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Abstract

In this thesis, a strong multiplicity one theorem for Katz modular forms is studied.

We show that a cuspidal Katz eigenform which admits an irreducible Galois represen-

tation is in the level and weight old space of a uniquely associated Katz newform. We

also set up multiplicity one results for Katz eigenforms which have reducible Galois

representation.
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Introduction

The study of relations between the coefficients of classical modular forms by L. Atkin

and J. Lehner in [2] and by W. Li in [24] led to the invention of the theory of newforms.

Atkin and Lehner used the L-functions associated to the newforms for their investi-

gation. W. Li in [24], using the notion of trace operators, obtained the generalization

of the Atkin-Lehner theory to the case of modular forms over congruence subgroups

parameterized by two variables with characters. In this thesis we will generalize some

of these results to Katz modular forms over Fp.
Katz modular forms are modular forms defined via algebraic geometry methods

by N. Katz in [19]. They are defined over any ring in which the level is invertible.

See the first chapter for further explanation. We work with Katz modular forms

over Fp. Thus we always assume that the prime p does not divide the levels of our

modular forms. Katz modular forms admit Hecke operators analogously to holomor-

phic modular forms. We denote the space of Katz modular forms in level Γ1(N),

weight k and Dirichlet character ε by Mk(Γ1(N), ε,Fp)Katz and its cuspidal subspace

by Sk(Γ1(N), ε,Fp)Katz. When we do not write the Dirichlet character ε we assume

that we did not fix any character.

Let f be a normalised Katz eigenform of level Γ1(N) with p - N , weight k and

character ε, with coefficients in Fp. Let f(Tl) be the eigenvalue of f for the Hecke

operator Tl. Then thanks to the works in [11], [16] there exists a unique 2-dimensional

semi-simple continuous representation ρf : GQ → GL2(Fp), which is unramified out-

side pN and has the property that tr(ρf (Frobl)) = f(Tl) and det(ρf (Frobl)) = ε(l)lk−1

for all primes l - pN . We prefer to state the results in terms of Galois representations

because they shorten the statements. However it would be possible to avoid that

language for most statements.

Let us informally introduce the notation of level and weight old spaces. They

are defined more precisely in the first chapter. First, like the classical case, we have

level degeneracy maps on Katz modular forms. Let f ∈ Mk(Γ1(N),Fp)Katz be any

Katz modular form and let d ≥ 1 be an integer coprime to p. Then we have the d-th

degeneracy map f(q) 7→ f(qd), which increases the level by a multiple of d. Then the

level old space of f in the level M divisible by N is the Fp vector space generated

by modular forms f(qd) where d runs through all possible divisors of M/N . Second,

we have the following weight degeneracy maps on Katz modular forms. The map

αA defined by f 7→ Af , where A ∈ Mp−1(Γ1(1),Fp)Katz is the Hasse invariant with
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q-expansion at the cusp infinity equal to 1. It adds p − 1 to the weight but does

not change the q-expansion. The Frobenius map takes a form f(q) to its Frobenius

Frob(f)(q) = f(qp). It multiplies the weight by p but does not change the level.

Thus, the missing degeneracy map q 7→ qp in the level is provided by the Frobenius.

Then by the level and weight old space of f in level M , a multiple of N , and

weight k′ ≥ k we understand the space generated by the images of f under all

possible combinations of the level and weight degeneracy maps targeted to the space

of modular forms of level M and weight k′.

We will use the following definitions of minimal levels and weights to introduce

our newforms. Let d ≥ 2 be a positive integer and let f ∈ Mk(Γ1(N),Fp)Katz be any

Katz eigenform. Then f is said to be in d-minimal level if ρf does not arise from any

non-zero Katz eigenform of level MN/dm where M and m are any positive integers

such that gcd(M,d) = 1. A Katz modular form f is said to be in minimal weight k

if the associated mod p Galois representation ρf does not arise from any non-zero

Katz eigenform of weight strictly smaller than k and any level.

Definition 1. A normalised Katz eigenform f ∈ Mk(Γ1(N), ε,Fp)Katz is called a

Katz newform if f is in l-minimal level for any prime l 6= p and is in minimal weight

k.

The motivation behind the definition of our Katz newform is that it satisfies some

of the analog results of classical newform theory.

The aim of the thesis is to prove the following strong multiplicity one theorems.

Theorem 2. Let f ∈ Sk(Γ1(N), ε,Fp)Katz and g ∈ Sk′(Γ1(N
′), ε′,Fp)Katz be Katz

newforms with al(f) = al(g) for each l in a set of primes of density 1. Then f =

g, k = k′, N = N ′, and ε = ε′.

This means that Katz newforms are uniquely characterised by their associated

mod p Galois representations.

Theorem 3. Let F ∈ Sk′(Γ1(M),Fp)Katz be a normalised Katz eigenform. Suppose

that there is a Katz newform f ∈ Sk(Γ1(N),Fp)Katz such that ρF ∼= ρf . Then F is in

the level and weight old space of f .

As a consequence, one can determine all possible coefficients of any normalised

Hecke eigenform from its associated Katz newform, provided that it exists. See Corol-

lary 52 for explicit expressions.

The existence of Katz newforms is established in Theorem 46 when the associated

mod p Galois representation is irreducible and in Proposition 57 when the associated

mod p Galois representation is reducible of a certain type.
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Katz modular forms over Fp are ”almost” the same as the reductions of classical

modular forms. Differences occur in very small levels or in weight 1. It is essential

for the newform theory to work that one uses Katz morular forms.

In Chapter 1, we define a Katz newform to get a similar result of classical newform

theory for Katz modular forms. The interesting idea is that we introduce weight

degeneracy to make up for level degeneracy maps. Thus we treat level and weight of

Katz modular form on an equal footing. The definition of Katz newform is purely

local we consider every prime in the level separately, and the weight separately.

In classical newform theory, every modular form can be expressed as a linear

combination of newforms via level degeneracy maps. There is no weight degeneracy

maps. The corresponding result for Katz forms over Fp is wrong. One can consult

a counterexample, see Remark 55. The main result states that every Katz Hecke

eigenform can be expressed as a linear combination of newforms via level and weight

degeneracy maps. This also allows us to explicitly describe all coefficients of all Katz

Hecke eigenforms if one knows the coefficients of the corresponding Katz newform.

In Chapter 2, we set up the theory of newforms for the space of Katz Eisenstein

series. In the case where cuspidal Katz eigenforms have reducible mod p Galois

representations, Eisenstein series come into the picture to describe their associated

newforms. We have shown in Theorem 62 that, under some condition, up to a suitable

power multiple of the Hasse invariant, any non-ordinary cuspidal Katz eigenform with

a reducible mod p Galois representation is in the level old space of an associated Katz

eigenform which has an optimal level obtained from an associated mod p Eisenstein

series.

3
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Chapter 1

Background

1.1 Holomorphic modular forms

In this first chapter we study the classical and algebraic definitions of modular forms.

We will also present some of the background materials that we need later. The Hecke

operators for the space of modular forms are studied. We also point out the classical

results of Serre, Shimura and Deligne about the existence of a continuous almost

everywhere unramified Galois representations associated to a Hecke eigenforms. For

this chapter most of the time our reference would be [14].

1.1.1 Classical modular forms

Let H be an upper half plane and SL2(Z) be the modular group of integral matrices

of determinant 1. The principal congruence subgroup of level N is the group

Γ(N) =

{
γ =

(
a b

c d

)
∈ SL2(Z) : γ ≡

(
1 0

0 1

)
(mod N)

}
.

Then we have two special congruence subgroups

Γ0(N) =

{
γ =

(
a b

c d

)
∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

Γ1(N) =

{
γ =

(
a b

c d

)
∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod N)

}
.

For k ∈ Z≥0 and γ =

(
a b

c d

)
∈ GL+

2 (Q), we define an operator |kγ acting on

meromorphic functions f : H → C by

(f |kγ)(z) = det(γ)k−1(cz + d)−kf(γ · z),

5



where γ · z is the fractional linear transformation, γ · z = az+b
cz+d

.

Definition 4. A function f : H → C is said to be weakly modular of weight k if f is

meromorphic and for all γ ∈ SL2(Z) and z ∈ H we have f |kγ(z) = f(z).

Definition 5. A modular form of weight k with respect to Γ1(N) is a function f :

H → C such that

(i). f is weakly modular of weight k with respect to Γ1(N),

(ii). f is holomorphic on H, and

(iii). f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

We denote the space of such functions by Mk(Γ1(N),C).

The group SL2(Z) is generated by matrices

S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
.

In particularly we can observe that T transforms z → z + 1. Thus every modular

form f admits a Fourier series

f(z) =
∞∑
n=0

anq
n, q = e2πiz

which is called the q-expansion of the modular form f . The series starts from n = 0

as f is holomorphic at ∞. Let an(f) stand for the nth coefficient of f in its Fourier

series expansion.

Definition 6. A cusp form of weight k with respect to Γ1(N) is a modular form of

weight k with respect to Γ1(N) that vanishes at all cusps. Equivalently, a0(f |kγ) = 0

for all γ ∈ SL2(Z).

Let Γ be an arbitrary congruence subgroup of SL2(Z) and denote by Γ its projec-

tivization, i.e., its image in PSL2(Z). On the space of Sk(Γ1(N),C) of cusp forms we

have the Petersson inner product

〈f, g〉 =
1

[Γ(1) : Γ]

∫
D

f(z)g(z)yk
dxdy

y2

where z = x + iy and D is the fundamental domain for Γ. The issue of convergence

of the integral is granted by the following proposition.

Proposition 7 ([13], Lemma 3.6.1). If f is a cusp form in Sk(Γ1(N),C), the function

f(z)yk/2 is bounded on H.
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1.1.2 Hecke operators

We begin by introducing Hecke operators. The reference is [14]. We copied the

theorems from [14].

For congruence subgroups Γ1 and Γ2 of SL2(Z) and α ∈ GL+
2 (Q), the weight-k

Γ1αΓ2 operator takes functions f ∈Mk(Γ1) to

f [Γ1αΓ2]k =
∑
j

f [βj]k

where {βj} are orbit representatives, i.e., Γ1αΓ2 = ∪jΓ1βj is a disjoint union.

Let p be prime. The pth Hecke operator Tp of weight k

Tp : Mk(Γ1(N),C)→Mk(Γ1(N),C)

is given by

Tpf = f
[
Γ1(N)

(
1 0

0 p

)
Γ1(N)

]
k
.

The double coset here is

Γ1(N)

(
1 0

0 p

)
Γ1(N) =

{
γ ∈M2(Z) : γ ≡

(
1 ∗
0 p

)
(mod N), det γ = p

}
,

so in fact

(
1 0

0 p

)
can be replaced by any matrix in this double coset in the definition

of Tp.

We have

Proposition 8. Let N ∈ Z+ and let α =

(
1 0

0 p

)
where p is prime. The operator

Tp =
[
Γ1(N)αΓ1(N)

]
k

on Mk(Γ1(N),C) is given by

Tpf =



∑p−1
j=0 f

[ 1 j

0 p

]
k

if p|N,

∑p−1
j=0 f

[ 1 j

0 p

]
k

+ f
[ m n

N p

 p 0

0 1

]
k

if p - N,where

mp− nN = 1.

For each d ∈ (Z/NZ)×, define the diamond operator acting on f ∈Mk(Γ1(N),C)

by 〈d〉f = f |kγ for any γ =

(
a b

c δ

)
∈ Γ0(N) with δ ≡ d(mod N). For d not

invertible mod N , define 〈d〉f = 0.

7



For any character ε : (Z/NZ)× → C×, let Mk(Γ1(N), ε,C) denote the C-subspace

of Mk(Γ1(N),C) of elements f such that for all d ∈ (Z/NZ)×, 〈d〉f = ε(d)f .

The next result describes the effect of Tp on Fourier coefficients.

Proposition 9. For each prime p, the above linear operator Tp act on the space

Mk(Γ1(N), ε,C) of modular forms, with effect on q-expansion:

Tp(f) =
∑

n≥0 anpq
n + pk−1ε(p)

∑
n≥0 anq

pn if p - N,
Tp(f) =

∑
n≥0 anpq

n if p | N.

Definition 10. The operator Tp of the above Proposition is called the pth Hecke

operator on Mk(Γ1(N),C).

For a prime power pr, we define the Hecke operator Tpr recursively by:

T1 := 1

Tpr := TpTpr−1 − 〈p〉pk−1Tpr−2 , if p - N

Tpr := (Tp)
r, if p | N.

For any positive integer n with prime factorisation n =
∏
peii , we define the nth

Hecke operator by Tn =
∏
T eipi .

Proposition 11. The Hecke operators Tn for n ≥ 1 commute with each other, and

with the diamond operators 〈d〉.

