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Abstract: This work is devoted to find an optimal set of sensors for model-based FDI.
The novelty is that binary integer linear programming is used in the optimization problem,
leading to a formulation of the detectability and isolability specifications as linear inequality
constraints. Furthermore, a very detailed system model is not needed since the methodology
handles structural models. The approach has been successfully applied to a two-tank system,
as an illustrative example.

1. INTRODUCTION

Fault diagnosis systems are an increasing and important
topic in many industrial processes. The number of publi-
cations devoted to fault diagnosis has increased notably in
the last years, as it can be seen in Blanke et al. (2006) and
Gertler (1998). In Model-based Fault Diagnosis, diagno-
sis is basically performed from the comparison between
a process model and on-line process information. Since
process information is usually obtained by means of the
sensors installed in the process, it is important to develop
methodologies to place the correct set of sensors in the
process in order to guarantee some diagnosis specifications.

In this paper, diagnosis specifications are detection and
isolation of single faults. Two kind of faults are considered:
system faults, which concern fixed components in the
system, and sensor faults which concern sensors chosen for
installation. No hardware redundancy will be considered,
though the method could be easily extended to include it.

Large-scale diagnosis models may consist of many dif-
ferent types of descriptions, for example static/dynamic
linear equations, lookup tables, logic rules, non-linear
differential-algebraic equations, etc. One way to analyze
such a general class of models in a general framework
is to analyze the model structure. A structural model is
a coarse model description, based on a bi-partite graph,
that can be obtained early in the development process,
without major engineering efforts. This kind of models is
suitable to handle large scale systems since efficient graph-
based tools can be used and does not have numerical
problems. However, only best case results are obtained.
More information about structural modeling applied to
fault diagnosis can be found in Blanke et al. (2006).

In model-based Fault Detection and Isolation (FDI), faults
are modeled as deviations of parameter values or unknown
signals and diagnostic models are often brought back
to a residual form. The main approaches to construct
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residuals are based on using Analytical Redundancy Re-
lations (ARRs) generated either using the parity space
(Staroswiecki and Comtet-Varga, 2001) or observer ap-
proaches (Nikoukhah, 1998). In Maquin et al. (1997) the
sensor placement problem is solved by the analysis of a
set of possible ARRs using algorithms of cycle generation
in graphs. Some other results devoted to sensor placement
for diagnosis using graph tools can be found in Raghuraj
et al. (1999), Krysander and Frisk (2008), Commault et al.
(2008), Yassine et al. (2008), Travé-Massuyès et al. (2006)
and Rosich et al. (2007). All these works use a structural
model-based approach and define different diagnosis spec-
ifications to solve the sensor placement problem.

In Sarrate et al. (2007), an optimal sensor placement for
model-based FDI requires finding the set of all possible
ARRs, considering that all possible candidate sensors are
installed. Then, a set of sensors that minimizes the total
cost of the network is selected such that the resulting
ARRs satisfy that a pre-established set of faults can be
detected and isolated. The optimization problem is casted
as a Binary Integer Programming problem (Wosley, 1998),
where the optimization vector states whether a sensor
is installed or not and FDI specifications are translated
into constraints. However, the non-linear nature of such
constraints lead to a high computational complexity of the
resulting optimization problem. An alternative approach
is proposed in Fijany and Vatan (2006), which however
involves the formulation of a non-linear objective function.

In this work both approaches are enhanced by formulating
a Binary Integer Linear Programming (BILP) problem.
The FDI specifications are formulated as linear constraints
and the objective cost function is also linear, so the BILP
problem can be efficiently solved by an LP-based branch-
and-bound algorithm.

In this paper, as a matter of notational convention, bold
and uppercase letters denote matrices, bold and lowercase
letters denote vectors, and normal lowercase letters denote
matrix o vector elements. Also, the n×n identity matrix is
denoted by In, the n×m null matrix is denoted by 0n×m

and the i × j ones matrix is denoted by 1i×j . Finally,



the number of k-combinations from a set of n elements is
denoted by Ck

n.

