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Abstract. In this paper, we show under which conditions generalized finite mixture
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leads to a uniquely determined set of model parameter estimations up to a permuta-
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1 Introduction

Identifiability of the parameters is a necessary condition for the existence of
consistent estimators for any statistical model. Without identifiability, there
might be several solutions for the parameter estimation problem and numerical
algorithms risk to find only part of these solutions. Worse, the researcher fitting
the model might not even be aware that the solution his computer found is only
one of many possibilities.

Identifiability of distributions has been an important research topic in the
1960s. Teicher ([6]) proved that the class of all mixtures of one-dimensional
normal distributions is identifiable. Yakowitz and Spragins ([9]) extended this
result five years later to the class of all Gaussian mixtures.

For a long time, it was believed that identifiability for linear regression
mixtures with Gaussian errors follows directly from these results. DeSarbo
and Cron ([1]) even make that claim explicitly. Hennig ([2]) only showed in
2000 that that statement is not correct in general by constructing counter-
examples. Henning investigated the identifiability of the parameters of models
for data generated by different linear regression distributions with Gaussian
errors.

In this paper, we extend his results to finite mixture models in which the
typical trajectories in the different clusters do not just follow a line, but a
polynomial of any degree.

The remainder of this article is structured as follows. In section two, we
present the class of finite mixture models we are interested in. In section
three, we present some basic results about the identifiability of mixtures of
distributions. In section four, finally, we prove under which conditions finite
mixture models are identifiable.



2 Finite Mixture Models

Starting from a collection of individual trajectories, the aim of finite mix-
ture models is to divide the population into a number of homogenous sub-
populations and to estimate, at the same time, a typical trajectory for each
sub-population (Nagin [3]).

More, precisely, consider a population of size N and a variable of interest
Y. Let Y = iy, Yiy, -, Yip be T measures of the variable Y, taken at times
t1,...,tp for subject number i. To estimate the parameters defining the shape
of the trajectories, we need to fix the number K of desired subgroups. Denote
the probability of a given subject to belong to group number k by .

The objective is to estimate a set of parameters 2 = {my, 8%, B, ...k =
1,..., K} which allow to maximize the probability of the measured data. The
particular form of {2 is distribution specific, but the 8 parameters always per-
form the basic function of defining the shapes of the trajectories. In Nagin’s
finite mixture model (Nagin [3]), the shapes of the trajectories are described
by a polynomial function of age or time. Assume that for a subject in group k

S
yi, = Bal, + i, (1)
j=1

where a;; denotes the age of subject 7 at time ¢, s the degree of the polynomial
describing the trajectories in the different groups and &;; is a disturbance as-
sumed to be normally distributed with a zero mean and a constant standard
deviation o. The likelihood of the data is then given by

N
L-1]
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where gy (y;,) is the probability distribution function of y;, given membership
in group k. In this paper we restrict ourselves to normal distributions.

The disadvantage of the basic model is that the trajectories are static and
do not evolve in time. Thus, Nagin introduced several generalizations of his
model in his book (Nagin [3]). Among others, he introduced a model allowing
to add covariates to the trajectories. Let 21, ..., 23 be M covariates potentially
influencing Y. We are then looking for trajectories

K

T
Tk Hgk(yit)y (2)
1 =1

S
Yie = Zﬂf‘lf + a{zl + ...+ a{sz + €it, (3)
j=0

where ¢;; is normally distributed with zero mean and a constant standard
deviation o. The covariates z,, may depend or not upon time t.

But even this generalized model still has two major drawbacks. First, the
influence of the covariates in this model is unfortunately limited to the intercept
of the trajectory. This implies that for different values of the covariates, the
corresponding trajectories will always remain parallel by design, which does
not necessarily correspond to reality.



Secondly, in Nagin’s model, the standard deviation of the disturbance is
the same for all the groups. That too is quite restrictive. One can easily
imagine situations in which in some of the groups all individual are quite close
to the mean trajectory of their group, whereas in other groups there is a much
larger dispersion. To address and overcome these two drawbacks, Schiltz ([5])
proposed the following generalization of Nagin’s model.

Let x1, ...,z and z;,, ..., 2i; be covariates potentially influencing Y. Here
the x variables are covariates not depending on time like gender or cohort
membership in a multicohort longitudinal study and the z variable is a covariate
depending on time like being employed or unemployed. They can of course also
designate time-dependent covariates not depending on the subjects of the data
set which still influence the group trajectories, like GDP of a country in case
of an analysis of salary trajectories.

