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ABSTRACT

This work aims to study which sensors are
required to be installed in a process in or-
der to improve certain fault diagnosis spec-
ifications. Especially, the present method
is based on structural models, thus sys-
tem models that involve a wide variety
of equations (e.g. linear, non-linear alge-
braic, dynamics) can be easy handled. The
use of structural models permits to define
the diagnosis properties from the Dulmage-
Mendelsohn decomposition, avoiding in this
way the computation of any minimal re-
dundant subsystem. Furthermore, in the
present paper, the cost of the sensor configu-
ration is considered, therefore the proposed
method attempts to find not all the possible
solution but the optimal one. The optimal
search is efficiently performed by developing
an algorithm based on heuristic rules which,
in general, allow to significantly reduce the
search. Finally, the presented method is ap-
plied to an electronic circuit as an illustra-
tive example and some special conclusions
are highlighted.

1 INTRODUCTION

Designing an efficient diagnosis system may not
be done after the system has been designed, but it
can be done from the system design. Indeed, it is
known that the performance of a diagnostic sys-
tem strongly depends on the number and on the
location of actuators and sensors. Therefore, de-
signing a system that has to be diagnosed not only
require relevant fault diagnosis procedures but also
efficient sensor placement algorithms.

First works on sensor placement for fault diag-
nosis can be found, for instance, in Madron and
Veverka [1992], where a sensor placement method
which deals with linear systems is proposed. This
approach makes use of the Gauss-Jordan elimina-
tion method to find a minimum set of variables to

be measured. Another method for sensor place-
ment was proposed in Maquin et al. [1997]. This
method aims at guaranteeing the detectability and
isolability of sensor failures. The proposed method
is based on the concept of redundancy degree in
variables and on the structural analysis of the sys-
tem model.

Recently, some new works on this topic have
been published. This is the case of, for exam-
ple, Travé-Massuyes et al. [2006] and Rosich et al.
[2007] where methods that requires the design of
Analytical Redundancy Relations (ARR) [Blanke
et al., 2006] are developed. In Commault et al.
[2006], a method based on directed graph and a
class of separators is presented. In Krysander and
Frisk [2008] an efficient method based on a partial
order on the well-determined subsets from a struc-
tural model has been proposed. Another sensor
placement method without designing ARRs has be
presented in Yassine et al. [2008a] and Yassine et
al. [2008b]. All these works have in common that
the model is described by a graph, which means
that only the structure of the model is regarded.

The cited works present different approaches
where diagnosis properties are characterised to be
easily handled when sensor placement problem is
formulated. However, none of them aims to effi-
ciently find the solution when the number of sen-
sors to be considered grows.

On the other hand, there are some works that
formulate the sensor placement problem as a
mixed integer linear programing since the nature
of the problem is combinatorial. In Rosich et al.
[2009] and Fijany and Vatan [2006], two similar
methods are presented where fault detectability
and isolability are defined by means of linear in-
equality constraints. Although the sensor search
of these works is quite efficient, the main drawback
is that all the ARRs need to be previously gener-
ated with all the possible sensors installed. This
yields serious computing restrictions when the set
of possible sensors is large.

The present paper introduces a sensor place-
ment method which first defines diagnosis spec-
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ifications based on structural model properties.
Specifically, fault detectability, discriminability
and diagnosability are characterised by means
of the Dulmage-Mendelsohn decomposition [Dul-
mage and Mendelsohn, 1959], [Murota, 2000]. The
second aim is to develop an efficient algorithm in
order to find the optimal sensor set such that di-
agnosis specifications are fulfilled.

The structure of this paper is the following. Sec-
tion 2 motivates the problem, as well as some
guidelines on sensor modelling are given and the
fault diagnosis capabilities of the structural mod-
els are introduced. Section 3 addresses how to
compute such diagnosis capabilities. Next, Section
4 is devoted to testing whether diagnosis specifica-
tions are fulfilled. In Section 5, the optimal sensor
search is motivated and introduced. Finally, in
Section 6 an application example is presented and
in Section 7 conclusions are drawn.

2 SENSOR PLACEMENT PROBLEM
FOR DIAGNOSIS

2.1 Sensor placement motivation

The solution of a diagnostic problem is generally
decomposed into two consecutive steps. The first
step is known as fault detection also called con-
flict or symptom generation, and the second step
is known as fault isolation or diagnostic analysis.
In structural model based diagnosis, the fault de-
tectability and isolability capabilities can be deter-
mined, from a theoretical point of view, by means
of the minimal testable subsets of constraints.