Definition 12. A modular form which is a simultaneous eigenvector for all Hecke

operators is called a Hecke eigenform, or simply an eigenform. A modular form

f =
∑

n≥1 anq
n, is said to be normalised if a1(f) = 1.

Proposition 13. Let f be a normalised eigenform. Then an is an algebraic integer

for every n, and: Tnf = an(f)f for all n ≥ 1.

Proposition 14. Let f =
∑∞

n=0 anq
n be a modular form of level N weight k and

Nebentypus character ε. Then f is a normalised eigenform if and only if

(i). a1(f) = 1,

(ii). anm(f) = an(f)am(f) for all (n,m) = 1,

(iii). apt(f) = ap(f)apt−1(f)− pk−1ε(p)apt−2(f) for all t ≥ 2.

On Sk(Γ0(N),C) the Hecke operators Tn for (n,N) = 1 are self-adjoint with

respect to the Petersson inner product. In fact, on Sk(Γ1(N), ε,C) we have for all n

prime to N that

〈Tnf, g〉 = ε(n)〈f, Tng〉.

8



On Sk(Γ1(N),C) the adjoint T ∗n of Tn is for (n,N) = 1 is Tn ◦〈n〉. Thus the operators

of the form Tn and 〈n〉 for n relatively prime to N form a mutually commutative

set of normal operators on Sk(Γ1(N),C). Those operators Tn with (n,N) 6= 1 on

Sk(Γ1(N), ε,C) need not be normal.

1.1.3 Classical Atkin-Lehner-Li Theory

In this section we will present the classical newform theory. We will closely follow

[14]. Let N and M be positive integers such that N |M . Then there is an obvious

inclusion

Sk(Γ1(N),C) ↪→ Sk(Γ1(M),C)

resulting from Γ1(N) ⊂ Γ1(M).

In addition to the above inclusion, we have the following maps. For d|M/N , let

αd =

(
d 0

0 1

)
. For f : H → C, we have

(f |kαd)(z) = dk−1f(dz) for f : H → C.

We have an injective map

Sk(Γ1(N),C)→ Sk(Γ1(M),C), f 7→ f |kαd.

For each N |M and d|M/N , (d 6= 1) we have the degeneracy map

id : (Sk(Γ1(N),C))2 → Sk(Γ1(M),C)

given by

(f, g)→ f + g|kαd.

Combining these maps, we get a subspace of Sk(Γ1(M),C) which arises from lower

level. The subspace of oldforms at level M is

Sk(Γ1(M),C)old =
∑

N |M ;d|M/N
N<M

id((Sk(Γ1(N),C))2)

and the subspace of newforms at level N is the orthogonal complement with respect

to the Petersson inner product,

Sk(Γ1(M),C)new = (Sk(Γ1(M),C)old)⊥.

We have that the spaces Sk(Γ1(M),C)old and Sk(Γ1(M),C)new are stable under the

Hecke operators.
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Proposition 15. The subspaces Sk(Γ1(N),C)old and Sk(Γ1(N),C)new are stable un-

der the Hecke operators Tn and 〈n〉 for all n ∈ Z+.

Corollary 16. The spaces Sk(Γ1(N),C)old and Sk(Γ1(N),C)new have orthogonal bases

with respect to the Peterson inner product of eigenforms for the Hecke operators away

from the level, {Tn, 〈n〉 : (n,N) = 1}. As we will see, the condition (n,N) = 1 can be

removed for the newforms.

We have a variant map ιd of id,

ιd := d1−k|kαd : Sk(Γ1(M),C)→ Sk(Γ1(N),C)

(ιdf)(z) := f(dz).

Theorem 17 (Main Lemma). If f ∈ Sk(Γ1(N),C) has Fourier expansion f(τ) =∑
n an(f)qn with an(f) = 0 whenever (n,N) = 1, then f takes the form f =

∑
p|N ιpfp

with each fp ∈ Sk(Γ1(N/p),C).

Definition 18. A nonzero modular form f ∈Mk(Γ1(N),C) that is an eigenform for

the Hecke operators Tn and 〈n〉 for all n ∈ Z+ is called a newform if it is normalized

(a1(f) = 1) and is in Sk(Γ1(N),C)new.

Theorem 19. Let f ∈ Sk(Γ1(N),C)new be a nonzero eigenform for the Hecke opera-

tors Tn and 〈n〉 for all n with (n,N) = 1. Then

(a) f is a Hecke eigenform, i.e., an eigenform for Tn and 〈n〉 for all n ∈ Z+.

A suitable scalar multiple of f is a newform.

(b) If f ′ satisfies the same conditions as f and has the same Tn-eigenvalues for

all n, then f ′ = cf for some constant c.

The set of newforms in the space Sk(Γ1(N),C)new is an orthogonal basis of the

space. Each such newform lies in an eigenspace Sk(N,χ,C) and satisfies Tnf =

an(f)f for all n ∈ Z+. That is, its Fourier coefficients are its Tn eigenvalues.

Theorem 20. The set Bk(N) = {f(nτ) : f is a newform of level M and nM |N} is

a basis of Sk(Γ1(N),C).

Theorem 21 (Strong Multiplicity One). Let f ∈ Sk(Γ1(N), ε,Fp)Katz and g ∈ Sk′(
Γ1(N

′), ε′,Fp)Katz be newforms with al(f) = al(g) for primes l - pNN ′. Then f =

g, k = k′, N = N ′, and ε = ε′.
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Strong Multiplicity One also plays a role in the proof of

Proposition 22. Let g ∈ Sk(Γ1(N),C) be a normalized eigenform. Then there is a

newform f ∈ Sk(Γ1(M),C)new for some M |N such that ap(f) = ap(g) for all p - N .

Next we will present the newform theory for Eisenstein series following [25] and

[26].

We define the generalized Bernoulli number Bε
k attached to a complex modulo n

Dirichlet character ε by the following infinite series

n∑
j=1

ε(j)xejx

enx − 1
=
∞∑
k=0

Bε
kx

k

k!
.

Let ε1 and ε2 be two Dirichlet characters modulo N1 and N2 such that N1N2|N
and let k be a positive integer such that (ε1ε2)(−1) = (−1)k. Let t be a positive

integer. Then we have the Eisenstein series Eε1,ε2
k (q) defined by the power series

Eε1,ε2
k (q) := c0 +

∑
m≥1

( ∑
0<d|m

ε1(d)ε2

(
m

d

)
dk−1

)
qm ∈ Q(ε1, ε2)[[q]]

where c0 = −B
ε1
k

2k
when cond(ε2) = 1 and c0 = 0 otherwise. Then, except when

k = 2 and ε1 = ε2 = 1, the power series ιtE
ε1,ε2
k (q) belongs to Mk(Γ1(tuv),C) for

all t ≥ 1. If k = 2 and ε1 = ε2 = 1, let t > 1, then E1,1
2 (q) − tιtE

1,1
2 (q) is a

modular form in M2(Γ1(t),C). Moreover the modular form Eε1,ε2
k (q) is a normalized

eigenform for all Hecke operators. Analogously, for all positive integers t > 1 the

series E1,1
2 (q)− tE1,1

2 (qt) is a normalised eigenform for all Hecke operators. Let us set

Eε1,ε2,t
k (q) to Eε1,ε2

2 (q) − tιtEε1,ε2
2 (q) when k = 2 and ε1 = ε2 = 1, and to ιtE

ε1,ε2
k (q)

otherwise.

Sometimes by disregarding the characters ε1, ε2 we write Ek(Γ1(N1N2), ε1ε2,C)

for the space of the corresponding Eisenstein series.

Definition 23. We will say that the Eisenstein series Eε1,ε2
k is a newform if the

characters ε1, ε2 are primitive.

Like the cuspidal setting, Eisenstein series newforms are eigenforms for all the

Hecke operators. Here after for this section we assume that k ≥ 2.

Let Enew
k (Γ1(N), ε,C) denote the subspace of Ek(Γ1(N), ε,C) spanned by new-

forms of exact level N . Then as in the setting of cusp forms the space Ek(Γ1(N), ε,C)

has basis of newforms. In particular we have the decomposition ([26], Theorem 2.2)

Ek(Γ1(N), ε,C) =
⊕

cond(ε)|M |N

⊕
d|NM−1

ιdE
new
k (Γ1(M), ε,C).

11



For Eisenstein series, the density of primes that uniquely determine the newforms is

smaller than 1. In fact, we have

Theorem 24 ([25], Theorem 5.1). Let f ∈ Ek(Γ1(N), εf ,C) and g ∈ Ek′(Γ1(N
′), εg,C)

be newforms such that

ap(f) = ap(g)

for a set of primes with density greater than 1/2. Then k = k′, N = N ′, εf = εg and

f = g.

The Theorem is proved from

Lemma 25 ([25], Lemma 5.2). Let χ1, χ2, ψ1, ψ2 be Dirichlet characters modulo M

and c be a nonzero complex number. There exists a constant p0 such that if p > p0 is

prime and

χ1(p) + χ2(p)p
k−1 = c(ψ1(p) + ψ2(p)p

k−1),

then χ1(p) = cψ1(p) and χ2(p) = cψ2(p).

We have the following stronger result

Theorem 26 ([25], Theorem 5.4). Let f ∈ Ek(Γ1(N), εf ,C) and g ∈ Ek′(Γ1(N
′), εg,C)

be newforms such that

sgn(ap(f)) = sgn(ap(g))

for a set of primes S with density greater than 1/2. Then N = N ′, εf = εg and f = g.

Since we liked the shortness of the proof we copied the proof here. The proof

make use of the following Lemma.

Lemma 27 ([25], Lemma 5.5). Let z1, . . . , zm be distinct complex numbers lying on

the unit circle. Then there exists an δ > 0 such that for any positive real number r

and i 6= j we have

|rzi − zj| > δ.

Proof of Theorem 26. Write f = Eχ1,χ2

k and g = Eψ1,ψ2

k′ . Let n1, . . . , nφ(NN ′) represent

the residue classes of (Z/NN ′Z)× and δ be the constant from Lemma 27 applied to

the set

{χi(nj) : i ∈ {1, 2}, 1 ≤ j ≤ φ(NN ′)} ∪ {ψi(nj) : i ∈ {1, 2}, 1 ≤ j ≤ φ(NN ′)}.

Let S ′ ⊂ S be the subset of S consisting of primes p for which 2p1−k < δ and

p > NN ′. Where S is a set of primes of density > 1/2, as in above Theorem. Note
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that density(S ′) = density(S) > 1/2. For each prime p ∈ S ′, define a positive real

number δp := ap(f)/ap(g) = |ap(f)/ap(g)|. We claim that δp = 1 for all primes

p ∈ S ′. If δp 6= 1 for some prime p, then by interchanging f and g (if necessary) we

may assume δp < 1. By definition of δp we have,

χ1(p) + χ2(p)p
k−1 = δpψ1(p) + δpψ2(p)p

k−1.

From this identity, it follows that

|δpψ2(p)− χ2(p)| =
|χ1(p)− δpψ1(p)|

pk−1

≤ 1 + δp
pk−1

< 2p1−k

< δ.

This contradicts Lemma 27, hence δp = 1. Theorem 26 now follows from Theo-

rem 24.

1.2 Katz modular forms

In this section we recall the definition of Katz modular forms and some of its most

important properties. Let N and k be positive integers and let R be a Z[1/N ] algebra.

Let [Γ1(N)]R be the category of generalised elliptic curves with Γ1-level structures

defined in [17]. For more details we also refer to that article. For a generalised

elliptic curve E over a scheme S/R we have the invertible sheaf ωE/S = 0∗Ω1
E/S. A

Katz modular form f of level N and weight k over R is a rule that assigns to every

object (E/S/R, α) of [Γ1(N)]R, where α : (Z/nZ)S → E[N ] an embedding of group

schemes, an element f(E/S/R, α) of ω⊗kE/S, compatible with morphisms in [Γ1(N)]R.

The R-module of such modular forms will be denoted by Mk(Γ1(N), R)Katz.

We can obtain the q-expansions of f at the various cusps of [Γ1(N)]R by evaluating

f on pairs (Tate(qd), α) where Tate(qd) the Tate curve Gm/q
dZ over R[[q]](q−1) and

d|N and α : (Z/NZ)S → Tate(qd)[N ] an embedding of group schemes whose image

meets all irreducible components of all geometric fibres. The q-expansion fd,α(q) of

f at the cusp (Tate(qd), α) is the power series f(Tate(qd), α)/(dt/t)⊗k in R[[q]]. A

modular form which vanishes at all cusps is called cusp form. The space of cusp forms

on Γ1(N) of wight k is denoted by Sk(Γ1(N), R)Katz.

