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Abstract—Ultrareliable unscheduled communication using

short packets poses novel research challenges for the receiver
design. Here, the uncertainty imposed by the random access
and a large amount of interfering transmissions is the limit-
ing factor for the system performance. Recently, this type of
communication has been addressed in context of simultaneous
wireless information and power transfer (SWIPT). The need to
adapt the power splitting to the signal states according to the
underlying random access has been tackled by introducing a
predictor, which determines the valid states of the received signal
based on the long-term observation. Hence, the power splitting
factor is scaled accordingly in order to guarantee ultrareliable
communication and maximized harvested energy.
In this work, we extend the considered SWIPT scenario by
introducing multiple antennas at the receiver side. Through this,
the received energy can be substantially increased, if the energy
harvesting parameters and the spatial filter coefficients are
jointly optimized. Hence, we propose an optimization procedure,
which aims at maximizing the harvested energy under the
ultrareliability constraint. The mentioned prediction methods
are combined with the optimization solution and the resulting
system performance is numerically evaluated.

1. INTRODUCTION

Co-channel interference from simultaneous transmissions
is one of the main challenges for the design of large commu-
nication networks, such as Internet-of-Things (IoT) or Low
Power Wide Area Networks (LPWANSs) [1]. Typically, the
interfering transmissions are separated via orthogonal multiple
access (OMA) techniques in time, frequency, code or spatial
domain. However, the resulting network throughput reduces
with increasing number of network nodes. In addition, the
packet duration may reach very high values, which might be
very crucial for various aspects of system performance, e.g.
latency, network stability, etc. In order to adapt to the low
throughput of the OMA, the duty cycle of each node needs to
be increased as well. Alternatively, a non-orthogonal multiple
access (NOMA) can be applied in order to accommodate
multiple data streams in one transmission channel, cf. [2].
However, these data streams need to be sufficiently separable,
e.g. in terms of signal power. This separability is usually
limited to only a few parallel data streams. Another solution
is based on random medium access (RMA), which utilizes
unscheduled transmissions from multiple nodes and is known
to have a lower bound for the network throughput, e.g. the
well-known lower bounds of the ALOHA protocols. Unlike
OMA and NOMA, RMA introduces an additional uncertainty
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in terms of packet arrival probability. This uncertainty can
be sometimes exploited in order to improve the reliability of
information decoding, cf. [3]. Furthermore, RMA provides a
substantial flexibility for the design of large communication
networks, since no scheduling is required, which simplifies
the integration of new nodes into the network.

In order to realize RMA, short data packets are transmit-
ted from each node according to the underlying random
process. The discontinuous transmission of short packet has
recently gained attention in the context of ultrareliable low-
latency communication, where extremely low symbol error
probabilities are the main requirement and challenge [4].
In this context, the resource allocation and the accuracy of
channel estimation under the assumed constraints of ultra-
reliability and ultra-low latency are of major interest, cf. [5].
Furthermore, various scenarios have been investigated, e.g.
relaying based transmissions [6], and multiple-input multiple-
output (MIMO) systems [7]. However, all these works pose
hard constraints on the scheduling of transmissions, which
render the proposed methods not applicable to RMA. On the
other hand, a combination of unscheduled short packet trans-
missions and simultaneous wireless information and power
transfer (SWIPT) has been addressed in [8].

Similarly to [8], we consider a relay-aided single cluster up-
link of a large network, e.g. IoT. Here, the nodes of the same
cluster transmit their data to the relay, which acts as a cluster
head, processes the received data by means of redundancy
reduction, and forwards it to the base station. Furthermore,
the relay transmissions can be event-driven, such that the
data is only forwarded to the base station, if it is sufficiently
novel and spatially diverse. Correspondingly, the amount of
data to be transmitted and the resulting power consumption at
the relay are low, such that the relay can be even wirelessly
powered via energy harvesting'. Furthermore, the data and the
energy need to be received at the same time, which suggests
the use of SWIPT [9]. In [8], the basic design guidelines
have been proposed for a multiple access single-input single-
output (SISO) scenario. In particular, the necessity of pre-
diction of the symbol constellation and the optimization of
the dynamically adjustable power splitting factor has been
explained. In this work, we extend the considered system to a
multiple access single-input multiple-output (SIMO) scenario
by introducing multiple receive antennas at the relay. In
general, joint receive beamforming and energy harvesting as

'We assume, that the nodes are not too far away from the relay in order
to enable the energy harvesting.
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Fig. 1.