The minimal testable subsets can be obtained
from constraint combinations using possible con-
flict generation [Pulido and Alonso, 2002], bi-
partite graph [Blanke et al, 2006], Dulmage-
Mendelsohn decomposition [Krysander et al.,
2008] or elimination rules [Ploix et al., 2008]. An
inconsistency in a minimal testable subset means
that, at least, one of the behavior modes associ-
ated to this constraint subset is not actual. There-
fore, tracing which constraints belongs to a mini-
mal testable subset makes possible to identify the
detectable faults and the isolable faults. In Travé-
Massuyes et al. [2006], it is shown that the family
of minimal testable subsets depends on the obser-
vations from the available sensors installed in the
system, thus it turns out that diagnostic perfor-
mance also depends on these sensors.

Additional sensors lead to additional minimal
testable subsets. Given some diagnosis specifica-
tions, one possible approach is to test on the set
of testable subsets whether the performance of the
diagnostic system satisfies the requested specifica-
tions. When they are not satisfied, the minimal
testable subsets are modified by adding more sen-
sors and the process is repeated once again until
specifications are reached. This strategy is carried
out, for example, in Travé-Massuyes et al. [2006]
and Rosich et al. [2007]. However, this approach
requires lots of computations due to the genera-
tion of testable subsets is time demanding.

A different approach for sensor placement is pro-
posed in this paper which does not require the

computation of minimal testable subsets. The
present method solves the sensor placement prob-
lem by computing the diagnosis capabilities di-
rectly from the model structure. Hence, the
minimal testable subset computation burden is
avoided.

Given a structural model, a set of candidate sen-
sors to be installed in the system and a cost asso-
ciated to each sensor, the problem to be solved in
the present paper can be summarized as finding
the optimal sensor configuration such that the re-
quested diagnosis specifications are guaranteed by
the structural model properties.

2.2 Behavioral sensor modelling

The behavior model of a system can be defined as
a set of relations which constrains the domain of
a set of system variables, V. This relations are
then modelled by a constraint set, K, where each
constraint, £ € K, in the model involves a subset
of variables in V. In a component-oriented model,
these constraints are associated to the components
of a system, thus knowing the behaviour model of
a component is straightforward by just selecting
those constrains associated with the component.
In the present work we will consider sensor as a
components of the system, which means that each
sensor has to be associated with some model con-
straint. Let obs(v) be the observed value acquired
by a sensor which is measuring the variable v € V,
then the corresponding model of the sensor is

v —obs(v) =0 (1)

Equation (1) is called sensor constraint and rep-
resents the behavior model of the sensor compo-
nent. Therefore, a sensor will be regarded installed
in the system as long as its corresponding sen-
sor constraint is included in the system model. A
consequence of using sensor constraints to model
sensors, is that all system variables V' needs to be
considered as unknown. It is worth noting that the
major works devoted to sensor placement for diag-
nosis use the same strategy to handle sensors, e.g.
Krysander and Frisk [2008], Rosich et al. [2007]
and Yassine et al. [2008a].

2.3 Diagnosis specifications

In this section diagnosis specifications used
throughout the paper are introduced. First, how-
ever, it is assumed without loss of generality, that
a fault can only affect one model constraint. This
implies that when a fault occurs in the system,
only one constraint may become inconsistent with
the observation. Hence, a one-to-one relation-
ship between faults and model constraints is es-
tablished. This allows to characterise the diagno-
sis capabilities by just regarding the constraints of
the model.

Furthermore, the structure of the model (or the
structural model) will be used to derive the diag-
nosis properties. A structural model is a simplified
description of analytical model where only counts
which variables depend on which equations. The
structural model can therefore be represented by
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a bipartite graph (Blanke et al. [2006]) where K
is one set of constraint nodes, V is the other set
of variable nodes and A is the set of edges that
connect constraints with variables according to

A={(k,v) | k€ K dependsonv e V} (2)

The structural model permits to extend some
diagnosis properties to properties of the Dulmage-
Mendelsohn decomposition [Dulmage and Mendel-
sohn, 1959], [Murota, 2000]. This decomposition
decomposes the structural model in the under-
constrained part K —, the just-constrained part K°
and the over-constrained part K. In Blanke et al.
[2006], it was first noticed that fault detectability
is strongly related with the over-constrained part,
and in Krysander and Frisk [2008] this concept was
further developed by also regarding fault isolabil-
ity. Following these works, detectability, discrim-
inability and diagnosability are defined by means
of the properties of the Dulmage-Mendelsohn de-
composition on the structural model K.