The trajectories in group k will then be written as
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3 (Bf £ 3 abant v) s @

7=0 m=1

where the disturbance ¥, is normally distributed with mean zero and a standard
deviation oy, constant inside group k, but different from one group to another.
Since, for each group, this model is just a classical fixed effects model for
panel data regression (see Wooldridge ([8])), it is well defined and we can get
consistent estimates for the model parameters.

That model allows obviously to overcome the drawbacks of Nagin’s model.
The standard deviation of the uncertainty can vary across groups and the
trajectories depend in a nonlinear way on the covariates.

Whereas the basic model is usually identified under very mild conditions,
it is obvious that this is no longer true in all generality for the two generalized
models. We will investigate this in the remainder of this paper.

3 Identifiability

In 1963, Teicher ([6]) showed the following result for mixtures of normal distri-
butions.

Proposition 1. The class of all miztures of one-dimensional normal distribu-
tions is identifiable.

We will use that proposition to prove under which conditions finite mixture
models are identifiable.
Consider the distribution f of a finite mixture model.

K
Fyis 2) = mgr(yis 0), (5)
k=1

which is equivalent to

K
Flyis 2) =Y mGr(yi; 6%), (6)
k=1



where F' and G}, denote the cumulative distribution functions (cdf’s) of f and
g respectively.

Let F = {F(y;w), y € RT, w € Ri?} be a family of T-dimensional cdf’s
indexed by a parameter set w, such that F(y;w) is measurable in R” x ]Rij?.
The the s + 2-dimensional cdf H(z) = fR;;ra F(y;w)dG(w) is the image of the
above mapping, of the s + 2-dimensional cdf G. The distribution H is called
the mixture of F and G its mixing distribution. Let G denote the class of all
s + 2-dimensional cdf’s G and H the induced class of mixtures H.

Then H is said to be identifiable if @) is a one-to-one map from G onto H.
The set H of all finite mixtures of class F of distributions is the convex hull
of F.

H= {H(y)5H(y)ZCiF(y,wi), ¢ >O,Zci:17 F(y,w;) Gf}- (7)

%

In this context, the definition of identifiability implies that F generates an
identifiable finite mixture model if and only if

N M
Z CiFi = Z C;Fll (8)
i=1 i=1

implies that N = M and for each ¢, 1 < ¢ < N there is some j, 1 < j < N,
such that ¢; = ¢ and F; = F}.

We can then easily prove the following characterization of identifiability.

Theorem 1. A necessary and sufficient condition for the class H of all finite
miztures of the family F to be identifiable is that F is a linearly independent
family over the field of real numbers.

We denote by < A > the span of A over the real numbers.

Proof. Necessity.

Suppose that the family F is not linearly independent. Then, there exist an
integer N and N real numbers a;, at least one of them not being zero, such
that, Zfil a; F; = 0. Without loss of generality, we can suppose that a; < 0 <

. M N
i <M. Thus, > ;" |a;|Fi = Zi:M—H |a;| F;.
Since the F; are cdf’s, this implies that

M
lim Z \ai| Fi(y) = lim > JailFily), 9)

y— (400, ,+00) “—

hence



Now, define ¢; for each i by

. |ai
N
> lail
i=M+1
Then,z:?i1 ci = Zf\;MH ¢;i =1 and
M N
ZCiFi = Z CiFi.
i=1 i=M+1

Thus we have two different distinct representations of the same mixture and
therefore H is not identifiable.

Sufficiency.
If F is a linearly independent family, there exists a basis of < F >. If we
suppose that 7 is non identifiable there exist two distinct representations of
the same mixture. Therefore H C< F > which contradicts the uniqueness of
the representation property of bases. 0

We will now analyze the identifiability of some classes of generalized finite
mixture models.

4 Identifiability of a class of finite mixture models

We will prove the identifiability of a big subclass of the generalized finite mix-
ture model presented in section 2. Consider indeed the model defined by

Yie = flaw; B%,6%) + ey, = B A + 6" Wi + &3, (11)
that we can write as
Y; = BFA; + 6" W + €F, (12)

with }/1 - (}/;1)"' 7}/1'T), A'L = (Aila"' 7AiT), Wl = (Wila"' aWiT) and
Ef NN(O;UkIT).

Thus, Y; ~ N (ﬁkAi + (SkWi,O'kIT).

