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Scoping Review Objectives

GOALS: 
• Inventory AI methods for omics-based patient stratification and their validation

(supervised and unsupervised ML approaches)
• Identify limitations, challenges, gaps and existing recommendations
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Research Questions

Machine learning methods for stratification: 
• What are the main types of supervised and unsupervised ML methods for 

omics-based stratification? What are the recommended workflows?
• What are the specific strengths/weaknesses of different stratification 

approaches?

Validation methods: 
• Which validation methods are available to assess accuracy, robustness and 
biomedical relevance? What are their strengths/weaknesses?

Applications: 
• Which practical utility has been demonstrated in real-world settings
(success/failure stories, lessons learned)?
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Scoping Review Results: PRISMA flow diagram 
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Results: Used ML methodologies

• Over-represented approaches:   Tree- and kernel-based ML methods
• Under-represented approaches: Probabilistic, prototype-based and neural 

network based ML methods
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Results: Used validation methodologies

• Common methods:  Training/test set split + cross-validation on training 
data (LOOCV, 10-fold CV), metrics: accuracy, AUC

• Less frequent:          External cohort validation, robust bootstrapping and 
& bolstered CV approaches, metrics: F1, MCC, PR-AUC
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Main gaps & limitations identified (1)

Study design and documentation related issues:

(1) study group design and sample size selection
(underpowered, imbalanced)

(2) statistical evaluation
(robustness/completeness, multiple hypothesis testing)

(3) clarity of clinical applications 
(primary/secondary outcomes)

(4) study documentation 
(settings/parameters, reproducibility)
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Main gaps & limitations identified (2)

Issues affecting model reliability, robustness and interpretability:

(5) Sampling & blocking design
(batch effects and biases)

(6) data pre-processing, filtering and normalization
(lacking standards)

(7) integration of prior biological knowledge 
(pathway/network knowledge, multi-omics analyses)

(8) Ensuring model interpretability and biological plausibility 
(black-box vs. white-box models)
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Common error: Global feature selection Correct approach

Gaps & limitations: Example

Data

Supervised
selection

Training Test

Model

Filtered data

Score

Data

Supervised
selection

Training Test

Model

Filtered
training
data

Score

Filtered
test
data

transfer

EvaluationEvaluation



9

Recommendations from the scoping review / literature

Data pre-processing, filtering & normalization: 
à use cross-validation to check if pre-processing leads to information loss
à compare or combine multiple pre-processing approaches

Integration of prior knowledge & multi-omics analyses: 
à check prior literature on the cost/benefit of multi-omics analyses for the 

studied conditions / cell types, or conduct pilot analyses
à use existing software & frameworks for integrative biological data analysis

Ensuring model interpretability & biological plausibility: 
à use dedicated methods to build interpretable models (e.g. rule learning)    
à use cellular pathway/network analysis & literature mining to guide modeling
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Previous success stories

Name Test approval (FDA-
cleared and/or LDT)

Purpose References

MammaPrint FDA-cleared, LDT breast cancer risk-of-
recurrence 
assessment

Van’t Veer et al., 
Nature, 2002

AlloMap Heart FDA-cleared,	LDT identifying	heart	
transplant	recipients	
with	risk	of	cellular	
rejection

Yamani et al., J Heart 
Lung Transplant, 2007

Prosigna Assay / 
PAM50

FDA-cleared, LDT breast cancer risk of 
distant recurrence 
prediction

Nielsen et al., BMC 
Cancer, 2014

Oncotype DX LDT breast cancer risk-of-
recurrence 
assessment

Kelley et al., Cancer, 
2010

Decipher LDT prostate cancer 
metastatic risk 
prediction

Marrone et al., PLoS
Curr., 2015

• Multiple omics-derived biomarker signatures already clinically validated
• Most tests are for cancer diseases, but first non-cancer applications exist
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Previous success stories – Main conclusions

Shared characteristics of prior success stories as a guideline:

• Early filtering:
rigorous statistical, clinical and biological filtering criteria applied (strict 
inclusion/exclusion criteria; multiple layers of statistical and ML-based feature 
selection; integration of prior knowledge)

• Continuous technological improvements:
transition from cheap, low-sensitivity to high-sensitivity measurements (e.g. 
from microarray technology to deep sequencing, RT-PCR and digital PCR)

• Robust validation schemes:
multi-level cross-validation, bootstrapping and external validation involving 
multiple performance metrics, large sample sizes, and multiple cohorts 
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Summary

Main gaps & limitations: 

à study design: many studies are underpowered, imbalanced

à statistical validation: often incomplete, lacking robustness or even incorrect

à study documentation: lack of details, irreproducible

Main proposed recommendations: 

à follow existing study design & documentation guidelines (e.g. NCI check list)

à use robust validation schemes & early filtering    

à exploit prior biological knowledge & existing data integration frameworks
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