Definition 1 (Detectable constraint) A con-
straint k € K 1is detectable if

ke Kt (3)

Equation (3) implies that at least it exists one
minimal testable subset K/ C K such that k& €
K'. Therefore, it can be guaranteed, theoretically
speaking, that the inconsistency of a detectable
constraint will be detected by at least one minimal
testable subset.

Definition 2 (Discriminable constraints)

Two different constraints ki,ko € KT are
discriminable if

k€ (K \ {k2})" (4)

This implies that for k; and ks to be discrim-
inable between them, it must exist at least two
minimal testable subsets, K’, K" C K, such that
ki € K' and ko ¢ K' as well as ko € K" and
ki1 € K"”. Also note that the discriminable con-
straint definition is the same as the fault isolability
definition used by Krysander and Frisk [2008].

Definition 3 (Diagnosable constraint) A de-
tectable constraint k € K+ is diagnosable if

(KN\{k})T = KF\ {k} (5)

This definition ensures that no other model con-
straint belongs to the same minimal testable sub-
sets as the diagnosable constraint k& belongs to.
In some sense, diagnosability can be viewed as a
special case of discriminability where all the re-
maining model constraints are involved, i.e. all
the equations in K+ \ {k} are discriminable from
k.

Diagnosis specifications dealing with detectabil-
ity, discriminability and diagnosability are repre-
sented by:

e the set of constraints, K}F7°, that must be at
least detectable.

e the collection, K75, of constraints sets such
that two constraint from different sets must

be discriminable.

o the set of constraints, Kj7 ~, that must be
diagnosable.
Note that, according to these definitions, the di-

. . . spec spec spec
agnosis specifications K ; pe K and K "~ are

meaningful if the two following expressions hold,
K,NK;=10
for K, K; € (KSW U {KSP“});z' £ (6)

disc diag
( U W)UK CK CK (7)
KieKspec

disc

Expression (6) avoids discriminating or diagnos-
ing between the same equation, which is impos-
sible for obvious reasons, therefore it is imposed
that all the constraint sets in K75 together with

K i, must be disjoint. Expression (7) ensures
that both diagnosable and discriminable compo-
nents are also detectable, according to Definition
2 and Definition 3. If these properties are satis-
fied, the diagnosis specifications are qualified as
consistent in K.

3 COMPUTING DETECTABILITY,
DISCRIMINABILITY AND
DIAGNOSABILITY

The computation of the detectable, discriminable
and diagnosable sets is done by means of the
Dulmage-Mendelsohn decomposition. According
to Definition 1, the under-constrained and the
just-constrained parts, K~ and K9, of the model
are the parts that only contain non-detectable con-
straints. Therefore, it is only needed to obtain the
over-constrained part in order to determine the set
of detectable constraints, i.e. Kger = K.

Given an over-constrained (detectable) set of
constraints K+, the discriminable and diagnos-
able constraints can be computed by regarding the
equivalent class defined in Krysander et al. [2008].
Constraints ki, ks € KT are in the same equiva-
lent class if the equivalent relation between k1 and
ko defined by

ko & (K\ {k1})" (®)

holds.  This means that the over-constrained
part, KT of the model can be partitioned in
(Ky,...,K,) equivalent classes. Then, according
to (8), if K; only involves one constraint (| K;| = 1)
then this constraint is diagnosable, whereas if K;
involves more than one constraint (|K;| > 1) then
these constrains are pairwise non discriminable,
i.e. all the constraints in K; come together in a
minimal testable subsets. Such sets with cardi-
nality greater than one are named linked blocks in
Yassine et al. [2008a].

To compute an equivalent classes from a set of
detectable constraints K 4.; it suffices to see which
constraints are not in the over-constrained part
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at removing one constraint, k € Kge:. Due to
K et is an over-constrained set (it has no under
and just-constrained parts), the equivalent equa-
tions appear to the just-constrained part when k
is removed. Therefore, an equivalent class can be
computed as

Ki = (Kaer \ {k})° U {k} 9)

Algorithm 1 computes the detectable con-
straints set, Kge, the discriminable constraint
sets, Kgise, and the diagnosable constraint set,
K diag, within a structural system model K. The
algorithm first determines the set of detectable
constraints K4.;. Once the detectable set is found,
then all the equivalent classes are computed from
Kget- The equivalent classes (K,...,K,) are
computed by applying (9). Then, the computed
equivalent class K; is inserted into the Kg;s. or
the Kg;qg according to the number of constraints
involved in it.

