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Abstract: The spread of Unmanned Aerial Vehicles (UAVs) in the last decade revolutionized many
applications fields. Most investigated research topics focus on increasing autonomy during operational
campaigns, environmental monitoring, surveillance, maps, and labeling. To achieve such complex goals,
a high-level module is exploited to build semantic knowledge leveraging the outputs of the low-level
module that takes data acquired from multiple sensors and extracts information concerning what is
sensed. All in all, the detection of the objects is undoubtedly the most important low-level task, and the
most employed sensors to accomplish it are by far RGB cameras due to costs, dimensions, and the
wide literature on RGB-based object detection. This survey presents recent advancements in 2D object
detection for the case of UAVs, focusing on the differences, strategies, and trade-offs between the generic
problem of object detection, and the adaptation of such solutions for operations of the UAV. Moreover,
a new taxonomy that considers different heights intervals and driven by the methodological approaches
introduced by the works in the state of the art instead of hardware, physical and/or technological
constraints is proposed.

Keywords: computer vision; 2d object detection; unmanned aerial vehicles; deep learning

1. Introduction

Unmanned Aerial Vehicles (UAVs), also called Unmanned Aircraft Systems (UASs), and commonly
known as drones, are aircraft that fly without a pilot on-board. This places numerous advantages in
terms of pilot safety, training, and aircraft costs and sizes, with a huge impact in the range of possible
applications. Numbers behind the UAV industry are impressive: Value Market Research estimated
that the market for VTOL (Vertical Take-Off and Landing) UAVs will touch around USD 10,163 M by
2024 [1]. Another report from PwC [2] estimates that, in 2030, there will be 76,000 drones operating in
the UK skies, involving a total of 628,000 jobs. These forecasts will imply, still in the UK, an increase
in GDP of 42 bn£ and net savings for the UK economy of 16 bn£. Finally, an EU report of 2016 [3]
estimated an economic impact exceeding e10 bn per year within 20 years. As a consequence, both
research and industry are investigating the challenges involved in the manufacturing as well as the
design of hardware, software, sensors and algorithms to guarantee the UAV operability and to extend
its range to unseen scenarios.

In fact, UAVs already achieved an unprecedented seen level of growth in many civil and military
application domains [4]. UAVs can be remotely controlled by a pilot or can fly autonomously. In the
former scenario, the pilot is on land- or sea-based ground control station (GCS) for human control.
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The simplest GCS consists of a remote controller with an optional screen, even in the form of a tablet.
In the latter scenario, instead, a pre-scheduled flight plan and a dynamic automation system are necessary.
The Holy Grail for the involved actors in this revolution is the achievement of fully autonomous operational
capabilities to flight over and understand real and complex scenarios. In such an ideal system, a high-level
and possibly on-board module is exploited to build semantic knowledge used to reach the application goal.
The semantic knowledge leverages low-level software components that extract information concerning
what is sensed.

Both exteroceptive and proprioceptive sensors are used to obtain situational and self-awareness [5].
From the beginning, UAVs were equipped with sensors such as Global Positioning System (GPS) and
Inertial Navigation System (INS) to provide position and orientation in space, but they come with
serious drawbacks. The precision of the GPS depends on the general number of available satellites;
moreover, urban canyons and indoor navigation can seriously compromise the navigation. INS, instead,
suffers from integration drift with acceleration and angular velocity error accumulation, requiring a
correction scheme.

Presently, the software and hardware advancements in embedded systems and the corresponding
miniaturization have led to performing low-cost sensors and Inertial Measurement Units (IMUs)
that can extract useful information on-board, such as force, angular rate, and orientation. Many
approaches and configurations have been also proposed to get significant knowledge of the environment
from data acquired by consumer RGB cameras, depth sensors, LiDAR (Light Detection and Ranging),
and event-based cameras. Complex and complete sensor fusion suites that merge multiple data have
been introduced too.

For each sensor that can be potentially mounted on-board of the UAV, a plethora of works and
applications have been proposed. Independently from the employed sensor, where evidently each one
comes with own pro and cons, and/or each sensor is better performing in a specific scenario, all of the
approaches share the goal of providing meaningful input for the high-level components. Undoubtedly,
computer vision can provide a critical contribution to the autonomy of the UAVs and their operational
capabilities [6].

Typical UAV operations are surveillance, person tracking, path planning, obstacle avoidance
(see Section 2): all of these tasks strongly relies on the detection of one or more domain-related objects.
Object detection has then been widely investigated since the beginning of computer vision. Historically,
detecting objects in images taken from a camera has represented one of the first computer vision tasks ever:
early works are dated to 1960s [7], and a kick-off work that is famous (and considered quite optimistic)
in the computer vision community Summer Vision Project is dated 1966 [8]. Henceforth, the possibility of
detecting and recognizing classes of objects has been considered to be the first component of any artificial
intelligence system, and many proposed theoretical techniques in the computer vision community have
been applied to such a task.

If many impressive results have been achieved even outperforming human-level performance in
object detection, there is still a gap to be filled when the problem is translated to the specific case of
aerial robotics. Different challenges are involved in terms of performance, scene, object classes, point
of view, perspective, data acquisition, and so on. Moreover, if many datasets are available for object
recognition task, they cannot be directly employed in the case of UAVs since the scenes are different
from the operational working conditions of the UAV (e.g., indoor, cluttered environments, cameras
placed at ground level). Finally, computational constraints and/or communication schemes are an
important issue to be addressed.

Very precise surveys on the role of computer vision for the autonomous operation of UAV exist.
They focus on high-level operations [6,9], they consider only a specific altitude and/or imaging
type [10,11], a technology [12], or a precise use-case [5,13–16]. It can be observed how, in these very
important surveys, the computer vision point of view has been only partially considered. This has
been the first motivation behind this work. This work investigates the object detection problem for
the specific case of the UAVs from RGB and 2D object detection, introducing also main concepts
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and references for mixed sensor suites and/or 3D object detection. The second motivation is in the
need for a different categorization of the UAVs: there are many valid classification schemes based on
characteristics as the mass, size, mission range, operation heights, level of autonomy, flying principle,
operation condition [17]. Anyway, concerning the height, it is common to classify UAVs in intervals of
150–300 m, 3000, 5000 and even 20,000 m, always starting from 50 m. From a computer vision point of
view, we think that this scheme is not sufficient to understand the methodologies that are applied to
address the object detection problem depending on the operational height.

Thus, a conceptual approach that takes into account the operations carried out at very different
heights has not been proposed yet. To the best of our knowledge, we present the first work that classifies
object recognition methods for the case of UAVs that considers different heights intervals, whose definition
is given by the methodological approaches introduced by the works in the state of the art instead of
hardware, physical and/or technological constraints. At the same time, our proposal is well-integrated
with active EU rules and procedures for the operation of unmanned aircraft. Moreover, how specific state
of the art deep learning architectures are adapted for the case under consideration is discussed, and the
main applications that introduce their own scientific and technological peculiarities are illustrated. Finally,
the different datasets specifically designed to evaluate object detection from aerial views are reported
and detailed.

Summing up, the main contributions of this work are:

• an update of dominant literature aiming at performing object detection from UAV and aerial views;
• a taxonomy for the UAV based on the computer vision point of view, that considers how the same

problem can drastically change when it is observed from a different perspective;
• a critical discussion of the actual state of the art, with particular attention to the impact of

deep learning.

The manuscript is organized as follows: first of all, the role of object detection from UAVs in
terms of higher-level operations is illustrated in Section 2, also introducing some important sensors
employed in the state of the art besides RGB cameras. In Section 3, an introduction of the terminology
behind the object detection problem is given, together with the taxonomy used to classify the works
object of the review. In Section 4, the main backbone networks for both classic and mobile cases
are described. Works of each introduced category are detailed in Sections 5–7, analyzing eye level
view, low and medium heights, and aerial imaging, respectively. An overall discussion is given in
Section 8, while Section 9 has the conclusion.

2. Background on UAVs

The terminology to refer to UAVs is wide and sometimes confusing. UAVs started their life in
the military sector, distinguishing between two technical terms: (1) Unmanned Aerial Vehicle (UAV),
that designates the aircraft vehicle including all its on-board payload; and (2) Unmanned Aerial
System (UAS), that gathers all related elements, including the UAV itself, the ground segment (i.e.,
the Ground Control Station, GCS), and the communication segment. These terms are not only still in
use in the military sector [18], but they are also currently widely used and accepted in the civilian sector.
Early civilian applications coined the terms Remotely Piloted Aircraft (RPA) and Remotely Piloted
Aerial System (RPAS), to create a gap with military UAVs/UASs, and to emphasize the existence of
a remote pilot that assumes the legal responsibility of the operation of the UAV. Nevertheless, these
terms are currently obsolete. Researchers in robotics usually employ the term Aerial Robot [19], since
it emphasizes the fact that it carries out an autonomous operation, being the role of the human remote
pilot just a mere supervisor to take over control in case of unexpected and unrecoverable failure.

Besides, the word drone has been widely used by non-experts and media, without technical distinctions
between the aerial and ground segment. Finally, in the late civilian regulations [20], the terms Unmanned
Aircraft and Unmanned Aerial System (UAS) are employed, being inclusive with both autonomous and
remotely piloted UAVs. In this paper, we use the term UAV in the broader possible sense, including



J. Imaging 2020, 6, 78 4 of 38

any kind of aerial aircraft and its on-board payload. The ground and communication segments are
omitted for simplicity, being aware that in some of the presented works, on ground computations are
carried out.

There exist different kinds of UAVs, that can be classified according to several criteria [21,22] such as
lifting system, size, maximum take-off weight (MTOW), payload weight, range of operation, height of
operation (above ground level), endurance, operating conditions, or level of autonomy, among others.

A highly extended criterion to establish a classification, is the lifting system, which distinguishes
between: (1) lighter-than-air, (2) fixed-wing, (3) rotary-wing, (4) flapping-wing, and (5) hybrid configurations.
Fixed-wing and rotary-wing configurations are the most widespread: while fixed-wing UAVs are mostly
used on high-range, high-altitude, and long-endurance applications, requiring a runaway or launching/
recovery system for take-off and landing, rotary-wing ones have the advantage of vertical take-off and
landing (VTOL), hovering, and low-speed flights, at the cost of a lower range and endurance, which make
them ideal for an even largest number of applications. Among the rotary-wing, the most common types
are: (1) helicopter-type, and (2) multirotor-type. Helicopters come with higher payload and endurance
with the disadvantage of being mechanically more complex, difficult to control, and dangerous (since
they have larger propellers) than multirotor. For all the aforementioned reasons, multirotors are the most
widely use UAV type in civilian and military applications, especially at flying heights lower than 120 m
(see Section 3).

2.1. Sensors On-Board UAVs

UAVs are equipped with on-board sensors to acquire information on the environment (exteroceptive)
or of the UAV itself (proprioceptive). Their use depends on many factors such as the environment,
the application, and the tasks to be carried out; the payload capacity and size of the UAV; the cost
of the UAV; safety and redundancy levels; the level of autonomy of the UAV, etc. Each sensor has
different operational characteristics and therefore it comes with its own advantages and disadvantages.
A whole review of the literature concerning all the different sensors that have been successfully used
on-board UAVs is out of the scope of this paper. Thus, we will only introduce five sensor technologies
that will appear later in the manuscript.

