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1 Introduction

Identifiability of the parameters is a necessary condition for the existence of
consistent estimators for any statistical model. Without identifiability, there
might be several solutions for the parameter estimation problem and numerical
algorithms risk to find only part of these solutions. Worse, the researcher fitting
the model might not even be aware that the solution his computer found is only
one of many possibilities.

Identifiability of distributions has been an important research topic in the
1960s. Teicher ([6]) proved that the class of all mixtures of one-dimensional
normal distributions is identifiable. Yakowitz and Spragins ([9]) extended this
result five years later to the class of all Gaussian mixtures.

For a long time, it was believed that identifiability for linear regression
mixtures with Gaussian errors follows directly from these results. DeSarbo
and Cron ([1]) even make that claim explicitly. Hennig ([2]) only showed in
2000 that that statement is not correct in general by constructing counter-
examples. Henning investigated the identifiability of the parameters of models
for data generated by different linear regression distributions with Gaussian
errors.

In this paper, we extend his results to finite mixture models in which the
typical trajectories in the different clusters do not just follow a line, but a
polynomial of any degree.

The remainder of this article is structured as follows. In section two, we
present the class of finite mixture models we are interested in. In section
three, we present some basic results about the identifiability of mixtures of
distributions. In section four, finally, we prove under which conditions finite
mixture models are identifiable.



2 Finite Mixture Models

Starting from a collection of individual trajectories, the aim of finite mix-
ture models is to divide the population into a number of homogenous sub-
populations and to estimate, at the same time, a typical trajectory for each
sub-population (Nagin [3]).

More, precisely, consider a population of size N and a variable of interest
Y . Let Yi = yi1 , yi2 , ..., yiT be T measures of the variable Y , taken at times
t1, ..., tT for subject number i. To estimate the parameters defining the shape
of the trajectories, we need to fix the number K of desired subgroups. Denote
the probability of a given subject to belong to group number k by πk.

The objective is to estimate a set of parameters Ω = {πk, βk0 , βk1 , ...; k =
1, ...,K} which allow to maximize the probability of the measured data. The
particular form of Ω is distribution specific, but the β parameters always per-
form the basic function of defining the shapes of the trajectories. In Nagin’s
finite mixture model (Nagin [3]), the shapes of the trajectories are described
by a polynomial function of age or time. Assume that for a subject in group k

yit =

s∑
j=1

βkj a
j
it + εit, (1)

where ait denotes the age of subject i at time t, s the degree of the polynomial
describing the trajectories in the different groups and εit is a disturbance as-
sumed to be normally distributed with a zero mean and a constant standard
deviation σ. The likelihood of the data is then given by

L =

N∏
i=1

K∑
k=1

πk

T∏
t=1

gk(yit), (2)

where gk(yit) is the probability distribution function of yit given membership
in group k. In this paper we restrict ourselves to normal distributions.
The disadvantage of the basic model is that the trajectories are static and
do not evolve in time. Thus, Nagin introduced several generalizations of his
model in his book (Nagin [3]). Among others, he introduced a model allowing
to add covariates to the trajectories. Let z1, ..., zM be M covariates potentially
influencing Y . We are then looking for trajectories

yit =

s∑
j=0

βkj a
j
it + αj1z1 + ...+ αjMzM + εit, (3)

where εit is normally distributed with zero mean and a constant standard
deviation σ. The covariates zm may depend or not upon time t.

But even this generalized model still has two major drawbacks. First, the
influence of the covariates in this model is unfortunately limited to the intercept
of the trajectory. This implies that for different values of the covariates, the
corresponding trajectories will always remain parallel by design, which does
not necessarily correspond to reality.



Secondly, in Nagin’s model, the standard deviation of the disturbance is
the same for all the groups. That too is quite restrictive. One can easily
imagine situations in which in some of the groups all individual are quite close
to the mean trajectory of their group, whereas in other groups there is a much
larger dispersion. To address and overcome these two drawbacks, Schiltz ([5])
proposed the following generalization of Nagin’s model.