IoT cluster with a SWIPT-enabled relay.

an optimization problem has rarely been addressed so far. In
[10], the authors assume a single transmitter and deduce the
beamforming coefficients from the normalized channel vector.
Furthermore, the receive beamforming has been optimized for
a constant power splitting factor in [11]. However, a joint
maximization of the harvested energy under the ultrareliability
constraint is necessary for the considered scenario and is
proposed here for the first time.

This paper is organized as follows. In Section II, we describe
the employed system model based on the randomly scheduled
ultrareliable SWIPT for a wireless powered relay. Based on
the system model, we formulate the optimization problem in
Section III. This problem is then solved by splitting it in
two sub-problems, which are solved alternatingly. In Section
IV, the performance of the proposed method is evaluated.
Subsequently, the paper is concluded in Section V.

II. SYSTEM MODEL
A. Notation

Throughout the paper, we denote (-)” and (-)¥ the trans-
pose and Hermitian transpose operations, respectively. Com-
plex conjugation is denoted by (-)*. The expression x < y in-
dicates that each element of x is smaller than y. Furthermore,
diag(x) denotes a diagonal matrix with elements of vector
x on its main diagonal. In addition, 0 denotes an all-zero
column vector and I represents the unity matrix. The notation
vec(x,K) = [x1,72,...,2k]T is introduced in order to
avoid repeating similar definitions of the signal vectors. Also,
we denote @ (-) and Q7! (-) the complementary Gaussian
error integral and its inverse, respectively. £{-} represents the
expectation operator with respect to the symbol intervals.

B. Scenario

We assume a stationary deployment of N IoT nodes in
close proximity of the energy-harvesting relay. The relay
detects the symbols of transmitted data packets from all nodes,
processes the data, and forwards it to the destination. The
network structure is depicted in Fig. 1.

We assume a perfect channel state information (CSI) and
synchronization between each node and the relay. However,
individual duty cycles and scheduling of transmissions are
unknown at the relay. Furthermore, each node n may transmit

the respective data packets of length L,, with probability p,,
such that the transmissions from different nodes may overlap
in time, which typically results in a joint symbol constellation
observed at the relay.

Each node is equipped with a single transmit antenna, whereas
the relay has K receive antennas. The diversity of the receive
antennas can be exploited e.g. in order to increase the de-
tection reliability or the network throughput. In this work,
we focus solely on the single receive beamformer design for
power gain, i.e. we do not exploit the spatial domain in order
to decouple the data streams via spatial demultiplexing, which
would require the design of multiple beamformers.

C. Signal transmission

The data packets are modulated via binary phase-shift

keying (BPSK) in order to account for the typically low-
power and low-complexity transceivers utilized as IoT nodes.
This yields a sequence of symbols ¢, x[m] € {-1,+1}, 1 <
m < L, for each packet [ transmitted by node n in symbol
interval m of length 7. Typically, the data is protected
via forward error correction (FEC), which introduces some
dependencies among the individual symbols of the packet.
These dependencies are related to the applied channel code
and transmitted data. Due to the frequent overlaps of multiple
packets, these dependencies can hardly be exploited [8]. For
simplicity, we assume that the a-priori probabilities of the
transmit symbols are unknown to the receiver.
In order to model the RMA based packet transmission, we
introduce a discrete random variable p,;, which describes
the spacing between packet [ — 1 and ! of node n. Here,
the probability for p,,; empty symbol intervals between two
packets is given by

Pr (,Un,l) = pn(1 —pp)tt. (1)

Hence, the total sequence of symbols a,[m] transmitted by
node n is obtained via summation of all time-shifted packets:

o0
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Assuming an equal transmit power P; for all nodes during
packet transmission, the average consumed power is (cf. [8])

Pnln
ann + (1 - pn)7

since L,, symbols are transmitted with probability of p,
(the respective consumed power is P;p,L,) and 1 symbol
interval remains empty with probability of 1 — p, (the
respective consumed power is 0). Note, that we do not
take into account the energy consumption related to signal
processing at the relay, which might need to be considered
in the future extensions of our work.