One can recover the usual definition of a modular form over C. See [[5], §2.3] to

see how it follows.

We reinterpret the definition of modular forms using the following.
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Proposition 28 ([18], Proposition 2.1). The functor which assigns to each Z[l/N ]-

scheme S the set of isomorphism classes of pairs (E,α), where E is a generalized

elliptic curve over S and α : µN ↪→ E[N ] an embedding schemes whose image meets

every irreducible component in each geometric fibre, is represented by a stack which is

proper and smooth over Z[1/N ]. When N > 4 this functor is represented by algebraic

curve X1(N), which is proper, smooth, and geometrically connected over Z[1/N ].

For next theorem we will assume that N > 4, so that the stack classifying pairs

(E,α) is a scheme. Let ω = ωE be the line bundle on the curve X1(N) defined at the

end of section 1 of [18]. Then we have

Theorem 29 ([18], Proposition 2.2). The space of modular forms of weight k for

Γ1(N) defined over a commutative ring R in which N is invertible is equal to H0(X1(N),

ω⊗k ⊗R).

As for base changes we have

Theorem 30 ([28], Proposition 1.2.11). If R′ is a flat R-algebra, the canonical map-

ping

Mk(Γ1(N), R)Katz ⊗R R′ →Mk(Γ1(N), R′)Katz

is an isomorphism. Similarly for cusp forms.

Let us consider the problem of lifting modular forms from Fp to Zp.

Theorem 31 ([17], Lemma 1.9). 1. Suppose that k ≥ 2. Then the map

Sk(Γ1(N),Zp)Katz → Sk(Γ1(N),Fp)Katz is surjective if N 6= 1 or if p > 3.

2. The map Sk(Γ1(1),Z2)Katz → Sk(Γ1(1),F2)Katz is not surjective if and only if

k ≥ 12 and (k ≡ 1(mod 2) or k ≡ 2(mod 12)).

3. The map Sk(Γ1(1),Zp)Katz → Sk(Γ1(1),Fp)Katz is not surjective if and only if

k ≥ 12 and k ≡ 2(mod 12).

Let f ∈ Sk(Γ1(N),C) be a normalised Hecke eigenform such that p - N and let

f(q) =
∑∞

n=1 an(f)qn be its q-expansion at ∞. Then by what we cite above we have

Sk(Γ1(N),C) = Sk(Γ1(N),C)Katz. Theorem 30 allows us to identify Sk(Γ1(N),C)Katz

with Sk(Γ1(N),Z)Katz⊗ZC. By the q-expansion principle Theorem 32 Sk(Γ1(N),Z)Katz

is the subset of Sk(Γ1(N),C)Katz consisting of forms with q-expansions in Z. Theo-

rem 30 further allows us to identify Sk(Γ1(N),Z)Katz ⊗Z Zp with Sk(Γ1(N),Zp)Katz.

We can always map Sk(Γ1(N),Zp)Katz to Sk(Γ1(N),Fp)Katz via the reduction ho-

momorphism Zp � Fp. Combining the maps, we can map Sk(Γ1(N),Z)Katz to

Sk(Γ1(N),Fp)Katz. This means that we can reduce any modular form in Sk(Γ1(N),Z)Katz
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and get a Katz form in Sk(Γ1(N),Fp)Katz. If the assumptions of Theorem 31 are sat-

isfied, this reduction map is surjective, i.e. any Katz form in Sk(Γ1(N),Fp)Katz comes

from a classical modular form.

We have a fact that Q(an(f) : n ≥ 1) is a number field. See [[14], Theorem 6.5.1].

Thus all the coefficients of a normalised eigenform f , an(f) are algebraic integers so

that for all n ≥ 1, all the coefficients of f in the q-expansion at ∞ belongs to Z,

an(f) ∈ Z. So by the q-expansion principle f ∈ Sk(Γ1(N),Z)Katz, so the previous

discussion applies to them and we have that the reduction form f ∈ Sk(Γ1(N),Fp)Katz.

Theorem 32 ([13], Theorem 12.3.4(The q-expansion principle)). Let N be at least

5. 1. The map φ∞,R taking f to its q-expansion at ∞ is injective.

2. If R0 ⊂ R is a subring, then the commutative diagram

Mk(Γ1(N), R0)Katz R0[[q]]

Mk(Γ1(N), R)Katz R[[q]]

φ∞,R0

φ∞,R

is Cartesian; i.e., the image of Mk(Γ1(N), R)Katz in Mk(Γ1(N), R0)Katz is precisely

the set of modular forms whose q-expansions at ∞ have coefficients in R0.

3. The above assertions hold for cusp forms, i.e., Mk replaced by Sk.

Let us give one example of a Katz modular form: Given (E/S/R, α) an element

of [Γ1(N)]R where R is an Fp-algebra, let η ∈ H1(E,OE) be the basis dual to ω ∈
H0(E,Ω1

E/S). The pth power endomorphism x 7→ xp of OE induces an endomorphism

of H1(E,OE), which must carry η to a multiple of itself. So we have ηp = A(E,α) · η
in H1(E,OE), for some A(E,α) ∈ R, which is the value of A on (E,α). This defines

a modular form A ∈Mp−1(Γ1(1),Fp)Katz which is called the Hasse invariant (See also

[20]). All its q-expansions are identically equal to 1.

The group (Z/NZ)× acts on [Γ1(N)]R by:

〈d〉∗ : (E/S/R, α) 7→ (E/S/R, dα),

for d ∈ (Z/NZ)×. This gives an action by (Z/NZ)× on modular forms:

(〈d〉f)(E/S/R, α) = f(E/S/R, dα).

For any character ε : (Z/NZ)× → R×, letMk(Γ1(N), ε, R)Katz denote theR-submodule

of Mk(Γ1(N), R)Katz of elements f such that for all d ∈ (Z/NZ)×, 〈d〉f = ε(d)f . If

f is a non-zero element of Mk(Γ1(N), R)Katz which is an eigenform, then there is a
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unique character ε : (Z/NZ)× → R× such that f ∈ Mk(Γ1(N), ε, R)Katz. For any

character ε : (Z/NZ)× → R×, let

Sk(Γ1(N), ε, R)Katz := {f ∈ Sk(Γ1(N), R)Katz|∀d ∈ (Z/NZ)×, 〈d〉f = ε(d)f}

be the space of Katz cusp forms of weight k for Γ1(N) and character ε.

One can define Hecke operators geometrically. They have the following action on

q-expansions of modular form. Let f ∈Mk(Γ1(N), ε, R)Katz be a Katz modular form.

Then we have, see [28] §1.5 for the details.

Tlf(q) =
∑∞

n=0 anlq
n + lk−1ε(l)

∑∞
n=0 anq

nl, for prime l - N

Ulf(q) =
∑∞

n=0 alnq
n, for prime l|N

For the sake of simplicity we write Tl for Ul. The Hecke operators Tn for n ≥ 1

are defined by multiplication formula T1 = 1, TnTm = Tnm if gcd(n,m) = 1 and Tlr =

TlTlr−1 − lk−1〈l〉Tlr−2 for r ≥ 2 where l - N and Tlr = TlTlr−1 when l|N . In particular,

we note that all Hecke operators commute. They preserve Mk(Γ1(N), R)Katz and

Sk(Γ1(N), R)Katz. A Katz modular form f is called a Katz eigenform if f is an

eigenfunction for all Hecke operators Tn, n ≥ 1 and 〈d〉, d - N . A Katz eigenform f is

said to be normalised if the coefficient a1(f) in its q expansion at ∞ is 1. If we write

f(q) =
∑∞

n=1 anq
n for the q-expansion at ∞ of f ∈ Mk(Γ1(N), R)Katz, we have the

important formula a1(Tnf) = an(f).

Similarly to the classical modular forms one has the notion of level degeneracy

maps on Katz modular forms. See [1] to see how they are induced from degeneracy

maps of modular curve. Let f ∈ Mk(Γ1(N), R)Katz be any Katz modular form, let

M be a positive multiple of N with 1/M ∈ R and let d ≥ 1 be an integer such that

d|M/N . Then we have the d-th degeneracy map to level M ,

BN,M
d : Mk(Γ1(N), R)Katz →Mk(Γ1(M), R)Katz

given by f(q) 7→ f(qd). BN,M
d commutes with Tn whenever gcd(d, n) = 1.

The level old space of f in the level M is given by

Lold
M (f) =

〈
BN,M
d (f) : d|M/N

〉
R
⊂Mk(Γ1(M), R)Katz,

the R-module generated by BN,M
d (f) where d runs through all possible divisors of

M/N .

One has the following weight degeneracy maps on Katz modular forms which are

not present in classical modular forms. See [[18], §4, pg. 457] for the details.
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The first one is multiplying a form by the Hasse invariant. We denote this map

by A. The other one is first defined for Mk(Γ1(N),Fp)Katz by the Frobenius by

sending
∑

n anq
n to (

∑
n anq

n)p =
∑

n anq
np. The map is extended by linearity to

Mk(Γ1(N),Fp)Katz using Theorem 30. We still call it Frobenius. So taking the Frobe-

nius of a form f , will be Frob(f)(q) = f(qp).

Multiplying a form by the Hasse invariant does not change the level and the q-

expansion of the form but adds p− 1 to the weight. Taking the Frobenius of a form

multiplies the weight by p but does not change the level. These two degeneracy

maps commute with Hecke operators Tn for all n such that p - n. This follows from

computations on q-expansions.

Let f ∈ Mk(Γ1(N),Fp)Katz be any Katz modular form. Then to introduce the

notion of weight old space corresponding to a form f let us recursively associate a

weight to a word formed by the letters Frob and A. Let the empty word have weight

k. Suppose m is a word of length n and weight w. Then set the weight of A ◦m to

be w + p − 1 and the weight of Frob ◦m to be pw. Then the weight old space of f

in the weight k′ ≥ k is defined by

Wold
k′ (f) = 〈W (f) : W is a word in A and Frob such that W (f) has weight k′〉Fp

.

By examining the q-expansions, it is clear that we have the following commuta-

tivity properties: BN,M
d ◦ Frob = Frob ◦ BN,M

d and BN,M
d ◦ A = A ◦ BN,M

d . Then the

level and weight old space of f in the level M and weight k′ is the Fp vector space

generated by
(
BN,M
d ◦W

)
(f) where d|M/N and W is a word in A and Frob such that

W (f) has weight k′.

1.3 Galois representations

In this section we recall Galois representations and state the Chebotarev density

theorem.

A Galois representation of GK , the absolute Galois group of K, where K is any

field, over a topological field L, is a finite-dimensional L-vector space V together with

a continuous morphism ρ : GK → GL(V ).

We have the following classification. The representation of GK is called a global

Galois representation if K is a global field. On the other hand the representation ρ

is called local Galois representation if K is a local field. Let L be a finite extension

of Ql and K be a finite extension of Qp.

Examples of Galois representations: 1. p-adic cyclotomic character. Let K be a

number field, n ≥ 1 integer and K(µpn) ⊂ K the cyclotomic field. Then K(µpn) over
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K is Galois and there is a natural morphism

χp,n : Gal(K(µpn)/K) ↪→ (Z/pnZ)×

given by

σ(ζ) = ζχp,n(σ)

where σ ∈ Gal(K(µpn)/K) and ζ a primitive pnth root of unity.

Let K∞ = lim→K(µpn). Then we have Gal(K∞/K) = lim←Gal(K(µpn)/K), so

χp : GK → Gal(K∞/K)→ Z×p ⊂ Q×p .

It is called the p-adic cyclotomic character over K.

It enjoy the following properties.

Theorem 33. χp is a 1-dimensional global Galois representation, continuous and

unramified at all places of K not dividing p. Moreover, if ν is a finite place of K not

dividing p, then χp(Frobν) is well-defined and is equal to the size of the residue field

of ν.

2. Galois representations attached to eigenforms.

Theorem 34. Let f be a normalized Hecke eigenform, let N be its level, let k be

its weight, and let ε : (Z/NZ)× → C× be its character. Then the subfield Kf of C
generated over Q by the an(f), n ≥ 1, and the image of ε is finite over Q. Choose

a prime λ of Kf with residue characteristic l. There exists a 2-dimensional Kf ;λ-

vector space Vf ;λ and a continuous representation ρ : Gal(Q/Q) → GL2(Kf ;λ) that

is unramified outside lN and such that for each prime number p not dividing lN the

characteristic polynomial of the Frobenius at p acting on ρ is det(1 − xρ(Frobp) =

1− ap(f)x+ pk−1ε(p)x2.

This is due to Eichler and Shimura [33] for k = 2, to Deligne [10] for k > 2, and

to Deligne and Serre [11] for k = 1.