In Section 2, the sensor placement problem is formulated
as a BILP problem. The main contribution of this paper is
developed in Section 3, where FDI specifications are for-
mulated as binary linear constraints. Section 4 summarizes
the BILP formulation of the sensor placement problem
and extends it to include ARRs optimal selection. Next,
Section 5 describes an application of the sensor placement
methodology to a two-tank system. Finally, Section 6 re-
marks the conclusions and future extensions of the present
work.

2. SENSOR PLACEMENT FOR FDI AS A BILP
PROBLEM

Similar to optimization based on linear programming, a
standard optimization problem using BILP can be formu-
lated as a linear objective function and constrained by
linear inequality constraints. This is expressed as:

min
x

cT x subject to: (1)

Ax ≤ b (2)

x is binary (3)

The main constraint is that any element of the optimiza-
tion vector x must be binary, i.e. ∀x ∈ x : x ∈ {0, 1}.
Moreover, matrix A and vector b form the linear inequal-
ity constraints. Finally, c is a cost vector of the linear
objective function.

The sensor placement problem for FDI developed in this
article can be summarized as finding a minimal set of
sensors to be installed in the system such that faults can
be detected and isolated.

The sensor placement problem can be formulated as a
BILP problem where the set of candidate sensors to
be installed is represented by the optimization variable
vector. This means that if the entry x ∈ x equals 1, the
corresponding sensor must be installed whereas if x equals
0, the sensor does not need to be installed.

Furthermore, by means of the c vector a cost can be
assigned to each sensor in order to find an optimal solution
based in some criterion, e.g. minimal cardinality, minimal
economical price, etc.

Using this formulation, all constraints must be written as
linear inequalities. Thus, for sensor placement for FDI,
fault detectability and fault isolability constraints must
be expressed as in (2). Section 3 is devoted to show how
FDI specifications can be expressed as linear inequalities.

For the sake of simplicity, in the following development,
it is assumed that there exists a sensor configuration
such that all faults concerned are fully detectable and
isolable among them. Some guidelines will be given in
Section 4 allowing this assumption to be dropped. Note
that verifying whether this assumption is fulfilled can be
accomplished by just checking which faults are detectable
and isolable when all the candidate sensors are installed
in the system.

3. CONSTRAINTS FORMULATION

In model-based FDI, ARRs are used to check the consis-
tency between the model and system measurements. An
ARR can be obtained from a subset of model equations
by eliminating unknown variables through the convenient
manipulation of the equations. Therefore, an ARR is an
expression that only depends on known (measured) vari-
ables. Structural analysis theory has been extensively used
in model-based FDI to generate the ARRs from the model
equations (Blanke et al., 2006, Travé-Massuyès et al., 2006,
Krysander et al., 2008).

It is straightforward to establish a relation between the
ARRs set and the set of known variables. This relation is
represented by a bi-adjacency matrix where the row set is
the ARRs set and the column set is the sensors set. Let n
be the number of ARRs and k be the number of candidate
sensors, then the biadjacency matrix M = [mij ] is a n× k
matrix defined by:

mij =

{

1 if ARR i depends on sensor j

0 otherwise
(4)

Knowing which equations are related to a certain ARR
it is possible to determine the set of faults that an ARR
is sensitive to. This ARR-fault relation is known in the
literature by the Fault Signature Matrix (FSM) (Blanke
et al., 2006). Let l be the number of system faults to be
diagnosed, then the biadjacency matrix F = [fij ] is a n× l
matrix defined by:

fij =

{

1 if fault j may affect ARR i

0 otherwise
(5)

Remark that, the FSM F will refer to system faults. A
similar FSM will be considered for sensor faults, which
will be denoted by Fq = [fqij

] and easily deduced from M

as Fq = M.

In the following sections, the constraint formulation pro-
posed in Sarrate et al. (2007) will be revised and further
developed to formulate fault detectability and isolability
specifications as linear constraints.

A small example is used through the paper in order
to clarify how this formulation should be applied. This
example consists of a set of five ARRs, a set of three
candidate sensors and a set of two system faults. The
corresponding matrices M, F, Fq are depicted in (6).