• RGB cameras are passive sensors that capture the intensity information of the visual spectrum of
light of the observed scene, using three different channels, i.e., Red, Green, and Blue. Main issues
when mounted on-board of the UAV are the vehicle speed or sudden burst that can cause blur and
noise in the image. At this purpose, global shutter cameras, with the peculiarity that the entire area
of the image is scanned simultaneously instead of a scanning across the scene (either vertically or
horizontally) as for the rolling shutter counterpart, are usually preferred [23]. Grayscale cameras
provide only one single channel with the average intensity information of the visual spectrum of
light of the observed scene.

• Event-based cameras, e.g., Dynamic Vision Sensor (DVS) in particular, are well-suited for the analysis
of motion in real time motion, presenting higher temporal resolution and sensitivity to light and low
latency. Recently, it has been used on-board of UAVs [24]. Their output, anyway, is not composed
by classic intensity imaging, but from a sequence of asynchronous events, thus the necessity for
further research and the design of new image processing pipelines is very actual topic [25].

• Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with
a temperature above absolute zero (thermal radiation). If their application fields were initially
limited to surveillance and night vision for military purposes, their recent drop in price opened
up a broad field of applications [26]. In fact, thermal imaging can eliminate the illumination
problems of normal grayscale and RGB cameras, providing a precise solution in all the domains
where life must be detected and tracked, and UAV does not represent an exception [27].

• 3D Cameras can capture the scene providing color as well as 3D information. Presently, the three
dominant technologies to build such cameras are stereo vision, time-of-flight (ToF) and structured
light. For instance, commercial stereo cameras, i.e., the Stereolab ZED camera (https://www.ster

https://www.stereolabs.com/
https://www.stereolabs.com/
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eolabs.com/), have been used for the UAV object detection problem [28]. Anyway, they are mostly
based on triangulation, thus the presence of texture in the image is necessary to infer the depth
information. With recent technological advancements, relatively small and low-cost off-the-shelf
depth sensors based on structured light-like Microsoft Kinect ((https://developer.microsoft.com/
en-us/windows/kinect/) [29]), ASUS Xtion Pro Live ((https://www.asus.com/us/3D-Sensor/
Xtion_PRO_LIVE/) [30]) have been employed for object detection in UAV operations. Anyway,
the aforementioned sensors are based on structured light, implying that they are sensitive to
optical interference from the environment, thus more suited for indoor applications or controlled
environments [31]. Finally, ToF cameras obtain the distance between the camera and the object,
by measuring the time taken by projected infrared light to travel from the camera, bounce off the
object surface, and return back to the sensor. They are becoming cheaper but are vulnerable to
ambient light and UAV movements. Furthermore, they offer lower resolution than RGB sensors.

• LiDARs (Light Detection and Ranging), are active sensors that measure distances by hitting the target
with laser light and measuring the reflection with a transducer. In former times, LiDARs were too
large, heavy and costly to be used on-board UAVs, nevertheless, the recent advances on solid-state
technologies, with examples as Ouster LiDARs (https://ouster.com/), have considerably reduced
their size, weight, and cost, turning them into a growing popular choice on-board UAVs.

In most of the cases, multi-sensor solutions, where several sensors are used in a complementary way,
are needed, to overcome the limitations of using a single sensor, or simply for redundancy. Multi-sensor
fusion techniques focus on providing a robust and complete description of the environment or state of
the UAV by combining observations coming from several different sensors [32,33].

RGB Cameras are the most prominent sensor to be used on-board UAVs due to: (1) reduced size
and weight, (2) reduced cost, (3) reduced energy consumption, and (4) very large amount of data on
their measurements. All these advantages come with the cost of a high-complexity of the information
provided by their measurements (unlike other sensors, such as LiDARs that directly provide the
distance to an object). As a consequence, RGB cameras represent by far the most employed sensors
on-board UAVs. For this reason, in this survey, we focus on 2D object detection from RGB images.
Nevertheless, we are aware that considering only RGB data would necessarily bring to illustrate an
incomplete scenario. Thus, despite the main focus of this work will be the 2D case, useful references for
further readings will be provided for the 3D cases as well as LiDAR, thermal imaging, and event-based
cameras, giving priority to the cases of sensor fusion.

2.2. Autonomous Operation of UAVs: Situational Awareness

The fully autonomous operation of UAVs is needed to improve their performance, reliability,
scalability, security, safety, ease its use, reduce its cost of operations, enable new applications, and to
carry out applications based on 4Ds (Dull, Dirty, Dangerous, and Dear). Nevertheless, achieving a
fully autonomous operation of UAVs remains an unsolved research problem. There exist multiple
works focusing on versatile aerial robotics systems architectures to achieve such fully autonomous
operation, as the successfully used Aerostack [34] (see Figure 1). Nevertheless, these architectures rely
on the existence of several ready-to-use components with well-defined functionalities, that in most
cases they have not yet reached the required level of maturity, performance, or functionality.

Among these components, one of the most important ones, and at the same time, the most challenging
ones is the situation awareness. This component is in charge of the perception of the elements in the
environment within a volume of time and space to generate a representation of the environment and the
state of the UAV, by using the measurement acquired by the sensors (mostly the on-board ones) [35].

https://www.stereolabs.com/
https://www.stereolabs.com/
https://developer.microsoft.com/en-us/windows/kinect/
https://developer.microsoft.com/en-us/windows/kinect/
https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
https://ouster.com/
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In many cases, the raw measurements provided by the sensors are too complex to be used directly
in the situational awareness processes, and need to be simplified by extracting higher-level features.
This pre-processing stage is carried out in feature extraction components [36]. The problem tackled on
this survey, the 2D object detection, is an example of high-level feature extraction.

The importance of situational awareness lays in the fact that it is an essential input for the decision-
making and control processes (see Figure 1). To carry out reasoning, these processes require the
environment to be completely and accurately perceived, and often, their performance can be increased
if the situation is modeled with different levels of information, such as metric, semantic or dynamic.

Semantic situational awareness intends to incorporate higher-level semantic information that
augment the basic metric models of the environment, as for example [37]. Object detection provides
a very valuable semantic information that can be exploited when building semantic maps, such as
in [37–42].

Figure 1. Aerostack system architecture [34]. The reader must note the importance of the situational
awareness system (colored in red).

Examples of tasks and applications of UAVs that require situational awareness, where the use of an
object detector is either essential or it substantially improves its performance (see Figure 2), are the following:

• Path planning or obstacle avoidance: consist on the generation of collision-free trajectories and
motion commands based on the available knowledge of the existing obstacles of the environment [36].
Although it can be based on pure metric maps [43], its performance can be increased when having
semantic information such as the kind of objects of the environment [44,45].

• Object or person tracking (following or servoing): consist on the generation of trajectories and
motion commands that ensure that a particular targeted object (or person) are followed while
they move [46,47].

• Exploration, survey or target detection and localization: consists on acquire information of the
previously unknown environment, either to complete it, or to locate a particular element of it,
e.g., [48,49].

• Surveillance, inspection or monitoring: consists on acquire information of the environment
(normally previously known), looking for anomalies or intruders, e.g., [50–52].
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(a) (b)

(c) (d)
Figure 2. Examples of UAV applications, where situational awareness and object detection algorithms
were used. (a) Obstacle avoidance using 2D LiDAR [42]. (b) Person following using RGB camera [46]. (c) Target
detection using RGB camera [34]. (d) Airframe inspection using RGB camera, project FNR-PoC AFI, [53].

3. Definitions and Proposed Taxonomy

The problem of 2D object detection from images is old as computer vision. It is very important to
note that is no universal agreement in the literature of terms such as detection, localization, recognition,
classification, categorization, verification, identification, annotation, labeling, and understanding, that are
often defined in different ways [54]. In this work, the starting point is the nomenclature recently adopted
in Liu et al. [55].

Object detection means to determine whether there are any instances of objects from given categories
in an image and, if yes, to return the spatial location and extent for each object instance.

Object classification and object categorization refer instead to the problem of finding the presence of
objects in the image from a given set of object classes, without any localization.

Object recognition is the problem of identifying and localizing all the objects present in an image [56],
thus encompassing both image classification as well as object detection [57].

Furthermore, the problem of detecting a specific instance of a class object, e.g., “soda can” versus
“coffee can”, or “my” mug versus “a” mug is referred in the literature as object instance detection [58].

Finally, these definitions can be easily extended for the 3D cases, with classification applied on 3D
data (e.g., point clouds), but also in the case of 3D object position estimated directly from the 2D view. Thus,
3D object classification aims at classifying 3D data, while in the case of 3D object detection, the output
is represented, in addition to the 2D bounding box, by the 3D position of the object(s), in real-world
coordinates and in physical units.

Herein, we propose to classify the methods for achieving object detection depending on the flying height
and the application domains that are unrolled at the different heights. Taking into account the computer
vision point of view and integrating it in the existing taxonomic and categorization, we classify methods as:

• Eye level view: this category corresponds to a flying height between 0 and 5 m.
• Low and medium heights: 5–120 m. It represents the interval with the majority of commercial and

industrial applications. Its upper bound has also been fixed according to the EU rules and procedures
for the operation of unmanned aircraft (https://eur-lex.europa.eu/eli/reg_impl/2019/947/oj).

https://eur-lex.europa.eu/eli/reg_impl/2019/947/oj
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• Aerial Imaging: ≥120 m. It corresponds to elevated heights for whom usually special permissions
are required to capture data, and/or satellite imaging.

The proposed ranges are motivated by the fact that eye level vision shares the viewpoint with many
existing and well-investigated computer vision problems, although having new challenges when applying
for the UAVs. Instead, once the UAV flies over a few meters, this classic viewpoint completely changes.
Although the range extension is wide up to 120 m, such cases share the methodology and the state of
the art network adaptation. Finally, there is another field concerning aerial imaging. These applications
employ autonomous aircraft flying at a height starting from about 120 m up to kilometers; they also share
different characteristics, i.e., pointing down cameras and specific datasets, thus, from the computer vision
point of view, it is useful to consider this as a different category.

It is worth noting that these ranges are not strict, but are more related to the specific application
context. For example, the eye level view mainly refers to the problem of UAVs sharing their trajectory with
possible pedestrians and obstacles. Anyway, experimentally observing at existing works and datasets for
urban navigation, it is possible to observe how the viewpoint is practically frontal usually up to 5 m of
height; thus, these works should still considered in the category of eye level. On the other hand, works
dealing with indoor navigation could theoretically fly at higher heights, but the challenges involved in the
works herein analyzed deal with cluttered environments and the presence of obstacles, i.e., situations that
appears in human height navigation, thus the methodology is still valid in the case of a slightly higher
height, and we grouped them together.

Finally, we are aware that changes in viewpoint, angulation, sensor suite and light conditions can
noticeably change the approach even at the same fixed height, as well as that the same object class can
be detected from different heights. Anyway, we think that this representation is very useful to map the
different architectures and themes that are specific from each specific application, as well as to classify
the possibility of extending the functionalities in terms of multi-modal sensor fusion schemes.

