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Abstract

In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends
on µ and volatility coefficient depends on σ, two unknown parameters. We suppose that the process is
discretely observed at the instants (tni )i=0,...,n with ∆n = supi=0,...,n−1(tni+1− tni )→ 0. We introduce
an estimator of θ := (µ, σ), based on a contrast function, which is asymptotically gaussian without
requiring any conditions on the rate at which ∆n → 0, assuming a finite jump activity. This extends
earlier results where a condition on the step discretization was needed (see [15],[36]) or where only
the estimation of the drift parameter was considered (see [2]). In general situations, our contrast
function is not explicit and in practise one has to resort to some approximation. We propose explicit
approximations of the contrast function, such that the estimation of θ is feasible under the condition
that n∆k

n → 0 where k > 0 can be arbitrarily large. This extends the results obtained by Kessler [24]
in the case of continuous processes.

Drift estimation, volatility estimation, ergodic properties, high frequency data, Lévy-driven SDE,
thresholding methods.

1 Introduction

Recently, diffusion processes with jumps are becoming powerful tools to model various stochastic phe-
nomena in many areas, for example, physics, biology, medical sciences, social sciences, economics, and so
on. In finance, jump-processes were introduced to model the dynamic of exchange rates ([6]), asset prices
([29],[25]), or volatility processes ([5],[11]). Utilization of jump-processes in neuroscience, instead, can be
found for instance in [9]. Therefore, inference problems for such models from various types of data should
be studied, in particular, inference from discrete observation should be desired since the actual data may
be obtained discretely.
In this work, our aim is to estimate jointly the drift and the volatility parameter (µ, σ) =: θ from a
discrete sampling of the process Xθ solution to

Xθ
t = Xθ

0 +

∫ t

0

b(µ,Xθ
s )ds+

∫ t

0

a(σ,Xθ
s )dWs +

∫ t

0

∫
R\{0}

γ(Xθ
s−)zµ̃(ds, dz),

where W is a one dimensional Brownian motion and µ̃ a compensated Poisson random measure, with a
finite jump activity. We assume that the process is sampled at the times (tni )i=0,...,n where the sampling
step ∆n := supi=0,...,n−1 t

n
i+1 − tni goes to zero. A crucial point for applications in the high frequency

setting is to impose minimal conditions on the sampling step size. This will be one of our main objectives
in this paper, for the joint estimation of µ and σ.
It is known that, as a consequence of the presence of a Gaussian component, it is impossible to estimate
the drift parameter on a finite horizon time; we therefore assume that tnn → ∞ and we suppose to have
an ergodic process Xθ.

The topic of high frequency estimation for discretely observed diffusions in the case without jumps
is well developed, by now. Florens-Zmirou has introduced, in [13], an estimator for both the drift and
the diffusion parameters under the fast sampling assumption n∆2

n → 0. Yoshida [37] has then suggested
a correction of the contrast function of [13] that releases the condition on the step discretization to
n∆3

n → 0. In Kessler [24], the author proposes an explicit modification of the Euler scheme contrast that
allows him to build an estimator which is asymptotically normal under the condition n∆k

n → 0 where
k ≥ 2 is arbitrarily large. The result found by Kessler, therefore, holds for any arbitrarily slow polynomial
decay to zero of the sampling step.
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When a jump component is added, less results are known. Shimizu [34] proposes parametric estimation
of drift, diffusion and jump coefficients showing the asymptotic normality of the estimators under some
explicit conditions relating the sampling step and the jump intensity of the process; such conditions on ∆n

are more restrictive as the intensity of jumps near zero is high. In the situation where the jump intensity
is finite, the conditions of [34] reduces to n∆2

n → 0. In [15], the condition on the sampling step is relaxed
to n∆3

n → 0, when one estimates the drift parameter only. In [30] a jump-filtering technique similar to
one used in [15] is employed in order to derive a nonparametric estimator for the drift which is robust
to symmetric jumps of infinite variance and infinite variation, and which attains the same asymptotic
variance as for a continuous diffusion process. Also in [2] only the estimation of the drift parameter is
studied. In such a case, the sampling step (tni )i=0,...,n can be irregular, no condition on the rate at which
∆n → 0 is needed and the assumption that the jumps of the process are summable, present in [15], is
suppressed.

In this paper, we consider the joint estimation of the drift and the diffusion parameters with a jump
intensity which is finite. Since for the applications it is important that assumptions on the rate at which
∆n should tend to zero are less stringent as possible, our aim is to weaken the conditions on the decay
of the sampling step in a way comparable to Kessler’s work [24], but in the framework of jump-diffusion
processes. We therefore want to extend [2] looking for the same results, but for the joint estimation of
the drift and the diffusion parameters instead of focusing on the drift parameter only.
The joint estimation of the two parameters introduces some significant difficulties: since the drift and
the volatility parameters are not estimated at the same rate, we have to deal with asymptotic properties
in two different regimes.
Compared to previous results in which the parameters are estimated jointly (see [34]), we show that it is
possible to remove any condition on the rate at which ∆n has to go to zero.
Moreover, we consider a discretization step which is not uniform. This case, to our knowledge, has never
been studied before for the joint estimation of the drift and the volatility of a diffusion with jumps.

A natural approach to estimate the unknown parameters would be to use a maximum likelihood
estimation, but the likelihood function based on the discrete sample is not tractable in this setting, since
it depends on the transition densities of X which are not explicitly known.
To overcome this difficulty several methods have been developed. For instance, in [1] and [26] closed form
expansions of the transition density of jump-diffusions are studied while in [22] the asymptotic behaviour
of estimating functions is considered in the high frequency observation framework. They give condition
to ensure the rate optimality and the efficiency.

Considering again the case of high frequency observation, a widely-used method is to consider pseudo-
likelihood function, for instance based on the high frequency approximation of the dynamic of the process
by the dynamic of the Euler scheme. This leads to explicit contrast functions with Gaussian structures
(see e.g. [36],[34],[28]).

In Kessler’s paper the idea is to replace, in the Euler scheme contrast function, the contribution of
the drift and the diffusion by two quantities m and m2 (or their explicit approximations with arbitrarily
high order when ∆n → 0); with

m(µ, σ, x) := E[Xθ
ti+1
|Xθ

ti = x] and (1)

m2(µ, σ, x) := E[(Xθ
ti+1
−m(µ, σ,Xθ

ti))
2|Xθ

ti = x].

