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From quantum to continuum mechanics in the
delamination of atomically-thin layers from
substrates
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Alexandre Tkatchenko 3✉

Anomalous proximity effects have been observed in adhesive systems ranging from proteins,

bacteria, and gecko feet suspended over semiconductor surfaces to interfaces between

graphene and different substrate materials. In the latter case, long-range forces are evidenced

by measurements of non-vanishing stress that extends up to micrometer separations

between graphene and the substrate. State-of-the-art models to describe adhesive properties

are unable to explain these experimental observations, instead underestimating the measured

stress distance range by 2–3 orders of magnitude. Here, we develop an analytical and

numerical variational approach that combines continuum mechanics and elasticity with

quantum many-body treatment of van der Waals dispersion interactions. A full relaxation of

the coupled adsorbate/substrate geometry leads us to conclude that wavelike atomic

deformation is largely responsible for the observed long-range proximity effect. The correct

description of this seemingly general phenomenon for thin deformable membranes requires a

direct coupling between quantum and continuum mechanics.
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Atomically thin membranes exhibit unique electronic and
mechanical properties1–4 and promise transformative
impact on fields as varied as stretchable nanoelectronics5,6,

transparent electrodes7, flexible devices8, energy devices, sensors9,
and nanocomposites7. The actual implementation of such devices
depends on interfacial properties between atomically thin mem-
branes and their substrates. In particular, the interaction distance
range and energy between membranes and a given substrate are of
fundamental importance to understand interfaces between layered
materials10 and to develop effective manufacturing processes such
as roll-to-roll transfer11, face-to-face transfer12, transfer printing13,
or wet/dry transfer techniques14.

The different components in layered materials under normal
conditions are often kept together through nonbonded van der
Waals (vdW) interactions. Interaction distance ranges obtained
through traditional models of vdW interactions are of the order
of a few nanometers (more than 1 nm and definitely less than
10 nm). The delamination of a single graphene layer from a silicon
substrate reported recently in ref. 15 (adhesive energy of 357 ±
16mJm−2) is commensurate with vdW interactions. However, the
estimated force per unit surface area during delamination plateaus
only at a distance of ~1 μm. This result is in stark contradiction to
all models of intermolecular interactions known to the authors,
which predict an effective interaction range on the order of
2–10 nm, i.e. two to three orders of magnitude smaller than
measured experimentally. Hence, it seems that even the funda-
mental nature and strength of the adhesive interactions between
2D materials and their substrates remain poorly understood.

For example, density-functional calculations with vdW cor-
rections in ref. 16 obtain an interaction distance range of 1 nm.
Molecular dynamics (MD) simulations of interfacial adhesion of a
functionalized graphene surface and polyethylene in ref. 17 found
an interaction range of 1.8 nm. Similarly, the dynamical interac-
tion model proposed in ref. 18 with a sequence of morphological
water transitions yields an interaction range of 3–4 nm.

We emphasize that beyond the graphene/silicon system, recent
experimental literature contains a plethora of examples where
ultra-long-range interatomic and intermolecular interactions
have been observed. This includes delamination of graphene on
copper foil in refs. 19–21, adhesion between graphene membranes
and their substrates in ref. 22, adhesion of silicon over silicon23,
molecules suspended over metal surfaces24, and bacteria over
semiconductor protrusions25. In general, such long-range forces
are thought to be largely responsible for the observed unique
properties of nanocomposites, active colloids, and extended bio-
logical systems26–28.

Here, we aim to significantly improve our fundamental
understanding of quantum-mechanical (QM) forces behind
interfacial cohesion at the mesoscopic length scale. In particular,
we study the delamination of one-dimensional (1D) nanos-
tructures and two-dimensional (2D) graphene from substrates by
unifying QM many-body treatment of microscopic vdW inter-
actions with a continuum mechanics model for the elasticity and
adhesive traction-separation law (TSL). We employ an efficient
QM Hamiltonian applicable to thousands of atoms and carry out
full variational relaxation of the coupled graphene/substrate sys-
tem for separations up to 50 nm. We conclude that nanoscale
cooperative effects involving many-body dispersion enhance-
ment, and coherent wave-like mechanical deformations, are lar-
gely responsible for the observed ultra-long-range stress in
delamination of graphene from various substrates. Remarkably,
the observed emergent stress seems to be a rather general phe-
nomenon for thin deformable membranes and nanostructures,
stemming from quantum-mechanical many-body treatment of
interatomic interactions beyond the standard pairwise models for
the non-covalent interactions.

