Wireless Edge Caching

Modeling, Analysis, and Optimization

Thang X. Vu, Ejder Baştuğ, Symeon Chatzinotas, Tony Q.S. Quek

Contents

	List	of illustrations of tables of contributors ace	page 12 18 19 1
1		oduction rences	2 6
Part I	Optin	nal Cache Placement and Delivery	7
2	Code	ed Caching for Heterogeneous Wireless Networks	9
	2.1	Introduction	9
	2.2	Overview of Coded Caching	11
		2.2.1 Setup and Notation	11
		2.2.2 A Small Illustrative Example	12
		2.2.3 Achievable rate	13
		2.2.4 Approximate Optimality	15
	2.3	Non-Uniform Content Popularity	16
		2.3.1 The Single-User Setup	19
		2.3.2 Multi-User Setup	21
	2.4	Multiple Cache Access	24
		2.4.1 Overview of Adaptive User-to-Cache Matching	24
		2.4.2 System Model	25
		2.4.3 Balancing Two Extremes	26
		2.4.4 The Pure Coded Delivery (PCD) scheme	27
		2.4.5 The Pure Adaptive Matching (PAM) scheme	28
		2.4.6 The Hybrid Coding and Matching (HCM) scheme	29
		2.4.7 Simultaneous Cache Multi-Access	31
	2.5	Wireless Interference Networks: a Separation Architecture	33
		2.5.1 Caching in Interference Networks	33
		2.5.2 The Separation Architecture	34
		2.5.3 Other Network Topologies	38
	2.6	Acknowledgement	38
	Refe	rences	39

3		eless Device-to-Device Caching Networks	42
	3.1	Overview	4:
	3.2	General Network Model	4:
	3.3	Uncoded D2D Caching Networks based on Protocol Channel Model 3.3.1 Throughput-outage Tradeoff in Single-hop D2D Caching Networks	45 45
		3.3.2 Uncoded Multihop D2D caching	48
	3.4	Coded D2D Caching under Protocol Model	54
	9.4	3.4.1 Discussions	5.5 5.5
	3.5	Physical Layer Caching in D2D Networks	57
	0.0	3.5.1 D2D Caching with Optimal Rule of Treating Interference by Noise	5'
		3.5.2 D2D Caching Networks with Poisson Point Processes	59
		3.5.3 D2D Caching Networks with Cooperations	61
	3.6	Mobile D2D caching	6
	0.0	3.6.1 Mobility-Aware D2D Caching based on Contact and	
		Inter-contact Time	6
		3.6.2 Mobility-Aware Centralized D2D Caching based on	•
		Random Walks	6
	Refe	erences	69
4	Coo	perative Caching in Cloud-assisted 5G Wireless Networks	7:
-	4.1	Cloud-assisted Wireless Networks	73
		4.1.1 Cloud Radio Access Network (C-RAN)	74
		4.1.2 Mobile-Edge Computing (MEC)	74
		4.1.3 Co-deployment of C-RAN and MEC	75
	4.2	State of the Art in Cooperative Caching	76
	4.3	Cooperative Hierarchical Caching in C-RANs	76
		4.3.1 System Model	78
		4.3.2 Cache Management Algorithms	80
		4.3.3 Performance Evaluation	85
	4.4	Cooperative Caching and Video Transcoding in MEC Networks	86
		4.4.1 System Model	87
		4.4.2 Joint Cooperative Caching and Processing Algorithm	89
		4.4.3 Performance Evaluation	93
	4.5	Conclusions	94
	Refe	erences	9
5	Sto	chastic Caching Schemes in Large Wireless Networks	97
	5.1	Introduction	9,
	5.2	Network Model	99
	5.3	Performance Metrics and Analysis	100
		5.3.1 Cache Hit Probability	103