In presence of jumps, the contrasts functions in [36] (see also [34], [15]) resort to a filtering procedure
in order to suppress the contribution of jumps and recover the continuous part of the process.

The contrast function we introduce is based on both the ideas described here above. Indeed, we define
it as

Un(µ, σ) :=

n−1∑
i=0

[
(Xti+1

−m(µ, σ,Xti))
2

m2(µ, σ,Xti)
+ log(

m2(µ, σ,Xti)

∆n,i
)]ϕ∆β

n,i
(Xti+1

−Xti)1{|Xti |≤∆−kn,i}, (2)

where the function ϕ is a smooth version of the indicator function that vanishes when the increments
of the data are too large compared to the typical increments of a continuous diffusion process, and thus
can be used to filter the contribution of the jumps. The idea is to use the size of Xti+1

−Xti in order to
judge if a jump occurred or not in the interval [ti, ti+1). The increment of X with continuous transition

could hardly exceed the threshold ∆β
n,i, therefore we can judge the existence of a jump in the interval if

|Xti+1 −Xti | > ∆β
n,i, for β ∈ ( 1

4 ,
1
2 ).

The last indicator in (2) avoids the possibility that |Xti | is too big, the constant k is positive and will be
chosen later, related to the developments of m and m2 that are the natural extension to the case with
jumps of the quantities proposed in [24]. Indeed, we have defined them as

m(µ, σ, x) :=
E[Xθ

ti+1
ϕ∆β

n,i
(Xθ

ti+1
−Xθ

ti)|X
θ
ti = x]

E[ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

and
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m2(µ, σ, x) :=
E[(Xθ

ti+1
−m(µ, σ,Xti))

2ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

E[ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

.

The rates for the estimation of the two parameters is not the same, which implies we have to deal with
two different scaling of the contrast function, which lead us to the study of the asymptotic properties of
the contrast function in two different asymptotic schemes.

The main result of our paper is that the estimator θ̂n := (µ̂n, σ̂n) associated to the proposed contrast
function converges with some explicit asymptotic variances. Comparing to earlier results ([36], [34], [15],
[2]), the sampling step (tni )i=0,...,n can be irregular, no condition is needed on the rate at which ∆n → 0
and the parameters of drift and diffusion are jointly estimated.

Moreover, we provide explicit approximations of m2 that allows us to circumvent the fact that the
contrast function is non explicit (explicit approximations of m are given in [2]). We give an expansion
of m2 exact up to order ∆2

n, which involves the jump intensity near zero, and is valid for any smooth
truncation function ϕ. With the specific choices of ϕ being oscillating functions, in particular, we remove
the contribution of the jumps and we are able to prove explicit developments of the function m2 valid
up to any order. Together with the approximation of the function m showed in Proposition 2 of [2], this
allows us to approximate our contrast function, at arbitrary high order, by a completely explicit one, as
it was in the paper by Kessler [24] in the continuous case.
This yields to a consistent and asymptotic normal estimator under the condition n∆k

n → 0, where k is
related to the oscillating properties of the function ϕ. As k can be chosen arbitrarily high, up to a proper
choice of ϕ, our method allows to estimate the drift and the diffusion parameters, under the assumption
that the sampling step tends to zero at some polynomial rate.

Furthermore, we implement numerically our main results building two approximations of m and m2

from which we deduce two approximations of the contrast that we minimize in order to get the joint
estimator of the parameters. We compare the estimators we find with the estimator that would result
from the choice of an Euler scheme approximation for m and m2. From our simulations it appears that
our joint estimator performs better than the Euler one, especially for the estimation of the parameter σ.

The outline of the paper is the following. In Section 2 we introduce the model and we state the
assumptions we need. The Section 3 contains the construction of the estimator and our main results
while in Section 4 we explain how to use in practical the contrast function for the joint estimation of
the drift and the diffusion parameters, dealing with its approximation. We provide numerical results in
Section 5. In Section 6 we discuss about possible forward generalization of the obtained results, while in
Section 7 we state useful propositions that we will use repeatedly in the following sections. Section 8 is
devoted to the proof of our main results while in Section A.1 of the Appendix we prove the propositions
stated in the sixth section. We conclude giving the proofs of some technical results in the Sections
A.2–A.3 of the Appendix.

2 Model, assumptions

We want to estimate the unknown parameter θ = (µ, σ) in the stochastic differential equation with jumps

Xθ
t = Xθ

0 +

∫ t

0

b(µ,Xθ
s )ds+

∫ t

0

a(σ,Xθ
s )dWs +

∫ t

0

∫
R\{0}

γ(Xθ
s−)zµ̃(ds, dz), t ∈ R+, (3)

where θ belongs to Θ := Π × Σ, a compact set of R2; W = (Wt)t≥0 is a one dimensional Brownian
motion and µ is a Poisson random measure associated to the Lévy process L = (Lt)t≥0 such that

Lt :=
∫ t

0

∫
R zµ̃(ds, dz). The compensated measure µ̃ = µ − µ̄ is defined on [0,∞) × R, the compensator

is µ̄(dt, dz) := F (dz)dt, where conditions on the Levy measure F will be given later.
We denote by (Ω,F ,P) the probability space on which W and µ are defined and we assume that the
initial condition Xθ

0 , W and L are independent.

2.1 Assumptions

We suppose that the functions b : Π × R → R, a : Σ × R → R and γ : R → R satisfy the following
assumptions:

A1: The functions γ(x), b(µ, x) for all µ ∈ Π and a(σ, x) for all σ ∈ Σ are globally Lipschitz. Moreover,
the Lipschitz constants of b and a are uniformly bounded on Π and Σ, respectively.

Under Assumption 1 the equation (3) admits a unique non-explosive càdlàg adapted solution possessing
the strong Markov property, cf [4] (Theorems 6.2.9. and 6.4.6.).
The next assumption was used in [27] to prove the irreducibility of the process Xθ.
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A2: For all θ ∈ Θ there exists a constant t > 0 such that Xθ
t admits a density pθt (x, y) with respect

to the Lebesgue measure on R; bounded in y ∈ R and in x ∈ K for every compact K ⊂ R. Moreover, for
every x ∈ R and every open ball U ∈ R, there exists a point z = z(x, U) ∈ supp(F ) such that γ(x)z ∈ U .

Assumption 2 ensures, together with the Assumption 3 below, the existence of unique invariant dis-
tribution πθ, as well as the ergodicity of the process Xθ.