Results
Traction-separation law for graphene delamination. Compel-
ling evidence and clear quantitative assessment of ultra-long-
ranged proximity effects were recently reported upon experi-
mental delamination of graphene from silicon, carried out in
ref. 15. The schematic of the experimental setup is shown in
Fig. 1b. In short, the insertion of a wedge opens a crack at the
interface between silicon and graphene. The crack length is
measured using infrared interferometry as a function of the
wedge position. This information allows the calculation of the J
integral15, a measure of the energy release rate, from which the
adhesive stress σ(h) can be computed as a function of crack
opening h.

As explained above, the main contribution to the adhesive
energy in graphene-substrate systems is the vdW interaction
between the two materials. Assuming that vdW interactions can
be modeled in interatomic pairwise (PW) additive form, it is
widely accepted that the distance range of such interactions is of
the order of 1–4 nm16–18. This is in stark contrast with the
experimental observations of nonvanishing σ(h) that extends at
least to 500-nm distance range for graphene on silicon15.

To properly model complex adhesive phenomena, here we
develop a comprehensive and hierarchical framework that bridges
elastic and quantum-mechanical models for vdW interactions
between the two materials with continuum descriptions of the TSL
(see “Methods”). For the particular case of graphene on silicon, see
Fig. 1 for an overview. Nearest-neighbor atom interactions are
modeled by harmonic springs, which provide a faithful repre-
sentation of chemical interactions in one-dimensional systems.
Conversely, vdW interactions act between all atoms in the system
(beyond a certain interatomic distance cutoff), either via the
standard pairwise (two-body) Lennard–Jones (LJ) approximation,
or according to a more accurate, explicitly quantum-mechanical
many-body dispersion29,30 (MBD) model.

Our model can be generalized to a more sophisticated first-
principles treatment of chemical bonds in a straightforward
manner, and this remains an interesting avenue for future work.
It is important to remark that the qualitative conclusions of this
work are independent of the approximations we employ for the
description of local elastic interactions, and it would be relatively
straightforward to extend the current model to a more
sophisticated treatment of local chemical interactions based on
distances, angles, and torsions or embedded-atom potentials.

To describe the interfacial delamination experiments carried
out in ref. 15, we first build a model involving two atomic wires.
We consider a structure containing two interacting wires, namely
a carbon chain (426 C atoms) and a silicon chain (218 Si atoms).
Equilibrium interatomic separations in the initial state are
rC�C
0 ¼ 1:2Å and rSi�Si

0 ¼ 2:35Å. This leads to a structure of
linear size L= 510Å.

The simplest possible approach to calculate numerically the
dependence of the adhesive stress on interwire separation consists
of using a “flat-separation model” (see Fig. 1d). In this case, the
geometry of each of the two atomic chains is constrained to
remain flat as they are separated from each other, and the crack
opening is simply defined as the distance between the two chains.
The results show that the adhesive strength rapidly decays to zero
when the crack opening exceeds ~35Å, meaning that the
interaction range is slightly larger than those obtained in the
literature16,18, but remains three orders of magnitude smaller
when compared with experimental observations. Importantly, the
inclusion of quantum MBD interactions in a flat-separation
model leads to a stronger adhesive stress for small crack openings
(less than 15Å), but yields only marginally larger adhesive range
compared with PW calculations. We emphasize that despite

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15480-w

2 NATURE COMMUNICATIONS |         (2020) 11:1651 | https://doi.org/10.1038/s41467-020-15480-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


apparently similar adhesive stress ranges, the mechanisms for the
stress in MBD and PW methods are radically different even for
flat chains. Due to the intrinsic locality of the PW energy and
forces, the total vdW vertical force that acts on a carbon atom
comes from the contribution of only a few silicon atoms directly
underneath. All these contributions have a negative (attractive)
sign. In contrast, within the MBD approach, both carbon and
silicon atoms are involved in the total vdW vertical force that acts
on a carbon atom. More importantly, an analysis of the different
MBD contributions corresponding to the collective modes of
plasma-like charge fluctuations in the system shows that they can
have either positive or negative signs. These contributions also
have a strongly nonlocal character. The balance between positive
and negative terms ultimately determines the overall force and
shows nontrivial dependence on the actual geometrical config-
uration. A detailed analysis of the flat model is provided in
Supplementary Note 7 and Supplementary Figs. 4–7. For the flat-
separation model, we also expect equivalent results as obtained in
this work when using alternative analytic approaches to vdW and
Casimir interactions31–36, given the qualitatively similar distance
dependence of the dispersion forces in these models.

