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Scoping Review Objectives

GOALS:

* Inventory Al methods for omics-based patient stratification and their validation

(supervised and unsupervised ML approaches)

* Identify limitations, challenges, gaps and existing recommendations
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Research Questions

Machine learning methods for stratification:
« What are the main types of supervised and unsupervised ML methods for
omics-based stratification? What are the recommended workflows?

» What are the specific strengths/weaknesses of different stratification
approaches?

Validation methods:
« Which validation methods are available to assess accuracy, robustness and
biomedical relevance? What are their strengths/weaknesses?

Applications:

« Which practical utility has been demonstrated in real-world settings
(success/failure stories, lessons learned)?
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Scoping Review Results: PRISMA flow diagram
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Full text articles were excluded:

- Lack of adequate statistical validation
or insufficient details on validation: 67

- Insufficient sample size (at least 50
samples for the main conditions studied,
or demonstrated power calculation
results): 251

- No omics-scale data used: 19
- Redundant article (already covered): 2

- Unable to retrieve full-text article: 4
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Results: Used ML methodologies

» Over-represented approaches: Tree- and kernel-based ML methods

network based ML methods
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» Under-represented approaches: Probabilistic, prototype-based and neural
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Results: Used validation methodologies

« Common methods: Training/test set split + cross-validation on training
data (LOOCV, 10-fold CV), metrics: accuracy, AUC
* Less frequent: External cohort validation, robust bootstrapping and
& bolstered CV approaches, metrics: F1, MCC, PR-AUC
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Main gaps & limitations identified (1)

Study design and documentation related issues:

(1) study group design and sample size selection
(underpowered, imbalanced)

(2) statistical evaluation
(robustness/completeness, multiple hypothesis testing)

(3) clarity of clinical applications
(primary/secondary outcomes)

(4) study documentation
(settings/parameters, reproducibility)
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Main gaps & limitations identified (2)

Issues affecting model reliability, robustness and interpretability:

(5) Sampling & blocking design
(batch effects and biases)

(6) data pre-processing, filtering and normalization
(lacking standards)

(7) integration of prior biological knowledge
(pathway/network knowledge, multi-omics analyses)

(8) Ensuring model interpretability and biological plausibility
(black-box vs. white-box models)
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Gaps & limitations: Example

Common error: Global feature selection Correct approach
Data Data
Supervised l A
selection Training Test
Filtered data Supervised
selection
A transfer
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. trainin
Training Test ot 9T Fitered
test
1 l 1 data
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Recommendations from the scoping review / literature

Data pre-processing, filtering & normalization:
—> use cross-validation to check if pre-processing leads to information loss
—> compare or combine multiple pre-processing approaches

Integration of prior knowledge & multi-omics analyses:

—> check prior literature on the cost/benefit of multi-omics analyses for the
studied conditions / cell types, or conduct pilot analyses

—> use existing software & frameworks for integrative biological data analysis

Ensuring model interpretability & biological plausibility:
—> use dedicated methods to build interpretable models (e.g. rule learning)
—> use cellular pathway/network analysis & literature mining to guide modeling

uni. . SET

- oo
UNIVERSITEDU s eeee
LUXEMBOURG  J s eeee




Previous success stories

» Multiple omics-derived biomarker signatures already clinically validated

» Most tests are for cancer diseases, but first non-cancer applications exist

Test approval (FDA- | Purpose References
cleared and/or LDT)

FDA-cleared, LDT breast cancer risk-of- Van’t Veer et al.,

recurrence Nature, 2002
assessment

AlloMap Heart FDA-cleared, LDT identifying heart Yamani et al., J Heart
transplant recipients Lung Transplant, 2007
with risk of cellular
rejection

Prosigna Assay / FDA-cleared, LDT breast cancer risk of Nielsen et al., BMC

PAMS50 distant recurrence Cancer, 2014
prediction

Oncotype DX LDT breast cancer risk-of- Kelley et al., Cancer,
recurrence 2010
assessment

Decipher LDT prostate cancer Marrone et al., PLoS
metastatic risk Curr., 2015
prediction
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Previous success stories — Main conclusions

Shared characteristics of prior success stories as a guideline:

 Early filtering:

rigorous statistical, clinical and biological filtering criteria applied (strict
inclusion/exclusion criteria; multiple layers of statistical and ML-based feature
selection; integration of prior knowledge)

* Continuous technological improvements:

transition from cheap, low-sensitivity to high-sensitivity measurements (e.g.
from microarray technology to deep sequencing, RT-PCR and digital PCR)

 Robust validation schemes:

multi-level cross-validation, bootstrapping and external validation involving
multiple performance metrics, large sample sizes, and multiple cohorts
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Summary

Main gaps & limitations:

—> study design: many studies are underpowered, imbalanced

—> statistical validation: often incomplete, lacking robustness or even incorrect

—> study documentation: lack of details, irreproducible

Main proposed recommendations:
—> follow existing study design & documentation guidelines (e.g. NCI check list)
—> use robust validation schemes & early filtering

—> exploit prior biological knowledge & existing data integration frameworks
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