Algorithm 1

(Kdet; Kdism Kdiag) = decompose(K)

Find the different subsets of constraints in K ac-
cording to definitions 1, 2 and 3

Require: A structural model K
Kdet — KJr
Kdisc — (Z)
diag <
K' — Kdet
1+— 1
while K’ # () do
Select k € K’
Ki — (Kot \ {k})° U {k}
if |K;| > 1 then
Kdisc — Kdisc U {Kz}
end if
if |[K;| =1 then
Kdiag — Kdiag U {Kz}
end if
K' — K'\K;
t— i+ 1
end while

Note that when an equivalent class is found by
removing a constraint it is not necessary to repeat
the procedure with the remaining constraints in
the equivalent class since the same set would be
found more than once. This is avoided with the
variable in K’ which is a stack of possible con-
straints that can be removed. When an equiva-
lent class K; is found, its constraints are removed
from K’, thus no repeated equivalent classes are
found. Algorithm 1 is motivated from Krysander
et al. [2008] where equivalent classes are computed
using similar proceeding.

4 TESTING DIAGNOSIS
SPECIFICATIONS

Consider a system modeled by a constraint set K,
where Kger, Kyisc and Kgiqg represents the di-
agnosis performance of the system, while K}/,

Kiiee and K327 are the required specifications. Tt

is obvious that if K77 = Kger, KJFo. = Kgise and

K;fae; = Kyiag then it can be stated that diagno-
sis specifications are fulfilled. However, there are
other cases where diagnosis specifications are also
fulfilled.

For instance, when the system has more de-
tectable constraints than the ones specified, i.e.

Kaer™ € Kaet (10)

the detectability specifications are also fulfilled
since there is no inconvenience for having extra
detectable constraints.
Similar reasoning can be applied for the diag-
nosable constraints, therefore if
King € Kaiag (11)
the diagnosability specifications are fulfilled.
The case concerning discriminable constraints is
a bit more complex since sets of non-discriminable
constraints are handled. Given a set of non-
discriminable constraints K € Kg;s., this set ful-
fils specifications if there exists at most one set
K' € KIS such that it shares a constraint with
K, otherwise it would mean that specified discrim-
inable constraint are non-discriminable. This can
be extended to all the set in K’'<7, thus discrim-
inability specifications are fulﬁlfled if
HK'e KFESIKNK #£03 <1 (12)

disc
for each K € Ky;sc.

According to the expressions in (10), (11) and
(12), the diagnosis specifications are not fulfilled
as long as a specified detectable constraint be-
comes non-detectable or a specified diagnosable
constraint becomes non-diagnosable (i.e. is non-
detectable or belongs to any set K € Ky;s..), or two
specified discriminable constraints become non-
discriminable (i.e. are non-detectable or both con-
straints belong to the same set K € Kyjs.). Oth-
erwise the diagnosis specifications are fulfilled and
expressions in (10), (11) and (12) hold.

Example 1 Assume a system model with 10 con-
straints, K = {ky,...,k10} with the following di-
agnosis specifications

K;stec = {/{:1, koy. .., ks}
K0 = {{k1, k2, ks}, {ka, ks }}
King = {6}

After computing diagnosis performance by means
of Algorithm 1, the following sets are obtained:

Kaet = {k1, k2, ..., k10}
Kaise = {{k2, k3}, {ka, ks}, {ks, ko}, {k7, k10}}
Kaiag = {k1, ke }
which, according to (10), (11) and (12) the speci-
fications are fulfilled.

Algorithm 2 tests whether the diagnosis specifi-
cations are fulfilled for a possible set of sensors to
be installed in the system. The set S of candidate
sensors contains the system variables in V' that
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will be measured. Therefore, given the set S, it is
straightforward to construct the model of the sys-
tem with the sensors installed in it by just adding
the corresponding sensors constraint (see (1)) to
the original model. Once the model with the sen-
sor is obtained, the diagnosis properties are com-
puted by means of Algorithm 1. Then detectabil-
ity, diagnosability and discriminability specifica-
tions are verified according to (10), (11) and (12),
respectively.