Theorem 35. Let N and k be positive integers. Let F be a finite field, and f : TN,k →
F a surjective morphism of rings. Then there is a continuous semisimple representa-

tion ρf : Gal(Q/Q)→ GL2(F) that is unramified outside lN , where l is the character-

istic of F, such that for all p not dividing lN we have, in F: trace(ρf (Frobp)) = f(Tp)

and det(ρf (Frobp)) = f(〈p〉)pk−1. Such a ρf is unique up to isomorphism (that is,

up to conjugation).

Concerning traces and characteristic polynomials we have the following important

result
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Lemma 36. Let Π be a profinite group, let F ⊂ Π be a subset such that Π is the

topological closure of the conjugacy classes of F , and fix a positive integer n. Then

any continuous semi-simple representation ρ : Π → GLn(L) where L ∈ {C,Fp,Qp}
is uniquely determined by the characteristic polynomials charpol(ρ(g)) ∈ L[T ] for all

g ∈ F .

For C this is classical representation theory, for Fp this follows from the theorem

of Brauer-Nesbitt, see [[9], §30.16]. A proof for Qp is in [35].

The Frobenius elements play a very special role in the theory. Their images

determine the Galois representation uniquely. This is a consequence of Chebotarevs

density theorem.

Theorem 37 (Chebotarev density theorem). Let L/K be a finite Galois extension

of number fields with Galois group G = Gal(L/K). Let C be a subset of G which is

stable under conjugation. Then

{P|P a prime of K,P -ML/K , σP ∈ C}.

has density #C/#G. In particular, this ratio is greater than zero, so there always

exist such primes.

Recall that the norm of an ideal is denoted as N(P) = #(O/P). The natural

density of S is defined as

d(S) := lim
x→∞

#{P ∈ S|N(P) < x}
#{P prime |N(P) < x}

if the limit exists. If the natural density exists, then it is equal to the analytic

(Dirichlet) density

δ(S) := lim
s→1,s>1

∑
P∈S N(P)−s∑
P prime N(P)−s

.

The existence of the natural density implies the existence of the Dirichlet density,

but the converse does not hold in general. However, the Chebotare density theorem

is valid with either notion of density.

One result which we need later

Lemma 38. Let ρ1, ρ2 : Gal(Qp/Qp) → GL2(Fp) be two semisimple finite image

Galois representations such that tr(ρ1(Frobl)) = tr(ρ2(Frobl)) for all l in the set S

of primes of density 1. Then ρ1 ∼= ρ2.
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Proof. Since ρ1 and ρ2 have finite image there exists an extension L/Q finite Ga-

lois such that GL := Gal(Q/L) ⊂ ker(ρ1) and GL ⊂ ker(ρ2). Thus we have the

factorisation

ρi : GQ � Gal(L/Q) = GQ/GL → GL2(Fp).

By Chebotarev density theorem and the density 1 assumption we have that in every

conjugacy class there is Frobl for some l ∈ S. Thus every g ∈ Gal(L/Q) is a Frobenius

from S. Then by Brauer-Nesbitt theorem ρ1 ∼= ρ2.

1.4 Level and weight lowering

To state some of the theoretical results that we need later let us set the following

notation. Let ρ be a continuous Galois representation

ρ : GQ → GL2(Fp).

Let lneqp be prime. Choose an extension of l-adic valuation of Q, and let

G0 ⊃ G1 ⊃ · · · ⊃ Gi ⊃ · · ·

be a sequence of ramification groups of GQ corresponding to this valuation. Let Vi

be a subspace of V which is fixed by Gi. Then write

n(l) =
∞∑
i=0

1

(G0 : Gi)
dimV/Vi.

We can rewrite as

n(l) = dimV/V0 + b(V )

where b(V ) is the wild invariant of G0-module V .

The formula imply

(a). n(l) is a non negative integer

(b). n(l) = 0 if and only if G0 = {1}, i.e., ρ is not ramified at l

(c). n(l) = dimV/V0 if and only if G1 = {1}, meaning ρ is tamely ramified.

It follows from (a) and (b) that we can define an integer N(ρ) by the formula

N(ρ) =
∏
l 6=p

ln(l).

And we call this number N(ρ) the conductor of ρ; and by construction N(ρ) is coprime

with p.
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For any continuous Galois representation ρp : Gal(Qp/Qp) → GL2(Fp) we asso-

ciate an integer k(ρp) called the minimal weight as in Definition 4.3 of [15]. See below

for the definition. This differs slightly from Serre’s definition in [32].

Let ψ, ψ′ denote the fundamental characters of level 2, i.e. the characters of the

tame inertia with values in F×p induced by the embeddings of fields Fp2 ↪→ Fp, see

[[32], Section 2 and Proposition 1].

Definition 39 ([15], Definition 4.3). Let ρ be a continuous 2-dimensional Galois rep-

resentation and let ρp be its restriction to the decomposition group at p. We associate

an integer k(ρ) to ρ as follows:

1. Suppose that φ, φ′ are characters of Gp = Gal(Qp/Qp) of level 2 and we have

ρp ∼=

(
φ 0

0 φ′

)
.

After interchanging φ and φ′ if necessary, we have φ = ψaψ′b and φ′ = ψ′aψb

with 0 ≤ a < b ≤ p− 1. Then, we set k(ρ) = 1 + pa+ b.

2. Suppose that φ, φ′ are characters of Gp = Gal(Qp/Qp) of level 1.

• If ρp|Ip,w is trivial, where Ip,w is the wild inertia subgroup, then we have

ρp ∼=

(
χap 0

0 χbp

)
,

with 0 ≤ a ≤ b ≤ p− 2. Then, we set k(ρ) = 1 + pa+ b.

• If ρp|Ip,w is not trivial, we have

ρp ∼=

(
χβp ∗
0 χαp

)
,

for unique α, β such that 0 ≤ α ≤ p− 2 and 1 ≤ β ≤ p− 1. Then, we set

a = min{α, β} and b = max{α, β}. If χβ−αp = ρp and ρp⊗χ−αp is not finite

at p then we set k(ρ) = 1 + pa+ b+ p1, otherwise k(ρ) = 1 + pa+ b.

The recipe for N(ρ) depends on the local behavior of ρ at primes l other than

p; the recipe for k(ρ) depends on the restriction ρ|Ip of ρ to the inertia group at p.

Level lowering was proved by Ribet in the 1990’s [30] for p ≥ 2 and by Buzzard [4]

for p = 2. Carayol proved in [7] that the level always has to be a multiple of the

conductor. Level lowering [[31], Chapter 3], Theorem 43 is the statement that given

a modular Galois representation ρ over Fp, there is a modular form (in some weight)

of level equal to the conductor of ρ, N(ρ).

We have the following very important formula for any cusp form.
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Proposition 40. Let f ∈ Sk(Γ1(N),Fp)Katz be a Katz modular form such that f(q) ∈
Fp[[ql]] for some prime l 6= p. Then there exists a unique cusp form g ∈ Sk(Γ1(N/l),

Fp)Katz such that f(q) = B
N/l,N
l g(q). In particular, g = 0 if l - N .

Proof. This follows from Lemma 3.6 of [1] when l|N . When l - N the statement

follows from the claim in the 4th paragraph of page 31 of [29].

Proposition 41 ([19], Corollary 4.4.2). Let f ∈Mk(Γ1(N), ε,Fp)Katz and g ∈Mk′(

Γ1(N), ε′,Fp)Katz be Katz eigenforms with ρf ∼= ρg. Then k ≡ k′(mod p − 1) and

ε = ε′, provided that they are primitive.

Proof. Let us set ε̃ and ε̃′ to be the corresponding 1-dimensional Galois representa-

tions of ε and ε′. Then since p - N , ε̃ is unramified at p and so ε̃(Frobp) = ε(p) is well

defined. By restricting ε̃χk−1p = ε̃′χk
′−1
p to the inertia group Ip we get χk−1p = χk

′−1
p

from which k ≡ k′(mod p− 1) follows, so ε̃ = ε̃′. We get ε = ε′, for all primes l - N .

Let f ∈ Mk(Γ1(N),Fp)Katz and f0 ∈ Mk′(Γ1(N),Fp)Katz be Katz eigenforms with

the same q-expansions where k ≥ k′. Then we have f = Atf0 where t = (k−k′)/(p−1).

This is because the q-expansion of A is 1 and multiplication by At matches the weights

on both sides.

In the literature, one has the following result on weight lowering.

Theorem 42 ([15], Theorem 4.5). Let p be a prime and let ρ : GQ → GL2(Fp)
be a continuous, irreducible and odd mod p Galois representation. Suppose that there

exists a Katz eigenform g ∈ Sk(Γ1(N), ε,Fp)Katz such that ρ is isomorphic to ρg. Then

there exists a Katz eigenform f ∈ Sk(ρ)(Γ1(N), ε,Fp)Katz with the same eigenvalues

for Tl(l 6= p) as g has, such that ρ is isomorphic to ρf . Moreover, there is no other

eigenform of level prime to p and of weight less than k(ρ) whose associated Galois

representation is isomorphic to ρ.

Proof. This is [[15], Theorem 4.5] together with the last paragraph of the introduction

of [15]. The case p = 2 is explained in [6].

As a remark, due to the theorems of C. Khare and J.-P. Wintenberger [[21],

Theorem 1.1 and Theorem 1.2], [22] and of M. Kisin [23] proving Serre’s conjecture

there exists a Katz eigenform F ∈ Sk(Γ1(N),Fp)Katz for some integers k and N

such that F gives rise to the same Galois representation of the above theorem. The

following theorem is level lowering.

Theorem 43. Let ρ : GQ → GL2(Fp) be a continuous, irreducible and odd mod p Ga-

lois representation. Suppose that there exists a Katz eigenform g ∈ Sk(Γ1(N), ε,Fp)Katz
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such that ρ is isomorphic to ρg. Then there exists a Katz eigenform f ∈ Sk(Γ1(N(ρ)),

ε,Fp)Katz such that ρ is isomorphic to ρf .

Proof. Let p > 2 and let g ∈ Sk(Γ1(N), ε,Fp)Katz be a normalised eigenform giving

rise to ρ. If k = 1, multiply g by the Hasse invariant so without loss of generality

assume that k ≥ 2. By the discussion after Theorem 31, there exists a Hecke eigenform

g̃ ∈ Sk(Γ1(N),C) such that ρg arises from g̃. Then by [[12], Theorem 1.1] we have that

ρg arises from an eigenform f̃ ∈ Sk′(ρ)(Γ1(N(ρ)),C), where k′(ρ) is Serre’s original

weight as in [12]. By discussion after Theorem 31, we can reduce f̃ to get Katz

eigenform of level N(ρ). Apply Theorem 42 and multiply by a power of the Hasse

invariant to find the desired f .

For p = 2 we know that k(ρ) is 1, 2 or 3. If k(ρ) = 1, 2, then k′(ρ) = 2 and level

lowering is possible by [[21], Theorem 1.2]. If k(ρ) = 3, then ρ satisfies multiplicity

one and ρ is not finite, then level lowering is possible by [[4], Theorem 3.2].

There exists a derivation θ : Mk(Γ1(N),Fp)Katz → Mk+p+1(Γ1(N),Fp)Katz which

increases weights by p + 1 and whose effect upon each q-expansions is q d
dq

. See [20]

for the details. The Galois representations of f and θf are twists of each other

by the mod p cyclotomic character: ρθf = χp ⊗ ρf , see [[15], §3.1]. For a form

f ∈ Mk(Γ1(N),Fp)Katz, f and θp−1f have the same Galois representations. By the

principle of q-expansions we have that the operator θ maps modular forms to cusp

forms since θ always kills the constant term.

Similarly to Proposition 40 we have the following weight version result.

Proposition 44 ([20], Corollary 5 and Corollary 6). Let f ∈ Mk(Γ1(N),Fp)Katz be

a Katz modular form such that θf = 0. Then we can uniquely write f(q) = Arg(qp)

with 0 ≤ r ≤ p−1, r+k ≡ 0(mod p) and g ∈Ml(Γ1(N),Fp)Katz with pl+r(p−1) = k.

Furthermore, if f is a cusp form, then so is g.

Proof. This is a combination of Corollary 5 and Corollary 6 of [20].
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Chapter 2

Main results

2.1 Strong multiplicity one

Let us start by proving that by moving into higher level we can make some of the

inside level coefficients of any Katz eigenform zero. That is we make some of the

coefficients at the primes which divide the level of the eigenform zero.

Let g ∈ Mk(Γ1(N),Fp)Katz be a cuspidal Katz eigenform. Then g is called an

outside N ′ eigenform if g is an eigenform for all Tn where gcd(n,N ′) = 1.