4. Object Detection Architectures

Early object detection algorithms were based on a handcrafted features extraction phase upstream,
searching for sophisticated feature representations that capture the gist of the image. In those years,
a variety of tunes-ups to improve accuracy, obtaining invariance with respect to various geometrical and
spectral factors, and (near) real-time performance were proposed in the literature [59–61], reaching a
plateau after 2010 [62]. In 2012, the seminal work of Krizhevsky et al. [63] gave the rebirth of Convolutional
Neural Networks (CNNs) for the image classification task. AlexNet (2012) consists of 5 convolutional
layers and 3 fully connected layers. Two Graphics Processing Units (GPUs) were used, running different
layers of the network and communication only at certain layers. The paper introduced modern concepts
such as data augmentation, training on multiple GPUs, Rectified Linear Unit (ReLu) as activation function,
max-pooling layers to achieve downsampling, drop-out as a way to perform regularization, achieving
a top-5 error of 15.3% on ImageNet Large Scale Visual Recognition Challenge [64]. From that moment,
different architectures have been proposed to improve the accuracy of such a task [55,62]. Here, we report
works that represent a milestone achievement or that will be recurrently named in the manuscript:

• R-CNN [65] (2014) is a two-stage object detector that introduced the search for possible object
locations (region proposals) in the image using a selective search; for each proposal, the features
were extracted separately by the network, at the cost of high computational load.

• Faster R-CNN [66] (2015) increased speed of R-CNN taking the entire image as input instead of
using a CNN for each region proposals introducing RoI pooling layers, improving both accuracy
and speed.

• Mask R-CNN [67] (2017) extended Faster R-CNN, adding a branch for predicting also the object
mask in parallel with the bounding box recognition.

• YOLO [68] (2016) is a one-step object detector that drastically improving computing speed. Like Faster
R-CNN, YOLO uses a single feature map to detect objects, but the image is divided into a grid where
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the objects are searched. From the first version of YOLO, many further improvements have been
proposed, leading to different YOLO versions [69].

• Feature Pyramid Network (FPN) [70] (2017) has turned out to be fundamental for the correct identification
of objects at different scales. This concept has been proposed numerous times along with light
or more radical modifications since its publication so that it can be considered to be a structural
component of modern object detectors. Pointedly, in the original FPN version, a top-down path
is linked with lateral connections with the usual bottom-up feed-forward pathway to output
multi-scale prediction in correspondence to the multi-resolution feature maps.

For our purposes, instead, it is important to highlight how neural networks specifically designed
for mobile devices gained tremendous importance. This section is concluded by milestone works that
have been designed for performing inference on low power and memory devices. Firstly, efficient
architectural designs are described. Lastly, techniques to further improve run-time performance while
preserving accuracy are introduced.

• SqueezeNet [71] introduces a new building block, called the fire module, which is composed by
a 1 × 1 convolutional layer to reduce the number of channels with the minimum number of
parameters (hence the name squeeze) followed by a mix of 1 × 1 and 3 × 3 convolutions forming
the expand block that increases again the depth dimension. Additionally, this module is combined
with the design decision of delayed down-sampling, by which the feature maps resolution is
decreased later in the network to improve accuracy.

• SqueezeNext represents an upgrade of the aforementioned network [72]: the authors reduce the
depth to a quarter by using two bottleneck layers. Furthermore, through a separable convolution,
they swipe over the width and the height of the feature maps in other two consecutive layers
before expanding again the channels with a 1 × 1 convolution. Finally, a skip connection is added
to learn a residual with respect to the initial values.

• ShuffleNet [73] makes use of group convolution in the bottleneck layer to reduce the number of
parameters. Noticing that the output would depend only on one group of input channels group
convolutions, a mechanism to break this relation is under the form of a shuffling operation, which
is feasible by simply rearranging the order of the output tensor dimensions. Nevertheless,

• Ma et al. [74] argue that the memory access cost of the group convolution would surpass the
benefits of the reduced floating points operations (FLOPS) version, and consequently, proposed
a second version of the shufflenet architecture based on empirically established guidelines to
reduce computation time. In this regard, with ShuffleNetV2, the authors introduce the channel
split operator that branches the initial channels in two equal parts, one of which remains as
identity and is concatenated at the end to restore the total number of channels. Hence, the 1 × 1
group convolutions are substituted with normal point-wise convolutions and the channel shuffle
operation of the original model is replicated after the concatenation of the two branches to allow
information exchange.

• MobileNet [75] is built upon the concept of depthwise separable convolutions, first introduced by Sifre
and Mallat [76] and popularised by the Xception network [77]. This computation module consists
of one first layer of kernels that operates on each input channel independently, the depth-wise
convolution, followed by a second, the point-wise, that combines the intermediate feature maps
through a 1× 1 convolution. Additionally, MobileNet has a hyperparameter, named width multiplier,
to control the number of output channel at the end of each block and the total number of parameters.

• MobileNetV2 [78] adds linear bottleneck layers at the end of the separable convolutions to create
what the authors call inverted residual block since the skip connection with the identity feature maps
is performed when the network shrinks the number of channels. The intuition of the authors is
that ReLU non-linearity can preserve the information manifold contained in the channels when it
lies in a low-dimensional subspace of the input.

• Neural Architecture Search (NAS) is a novel prolific field whose purpose is to use search algorithms,
usually either Reinforcement Learning or Evolutionary optimization methods, to find a combination of
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modules that obtains an optimal trade-off between latency and accuracy. For instance, the optimization
metric could be specified in the form of a Pareto multi-objective function as demonstrated in
MnasNet [79]. FBNet [80], ChamNet [81], and MobilenetV3 [82] are other examples of successive
contributions to mobile network architecture search. The reader can refer to [83,84] for a thorough
analysis of this technique.

• EfficientNet [85] improves the ability of manually tuning the model complexity letting the users
choose the desired trade-off between efficiency and accuracy. Pointedly, the authors propose
a compound scaling hyperparameter that tunes the network depth, i.e., the number of layers or
blocks, the width, i.e., the number of channels, and the input image size, which influences the
inner feature maps’ resolution, all at once in an optimal way. This scaling method follows from the
observation that the network’s dimensions are not independently influencing the latency-accuracy
trade-off. Finally, this novel scaling concept is applied to a baseline network found by taking
advantage of the multi-objective optimization and search space specified in MnasNet.

In [86,87] exhaustive overviews regarding the techniques for model compression and latency
reduction are provided. Herein, we describe the principal characteristics of those methodologies.

• Parameter Pruning is a technique principally meant to reduce the memory footprint of a neural
network by reducing the redundant connections. In general, single weights, group of neurons,
or whole convolutional filter can be removed improving also the inference time. As a side-effect,
this operation impacts the accuracy of the model, thus requiring an iterative process composed
of pruning and network re-tuning steps. Additionally, the resulting models are generally sparse
and require specialized hardware and software to not lose the advantage over the unpruned
dense counterparts.

• Quantization cuts the number of multiply-adds operations and the memory storage by changing
the number of bits used to represent weights. Since 16, 8, or 4 bits are more commonly used,
for the special case of 1-bit quantization we refer to weight binarization. Additionally, weight
sharing is a related concept that indicates the technique of clustering groups of weights that fall
into an interval and to assign them a single common value.

• Knowledge Distillation has the objective of transferring the knowledge embodied into large
state-of-the-art models to lighter networks, which would have the advantage of retaining the
generalization capabilities while being faster. This technique can be coupled with quantization
where a “teacher” network would use full-precision representation for the weights and the lighter
“student” network is, for example, binarized. However, applying this method to tasks other than
image classification, where the compressed model learns to mimic the class logits from the teacher,
is more challenging. In this regard, the work in Chen et al. [88] shows how to generalize this
technique to object detection by exploiting the teacher regression loss relative to the bounding
boxes’ coordinates as an upper bound.

• Low-rank Factorization replaces weight matrices with a smaller dimensional version using matrix
factorization algorithms. For instance, Singular Value Decomposition can be applied to perform
a low-rank factorization that approximate the original model parameters by retaining the top k
eigenvalues of the weight matrix.

5. Eye Level View

This section introduces to the works in the state of the art that focus on drones flying at men height.
Generally speaking, flying at such height means that the same viewpoint, variance and appearance
of many classic computer vision use cases are shared. Anyway, own specific challenges are present,
from both computational and scientific point of view.

Due to the limited computational capabilities on-board, many works tend to employ classic computer
vision techniques in order to achieve a higher frame rate. Real-time obstacle detection and avoidance
system based on monocular views has been proposed in [89]. Features of the obstacle are detected with
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SIFT, and keypoints matching with respect to a stored patch is performed with a brute-force approach.
Ratio and distance filters are applied to obtain a more robust match. The convex hull is used to establish
the object of interest that must be avoided, and changes in the size of the area of the approaching obstacle
to performing the avoidance manoeuvre are used to estimate the obstacle distance. More recently, in [53]
the problem of airframe visual inspection from UAV monocular imaging has been addressed computing
the Features from Accelerated Segment Test (FAST) and Oriented Rotated Brief (ORB) descriptors to
find features that are matched to detect if one landmark (among a set of known landmarks) is in the
scene, and to estimate the airplane pose with respect to the flying drone in real time. Apart from the
feature extractor phase, this approach presents two main differences: first of all, matching is performed by
using the fast K-Nearest Neighbor search relying on a multi-probe Locality-Sensitive Hashing (LSH) [90].
The classic LSH is computationally lighter than the brute-force approach. In turn, the multi-probe LHS
is still based on the classic LSH, but more efficient indexing is obtained since it probes multiple buckets
that are likely to contain query results in a hash table. Moreover, the object is recognized in terms of 2D
coordinates, but the distance is estimated by the iterative PnP algorithm based on Levenberg-Marquardt
optimization [91].

In [92], a combination of features with Adaboost classifier has been used to detect pedestrians.
In particular, a combination of Haar-like features and Local Binary Pattern is employed, and the mean
shift is introduced to improve the performance in a flight environment between 2 and 4 m. Differently
from the previous two works, a training phase is required. The CICTE-PeopleDetection dataset is also
introduced, and images at heights lower than 5 m have been considered for the training and test sets.
Finally, to improve the classification performance, a mean-shift algorithm is introduced to track the
pedestrians. In the experiments, authors show how this solution improves the performance at elevated
heights, when the view-point angle increases, but at the cost of introducing more false positives.

Real-time detection and tracking of pedestrians fully performed on-board of the UAV has been
proposed in [93]. A detector based on Aggregate Channel Feature (ACF) is employed and combined
with ground plane estimation to reduce the search space, based on the sensors data of the UAV.
This leads to an improvement in terms of efficiency and accuracy. The system has been integrated with
a particle filter based on color information to track the pedestrians and, in turn, the pedestrian detector
helps the particle filter to remain on target. In the experimental phase, a pedestrian following scenario
was also presented.

It is worth mentioning that in other cases [94,95] the obstacle is modeled implicitly. In particular,
visual information is taken from the on-board camera(s) and used for guidance, implementing an
obstacle avoidance solution based on optical flow variations.

From the other side, recent advances in deep learning represent a unique opportunity to improve
the capabilities of providing scene awareness for a UAV operating in realistic environments. From the
analysis of the state of the art, it emerges that application of deep learning techniques from eye level
heights can occur in two ways: one solution, certainly interesting from the engineering point of view, is
to simply switch the computation off-board, e.g., using cloud computing. For this purpose, the authors
in [96] applied a resource-demanding neural network, i.e., R-CNN, in a consumer UAV (a Parrot AR
Drone 2.0) to detect hundreds of object types in near real-time. The second way, very recent and that
has maybe more appeal from the scientific point of view, is to develop ad-hoc architectures and/or to
adapt the existing backbone networks.