Algorithm 2

. . spec spec spec
isFeasible(K, S, K0, KU, Kdiag)

Check whether the sensor placement satisfies the
specifications

Require:
1. A structural model K.
2. A set of candidate sensors S C V.
3.S e s eCThe diagnosis specifications,
Kdgt ) Kd}i)sc ’ Kdiag in K. .
Construct the sensor constraints Kg from S
(Kdet, Kaisc, Kdiag) = decompose(K U Kg)
if (KP7°Z Kget) then
return false
end if
if (K;f;; Z Kgiag) then
return false
end if
for K € Ky;s. do
if {K' e KP:O| KNK'# 0} > 1 then
return fdafse
end if
end for
return true

If the diagnosis specifications are verified then
the set of candidate sensors S is a feasible solution
for the sensor placement problem. Algorithm 2
returns a boolean value indicating whether S is a
feasible configuration.

5 OPTIMAL SENSOR SEARCH
5.1 Search requirements

The sensor placement problem is addressed by
searching the optimal sensor configuration such
that diagnosis specifications are fulfilled when
these sensors are installed in the system. The cost
of sensor can be motivated by several reasons, e.g.
the purchase price, the installation difficulties or
the measurement performances. However, the na-
ture of the problem is combinatorial which means
that exhaustive search are not feasible when the
number of sensors to be considered grows. Here,
to carry out efficiently the optimal search, two reqg-
uisites are imposed:

e requisite 1: Given two sensor candidates S;
and Ss such that S; C Sy then the cost of
S1 must be lower than the cost of Sy. This is
summarised in the next expression

51 C Sy« C(Sl) < C(SQ) (13)

where C'(S) denotes the cost of sensor set S.

e requisite 2: If the sensor set S does not fulfil
diagnosis specifications then no subset of S
can fulfil diagnosis specifications, i.e.

S is not a solution — S’ is not a solution
(14)
for any S’ C S.

It is assumed, for the sake of simplicity, that the
cost C(s) of installing a sensor s € S is a positive
real number. The cost of a sensor configuration .S
is defined as

C(S) =Y Cl(s) (15)

ses

Therefore, using the cost function in (15), requisite
1 is satisfied.

Concerning the requisite 2, in Travé-Massuyes
et al. [2006] it is shown that given the family of
minimal testable subsets generated with S sen-
sors installed in the system, any sensor configu-
ration S’ such that S’ C S produces a subfamily
of such minimal testable subsets, i.e. all the min-
imal testable subsets generated with S’ are also
generated with S. Hence, it results that when S
does not fulfil diagnosis specification, neither ful-
fils S’ since no new minimal testable subset can
be generated. Therefore expression in (14) holds
and requisite 2 is satisfied.

It is important to point out that expression in
(14) does not hold for fault in sensors because
this kind of faults depends on whether the sen-
sor is installed. For instance, consider a sensor
such that its corresponding constraint must be
detectable. Then, it may happen that when the
sensor is installed, its corresponding sensor con-
straint is non-detectable (diagnosis specifications
are not fulfilled), however when the sensor is not
installed the diagnosis are fulfilled since no sen-
sor constraint, detectable or non-detectable, is ex-
pected. Therefore, the present approach is re-
stricted to not handle fault in sensors in order to
preserve requisite 2.

As it will be shown in next section, requisites
1 ans 2 play a fundamental roll to perform the
optimal search efficiently.

5.2 Search strategy

First, the search space containing all the possible
sensors configurations is represented by a graph-
tree. To facilitate the comprehension of how the
optimal search is performed, a small example with
four sensors measuring four system variables, S =
{v1,v2,v3,v4}, is used. The cost of each sensor
in S is respectively [1,5,7,2]. The search space
for this example is depicted in figure 1, where the
sensors are ordered according to decreasing costs,
ie. (vs,v2,v4,v1).

The concept of node which contains two vectors
of sensors is introduced, i.e.

node.S
node.R

node.S contains the candidate sensor configura-
tion and mode.R contains the sensors of node.S
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Figure 1: Search tree for 4 sensors

not yet removed in previous nodes of the same
level. In other words, node.R contains the sensors
that can be removed to create sub-nodes.