Let x1, ..., xM and zi1 , ..., ziT be covariates potentially influencing Y . Here
the x variables are covariates not depending on time like gender or cohort
membership in a multicohort longitudinal study and the z variable is a covariate
depending on time like being employed or unemployed. They can of course also
designate time-dependent covariates not depending on the subjects of the data
set which still influence the group trajectories, like GDP of a country in case
of an analysis of salary trajectories.

The trajectories in group k will then be written as

yit =

s∑
j=0

(
βkj +

M∑
m=1

αkmxm + γkj zit

)
ajit + εkit, (4)

where the disturbance εkit is normally distributed with mean zero and a standard
deviation σk, constant inside group k, but different from one group to another.
Since, for each group, this model is just a classical fixed effects model for
panel data regression (see Wooldridge ([8])), it is well defined and we can get
consistent estimates for the model parameters.

That model allows obviously to overcome the drawbacks of Nagin’s model.
The standard deviation of the uncertainty can vary across groups and the
trajectories depend in a nonlinear way on the covariates.

Whereas the basic model is usually identified under very mild conditions,
it is obvious that this is no longer true in all generality for the two generalized
models. We will investigate this in the remainder of this paper.

3 Identifiability

In 1963, Teicher ([6]) showed the following result for mixtures of normal distri-
butions.

Proposition 1. The class of all mixtures of one-dimensional normal distribu-
tions is identifiable.

We will use that proposition to prove under which conditions finite mixture
models are identifiable.
Consider the distribution f of a finite mixture model.

f(yi;Ω) =

K∑
k=1

πkgk(yi; θ
k), (5)

which is equivalent to

F (yi;Ω) =

K∑
k=1

πkGk(yi; θ
k), (6)



where F and Gk denote the cumulative distribution functions (cdf’s) of f and
gk respectively.

Let F =
{
F (y;ω), y ∈ RT , ω ∈ Rs+2

K

}
be a family of T-dimensional cdf’s

indexed by a parameter set ω, such that F (y;ω) is measurable in RT × Rs+2
K .

The the s + 2-dimensional cdf H(x) =
∫
Rs+2

K
F (y;ω)dG(ω) is the image of the

above mapping, of the s + 2-dimensional cdf G. The distribution H is called
the mixture of F and G its mixing distribution. Let G denote the class of all
s+ 2-dimensional cdf’s G and H the induced class of mixtures H.

Then H is said to be identifiable if Q is a one-to-one map from G onto H.
The set H of all finite mixtures of class F of distributions is the convex hull

of F .

H =

{
H(y) : H(y) =

∑
i

ciF (y, ωi), ci > 0,
∑
i

ci = 1, F (y, ωi) ∈ F

}
. (7)

In this context, the definition of identifiability implies that F generates an
identifiable finite mixture model if and only if

N∑
i=1

ciFi =

M∑
i=1

c′iF
′
i (8)

implies that N = M and for each i, 1 ≤ i ≤ N there is some j, 1 ≤ j ≤ N ,
such that ci = c′j and Fi = F ′j .

We can then easily prove the following characterization of identifiability.

Theorem 1. A necessary and sufficient condition for the class H of all finite
mixtures of the family F to be identifiable is that F is a linearly independent
family over the field of real numbers.

We denote by < A > the span of A over the real numbers.

Proof. Necessity.
Suppose that the family F is not linearly independent. Then, there exist an
integer N and N real numbers ai, at least one of them not being zero, such
that,

∑N
i=1 aiFi = 0. Without loss of generality, we can suppose that ai < 0⇔

i ≤M . Thus,
∑M
i=1 |ai|Fi =

∑N
i=M+1 |ai|Fi.

Since the Fi are cdf’s, this implies that

lim
y→(+∞,··· ,+∞)

M∑
i=1

|ai|Fi(y) = lim
y→(+∞,··· ,+∞)

N∑
i=M+1

|ai|Fi(y), (9)

hence
M∑
i=1

|ai| =
N∑

i=M+1

|ai|. (10)



Now, define ci for each i by

ci =
|ai|
N∑

i=M+1

|ai|

.

Then,
∑M
i=1 ci =

∑N
i=M+1 ci = 1 and

M∑
i=1

ciFi =

N∑
i=M+1

ciFi.

Thus we have two different distinct representations of the same mixture and
therefore H is not identifiable.