A3 (Ergodicity): (i) For all q > 0,
∫
|z|>1

|z|qF (z)dz <∞.

(ii) For all µ ∈ Π there exists C > 0 such that xb(µ, x) ≤ −C|x|2, if |x| → ∞.
(iii) |γ(x)|/|x| → 0 as |x| → ∞.
(iv) For all σ ∈ Σ we have |a(σ, x)|/|x| → 0 as |x| → ∞.
(v) ∀θ ∈ Θ, ∀q > 0 we have E|Xθ

0 |q <∞.

A4 (Jumps): 1. The jump coefficient γ is bounded from below, that is infx∈R |γ(x)| := γmin > 0.
2. The Lévy measure F is absolutely continuous with respect to the Lebesgue measure and we denote

F (z) = F (dz)
dz .

3. F is such that F (z) = λF0(z) and
∫
R F0(z)dz = 1.

Assumption 4.1 is useful to compare size of jumps of X and L. The Assumption 5 ensures the exis-
tence of the contrast function we will define in next section.

A5 (Non-degeneracy): There exists some c > 0, such that infx,σ a
2(σ, x) ≥ c > 0.

From now on we denote the true parameter value by θ0, an interior point of the parameter space Θ
that we want to estimate. We shorten X for Xθ0 .

We will use some moment inequalities for jump diffusions, gathered in the following lemma that fol-
lows from Theorem 66 of [32] and Proposition 3.1 in [36].

Lemma 1. Let X satisfies Assumptions 1-4. Let Lt :=
∫ t

0

∫
R zµ̃(ds, dz) and let Fs := σ {(Wu)0<u≤s, (Lu)0<u≤s, X0}.

Then, for all t > s > 0,

1) for all p ≥ 2, E[|Xt −Xs|p]
1
p ≤ c|t− s|

1
p ,

2) for all p ≥ 2, p ∈ N, E[|Xt −Xs|p|Fs] ≤ c|t− s|(1 + |Xs|p),
3) for all p ≥ 2, p ∈ N, suph∈[0,1] E[|Xs+h|p|Fs] ≤ c(1 + |Xs|p).

An important role is played by ergodic properties of solution of equation (3)
The following Lemma states that Assumptions 1−4 are sufficient for the existence of an invariant measure
πθ such that an ergodic theorem holds and moments of all order exist.

Lemma 2. Under assumptions 1 to 4, for all θ ∈ Θ, Xθ admits a unique invariant distribution πθ and
the ergodic theorem holds:
1)For every measurable function g : R→ R s. t. πθ(g) <∞, we have a.s. limt→∞

1
t

∫ t
0
g(Xθ

s )ds = πθ(g).

2)For all q > 0, πθ(|x|q) <∞.
3) For all q > 0, supt≥0 E[|Xθ

t |q] <∞.

A proof is in [15] (Section 8 of Supplement), it relies mainly on results of [27].

A6 (Identifiability): For all µ1, µ2 in Π, µ1 = µ2 if and only if b(µ1, x) = b(µ2, x) for almost all
x. Moreover, ∀σ1, σ2 in Σ, σ1 = σ2 if and only if a(σ1, x) = a(σ2, x) for almost all x.

A7: 1. The derivatives ∂k1+k2b
∂xk1∂θk2

, with k1 + k2 ≤ 4 and k2 ≤ 3, exist and they are bounded if k1 ≥ 1. If
k1 = 0, for each k2 ≤ 3 they have polynomial growth.

2. The derivatives ∂k1+k2a
∂xk1∂θk2

, with k1 +k2 ≤ 4 and k2 ≤ 3, exist and they are bounded if k1 ≥ 1. If k1 = 0,
for each k2 ≤ 3 they have polynomial growth.
3. The derivatives γ(k)(x) exist and they are bounded for each 1 ≤ k ≤ 4.

A8: Let B be

(
−2
∫
R(

∂µb(x,µ0)
a(x,σ0) )2π(dx) 0

0 4
∫
R(∂σa(x,σ0)

a(x,σ0) )2π(dx)

)
, then det(B) 6= 0.
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3 Construction of the estimator and main results

Now we present a contrast function for estimating parameters.

3.1 Construction of contrast function.

Suppose that we observe a finite sample Xt0 , ..., Xtn with 0 = t0 ≤ t1 ≤ ... ≤ tn =: Tn, where X is the
solution to (3) with θ = θ0. Every observation time point depends also on n, but to simplify the notation
we suppress this index. We will be working in a high-frequency setting, i.e. ∆n := supi=0,...,n−1 ∆n,i −→ 0
for n→∞, with ∆n,i := (ti+1 − ti). We assume that limn→∞ Tn =∞.
In the sequel we will always suppose that the following assumption on the step discretization holds true.
AStep: there exist two constants c1, c2 such that c2 <

∆n

∆min
< c1, where we have denoted ∆min as

mini=0,...,n−1 ∆n,i.
We introduce a version of the gaussian quasi -likelihood in which we have filtered the contribution of the
jumps. As in our framework the data is observed discretely, to formulate a criterion to decide if a jump
occurred in a particular interval or not we can only use the increment of our process. Such a criterion
should depends on n and should be more and more accurate as n tends to infinity. This leads to the
following contrast function:

Definition 1. For β ∈ ( 1
4 ,

1
2 ) we define the contrast function Un(µ, σ) as

Un(µ, σ) :=

n−1∑
i=0

[
(Xti+1 −m(µ, σ,Xti))

2

m2(µ, σ,Xti)
+ log(

m2(µ, σ,Xti)

∆n,i
)]ϕ∆β

n,i
(Xti+1

−Xti)1{|Xti |≤∆−kn,i}, (4)

with

m(µ, σ, x) :=
E[Xθ

ti+1
ϕ∆β

n,i
(Xθ

ti+1
−Xθ

ti)|X
θ
ti = x]

E[ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

; (5)

m2(µ, σ, x) :=
E[(Xθ

ti+1
−m(µ, σ,Xti))

2ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

E[ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

(6)

and

ϕ∆β
n,i

(Xti+1 −Xti) = ϕ(
Xti+1

−Xti

∆β
n,i

).