To achieve a more realistic description of the experiment, we
also introduced a theoretical 3D approach for flat separation
between a 2D membrane (graphene) and a bulk (silicon)
substrate using the pairwise vdW potential, and compared the

results with the flat-separation model involving two atomic wires.
We obtain a slightly longer adhesive range with a 3D model;
however, the adhesive stress still vanishes for a crack opening of
~45Å. From this test, we conclude that a wire model, while being
very approximate, can still reproduce at a semiquantitative level
the dependence of the adhesive stress from the separation
between layered materials.

Up to now, we have investigated the behavior of σ(h) for rigid
geometries where all atomic positions match their equilibrium
structure at infinite separation between materials. However,
atomic relaxation due to the interaction between adhesive
materials could be a decisive factor influencing σ(h)37–40. To
investigate the effect of atomic relaxation, we developed a
variational procedure based on energy and force minimization
to characterize the fully relaxed equilibrium structure of two wires
using PW and MBD methods (see “Methods”). The shape of the
crack depends on the thickness and the speed of insertion of the
wedge. In this paper, we model numerically the insertion of a thin
wedge between two (initially parallel) chains at relative separation
h0, by applying small vertical displacements (1.5% of the length of
the chain) to the right-hand side edge atoms (see Fig. 1c), while
maintaining left-hand edge atoms fixed. To compute the TSL
with atomic relaxation for large interchain separations, we build
longer chains by connecting multiple chain blocks, performing
numerical simulations for a discrete set of initial interchain
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Fig. 1 Adhesive stress between carbon and silicon obtained with different methods. Traction-separation law (TSL) calculated with numerical simulations
with PW and MBD vdW interactions. The experimental setup for silicon/graphene/epoxy/silicon separation by using a test wedge, adapted from ref. 15 is
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separation (d), the second corresponds to the variationally optimized configuration (c), and the last scheme is an approximation of the relaxed geometry in
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numerically between graphene and silicon are plotted for the different models. Ultra-long-range interaction is found by variational optimization based on
MBD interactions. Comparison with experimental data from ref. 15 is given in a. The MBD area indicates the sensitivity of MBD results with respect to the
adopted damping parameters. The adhesive stress is computed exploiting the concept of cohesive zone volume element (CZVE), see details in “Methods”
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(tail-to-tail) distances h0. For each block of size L, we solve the
variational minimization problem, imposing that the difference
between two consecutive initial interchain distances h0 is equal to
twice the total vertical applied displacement at the right end of
each chain (see Fig. 1c). This ensures overall geometric
continuity, despite block discretization. To investigate the
adhesive behavior at separations in the range [10–600Å], the
total length (with 40 blocks) of each wire is equal to 2.04 μm. The
vdW interactions between different blocks are neglected.

The vertical displacement is applied by small loading
increments to avoid large elongations of carbon bonds, and we
assume that the wedge insertion is sufficiently slow, such that the
geometry reaches an equilibrium state after each increment. It is
possible that vertical displacements alone cannot fully model the
effect of the wedge, due to co-existing horizontal and shear
displacements between the layers (shear strain). We thus
performed additional tests (see Supplementary Note 6 and
Supplementary Fig. 3) to study the effect of the wedge, i.e., the
sensitivity to the size of the applied vertical/horizontal displace-
ment on the adhesive stress.

The TSL obtained by this numerical procedure is shown in
Fig. 1. The effect of atomic relaxation on the adhesive stress is
indeed substantially more noticeable than the previously
considered effects. For instance, already at the PW vdW level,
σ(h) exhibits slower decay and reaches negligible values only at
100Å, i.e., extending the range of the interaction by a factor of
three compared with adhesion of bodies with rigid atoms.