Sufficiency.
If F is a linearly independent family, there exists a basis of < F >. If we
suppose that H is non identifiable there exist two distinct representations of
the same mixture. Therefore H ⊂< F > which contradicts the uniqueness of
the representation property of bases. �

We will now analyze the identifiability of some classes of generalized finite
mixture models.

4 Identifiability of a class of finite mixture models

We will prove the identifiability of a big subclass of the generalized finite mix-
ture model presented in section 2. Consider indeed the model defined by

Yit = f(ait;β
k, δk) + εkit = βkAit + δkWit + εkit, (11)

that we can write as

Yi = βkAi + δkWi + εki , (12)

with Yi = (Yi1, · · · , YiT ), Ai = (Ai1, · · · , AiT ), Wi = (Wi1, · · · ,WiT ) and
εki ∼ N (0;σkIT ).

Thus, Yi ∼ N
(
βkAi + δkWi, σkIT

)
.

Hennig ([2]) showed the identiability of clusterwise linear regression models
in the case of a one-dimensional normal distribution. We extend this results to
the case of multi-dimensional normal distributions and polynomial trajectories.

We can write

L ((Yi)i∈I) =
⊗
i∈I

FAi,Wi,J , (13)



where FAi,Wi,J(Yi) =
∫
T1
Φ0,Σ(Yi − βkAi − δkWi) dJ

(
β, σ2

)
with T1 = Rs+1×

R+
0 , J ∈ Ω1 = J (T1) and Σ = σIT .

J (T1) denotes the set of mixing distributions with finite support on the
parameter set T . S(J) is the support set of J ∈ J (T1). Thus, K = |S(J)| is
the number of mixture components and the elements of J (T1) are distributions
generating parameter values (β1, σ2

1), · · · , (βK , σ2
K) for K clusters with proba-

bility J(β1, σ2
1), · · · , J(βK , σ2

K). I is some index set, here I = {1, · · ·N} since
we suppose that we analyze data from a population of size N .

⊗
denotes the

independent product of distributions.
Identifiability of a model means that knowing the data distribution L(Yi), i ∈ I,
one can identify uniquely the mixing distribution J . That is, no two distinct
sets of parameters lead to the same data distribution.

4.1 Nagin’s base model

Nagin’s base model can be written as

C1 =

(
FA,J : FA,J =

⊗
i∈I

FAi,J

)
J∈Ω1

In that case, identifiability means that, knowing the data distributions
L(Yi)i∈I , we can uniquely identify the mixing distribution J and two distinct
sets of parameters (β1, σ2

1 , J(β1, σ2
1)), · · · , (βK , σ2

K , J(βK , σ2
K)) and

(β′1, σ
′2
1 , J(β′1, σ

′2
1 )), · · · , (β′K , σ′2

K , J(β′K , σ
′2
K)) lead to different data distribu-

tions.

Theorem 2. Let hj = min {q : {Aij , i ∈ I} ⊆ ∪qi=1Hi Hi ∈ Hn−1}.

If there exist j such that |S(J)| < hj , ∀J then C1 is identifiable.

Proof. We need to show only that FAi,J = FAi,J̃
⇒ J = J̃ because J contains

all information to define the common distribution FAi,J of (Yi)i∈I .

Suppose that FAi,J = FAi,J̃
and J 6= J̃ . Without loss of generality we can

assume that |S(J)| ≥ |S(J̃), |. Thus there exists (β1, σ1) ∈ S(J̃) such that

J{(β1, σ2
1)} 6= J̃{(β1, σ2

1)}. (14)

FAi,J = FAi,J̃
implies the equality of the marginal Gaussian mixtures for

all Ai, i ∈ I and

FAi,J(Yi) =

∫
T1

ΦβkAi,Σ (Yi) dJ
(
β, σ2

)
(15)

=FAi,J̃
(Yi) =

∫
T1

ΦβkAi,Σ (Yi) dJ̃
(
β, σ2

)
. (16)



The identifiabilty of finite Gaussian mixtures then implies, for i ∈ I

J
{

(β, σ2) :
(
βAi, σ

2
)

=
(
β1Ai, σ

2
1

)}
= J̃

{
(β̃, σ̃2) :

(
β̃Ai, σ̃

2
)

=
(
β1Ai, σ

2
1

)}
(17)

The idea of the proof is that the restriction to |S(J̃)| ensures the existence of
a matrix Ai whose marginal mixture N (β1Ai, σ

2
1), parameterized by J , cannot

be explained by (β̃, σ̃2) ∈ S(J̃) if β̃ 6= β1. Therefore S(J̃) must contain (β1, σ
2
1).