M = Fq =











0 1 1
1 0 0
0 0 1
1 1 1
1 0 1











F =











0 1
1 0
1 0
1 1
0 1











(6)

3.1 ARR selector constraint

Given a subset of installed sensors there may be some
ARRs that are not valid since they depend on non-installed

candidate sensors. Let q = [ q1 · · · qk ]
T

be the binary
vector that denotes whether a sensor is installed or not.



Then, an ARR i is called non-selectable if there is a sensor
j such that qj = 0 and mij = 1. This motivates the ARR
selector :

ρi =
k

∏

j=1

[mijqj + (1 − mij)] (7)

Note that ρi is a binary variable such that if ARR i is
non-selectable then ρi equals 0. However, expression (7) is
non-linear and can not be casted as a constraint in (2). In
order to do so, remark that inequality (8) holds as long as
ARR i is non-selectable.

k
∑

j=1

[mijqj + (1 − mij)] < k (8)

Next, introducing the binary variable ρi in inequality (8),
the expression (9) is obtained, which is equivalent to the
ARR selector in (7).

k
∑

j=1

[mijqj + (1 − mij)] − kρi ≥ 0 (9)

Note however that expression in (9) implies that:

ARR i is not valid → ρi = 0

whereas the reverse is not true. This means that ρi can be
viewed as a dummy variable in the optimization problem.
This variable is forced to zero as long as the corresponding
ARR is non-selectable.

Now, equation (9) is linear. Therefore, it is suitable for
BILP formulation. Equation (9) can be extended to all
the n ARRs, and written in vector form as:







mi1 · · · mik

...
. . .

...
mn1 · · · mnk













q1

...
qk






−k







ρ1

...
ρn






+







β1

...
βn






≥ 0n×1 (10)

where βi =
∑k

j=1(1 − mij) for i = {1, · · · , n}. Finally,

equation (10) can be written in a compact form as:

[−M kIn ]

[

q
ρ

]

≤ β (11)

where vector ρ = [ ρ1 · · · ρn ]
T

is the set of ARR selectors

and β = [ β1 · · · βn ]
T

is a vector of coefficients.

Expression (11) has the same form as (2). Furthermore, the
optimization variable vector is augmented by including the
ARR selector, i.e. x = [qT ρT ]T .

Given the example in (6), equation (11) becomes:











0 −1 −1 3 0 0 0 0
−1 0 0 0 3 0 0 0
0 0 −1 0 0 3 0 0
−1 −1 −1 0 0 0 3 0
−1 0 −1 0 0 0 0 3











·





















q1

q2

q3

ρ1

ρ2

ρ3

ρ4

ρ5





















≤











1
2
2
0
1











(12)

3.2 Fault detectability constraint

A fault is structurally detectable if there exists at least one
ARR that can be affected by this fault. Hence, the ARR
selector plays an important role since all non-selectable
ARRs must be rejected from the detectability study.

Since system and sensor faults are considered in this paper,
the number of equations needed to check fault detectability
is l + k. Next, both type of constraints are deduced.

System faults detectability

Given a fault j, the following expression holds:

a system fault j is detectable ↔
n

∑

i=1

(fijρi) ≥ 1 (13)

Equation (13) can be extended to all system faults, and
written in compact form as:

[

0l×k −FT
]

[

q
ρ

]

≤ −1l×1 (14)

Therefore, the set of system faults is detectable if con-
straint (14) holds.

Following with the example in (6), equation (14) becomes:

[

0 0 0 0 −1 −1 −1 0
0 0 0 −1 0 0 −1 −1

]

·





















q1

q2

q3

ρ1

ρ2

ρ3

ρ4

ρ5





















≤

[

−1
−1

]

(15)

Sensor faults detectability

A similar expression to (13) is used for sensor fault
detectability:

a sensor fault j is detectable ↔

n
∑

i=1

(fqij
ρi) ≥ qj (16)

Note that for a non-installed sensor, the right hand side of
inequality (16) becomes 0, meaning that no detectability
property is expected for this sensor fault. However, as long
as a sensor is chosen for installation, equation (16) becomes
similar to (13).