Remarkably, upon inclusion of MBD vdW interactions, the
effect of geometry relaxation qualitatively differs from the
approximate PW level: the adhesive stress range now extends
beyond 500Å, i.e. increasing by more than an order of magnitude
with respect to the rigid geometry configuration. We will
demonstrate below (see also Supplementary Fig. 2) that such an
increase in the adhesive stress range stems from a delicate
interplay between electronic and atomic degrees of freedom via
wave-like atomic geometry deformations that persist up to large
separations between materials. The results presented in the main
part of Fig. 1 have been obtained with a conservative damping of
the dipolar interactions within the MBD Hamiltonian (nearest-
neighbor dipole interactions were excluded for the C chain, see
details in Supplementary Note 1). Another test was performed to
study the sensitivity to changes in MBD parameters by allowing
natural oscillator-wavefunction damping for nearest-neighbor
dipolar interactions, which remarkably lead to even longer
adhesive stress range. The MBD area shown in the inset (a) of
Fig. 1 illustrates the upper and lower bounds corresponding to
these two sets of parameters, and clearly demonstrates the
qualitative impact of MBD interactions for extending the distance
range of the adhesive stress. The dependence of the adhesive stress
with respect to distance in fully relaxed MBD geometries is in
relatively good agreement with available experiments on graphene
delamination from silicon15. Since MBD calculations and
especially variational geometry relaxation of extended systems
imply substantial computational cost, extrapolation of MBD TSL
curves to infinite chain size and larger chain separations is
currently unfeasible. Hence, comparison with experiments
remains qualitative at this stage. However, it is readily observed
from Fig. 1a that only MBD leads to sufficiently slow σ(h) decay,
compared with ultra-long-ranged experimental curves. We will
also show below that a 2D/3D MBD model would in fact further
increase both the magnitude and the range of the adhesive stress,
arguably leading to an even better agreement with experiments.

Variational calculations based on MBD vdW interactions yield
best agreement with experiments and offer novel insights into
ultra-long-range adhesive stresses in low-dimensional materials
(see below). However, the main advantage of effective PW models

for the vdW interaction over the explicitly quantum-mechanical
MBD approach is their simple analytical expression, which
implies high computational efficiency and applicability to much
larger systems. Aiming to provide an effective PW potential that
would reproduce the MBD results for 1D systems, we assessed
different PW power laws and carried out for each power law full
relaxations, effectively fitting the MBD TSL. The best fitted curve
shown in Fig. 1 is obtained with the following potential:

EPW�fitted�to�MBD ¼ �
X
j>i

ϵij
0:79 � σ4ij

r4ij
¼ �

X
j>i

/ 1
r4ij
; ð1Þ

where rij the distance between two atoms (in atomic units). The
effective interatomic PW potential in the above equation now
decays as r�4

ij , substantially differing from the traditional r�6
ij LJ

term, and effectively capturing the long-range quantum effects
explicitly described by the MBD model. In fact, many-body
effects are known to critically influence both intensity and power-
law decay of the vdW interactions in low-dimensional
nanostructures27,31,41, being consistent with the obtained para-
meterization. We also note that the effective PW power law and
the associated coefficient will greatly vary depending on the
dimensionality and geometry of the system under consideration;
hence, the obtained r�4

ij vdW interaction power law is specific to
the employed model of two 1D wires. Nevertheless, an extension
of fitted effective pairwise interactions to different nanomaterials
(to be addressed in future work) offers a promising direction
to develop a systematic database of adhesive potentials for
materials with different polarization properties, topologies, and
dimensionalities.

Analysis of physical parameters influencing the adhesive
stress
In this section, we will provide a concise analysis of different
physical parameters that influence the adhesive stress. This ana-
lysis will demonstrate that electronic charge-density fluctuations
described by the MBD Hamiltonian interplay with atomic
deformations, giving rise to wave-like geometrical patterns that
are ultimately responsible for the observed long-range adhesive
stress. Such deformations are absent or negligible in the localized
pairwise vdW model, explaining the qualitative differences
observed between PW and MBD approaches. In addition, aiming
toward more realistic 2D/3D models, we performed MBD cal-
culations for relaxed 2D geometry, with deformation modeled
upon fully relaxed wire structures. The obtained results further
reinforce our observations for wire models, i.e., the adhesive stress
is enhanced both in magnitude and distance range for a 2D
system. These additional tests demonstrate the robustness of our
conclusions, and indicate that the observed long-range proximity
effect is a general phenomenon for thin deformable membranes
and flexible low-dimensional nanostructures, providing strong
motivation for future adhesion experiments on systems of dif-
ferent dimensionality and topology.