Lemma 45. Let f ∈ Mk(Γ1(N), ε,Fp)Katz be a normalised Katz eigenform and let

N =
∏n

i=1 l
αi
i be the prime factorization of N with αi ≥ 1. Let IN = {l1, l2, . . . , ln}

and S ⊂ IN be any subset. Then there exists a normalised Katz eigenform f̃ ∈
Mk(Γ1(N

∏
li∈S li), ε,Fp)Katz such that al(f̃) = al(f) for all primes l /∈ S and alm(f̃) =

0 for all l ∈ S and m ∈ Z>0.

Proof. Without loss of generality S = {l1, l2, . . . , lt}. Then set

f1(q) := f(q)− al1(f)BN,Nl1
l1

f(q)

f2(q) := f1(q)− al2(f1)B
Nl1,Nl1l2
l2

f1(q)

...

f̃(q) = ft(q) := ft−1(q)− alt(ft−1)B
N

∏t−1
i=1 li,N

∏
li∈S

li

lt
ft−1(q).

Note that f̃ is normalised. Then by the property of level degeneracy maps f̃

is an outside
∏

li∈S li Katz eigenform. Let us evaluate Tli f̃ . For n ≥ 0, we have

an(Tli f̃) = anli(f̃) = anli(fi) = anli(fi−1) − ali(fi−1)an(fi−1) = an(fi−1)ali(fi−1) −
ali(fi−1)an(fi−1) = 0 where f0 = f . Thus Tli f̃ = 0 so f̃ is a Tli-eigenform for all

li ∈ S. From the definition of f̃ we observe that al(f̃) = al(f) for all primes l /∈ S.

We prove almi (f̃) = 0 for all li ∈ S (i = 1, 2, 3, . . . , t)and m ∈ Z>0 by induction. For
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i = 1, 2, 3, . . . , t, ali(f̃) = ali(fi) = ali(fi−1)− ali(fi−1)a1(fi−1) = 0. Suppose almi (f̃) =

0 for some li ∈ S. Then alm+1
i

(f̃) = alm+1
i

(fi) = alm+1
i

(fi−1) − almi (fi−1)ali(fi−1) =

almi (fi−1)ali(fi−1)− almi (fi−1)ali(fi−1) = 0.

Proof of Theorem 2. Let ρf and ρg be the associated Galois representations. Then

by hypothesis, the traces of ρf and ρg agree on the Frobenius elements for all primes

in a set of primes of density 1. This implies by above Lemma 38 that ρf ∼= ρg so

al(f) = al(g) for all primes l - NN ′p. Then by definition of cuspidal Katz newforms

we have N = N ′ and k = k′. Thus al(f) = al(g) for all primes l - pN . Let

N =
∏n

i=1 l
αi
i be the prime factorization of N . Then by taking S = IN in Lemma 45

we have normalised eigenforms f̃ and g̃ such that almi (f̃) = 0 = almi (g̃) for all li ∈ S
and all m ≥ 1. Hence since f̃ and g̃ have the same eigenvalues away from p their q

expansion coefficients equal away from p. Thus we have that f̃ − g̃ is supported with

qp so θ(f̃ − g̃) = 0. If f̃ − g̃ 6= 0, then by Proposition 44 it must be up to a suitable

power multiple of the Hasse invariant in the image of Frobenius of some cusp form

of weight smaller than k, which is impossible by the minimality of weight k. Thus,

ap(f) = ap(g). If ali(f) 6= ali(g) for some li ∈ IN , then by taking S = IN − {li} in

above lemma we have cusp forms f̃i and g̃i such that almj (f̃i) = 0 = almj (g̃i) for all

lj ∈ S and m ≥ 1. Let G̃ := f̃i − g̃i. Similarly here we have that the normalised

eigenforms f̃i and g̃i have the same eigenvalues at primes which do not divide the level

of the forms N and at the prime p. Furthermore they have the same coefficients at

all primes dividing the level except possibly at li. Thus the q-expansion of G̃ is in qli ,

i.e., an(G̃) = 0 unless li|n. Then by Proposition 40, G̃(q) = B
N
li

∏
lj∈S

lj ,N
∏

lj∈S
lj

li
G̃1(q)

for some cusp form G̃1 of level N
li

∏
lj∈S lj which is impossible by the li-minimality of

the level N
li

∏
lj∈S lj. Thus f = g. Furthermore, for all d ∈ N such that gcd(d,N) = 1

we have 〈d〉f = ε(d) · f and 〈d〉g = ε′(d) · g. Then f = g gives ε = ε′.

Let us prove the existence of Katz newform for irreducible mod p Galois repre-

sentation.

Theorem 46. Let f ∈ Sk(Γ1(N), ε,Fp)Katz be a Katz eigenform such that ρf is irre-

ducible. Then there exists a unique Katz newform g in level N(ρf ) and weight k(ρf )

such that ρf ∼= ρg.

Proof. Since ρf is irreducible we have by Theorem 42 that there exists a cuspidal

eigenform h ∈ Sk(ρ)(Γ1(N), ε,Fp)Katz such that ρf ∼= ρh where k(ρ) is the minimal

weight. Let g be the level lowering (See Theorem 43) of h to level N(ρ). Note that

by Carayol [7], N(ρ) is l-minimal for all primes l. Then we have ρh ∼= ρg, which gives

the result as g is uniquely determined by Theorem 2.
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Next we prove level degeneracy results, which we use to prove the level part of

the main theorem.

Lemma 47. (i). Let f ∈ Sk(Γ1(N),Fp)Katz be a normalised Katz eigenform with

p1-minimal level and g ∈ Sk(Γ1(Np
m1
1 ),Fp)Katz where m1 ≥ 0 be an outside p1 eigen-

form such that for all positive integers n such that p1 - n, Tng = an(f)g. Then

g ∈ Lold
Np

m1
1

(f).

(ii). Let M = N ·
∏t

i=1 p
mi
i where mi ≥ 1. Let f ∈ Sk(Γ1(N),Fp)Katz be a normalised

Katz eigenform with p1, p2, p3, . . . , pt-minimal level and g ∈ Sk(Γ1(M),Fp)Katz be a

normalised Katz eigenform satisfying Tl(g) = al(f)g for all primes l 6= p1, p2, p3, . . . , pt.

Then g ∈ Lold
M (f).

Proof. (i). We have an(g− a1(g)f) = 0 for all integers n ≥ 1 such that p1 - n because

an(g − a1(g)f) = a1(Tn(g − a1(g)f)) = 0. When m1 = 0, by p1 minimality of level

N and by Proposition 40 we have the result g = a1(g)f . Assume m1 ≥ 1. Then by

Proposition 40, (g−a1(g)f)(q) = B
Npm−1

1 ,Npm1
p1 F (q) for some outside p1 eigenform F of

level Npm1−1
1 such that ρg ∼= ρF . Then we proceed by induction on m1. Assume the

result holds for m−1. Then when m1 = m we have (g−a1(g)f)(q) = B
Npm−1

1 ,Npm1
p1 G(q)

for some outside p1 eigenform G of level Npm−11 such that ρg ∼= ρG, which by induction

assumption is in the level old space of f in level Npm−11 . Thus g ∈ Lold
Np

m1
1

(f).

(ii). The case t = 1 follows from (i) above. Assume the result holds for t ≤ r− 1. Let

f ∈ Sk(Γ1(N),Fp)Katz be a normalised eigenform with p1, p2, p3, . . . , pr-minimal level

and g ∈ Sk(Γ1(M),Fp)Katz be a normalised eigenform with Tlg = al(f)g for all primes

l 6= p1, p2, p3, . . . , pr. Then by using Lemma 45 with S = {p1} and assuming by

canonical embedding, B1, that f ∈ Sk(Γ1(Np1),Fp)Katz and g ∈ Sk(Γ1(Mp1),Fp)Katz

we have normalised eigenforms f̃ ∈ Sk(Γ1(Np
2
1),Fp)Katz ⊂ Sk(Γ1(Np

m1+2
1 ),Fp)Katz

and g̃ ∈ Sk(Γ1(Mp21),Fp)Katz such that f̃ has p2, p3, . . . , pr-minimal level and g̃ satisfies

Tlg̃ = al(f̃)g̃ for all primes l 6= p2, p3, . . . , pr. Then by the induction assumption

g̃ ∈ Lold
Mp21

(f̃), say g̃(q) =
∑

d|M/(Np
m1
1 ) βdB

Np21,Mp21
d f̃(q) for some βd ∈ Fp. Let h(q) :=∑

d|M/(Np
m1
1 ) βdB

N,M/p
m1
1

d f(q) ∈ Sk(Γ1(Np
m2
2 · · · pmr

r ),Fp)Katz. Then h is a normalised

outside M/Npm1
1 eigenform with p1-minimal level. On the other hand, since an(g̃) =

an(h) for all n ≥ 1 such that p1 - n we have an(Tlh− al(g̃) · h) = 0 for all n ≥ 1 such

that p1 - n and prime l 6= p1. So (Tlh− al(g̃) · h)(q) ∈ Fp[[qp1 ]]. But by p1-minimality

Tlh− al(g̃) · h = 0. Hence h is an eigenform at primes l = p2, p3, . . . , pr. Thus h is a

normalised Katz eigenform with p1-minimal level. Then Tlg = al(h)g for all primes

l 6= p1. Then by part (i) above we have g ∈ Lold
M (h), so g ∈ Lold

M (f).

Lemma 48. Let f ∈ Sk(Γ1(N),Fp)Katz be a normalised Katz eigenform with p1-

minimal level for all primes p1|N . Then any normalised Katz eigenform g ∈ Sk(Γ1(M),
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Fp)Katz such that ρf ∼= ρg and ap(f) = ap(g) is in the level old space of f .

Proof. Suppose al(f) 6= al(g) for some prime l - M/N and l|M . Then taking S =

IM −{l} in Lemma 45 gives forms f̃ and g̃ such that al′(f̃) = 0 = al′(g̃) for all primes

l′|M and l′ 6= l. Then B
N

∏
l′∈S l

′,M
∏

l′∈S l
′

1 f̃(q) − g̃(q) = B
M
l

∏
l′∈S l

′,M
∏

l′∈S l
′

l F (q) for

some modular form F 6= 0 of level M
l

∏
l′∈S l

′ which is impossible by l-minimality.

Thus Tlg = al(f)g for all primes l - M/N . Then since the level N of f is l-minimal

for any prime l, in particular it is l-minimal for l|M/N . Then by applying Lemma 47

we have g ∈ Lold
M (f).

Proposition 49. Let f ∈ Sk(Γ1(N,Fp)Katz be a Katz newform and let M be a multiple

of N . Then any normalised Katz eigenform g ∈ Sk(Γ1(M),Fp)Katz such that ρf ∼= ρg

is in the level old space of f .

Proof. By the hypothesis we have f = BN,M
1 f ∈ Sk(Γ1(M),Fp)Katz as N |M . Then

by setting S = IM in Lemma 45 we have forms f̃ and g̃ such that θ(f̃ − g̃) = 0,

so by applying Proposition 44 we have (f̃ − g̃)(q) = ArG(qp) for some integer r and

an outside p Katz eigenform G of weight smaller than k, which is impossible by the

minimality of weight unless G = 0, so we have ap(f) = ap(g). Then apply above

lemma.

Let f ∈ Mk(Γ1(N),Fp)Katz be a normalised Katz eigenform with minimal weight

k. Then for k′ ≥ k, define Vf,k′ as the Fp vector space generated by F ∈Mk′(Γ1(N),

Fp)Katz such that F is an outside p Katz eigenform with eigenvalues λl(F ) = al(f)

for all primes l 6= p. Then we have the following

Lemma 50. The space Vf,k′ is a subspace of the weight old space of f in the weight

k′.

Proof. We proceed by induction on k′. Let k′ = k. Then for every F ∈ Vf,k′ , by

Proposition 44, we can write (F − a1(F )f)(q) = ArFrobG(q) for some integer r and

an outside p Katz eigenform G of weight smaller than k′, which is impossible by

the minimality of weight unless G = 0, so we have Vf,k′ = 〈f〉. Then suppose the

induction hypothesis is correct for all weights less than k′. Then by Proposition 41,

k′ = k+m(p−1) for some non-negative integer m. Set f0 = Amf ∈ Vf,k′ . Then since

Vf,k′ is a finite dimensional Fp-vector space, say of dimension d, we can pick modular

forms f1, f2, f3, . . . , fd−1 ∈ Vf,k′ such that f0, f1, f2, . . . , fd−1 constitutes a basis for

Vf,k′ . Then for all 1 ≤ i ≤ d−1, define gi := fi−a1(fi)f0. Then a1(gi) = 0 which gives

an(gi) = 0 for all integers n ≥ 1 such that p - n as an(gi) = a1(Tngi) = an(f)a1(gi) = 0

for such n. Then by Proposition 44 there exist modular forms g̃i ∈Mki(Γ1(N),Fp)Katz
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for i = 1, 2, 3, . . . , d−1 such that gi(q) = AriFrobg̃i(q) and g̃i ∈ Vf,ki for some integers

ri and ki < k′. Then by the induction assumption g̃1, g̃2, g̃3, . . . , g̃d−1 are in the weight

old space of f in weights k1, k2, k3, . . . , kd−1. This implies that the basis elements

f1, f2, f3, . . . , fd−1 are in the weight old space of f in weight k′. This gives the result.