We assume a frequency-flat quasi-static block fading channel
with the complex-valued channel vector h,, = vec(h,, K)
between the transmit antenna of node n and the relay receive
antennas. The overall channel matrix between all nodes and
the relay is denoted as H = [hy, hy, ... hy] € CEXN,

Ptrans,n = Pt (3)
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Fig. 2. Power splitting at the receiver equipped with multiple antennas.

D. Energy harvesting and signal detection

The two major methods for energy harvesting in SWIPT
are time splitting (TS) and power splitting (PS), cf. [12]. As
discussed in [8], the TS method of SWIPT is not applicable
in the considered scenario, since some of the nodes may
start their transmissions during the energy harvesting phase.
Correspondingly, parts of the transmitted packets might be
lost, which violates the assumed ultrareliability of symbol
detection. Hence, the PS method is selected for the SWIPT.
Moreover, we utilize dynamically adjustable PS factors sim-
ilar to [13], which can be modified in each symbol interval.
Furthermore, a symbol-by-symbol joint detection (JD) of
multiple streams has been suggested instead of a successive
interference cancellation (SIC). Although SIC is commonly
used for the separation of data streams in NOMA [2], the
adaptation of the PS factor cannot wait for the reception of
the whole packet in order to exploit the dependencies among
symbols. Hence, JD is selected as signal detection method.
In this work, we utilize multiple PS modules, which are
connected to the respective antennas. The basic structure of
the SWIPT-enabled receiver with multiple antennas is similar
to [13] and is depicted in Fig. 2. Here, the received signal
from each antenna k is at first fed into the respective power
splitter with the PS factor p[m] in symbol interval m. At the
output of the power splitter, one signal is used for information
detection and the other for energy harvesting. The spatial
filtering is applied after the power splitting by multiplying the
data carrying signal part with the respective complex-valued
beamforming coefficient by [m]. This architecture ensures that
it is possible to exploit the spatial diversity of the communica-
tion channel, since the summation of the signals is done after
the power splitting. If the summation was applied before the
PS, it would not be possible to use the receive beamforming
without injecting additional power into the system?. On the
other hand, the use of multiple energy harvesting modules
(EHs) guarantees that the maximum energy is harvested in
each symbol interval, since the destructive overlap of the
energy signals is avoided.

After the spatial filtering, the signal is fed into the information

2In practice, signal multiplication implies an additional power consumption
in the circuits, which might be even larger than the received power.

detector®. The signal at the input of the symbol detector is
given by

rlm] = V/Bib™ [m]S[m] (Ha[m] + wm])+b" [m]zm], (4)

where b{m] = vec(b*[m], K), ajm] = vec(a[m], N). Also,
w[m] = vec(w[m], K) is the sampled received noise vector
with the known variance £{|wy[m]|>} = o2, Vk. Note, that
the power splitter imposes additional noise for the information
detection, which is modeled via an additive white Gaussian
noise signal z;[m] with the variance £{|zx[m]|*} = 62, V&,
similar to [12]. We stack the individual noise contribu-
tions into vector z[m] = vec(z[m|, K). The impact of the
power splitting is taken into account in the matrix S[m] =
diag(vec(\/p|m], K)).

Obviously, the symbol constellation observed at the receiver
is a combination of distorted individual symbol constellations
of all active nodes (assuming a perfect synchronization of
frequency and time). Due to the random process of packet
generation, the number of points in this joint constellation
varies from symbol interval to symbol interval between 1 and
2N depending on the number of active nodes. Correspond-
ingly, the signal quality varies as well. The instantaneous
signal quality of the received signal in terms of signal-to-
noise ratio (SNR) can be formulated as follows:

SNRm] = — Pt‘bH[m]S[;n]Ha[mH 5
02b" [m]b[m] + o2b” [m]S[m|S[m]b[m]

Unfortunately, the a-priori probability of each symbol in the
individual symbol constellations and therefore in the joint
symbol constellation is unknown, as mentioned earlier. Hence,
the symbolwise a-posteriori detection is not possible in this
case. Instead, we implicitly utilize the maximum-likelihood
criterion for the symbol detection by assuming that all points
of the joint constellation are equally probable.