Hennig ([2]) showed the identiability of clusterwise linear regression models
in the case of a one-dimensional normal distribution. We extend this results to
the case of multi-dimensional normal distributions and polynomial trajectories.

We can write

L((Yiier) = Q) Fa,w,.s, (13)

iel



where FA W J le on 2 Y ﬂk - (sle) dJ (ﬂ,(fz) with T1 = RSJrl X
Ry, J €2 = J(Tl) and ¥ = olr.

J(T1) denotes the set of mixing distributions with finite support on the
parameter set T. S(J) is the support set of J € J(T1). Thus, K = |S(J)] is
the number of mixture components and the elements of 7 (77) are distributions
generating parameter values (8%,0%),---, (8%, 0%) for K clusters with proba-
bility J(B,0%),---, J(BK,0%). I is some index set, here I = {1,--- N} since
we suppose that we analyze data from a population of size N. ) denotes the
independent product of distributions.

Identifiability of a model means that knowing the data distribution £(Y;),4 € I,
one can identify uniquely the mixing distribution J. That is, no two distinct
sets of parameters lead to the same data distribution.

4.1 Nagin’s base model
Nagin’s base model can be written as
C1= (FA,J VWS ®FAi,J>
i€l Je

In that case, identifiability means that, knowing the data distributions
L(Y;)ier, we can uniquely identify the mixing distribution J and two distinct
sets of parameters (81,07, J(81,0%)),- (5K o2, J(B%,0%)) and

(B, 02, J(BY,02), -, (8K, I?,J(B’K 02)) lead to different data distribu-
tions.

Theorem 2. Let hj =min{q : {A;;,i€ 1} CUL H;, H; € Hp_1}.
If there exist j such that |S(J)| < h;, VJ then Cy is identifiable.

Proof. We need to show only that Fla, j = F wF= J = J because J contains
all information to define the common dlstrlbutlon Fa, 5 of (Yi)icr.

Suppose that Fy, ;j = F, jand J £ J. Without loss of generality we can
assume that |S(J)| > [S(J),|. Thus there exists (3',01) € S(J) such that

J{(BY, o)} # J{(B", 0D)}. (14)

Fa,,; = F,, j implies the equality of the marginal Gaussian mixtures for
all A;, i € I and

thjae>::j/ Bpen s (Vi) dJ (,0%) (15)

Th

#%ﬂm=é@muﬂ) J(5.0%). (16)



The identifiabilty of finite Gaussian mixtures then implies, for i € T

J{(8.0%) : (BAi,0%) = (8'Ai o)} = T {(B.6%) : (B4, 5%) = (8" s, 03) }
(17)
The idea of the proof is that the restriction to |S(J)| ensures the existence of
a matrix 4; whose marginal mixture N (81 4;, o?), parameterized by .J, cannot
be explained by (3,52) € S(J) if B # B1. Therefore S(J) must contain (31, 0?).

Suppose that for all (3,02) € S(J), and in particular for (8*,0?), there
exists ¢(3) € I such that

V(B,6%) € S(J) : BAig) = BAyg) = B = 5. (18)

The definition of A; = A;g1) implies that

¥S(J) 2 (B,6%) # (B',01) (B4, 5%) # (8" A, }). (19)
Thus, using (27) and (17),
J{(B'03)} = J(B.0) : (BAio®) = (B4, 02)). (20)
But J{(B,0) : (BA;,0?) = (B'A;,0%)} # 0 because it contains (8',0?). For
the same reason, J{(8',03)} # 0.
Hence (19) implies that (81A4;,03) € S(J).

By (14), J{(8",02)} # J{(8',02)}. Consequently, equation (20) implies
that

AS(T) 3 (8%, 03) # (B',0%) = (824, 03) = (B Aj, o). (21)

Consider A; = A;(g2) and apply the same arguments than above to get
(B2A;,03) € S(J). This result leads to a contradiction between (19) and (21) .
Indeed, (5%,03) € S(J) and (8%,03) # (8',01). By (19), (8%Ai,03) #
(BA;, 0f) and by (21), (B24;,03) = (B' A, 01).

Thus there exists some (3,0) € S(J) such that Vi € I ¥(53,5%) € S(J)
BA; = BAi = B # B.