To quantitatively analyze the relaxed geometries obtained upon
variational optimization, normalized C atom y displacements are
shown in Fig. 2b for different values of the interchain distance h0.
The analysis of this plot consistently reveals the existence of well-
defined primary deformations, approximately corresponding to
wave-like patterns with a wavelength corresponding to twice the
length of one chain block (L= 510Å). Primary deformations can
also be viewed as the main, large-scale relaxed-chain deviation from
the ideal linear geometry connecting the two-chain edges. Under
equal loading conditions, relaxed MBD geometries exhibit sub-
stantially higher non-linearity (i.e., smaller curvature radius) com-
pared with the corresponding PW-deformed structures. The
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observed non-linearity enhancement is to be attributed to the
stronger and longer-ranged dispersion interactions27,41, arising in the
quantum-mechanical MBD approach due to correlated many-body
charge fluctuations. Increasing h0 gradually leads to weaker non-
linearity, consistent with the decrease in interchain vdW interaction.

We further analyze our system by fitting optimized geometries
via a quadratic polynomial, and determine secondary geometrical
patterns as the difference between the actual relaxed geometries
and smooth fitted polynomials (see Fig. 2a). Again, relaxed MBD
geometries exhibit substantially larger secondary deformations
with respect to PW. MBD-induced distortions slowly decrease at
growing interchain distance, while PW deformations converge to
zero already for h0 ≥ 25Å. Such secondary deformations also
exhibit wave-like patterns and correlate both with primary
structure non-linearity and occurrence of ultra-long-ranged
adhesive stress σ(h). Physically, formation of primary and sec-
ondary geometric distortions implies effective enhancement of
the interchain vdW binding (see Supplementary Note 5), with
consequent increase in the overall adhesive stress σ(h). However,
while such deformations in principle exist both at the PW and
MBD levels, mechanical deformations come at a non-negligible
elastic energy cost, which can be efficiently released only when
including many-body vdW interactions.

MBD oscillation modes. Many-body vdW interaction enhance-
ment occurring in low-dimensional nanostructures ultimately
relates to the highly coherent motion of fluctuating electronic
dipoles, and the consequent presence of slowly decaying oscillating

electric fields. Hereafter, we report the energy eigenvalue spectra
corresponding to the 3N collective eigenmodes of the many-body
dispersion model, in ascending frequency order for two 1D wire
models comprising 644 atoms, at interchain distances ranging from
10 to 200Å (see Fig. 2c). These eigenmodes correspond to collective
electronic polarizations with plasmonic character as discussed in
detail in ref. 27. More precisely, the lower-energy modes are asso-
ciated with electronic fluctuations extending over the whole chain,
with the largest dipole oscillation components parallel to the chain
axis. In contrast, higher-energy modes also involve hybrid fluctua-
tions, which have finite components in directions parallel and
perpendicular to the longitudinal axis.

Due to interchain dipole coupling, collective modes arising in
the two chains interact, undergoing frequency shifts (and
consequent total energy variations) that ultimately determine
interchain vdW attraction. As from Fig. 2c, the frequency shifts
due to interchain coupling (here computed by comparing
different interchain distances) are small (of the order of 10−5

Ha). However, the vdW energy difference between distinct
geometries involves integration over the whole frequency
spectrum. Hence, in spite of the single modes undergoing modest
shift, summation over about 2000 modes still leads to sizeable
energy variation for different h0 values. We note that while in flat
1D chains the low-frequency longitudinal modes alone essentially
determine the whole interfragment vdW interaction, in the
present systems, the symmetry loss caused by primary and
secondary patterns involves more complex dependence on mixed
modes. In fact, structural curvature variations and interaction
between nonparallel chain segments turn out to effectively
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enhance the relevance of transverse electronic oscillations. For
instance, in Fig. 2c, we report frequency shifts between
configurations with different h0, for selected spectral ranges both
at high and low frequency. We observe that the lowest frequency
modes are shifted upward in energy by an increase in the
interchain distance, whereas an opposite, yet comparably relevant
effect is found for the selected higher-energy eigenmodes.
Physically, the coupling between distorted (nonparallel) chains
tends to contrast the “coherence” of MBD longitudinal fluctua-
tions occurring along each separate chain, increasing the
frequency of the lowest eigenmodes. In contrast, transversal
fluctuations can be stabilized (lowered in energy) by the
interchain coupling, as they acquire a nonvanishing effective
longitudinal component in curved geometries.