As argued in [8], in order to achieve ultrareliable communi-
cation, we base our investigation upon a conservative upper
bound on the symbol error rate related to the probability
of error between the closest points of the joint symbol
constellation. This strategy is sometimes used in multiuser
detection scenarios [14]. For this, we define a metric d; ;[m/],
which corresponds to the Euclidean distance between the
points with indices ¢ and j of the joint constellation. In
addition, we introduce vectors q;[m] and q;[m] of length
N, which pertain to these points. These vectors contain the
respective combinations of symbols transmitted by individual
nodes in symbol interval m (including empty symbol intervals
in case of inactive nodes), e.g. q;[m] = [-1,0,+1,—1]7.
Correspondingly, d; ;[m] is obtained via

d;,jlm] = /Py [bH [m]S[m]H (;[m] — g;[m])].  (©)

Using d; ;[m], it is possible to determine the upper bound of
the symbol error rate by calculating a modified SNR based on
the minimum distance between the valid points of the joint

3Typically, matched filtering and sampling are applied here prior to symbol
detection.



constellation:

SNR, [m] _ ‘% Ininiyj di,j [m] |2
" §2b" [m]b[m] + o2b" [m]S[m]S[m]b[m]

% P, min; ; " [m]D; jb[m]

= SonH " (7
§2b" [m]b[m] 4+ o2b” [m]S[m]S[m]b[m]

D;; = S[m/H (q,[m] — q;[ml) (q,[m] — q;[m]) " BIS" [m].

(®)
Since only the closest two constellation points are considered,
the probability of symbol error in mth symbol interval is
upper bounded by [15]

pe < @ (V2SNRyoalm] ). ©)

The harvested energy from all EHs is guided to the common
energy storage. The input signal of each energy harvester is

yk[m] = /Pret (Ha[m] +wm]) /1T —pr,  (10)

where ey, is a column vector with all-zero elements except for
a single ’1” at kth position. The total instantaneous harvested
energy is obtained using (10) as

Enary[m] = 1T yx[ml]|*
k
~ nTPa [m]H? (I — S[m]S[m]) Ha[m],(11)

where 7 is the energy harvesting rate. In this work, we assume
a linear energy harvesting model with 7 = 0.5. The impact of
the well-known non-linear behavior of the energy harvesting
circuits (cf. [16]) on the optimization performance is beyond
the scope of this work.

III. HARVESTED POWER MAXIMIZATION

In this work, we focus on the harvested energy under the
constraint of ultrareliability in RMA. Note, that we do not
address the typical trade-off between information and power
transfer in terms of rate-energy region, cf. [17]. As argued
in [8], in order to guarantee ultrareliable communication,
the signal quality needs to be permanently very high, which
renders the rate-energy region analysis irrelevant.

In order to jointly optimize the power splitting factors and
the beamforming coefficients, we formulate the following
optimization problem:

max
Pie>bi s
1§k§Nant
s.t.: Cl) De S Pmax;
C2)0<pr<1,1<k<K,

C3) mind; j[m] unknown.
i

S{Eharv[m]}a (12)

Here, we introduce the ultrareliability constraint C1) by
choosing a very low target symbol error rate ppax. Further-
more, the constraint C3) is introduced in order to account for
the fact that the symbol constellation and the corresponding
minimum Euclidean distance between the symbols are un-
known before the symbol detection.

Similarly to [8], this problem requires a prediction of the
minimum distance between the constellation points.

A. Constellation prediction

We consider the following options for predicting the mini-
mum distance between symbols of the unknown constellation:

e Static beamforming: The optimization is carried out only
once and the system parameters are assumed to be
constant for all symbol intervals m. In this case, all
possible symbol combinations need to be taken into
account. Hence, this option leads to the performance
lower bound as explained in [8], since the number of
points is maximal while the average received energy
is the same for all valid solutions. The corresponding
minimum distance between the symbol points is typically
very small, such that energy harvesting is rarely possible;

o Genie-Aided Prediction: In case of dynamic beamform-
ing, the unknown parameters need to be optimized and
updated in every symbol interval. Since the exact symbol
constellation is unknown before the detection of the re-
spective symbol, the constellation needs to be predicted.
Here, a perfect (genie-aided) prediction corresponds to
the performance upper bound. For this, we assume that
the relay knows exactly, which nodes are active, such
that only the valid symbol points are considered;

o State Prediction: The prediction is carried out using the
method proposed in [8], where the state of each node
(i.e. active or not) is predicted based on the previous
observations of the received signal. The respective most
probable receive symbols are collected and form the joint
constellation. So far, this method has shown a substantial
performance gain compared to the lower bound with
K =1, especially in case of a large number of nodes.