The function ϕ is a smooth version of the indicator function, such that ϕ(ζ) = 0 for each ζ, with |ζ| ≥ 2
and ϕ(ζ) = 1 for each ζ, with |ζ| ≤ 1.
The last indicator aims to avoid the possibility that |Xti | is big. The constant k is positive and it will be
chosen later, related to the development of both m and m2.
Moreover we remark that m and m2 depend also on ti and ti+1. By the homogeneity of the equation
they actually depend on the difference ti+1 − ti but we omit such a dependence in the notation of the
two functions here above to make the reading easier.
We define an estimator θ̂n of θ0 as

θ̂n = (µ̂n, σ̂n) ∈ arg min
(µ,σ)∈Θ

Un(µ, σ). (7)

The idea is to use the size of the increment of the process Xti+1
−Xti in order to judge if a jump occurred

or not in the interval [ti, ti+1). As it is hard for the increment of X with continuous transition to overcome

the threshold ∆β
n,i for β ≤ 1

2 , we can assert the presence of a jump in [ti, ti+1) if |Xti+1 −Xti | > ∆β
n,i.

It is worth noting that if β is too large, and therefore ∆β
n,i is too small, we can’t ignore the probability

to have continuous diffusion reaching the threshold ∆β
n,i. On the other side, if β is too small and there-

fore ∆β
n,i is too big, it is possible to have an increment smaller than ∆β

n,i even if a jump occurs in the
considered interval. That’s the reason why the threshold β has to be chosen with great care.
In the definition of the contrast function we have taken β > 1

4 because, in Lemma 3 and Proposition 6
below (and so, as a consequence, in the majority of the theorems of this work), such a technical condition
on β is required.
We observe that, in general, there is no closed expression for m and m2, hence the contrast is not explicit.
However, it is proved in [2] an explicit development of m in the case where the intensity is finite and
in this work we provide as well an explicit development of m2 that lead us to an explicit version of our
contrast function.
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3.2 Main results

Before stating our main results, we need some further notations and assumptions. We introduce the
function R defined as follows: for δ ≥ 0, we will denote R(θ,∆δ

n,i, x) for any function R(θ,∆δ
n,i, x) =

Ri,n(θ, x), where Ri,n : Θ× R −→ R, (θ, x) 7→ Ri,n(θ, x) is such that

∃c > 0 |Ri,n(θ, x)| ≤ c(1 + |x|c)∆δ
n,i (8)

uniformly in θ and with c independent of i, n.
The functions R represent the term of rest and have the following useful property, consequence of the
just given definition:

R(θ,∆δ
n,i, x) = ∆δ

n,iR(θ,∆0
n,i, x). (9)

We point out that it does not involve the linearity of R, since the functions R on the left and on the
right side are not necessarily the same but only two functions on which the control (8) holds with ∆δ

n,i

and ∆0
n,i, respectively.

In the sequel, we will need a development for the function m2. We will assume that such a develop-
ment exists, as stated in the next assumption:

Ad: There exist three functions r(µ, σ, x), r(x), R(θ, 1, x) and δ1, δ2 > 0 and k0 > 0 such that, for
|x| ≤ ∆−k0

n,i ,

m2(µ, σ, x) = ∆n,ia
2(x, σ)(1 + ∆n,ir(µ, σ, x)) + ∆1+δ1

n,i r(x) + ∆2+δ2
n,i R(θ, 1, x), (10)

where r(µ, σ, x) and r(x) are particular functions R(θ, 1, x), that turns out from the development of m2,
and the function r(x) does not depend on θ. Moreover, the order of such functions does not change by
deriving them with respect to both the parameters, that is for ϑ = µ and ϑ = σ, | ∂∂ϑr(µ, σ, x)| ≤ c(1+|x|c)
and | ∂∂ϑR(θ, 1, x)| ≤ c(1 + |x|c).

Assumption Ad is not restrictive. Examples of frameworks in which Ad holds are introduced in Propo-
sitions 2 and 4, that will be stated in the next section and proven in the appendix. Let us stress that it
is crucial for the proof of the consistency of the estimator that the second main term of the expansion
(10), ∆1+δ1

n,i r(x), does not depend on the parameter θ.
The following theorems give a general consistency result and the asymptotic normality of the estimator

θ̂n.

Theorem 1. (Consistency) Suppose that Assumptions 1 to 7, AStep and Ad hold. Then the estimator

θ̂n is consistent in probability:

θ̂n
P−→ θ0, n→∞.

Theorem 2. (Asymptotic normality) Suppose that Assumptions 1 to 8, AStep and Ad hold. Then

(
√
Tn(µ̂n − µ0),

√
n(σ̂n − σ0))

L−→ N(0,K) for n→∞,

where K =

(
(
∫
R(

∂µb(x,µ0)
a(x,σ0) )2π(dx))−1 0

0 2(
∫
R(∂σa(x,σ0)

a(x,σ0) )2π(dx))−1

)
.

The proof of our main results will be presented in Section 8.

It is worth remarking here that, when σ is known and only the parametric estimation of the drift is

considered, the model (3) is LAN with Fisher information I(µ) =
∫
R

(ḃ(θ,x))2

a2(x) πµ(dx) (see [15]).

The Hájek−LeCam convolution theorem states that any regular estimator in a parametric model which
satisfies LAN property is asymptotically equivalent to a sum of two independent random variables, one of
which is normal with asymptotic variance equal to the inverse of Fisher information, and the other having
arbitrary distribution. The efficient estimators are those with the second component identically equal to
zero. Therefore, the estimator µ̂n is asymptotically efficient in the sense of the Hájek-Le Cam convolution
theorem when the volatility parameter σ is supposed to be known and also without its knowledge.
In the general case we are not aware of any result which proves that our model (3) is LAN and therefore

nothing can be said about the efficiency of the estimator θ̂n. However, Gobet has proved in [16] that, in
absence of jumps, the LAN property of the model is satisfied with a Fisher information which matches
with the variance matrix we found, in presence of jumps, for the joint estimation of the drift and the
volatility parameters.
Such a result gives hope for an eventual efficiency of the estimator θ̂n here proposed.
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4 Practical implementation of the contrast method

In order to use in practice the contrast function (4), one need to know the values of the quantities
m(µ, σ,Xti) and m2(µ, σ,Xti). Even if in most cases, it seems impossible to find an explicit expression
for them, explicit or numerical approximations of this functions seem available in many situations.

4.1 Approximation of the contrast function

Let us assume that one has at disposal an approximation of the functions m(µ, σ, x) and m2(µ, σ, x),
denoted by m̃(µ, σ, x) and m̃2(µ, σ, x) which satisfy, for |x| ≤ ∆n,i

−k0 , the following assumptions.
Aρ :

1. |m̃(µ, σ, x)−m(µ, σ, x)| ≤ R(θ,∆n,i
ρ1 , x), |m̃2(µ, σ, x)−m2(µ, σ, x)| ≤ R(θ,∆n,i

ρ2 , x),
where the constants ρ1 > 1 and ρ2 > 1 assess the quality of the approximation.

