

PERMIT Workshop

Scoping review on machine learning methods for stratification

Enrico Glaab
Luxembourg Centre for Systems Biomedicine

Scoping Review Objectives

GOALS:

- Inventory AI methods for omics-based patient stratification and their validation (supervised and unsupervised ML approaches)
- Identify limitations, challenges, gaps and existing recommendations

Research Questions

Machine learning methods for stratification:

- What are the **main types** of supervised and unsupervised ML methods for omics-based stratification? What are the **recommended workflows**?
- What are the specific **strengths/weaknesses** of different stratification approaches?

Validation methods:

- Which validation methods are available to **assess accuracy, robustness** and biomedical **relevance**? What are their strengths/weaknesses?

Applications:

- Which practical **utility** has been demonstrated in real-world settings (success/failure stories, lessons learned)?

Scoping Review Results: PRISMA flow diagram

Results: Used ML methodologies

- **Over-represented approaches:** Tree- and kernel-based ML methods
- **Under-represented approaches:** Probabilistic, prototype-based and neural network based ML methods

Results: Used validation methodologies

- **Common methods:** Training/test set split + cross-validation on training data (LOOCV, 10-fold CV), metrics: accuracy, AUC
- **Less frequent:** External cohort validation, robust bootstrapping and & bolstered CV approaches, metrics: F1, MCC, PR-AUC

Main gaps & limitations identified (1)

Study design and documentation related issues:

- (1) study group design and sample size selection
(underpowered, imbalanced)
- (2) statistical evaluation
(robustness/completeness, multiple hypothesis testing)
- (3) clarity of clinical applications
(primary/secondary outcomes)
- (4) study documentation
(settings/parameters, reproducibility)

Main gaps & limitations identified (2)

Issues affecting model reliability, robustness and interpretability:

(5) Sampling & blocking design

(batch effects and biases)

(6) data pre-processing, filtering and normalization

(lacking standards)

(7) integration of prior biological knowledge

(pathway/network knowledge, multi-omics analyses)

(8) Ensuring model interpretability and biological plausibility

(black-box vs. white-box models)

Gaps & limitations: Example

Common error: Global feature selection

Correct approach

Recommendations from the scoping review / literature

Data pre-processing, filtering & normalization:

- use **cross-validation** to check if pre-processing leads to information loss
- **compare or combine** multiple pre-processing approaches

Integration of prior knowledge & multi-omics analyses:

- check **prior literature** on the cost/benefit of multi-omics analyses for the studied conditions / cell types, or conduct **pilot analyses**
- use **existing software & frameworks** for integrative biological data analysis

Ensuring model interpretability & biological plausibility:

- use dedicated methods to build **interpretable models** (e.g. rule learning)
- use cellular **pathway/network analysis & literature mining** to guide modeling

Previous success stories

- Multiple omics-derived biomarker signatures already clinically validated
- Most tests are for cancer diseases, but first non-cancer applications exist

Name	Test approval (FDA-cleared and/or LDT)	Purpose	References
MammaPrint	FDA-cleared, LDT	breast cancer risk-of-recurrence assessment	Van't Veer et al., Nature, 2002
AlloMap Heart	FDA-cleared, LDT	identifying heart transplant recipients with risk of cellular rejection	Yamani et al., J Heart Lung Transplant, 2007
Prosigna Assay / PAM50	FDA-cleared, LDT	breast cancer risk of distant recurrence prediction	Nielsen et al., BMC Cancer, 2014
Oncotype DX	LDT	breast cancer risk-of-recurrence assessment	Kelley et al., Cancer, 2010
Decipher	LDT	prostate cancer metastatic risk prediction	Marrone et al., PLoS Curr., 2015

Previous success stories – Main conclusions

Shared characteristics of prior success stories as a guideline:

- Early filtering:

rigorous statistical, clinical and biological filtering criteria applied (strict inclusion/exclusion criteria; multiple layers of statistical and ML-based feature selection; integration of prior knowledge)

- Continuous technological improvements:

transition from cheap, low-sensitivity to high-sensitivity measurements (e.g. from microarray technology to deep sequencing, RT-PCR and digital PCR)

- Robust validation schemes:

multi-level cross-validation, bootstrapping and external validation involving multiple performance metrics, large sample sizes, and multiple cohorts

Summary

Main gaps & limitations:

- study design: many studies are underpowered, imbalanced
- statistical validation: often incomplete, lacking robustness or even incorrect
- study documentation: lack of details, irreproducible