Assuming one of these options, min; ; d; ;[m] can be pre-
dicted, such that the constraint C3) is relaxed. The resulting
relaxed optimization problem is solved in the following.

B. Optimization problem with known constellation

By relaxing constraint C3) in (12), we remove the uncer-
tainty related to the RMA. The resulting problem is non-linear
and non-convex, as can be deduced from (7), such that the
well-known methods of convex optimization [18] are not ap-
plicable here and no analytic solution can be found. However,
we can solve the relaxed problem by splitting it in two sub-
problems, which have a much lower complexity and can be
solved alternatingly. In general, the idea of this approach is to
reduce the power splitting factor by maximizing the Euclidean
distance between all points of the joint constellation, since less
signal power would be required for the symbol detection.
Note, that for the clarity of exposition, we omit the symbol
interval index m in the following.

At first, we rewrite (11) as

Fhare = nTP.E{a"H"Ha} — s" Ys, (13)

where s = vec(y/p, K) and Y = nT P,£ {Haa"H" }.
Then, constraint C1) can be reformulated using (7) and (9):

2(Q 7 (pmax))” .
Tvvzv.]'

(14)

b"D; ;b > (52be + GQbHSHSb)



This constraint can be further expressed as a standard
quadratic form with respect to b

b“T; ;b <0, Vi, 7, (15)
2

2 (Q_l (pmax))
P

On the other hand, this constraint can be expressed with
respect to s as well. For this, we first reformulated the distance
function d; ; using (6) as

di; = VP [bQ, s (17

with the diagonal matrix Q, ; = diag(H (qi — qj)). After few
reformulation steps, we obtain for the constraint C1)

T, = (521 + azsﬂs) ~D,,.(16)

s"K; ;s < D, Vi, j, (18)

where we introduce B = diag(b) diag(b) in order to obtain

2 2
Kij = % (Q7" (Pmax)) "B = Q607 Q, 5, (19)
252
D=-=(Q" (pmax))” b (20)
t

Using (13), (15), and (18), we can express the relaxed
optimization problem as

mins?Ys, 2D

s, b

st Cla)b?T; ;b <0, Vi,j, Clb)s”K; ;s < D, Vi,
C2)0<s=<1.

Here, the two constraints Cla) and Clb) are equivalent
representations of the original constraint C1) of problem (12).
Apparently, the two matrices T;; and K;; depend non-
linearly on s and b, respectively, which makes (21) a non-
linear program. However, we can split this problem in two
sub-problems, which are quadratically constrained quadratic
programs (QCQPs).

The first sub-problem is the maximization of the harvested
energy:

mins?Ys, (22)
S
s.t.. C1)s”K; ;s < D, Vi, j,
C2)0<s=1.

We assume that the beamforming coefficients are fixed and
known, e.g. from the previous calculation. Hence, matrix K; ;
is considered to be constant in this sub-problem.

As discussed earlier, we would like to maximize the minimum
distance between all points of the joint constellation in
order to reduce the required signal power for the symbol
detection and thus increase the harvested energy. Note, that
the maximization of the minimum distance corresponds to the
minimization of b” T, ;b, Vi, j according to the derivations
above and the definition of matrix T; ; in (16). Hence, we
introduce an auxiliary variable 7, which corresponds to the
maximum b T; ;b and formulate the second sub-problem as

I{)lin T, 23)

st. C1)bYT; ;b < 7Vi,j
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Fig. 3. Average harvested energy per second with a variable number of
nodes.

Here, we assume that the power splitting factors are fixed and
known from the previous calculation, which makes matrix
T, ; constant for this sub-problem.