Corollary 51. Let f ∈Mk(Γ1(N),Fp)Katz be a normalised Katz eigenform with min-

imal weight. Then any normalised Katz eigenform g ∈ Mk′(Γ1(N),Fp)Katz such that

ρf ∼= ρg and al(f) = al(g) for all primes l|N is in the weight old space of f .

In the above corollary one cannot relax the condition that the eigenvalues al(f)

and al(g) for Tl for all primes l dividing the level are the same. To construct a coun-

terexample let F ∈ Sk(Γ1(M),Fp)Katz be a Katz newform. Then choose a prime l -Mp

such that Tl has two distinct eigenvalues on 〈F (q), BM,lM
l F (q)〉 ⊆ Sk(Γ1(Ml),Fp)Katz.

Then we can produce normalised Katz eigenforms f and g (for example take F (q)

and F (q) + αBM,Ml
l F (q) for suitable choose of α) in this subspace such that ρf ∼= ρg

and al(f) 6= al(g) but one is not in the weight old space of the other.

In Theorem 46 we have associated a Katz newform to any Katz eigenform which

has an irreducible Galois representation. More generally if we assume the existence

of Katz newforms for Katz eigenforms which have reducible Galois representations

we have

Proof of Theorem 3. By applying Lemma 45 with S = IM we have eigenforms F̃ and

f̃ such that al(F̃ ) = 0 = al(f̃) for all primes l|M . Then by using Corollary 51 one

can write

F̃ (q) =
∑
δ∈Dk′

k

αδδ(f̃(q))

for some αδ ∈ Fp where Dk′

k is the set of words W in A and Frob such that W takes

weight k forms into weight k′ forms. Let us define

F1(q) :=
∑
δ∈Dk′

k

αδδ(f(q))

by replacing the form f̃ by f . Suppose that F1(q) =
∑u

t=0; i βtA
iFrobtf(q). Then F1

is a Tp Katz eigenform since for any positive integer m such that gcd(m, p) = 1 we

have apm(F1) = β0apm(f) + β1am(f), ap(F1) = β0ap(f) + β1 and am(F1) = β0am(f)

where β0 = 1 so apm(F1) = β0apm(f) +β1am(f) = am(f)(a0(f) +β1) = am(F1)ap(F1).

On the other hand since apn(F1) = apn(F̃ ) for any positive integer n and that F̃ is a

Tp eigenfunction of weight k′ we have

apn(F1) = ap(F1)apn−1(F1)− pk
′−1apn−2(F1)
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for any positive integer n ≥ 2. Then since ρF ∼= ρF1 , ap(F ) = ap(F1) and level(F1) =

N , by applying Lemma 48 we have F ∈ Lold
M (F1), which gives the desired result.

In particular, we have determined all possible coefficients of any Katz eigenform

which has irreducible mod p Galois representation from the coefficients of the corre-

sponding Katz newform.

Corollary 52. Let F ∈ Sk(Γ1(M),Fp)Katz be a normalised Katz eigenform and as-

sume that there exists a Katz newform f ∈ Sk′(Γ1(N), ε,Fp)Katz such that ρF ∼= ρf .

Suppose that F (q) =
∑

n≥1 anq
n and f(q) =

∑
n≥1 bnq

n are their q-expansions. Then

we have the following identities:

(i). When prime l -Mp/N , al = bl.

(ii). When prime l|M/N and l|N , al = 0 or al = bl.

(iii). When prime l|pM/N but l - N , al = 0 or a2l − albl + ε(l)lk−1 = 0.

Proof. We have F in the level and weight old space of f . We can write

F =
∑
l|M/N

αlB
N,M
l g(q)

for some g ∈ Wold
k (f). We can easily observe that for primes l - Mp/N, al = al(g) =

al(f) = bl. For a prime l|M/N and l|N , if lm||M/N , then

alm = blm +
m∑
t=0

αlblm−t

and

alm+1 = blm+1 +
m∑
t=0

αtblm+1−t .

This yields

almal = blmbl +
m∑
t=0

blm−tbl

= blalm .

This reduces to aml (al − bl) = 0 so al = 0 or al = bl. If prime l|M/N and l - N then

we have

almal = blmbl − ε(l)lk
′−1blm−1 +

m−1∑
t=0

αt(blm−tbl − ε(l)lk
′−1blm−t−1) + αmbl.

Which reduces to

alm+1 = bl(blm +
m∑
t=0

αtblm−t)− ε(l)lk′−1(blm−1 +
m−1∑
t=0

blm−t−1)

= blalm − ε(l)lk
′−1alm−1 .
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Which is equivalent to am+1
l (a2l − albl + ε(l)lk

′−1) = 0 so al = 0 or a2l − albl +

ε(l)lk
′−1 = 0. Similar result for l = p follows by considering that g is generated by

f(q), f(qp), f(qp
2
), . . . , f(qp

t
) for some finite t.

One might ask if the converse is true. That is, given a newform f and some

power series F which satisfies the conditions of above lemma, Lemma 52, then is F

a modular form? Is F in the level and weight old space of f? The answer is true.

In fact, we will prove a more general statement. We will make use of the following

Lemma.

Lemma 53. Any word in Frob and A can be written uniquely in the form

Ab0FrobAb1Frob · · ·AbsFrobAc

with s ∈ Z≥0, 0 ≤ b0, b1, . . . , bs ≤ p− 1 and c ∈ Z≥0.

Proof. The result follows from the identity ApFrob = FrobA. Let k′ be the weight

associated to

Ab0FrobAb1Frob · · ·AbsFrobAcf

where f is of weight k. Then we have

k′ − ps+1k

p− 1
= ps+1c+ psbs + · · ·+ pb1 + b0.

Here we have a fact that in the p-adic representation the digits are unique. So the

integers b0, b1, . . . , bs and c are unique.

Proposition 54. Let f =
∑∞

n=1 anq
n ∈ Sk(Γ1(N), ε,Fp)Katz be a normalised Katz

Hecke eigenform. Let N |M and k′ ≥ k, k′ ≡ k(mod p− 1). Let W be the level-weight

old space of f in level M and weight k′. Then we have

(a). For all n ∈ N, TnW ⊂W
(b). The minimal polynomial of the Hecke operator Tl for prime l equals

(i). X − al if prime l -Mp/N

(ii). (X − al)Xr if for prime l, lr||M/N and l|N
(iii). (X2 − alX + ε(l)lk−1)Xr−1 if for prime l, lr||M/N and l - N , r ≥ 1

(c).Ifk ≥ 2, then the minimal polynomial of Tp on W is (X − al)Xr, where r is the

maximum number of times Frob appears in a word in A and Frob taking from weight

k into weight k′, which is in the floor, r = b log k
′/k

log p
c.

(d). If k = 1 and k′ ≥ p, then the minimal polynomial of Tp on W is (X2 − alX +

ε(l))Xr−1 where r is the maximum integer such that k′ ≥ pr, i.e., r = b log k′
log p
c.
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Proof. (a). Since Tn is linear it is enough to show that, if

g := Bα1
d1
Bα2
d2
· · ·Bαr

dr
An1Frobm1An2Frobm2 · · ·AnsFrobmsf, then Tng ∈ W

where αi, nj and mr are non negative integers. Here we drop the level descriptions

from the level degeneracy maps. By Bα1
d we mean a composition BdBd · · ·Bd of

Bd, α1 ∈ Z≥1 times. Since the Hecke algebra Tk(N) is generated by Tl and 〈l〉 for l

in a set of primes, it suffices to consider the following relations. One can check them

on the q-expansions: Let h ∈ Sk(Γ1(N), ε,Fp)Katz be a cuspidal Katz modular form.

Then

• We have TlBlh(q) = TlBl(
∑∞

n=1 anq
n) := Tl

∑∞
n=1 bnq

n =
∑∞

n=1 cnq
n

where cn
∑

d|(n,l) ε(d)dk−1bnl/d2 = bnl = an, since l|level(Blh). Thus TlBl = id

on Sk(Γ1(N), ε,Fp)Katz

•
TlBl′ = Bl′Tl for primes l 6= l′.

The formula for TlBl′h(q) = Tl
∑∞

n=1 anq
nl′ := Tl

∑∞
n=1 bnq

n =
∑∞

n=1 cnq
n where

cn = bnl + ε(l)lk−1bn/l, and the formula for Bl′Tlh(q) = Bl′Tl
∑∞

n=1 anq
n =

Bl′
∑∞

n=1 bnq
n =

∑∞
n=1 bnq

nl′ :=
∑∞

n=1 cnq
n where bn = anl + ε(l)lk−1an/l are the

same. Thus, TlBl′ = Bl′Tl for primes l 6= l′.

• We need to calculate TlB
N,M
1 f . When l|M,an(TlB

N,M
1 f) = anl(h) which is

for l - N equal to an(Tlh) − lk−1an/l(〈l〉h) = an(Tlh) − lk−1Bl(〈l〉h) and for

l|N, anl(h) = an(Tlh). Thus, for l|M

TlB
N,M
l h =

{
BN,M

1 Tlh− lk−1Bl(〈l〉)h if l | N,
BN,M

1 Tlh if l|N.

When l -M , for l - N we have an(TlB
N,M
1 h) = anl(h)−lk−1an/l(〈l〉h) = an(Tlh)−

lk−1an/l(〈l〉h) + lk−1an/l(〈l〉h) = an(Tlh). And for l|N we have an(TlB
N,M
1 h) =

anl(h) = an(Tlh). Thus, for l -M,TlB
N,M
1 H = BN,M

1 Tlh.

• Since weight of Ah is at least 2 we have

an(TpA
∑∞

n=1 anq
n) = anp(h) = an(ATph− pk−1an/p(〈p〉h))

which is equal to an(ATph) − an(Frob〈p〉h) when weight is 1 and equal to

an(ATph) when weight is at least 2.
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•
TlA = ATl for prime l 6= p.

Computing both side expressions with q-expansion gives the result.

• Since weight of Frobh is at least p we have

an(TPFrobh) = anp(Frobh) = an(h). Thus, TpFrobh = id.

•
TlFrob = FrobTl for prime l 6= p.

Here the result follows by computing both side expressions with q-expansion.

•
〈l〉Bl = 0 for all prime l 6= p.

This is because l|level(Blh).

•
〈l〉Bl′ = Bl′〈l〉 for all primes l and l′ :

Without loss of generality we can assume l 6= p. Then we have 〈l〉Bl′
∑∞

n=1 anq
n =

〈l〉
∑∞

n=1 anq
nl =

∑∞
n=1 ε(l)anq

nl on the other hand, Bl′〈l〉
∑∞

n=1 anq
n = Bl′ε(l)

∑∞
n=1 anq

n =∑∞
n=1 ε(l)anq

nl.

Similarly we have

•
〈l〉A = A〈l〉 for all prime l.

•
〈l〉Frob = Frob〈l〉 for all prime l.

Thus using the above relations we have that the inclusion Tng ∈ W holds. As we

said above, the result follows from above relations because the Hecke algebra Tk(N)

is generated by Tl and 〈l〉 for l in a set of primes.

(b). (i). We have (Tl − al)f = 0, so for prime l -Mp/N

(Tl − al)(Bα1
d1
· · ·Frobms)f = (Bα1

d1
· · ·Frobms)(Tl − al)f = 0.

We can see that Bα1
d1
· · ·Frobmsf 6= 0 as long as f is not zero. Thus, x − al is the

minimal polynomial for this case.
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(ii). Let l|N and lr||M/N for r ≥ 1. Then consider the space of weight-level old

space of f in weight k and level Nlr, denoted Wk,Nlr

k,N . On this space, according

to the computations in (a) the matrix of Tl on Wk,Nlr

k,N with respect to the basis

B1f,Blf, . . . , Blrf is the one in ([37], Proposition 4). That is we have TlBlrf = Blr−1f

for r ∈ Z≥1. Thus with respect to the basis B1f,Blf, . . . , Blrf we have the matrix

al(f) 1 0 0 · · · 0

−δlk−1ε(l) 0 1 0 · · · 0

0 0 0 1 · · · 0
...