Overall, the highly collective wave-like character of both
mechanical atomic deformations and many-body plasmon-like
electronic oscillations unavoidably implies complex interplay
between electrons and ions, which could not be captured within
the widely used PW vdW approximation. In fact, the PW model
has no underlying mechanism for delocalized response, either
electronic or ionic. MBD-based coupled quantum mechanics/
continuum mechanics therefore provides a major step forward,
due to the naturally built-in cooperativity between charge
fluctuations and geometrical deformations.

We also point out that long-range atomic deformations (lying
in the infrared frequency region) can efficiently interact via the
electromagnetic field with the quickly oscillating plasmonic
modes42,43. In fact, while each of these collective charge
oscillation modes lies in the ultraviolet-frequency region, the
integral over plasmonic frequency shifts is situated in the infrared
range. The coupling between quick many-electron oscillations
and slow collective atomic vibrations is thus an essential
ingredient of the present variational optimization, and ultimately
determines the observed wave-like geometry patterns. Future
work will concentrate on a systematic investigation of these
cooperative coupling effects over a broader class of systems.

MBD dimensional effects. To move beyond the 1D models stu-
died with MBD up to this point, we now consider three different
geometries, constructed taking a deformed 1D chain as shown in
Fig. 2b as a starting point: (i) two wires modeled by only a one-
dimensional linear delamination; (ii) a two-surface model with a
directional delamination along the z axis described by z(x)= ax+
h0; (iii) a two-surface model with delamination in both the y and
the z axes described by a quadratic surface: z(x, y)= ax+ by2+ c.
For the surface models, we fixed all the atomic positions to cal-
culate directly the vdW forces (without minimization to compute
the optimal relaxed geometries). Both two-surface models offer
approximate 2D/3D extensions of the relaxed two-chain model to
the case of graphene delamination, thus providing comparison and
validation of the above results in the context of membrane adhe-
sion. More specifically, a cut of the surface by a plane perpendi-
cular to the y axis (see Fig. 1e) gives a linear profile with the same
slope as the linear fitting curve obtained from the results of the 1D-
relaxed chains. For the profile z(x, y), the parameter b is fixed to
study the effect of delamination along two different axes.

We investigated the adhesive stress as a function of the
separation for a distance range between 15 and 18Å, in order to
probe how the slope and magnitude of the adhesive stress change
from 1D to 2D models. For the two-surface models, 3936 carbon
atoms and 774 silicon atoms are used. The 3D delamination
model between the two surfaces is schematically illustrated in
Fig. 1e. Carbon atoms are arranged following a hexagonal lattice
with a lattice constant of 1.2Å, while silicon atoms are arranged
on a regular grid with a lattice constant of 2.35Å. The adhesive

stress is computed using the Cohesive Zone Volume Element
(CZVE) described below and the results are presented in Fig. 2d.
In our 1D calculations, the length of the CZVE is fixed as l=
60Å. For the surface models, the CZVE is a surface of length l=
60Å and width 25Å.

The analysis of these preliminary calculations shown in Fig. 2d
confirms the importance of dimensional effects and the fact
that the full 2D/3D model increases both the strength and the
range of the adhesive stress, offering stronger evidence for the
agreement between our quantum/continuum model and experi-
mental predictions.

Discussion
We developed a coupled quantum/continuum model to calculate
adhesive traction-separation laws for arbitrary nanomaterials via
variational optimization, combining elastic theory of interatomic
bonds with full inclusion of quantum-mechanical many-body
vdW interactions. Application of the method to delamination of
low-dimensional nanostructures—including 1D chains and 2D
graphene—from Si substrates reveals a complex interplay
between structural deformations and many-body vdW interac-
tions, ultimately leading to ultra-long-ranged proximity effects.
While the TSL produced by traditional pairwise vdW approaches
underestimates the interaction range by three orders of magni-
tude compared with experiment, an appropriate account of
quantum-mechanical many-body effects and the resulting geo-
metry deformations substantially extends the distance range of
the adhesive stress, providing qualitative agreement with experi-
mental evidence. Physically, long-ranged quantum many-body
vdW interactions result in an adhesion-enhancement mechanism,
involving the emergence of coherent wave-like geometrical
deformations. This effect implies cooperative interplay between
atomic mechanical deformations and collective quantum-
mechanical charge oscillations. Hence, widely adopted classical
atomistic molecular dynamics simulations would entirely miss the
emergent long-range proximity effect observed in this work.