		5.3.2	Cache-Aided Throughput	102
		5.3.3	Average Content Delivery Delay	103
	5.4		nization of Probabilistic Caching Placement	105
		5.4.1	Cache Hit Maximization	105
		5.4.2	Cache-aided Throughput Maximization	106
		5.4.3	Delay Minimization	107
	5.5		rical and Simulation Results	107
	5.6	Conclu	usions	112
	Refer	ences		113
6	Joint		es for Caching, Routing, and Channel Selection	115
	6.1	Backg		116
	6.2		ed Work and Our Advances	116
	6.3	Systen	n Modeling	118
		6.3.1	Network setting characterization	118
		6.3.2	Network Coding	118
		6.3.3	Transmission and Interference Ranges and Capacity of a	
			Link	119
		6.3.4	Capturing Interference via a Conflict Graph and Its	100
	C 1	E.	Independent Sets	120
	6.4		lation of Joint Caching, Routing, and Channel Selection Problem	121
	6.5			$\frac{121}{122}$
	0.5	6.5.1	nn Generation for Efficient Approximation Solution Formulation of Regulated Master Subproblem	$\frac{122}{123}$
		6.5.1	Formulation of Slave Pricing Subproblem	
		6.5.2		124
		0.5.5	An Algorithm for An Approximation Solution with ϵ Guarantees	125
	6.6	Funori	imental Evaluation	126
	0.0	6.6.1	Outline	120
		6.6.2	Experimental Setup	126
		6.6.3	Experimental Secup Experimental Results and Discussion	$\frac{120}{127}$
	6.7		ts for Video Quality of Streaming Application	129
	6.8		uding Remarks	130
	Refer		iding nemarks	130
Part II	Proac	tive C	Caching	135
7	Loarn	ing Do	pularity for Proactive Caching in Cellular Network	137
•	7.1	_	luction	137
	1.1	7.1.1	Background and Motivation	138
		7.1.1		138
		7.1.2 $7.1.3$	Approach and Main Outcomes Optimal Caching Policy	138 139
	7.0		Optimal Caching Policy	
	7.2		ing and Predicting Popularity of Unpublished Videos Feature Extraction with Deep Naural Networks	140 140

		7.2.2 Feature Clustering	141
		7.2.3 Probability Estimation in Multi-Class Classification	141
		7.2.4 Performance Evaluation	142
	7.3	Published Set Popularity Updating	144
		7.3.1 Cumulative Loss Expectation	147
		7.3.2 Two-Expert Scenario	147
	7.4	Summary	149
	7.5	Appendix: Proof of Theorem 7.1	150
	Refe	rences	156
8	Wire	eless Edge Caching for Mobile Social Networks	158
	8.1	Introduction	158
	8.2	Edge Caching for Mobile Social Networks: Challenges and Solutions	161
		8.2.1 Hierarchical Social-Network Content Caching	161
		8.2.2 Social-Aware Content Caching Placement and Delivery	163
		8.2.3 Proactive and Cooperative Social-Network Caching	167
		8.2.4 Delay Tolerance Social-Network Caching Policies	169
		8.2.5 Privacy and Security for Edge Caching in Mobile Social	
		Networks	170
	8.3	Dynamic Edge Caching Approach for Mobile Social Networks	172
		8.3.1 Authentication	173
		8.3.2 Dynamic Demand Prediction	174
		8.3.3 Optimal Caching Strategy	177
		8.3.4 Business Model of MSN Service Provider	178
		8.3.5 Performance Evaluation	179
	8.4	Conclusions and Open Issues	181
	Refe	rences	183
9	A Pı	roactive and Big data-enabled Caching Analysis Perspective	186
	9.1	Introduction	186
	9.2	Big Data Analytics for Telcos: Requirements, Challenges and	
		Benefits	188
		9.2.1 Big Data Networking Challenges and Trends	188
		9.2.2 When Big Data Analytics Meets Caching	189
	9.3	System Model	190
	9.4	Big Data Platform	194
		9.4.1 Platform description	196
		9.4.2 Data extraction procedures	197
		9.4.3 Traffic Characteristics	198
	9.5	Numerical Results and Discussions	199
	9.6	Conclusions	203
	9.7	Acknowledgement	204
		rences	205