2. | ∂
i

∂µi m̃(µ, σ, x)− ∂i

∂µim(µ, σ, x)|+ | ∂
i

∂σi m̃2(µ, σ, x)− ∂i

∂σim2(µ, σ, x)| ≤ R(θ,∆n,i
1+ε, x), for i = 1, 2,

for all |x| ≤ ∆n,i
−k0 and where ε > 0.

3. The bounds on the derivatives of m and m2 gathered in Propositions 8, 9 and 10 hold true for m̃
and m̃2 replacing m and m2.

We have to act on the derivatives of the two approximated functions m̃ and m̃2 as we do on m and m2.
That is the reason why we need to add the third technical assumption here above, which assure we can
move from the derivatives of the real functions to the approximated ones committing an error which is
negligible. Now, we consider θ̃n the estimator obtained from minimization of the contrast function (4)
where one has replaced the functions m(µ, σ,Xti) and m2(µ, σ,Xti) by their approximations m̃(µ, σ, x)
and m̃2(µ, σ, x):

Ũn(µ, σ) :=

n−1∑
i=0

[
(Xti+1

− m̃(µ, σ,Xti))
2

m̃2(µ, σ,Xti)
+ log(

m̃2(µ, σ,Xti)

∆n,i
)]ϕ∆β

n,i
(Xti+1

−Xti)1{|Xti |≤∆−kn,i},

θ̃n = (µ̃n, σ̃n) ∈ arg min
(µ,σ)∈Θ

Ũn(µ, σ).

Then, the result of Theorem 2 can be extended as follows.

Proposition 1. Suppose that Assumptions 1 to 8, Ad, AStep and Aρ hold, with 0 < k < k0, and that
√
n∆

ρ1−1/2
n → 0 and

√
n∆ρ2−1

n → 0 as n→∞.

Then, the estimator θ̃n := (µ̃n, σ̃n) is asymptotically normal:

(
√
Tn(µ̃n − µ0),

√
n(σ̃n − σ0))

L−→ N(0,K) for n→∞,

where K is the matrix defined in Theorem 2.

Proposition 1 will be proven in Section 8.4.

We give below several examples of approximations of m2(µ, σ,Xti) which can be used, together with
the approximations of m(µ, σ,Xti) given in Proposition 2 of [2], to construct an explicit contrast func-
tion.

4.2 Development of m2(µ, σ, x).

We provide two kinds of expansion for the function m2. First, we prove high order expansions that
involve only the continuous part of the generator of the process and necessitate the choice of oscillating
functions ϕ. Second, we find an expansion up to order ∆2

n for any function ϕ, and, in particular, show
the validity of the condition Ad in a general setting. For completeness, we recall also the expansions of
the function m found in [2].

4.2.1 Arbitrarily high expansion with oscillating truncation functions.

We show we can write an explicit development for the function m2, as we did for the function m in
Proposition 2 of [2], taking a particular oscillating function ϕ. In this way, it is therefore possible

to make the contrast explicit with approximation at any order. We define A
(k)
K1

(x) := Ākc (h1)(x) and
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A
(k)
K2

(x) := Ākc (h2)(x), where Āc(f) := b̄f ′ + 1
2a

2f ′′, with b̄(µ, y) = b(µ, y)−
∫
R γ(y)zF (z)dz; K1 and K2

we have written here above stand for ”Kessler”, based on the fact that the development we find is the
same obtained in [24] in the case without jumps by the iteration of the continuous generator Āc. The

functions who appear in the definition of A
(k)
K1

and A
(k)
K2

are the following: h1(y) := (y − x), h2(y) = y2.
To get Proposition 2 we need to add the following assumption:

Af: We assume that x 7→ a(x, σ), x 7→ b(x, µ) and x 7→ γ(x) are C∞ functions, they have at most
uniform in µ and σ polynomial growth as well as their derivatives.

Proposition 2. Assume that Assumptions 1-4 and Af hold and let ϕ be a C∞ function that has compact
support and such that ϕ ≡ 1 on [−1, 1] and ∀k ∈ {0, ...,M},

∫
R x

kϕ(x)dx = 0 for M ≥ 0. Moreover we

suppose that the Lévy density F is C∞. Then, for |x| ≤ ∆−k0
n,i with some k0 > 0,

m2(µ, σ, x) =

bβ(M+2)c∑
k=1

A
(k)
K2

(x)
∆k
n,i

k!
− (x+

bβ(M+2)c∑
k=1

A
(k)
K1

(x)
∆k
n,i

k!
)2 +R(θ,∆

β(M+2)
n,i , x). (11)

Moreover, for ϑ = µ or ϑ = σ

| ∂
∂ϑ
R(θ,∆

β(M+2)
n,i , x)| ≤ R(θ,∆

β(M+2)
n,i , x). (12)

It is proved below Proposition 2 in [2] that a function ϕ which satisfies the assumptions here above ex-
ists: it is possible to build it through ψ, a function with compact support, C∞ and such that ψ|[−1,1](x) =
xM

M ! . It is enough to define ϕ(x) := ∂M

∂xM
ψ(x) to get ϕ ≡ 1 on [−1, 1]; ϕ is C∞, with compact support and

such that for each l ∈ {0, ...M}, using the integration by parts,
∫
R x

lϕ(x)dx = 0.
It is thanks to such a choice of an oscillating function ϕ that the contribution of the discontinuous part
of the generator disappears and we get the same development found in the continuous case, in Kessler
[24], due only to the continuous generator.
In the situation where (11) holds true with bβ(M + 2)c > 2, we get a development for m2 as in Ad for
r(x) identically 0 and r(µ, σ, x) being an explicit function.

For completeness, let us recall that under the same assumptions as in Proposition 2, we have the
following expansion for m (see Proposition 2 in [2]):

m(µ, σ, x) = x+

bβ(M+2)c∑
k=1

A
(k)
K1

(x)
∆k
n,i

k!
+R(θ,∆

β(M+2)
n,i , x), for |x| ≤ ∆−k0

n,i , with k0 > 0. (13)

In the definition of the contrast function we can replace the two functions m and m2 with their approxi-
mations obtained from (11) and (13) :

m̃ρ1(µ, σ, x) := x+

ρ1∑
k=1

A
(k)
K1

(x)
∆k
n,i

k!
and

m̃2
ρ2(µ, σ, x) :=

ρ2∑
k=1

A
(k)
K2

(x)
∆k
n,i

k!
− (x+

ρ2∑
k=1

A
(k)
K1

(x)
∆k
n,i

k!
)2.