Equation (16) can be extended to all sensor faults, and
written in compact form as:



[

Ik −Fq
T

]

[

q
ρ

]

≤ 0k×1 (17)

Thus, the sensor fault detectability constraint for the
example in (6) is:

[

1 0 0 0 −1 0 −1 −1
0 1 0 −1 0 0 −1 0
0 0 1 −1 0 −1 −1 −1

]

·





















q1

q2

q3

ρ1

ρ2

ρ3

ρ4

ρ5





















≤

[

0
0
0

]

(18)

3.3 Fault isolability constraint

Two faults are structurally isolable if their corresponding
signatures in the FSM are different. This is true as long
as ARR-based exoneration is assumed (Travé-Massuyès
et al., 2006).

Since system and sensor faults are considered in this
paper, the number of equations needed to check fault
isolability is Cl+k

2 . Next, three types of constraints are
deduced depending on whether system or sensor faults are
considered.

Fault isolability between system faults

Given two system faults j1 and j2, inequality (19) holds
as long as their signatures in the FSM are different.

two system faults

j1 and j2 are isolable
↔

n
∑

i=1

|fij1 − fij2 |ρi ≥ 1 (19)

Equation (19) can be extended to any combination of two
system faults, and written in compact form as:

[

0Cl
2
×k −FI1

T
]

[

q
ρ

]

≤ −1Cl
2
×1 (20)

where FI1 = [fI1 im] is a n × Cl
2 matrix with:

fI1 im = |fij1 − fij2 | ∀j1, j2 ∈ {1, . . . , l} : j1 < j2 (21)

where m indexes in lexicographical order the Cl
2 system

faults combinations.

Following with the example in (6), equation (20) becomes:

[ 0 0 0 −1 −1 −1 0 −1 ] ·





















q1

q2

q3

ρ1

ρ2

ρ3

ρ4

ρ5





















≤ [−1 ] (22)

Fault isolability between system faults and sensor faults

Isolability involving a sensor fault depends on whether the
corresponding sensor is considered for installation or not.
So, the condition for isolability between a system fault and
a sensor fault can be stated as:

a system fault j1 and a

sensor fault j2 are isolable
↔

n
∑

i=1

|fij1 − fqij2
|ρi ≥ qj2

(23)

Note that for a non-installed sensor, the right hand side
of inequality (23) becomes 0, meaning that no isolability
property is expected for this sensor fault. However, as long
as a sensor is chosen for installation, equation (23) becomes
similar to (19).

Equation (23) can be extended to any pair of system fault
and sensor fault, and written in compact form as:

[

G2 −FI2
T

]

[

q
ρ

]

≤ 0l·k×1 (24)

where G2 is the following l · k × k matrix:

G2 = [ Ik Ik · · · Ik ]
T

(25)

and FI2 = [fI2 ip] is a n × l · k matrix with:

fI2 ip = |fij1 − fqij2
|

{

∀j1 ∈ {1, . . . , l}

∀j2 ∈ {1, . . . , k}
(26)

where p indexes in lexicographical order the cartesian
product of the system faults set and the sensor faults set.

Remark that matrix G2 is used to involve the correspond-
ing sensor in (23) according to the index j2 used to build
matrix FI2 .

Remind that in the example given in (6), k = 3 and l = 2.
Therefore equation (24) becomes:















1 0 0 0 0 −1 0 −1
0 1 0 −1 −1 −1 0 0
0 0 1 −1 −1 0 0 −1
1 0 0 −1 −1 0 0 0
0 1 0 0 0 0 0 −1
0 0 1 0 0 −1 0 0















·





















q1

q2

q3

ρ1

ρ2

ρ3

ρ4

ρ5





















≤















0
0
0
0
0
0















(27)

Fault isolability between sensors faults

Now the isolability condition involves two sensor faults,
so it depends on whether both sensors are considered
for installation. The condition for isolability between two
sensor faults can be stated as the following non-linear
inequality:

n
∑

i=1

|fqij1
− fqij2

|ρi ≥ qj1qj2 (28)



Note that as long as both sensors are not selected for
installation, the right hand side of inequality (28) becomes
0, meaning that no isolability property is expected between
their corresponding sensor faults. However, as long as both
sensor are selected for installation, equation (28) becomes
similar to (19).