Main proposed recommendations:

- follow existing study design & documentation guidelines (e.g. NCI check list)
- use robust validation schemes & early filtering
- exploit prior biological knowledge & existing data integration frameworks

References

1. E. Glaab, *Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification*, *Briefings in Bioinformatics* (2015), 17(3), 440
2. N. Vlassis, E. Glaab, *GenePEN: analysis of network activity alterations in complex diseases via the pairwise elastic net*, *Statistical Applications in Genetics and Molecular Biology* (2015), 14(2), 221
3. E. Glaab, J. M. Garibaldi, N. Krasnogor. *Learning pathway-based decision rules to classify microarray cancer samples*, *German Conference on Bioinformatics 2010, Lecture Notes in Informatics (LNI)*, 173, 123-134
4. E. Glaab, J. Bacardit, J. M. Garibaldi, N. Krasnogor, *Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data*, *PLoS ONE*, 7(7):e39932, 2012
5. E. Glaab, A. Baudot, N. Krasnogor, A. Valencia. Extending pathways and processes using molecular interaction networks to analyse cancer genome data, *BMC Bioinformatics*, 11(1):597, 2010
6. E. Glaab, A. Baudot, N. Krasnogor, R. Schneider, A. Valencia. EnrichNet: network-based gene set enrichment analysis, *Bioinformatics*, 28(18):i451-i457, 2012
7. Maes, M., Nowak, G., Caso, J. R., Leza, J. C., Song, C., Kubera, M., .et al. (2016). Toward omics-based, systems biomedicine, and path and drug discovery methodologies for depression-inflammation research. *Molecular neurobiology*, 53(5), 2927-2935.
8. E. Glaab, J.P. Trezzi, A. Greuel, C. Jäger, Z. Hodak, A. Drzezga, L. Timmermann, M. Tittgemeyer, N. J. Diederich, C. Eggers, Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson's disease, *Neurobiology of Disease* (2019), Vol. 124, No. 1, pp. 555
9. E. Glaab, R. Schneider, *Comparative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson's disease*, *Neurobiology of Disease* (2015), 74, 1-13
10. Z. Zhang, P. P. Jung, V. Grouès, P. May, C. Linster, E. Glaab, *Web-based QTL linkage analysis and bulk segregant analysis of yeast sequencing data*, *GigaScience* (2019), 8(6), 1-18
11. S. Köglberger, M. L. Cordero-Maldonado, P. Antony, J. I. Forster, P. Garcia, M. Buttini, A. Crawford, E. Glaab, *Gender-specific expression of ubiquitin-specific peptidase 9 modulates tau expression and phosphorylation: possible implications for tauopathies*, *Molecular Neurobiology* (2017), 54(10), pp. 7979
12. Kleiderman, S., Gutbier, S., Ugur Tufekci, K., Ortega, F., Sá, J. V., Teixeira, A. P., et al. (2016). Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon- γ . *Stem Cells*, 34(12), 2861-2874.
13. Bolognin, S., Fossépré, M., Qing, X., Jarazo, J., Ščančar, J., Moreno, E. L., et al. (2019). 3D Cultures of Parkinson's Disease-Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. *Advanced Science*, 6(1), 1800927.
14. Jaeger, C., Glaab, E., Michelucci, A., Binz, T. M., Koeglsberger, S., Garcia, P., ... & Buttini, M. (2015). The mouse brain metabolome: region-specific signatures and response to excitotoxic neuronal injury. *The American Journal of Pathology*, 185(6), 1699-1712.
15. E. Glaab, R. Schneider, *RepExplore: Addressing technical replicate variance in proteomics and metabolomics data analysis*, *Bioinformatics* (2015), 31(13), pp. 2235
16. E. Glaab, *Building a virtual ligand screening pipeline using free software: a survey*, *Briefings in Bioinformatics* (2015), 17(2), pp. 352
17. E. Glaab, R. Schneider, *PathVar: analysis of gene and protein expression variance in cellular pathways using microarray data*, *Bioinformatics*, 28(3):446-447, 2012
18. E. Glaab, A. Baudot, N. Krasnogor, A. Valencia. *TopoGSA: network topological gene set analysis*, *Bioinformatics*, 26(9):1271-1272, 2010
19. E. Glaab, J. M. Garibaldi and N. Krasnogor. *ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization*, *BMC Bioinformatics*, 10:358, 2009