The errors we commit are, respectively, R(θ,∆ρ1

n,i, x) and R(θ,∆ρ2

n,i, x); for ρi ≤ bβ(M + 2)c and ρi ≥ 1,
i = 1, 2.
By application of the Proposition 1 we can see that the associated estimator is asymptotically gaussian

under the assumptions
√
n∆

ρ1− 1
2

n → 0 and
√
n∆ρ2−1

n → 0, for n going to ∞. Since M and thus ρ1

and ρ2 can be chosen arbitrarily large, we see that the sampling step ∆n is allowed to go to zero in a
arbitrary slowly polynomial rate as function of n. That means that a slow sampling step needs to choose
a truncation function with more vanishing moments.

4.2.2 Second order expansion with general truncation functions.

Another situation in which Ad holds is gathered in the following proposition, that will be still proven in
the appendix:

Proposition 3. Suppose that Assumptions A1 -A5 and A7 hold, that β ∈ ( 1
4 ,

1
2 ) and that the Lévy

density F is C1. Then there exists k0 > 0 such that, for |x| ≤ ∆−k0
n,i ,

m2(µ, σ, x) = ∆n,ia
2(x, σ)+

∆1+3β
n,i

γ(x)
F (0)

∫
R
v2ϕ(v)dv+∆2

n,i(3b̄
2(x, µ)+h2(x, θ))+∆

(1+4β)∧(2+β)∧(3−2β)
n,i R(θ, 1, x);

(14)
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where h2 = 1
2a

2(a′)2 + 1
2a

3a′′+ a2b̄′+ aa′b̄+ b̄2. Moreover, for both ϑ = µ and ϑ = σ, ∂
∂ϑR(θ, 1, x) is still

a R(θ, 1, x) function.

We observe that, defining r(x) := F (0)
∫
R v

2ϕ(v)dv and r(µ, σ, x) := 3b̄2(x,µ)+h2(x,θ)
a2(x,σ) , we get a devel-

opment as in Ad for δ1 := 3β.
We observe that if

∫
R v

2ϕ(v)dv = 0, we fall back in development of Proposition 2 up to order 2. We
therefore see that the choice of an oscillating truncated function ϕ is necessary in order to remove the
jump contribution.

It is worth noting here that biggest term after the main one is due to the jump part and do not depend
on the parameters µ and σ. We will see in the sequel that is necessary, in order to prove the consistency
of µ̂n, that this contribution does not depend on the drift parameter. Considering indeed the difference
of the contrast computed for two different values of the drift parameter, its presence results irrelevant.

We remark that the term with order 1 + 4β is negligible compared to the order 2 terms since in our
setting β is assumed to be bigger than 1

4 .
In Proposition 3 before F is required to be C1, such assumption is no longer needed in following more

general proposition.

Proposition 4. Suppose that Assumptions A1 -A5 and A7 hold. Then there exists k0 > 0 such that, for
|x| ≤ ∆−k0

n,i ,

m2(µ, σ, x) = ∆n,ia
2(x, σ) +

∆1+3β
n,i

γ(x)

∫
R
u2ϕ(u)F (u

∆β
n,i

γ(x)
)du+ ∆2

n,i(3b̄
2(x, µ) + h2(x, θ))+

+
∆2+β
n,i a

2(x, σ)

2γ(x)

∫
R

(uϕ′(u) + u2ϕ′′(u))F (
u∆β

n,i

γ(x)
)du+ ∆

(3−2β)∧(2+β)
n,i R(θ, 1, x), (15)

where h2 = 1
2a

2(a′)2 + 1
2a

3a′′ + a2b̄′ + aa′b̄+ b̄2.

Moreover, for both ϑ = µ and ϑ = σ, ∂
∂ϑR(θ, 1, x) is still a R(θ, 1, x) function.

We see that the contributions of the jumps depend on the density F which argument in the integral
depend on ∆n,i. If we choose a particular density function F which is null in the neighborhood of 0
the contribution of the jumps disappears and, in this case, we fall on the development for m2 found by
Kessler in the case without jumps ([24]), up to order ∆2

n,i.
The expansion (15) looks cumbersome, however all terms are necessary to get an expansion with

a remainder term of explicit order strictly greater than 2, and valid for any finite intensity F . In the
particular case where F is C1, the first three terms in the expansion give the the main terms of the
expansions (14), while the last integral term, with order ∆2+β

n,i , is clearly a rest term. However, in the

situation where F may be unbounded near 0, with
∫
F (z)dz <∞, the last integral term is only seen to

be negligible versus ∆2
n,i. Hence, this last integral term may be non negligible compared to the rest term

and is needed in the expansion.
We remark that the construction of the contrast function requires the knowledge of the law of the

jumps, which is typically unknown, since it affects m and m2. However, Propositions 2 and 3 suggest
us some suitable approximation of m ad m2 for which the corrections become explicit. For example,
requiring also that

∫
R zF (z) = 0, b̄ turns out being simply b and therefore Āc(f) no longer depends on

the jump law. It implies that Ak1
in Proposition 2 (and thus the expansions (11) and (13)) no longer

depend on the jump law either. Moreover, Proposition 3 suggests us to estimate in a non -parametric
way the quantity F (0), which would provide an explicit correction as well. Even if we are not aware of
any method for the estimation of F (0), there are many papers related to such a topic. The problem of
the estimation of F (x) with x 6= 0 is connected for example to the works of [8] in high frequency and of
[17] in low frequency, considering in both cases a Lévy process. In [23] the authors deal instead with a
Lévy driven Ornstein Uhlenbeck (OU) process. Figueroa - López proposes nonparametric estimators for
the Lévy density and obtains in [12] both pointwise and uniform central limit theorems on an interval
away from the origin for these estimators.