Suppose that for all (β, σ2) ∈ S(J), and in particular for (β1, σ2
1), there

exists i(β) ∈ I such that

∀(β̃, σ̃2) ∈ S(J̃) : βAi(β) = β̃Ai(β) ⇒ β = β̃. (18)

The definition of Ai = Ai(β1) implies that

∀S(J̃) 3 (β̃, σ̃2) 6= (β1, σ2
1) : (β̃Ai, σ̃

2) 6= (β1Ai, σ
2
1). (19)

Thus, using (27) and (17),

J̃{(β1, σ2
1)} = J{(β, σ) : (βAi, σ

2) = (β1Ai, σ
2
1)}. (20)

But J{(β, σ) : (βAi, σ
2) = (β1Ai, σ

2
1)} 6= 0 because it contains (β1, σ2

1). For
the same reason, J̃{(β1, σ2

1)} 6= 0.
Hence (19) implies that (β1Ai, σ

2
1) ∈ S(J̃).

By (14), J̃{(β1, σ2
1)} 6= J{(β1, σ2

1)}. Consequently, equation (20) implies
that

∃S(J) 3 (β2, σ2
2) 6= (β1, σ2

1) : (β2Ai, σ
2
2) = (β1Ai, σ

2
1). (21)

Consider Ai = Ai(β2) and apply the same arguments than above to get

(β2Ai, σ
2
2) ∈ S(J̃). This result leads to a contradiction between (19) and (21) .

Indeed, (β2, σ2
2) ∈ S(J̃) and (β2, σ2

2) 6= (β1, σ2
1). By (19), (β2Ai, σ

2
2) 6=

(β1Ai, σ
2
1) and by (21), (β2Ai, σ

2
2) = (β1Ai, σ

2
1).

Thus there exists some (β, σ) ∈ S(J) such that ∀i ∈ I ∀(β̃, σ̃2) ∈ S(J̃) :
βAi = β̃Ai ⇒ β 6= β̃.

Hence

{Aij , i ∈ I, j = 1 · · ·T} ⊂ ∪(β̃,σ̃2):β̃ 6=β{x : βx = β̃x}. (22)

Therefore ∪(β̃,σ̃2):β̃ 6=β{x : βx = β̃x} is composed by |S(J̃)| different hyper-
planes.
So for j = 1 · · ·T , hj ≤ |S(J̃)| ≤ |S(J)|. �



4.2 Addition of covariates independent of the clusters

Let us now add covariates to the model that are independent of the K groups.
Define

C2 =

(
FA,J : FA,J =

⊗
i∈I

FAi,Wi,J

)
J∈Ω1

, (23)

C2A =

(
FA,J : FA,J =

⊗
i∈I

FAi,J

)
J∈Ω1

, (24)

C2W =

(
FA,J : FA,J =

⊗
i∈I

FWi,J

)
J∈Ω1

. (25)

We have then the following identifiability result.

Theorem 3. If C2A and C2W are identifiable and Wij is not a multiple of Aij,
for all i, j, then C2 is identifiable.

Since the covariates are just a linear addition to the model, the proof follows
directly from the 2 following propositions.

Proposition 2. C2A is identifiable if and only if dk < T for all 1 ≤ k ≤ K
and the ait are distinct, for all values of i and t.

Proof. We need to show that FAi,J = FAi,J̃
⇔ J = J̃ . Suppose that

FAi,J(Yi) =

∫
T1

ΦβkAi,Σ (Yi) dJ
(
β, σ2

)
(26)

=FAi,J̃
(Yi) =

∫
T1

ΦβkAi,Σ (Yi) dJ̃
(
β, σ2

)
. (27)

By identifiabilty of finite Gaussian mixtures, the equality above is equiva-
lent, for i ∈ I, to:

J
{

(β, σ2) :
(
βAi, σ

2
)

=
(
µ1, σ

2
1

)}
= J̃

{
(β̃, σ̃2) :

(
β̃Ai, σ̃

2
)

=
(
µ1, σ

2
1

)}
(28)

for some (µ1, σ1).