Equation (28) can be transformed into the equation in
(29), which is an equivalent linear constraint.

two sensors faults

j1 and j2 are isolable
↔

n
∑

i=1

|fqij1
−fqij2

|ρi ≥ qj1 +qj2 −1

(29)

Note that the left hand side of the equation in (29) is non-
negative, so this constraint will only become active when
both sensors are selected for installation.

Equation (29) can be extended to any combination of two
sensor faults, and written in compact form as:

[

G3 −FI3
T

]

[

q
ρ

]

≤ 1Ck
2
×1 (30)

where G3 is the following Ck
2 × k matrix:

G3 =





























1
...
1

Ik−1

0
...
0

1
...
1

Ik−2

...
0 · · · 0 1 1





























(31)

and FI3 = [fI3 ir] is a n × Ck
2 matrix with:

fI3 ir = |fqij1
− fqij2

| ∀j1, j2 ∈ {1, . . . , k} : j1 < j2 (32)

where r indexes in lexicographical order the Ck
2 sensor

faults combinations.

Remark that matrix G3 is used to involve the correspond-
ing pair of sensors in (29) according to the indexes j1 and
j2 used to build matrix FI3 in (32).

Finally, the last constraint is applied to the example in
(6), so equation (30) becomes:

[

1 1 0 −1 −1 0 0 −1
1 0 1 −1 −1 −1 0 0
0 1 1 0 0 −1 0 −1

]

·





















q1

q2

q3

ρ1

ρ2

ρ3

ρ4

ρ5





















≤

[

1
1
1

]

(33)

4. PROBLEM FORMULATION

4.1 Sensor placement optimization

Once detectability and isolability constraints have been
introduced, the optimal sensor placement for FDI can be
formally presented. The full problem is formulated as:

min
[qT ρT ]

[cT 01×n]

[

q
ρ

]

subject to: (34)

















−M kIn

0l×k −FT

Ik −Fq
T

0Cl

2
×k −FI1

T

G2 −FI2
T

G3 −FI3
T

















[

q
ρ

]

≤















β
−1l×1

0k×1

−1Cl
2
×1

0l·k×1

1Ck
2
×1















(35)

[qT ρT ] is binary (36)

Constraint (35) is the concatenation of (11), (14), (17),
(20), (24) and (30) respectively, where all the matrices
involved have been previously defined.

The number of rows (i.e., constraints) in (35) is the
following:

• The ARR selector constraints (11) involve n rows.
• The detectability constraints (14) and (17) involve

l + k rows.
• The isolability constraints (20), (24) and (30) involve

Cl
2 + l · k + Ck

2 = Cl+k
2 rows.

The cost vector of the objective function is extended as a
result of including ρ in the variable vector. Since the goal
is optimizing the set of sensors, the costs related to the
ARR selector, ρ, are set to zero. Hence, ρ is regarded as a
dummy vector.

Following with the example in (6), the sensor placement
problem for FDI is formulated as the BILP problem in
(34)-(36), taking into account the constraints obtained in
the previous sections. The following cost vector is con-

sidered [ 1 1 1 0 0 0 0 0 ]
T
. Thus, the objective function

seeks the minimization of the sensor set cardinality. The
optimization problem is solved using the bintprog func-
tion in Matlab. The result is the optimization vector

[ 1 0 1 0 1 1 0 1 ]
T
. This means that sensors q1 and q3 are

required for installation and that selectable ARRs 2, 3 and
5 are sufficient to attain fault detectability and isolability
among system and sensor faults.