An example is the work in [97], where on-board and real-time trail detection and following has
been implemented for a micro air vehicle flying in a forest. The backbone of the proposed CNN
architecture (named TrailNet) is ResNet-18 [98]; moreover, a modified version of YOLO is used to
detect objects (e.g., persons) and avoid collisions.

Finally, it is worth mentioning machine learning approaches that directly maps visual input with
actions. This research field is not new [99], but recent advancements in deep learning have brought unseen
performance and innovative approaches to implement biologically-inspired controllers. An example
is in [100], where a CNN that directly predicts the steering angle and the collision probability from
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RGB images has been proposed. The network was trained with data recorded from ground vehicles
and the predicted output is used to control the UAV to safely navigate avoiding obstacles. In this way,
the obstacle is implicitly modeled by the collision probability that is 0 when the object is far away and
becomes 1 when the collision is already unavoidable. Moreover, authors report how activation maps
show the focus of the network on objects such as street lines that are an indicator of steering directions.
Differently from deep learning-based control approaches that focus on reinforcement learning schemes,
this family of works relies still on supervised learning, and it represents a very active research field [101].

5.1. Human-Drone Interaction

A drone flying at human height ineluctably interfaces with persons. Human-drone interaction
(HDI) represents a wider and multidisciplinary research area that has spread in the last ten years,
involving computer vision and robotics but also social sciences and human-computer interaction,
with research involving proxemics [102], attention schemes [103], design [104], social perception [105],
drone personality definition [106].

In this field, computer vision becomes fundamental to realize an interaction that can take place
in realistic scenarios, recognizing the humans, but also their body parts and gestures [107]. In [108],
Pose-based Convolutional Neural Network (P-CNN) descriptors [109] have been employed on the
UAV-GESTURE dataset to recognize gestures with an accuracy of 91.9%. A similar approach has been
used from the same authors on the Drone-Action dataset, released one year after, obtaining an accuracy
of 75.92%.

In the work of [110], a natural user interface to interact with drones has been designed and tested.
Among others, the UAV can recognize a person that can control the drone using body pose and hand
gesture. In particular, hand movements are tracked by using a Leap Motion Sensor (https://www.ultral
eap.com/product/leap-motion-controller/), a device specifically designed to track hands. It consists of
two webcams with fish-eye lenses, three infrared LEDs and a plastic diffusing panel. A ground station
(i.e., a laptop communicating in the same network of the UAV) can transmit commands to a Parrot
AirDrone 2.0. The body is tracked with the Aerostack framework. In the same work, also visual
markers are used to transmit commands. Some output of the gesture recognition module is reported
in Figure 3. The face has been used to control the robot in [111]. The user triggers the robot to fly by
making a distinct facial expression, and the direction and intensity of flight are given by the head
position and size; three different trajectories have been implemented and tested. The orientation
of the hand regarding the head pose (discretized into three possible poses) is used to estimate the
direction of the UAV flight in [112]. An attempt to interact with a swarm of flying robots using hand
gestures has been provided in [113]. Gestures are also used for selecting individuals and groups, using
a vocabulary of two-handed spatial pointing gestures. Generally speaking, many works that exploit
gestures to control a single drone have been proposed in the literature [114,115], showing a robust
and mature technology. Similarly, real-time facial detection and recognition from UAVs represent two
well-investigated problems [116,117]. A study about limitations and the impact of different viewpoints
and heights for the recognition task has been also proposed in [118].

5.2. Indoor Navigation

As light and small sensors with high precision and accuracy performance and low latency
emerged, many navigation architectures for indoor flights have also been proposed. A summary of
UAV indoor navigation architectures can be found in [119]. SURF features for template matching to
compare relative obstacle sizes with different image spacing have been employed to detect and avoid
obstacles during indoor test flights in [120]. The detection of objects such as studs, insulation, electrical
outlets, drywall sheets (for the latter, also its status is classified) in indoor construction sites has been
proposed in the work in [121]. One of the validation cases has been a dataset of images collected by a
UAV, with promising performance for the autonomous inspection task.

https://www.ultraleap.com/product/leap-motion-controller/
https://www.ultraleap.com/product/leap-motion-controller/
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Figure 3. Four examples of human-drone interaction performed by hand gestures in [110].

CNNs have been applied to identify waypoints in dynamic indoor environments for drone racing [122].
Waypoints are identified in local-body frame coordinates to deal with the problem of drift, and are integrated
with state of the art path planner and tracker. A big innovation introduced with this paper is that the network
is trained in simulation and deployed on a physical quadrotor without any fine-tuning, representing the
first zero-shot sim-to-real transfer on the task of agile drone flight.

Finally, also event-based cameras have been applied for improving autonomous indoor navigation,
where the continuous presence of obstacles and/or walls provide significant input. For example, in [24],
they are used to create an event stream representation that uses the temporal component of the stream,
whose 3D geometry is approximated with a parametric model to compensate the camera motion;
in this context, moving objects not conform with the model are detected and tracked, even in the case
of very fast motion. In this work, the object detection is implicit since achieved with a different motion
model with respect to the moving UAV.

5.3. Datasets

CICTE-PeopleDetection [92] aims at detecting pedestrians in the scene. The authors state that existing
related datasets are not considering viewpoints changes that occur in the case of UAVs operating at eye
level heights. Thus, they introduce a dataset of pedestrian images composed of 30,900 positive (with one
or more pedestrian) and 12,120 negative (no pedestrians) samples. UAVs behavior is emulating changing
the height of surveillance cameras, from 2.3 to 5 m, with a resolution of 50× 100 pixels.

DroneFace [123] has been designed for face recognition purposes. Ages range from 23 to 36 years
old, and heights from 157 to 183 cm. All the subjects have been asked to take frontal and side portrait
images before the raw image collection. The dataset is composed of 2057 images at 3680 × 2760
resolution, but the UAV mobility is only simulated.

The first large-scale dataset of images collected from a UAV with the aim of testing face recognition
performance is DroneSURF [124]. The dataset contains 200 videos of 58 different subjects, captured across
411,000 frames, with over 786,000 face annotations. Videos have been captured using a DJI Phantom with
a resolution of 720 p and 30 fps. Heights range has not been given by the authors, but sequences show
variability at eye level and very low heights.
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UAV-GESTURE [108] is a dataset containing 13 gestures for basic UAV navigation and command
from general aircraft handling and helicopter handling signals. It is composed of 119 high-definition
video clips consisting of 37,151 frames recorded by a hovering UAV.

Drone-Action [125] is recorded instead from a flying UAV, recording 13 human actions, for a total
of 240 videos and 66,919 frames. The actions were recorded in three different settings (following,
side-view, and front-view actions). Examples of recorded actions are clapping, punching, hitting with
a bottle, walking, running, allowing the testing of people monitoring systems.

DroNet (ETH) [100] is the dataset used in the work of the same authors to estimate the collision
probability and the steering angle to avoid it. It is based on images taken from the Udacity dataset
(https://github.com/udacity/self-driving-car) that has 70,000 images together with the information
from a complete sensor suite. Here, only the steering angle is taken. Concerning the probability
prediction of a collision with an obstacle, 32,000 images have been collected and manually labelled
with a probability between 0 and 1. The authors started to record when far away from an obstacle
(p = 0) and stop when very close to it (p = 1). 137 sequences to model a diverse set of obstacles have
been created.

6. Low and Medium Heights

This section gathers works that apply computer vision and, particularly, object detection techniques
to aerial vehicles that are expected to fly in that band of air space between 5 and 120 m. This flight zone
is the most natural for the majority of commercial applications dealing with UAVs and, consequently,
attracts most of the research community focus. Because of the versatility achievable with a drone capable
of detecting objects in such an extended range of heights, we tend to consider this category rich of
challenges to work out. Notably, the main difference with the other two flying heights categories of the
proposed methodology classification is the high variance in perspective and size with which objects can
appear from the cameras mounted on the drones.

In respect of these observations, and considering the impact on computer vision deep learning
brought in the last decade [126], the most recent solutions to overcome the challenges involved in
object detection from an aerial point of view primarily revolves around the use of CNNs. Nonetheless,
in practical applications (e.g., Sections 6.1 and 6.2), the adoption of more classical and engineered
computer vision pipelines is not rare, especially given the lack of adequate computing resources, such
as embedded GPU, or caused by the absence of labeled data for a specific task/environment.

To address the scale variability issue in aerial images, different neural network modules have been
proposed. In particular, Yang et al. [127] observe that the detection targets are in general small compared
to the high resolution of the images and that these are usually sparse, non-uniformly distributed,
and clustered. Therefore, they propose a three-step pipeline composed by specialized sub-networks: the
first, CPNet, similarly to a region proposal network, extracts candidate clusters merging the regions where
target presence is denser; secondly, ScaleNet estimates the scale of the objects’ bounding boxes contained
in each cluster; finally, the input is rescaled and padded accordingly to the previous step for feeding into
a standard detection network, DetectNet, the cluster regions separately. Similar observations regarding
the distribution of objects in aerial images led Li et al. [128] to introduce the concept of density map for
performing the detection on cropped image regions. The results are then fused with the object detection
results on the entire image followed by a non-maximum suppression post-processing step to merge
overlapping boxes. Furthermore, in [129] a Generative Adversarial Network trained for Super-Resolution,
SRGAN [130], is applied to up-sample the extracted crops based on a learned Normalized Average
Object Relative Scale factor (NAORS) in conjunction with the more common bi-linear interpolation.

Notwithstanding the importance of the detector accuracy on objects with variable size and viewpoint,
another compelling aspect for UAVs’ software development is that of real-time performance. To this
extent, SlimYOLOv3 [131] is the result of channel-wise parameter pruning applied to the popular YOLO
object detector imposing an L1 regularization loss on the learned batch normalization statistics. However,
the authors show that even though the reduction in parameter gives an advantage over the vanilla YOLO

https://github.com/udacity/self-driving-car
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implementation, the shallower architecture of YOLOv3-TINY still obtains higher FPS claiming that a
bottleneck in the pruning does not allow further improving the performance. With a different approach
toward network efficiency, the work in [132] introduced Mixed YOLOv3-LITE, a lightweight architecture
for real-time performance. The network is based on YOLO-LITE [133], but residual blocks, as well as an
implementation of parallel high-to-low resolution sub-networks, are introduced, achieving an optimal
balance between performance and speed even in non-GPU-based computers or portable terminal devices.
Testing in both eye level and low-medium heights settings, the architecture achieved 43fps with an input
of 224 × 224 pixels and 13 fps with 832 × 832 pixel images.

Finally, in [134], a multimodal sensor fusion scheme to improve UAV-based image classification
performance has been proposed. In particular, two sensor fusion configurations are compared: the first
one consists of a Panchromatic and color camera, the second one of a four-band multi-spectral camera.
The resulting images are compared to the ones acquired by a high resolution single Bayer-pattern
color camera. Experiments show how both sensor fusion configurations can achieve higher accuracy
compared to the images of the single Bayer-pattern color camera. Also, a 2D LiDAR with a stereo
camera for safe navigation in an autonomous flight of a multi-copter UAV has been implemented [135],
showing that the research is giving a lot of attention to this promising area.