Assume that there exists β̃ in S(J̃) such that βAi = β̃Ai for some β ∈ S(J).
This means that 1 ≤ t ≤ T , βAit = β̃Ait but β̃ 6= β for all β ∈ S(J).
If dk < T and ait are different ∀t ≤ T , we have 2 different polynomials of degree
strictly smaller than T that intersect in T points.
Thus β = β̃.

If we know cluster membership for each value Yi, we can write

Yk = Akβ
t
k,



where Yk =

 Yk11
...

YknkT

 and Ak =

1 a11 · · · adk−111
...

...

1 ankT · · · a
dk−1
nkT

.

Since

1 a11 · · · adk−111
...

...

1 ankT · · · a
dk−1
nkT

 is a Vandermonde matrix and dk < T , which is

required for the matrix to be invertible, the invertibility condition is guaran-
teed to hold if all the ait values are distinct.

So

βk = Yk
(
AtkAk

)−1
Ak. (29)

�

Proposition 3. If for all 1 ≤ t, t′ ≤ T and for i, j ∈ I, ait = ajt and ait 6= a′it,
C2A is identifiable if and only if dk < T for all 1 ≤ k ≤ K.

Proof. In this case the matrix

1 a11 · · · adk−111
...

...

1 anT · · · adk−1nT

 becomes

1 a11 · · · adk−111
...

...

1 a1T · · · adk−11T


and is invertible if dk < T and ait 6= ait′ , 1 ≤ t, t′ ≤ T . �

Numerical example
Let us illustrate the two previous propositions by an example. To keep

everything the easiest possible, we consider an example with just two clusters
with sizes π1 = π2 = 1

2 and two time-points 1 and 2. For the sake of simplic-
ity, we also suppose that the variability of the error term is the same for both
groups and we take σ = 0.1
To emphasize the difference between the identifiability of a mixture of prob-
ability distributions and the identifiability of finite mixture models, we point
out that proposition 1 implies that the mixture distribution 1

2N (µ1t; 0.1) +
1
2N (µ2t; 0.1) is always identifiable.

Proposition 3 tells us that finite mixture models with polynomial trajecto-
ries will be identifiable as long as the degree of the polynomials is at most 1,
since T = 2. To illustrate this, we simulate 50 samples of 100 observations, once
with linear trajectories and once with polynomials of degree 2. More precisely,
we use the following parameter values

• β1 = (3,−2) and β2 = (0, 2) for the linear model ;
• β1 = (10,−12.5, 3.5) and β2 = (−2, 5,−1) for the polynomial model.

We then use our R package trajeR (Noel and Schiltz [4]) to fit these 100
samples and illustrate the result by means of parallel coordinate plots (Wegman
[7]).
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Fig. 1: Parallel coordinate plots of the estimated parameters for 50 simulated
samples for linear and parabolic trajectories.

Figure 1 shows the result. On the left side, we see the different parameter
estimations for the linear model. We see that in this case all parameter esti-
mations give roughly the same result. There are 2 solutions for the different
trajectory shape parameters, corresponding to the 2 clusters, one cluster with
a trajectory defined by an intercept of 3 and a slope of -2 and one cluster with
a trajectory defined by an intercept of 0 and a slope of 2. The estimation for
the group sizes vary between 0.44 and 0.56 and the standard deviation of the
error term are estimated as being between 0.087 and 0.110.
The right part of the graph shows the parameter estimation for the parabol-
ical model. In this case the trajectory shape parameters cannot be precisely
estimated and there is no indication of a two-group solution. This is a clear
indication of the non identifiability of the model.

4.3 The generalized model

Now consider the generalized finite mixture model

Yi = βkAi + δkWi + εi.

We then have the following result.