In this example, a solution has been found that satisfies de-
tectability and isolability of all concerned faults, following
the assumption stated in Section 2. However, this assump-
tion could not always hold. If detectability and isolability
of all concerned faults are not attainable with any sensor
configuration, then maximum detectability and isolability
specifications should be determined. Then, the rows in (35)
that involve undetectable faults or non-isolable pairs of
faults should be removed from the constraints set in order
to make the optimization problem feasible.
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Fig. 1. Two-tank system

4.2 Sensor placement optimization with minimal set of
ARR

The BILP optimization stated in (34)-(36) can be ex-
tended to optimize the selected ARRs. This requires set-
ting a cost for each ARR in the cost vector of the objective
function. Therefore, the optimization problem will be ex-
pressed as follows:

min
[qT ρT ]

[cT c′
T
]

[

q
ρ

]

subject to: (35) and (36)

(37)

where c′ is a column-vector of n ARR costs.

There exist several reasons for optimizing the set of ARRs.
For instance, minimizing the number of chosen ARRs,
minimizing their complexity in terms of the number of
equations involved in their computation, or even, maxi-
mizing their sensitivity or robustness.

Usually, the main goal will be to optimize the sensors set
and then, once a minimal sensor set is ensured, optimize

the ARR set. Thus, given c′ =
[

c′1 · · · c′n
]T

, condition
(38) must be fulfilled to satisfy this requirement.

n
∑

i=1

c′i < cj ∀cj ∈ c, j ∈ {1, . . . , k} (38)

5. APPLICATION TO A TWO-TANK SYSTEM

In this section, the BILP formulation developed in the
previous sections is illustrated through a two-tank system
example. The same aplication has already been used in
Sarrate et al. (2007) when solving the sensor placement
problem for FDI, but using non-linear constrains.

The system is made up of two tanks interconnected by
a pump and a valve. A schematic representation of the
system is shown in Fig. 1.

The system can be equipped with two level sensors mea-
suring liquid heights in the tanks hu and hl, and two flow-
rate sensors measuring qp and qv. The inputs variables up

Table 1. Incidence Matrix

Unknown variables
hu hl qp qv up uv

e1 1 1 1
e2 1 1 1
e3 1 1 1 1
e4 1 1 1
e5 1
e6 1
e7 1
e8 1
e9 1
e10 1

Table 2. Faults of the Two-Tank System

Fault Description Affected equation

fu upper tank leak e1

fl lower tank leak e2

fhu
wrong upper tank level sensor reading e5

fhl
wrong lower tank level sensor reading e6

fqp wrong pump flow sensor reading e7

fqv wrong valve flow sensor reading e8

fup wrong pump control input sensor reading e9

fuv wrong valve control input sensor reading e10

and uv can also be measured. The flow in the pump, qp,
depends on both levels, hu and hl, and the input to the
pump, up. The flow in the valve, qv, depends on the upper
tank level, hu, and the input to the valve, uv.

The non-linear dynamic equations describing the process
behavior and the sensor equations that relate the unknown
variables with the measurements are all gathered in (39).
Su and Sl are the upper and lower tank sections respec-
tively. ha is the height difference between both tanks. cp

and cv are the pump and valve constants, respectively.
Finally, ρ is the liquid density and g is the standard gravity.

e1 : ḣu =
1

Su

(qp − qv)

e2 : ḣl =
1

Sl

(qv − qp)

e3 : qp = cpsgn(∆p)
√

|∆p|
with ∆p ≡ fp(up) − ρg(ha + hu − hl)

e4 : qv = cvfv(uv)
√

ρghu

e5 : hu = hu,measured

e6 : hl = hl,measured

e7 : qp = qv,measured

e8 : qv = qp,measured

e9 : up = uv,measured

e10 : uv = up,measured

(39)

The incidence matrix describing the structural model that
corresponds to (39) is depicted in Table 1.

Six sensor faults are considered, as well as two system
faults: leaks in the upper and lower tanks. Table 2 lists all
possible faults along with their corresponding descriptions,
and the equation affected by them.