Furthermore, an upper bound, B, and a lower
bound, B, are defined for each node. The B is the
cost of the sensor configuration in the node, while
the B is the lowest cost reachable by exploring sub-
nodes. The upper bound of a node is computed
by

B(node) = C(node.S)
and the lower bound by
B(node) = C(node.S) — C(node.R)

Following, the construction of the tree in Fig-
ure 1 is detailed. Given a node, its sub-nodes are
obtained by removing the sensors in node.R one
by one according to decreasing cost order, i.e. the
sensor with the highest cost is firstly removed from
the node, then the next sensor with the highest
cost and so on until the sensor with the lowest
cost is removed from the node. The circled num-
bers in Figure 1 show the sequence to obtain the
whole tree.

The search strategy is based on a deep-first
search by choosing first the nodes with lowest
costs. Throughout the search, the best solution is
updated in S* when a feasible solution with lower
cost than the current best one is found.

The deep-first search is stopped at some node
when

1. the node is not a feasible solution for the
sensor placement problem according to Algo-
rithm 2

2. or the lower bound B of the node is greater
than the cost of the current best solution.

These two conditions are motivated by requi-
sites 1 and 2. According to (14) in requisite 2 and
observing the Figure 1, if a node is not a feasi-
ble solution then its sub-nodes can not be feasible
solutions, therefore the search is cut.

On the other hand, the lower bound B is an in-
dicator of the best cost reachable from a node, i.e.
the lowest cost of its leaf nodes, (see Figure 1).
If condition 2 is fulfilled, i.e. B(node) > C(S*),
then it can be ensured that there is no sub-node
with lower cost than C(S*) since (13) from requi-
site 2 holds along the current node until the leaf
nodes. Therefore, no better solution can exist in
the sub-nodes and the search is also cut.

Algorithm 3 performs recursively the optimal
search for the sensor placement. The algorithm
generates child nodes by removing, according to
the costs, sensors in node.R. The deep-first search
is performed by choosing first the child node
with the lowest cost. If this child node does
not fulfil conditions 1 and 2 then the deep-first
search is not stopped and the algorithm recur-
sively searches in a deeper child nodes. Oth-
erwise, the search is cut (all the sub-nodes are
rejected) and the algorithm moves to the next
child node with the lowest cost and so on un-
til all the child nodes have been tested. Note
that Algorithm 2 is used to verify specifications.
In order to make the algorithm more readable,

the three-sets (K30, Kyiol, Kjivo), of specifica-

tion sets is condensed in the spec variable, i.e

o spec spec spec
spec = (Kdet ’ Kdisc ’ Kdiag)'

Let S be the set of all sensors that can be in-
stalled in the system, then the algorithm is ini-
tialised with node.S = S and node.R = S. It
is also assumed that diagnosis specifications are
fulfilled with all the possible sensors installed in
the system, thus the best solution is initialised as
S* = S. Note that if this assumption does not
hold then there is no possible solution, according
o (14), for the sensor placement problem.

Since all the possible branches in the search are
investigated and cutting operation ensures that no
better solution is missed, the global optimal solu-
tion is ensured. To clarify the proceeding of Al-
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Algorithm 3
S* = searchOpt(node, S*, K, spec)

for all s € node.R ordered in decreasing cost
do
childNode.S — node.S \ {s}
node.R «— node.R\ {s}
childNode.R < node.R
if B(childNode) < C(S*) and
isFeasible( K, childN ode.S, spec) then
if C(childNode.S) < C(S*) then
S* «— (childNode.S)
end if
S* — searchOpt(childNode, S*, K, spec)
end if
end for
return S*

Table 1: Optimal search example

current cutting | best
iteration | node cost |condition |node cost

0 0 15 — 0 15
1 1 8 — 1 8
2 2 3 (1) 1

3 6 6 (1) 1 8
4 8 7 — 8 7
5 9 10 (2) 8 7
6 13 13 (2) 8 7
7 15 14 (2) 8 7

gorithm 3, next example shows how the search is
carried out by the algorithm.

Example 2 Assume the set of four sensors
{v1,v2,v3,v4} with the cost mentioned above. In
order to follow the search, sensor configurations
fulfilling specifications are known beforehand:

{’017027’037’04}5 {vlvaa 1)4}, {1)2,’04},
{U13U23U3}3 {U23U3}a {U23U33U4}

which corresponds, respectively, to nodes 0, 1, 8,
13, 14 and 15 in Figure 1. Table 1 shows the se-
quence that the algorithm uses to find the optimal
solution. After completing the sequence, the algo-
rithm would return node 8 (v1,v2) with a cost of
7 as the optimal solution.