0 · · · 0 0 0 1

0 · · · 0 0 0 0


where δ = 1 if l - N and δ = 0 otherwise. Its minimal polynomial is (X − al)Xr.

As Tl commutes with A and Frob, (X − al)Xr is also the minimal polynomial on

Wk′,Nlr

k,N .

As Tl commutes with Bd for (d, pl) = 1, d|M/N , (X − al)Xr is also the minimal

polynomial of Tl on W .

(iii). Here δ = 1, so the minimal polynomial is (X2 − alX + ε(l)lk−1)Xr−1.

(c). If we fix a basis of type of above Lemma for the space Wk′

k . The matrix of Tp

with respect to these basis is the same as in (b). Thus, we get the same type of

minimal polynomial.

(d). The same argument as above works.

Remark 55. Let us recall that in classical newform theory, the newspace has a ba-

sis consisting of newforms. However, this cannot be generalised to Katz modular

forms. A counterexample occurs in S1(Γ0(229),F2)Katz. The associated Hecke algebra

T is a local 2-dimensional F2-algebra, hence it has a unique attached Katz eigenform,

whereas S1(Γ0(229),F2)Katz is a 2-dimensional F2-vector space. Hence it does not

have a basis of Katz newforms.

2.2 Reducible case

In his thesis [36], Weisinger and separately Linowitz and Thompson in [25] developed

a newform theory for the space of classical Eisenstein series. A classical Eisenstein

newform is uniquely determined by the signs of its Hecke eigenvalues with respect to

any set of primes with density greater than 1/2. In this section, we will prove a strong

multiplicity one result for Katz Eisenstein series. Then later we will show that under
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some condition a reducible mod p Galois representation arises from a normalised Katz

eigenform with optimal level.

In Section 1.1.3 we have defined a classical Eisenstein series. In this section we

study their mod p reductions.

Hereafter we will assume that all Dirichlet characters which we consider are prim-

itive and we are not in the situation where our Eisenstein series have weight k = 2

and level N = 1. Let Den
(
B

ε1
k

2k

)
denotes the denominator of

B
ε1
k

2k
when it is written

in a reduced fractional form.

We can define Katz Eisenstein series by considering the mod p reduction of Eisen-

stein series. We define the Katz eigenform Eε,ε′

k as the mod p reduction of the associ-

ated Eisenstein series Eε1,ε2
k by assuming that prime p - Den

(
B

ε1
k

2k

)
in case ε2 = 1. All

coefficients of Eε1,ε2
k belong toO whereO is the ring of integers of some finite extension

of Qp. In order to show that it is a Katz modular form over O, we apply Theorem 32.

Note that we can do this after possibly considering it in a higher level. So, we have

a well defined reduction of Eε1,ε2
k at some prime above p, Eε,ε′

k which is a Katz Eisen-

stein series. Similarly by taking positive integer t ≥ 1 we can define a Katz Eisenstein

series Eε,ε′,t
k . A normalized Katz eigenform f(q) = Eε,ε′

k (q) ∈ Mk(Γ1(N),Fp)Katz is

called a Katz new Eisenstein series if it satisfies the condition of Definition 1, i.e. it

is a Katz newform.

Definition 56. A normalised Katz Eisenstein series f ∈ Mk(Γ1(N), ε,Fp)Katz is

called a Katz new Eisenstein series if f has l-minimal level for any prime l and has

minimal weight k.

We know that the mod p Galois representations associated to Eisenstein series

are reducible. One reference could be [[38], §2, pg. 1415]. Let f = Eε,ε′,t
k ∈

Mk(Γ1(N), χ,Fp)Katz be any Katz Eisenstein series. Then we have ρf ∼= ε′ ⊕ εχk−1p

which is unramified outside pN with the property that tr(ρf (Frobl)) = f(Tl) and

det(ρf (Frobl))

= χ(l)lk−1 for all primes l - pN . In fact the converse also holds. Any semi-simple

reducible mod p Galois representation comes from some twist of an Eisenstein series.

Let ε and ε′ be primitive Dirichlet characters with values in Fp and let ε1 and ε2

be their respective complex liftings with the same conductors and the same orders.

Then we start by proving the existence of Katz new Eisenstein series.

Proposition 57. Let 1 ≤ k ≤ p − 1 and N(ρ) = cond(ε) · cond(ε′) be positive

integers. Assume k 6= 2 if ε = ε′ = 1. Assume also p - Den
(
B

ε1
k

2k

)
if ε2 = 1.

Then f = Eε,ε′

k ∈ Mk(Γ1(N(ρ)),Fp)Katz is a Katz new Eisenstein series such that

ρf ∼= ε′ ⊕ εχk−1p .

35



Proof. This immediately follows from the discussion above. Here Eε,ε′

k is Katz new

Eisenstein series as it is a normalised eigenform with optimal level and weight. This

is because both characters ε and ε′ are primitive and the product of their conductors

is the conductor of the representation and k is in the range 1 ≤ k ≤ p− 1.

Corollary 58. Let F ∈Mk(Γ1(N),Fp)Katz be a normalised Katz eigenform such that

ρF ∼= ε′ ⊕ εχbp where 0 ≤ b ≤ p − 2. Suppose N = cond(ρF ). Assume b 6= 1 if

cond(ρF ) = 1. Also assume p - Den
(

B
ε1
b+1

2(b+1)

)
if ε2 = 1. Then F is in the weight old

space of Eε,ε′

b+1 in the weight k.

Proof. By Proposition 57 above, f = Eε,ε′

b+1 is a Katz new Eisenstein series such that

ρf ∼= ρF . By Proposition 41 we can write k = (b+1)+m(p−1) for some non-negative

integer m. Then by comparing coefficients of θp−1F and θp−1Amf using Lemma 48

we have al(F ) = al(f) for all primes l|N as N is optimal level. Then Corollary 51

completes the proof.

Proposition 59. Let f(q) = Eε,ε′

k (q) ∈ Mk(Γ1(N),Fp)Katz and g(q) = Eχ,χ′

k′ (q) ∈
Mk′(Γ1(N

′),Fp)Katz be Katz new Eisenstein series with al(f) = al(g) for each l in a

set of primes of density 1. If k 6≡ 1(mod p − 1), then f = g, k = k′, N = N ′, ε = χ

and ε′ = χ′. If k ≡ 1(mod p − 1), then the same conclusion holds except that the

characters could be exchanged: ε′ = χ and ε = χ′.

Proof. From the hypothesis we have ρf ∼= ρg or ε′ ⊕ εχk−1p
∼= χ′ ⊕ χχk′−1p . Then by

the definition of Katz new Eisenstein series the levels and weights of the forms are

optimal so they are equal. Then from ε′ ⊕ εχk−1p
∼= χ′ ⊕ χχk−1p we have the following

two cases. (i). ε′ = χ′ and εχk−1p = χχk−1p or (ii). ε′ = χχk−1p and εχk−1p = χ′. The

first case gives ε′ = χ′ and ε = χ as a Galois representations while the second case

gives ε′ = χ and ε = χ′ provided that k ≡ 1, p(mod p− 1). This completes the proof.

Remark 60. It is not always the case to obtain a cuspidal eigenform with both optimal

weight and optimal level which gives rise to a given reducible mod p Galois represen-

tation. For example, there exists a modular form f ∈ S28(Γ1(1),F7)Katz such that

ρf ∼= ρE4
but there is no cuspidal eigenform g ∈ S4(Γ1(1),F7)Katz such that ρg ∼= ρf .

Here E4 is the mod 7 reduction of E4.

Consider again Theorem 3 when the mod p representation of the modular form is

reducible. To be precise let F ∈ Sk′(Γ1(M),Fp)Katz be a normalised Katz eigenform

with reducible mod p Galois representation ρF ∼= ε′χap ⊕ εχbp where det ρF = εε′χk−1p
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for some a, b ∈ Z/(p − 1)Z such that 1 ≤ k ≤ p + 1 and k − 1 ≡ b − a(mod p − 1).

Assume that ε and ε′ are primitive when considered as Dirichlet characters.

Then we show that there exists a normalised Katz cuspidal eigenform g of optimal

level such that ρF ∼= ρg. The weight may not be optimal.

Lemma 61. Let F ∈ Sk′(Γ1(M),Fp)Katz be a normalised Katz eigenform such that

ρF ∼= ε′χap ⊕ εχbp where 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 2 and k is a positive integer such

that 1 ≤ k ≤ p + 1. Assume that (N(ρF ), k) 6= (1, 2). Then we have the following

four cases:

(i). If ε2 6= 1 and k − 1 ≡ b− a(mod p− 1), then ρF comes from g = θa(Eε1,ε2
k ), i.e.,

ρF ∼= ρg.

(ii). If ε = ε′ = 1, k = 2, b − a ≡ 1(mod p − 1) and p 6= 2, 3, then ρF comes from

g = θa(E1,1
p2+1).

(iii). If ε1 = ε2 = 1, k−1 ≡ b−a(mod p−1), k 6= 2 and p - Den
(
Bk

2k

)
, then ρF comes

from g = θa(E1,1
k ).

(iv). If ε1 6= 1, ε2 = 1, k − 1 ≡ b − a(mod p − 1) and p - Den
(
B

ε1
k

2k

)
, then ρF comes

from g = θa(Eε1,1
k ).

Proof. In the case when a = p− 1 we have the following cases. (i). We have that ρF

comes from Eε,ε′,t
k for some positive integer t. Then since (N(ρ), k) 6= (1, 2) taking

t = 1 gives a normalised eigenform Eε,ε′

k with an optimal level. Here a0(E
ε1,ε2
k ) = 0,

so we can take modulo p reduction and apply the theta operator to get a normalised

cuspidal Katz eigenform g = θp−1(Eε1,ε2
k ) such that ρF ∼= ρg.

(ii). Let ρF ∼= ρE1,1,t
2

for some positive integer t. Then for prime p 6= 2, 3 we have

ρ
θp−1
(
E1,1,t

2

) ∼= ρ
E1,1

p2+1

. Then set g = θp−1
(
E1,1
p2+1

)
.

(iii). Here the assumption p - Den
(
B

ε1
k

2k

)
implies that the modulo p reduction is well

defined. Similarly (iv) holds.

On the other hand, when a 6= p − 1, by applying the above method to the twist

θp−(1+a)F one can get modular form g′. Then use the relation ρθp−1F
∼= ρF ∼= ρθag′ .

Let us assume that we are in the same notation and under the same assumptions

as in Lemma 61. Then as an immediate consequence of Lemma 48 we have

Theorem 62. Let F ∈ Sk′(Γ1(M),Fp)Katz be the above normalised Katz eigenform

which we consider. Suppose that ap(F ) = 0 and g is the modular form associated to

F as in Lemma 61. Then up to a suitable power multiple of the Hasse invariant, F

is in the level old space of g.

As an application of Corollary 52 we can compute all possible coefficients of any

37



of the above type cuspidal Katz eigenform which has reducible mod p Galois repre-

sentation in terms of the associated normalised Katz eigenform of optimal level.

Let F ∈ Sk(Γ1(M),Fp)Katz be a normalised Katz eigenform. Suppose that ap(F ) 6=
0 and ρF is reducible. Then by [[18], Theorem 4.12] we can assume that 2 ≤ k ≤ p+1

is an optimal weight. Then ρF ∼= ε′ ⊕ εχk−1p and suppose that (N(ρ), k) 6= (1, 2) and

p - 2k ·Den(Bε1
k ) when ε2 = 1. Then by Lemma 48 we have θF ∈ Lold

M (θ(Eε1,ε2
k )).
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Chapter 3

Numerical Examples

In this section, we will give numerical examples which illustrates Theorem 3. In our

last example, we determine all the possible coefficients of a Katz eigenform which

admits a reducible Galois representation. The modular forms we consider are taken

from the L-functions and Modular Forms Database (LMFDB).

3.1 Example 1

First let us consider the elliptic curve E : y2 + xy = x3 − 1, which is of level 431. We

can get from the database that E corresponds to a weight 2 mod 2 Katz eigenform

g(q) = q+ q2 + q3 + q4 + q5 + q6 + q8 + q10 + q11 + q12 + q15 + q16 + q19 + q20 +O(q22)

labeled on the database by Newform orbit 431.2.a.a. We can also observe that ρg

comes also from a Katz newform f ∈ S1(Γ1(431),F2)Katz which is given by

f(q) = q + q3 + q4 + q5 + q11 + q12 + q15 + q16 + q19 + q20 + O(q23)

[LMFDB, Newform orbit 431.1.b.a].