Among the applications fields, search and rescue and surveillance are arguably the ones that
would benefit the most from the support of a drone for detecting people from high above the ground,
specifically in the range of heights that the proposed taxonomy names as low-medium. Other tasks,
for example, precision agriculture or building inspections, require detection of objects too tightly tied
to the use case under examination, but a generalization from the concepts and techniques depicted
herewith is possible. In light of this, the remainder of the section focuses on these prolific research areas.

6.1. Search and Rescue

As aforementioned, an application for which drones generally operate between 10 and 100 m
of flight height is Search and Rescue (SAR). Whereas for an Emergency Medical Technician (EMTs)
reaching the victims in areas where a natural disaster has occurred could be difficult and dangerous, it is
faster and safer when these actors are aided by robots that can overfly an area to check in advance the
location of those in needs of their assistance. Therefore, among the different challenges, the detection of
distressed people and other objects of interest for the support mission is a central problem to solve for
obtaining an autonomous system for supporting life-guarding teams. Nevertheless, the design of such
systems varies accordingly to characteristics of the environment in which it is supposed to operate.

Urban Search and Rescue (USAR)’s general requirements are described by Półka et al. [136], who are
committed to their project, called MOBNET, aimed to support teams with a system capable of localizing
isolated victims of natural disasters. In this regard, they surveyed 300 potential end-users with questions
about the technical capabilities that should be included during the system design. In [137] a system for
the coordination of first responder rescue teams in emergencies, such as firefighters, is imagined with
the assistance of a UAV equipped with sensors and embedded computers. To generate alerts, the aerial
robot should detect dangerous objects to warn preemptively the human operators. The correct selection
of the object detection algorithm in terms of a trade-off between speed and accuracy is vital for such
delicate tasks. Hence, Tijtgat et al. [137] compare two methods, i.e., Aggregated Channel Features
(ACF) [138] and YOLOv2 [139], which are antithetic due to the nature of their approaches. Whereas the
first makes use of engineered features, i.e., histogram of oriented gradients, coupled with an ensemble
of decision trees, i.e., AdaBoost [140], the second applies a CNN for extracting features and regressing
bounding boxes coordinates. Both methods are implemented having in mind maximizing the use of
the GPU, since an NVIDIA Jetson TX2 is thought of as the main computing platform on the drone. As a
result, YOLO reveals to have a better Precision to Frame Rate ratio with respect to ACF by virtue of its
additional compatibility with the GPU parallel nature. In light of this, the widespread introduction of
consumer-grade embedded GPUs, e.g., the popular NVIDIA Jetson TX1 and TX2, made it possible to
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easily transfer the knowledge regarding neural networks from cloud-computing to mobile robotics
and, eventually, to level up the solutions for object detection.

With regards to rescue missions in an aquatic environment, ROLFER [141] is an autonomous aerial
rescue system (AARS) designed to intervene in life-threatening situations, for example, drowning
swimmers. It is composed of an UAV capable of autonomously navigate towards a location inside the
supervised area within which a user sends a distress signal that remotely activates the assistance mission.
Concerning the navigation aspect, a base control station is in charge of the mission planning by sending
control commands to the UAV. Additionally, the station relies on the GNSS positioning system for
the localization of the swimmer and the flying drone itself. Instead, the detection of the swimmers is
performed in real time on board of the UAV using deep learning techniques. However, the training of
a neural network requires images specific to the task, which is not always openly available. For this
reason, Lygouras et al. [142] released the Swimmers dataset that contains 9000 images of annotated
swimmers at different angles and lighting conditions taken from a drone flying over the water. Training
a state-of-the-art deep object detector, i.e., TinyYOLOv3, with a multi-scale strategy, the authors reports
a 67% mAP (mean Average Precision) and 70% recall as a baseline for future benchmarks. Furthermore,
they argue that the autonomy gained using a light network is fundamental in time-critical missions,
which would not allow a delay for transmitting images back and forth to a more powerful server.

Opposite to urban scenarios, the challenge of search and rescue in wild environments (WiSAR)
implies to fly over extended regions of forests or deserts with the consequence of requiring extended
flight-times. Hence, Sun et al. [143] build a system for autonomous long time missions upon a fixed-wing
airframe and an action camera flying above 80 m. Instead, regarding the on-board target detection, this
is the result of a simple pipeline, which transforms the aerial images in the YUV space and then identify
color signatures by thresholding. As a result, the identification range is restricted and requires that the
victims wear particular clothes to be detected. To endure long flight times, in [144] an RPH-2 UAV, a mini
helicopter with an hour of endurance a 100 kg of maximum payload, is adopted to conduct experimental
missions on a riverside. A camera with a large focal length pointing down and a with a front-facing
video camera completes the photography equipment. Similarly, in [145,146] a Yamaha RMAX helicopter
is customized to find survivors in disaster areas. Notably, besides an RGB sensor, the human body
detection algorithm can rely on thermal camera views, which is calibrated with the color images to find
correct pixel correspondences. In this way, during the mission, the thermal image can be processed to
find candidate regions that present a plausible human body temperature and further filtered with a body
shape heuristic. Finally, the Viola and Jones detector [59] is used to identifying the presence of people in
the registered color image. Therefore, the coupling of the thermal imagery with classical object detection
techniques, which uses inefficient region proposal pipelines, allows pruning from the image-region
search space those areas not consistent with a priori knowledge of the human body.

6.2. Crowd Analysis and Monitoring

Visual crowd surveillance and analysis from cameras mounted on the UAV can provide safety to
events gathering many people by recognizing suspicious human activities or criminals, in real-time
and in an efficient manner [147]. In aerial robotics, advanced communication systems, e.g., LTE 4G
and 5G mobile networks, can be exploited to support the long-distance, elevated height, and high
mobility characteristic nature of UAVs [148]. Transmitting data to high-performance computing
infrastructure, or exchanging data with IoT devices on the ground, enables the support of external
sources of information in the case of multi-sensor systems and multi-agents operations [149].

People counting is an attractive task as it is lately emerging as a new frontier in computer vision and
as it is giving an extended operative application to the UAVs. Since people counting applies on a wide
range of scenarios, from low-dense to extremely crowded scenes, two example images that illustrates
the difficulty scale is given in Figure 4. Relatively to this task, the lack of training samples, occlusions,
cluttered scenes, complex backgrounds, non-uniform distributions, and perspective variations embody
the main challenges researchers have to face. In this scenario, state of the art methods can do a regression,
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i.e., directly map the image with the number of people [150,151], a detection, i.e., localizing each person
composing the crowd, or a density estimation, grouping the regression and the localization tasks. The last
two categories are attempts to address this problem as a real object detection instance, and thus some
seminal articles will be provided in this section.

(a) A frame from the UCSD dataset. (b) A frame from the UCF-QNRF dataset.

Figure 4. Two examples of crowd analysis images.

FAST algorithm has been used to detect the crowd features from UAV images in [152]. In particular,
a circle of 16 pixels surrounding the center pixel is converted into a vector and sorted in ascending/
descending order. FAST-9 and FAST-12 are used and compared in representing crowd features, that are
used to count people. A model merging SIFT descriptor and different texture analysis methods like
Fourier analysis, GLCM features, and wavelet transform have been proposed in [153]. CNNs have been
employed as a sparse head detector in dense crowds in [154]. The image is divided into rectangular
patches, and SURF features are fed to an SVM binary classifier to eliminate non-crowded patches.
For each patch, an estimation of the number of individuals is given by counting heads or using on
distance-based weighted averaging if no heads are present. Finally, the individual patch counts are
summed up to obtain the total count. In the work of [155], a scale driven convolutional neural network
(SD-CNN) model is adopted, based on the consideration that heads are the dominant and visible
features regardless of the density of crowds. Because of the scale problem, a scale map representing the
mapping of head sizes is created, and scale aware proposals based on the scale map which are extracted
are fed to the SD-CNN model acting as a head detector. At last, non-maximum suppression returns
the final heads’ positions. An example of density-based estimation is in [156]: an encoder-decoder
architecture composed of inception modules is used to learn the multi-scale feature representations.
A multi-loss setting over different resolutions of density maps is used to adapt to image resolution.
Multi-task learning learns the joint features for the density map estimation task and the density level
classification task. Lastly, the U-net architecture is introduced so that the encoder and decoder features
are fused to generate high-resolution density maps. With DensePeds [157], people in dense crowds are
detected, and positions are tracked over time in both front-facing and elevated views. A motion model
called Front-RVO (FRVO) is introduced to predict pedestrian movements using collision avoidance
constraints; this component is combined with Mask R-CNN to compute sparse feature vectors that
reduce the loss of pedestrian tracks. Counting, density map estimation, and localization from a single
CNN with a decomposable loss function have been proposed in [158].

A real-time autonomous UAV-based surveillance system to identify violent individuals in public
areas from flight heights between 2 and 8 m has been introduced in [159]. A feature pyramid network
(FPN) is used to detect people in the image, whose pose is estimated by a ScatterNet Hybrid Deep
Learning (SHDL) network, introduced by the authors. Real-time performance is achieved by processing
images in the cloud. People analysis has been provided by recognizing actions in [160]. A two-stream
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CNN architecture coupled with a temporal pooling scheme called to produces nonlinear feature
subspace representations have been tested with the MOD20 dataset.

Generally speaking, this problem has received particular attention from the scientific community,
with specific challenges and review papers. Refer to [161,162] for a discussion on the CNN impact on
the crowd behavior analysis.

6.3. Datasets

UAV123 [163] is a dataset devoted specifically to tracking objects releasing a set of 123 HD annotated
video sequences. An assorted range of targets, e.g., from pedestrians to different types of vehicles, are
represented in various environments such as urban landscaped, sea coasts, industrial areas, and agriculture
fields. Additionally, a small set of videos is generated using the UnrealEngine4 simulation engine that
features high-quality renderings of real-world scenarios (https://www.unrealengine.com/en-US/ind
ustry/training-simulation). As a motivation for benchmarking on virtual scenarios, the authors argue
that an accurate flight physics simulation carries the advantage of integrating the tracking into the
navigation controller loop.

VisDrone Detection Challenge ’18 [164] and ’19 [165] provide a collection of 8599 images captured
from a drone in different urban scenarios and varying the height of flights. In particular, the dataset has
been collected using different drones flying to fly over numerous cities experiencing variable weather
conditions. Each image contains annotations of various objects belonging to one of ten categories
reaching a total of 540 k bounding boxes. The authors provide specific tracks for single and multiple
object tracking challenges and a few videos of low height flights following targets [166]. Besides the
bounding box coordinates and object class labels, the authors provide the occlusion ratio and truncation
ratio as additional annotations. More recently, the benchmark has been extended with a crowd counting
challenge (http://aiskyeye.com/challenge/crowd-counting/) proposing what is probably the first
dataset in his kind to collect images from a UAV.

