and M. Hairer: A course on rough paths Universitext. Springer, Cham,
2014. With an introduction to regularity structures.

[7] M. Fukasawa: Discretization error of stochastic integrals. Ann. Appl. Probab. 21

(2011), no. 4, pp. 1436–1465.
[8] A. Garsia, E. Rodemich, H. Rumsey and M. Rosenblatt: A real variable lemma and

the continuity of paths of some Gaussian processes Indiana University Mathematics
Journal 20 (1970) no 6, pp. 565–578.

[9] E. Gobet and E. Temam: Discrete time hedging errors for options with irregular
payoffs. Finance and Stochastics 5 (2001), no. 3, pp. 357–367.

[10] M. Gubinelli: Controlling rough paths Journal of Functional Analysis 216 (2004)
no 1, pp. 86–140

[11] Y. Hu, Y. Liu and D. Nualart: Rate of convergence and asymptotic error distribution
of Euler approximation schemes for fractional diffusions. Ann. Appl. Probab. 26

(2016), no. 2, pp. 1147–1207.
[12] J. Jacod and P. Protter: Asymptotic error distributions for the Euler method for

stochastic differential equations. Ann. Probab. 26 (1998), no. 1, pp. 267–307.
[13] R. Klein and E. Gine: On quadratic variation of processes with Gaussian increments.

Ann. Probab (1975) pp. 716–721.
[14] A.N. Kolmogorov: The Wiener spiral and some other interesting curves in Hilbert

space. Dokl. Akad. Nauk SSSR 26 (1940), no. 2, pp. 115–118.
[15] W.E. Leland, M.S. Taqqu, W. Willinger and D.V. Wilson: On the self-similar nature

of ethernet traffic (extended version). IEEE/ACM Transactions on networking 2

(1994), no. 1, pp. 1–15.
[16] C. Lindberg and H. Rootzén: Error distributions for random grid approximations

of multidimensional stochastic integrals. Ann. Appl. Probab. 23 (2013), no. 2, pp.
834–857.

[17] Y. Liu and S. Tindel: Discrete rough paths and limit theorems. Ann. Inst. H.
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