Our work paves the way in the broad and largely unexplored
domain of quantum/continuum simulations. Many points remain
open for investigation to ensure that the proposed model actually
reflects experimental conditions. For instance, our approach
should be tested on higher-dimensional 3D nanostructures.
Dimensional effects play a crucial role, as we qualitatively showed
that full relaxation of a complex 3D model tends to better
reconcile experimental observations with longer adhesive stress
range and larger adhesive strength.

The role of defects (e.g., topological and vacancy defects) should
also be investigated as these can alter the overall polarizability and
influence, in a self-consistent manner, the global macroscopic
behavior of the materials. Thermal effects were not considered in
this work, but we speculate that finite temperature should in fact
increase the adhesive stress in the presence of MBD vdW interac-
tions. In fact, infrared vibrations of organic matter are amplified
upon increasing the temperature42,43, and this suggests that elec-
tronic delocalization increases concomitantly. It would also be
interesting to go to multilayer structures and study the mode mixity
dependence of adhesive properties and fracture toughness44.

The quantum/continuum framework developed in this work
can be used in a broad spectrum of applications, including the
wear and tear of material interfaces, tribological properties of
surfaces, mechanical properties of nanocomposites, or transport
and behavior of biological membranes. This work makes a
necessary step toward the construction of efficient multiscale
methodologies, bridging directly quantum mechanics to con-
tinuum mechanics for describing stress and adhesion in complex
nanoscale and mesoscale materials.
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Methods
Methodology. We present here the methodology to extract the TSL. We model the
experimental setup through two kinds of separation at the atomic scale: (a) simple
approximation of the deformed geometry for interfacial separation, and (b) a
variational method to characterize the deformed configuration where the geome-
trical complexity of both interfaces is taken into account. We also provide in
Supplementary Note 2 a theoretical 3D approach to treat the flat separation
between a surface (graphene) and a volume (silicon) with a pairwise potential.

van der Waals dispersion interactions. Both pairwise (PW) and many-body
(MBD) approaches are considered to compute the vdW forces at each particle. For
the PW method, the vdW interactions are described by the attractive part of a
Lennard–Jones (LJ) potential without damping function. In the second case, we
adopt the MBD method29, a powerful approach for calculating the interatomic
interaction energy based on the adiabatic connection fluctuation dissipation the-
orem (ACFDT) within the random-phase approximation (RPA) for a model sys-
tem comprising quantum harmonic oscillators (QHO) interacting via the
dipole–dipole interaction potential45. The MBD model generalizes the pairwise
vdW energy expression by considering all orders of the dipole interaction between
fluctuating atoms. Following the work of Ambrosetti et al.30, the ACFDT–RPA
correlation energy for the MBD model is expressed as follows:

Ec;MBD ¼ 1
2π

Z 1

0
Tr lnð1� ATÞ½ �dω; ð2Þ

where A is a diagonal 3N × 3N matrix, which is defined as a function of the
polarizability α and frequency ω. Alm ¼ �δlmαl iωð Þ for the case of isotropic QHOs,
and T is the dipole–dipole interaction tensor:

Tab
ij ¼ ∇ri

� ∇rj
vggij ; ð3Þ

i, j indicate atom i and atom j, a and b specify the Cartesian coordinates, and vggij is
a modified Coulomb potential, used to incorporate overlap effects for a set of
fluctuating-point dipoles

vggij ¼ erfðrij=ðβ � ~σijÞÞ
rij

; ð4Þ

in which rij is the interatomic distance between atom i and j; ~σ ij an effective width,

~σ ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ii þ σ2jj

q
computed from the atom’s Gaussian widths σii, σjj of atoms i and j,

respectively. β is an empirical constant; a value greater than 1 corresponds to an
interaction that is shifted to larger distances.

The interatomic forces are derived by taking the gradient of the energy defined
in Eq. (2), which gives

Fc;MBD ¼ �∇Ec;MBD ¼ 1
2π

Z 1

0
Tr½ ∇AT

1� ATð Þ �dω: ð5Þ
The matrix A (and hence the polarizabilities) is assumed to be independent of

the atomic positions so that the differentiation ∇AT can be efficiently performed
via Gauss-Legendre quadrature30.