UAVDT [167] is a benchmark to test the tasks of object detection and tracking in the environmental
conditions typical of UAVs, that is, crowded objects due to wider viewing angles, small sizes, and camera
motion. Additionally, the images were captured under different weather conditions (daylight, night,
and fog), at different heights (from 10 to more than 70 m), and consisting of three camera orientations
allowing multiple views of the objects (front, side, and bird’s-eye views).

The Swimmers dataset was published in [142] specifically for maritime search and rescue missions.
Due to the lack of visual characteristics represented by people drowning or floating in the water
in the most popular datasets, it provides a valid alternative for people detection in this particular
environment. The dataset is limited to about 9000 images captures from a drone with a GoPro camera
in full HD resolution and mixed with some others collected from the Internet.

The Stanford Campus [168] dataset’s purpose is to model socially influenced trajectories of people
walking inside the Stanford university campus. To this end, additional to people and some vehicle
bounding boxes, annotations representing target-target and target-space interactions are provided.
The observation of the authors is that humans follow various social principles when interacting with
other people and or particular environment characteristics, e.g., following road paths, leading to the
definition of social sensitivity, the level of target interaction along a trajectory.

With an emphasis on traffic surveillance, the AU-AIR [169] dataset propose 32,823 labeled video
frames captures during low-level flight over road junctions. In particular, bounding boxes of eight
objects categories, e.g., person, car, bus, van, truck, bike, motorbike, and trailer, have been manually
annotated. Notably, this is the first dataset for UAV object detection to include additional sensor data
logs, such as altitude, IMU, and GPS making multi-modal learning or even to benchmarking other
tasks related to surveillance, such as localization, an additional possibility.

Concerning people counting, the majority of the datasets are composed of a few hours of people
monitoring in a static scenario. For example, UCSD [170] dataset contains one hour of low-density
crowd collected from a stationary digital camcorder overlooking a pedestrian walkway at UCSD.

https://www.unrealengine.com/en-US/industry/training-simulation
https://www.unrealengine.com/en-US/industry/training-simulation
http://aiskyeye.com/challenge/crowd-counting/
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The video is resized to 238 × 158 pixel resolution and sampled to 10 FPS. Also, the traveling direction
and visible center of each pedestrian are annotated every five frames, while pedestrian locations in
the remaining frames are estimated with linear interpolation. An attempt to provide a large scale
dataset showing different conditions and very crowded scenarios is the WorldExpo’10 [151], with 1132
annotated video sequences captured by 108 surveillance cameras during the Shanghai 2010 WorldExpo.
A total of 199,923 pedestrians have been labeled. Also, the UCF-QNRF dataset [158] overcomes the
shortcomings of previous datasets, introducing 1.25 million humans, manually marked with dot
annotations in 1535 images.

Recently, MOD20 propose a hybrid dataset which integrates YouTube videos and UAV/aerial
images [160]. The dataset provides 2,324 video clips for a total of 503,086 frames at a resolution of
720 × 720. Such a task is incredibly promising as a testbed for human action recognition in the wild
from both ground and aerial view.

A particular mention is worth the family of dataset related to the problem of person detection,
tracking, and re-identification from UAV images. The pioneer work is in [171], where the PRID-2011
dataset is introduced. The height from which images are taken varies between 20 and 60 m and with 1581
identities. MRP Drone Dataset [172] introduces a dataset of images specifically designed for the task of
people re-identification from UAV. It consists of about 16,000 frames collected in realistic and challenging
indoor and outdoor scenarios. Recently, in [173] the P-DESTRE dataset have been introduced. It provides
the identity annotation of 256 individuals, flying from heights in the range of about 5–7 m, and across
multiple days and different appearances.

7. Aerial Imaging

A variety of land use tasks, such as urban planning, surveillance, crop monitoring, flood and fire
prevention, change detection, traffic monitoring etc., benefits on processing of aerial image processing.
The necessity of automatic extraction of valuable information from aerial images encouraged the
development and further improvement of various processing methods with a specific purpose. Detecting
objects in aerial images is challenged by variance of object colors, aspect ratios, cluttered backgrounds,
and in particular, undetermined orientations. In particular objects in multiple orientations have large
appearance variation, which challenges existing feature representation and object detection approaches.
In addition, the aspect ratios of objects vary with their orientations, which introduces difficulty to
object localization. One of the most common tasks in this area concerns detecting the cars in the images.
This is particularly challenging due to the relatively small size of the target objects and the complex
background in man-made areas. Besides, it requires near-real-time computation in order to provide
important information for traffic management and urban planning. In seminal research, image content
was described using local and global features. Texture was recognized to have a good discriminative
characteristic; thus, it was often used in aerial image classification. Feature extraction methods were
efficiently implemented to color, multispectral, and hyperspectral images, and further improvement in
classification accuracy was made by post-processing feature data in order to more efficiently model
the semantic image content. Despite the fact that feature-based methods had satisfactory performance,
they were not exploiting higher order local features and complex spatial dependence between them.
Feature describing multi-oriented objects can help traditional approaches, such as in [174]. Some
outstanding results in detecting multi-oriented objects results are reported in Figure 5. Implementation
of CNNs enabled overcoming of previous drawbacks, with the cost of high time and computational
consumption and necessity for sufficient amount of training data. In general, both feature-based
and network-based approaches can achieve state-of-the-art performance in the task of aerial image
classification under certain conditions. It is worth noting that although in recent years several deep
learning based frameworks were proposed for object detection [175], they cannot be exploited as
they are conceived and then it is useful also to analyze the ways in which CNNs are adapted for this
specific research field. To achieve a useful level of accuracy, additional training data are required in
the target domain, but adding this step is quite costly. Domain adaptation is a solution used to address
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this problem but it is still in its infancy in this research field [48]. In addition, self-supervised learning,
combined with a more effective representation learning method suitable to remote-sensing problems
can be a possible way to explore in order to increase accuracy. Another pathway being explored is
the advanced data augmentation, such as the one proposed in [176]. The proposed framework aims
at generating annotated objects from remote sensing: it has one generator and two discriminators,
which try to synthesize realistic vehicles and learn the background context simultaneously. Finally,
a novel detector was proposed in [177] to tackle the challenge of small-scale object detection in aerial
images. Based on our observation, it is designed to include an up-scale feature aggregation strategy
and a much more efficient cascade up-sampling module for high-resolution features reconstruction.

Figure 5. Some outstanding object detection results from the work in [178]. Red boxes denote correct
localization of car, yellow boxes denote correct localization of truck, green boxes and blue boxes denote
missing detection and incorrect detection, respectively. (a–d) are results for the DLR 3K test aerial image
blocks; (e–h) are results on unmanned aerial vehicle (UAV) images; (i) is results for pansharpened color
infrared (CIR) image; (j) is results for the original large-scale DLR 3K test image; (k) is results for a
large satellite image of Tokyo.

7.1. Vehicle Detection

Vehicle detection in aerial images is a crucial image processing step for many applications like
screening of large areas. Most of the existing frameworks of vehicle detection in aerial surveillance
are either region-based or sliding window-based. One of the rare pixelwise classification methods for
vehicle detection was introduced in [179].



J. Imaging 2020, 6, 78 21 of 38

Traditional methods are based on handcrafted features, which cannot reach an optimal balance
between the discriminability and the robustness without considering the details of real data. However,
some works still deserve to be mentioned for their particular application objective and for their innovative
way of dealing with it. As an example the goal of the framework in [180] was to automatically detect
vehicles and heavy digging equipment which represent a potentially catastrophic threat to the vast
network of oil and gas pipelines in rural areas. The system described is an attempt to allow unmanned
airborne vehicles flying at more elevated heights to automatically detect ground vehicles in rural areas.
The first stage of the algorithm inspects every image location at several scales and efficiently eliminates
the large majority of the background areas. The algorithm begins by quickly detecting features using
the Harris corner detector. Next, areas containing a high density of features are detected. The third step
clusters heavily overlapping responses. In the final step, color-based properties are used to further refine
the results. Another relevant work is the one in [181] where a simple, fast, and high-quality objectness
measure by using 8 × 8 binarized normed gradients features was introduced to handle object scale and
aspect ratio by a few atomic (i.e., ADD, BITWISE, etc.) operations. This makes it suitable for many
real-time vision applications but other additional cues are required to further reduce the number of object
proposals at the early stage.

Recently, vehicle detection methods have been drastically improving due to the use of deep learning.
A current prevalent method uses a region-based detector, which searches possible object locations based
on image features and classifies them by using a CNN. Several works just apply backbone nets to the
extracted regions without adaptation of the models. However, here it is more useful to focus instead on
works that introduce models specifically designed to detect vehicles in aerial images.

The extraction of multiscale features at its highest convolutional layer is the key idea in [182],
that is one of the milestone work in this research area. Unfortunately, most of the detectors have been
developed for datasets that considerably differ from aerial images and this limit their performance in the
considered application context. For this reason, in [183], a systematic investigation about the potential
of existing detectors has been performed and Fast R-CNN and Faster R-CNN specifically built for aerial
images are introduced, achieving top performing results on common detection benchmark datasets.
The experimental results on the DLR 3K - Munich Vehicle Aerial Image Dataset (average precision
91.8%) and VEDAI—Vehicle Detection in Aerial Imagery dataset (89.5% on VEDAI 512 and 95.2% on
VEDAI 1024) demonstrated indeed the applicability of Fast R-CNN and Faster R-CNN for vehicle
detection in aerial images. Intersection over Union (IoU) was used as metric. Although the faster
region-based convolutional neural networks (R-CNNs) model has achieved great success in the field of
computer vision, several challenges in aerial images limit its applications in vehicle detection. However,
a framework based on a single model (even on R-CNN models) do not work well on small targets, do
not consider annotation of multiple attributes for targets and available manual annotation of vehicles
for training faster R-CNN are not sufficient in number. To overcome these limitations, a more complex
framework has been setup in [184]. The framework combines two CNNs: the first one for vehicle-like
region proposal (namely Accurate Vehicle Proposal Network, AVPN) based on hyper feature map
which combines hierarchical feature maps that are more accurate for small object detection, and a
attributes learning network for attribute annotation. Comprehensive evaluations on the public Munich
vehicle dataset and the collected vehicle dataset demonstrate the accuracy and effectiveness of the
proposed method (recall 77.02% Precision 87.81% F1-score 0.82 computational time per image 3.65 s).
Of course the method is slower than those based on a single model and still produces some false,
as well as missing detection. Similarly in [178] an improved detection method based on Faster R-CNN
is proposed. At first, in order to improve the recall, a Hyper Region Proposal Network (HRCNN) to
extract vehicle-like targets with a combination of hierarchical feature maps is used. Then, the classifier
after the region proposal network is replaced by a cascade of boosted classifiers to verify the candidate
regions, aiming at reducing false detection by negative example mining. Two data sets were used in
these experiments. Experiments were performed on DLR 3K—Munich Vehicle Aerial Image Dataset
(Recall 78.3%, Precision 89.2% F1-score 0.83 and time per image 3.93 s) and on a collected vehicle data



J. Imaging 2020, 6, 78 22 of 38

set contains a total of 17 UAV images and 85 very-high-spatial-resolution pansharpened color infrared
(CIR) images. Unfortunately building the hyper feature map is not trivial (it should be enhanced
with additional significant features) and a possible way to overcome limitations could be of using
deconvolution layers to improve the detection performance.