Then from Corollary 51 we have the relation

g(q) = Af(q) + αFrobf(q), for some α ∈ F2. (3.1)

Computationally we can find α = a2(g) − a2(Af) = 1. Plugging α = 1 yields the

identity we want

Af(q) + αFrobf(q)

= q + q3 + q4 + q5 + q11 + q12 + q15 + q16 + q19 + q20 +O(q23)+

q2 + q6 + q8 + q10 + q22 + q24 + q30 + q32 + q38 + q40 +O(q46)

= q+q2+q3+q4+q5+q6+q8+q10+q11+q12+q15+q16+q19+q20+q22+O(q23) = g(q).
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3.2 Example 2

Now let us have an example which has degeneracy both in the level and in the weight.

Let us start from a classical newform f in weight 2 and level 89 with trivial character,

labeled on LMFDB by Newform orbit 89.2.a.a,

f(q) = q − q2 − q3 − q4 − q5 + q6 − 4q7 + 3q8 − 2q9 + q10 − 2q11 + q12+

2q13 + 4q14 + q15 − q16 + 3q17 + 2q18 − 5q19 + q20 + 4q21 +O(q22).

When we reduce it mod 5 we get

f(q) = q + 4q2 + 4q3 + 4q4 + 4q5 + q6 + q7 + 3q8 + 3q9 + q10 + 3q11 + q12+

2q13 + 4q14 + q15 + 4q16 + 3q17 + 2q18 + q20 + 4q21 +O(q22).

We have the situation that a3(f) ≡ (3 + 1)(mod 5), so f satisfies the level raising

condition at the prime 3 mod 5. This means the mod 5 representation ρf arises

from a newform of level 3 · 89 = 267 and weight 2 modulo 5. To include degeneracy

in the weight we go to weight 10 and level 267 and search for mod 5 eigensystems

which correspond to the mod 5 eigenform f . By using Magma we obtain two systems

with coefficients that possibly differing at primes 3, 5 and 89. Indexed by consecutive

primes, the eigenvalues of the normalised eigenforms, i.e., the coefficients at the prime

indices of the forms, are:

4, 1, 4, 1, 3, 2, 3, 0, 2, 0, 1, 3, 0, 3, 3, 2, 4, 1, 2, 0, 2, 4, 2, 4, 4, 0, 1, 0, 1, 2, 3, 1, 3, 2, 4,

2, 3, 0, 3, 4, 4, 2, 0, 1, 3, 2

and

4, 1, 0, 1, 3, 2, 3, 0, 2, 0, 1, 3, 0, 3, 3, 2, 4, 1, 2, 0, 2, 4, 2, 4, 4, 0, 1, 0, 1, 2, 3, 1, 3, 2, 4,

2, 3, 0, 3, 4, 4, 2, 0, 1, 3, 2.

The first eigensystem gives a mod 5 Katz eigenform

g(q) = q + 4q2 + q3 + 4q4 + 4q5 + 4q6 + q7 + 3q8 + q9 + q10 + 3q11 + 4q12+

2q13 + 4q14 + 4q15 + 4q16 + 3q17 + 4q18 + q20 + q21 + 2q22 + 2q23 +O(q24).

Then by Theorem 3 we have the following equation

g(q) = β1A
2B89,267

1 f(q)+β2FrobB89,267
1 f(q)+β3A

2B89,267
3 f(q)+β4FrobB89,267

3 f(q),
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for some βi,∈ F5 (i = 1, 2, 3, 4). It is easy to see that β1 = 1, β2 = 0, β3 = 2 and

β4 = 0. Then we have

A2B89,267
1 f(q) + 2A2B89,267

3 f(q)

= q + 4q2 + 4q3 + 4q4 + 4q5 + q6 + q7 + 3q8 + 3q9 + q10 + 3q11 + q12+

2q13 + 4q14 + q15 + 4q16 + 3q17 + 2q18 + q20 + 4q21 +O(q22)

+ 2q3 + 3q6 + 3q9 + 3q12 + 3q15 + 2q18 + 2q21 + q24 + q27 +O(q30)

= q + 4q2 + q3 + 4q4 + 4q5 + 4q6 + q7 + 3q8 + q9 + q10 + 3q11 + 4q12+

2q13 + 4q14 + 4q15 + 4q16 + 3q17 + 4q18 + q20 + q21 +O(q22) = g(q).

The second eigensystem corresponds to a mod 5 Katz eigenform

g′(q) = q + 4q2 + q3 + 4q4 + 4q6 + q7 + 3q8 + q9 + 3q11 + 4q12+

2q13 + 4q14 + 4q16 + 3q17 + 4q18 + q21 + 2q22 + 2q23 +O(q24).

Then by Theorem 3 we have the following equation

g′(q) = β1A
2B89,267

1 f(q)+β2FrobB89,267
1 f(q)+β3A

2B89,267
3 f(q)+β4FrobB89,267

3 f(q),

for some βi,∈ F5 (i = 1, 2, 3, 4). By an easy calculation on the q-expansions we have

β1 = 1, β2 = 1, β3 = 2 and β4 = 2. Then we can check the compatibility of the

coefficients

A2B89,267
1 f(q) + Frobf(q) + 2A2B89,267

3 f(q) + 2FrobB89,267
3 f(q)

= q + 4q2 + 4q3 + 4q4 + 4q5 + q6 + q7 + 3q8 + 3q9 + q10 + 3q11 + q12+

2q13 + 4q14 + q15 + 4q16 + 3q17 + 2q18 + q20 + 4q21 +O(q22)

+ q5 + 4q10 + 4q15 + 4q20 + 4q25 + q30 + q35 +O(q40)

+ 2q3 + 3q6 + 3q9 + 3q12 + 3q15 + 2q18 + 2q21 + q24 + q27 +O(q30)

+ 2q15 + 3q30 + 3q45 +O(q60)

= q + 4q2 + q3 + 4q4 + 4q6 + q7 + 3q8 + q9 + 3q11 + 4q12+

2q13 + 4q14 + 4q16 + 3q17 + 4q18 + q21 +O(q22) = g′(q).

3.3 Example 3

Let us consider one example of a Katz eigenform which has a reducible representation.

We can take k = 2 and p = 5 and choose a prime N satisfying the condition N2 ≡
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1(mod 5) and that the largest prime factor of N−1 is greater than N1/4, say N = 11.

Then by Theorem 1 of [3] and Mazur’s Theorem [[27], Proposition 5.12] the reducible

representation 1⊕ χ5 arises from a newform of level 11 and weight 2, labeled on the

LMFDB by Newform orbit 11.2.a.a and given by

f(q) = q− 2q2− q3 + 2q4 + q5 + 2q6− 2q7− 2q9− 2q10 + q11− 2q12 + 4q13 + 4q14− q15

− 4q16 − 2q17 + 4q18 +O(q20).

One can check that al ≡ (1 + l)(mod 5) for primes l - 5 · 11. We have a modular form

g ∈ S2(Γ1(66),C) [LMFDB, Newform orbit 66.2.a.c] given by

g(q) = q+ q2 + q3 + q4−4q5 + q6−2q7 + q8 + q9−4q10 + q11 + q12 + 4q13−2q14−4q15

+ q16 − 2q17 + q18 +O(q20)

such that the mod 5 reduction of the representations ρf and ρg are the same.

Here using Corollary 48 we can compare θp−1f and θp−1g, which leads to the the

congruence on q-expansions

an(g(q)) ≡ an

( ∑
d|66/11

αdB
11,66
d f(q)

)
mod p

for all n such that 5 - n. We can see that α2 = a2(g)−a2(f) = 3, α3 = a3(g)−a3(f) = 2

and α6 = (a2(g)− a2(f))(a3(g)− a3(f)) = 6.

To verify the relation we first have

g(q) = q + q2 + q3 + q4 + q5 + q6 + 3q7 + q8 + q9 + q10 + q11 + q12 + 4q13 + 3q14

+ q15 + q16 + 3q17 + q18 +O(q20)

and

f(q) = q+3q2 +4q3 +2q4 +q5 +2q6 +3q7 +3q9 +3q10 +q11 +3q12 +4q13 +4q14 +4q15

+ q16 + 3q17 + 4q18 +O(q20).
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Then we can compute

B11,66
1 f(q) + α2B

11,66
2 f(q) + α3B

11,66
3 f(q) + α6B

11,66
6 f(q)

= q + 3q2 + 4q3 + 2q4 + q5 + 2q6 + 3q7 + 3q9 + 3q10 + q11 + 3q12 + 4q13 + 4q14

+ 4q15 + q16 + 3q17 + 4q18 +O(q20)

+ 3q2 + 4q4 + 2q6 + q8 + 3q10 + q12 + 4q14 + 4q18 +O(q20)

+ 2q3 + q6 + 3q9 + 4q12 + 2q15 + 4q18 +O(q21)

+ q6 + 3q12 + 4q18 +O(q24)

≡ q+q2+q3+q4+q5+q6+3q7+q8+q9+q10+q11+q12+4q13+3q14+q15+q16+3q17

+ q18 +O(q20) = g(q).

Thus as described above we can determine all coefficients of g except the coefficients

indexed by 5n, a5n(g) for all positive integers n from the q-expansion of f .
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Sup. (4), 7:507–530 (1975), 1974.

47



[12] F. Diamond. The refined conjecture of Serre, Elliptic curves, modular forms, &

Fermat’s last theorem (Hong Kong, 1993), 22–37, Ser. Number Theory, I, Int.

Press, Cambridge, MA, 1995.

[13] F. Diamond and J. Im. Modular forms and modular curves. In Seminar on

Fermat’s Last Theorem (Toronto, ON, 1993–1994), volume 17 of CMS Conf.

Proc., pages 39–133. Amer. Math. Soc., Providence, RI, 1995.

[14] F. Diamond and J. Shurman. A first course in modular forms, Graduate Texts

in Mathematics, 228, Springer-Verlag, New York, 2005.

[15] B. Edixhoven. The weight in Serre’s conjectures on modular forms. Invent.

Math., 109(3):563–594, 1992.

[16] B. Edixhoven and J.-M. Couveignes, editors. Computational aspects of modular

forms and Galois representations, volume 176 of Annals of Mathematics Stud-

ies. Princeton University Press, Princeton, NJ, 2011. How one can compute in

polynomial time the value of Ramanujan’s tau at a prime.

[17] B. Edixhoven. Serre’s conjecture. Modular forms and Fermat’s last theorem

(Boston, MA, 1995), 209–242, 1997.

[18] B. H. Gross. A tameness criterion for Galois representations associated to mod-

ular forms (mod p). Duke Math. J., 61(2):445–517, 1990.

[19] N. M. Katz. p-adic properties of modular schemes and modular forms. In Modular

functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp,

Antwerp, 1972), pages 69–190. Lecture Notes in Mathematics, Vol. 350, 1973.

[20] N. M. Katz. A result on modular forms in characteristic p. In Modular functions

of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976),

pages 53–61. Lecture Notes in Math., Vol. 601, 1977.

[21] C. Khare and J.-P. Wintenberger. Serre’s modularity conjecture. I. Invent.

Math., 178(3):485–504, 2009.

[22] C. Khare and J.-P. Wintenberger. Serre’s modularity conjecture. II. Invent.

Math., 178(3):505–586, 2009.

[23] M. Kisin. Modularity of 2-adic Barsotti-Tate representations. Invent. Math.,

178(3):587–634, 2009.

48



[24] W. C. W. Li. Newforms and functional equations. Math. Ann., 212:285–315,

1975.

[25] B. Linowitz and L. Thompson. The sign changes of Fourier coefficients of Eisen-

stein series. Ramanujan J., 37(2):223-241, 2015.

[26] B. Linowitz and L. Thompson. The Fourier coefficients of Eisenstein series new-

forms. Automorphic forms and related topics, 169176, Contemp. Math., 732,

Amer. Math. Soc., Providence, RI, 2019.

[27] B. Mazur. Modular curves and the Eisenstein ideal, With an appendix by Mazur

and M. Rapoport, Inst. Hautes Études Sci. Publ. Math., 47(1977), 33–186, 1978.

[28] M. Ohta. Eisenstein ideals and the rational torsion subgroups of modular Jaco-

bian varieties II. Tokyo J. Math.,37, 273–318, 2014.

[29] K. Ono and N. Ramsey. A mod ` Atkin-Lehner theorem and applications. Arch.

Math. (Basel), 98(1):25–36, 2012.

[30] K. A. Ribet. Report on mod l representations of Gal(Q/Q). In Motives (Seattle,

WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 639–676. Amer. Math.

Soc., Providence, RI, 1994.

[31] K. Ribet and W. Stein. Lectures on Serre’s conjectures. Arithmetic algebraic

geometry (Park City, UT, 1999), IAS/Park City Math. Ser., 9, 143–232, Amer.

Math. Soc., Providence, RI, 2001.

[32] J.-P. Serre. Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke
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