Chemical binding energy. In the framework of unidimensional separation
between two wires with small deformation, the bonding energy due to alteration of
bond and torsion angles can be neglected. Hence, the bonding energy is assumed to
be mainly due to the interaction between atomic pairs where atoms are separated
by one covalent bond, which can be described by the pairwise harmonic potential

Eb ¼
γ

2
r � r0ð Þ2; ð6Þ

where r0 is the ideal equilibrium length at the initial state, r is the new equilibrium
bonding length in the deformed state, and γ is the force constant, which determines
the bonding strength.

Flat separation between two wires. To model the interfacial delamination
experiments carried out in ref. 15, we first build a simple 1D model involving two
atomic wires, namely a carbon chain (426 C atoms) and silicon chain (218 Si
atoms). The interfacial separation is here modeled by the interchain distance h. In
this case, the geometry of each of the two atomic chains is constrained to remain
flat, and we can directly compute the vdW forces for different values of h.

Relaxed separation of two wires. Variational principle based on energy mini-
mization is used to characterize the relaxed structure. The total energy E for the
system containing the same two wires can be assumed as a summation of non-
bonding energy Enb and bonding energy Eb:

E ¼ Enb þ Eb: ð7Þ
The nonbonding (vdW) energy Enb is modeled either by PW or by MBD.

Boundary conditions are chosen as follows: for each chain block, the head
atoms of the C/Si chain are gradually displaced in the y direction by repeated
displacement increments ΔuSiy ¼ 0:1Å and ΔuCy ¼ 0:1Å, while the x displacements

of these two atoms are fixed to zero due to symmetry. Tail atoms (left-hand side)
are kept fixed along both x- and y directions, at interchain distance h0 (see Fig. 1c).
Knowing the full potential energy, we formulate a variational principle based on
energy minimization to determine the deformed geometry of the atomic structure

x ¼ Arg inf
x

Eð Þ
n o

; ð8Þ
where x represents the atomic positions and E the total energy in the x
configuration. The solution of this optimization problem yields optimized
structures for PW or MBD interaction models after each displacement increment.
To avoid unphysically large energy gradients within the atomic wires, applied
displacement must be small compared with the structure size. The number of
increments depends on the desired level of loading. A chain block has a length L=
510 Å. The whole chain model is composed of 40 such blocks, yielding a chain
length of 2.04 μm. For each chain block, the chosen total applied displacement u
corresponding to the insertion of a small wedge is equal to 7.5 Å (1.5% of the
length of one chain block).

Procedure to construct continuum traction-separation laws. The parameters
used for the numerical simulations involved in the harmonic potential, the
Lennard–Jones potential, and the MBD method are shown in Supplementary
Table 1. We define the adhesive force Fi

y on a given atom i in the carbon chain as
the sum of all vdW forces exerted by all atoms in the system (both chains). This
adhesive force is in equilibrium with the chemical binding forces. To compute the
adhesive stress at atom n along the carbon chain, we sum the adhesive forces acting
on all atoms i with 1 ≤ i ≤ n, where atom 1 sits at the clamped edge, and divide this
resulting adhesive force by the total surface ndC–Cd0:

σ ¼ � 1
n

Xn
i¼1

Fi
y

dC�Cd0
; ð9Þ

where dC–C is the distance between neighboring carbon atoms and d0 is a suitable
length scale, fixed to 1Å, which is a standard order of magnitude compared with
the range of values commonly used46. To compute the adhesive stress, we do not
take into account the atoms where the vdW force is above the threshold value of
0.001 nN. Hence, several atoms (typically three/four) located close to boundary
atoms are removed . This prevents spurious oscillations due to boundary effects.
First, the relaxed structure is used to compute vdW forces. Then, the cohesive zone
volume proposed in ref. 47 is used as a basis to construct the traction-separation
laws. The atomic structure is divided into a number of boxes containing several
atoms, called the cohesive zone volume element (CZVE). We determine the
cohesive parameters in each box. This approach leads to smooth cohesive prop-
erties along the chain, leading to a homogenized continuum traction-separation
law. The CZVE concept has been successfully used in refs. 48,49 where the traction-
separation law of interfaces has been used in other contexts. In our calculations, the
length of the CZVE box is fixed as l= 60Å. The corresponding crack opening is
approximated as the average distance between two opposite CZVEs. We construct
the TSL by applying Eq. (9) in the context of the CZVE technique. More details are
provided in Supplementary Note 3.

Data availability
All relevant data and code to reproduce the results presented in this paper are available
from the corresponding author upon reasonable request.
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