Both sub-problems are non-convex QCQPs. The non-
convexity is due to the indefinite matrices K; ; and T; ; V1, j.
Nevertheless, we solve these problems using a close-
to-optimum method of Successive Convex Approximation
(SCA) called Feasible Point Pursuit (FPP), cf. [19]. In each
iteration of our alternating approach, we solve sub-problems
(22) and (23) subsequently. For this, the respective optimized
parameters of one sub-problem are assumed fixed in the other
sub-problem. The optimization starts by solving the second
sub-problem (beamforming). For this, we assume fixed power
splitting factors pi, = 1, Vk, i.e. all energy harvesting modules
are disabled. In total, the algorithm is run for J iterations,
where J = 5 is usually sufficient for convergence.

IV. NUMERICAL RESULTS

In our simulations, we assume that the nodes are randomly
deployed in the distance between 5 m and 10 m around the
relay according to Fig. 1. Also, an equal transmit power
P, = 20 dBm for all nodes, a bandwidth of 1 kHz, and a
carrier frequency of 900 MHz are assumed. For the signal
propagation, a Rician flat fading channel with the line-of-
sight factor 3, a path loss exponent 2, and additive white
Gaussian noise with respective variance 0> = —110 dBm
and 6> = —70 dBm are used. For the energy conversion
efficiency, we set = 0.5. Each node transmits packets of
equal length L,, = 20, Vn with equal probability p,, = p, Vn.
Furthermore, we set the target bit error rate ppax = 1075. The
results are averaged over 1000 scenarios for each simulation
point. In each scenario, a received sequence of 500 symbols
is considered.

We start with the evaluation of the average harvested energy
for K = 2 and a variable number of nodes NN, see Fig.
3. We observe that the harvested energy using the genie-
aided predictor increases with increasing number of nodes,
since the received signal variance depends on the number
of simultaneous transmissions. On the other hand, the static
beamforming solution shows a maximum of harvested en-
ergy for N = 2 followed by a performance degradation
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for N > 3. This degradation results from the increased
number of symbols in the joint constellation, which leads to
a smaller minimum distance between the individual symbols.
In addition, a performance degradation is observed with the
state prediction method as well. However, this degradation
occurs with a larger number of nodes, such that a performance
gain results compared to the static beamforming. A similar
behavior has been noticed in [8] for K = 1.

In addition, we show the results for N = 3 and a variable
number of receive antennas K, see Fig. 4. Obviously, the
performance of genie-aided and state prediction methods
increases with increasing number of antennas, since more
energy harvesters are utilized. Surprisingly, the average har-
vested energy using static beamforming method has at first
a maximum for K = 2 followed by a decrease for K = 3
and then a linear increase for K > 4. The decrease from
K = 2 to K = 3 indicates the suboptimality of the
proposed optimization method. In fact, the Lagrangian for
the optimization problem has many local optima due to the
non-convexity of the constraints. Their number increases with
the number of antennas due to the increased spatial diversity.
Furthermore, each constraint contributes to the Lagrangian
with an additional set of local optima. Since the static beam-
forming method takes into account the maximum number
of constellation points and correspondingly the maximum
number of constraints, it is likely for this method to converge
to a local optimum, which typically shows a very poor perfor-
mance. Similarly, a deviation from the linear curve is observed
with the state prediction method for K = 3. However, this
effect is less pronounced, since the number of constraints is
significantly lower than with the static beamforming method.
For K > 4, we observe a difference of ~ 2.7 uJ between the
static beamforming and the genie-aided prediction, whereas
the difference between the state prediction and the genie-aided
prediction is only ~ 1 puJ.

V. CONCLUSION

In this paper, we analyzed a random access based ul-
trareliable SWIPT with application to a relay-based uplink
with multiple receive antennas. The design implies a (non-
convex) joint optimization of the power splitting factor per

antenna and the beamforming coefficients for the information
stream as well as a prediction of the symbol constellation in
each symbol interval. At first, various options with respect
to the constellation prediction have been addressed. Then, a
suboptimal solution for the optimization problem has been
proposed by splitting it in two sub-problems and solving them
alternatingly. We observe a performance degradation using
the static beamforming and the state prediction method for
relatively large numbers of nodes. On the other hand, the
average harvested energy using the state prediction method
increases monotonically with increasing number of antennas,
which motivates the application of massive MIMO for this
scenario.
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