10	Mob 10.1	ility-aware Caching in Cellular Networks Optimal Caching in Static Networks	208 208
	10.2	Mobility in Cellular Netowork	210
	10.3	Overview of System Model	211
	10.4	Optimal Caching in Cellular Network	213
		10.4.1 Mobile user	214
		10.4.2 Static user	219
	10.5	Results and Discussion	222
	10.6	Outlook	226
	Refer	rences	227
Part III	Cacl	he-aided Interference and Physical Layer Management	231
11	Cach	e-Enabled Cloud Radio Access Networks	233
	11.1	Introduction	233
	11.2	Cache-Enabled Cloud RAN Model	235
		11.2.1 Network Model	235
		11.2.2 Content-Centric BS Clustering	236
		11.2.3 Caching at BSs	237
		11.2.4 Backhauling	238
	11.3	Caching at BSs for Cooperation in Access Link	239
		11.3.1 Joint BS Clustering and Beamforming Design	240
		11.3.2 Performance Evaluation	242
	11.4	Caching at BSs for Multicasting in Backhaul Link	244
		11.4.1 Joint BS Cache Allocation and Beamforming Design	244
	11 5	11.4.2 Performance Evaluation	246
	11.5	Conclusions and Open Issues	249
	Refer	rences	251
12		lamentals of Coded Caching for Interference Management	253
	12.1	Introduction	253
	12.2	Preliminaries of Interference Networks and Interference Manage-	
		ment	254
		12.2.1 Interference Channel	254
		12.2.2 X Channel	255
	10.9	12.2.3 Cooperative X-multicast Channel	257
	12.3	System Model and Performance Metric 12.3.1 Network Model	259
			259
		12.3.2 Two-Phase Operation Model	260
	12.4	12.3.3 Performance Metric NDT Analysis in Wireless Interference Networks	$\frac{260}{261}$
	14.4	12.4.1 Parametric Caching Scheme	$\frac{261}{261}$
		12.4.1 Tarametric Caching Scheme 12.4.2 Content Delivery Strategy	263
		12.4.3 Achievable NDT	263
		II.I.O IIOIIO (WATO I II) I	200

		12.4.4 MIMO Interference Network	268
	12.5	Partially Connected Interference Network	269
		12.5.1 Network Model	269
		12.5.2 Achievable Scheme	270
		12.5.3 Achievable NDT	271
		12.5.4 Application to Circular Network	272
	12.6	Conclusion and Open Issues	272
	Refer	rences	274
13	Full-l	Duplex Radios for Edge Caching	276
	13.1	Introduction	277
		13.1.1 Full Duplex Communications	278
	13.2	System Model	281
		13.2.1 Network Model	281
		13.2.2 Cache-aided Network Nodes	282
		13.2.3 Channel Model	283
		13.2.4 Signal-to-Interference Ratio	284
	13.3	Caching Model	285
	13.4	Performance Analysis	287
	13.5	Numerical Results and Discussion	291
	13.6	Conclusions	292
	Refer	rences	296
14	Cach	ing in Mobile Millimeter Wave - Sub-6 GHz Networks	300
	14.1	Background, Related Works, and Summary of Contributions	300
		14.1.1 Related works	300
		14.1.2 Summary of contributions	301
	14.2	System Model	302
		14.2.1 Channel model	302
		14.2.2 Antenna gain pattern	303
		14.2.3 Traffic model	304
		14.2.4 Handover process and relevant parameters	305
	14.3	Caching-Enabled Mobility Management	306
		14.3.1 Probability of caching via mmW links	306
		14.3.2 Statistics of the caching duration	306
	14.4	Performance Analysis of the Proposed Cache-enabled Mobility	
		Management Scheme	307
		14.4.1 Average caching data rate	308
		14.4.2 Analysis of performance gains from the proposed caching-	
		based mobility management	309
	14.5	Proposed Cache-enabled Mobility Management Based on Dy-	
		namic Matching	309
		14.5.1 Mobility management as a matching game	311
		14.5.2 Mobility management based on dynamic matching	313