Given the structural model depicted in Table 1, 35 ARRs
can be found. For further information on methods devoted
to finding ARRs see Krysander et al. (2008), Travé-
Massuyès et al. (2006) and Pulido and Gonzalez (2004).
Then, taking into account which equation is related with



Table 3. Optimal set of ARRs

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

ARR9 0 1 1 1 0 1 0 1 1 1
ARR18 1 0 1 1 0 1 0 1 1 1
ARR23 1 1 0 1 0 1 0 1 0 1
ARR27 1 1 1 0 0 1 0 1 1 0
ARR32 1 1 1 1 0 0 0 1 1 1

Table 4. FSM for the optimal set of ARRs

fu fl fhl
fqv fup fuv

ARR9 0 1 1 1 1 1
ARR18 1 0 1 1 1 1
ARR23 1 1 1 1 0 1
ARR27 1 1 1 1 1 0
ARR32 1 1 0 1 1 1

each sensor or fault, matrices M , F and Fq can be
extracted 1 .

If all candidate sensors were installed, it would be straight-
forward to check that all faults are detectable and isolable
(assuming ARR-based exoneration): it suffices to verify
that all columns in F and Fq have at least a ’1’, and that
every possible pair of columns is different. So, an optimal
sensor placement problem can be posed, since it should
have at least that feasible solution.

The following sensor cost c = [ 140 100 135 130 145 110 ]
T

is taken, with the costs being assigned following the order
of measurable variables given in Table 1. Regarding the
ARRs set, a cost is assigned according to the number of
system equations (i.e., e1,e2,e3,e4) that each ARR relates
with. This cost tries to penalize the complexity of ARRs,
in terms of number of systems equations involved. Remark
that condition (38) is fulfilled by every sensor cost, since

for this example
∑35

i=1 c′i = 91.

The BILP optimization is solved using the bintprog func-

tion in Matlab. The result is q∗ = [ 0 1 0 1 1 1 ]
T
. There-

fore, the optimal subset of sensor is {hl, qv, up, uv}. More-
over, an optimal subset of ARRs is found, that depends
on these sensors and guarantees fault detectability and
isolability, see Table 3. The corresponding FSM is shown in
Table 4. Remark that all faults are detectable and isolable.

6. CONCLUSIONS

In this work, a new methodology to solve the sensor
placement problem for FDI has been addressed. The sen-
sor placement problem has been presented formally as a
binary variable problem. The novelty is that BILP stan-
dard formulation is used, therefore standard algorithms
to solve BILP optimization can be used. The advantage
is that these algorithms are deeply developed and their
branch and bound search is well-studied, leading to a fast
resolution in the majority of cases. Even so, the worst
case scenario would lead to a search of all the 2n possible
binary vectors of n elements. However, the authors believe
that the use of a structural model together with the well-
developed optimization solver tools existing in the market
make this approach suitable for handling large-scale sys-
tems in many cases.

1 Due to the size of such matrices (i.e., 35 rows), they are not shown
in the paper.

Furthermore, the ARRs optimization has been included in
the sensor placement problem with no extra effort, so that
the most convenient set of ARRs are also selected.

The authors are aware that the ARR-based exoneration
assumption may be unrealistic in many cases. However,
this method could be easily extended to the case when
a residual does not always cross the threshold at fault
occurrence. Fault isolability should then be stated as in
Krysander and Frisk (2008). It should be reformulated as
a linear binary constraint, and included in the optimization
problem.

The sensor placement problem based on a BILP formu-
lation could also be extended to diagnostic specifications
other than fault detectability and isolability (e.g. robust-
ness), as long as they could be formulated as linear in-
equality constraints.

The main drawback of the present approach is that the
complete ARRs set must be provided beforehand. It is
known that generating the whole set of ARRs is a compu-
tationally complex task. Future works might be improved
by solving the BILP optimization without the need of gen-
erating such ARRs set. An incremental ARR generation
approach (Rosich et al., 2007) or an approach based on
the Dulmage-Mendelsohn decomposition (Krysander and
Frisk, 2008) could be applied, for instance.
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L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosabil-
ity analysis based on component supported analytical
redundancy relations. IEEE Trans. Syst., Man, Cybern.
A, 36(6):1146–1160, 2006.

Laurence A. Wosley. Integer Programming. John Wiley &
Sons, New York, USA, 1998.

A. A. Yassine, S. Ploix, and J. M. Flaus. A method
for sensor placement taking into account diagnosability
criteria. Int. J. Appl. Math. Comput. Sci., 18(4):497–
512, 2008.