Finally, we recall the expansion of m valid under the Assumptions A1-A4 (see Theorem 2 in [2]),

m(µ, σ, x) = x+ ∆n,ib̄(x, µ) +
∆1+2β
n,i

γ(x)

∫
R
uϕ(u)F (

u∆β
n,i

γ(x)
)du+R(θ,∆2−2β

n,i , x). (16)

Developments of m2 given in Propositions 2 - 4, together with the developments of m given in (13),
(16) will be useful for the applications, as illustrated in the following section.
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5 Simulation study

In this section we provide some numerical results. First of all, in Section 5.1, we consider a second order
expansion for m and m2 which holds true for any truncation function ϕ. After that, in Section 5.2, some
oscillating truncation functions will be employed with the purpose of using an arbitrarily high expansion
for m and m2, as in Kessler. As we will see, it will lead us to some estimators very well-performed.

5.1 Second order expansion

Let us consider the model

Xt = X0 +

∫ t

0

(θ1Xs + θ2)ds+ σWt + γ

∫ t

0

∫
R\{0}

zµ̃(ds, dz), (17)

where the compensator of the jump measure is µ(ds, dz) = λF0(z)dsdz for F0 the probability density of
the law N (µJ , σ

2
J) with µJ ∈ R, σJ > 0, σ > 0, θ1 < 0, θ2 ∈ R, γ ≥ 0, λ ≥ 0.

We want to explore approximations for m and m2 which make us able to find en explicit version of the
contrast function. According to Theorem 2 of [2] (see also (16)) we have, considering a threshold level

which is c∆β
n,i, the following development for m:

m(θ1, θ2, σ, x) = x+ ∆n,ib̄(x, θ1, θ2) +
c2∆1+2β

n,i

γ

∫
R
uϕ(u)F (

uc∆β
n,i

γ
)du+R(θ,∆2−2β

n,i , x);

which leads us to the approximation

m̃(θ1, θ2, x) = x+ ∆n,ib̄(x, θ1, θ2) +
c2∆1+2β

n,i

γ

∫
R
uϕ(u)F (

uc∆β
n,i

γ
)du,

for b̄(x, θ1, θ2) = (θ1x + θ2) − γλµj . The sampling scheme is uniform and therefore ∆n,i = T
n , for each

i ∈ {0, ...n− 1}. It follows |m(θ1, θ2, σ, x)− m̃(θ1, θ2, x)| ≤ R(θ,∆2−2β
n,i , x)= R(θ,∆ρ1

n,i, x).
Concerning the approximation of m2, from its development gathered in Proposition 4 we define

m̃2(σ) := ∆n,iσ
2 +

∆1+3β
n,i c3

γ

∫
R
u2ϕ(u)F (

uc∆β
n,i

γ
)du,

which is such that |m2(θ1, θ2, σ, x)− m̃2(σ)| ≤ R(θ,∆2
n,i, x)= R(θ,∆ρ2

n,i, x).
By application of Proposition 1 we see that the associated estimator is asymptotically gaussian under

the strong assumption
√
n∆

3
2−2β
n → 0, for n→∞, with β ∈ ( 1

4 ,
1
2 ). In the best case β is close to 1

4 and
so the condition here above becomes equivalent to n∆2

n → 0. Despite such a strong requirement on the
discretization step, we expect the proposed method performing better than the Euler schema since the
main contribution of the jumps has there already been removed.

We want to compare the estimator θ̃n we get by the minimization of the contrast function obtained
by the expansions of m and m2 provided here above with the estimator based on the Euler scheme
approximation:

m̃E(θ1, θ2, x) = x+ (θ1x+ θ2 − λγµj)∆n,i, m̃E
2 (σ, x) = σ2∆n,i. (18)

We estimate jointly the parameter θ = (θ1, θ2, σ) by minimization of the contrast function

Un(θ) =

n−1∑
i=0

[
(Xti+1

− m̃(θ1, θ2, Xti))
2

m̃2(σ,Xti)
+ log(

m̃2(θ1, σ,Xti)

∆n,i
)]ϕc∆β

n,i
(Xti+1 −Xti), (19)

where c > 0 will be specified later.
We compute the derivatives of the contrast function with respect to the three parameters:

∂

∂θ1
Un(θ) =

n−1∑
i=0

2(Xti+1 − m̃(θ1, θ2, Xti))Xti

m̃2(σ)
ϕc∆β

n,i
(Xti+1

−Xti) =

=
2

m̃2(σ)

n−1∑
i=0

(Xti+1
−Xti −∆n,iθ1Xti −∆n,iθ2 + ∆n,iγλµj − J i1)Xtiϕc∆β

n,i
(Xti+1

−Xti),

10



where we have denoted as J i1 the term in the development of m̃ turning up from the presence of jumps,

which is
c2∆1+2β

n,i

γ

∫
R uϕ(u)F (

uc∆β
n,i

γ )du.

We want ∂
∂θ1

Un(θ) = 0, it leads us to the definition of the following estimator:

θ̃1,n :=

∑n−1
i=0 (Xti+1

−Xti −∆n,iθ2 + ∆n,iγλµj − J i1)Xtiϕc∆β
n,i

(Xti+1
−Xti)∑n−1

i=0 ∆n,iX2
tiϕc∆β

n,i
(Xti+1 −Xti)

.

In the same way

∂

∂θ2
Un(θ) =

n−1∑
i=0

2(Xti+1 − m̃(θ1, θ2, Xti))

m̃2(σ)
ϕc∆β

n,i
(Xti+1 −Xti) =

=
2

m̃2(σ)

n−1∑
i=0

(Xti+1
−Xti −∆n,iθ1Xti −∆n,iθ2 + ∆n,iγλµj − J i1)ϕc∆β

n,i
(Xti+1

−Xti).

Since we want ∂
∂θ2

Un(θ) = 0, we define θ̃2,n in the following way:

θ̃2,n :=

∑n−1
i=0 (Xti+1

−Xti −∆n,iθ1Xti)ϕc∆β
n,i

(Xti+1
−Xti)∑n−1

i=0 ∆n,iϕc∆β
n,i

(Xti+1 −Xti)
+ γλµj −

∑n−1
i=0 J

i
1ϕc∆β

n,i
(Xti+1

−Xti)∑n−1
i=0 ∆n,iϕc∆β

n,i
(Xti+1 −Xti)

=

(20)

= θ̃Euler
n −

∑n−1
i=0 J

i
1ϕc∆β

n,i
(Xti+1

−Xti)∑n−1
i=0 ∆n,iϕc∆β

n,i
(Xti+1

−Xti)
;

we can see θ̃2,n as a corrected version of the estimator θ̃Euler
n that would result considering the Euler

scheme approximation for the function m, as in (18). We observe moreover that, considering a uniform

discretization step, the last term in (20) becomes simply J1

∆n
:=

c2∆2β
n

γ

∫
R uϕ(u)F (

uc∆β
n

γ )du.