Hence
{Aijyi€l, j=1---T} CUg 45 : Bz = Br}. (22)
Therefore Uz 52).5.5{z : Bz = Bz} is composed by |S(J)| different hyper-

planes. ~
Sofor j=1---T, h; <|S(J)| < |S(J)|. ]



4.2 Addition of covariates independent of the clusters

Let us now add covariates to the model that are independent of the K groups.
Define

Co = <FA,J VN VWES ®FA7¢,Wi,J> ; (23)
Jem

iel

Con = <FA,J P Fa g = ®FAi,J> , (24)
Jem

iel
CQW: (FAJ : FA7J®FWi7J> . (25)
el Je
We have then the following identifiability result.

Theorem 3. IfCoy and Cow are identifiable and Wyj; is not a multiple of Ay,
for alli,j, then Cs is identifiable.

Since the covariates are just a linear addition to the model, the proof follows
directly from the 2 following propositions.

Proposition 2. Coy is identifiable if and only if d, < T for alll < k < K
and the a;; are distinct, for all values of i and t.

Proof. We need to show that Fa, j = F, ;& J= J. Suppose that

FAi,J(Yi):/T D a, 5 (Yi)dJ (B,0?) (26)
:FAi’j(Yi):/T B g, 5 (V;)dJ (B,07). (27)

By identifiabilty of finite Gaussian mixtures, the equality above is equiva-
lent, for ¢ € I, to:

J{(B.0%) : (BA0%) = (1,03} = T{(B.5%) : (BAi.6?) = (m.o}) | (28)
for some (u1,07).

Assume that there exists /3 in S(j) such that 3A; = BA; for some 8 € S(J).
This means that 1 <t < T, BA; = Ay but 8 #£ S for all 5 € S(J).
If dr, < T and a;; are different V¢ < T', we have 2 different polynomials of degree

strictly smaller than 7" that intersect in 7" points.
Thus g = B.

If we know cluster membership for each value Y;, we can write

Yk = Akﬂltgv



dip—1

Y11 1 air -+ a3
where Y, = : and A = :
di—1
YknkT 1 An,T """ (LnIZT
1 ayp - a,illlcil
Since | : : is a Vandermonde matrix and dj < T', which is
dp—1
1 ankT e a,n’;T

required for the matrix to be invertible, the invertibility condition is guaran-
teed to hold if all the a;; values are distinct.

So
Br =Yk (AZAk)_l Ag. (29)
0

Proposition 3. If for all1 < t,t' <T and fori,j € I, a;s = aj; and a;y # aly,
Ca4 is identifiable if and only if di, < T for all1 <k < K.

dp—1 d—1
]_ ayp - alllV 10’11 oo allf
Proof. In this case the matrix | : becomes :
dr—1 di—1
Lapr -+ a)ty Layr -+ ayp
and is invertible if dp < T and a;; # azr, 1 < t,t' < T. a

Numerical example

Let us illustrate the two previous propositions by an example. To keep
everything the easiest possible, we consider an example with just two clusters
with sizes T = my = % and two time-points 1 and 2. For the sake of simplic-
ity, we also suppose that the variability of the error term is the same for both
groups and we take o = 0.1
To emphasize the difference between the identifiability of a mixture of prob-
ability distributions and the identifiability of finite mixture models, we point
out that proposition 1 implies that the mixture distribution %N (115 0.1) +
AN (1245 0.1) is always identifiable.

Proposition 3 tells us that finite mixture models with polynomial trajecto-
ries will be identifiable as long as the degree of the polynomials is at most 1,
since T' = 2. To illustrate this, we simulate 50 samples of 100 observations, once
with linear trajectories and once with polynomials of degree 2. More precisely,
we use the following parameter values

e 31 =(3,-2) and #2 = (0,2) for the linear model ;
e 31 =(10,-12.5,3.5) and 32 = (—2,5,—1) for the polynomial model.

We then use our R package trajeR (Noel and Schiltz [4]) to fit these 100
samples and illustrate the result by means of parallel coordinate plots (Wegman

[7))-
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Fig.1: Parallel coordinate plots of the estimated parameters for 50 simulated
samples for linear and parabolic trajectories.

Figure 1 shows the result. On the left side, we see the different parameter

estimations for the linear model. We see that in this case all parameter esti-
mations give roughly the same result. There are 2 solutions for the different
trajectory shape parameters, corresponding to the 2 clusters, one cluster with
a trajectory defined by an intercept of 3 and a slope of -2 and one cluster with
a trajectory defined by an intercept of 0 and a slope of 2. The estimation for
the group sizes vary between 0.44 and 0.56 and the standard deviation of the
error term are estimated as being between 0.087 and 0.110.
The right part of the graph shows the parameter estimation for the parabol-
ical model. In this case the trajectory shape parameters cannot be precisely
estimated and there is no indication of a two-group solution. This is a clear
indication of the non identifiability of the model.