Work in [185] presents a method that can detect the vehicles on a 21-MPixel original frame
image without accurate scale information within seconds on a laptop single threaded. It provides also
orientation and type (car/truck) information. The approach consists of two step: a fast binary AdaBoost
Classifier in a soft-cascade structure and a multiclass classifier on the output of the binary detector,
which gives the orientation and type of the vehicles. The method was evaluated on DLR 3K—Munich
Vehicle Aerial Image Dataset (Recall 69.3%, Precision 86,8%) and a data set captured from an unmanned
aerial vehicle (Recall 79%, Precision 94%). It is a very fast approach but performance are not satisfactory
and then it should be improved by using a deep neural network after the binary detector.

The authors in [186] explored orientation-robust features from combined layers of deep CNN.
They use CNN trained with ImageNet to extract multiple layers of features. Three deep layers are
considered for feature extraction robust to the rotation. At first a graph-cut-based image segmentation
approach is used to coarsely localize object candidates, which are then classified with an SVM classifier
trained on the orientation invariant features. The proposed approach has been tested on a vehicle
dataset and a plane dataset collected from Google Earth aerial images. The vehicle dataset contains 310
images with 2819 vehicle samples. The plane dataset contains 600 images, with 3210 plane samples.
Each dataset is split into two subsets: (250 images, 60 images), (500 images, 100 images). One subset
is for training, and the other for testing. In vehicle detection, the method achieved a 0.945 precision
rate with a 0.8 recall rate. In plane detection, it achieved a 0.972 precision rate with a 0.9 recall rate.
Anyway the ability to detect more kinds of aerial objects hasn’t be proved and then it needs further
investigation. Summing up, vehicle detection from aerial images is still an ongoing research field and
many efforts are still required to get high precision approaches, working in real time on very high
resolution images.

7.2. Maps Labelling–Semantic Land Classification

The goal is to produce a complete semantic segmentation of an aerial image into classes, such as
building, road, tree, grass, and water. It can be an efficient tool for accelerating many applications, like urban
development analysis and map updating, also providing great support in crisis and disaster management,
and in aiding municipalities in long-term residential area planning. A deeper analysis could also
focus on the automatic land-use mapping for change detection, statistics, resources optimization,
or economic forecasting scopes. As manual annotation in remotely sensed images is time consuming
and unfeasible, researchers focused on automated processing techniques, which can handle various
image characteristics and huge amount of data. The availability of accurately labeled data for training
tends to be the limiting factor. Hand-labeled data tends to be reasonably accurate, but the cost of
hand-labeling and the lack of publicly available hand-labeled datasets strongly restricts the size of
the training and test sets for aerial image labeling tasks. Various studies have extracted map parts
from high-resolution remotely sensed images using two main techniques, namely data-driven and
heuristic methods. Data-driven methods generally use the information of large data to conduct part
extraction from satellite images. By contrast, heuristic methods involve texture progressive analysis
and mathematical morphology, and often use certain information about targets (road, rivers, wood,
crops). Thus, these approaches are useless in handling different types of targets compared with
data-driven techniques [187].

Roads are among the most investigated targets to be detected from aerial images. One of the
milestone in this specific research area is the work in [188]. The authors, by using synthetic road/non-road
labels and a consumer GPU board, were able to efficiently train larger neural networks on much more
data than was feasible before. The resulting road detection system works reliably on two large datasets
covering a large metropolitan area with both urban and suburban regions. On the one side, the approach
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looks at a much larger context than was used in previous attempts deriving this way context knowledge
that increases discrimination capabilities. On the other side, it relies on the selection of thresholds
to make concrete predictions. From that moment the research speeded-up thanks to different deep
learning methods.

Among several works in the literature, it is worth mentioning that the one in [189] extended the
U-Net [190] model, formerly introduced for fast and precise segmentation of images, by using the
deep residual unit as the basis for road detection. The skip connections within the residual units and
between the encoding and decoding paths of the network facilitate information propagation both in
forward and backward computations allowing the better representation also of context information.
This pushed many other pieces of research about the exploitation of residual architectures. For example
in [191], a model, namely Refined Deep Residual Convolutional Neural Network (RDRCNN), based
on ResNet and U-Net architectures with dilated convolution operators, is used. The method gathered
good performance in the task of road extraction from complex backgrounds (city and countryside),
but it requires additional processing to more accurately outline boundaries, especially in urban areas.

Another relevant topic is the automatic urban area and building detection. A wide range of publications
is available in remote sensing for this topic, often based on shape estimation or contour outlining. There are
two different strategies: detecting urban area as a whole or their components (streets, buildings, etc).
For detecting urban areas as a traditional and common approach is to build morphological profile
to account structural image information and then to apply feature extraction and neural network for
classifying the features [192].

Since urban areas show versatile characteristics in remote sensing optical images, multiple
features can be utilized to characterize urban areas and this can be achieved by exploiting a multiple
conditional random-field ensemble model that incorporate multiple features and learn their contextual
information [193].

The method proposed in [194] extracts feature points in the first step by a modified version of
Harris corner detector [195], it is automatic and it is able to recognize not just corners but edges as well.
After having a local feature point set, a voting matrix strategy is exploited to to get a probability map
of the urban area and, finally, an adaptive decision making is performed to find urban areas. Therefore,
although it gives an efficient tool for characterizing contour-rich regions, such as urban areas, it does
not extract building contours.

A framework performing building detection based on region orientation is the contribution of
the work in [196]. It relies on the active contour calculation, which is a computationally intensive part
needing implementation tricks and specialized hardware to work in real time.

In [197] a framework that takes raw pixel values in aerial imagery as input and outputs predicted
three-channel label images (building–road–background) has been proposed. Using CNNs, both feature
extractors and classifiers are automatically constructed. The authors propose a new technique to train
a single CNN efficiently for extracting multiple kinds of objects simultaneously.

Finally, in [198,199] a thermal camera is used to detect humans and to calculate Earth’s surface
temperature with a high spatiotemporal resolution. These are the only two works dealing with thermal
data from aerial images, so this is an open research area that could bring to very precise detection of
living beings and to advanced analysis of the ground.

7.3. Datasets

Object detection is an important and challenging problem in computer vision. Although the past
decade has witnessed major advances in object detection in natural scenes, such successes have been
slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the
object instances on the earth’s surface, but also due to the scarcity of well-annotated datasets of objects
in aerial scenes.

To advance object detection research from aerial images different datasets have been recently
collected and the most used ones are listed in the followings.
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DOTA—large-scale Dataset for Object deTection in Aerial images [200], has been introduced in 2018.
It collects 2806 aerial images from different sensors and platforms. Each image is of the size about
4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes.
These DOTA images are then annotated by experts in aerial image interpretation using 15 common
object categories (plane, ship, storage tank, baseball diamond, tennis court, swimming pool, ground
track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field and
basketball court). The fully annotated DOTA images contains 188,282 instances, each of which is
labeled by an arbitrary (8 d.o.f.) quadrilatera.

DLR 3K—Munich Vehicle Aerial Image Dataset (https://pba-freesoftware.eoc.dlr.de/MunichDatasetVeh
icleDetection-2015-old.zip) [185] Images were captured by the DLR 3K camera system over the area of
Munich, Germany. The 3K camera consists of three Canon 1Ds Mark II cameras with a 36 × 24 mm
CMOS chip at 16.7 Megapixels and a 50 mm focal length. Spatial resolution was 5616× 3744 pixels and
images were stored in JPEG format. The maximum frame rate is 3 fps. The cameras are arranged to
provide one nadir view and two oblique views. The flight height was 1000 m above ground, the ground
sampling distance is approximately 15 cm. Munich Vehicle dataset is annotated with rotated bounding
boxes for seven types of vehicles: bus, car, car with trailer, truck, truck with trailer, van with trailer,
long truck.

VEDAI—Vehicle Detection in Aerial Imagery [201]: has been built by retaining the images acquired
by the satellite Utah AGRC and in particular the photography set set HRO 2012 6 in., The images
were taken during spring 2012. A total of 1210 images (RGB or infrared) have been manually selected
and made available in two resolutions: 1024 × 1024 pixels (namely VEDAI 1024) and 512 × 512 pixels
(namely VEDAI 512). All images have been taken from the same distance to the ground. The dataset
has many different type of backgrounds (e.g., fields, grass, mountains, urban area, etc.). The proposed
dataset contains nine different classes of vehicles, namely the “plane”, “boat”, “camping car”, “car”,
“pick-up”, “tractor”, “truck”, “van”, and the “other” category. There is an average of 5.5 vehicles per
image, and they occupy about 0.7% of the total pixels of the images.

DIOR—DetectIon in Optical Remote sensing images [175] consists of 23,463 images covered by 20
object categories and each category contains about 1200 images. The objects have a large range of size
variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size
variability across objects. The dataset holds large variations because the images are obtained with
different imaging conditions, weathers, seasons, and image quality.

COWC—Cars Overhead with Context dataset [202] is a large, high quality set of annotated cars from
overhead imagery. The data consists of 33,000 unique cars from six different image locales.

URBAN—Massachusetts roads and buildings dataset [188] consists of urban aerial imagery at a resolution
of 1.2 m per pixel. The dataset covers a large metropolitan area with both urban and suburban regions.
It consists of a training set that covers roughly 500 km2, a separate test set of 50 km2, and a separate small
validation set that was used for model selection. There is also another testing subset covering 28 km2 of
aerial imagery of a different city. The buildings dataset consists of 151 aerial images of the Boston area
whereas the roads dataset consists of 1171 aerial images of the state of Massachusetts.

8. Discussion

Although each category has shown proper peculiarities, it is useful to make some considerations
that are shared between the different taxonomies evaluated in this manuscript.

Differently from classical computer vision and machine learning methodologies that for reaching
satisfying results often required complex handcrafted engineered solutions, the advent of deep learning
has shown that impressive outcomes for real-world applications could be obtained with even simple
end-to-end direct pipelines. Such progress has been, most probably, the consequence of two principal
factors: on the one hand, the publications of datasets for object detection relevant to UAV research,
which made available common benchmark platforms and possible to train deep networks with
supervision using huge collections of labeled data; on the other hand, the evolution of general-purpose

https://pba-freesoftware.eoc.dlr.de/MunichDatasetVehicleDetection-2015-old.zip
https://pba-freesoftware.eoc.dlr.de/MunichDatasetVehicleDetection-2015-old.zip
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2D object detection network architectures that have incorporated ideas from classic computer vision
interpreting such instruments in light of deep learning computation.

Notwithstanding these generic considerations, it is important also to derive specific consequences
that are related to the specifically defined interval of height. About eye level view, it has been already
observed how flying at men heights means to be in the same conditions, in terms of viewpoint
and appearance, of many classic computer vision problems. This has two important implications.
The first one is that the results of many well-investigated solutions not specifically designed for the
case of UAV, e.g., pedestrian detection [203], could be applied. Nevertheless, this domain presents
specific challenges: the first problem regards how efficiently shift the computation on-board, i.e., with
limited computational capabilities, and this leads to the preference for mobile architecture or adapting
pre-existing backbones. An alternative is to distribute computation, and in this case, the bottleneck
becomes the search for efficient data transmission schemes. Other challenges are more related to
the image appearance, i.e., how to continue detecting the object in the case of fast-moving cameras,
different object scales, and/or the detection in multiple views. The second implication is that, similarly,
datasets designed for ground computer vision and robotics are usually re-used in this domain. If this
has allowed to rapidly shift deep learning-based object detection on-board of the UAVs, from the other
side, it could represent a bottleneck for the portability of such systems in realistic scenarios.