Proposition 4. The model is identifiable if

• dk < T for all 1 ≤ k ≤ K and all ait are distinct, for all i, t;
• dk < T for all 1 ≤ k ≤ K;
• Wk has full rank for all 1 ≤ k ≤ K ;
• rk(Ak,Wk) = rk(Ak) + rk(Wk) for all 1 ≤ k ≤ K where rk(·) denotes the

rank of a matrix, Ak is defined as in the proof of proposition 2, and Wk are
the elements Wi corresponding to Ak.

Proof. If Wi does not depend on time, the trajectories of al clusters are just
translations of each other. Thus, the first condition of the proposition im-
plies that all trajectory parameters are identifiable and since rk(Ak,Wk) =



rk(Ak) + rk(Wk) we can determine δk too.

In the general case, suppose that dk < T for all 1 ≤ k ≤ K. Then for
any integer c, a mixture of c components of the form

∑c
k=1 πkN

(
βkAit, σk

)
is

identifiable.
If we know the cluster membership of each value Yi, we can determine βk as
in equation (29) by βk = Yk (AtkAk)

−1
Ak.

Denote Pk = Atk (AkA
t
k)
−1
Ak and Rk = I − Pk. Then,

βkAk + δkWk = βkAk + δkWkPk + δkWk (I − Pk) (30)

= βkAk + δkWkA
t
k

(
AkA

t
k

)−1
Ak + δkWk (I − Pk) (31)

=
(
βk + δkWkA

t
k

(
AkA

t
k

)−1)
Ak + δkWkRk (32)

=
(
βk + δkWkA

t
k

(
AkA

t
k

)−1
δk
)( Ak

WkRk

)
(33)

= λkV. (34)

Suppose λkV = 0 for some λk. Then give βkAk + δkWk = 0, hence βk =
δk = 0 by linear independence of the columns of Ak and Wk. So V is a
T + rk(Wk) matrix of full rank.
Since Yk = λkV + ε, we have

λ̂k = Yk
(
V V t

)−1
V t (35)

= (AkWkRk)

(
AkA

t
k AkR

t
kW

t
k

WkRkA
t
k WkRkR

t
kW

t
k

)−1
(36)

= (AkWkRk)

(
AkA

t
k AkRkW

t
k

WkRkA
t
k WkRkRkW

t
k

)−1
. (37)

Since Rk = I −Atk (AkA
t
k)
−1
Ak, we have AkRk = RkA

t
k = 0 and P 2

k = Pk.
Moreover,

λ̂k = Yk
(
V V t

)−1
V t (38)

= Yk (AkWkRk)

(
AkA

t
k 0

0 WkRkW
t
k

)−1
(39)

= Yk

(
Ak (AkA

t
k)
−1

WkRk (WkRkW
t
k)
−1
)

(40)

=
(
YkAk (AkA

t
k)
−1

YkWkRk (WkRkW
t
k)
−1
)
. (41)

Thus
δ̂k = YkWkRk

(
WkRkW

t
k

)−1
and

β̂k = YkAk
(
AkA

t
k

)−1 − δ̂kWkA
t
k

(
AkA

t
k

)−1
.

Hence all parameters are identified. �



Numerical example
Let us illustrate proposition 4 by an example. As in the previous example,

we consider a model with just two clusters of sizes π1 = π2 = 1
2 , two time-

points 1 and 2 and a constant variability of the error term of σ = 0.1
Furthermore, we use the shape description parameters β1 = (3,−2) and β2 =
(0, 2) and fix δ1 = 2 and δ2 = −3. We will study 3 types of models, defined by
the following supplementary conditions.

• The covariate W is independent of time and only takes values 0 or 1;
• the covariate is time dependent but in a nonlinear way;
• the covariate is time dependent in a linear way;

To illustrate this, we simulate 50 samples of 100 observations, We then
use our R package trajeR (Noel and Schiltz [4]) to fit these 100 samples and
illustrate the result by means of parallel coordinate plots (Wegman [7]).

We can see on figure 2 that the two first model specifications shown on the
two left graphs are identifiable. But the model represented on the right side is
not. The linear dependence on time of the covariate has the effect that neither
β nor δ can be uniquely determined.
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Fig. 2: Parallel coordinate plots of the estimated parameters for 50 simulated
samples with different forms of the covariant.
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