4.3 The generalized model

Now consider the generalized finite mixture model
Y; = BRA; 4 8" W + e

We then have the following result.

Proposition 4. The model is identifiable if

dp <T foralll <k <K and all a; are distinct, for all i,t;

di <T foralll <k < K;

Wi has full rank for oll1 < k< K ;

rk(Ag, Wi) = rk(Ag) + rk(Wy) for all 1 < k < K where rk(-) denotes the
rank of a matriz, Ay is defined as in the proof of proposition 2, and Wy, are
the elements W; corresponding to Ay.

Proof. If W; does not depend on time, the trajectories of al clusters are just
translations of each other. Thus, the first condition of the proposition im-
plies that all trajectory parameters are identifiable and since rk(Ag, Wi) =



rk(Ag) + rk(Wy) we can determine §* too.

In the general case, suppose that dp < T for all 1 < k < K. Then for
any integer ¢, a mixture of ¢ components of the form 22:1 TN (ﬁkAit, ak) is
identifiable.

If we know the cluster membership of each value Y;, we can determine 8% as
in equation (29) by B¥ = Vi (ALAy) " Ag.

Denote P, = Al (AkAfc)fl A and Ry = I — P,. Then,

BF Ay + 6" W, = XAy + SF WL P, + 85 W, (I — P) (30)
— B Ay + WAL (AR AL) T A+ WL (T = B)  (31)
_ (m + 6 W, AL (AkA;)*l) Ay + SE Wi Ry, (32)
— (5’f + oF W AL (AkAZ)_l 5’€) (W’:’ék) (33)
= AV (34)

Suppose A,V = 0 for some \,. Then give 3% A, + §*W), = 0, hence g* =
8% = 0 by linear independence of the columns of A, and Wj. So V is a
T + rk(W}) matrix of full rank.
Since Y, = AV + €, we have

5% _ Yk (Vvt)—l Vt (35)
B AkA}i Akszlz B
= (Ax Wi Ry) (WkRkAz Wi R R, W, 0
_ ApAl AR\
= (A Wi Ry) (I/I/'ksz‘lf€ Wi Ry Ry W o

Since Ry, = I — AL (A, AL) ™" Ay, we have ARy, = Ry AL =0 and P2 = P
Moreover,

M =Y (VVH) TV (38)
B AAL 0 -

=Y (A WiRy) ( 0 WkRkW£> (39)
= Y; (Ak (ARAL) N Wi Ry, (WkRkW,g)’l) (40)
= (YiAx (A5 A) ™ VWi Ry (WiRGW) ™). (41)

Thus . 1

0% = Vi, Wi. Ry (Wi Rk W)™

and

BF = Vi Ay (ApAL) T = SFW AL (A4l

Hence all parameters are identified. O



Numerical example

Let us illustrate proposition 4 by an example. As in the previous example,
we consider a model with just two clusters of sizes m = 7y = %, two time-
points 1 and 2 and a constant variability of the error term of o = 0.1
Furthermore, we use the shape description parameters f; = (3, —2) and fs =
(0,2) and fix §; = 2 and §5 = —3. We will study 3 types of models, defined by
the following supplementary conditions.

e The covariate W is independent of time and only takes values 0 or 1;
e the covariate is time dependent but in a nonlinear way;
e the covariate is time dependent in a linear way;

To illustrate this, we simulate 50 samples of 100 observations, We then
use our R package trajeR (Noel and Schiltz [4]) to fit these 100 samples and
illustrate the result by means of parallel coordinate plots (Wegman [7]).

We can see on figure 2 that the two first model specifications shown on the
two left graphs are identifiable. But the model represented on the right side is
not. The linear dependence on time of the covariate has the effect that neither
B nor § can be uniquely determined.

0.65 3.079 0580 31001 204 0.1114 2.01 1.00e+00 12,51 36.1 7.76 678

035 0.075 2,03 0.0883 -3.05 0.411 0.0577 6.340-08 411 -19.0 7.60 1246

x  intercept slope - 5 7 intercept slope - 5 x  intercept slope - 5

Fig.2: Parallel coordinate plots of the estimated parameters for 50 simulated
samples with different forms of the covariant.
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