6 APPLICATION

The algorithm for sensor placement summarized in
section 5 has been applied to an electronic circuit
(see Figure 2).

This electronic circuit is modeled by 13 con-
straints and 14 unknown variables. The cor-
responding bi-adjacency matrix which represents
the structural model (Blanke et al. [2006]) is given
in Table 2. For this example, it is assumed that
all the variables can be measured, however differ-
ent sensors costs are assigned in order to represent
preferences at installing sensors. Next table shows
the cost of installing each sensor:

[V 1 Vg U3 V4 11 G2 13 T4 V1g V1b Vic Via Vab
cost [1 444218884 4 4 4 4

capacitor v resistor2
2]
Yo

is

resistor4

||}—-

Figure 2: Scheme of the electronic circuit

Table 2: Structural model of the electronic circuit

Up U1 V2 U3 V4 91 12 13 4 V1g V1b Vie Vdq Vb
k1 X X

X X X X

Let consider, for this example, the following di-
agnosis specifications:

Kaer = {k1, ke, k7, ks, ko, k10, k13 }

Kaise = {{ke}, {k7}, {ks},{ko}, {k10},{k13}}
Kiiag = {k1}

In order to find the cheapest sensor placement
that satisfies specifications, Algorithm 3 is used
and it returns the following result:

. o
S* = {vg, v2,V3, V4,91, %4, V1c}

with a minimal cost C(S*) = 24.

Algorithm 3 was implemented in Matlab and it
lasts 0.7 seconds to find the solution. The number
of possible sensors configuration is 2'4 = 16384,
however the algorithm only visits 190 nodes. 62
nodes out of these 190 need to be tested whether
diagnosis specifications are fulfilled, i.e. the Algo-
rithm 2 receives 62 calls. Only 28 visited nodes do
not cut the search.

7 CONCLUSION

An optimal approach for sensor placement satisfy-
ing diagnosis specifications has been proposed. In
contrast to other approaches, diagnosis specifica-
tions concern fault detectability, discriminability
and diagnosability which are attained by means
of the Dulmage-Mendelsohn decomposition. The
computation of this decomposition has no compu-
tational complexity, thus Algorithm 2, developed
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to test specifications, does not present computa-
tional time problems.

Furthermore, a simple but efficient algorithm
based on heuristic rules has been developed in
order to carry out the optimal solution search.
Thanks to the proposed algorithm, cost opti-
mal sensor placements satisfying diagnosis speci-
fications are possible without designing minimal
testable subsystems a priori. Algorithm 3 has,
in general, theoretically speaking a computational
exponential time. Compared to the other exist-
ing method, it is able to rapidly find an optimal
solution.

Given a set of n candidate sensors, the worst
case appears when the algorithm has to traverse
all the nodes in the upper half part of the lattice
of all the sensor combinations, i.e. 2"/2 nodes
are visited. This case is present when the optimal
solution involves n/2 (or (n—1)/2 if n is odd) sen-
sors, and no cutting operations can be performed
(conditions 1 and 2 are not met) during the search.
This situation implies that the sensor cost is the
same for all the n sensors and, furthermore, any
sensor set involving more that n/2 sensors is a fea-
sible solution (condition 1 is not met), whereas the
remaining set of sensors involving less that n/2
sensors are not feasible solutions (condition 2 is
never applied to cut the search). Hence, the effi-
ciency of the algorithm strongly depends on how
the sensor costs are set.

To take advantage of cutting condition 2, it is
recommended to set the sensor cost as differed
as possible among them. In this way, once a
lower cost solution is found, large branches of sub-
nodes can be pruned from the search tree, leading
to a more efficient search. Therefore, the algo-
rithm can handle, in general, situations where the
number of possible sensors is large. For instance,
the proposed algorithm has been tested in a sys-
tem with 45 possible sensors where a solution has
been found in 15 minutes approximately, whereas
such system is insolvable with other existing ap-
proaches.

To make simpler the approach, it is assumed
that each fault can only effect one constraint or a
sensor has to be modelled by the sensor constraint
in (1). However, these assumptions could be easy
extended to more general cases.

Furthermore, the proposed approach is not able
to handle faults in the sensors that may be in-
troduced to fulfilled diagnosability specifications.
A future extension will be an improvement of
the presented method in order to extend the ap-
proach to diagnosis specifications related to possi-
ble added sensors.
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