		14.5.3 Proposed algorithm for dynamically stable mobility	
		management	314
	14.6	Simulation Results	315
		14.6.1 Performance analysis for single user scenarios	315
		14.6.2 Performance analysis of the developed algorithm	317
	14.7	·	319
	Refer	rences	320
Part IV	Ene	rgy-Efficiency, Security, Economic, and Deployment	323
15		gy-Efficient Deployment in Wireless Edge Caching	325
	15.1		325
	15.2	Signal transmission and caching model	327
		15.2.1 Caching model	327
		15.2.2 Transmission model	329
	15.3	Energy-efficiency analysis	330
		15.3.1 EE analysis for uncoded caching strategy	330
		15.3.2 EE analysis for coded caching strategy	331
		15.3.3 Comparison between the two strategies	331
	15.4	9, ,	332
		15.4.1 EE maximization for uncoded caching strategy	332
		15.4.2 EE maximization for coded caching strategy	334
	15.5	Minimization of content delivery time	334
		15.5.1 Minimization of delivery time for uncoded caching strategy	335
		15.5.2 Minimization of delivery time for coded caching strategy	336
	15.6	Non-uniform file popularity distribution	337
	15.7	Numerical results	338
		15.7.1 Energy efficiency performance	338
		15.7.2 Delivery time performance	340
	15.8	Conclusions	341
	Refer	rences	343
16		ne-Enabled UAVs in Wireless Networks	345
	16.1		345
	16.2	Cache-Enabled UAVs for Users' QoE Maximization	346
		16.2.1 Motivation	347
		16.2.2 Basic Problem	348
		16.2.3 Conceptor Echo State Networks for Content Request	050
		Distribution and Mobility Pattern Predictions	353
		16.2.4 Optimal Content Caching and Locations for UAVs	356
	100	16.2.5 Simulation Results	361
	16.3	Summary	364
	Keter	rences	366

17	Phys	sical Layer Security for Edge Caching Wireless Networks	370
	17.1	Introduction	370
		17.1.1 Literature Survey	370
	17.2	System Model	373
		17.2.1 Network Topology	373
		17.2.2 Caching and Backhaul Loading	374
		17.2.3 Secure Cooperative MIMO Transmission	375
	17.3	Problem Formulation	376
		17.3.1 Achievable Secrecy Rate	376
		17.3.2 Second-Stage Online Delivery Optimization	377
		17.3.3 First-Stage Offline Cache Training	378
	17.4	Problem Solution	379
		17.4.1 Optimal Solution of Problem R0 in Large Cache Capacity	
		Regime	379
		17.4.2 Suboptimal Solution of Problem R0	381
		17.4.3 Solution of Problem Q0	383
	17.5	Numerical Examples	384
		17.5.1 Performance Comparisons with Baseline Schemes	384
		17.5.2 Impact of Number of Antennas	385
	17.6	Research Challenges and Opportunities	386
		17.6.1 Trustworthiness of Cache-Enabled Devices	387
		17.6.2 Imperfect, Statistical, and No CSI Knowledge about the	
		Eavesdropper	388
		17.6.3 Active Eavesdropper	388
		17.6.4 Other Forms of Cache-enabled PLS Techniques	389
	17.7	Summary	389
	17.8	Appendix	390
		17.8.1 Proof of Theorem 17.2	390
	Refer	rences	391
18	Mob	ile VR Edge Delivery: Computing, Caching, and Communication	
		Trade-Offs	395
	18.1	Introduction	395
	18.2	Related work	398
	18.3	System models	398
		18.3.1 VR data model	398
		18.3.2 360° streaming model	401
		18.3.3 VR computing and data complexity	402
		18.3.4 Cellular network model	402
		18.3.5 Reward model	402
	18.4	Problem formulation	403
	18.5	Polynomial-Time Approximation	404
	18.6	Experiment Evaluation	407
	18.7	Concluding Remarks	410

		Contents	11
	Refer	rences	411
19	Econ	omic Ecosystems in Elastic Wireless Edge Caching	415
	19.1	Introduction	415
	19.2	Background	418
	19.3	Wireless Edge Caching versus In-Network Caching	419
	19.4	Elastic Wireless Cache Lease, Content Caching and Routing	420
		19.4.1 Scenario	420
		19.4.2 Motivating Example of Elastic Cache Lease	421
		19.4.3 System Model	422
		19.4.4 Problem Formulation	425
		19.4.5 Lyapunov-based Elastic CDN Strategy	426
	19.5	Open Research Issues	432
	19.6	Conclusion	433
	Refer	rences	435
	Inde:	x	438