As a very qualitative tendency, in the case of UAVs with very limited computational resources
and/or in the cases of vision-based control, the methods still can rely on classic object descriptor.
Deep learning is privileged in more expensive solutions, or in the cases where the images are processed
offline and/or off-board. The computational burden of these models is still high when applied
to the UAV’s obstacle avoidance. Also, it is proved that part of the computation is not required
since the blocks with a smaller number of layers could yield reliable results for the UAV’s obstacle
avoidance [101].

Finally, flying at such heights necessarily means to interact with people. In this regard, HDI represents
a very mature sector, with many works focusing on different aspects. In this multidisciplinary field, active
research aims at integrating functionalities from both the engineering and the social interaction parts,
as well as the creation of companion UAVs [204].

In the case of low and medium flying heights, the direction that the research community has
more recently undertaken preeminently regards the use of deep learning to overcome the challenges
posed by object detection from the point of view of a UAV mounted camera. In this regard, numerous
datasets and international challenges are arising. Thus, it is possible to foresee that low and medium
heights will have the most benefit from deep learning advancements, with a considerable boost that
can be expected in the next few years. Anyway, at the present, the adoption of more classical and
engineered computer vision pipelines is still not rare, especially considering the lack of adequate
computing resources, such as embedded GPU, or caused by the absence of labeled data for a specific
task/environment.

Aerial image analysis has been boosted too by deep learning. Anyway, new specific challenges
need to be addressed: a trade-off between network complexity and processing time has to be defined
considering the aerial images have high spatial resolution and, at the same time, they can frame a huge
informative content to be examined. This is mainly true in the case of vehicle detection tasks, where
quick outcomes can also be required to reach the application goal. Concerning maps labeling, the main
issues are related to the ability of the methods to extract contextual information that is the key to rightly
classify the objects (bridges, buildings, roads) that have a very similar appearance. Finally, for semantic
land classification, the exploitation of new sensors (e.g., thermal or multi-spectral cameras) has paved
the pathway towards new research lines.

A summary of the principal works cited in this document is reported in Table 1. For each entry,
we sum up the taxonomy, the network used to perform object detection, and the obtained performance
on the specific dataset. Performance is reported in terms of mAP if not differently specified.
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The aforementioned observations lead us to conclude that the fundamental means to evaluate and
improve the performance of object detectors is related to the availability of public datasets containing
labeled images. Data is one of the fundamental components for performing deep learning architectures,
and the UAVs do not represent an exception. A summary of the dataset introduced in this review is
provided in Table 2. It is possible to observe that for both the different analyzed ranges and application
domains, there exist specific datasets that can let data comparison schemes. Anyway, in particular, at eye
level heights, it is possible to observe that there are cases where the UAV motion is only simulated since
surveillance cameras are often used. Moreover, many works validate their hypotheses on classic object
recognition datasets not specifically designed from the UAV; if this is partially motivated by the viewpoint
sharing at such heights, it is also true that this can affect their effective use in realistic scenarios, since
motion blur, changes in scale and viewpoints that are typical from the UAV framing, are only partially
considered with this approach. On the contrary, the field of aerial imaging presents more well-established
datasets that are often used in terms of comparison of each proposed processing pipeline.

Table 1. Summary of selected object detection methodologies at different flight heights. RP stands for
Relaxed Precision as introduced in [188], cmpp stands for cm per pixel and mpp stands for meters per pixel.

Taxonomy Method Object Detection Network Metric (mAP) Objects Size Dataset

Eye Level [89] (2017) handcrafted features 97.4% 8500–200,000 pixels own data
[92] (2017) handcrafted features 76.97% Sensitivity - CICTE-PeopleDetection

Eye Level/
Low-Medium

[124] (2019) Tiny Face 96.5% Precision 5–25 pixels inter eye DroneSURF active

[142] (2019) Tiny YOLOV3 67% - Swimmers[142] (2019) SSD MobileNetV2 21%

Low-Medium

[165] (2019) CornerNet 17.41% 3–355,432
pixels Visdrone test[165] (2019) Light-Head R-CNN 16.53%

[165] (2019) FPN 16.51%

[167] (2018) R-FCN 34.35% 29–131,803
pixels UAVDT[167] (2018) SSD 33.62%

[167] (2018) Faster R-CNN 22.32%

[169] (2020) Tiny YOLOV3 30.22% 9–2,046,720
pixels AU-AIR[169] (2020) SSDLite MobileNetV2 19.50%

Aerial

[183] (2017) Fast R-CNN 95.2% 12.5 cmpp VEDAI 1024

[183] (2017) Fast R-CNN 91.4%
15 cmpp DLR 3K[184] (2017) AVPN + R-CNN 87.81%

[178] (2017) Hyper R-CNN 89.2%

[186] (2015) AlexNet + SVM 94.5% 15 cmpp Google Earth aerial images

[189] (2018) deep residual U-Net 91.87% RP (roads)
1.2 mpp URBAN[191] (2019) RDRCNN + post proc. 99.9% (roads)

[197] (2016) CNN 92.30% (buildings)

The analysis as a whole of the considered topic made clear that, in the following years, it would be
desirable to have new challenging datasets which take into account multiple heights at the same time,
as well as object observed from different scales and viewpoints. This will contribute to consolidating
the research findings and allowing trusting computational outcomes even in critical application fields.

Finally, in this work, some reference to works adding 3D information and integrating different
sensors has been provided. An extensive analysis of UAV object detection basing on these sources
of data is out of the scope of this work and it would require a separate study. Anyway, through the
proposed review, it was observed how sensors such as thermal imaging and 3D cameras are mature
enough to improve the detection performance. Instead, event-based cameras are still at an early stage,
providing object detection based on optical flow and motion compensation, but representing at the
same time a very promising research direction. The other promising domain is sensor fusion, where
both exteroceptive and proprioceptive sensors can enhance performance. Learning from multimodal
sensors is a unique possibility to deeply capture correspondences between modalities and gaining an
in-depth understanding of the scene. In the next few years, it is possible to expect the arising of deep
neural networks that take multimodal input data and specifically designed for the UAV.
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Table 2. A summary of relevant datasets for 2D object detection from UAV and aerial images. n.d.
stands for no data.

Dataset Taxonomy Task Heights Range # Images Resolution Notes

CICTE-
PeopleDetection [92]

Eye Level Pedestrian Detection 2.3–5 m 43K+ 50 × 100 emulates UAV with videos from 100
surveillance cameras

DroneSURF [124] Eye Level/
Low-Medium

Face Detection and
Recognition

n.d. 411K+ 1280 × 720 DJI Phantom 4; 58 subjects with more
than 786K face annotations

Swimmers [142] Eye Level/
Low-Medium

People (Swimmers)
Detection

n.d. 9000 1920 × 1080 mix of labeled internet pictures with
images from a UAV flying over the sea
shore

UAV123 [163] Low-Medium Object Detection and
Tracking

5–25 m 110K+ 1280 × 720 additional scenes taken from a
simulation from Unreal4 Game Engine

Visdrone [164] Low-Medium Object Detection various heights 8599 1920 × 1080 wide-range of flight height and
viewpoint; huge number of labeled
bounding boxes (540K)

UAVDT [167] Low-Medium Object Detection 10–70+ m 80K 1080 × 540 labeled weather conditions; wide-range
of flight height; 3 camera views

P-DESTRE [173] Low-Medium Pedestrian Detection,
Tracking and
Re-Identification

5.5–6.7 m n.d. 3840 × 2160 DJI Phantom 4; 269 identities with 16
biometrics labels

Stanford
Campus [168]

Low-Medium Object Tracking and
Trajectory Forecasting

~80 m 920K+ 1400 × 1904 3DR SOLO; annotated interactions
between targets and space

AU-AIR [169] Low-Medium Object Detection 10–30 m 32K+ 1920 × 1080 Parrot Bepop2; multi-modal, contains
GPS, Altitude, Velocity, IMU, and Time

DOTA [200] Aerial Object Detection n.d. 2806 800 ×
800–4000 ×
4000

collected from Google Earth and other
aerial photography platforms; 15 object
categories, from vehicles to field types
and buildings

DLR 3K [185] Aerial Vehicle Detection 1000+ m 20 5616 × 3744 DLR 3K camera system: three Canon
1Ds Mark II on-board of Dornier DO
228 or a Cessna 208B Grand Caravan;
only 3418 cars and 54 trucks labels

VEDAI [201] Aerial Vehicle Detection n.d. 1210 512 × 512,
1024 × 1024

collected from Utah AGRC (http://gis.
utah.gov/) aerial photography set; RGB
plus near infrared channel; 9 vehicle
classes

DIOR [175] Aerial Object Detection n.d. 23K+ 800 × 800 collected from Google Earth; labeled
with 20 object categories

COWC [202] Aerial Car Detection n.d. 388K+ 256 × 256 six aerial photography sets from
different regions in the world (Germany,
New Zealand, USA, Canada); more
than 30k unique cars annotated

URBAN [188] Aerial Buildings and Roads
Detection

n.d. 1322 1500 × 1500 mostly urban and suburban areas
and buildings of all sizes, including
individual houses and garages

9. Conclusions

UAVs achieved an unprecedented level of growth in many civil and military application domains,
and computer vision has undoubtedly a key role in providing the necessary information concerning
what is sensed. In this review, recent advancements in 2D object detection for the case of UAVs were
reported on, focusing on the differences, strategies, and trade-offs between the generic problem of object
detection, and the adaptation of such solutions for operations of the UAV. In particular, a new taxonomy
that considers different heights intervals and driven by the methodological approaches introduced by
the works in the state of the art instead of hardware, physical, and/or technological constraints were
proposed. In the manuscript, it emerged that the advent of deep learning has shown that impressive
outcomes for real-world applications which could be obtained with even simple end-to-end direct
pipelines. This drove us to conclude that a fundamental means to evaluate and improve the performance
of object detectors is the availability of public datasets containing labeled images. An adequate level of
labeled data is already available only for aerial images whereas, for contexts using images taken at lower
heights, additional efforts for data collection are still required. A proposed pathway to improve this
research area concerns non-heterogeneous data coming from different sensing devices since learning from

http://gis.utah.gov/
http://gis.utah.gov/
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multimodal sensors gives a great opportunity to deeply capture correspondences between modalities
and gaining an in-depth understanding of the scene.
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The following abbreviations and acronyms are used in this manuscript:

CNN Convolutional Neural Network
FAST Features from Accelerated Segment Test
FPN Feature Pyramid Network
GCS Ground Control Station
GPS Global Positioning System
GPU Graphics Processing Unit
IMU Inertial Measurement Unit
INS Inertial Navigation System
LiDAR Light Detection and Ranging
LSH Locality-Sensitive Hashing
mAP mean Average Precision
ReLU Rectified Linear Unit
RP Relaxed Precision
RPA Remotely Piloted Aircraft
RPAS Remotely Piloted Aerial System
UAV Unmanned Aerial Vehicle
UAS Unmanned Aerial System
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