Computing also the derivative of the contrast function with respect to σ2, we have

∂

∂σ2
Un(θ) =

n−1∑
i=0

[
−(Xti+1

− m̃(θ1, θ2, Xti))
2∂σ2m̃2(σ) + m̃2(σ)∂σ2m̃2(σ)

m̃2
2(σ)

]ϕc∆β
n,i

(Xti+1
−Xti),

which is equal to zero if and only if

n−1∑
i=0

[−(Xti+1 − m̃(θ1, θ2, Xti))
2∆n,i + ∆n,i(∆n,iσ

2 + J i2)]ϕc∆β
n,i

(Xti+1 −Xti) = 0,

for J i2 :=
∆1+3β
n,i c3

γ

∫
R u

2ϕ(u)F (
uc∆β

n,i

γ )du, which is the part deriving from the jumps in the development

of m̃2(σ). It drives us to the estimator

σ̃2
n :=

∑n−1
i=0 (Xti+1

− m̃(θ1, θ2, Xti))
2∆n,iϕc∆β

n,i
(Xti+1

−Xti)∑n−1
i=0 ∆2

n,iϕc∆β
n,i

(Xti+1
−Xti)

−

∑n−1
i=0 ∆n,iJ

i
2ϕc∆β

n,i
(Xti+1 −Xti)∑n−1

i=0 ∆2
n,iϕc∆β

n,i
(Xti+1

−Xti)
.

Considering an uniform discretization step it is

σ̃2
n :=

∑n−1
i=0 (Xti+1 − m̃(θ1, θ2, Xti))

2ϕc∆β
n,i

(Xti+1 −Xti)

∆n

∑n−1
i=0 ϕc∆β

n,i
(Xti+1

−Xti)
− J2

∆n
.

Again, it can be seen as a corrected version of σ̃2,Euler
n , the estimator that would have resulted considering

the approximation of the functions m and m2 as defined in (18). In such a case, not only we would not
have seen the contribution of the jumps appearing in the second term here above, but also in the first
term we should have replaced m̃ with its Euler approximation.
To illustrate the estimation method, we focus on the estimation of the parameters θ2 and σ2 only.
For numerical simulations we choose T = 100, n = 50 000, λ = 1, γ = 1, θ1 = −1, θ2 = 2, σ = 0.5,
d = 2 and c = 1.25. We estimate the bias of the estimators using a Monte Carlo method based on 1000
replications.
First, we consider β as big as possible, fixing it equal to 0.49; then we will take β = 0.3; in both cases
the jumps size has common law N (4, 0.25).
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Mean (dev std) for θ2 = 2 Mean (dev std) for σ2 = 0.25

θ̃Euler
n 2.00284 (0.05020) 0.26558 (0.00161)

θ̃n 2.00289 (0.04830) 0.26412 (0.00156)

Table 1: Monte Carlo estimates of θ2 and σ2 from 1000 samples. We have here fixed β = 0.3.

Mean (dev std) for θ2 = 2 Mean (dev std) for σ2 = 0.25

θ̃Euler
n 2.00368 (0.05195) 0.25150 (0.00161)

θ̃n 2.00302 (0.04992) 0.25067 (0.00159)

Table 2: Monte Carlo estimates of θ2 and σ2 from 1 000 samples. We have here fixed β = 0.49.

We see that there is not a big difference in the estimation of θ2 with and without the correc-
tion term. The two estimators of θ2 differs in fact only for the contribution of the jumps J1

∆n
=

c2∆2β
n

γ

∫
R uϕ(u)F (

uc∆β
n

γ )du that is in this case close to zero, because of the natural choice of taking a
truncated function which is symmetric. Indeed, even if the density function F is not symmetric, asymp-
totically the only contribution it gives is due by its value in zero and, therefore, the symmetry of ϕ is
enough to ensure the limit of the integral is zero.
Regarding σ2, as the correction term J2

∆n
is very small the two different estimators provide two means for

σ2 which are rather similar. However, the estimator we find through our approximated functions m̃ and
m̃2 performs a bit better than the estimator we got through Euler scheme.

5.2 Kessler approximation

In the previous case we have used the second order expansion from m and m2, available for any truncation
function ϕ. Now we still consider (17) in which F0 is still the probability density of the law N (µj , σ

2
J), but

we use Kessler approximation to remove the bias. To do that, we take an oscillating truncated function
ϕ for which the initial contributions of the discontinuous part of the generator disappear.
Indeed, according to Proposition 2 (respectively Proposition 2 in [2]) we know that, using sufficiently
oscillating truncation functions, the expansion of m2 (respectively m) is the same found by Kessler in
the continuous case. The usefulness of Proposition 2 is to illustrate it is possible to neglect the effect
of the truncation function ϕ as the expansions of m and m2 are identical to those of Kessler for the
continuous part of the SDE. Since the Kessler’s expansion approximates the first conditional moments
of X̄t = X̄0 +

∫ t
0
(θ1X̄s + θ2 − γλµJ)ds + σWt (see (1)), which is the continuous part of (17) and which

is explicit due to the linearity of the model, we decide to use directly the expression of the conditional
moment and set

m̃(θ1, θ2, x) = (x+
θ2

θ1
− γλµJ

θ1
)eθ1∆n,i +

γλµJ − θ2

θ1
; (21)

while the approximation of m2(µ, σ, x) is

m̃2(θ1, σ, x) =
σ2

2θ1
(e2θ1∆n,i − 1). (22)

We want to compare the estimator θ̃n we get by the minimization of the contrast function obtained
by the Kessler exact correction of the bias in which we use the approximations (21) and (22) for m
and m2 with the estimator based on the Euler scheme approximation. Following Nikolskii [31], we
construct oscillating truncation functions in the following way. First, we choose ϕ(0) : R → [0, 1] a
C∞ symmetric function with support on [−2, 2] such that ϕ(0)(x) = 1 for |x| ≤ 1. We let, for d > 1,

ϕ
(1)
d (x) = (dϕ(0)(x)−ϕ(0)(x/d))/(d−1), which is a function equal to 1 on [−1, 1], vanishing on [−d, d]c and

such that
∫
R ϕ

(1)
d (x)dx = 0. For l ∈ N, l ≥ 1, and d > 1, we set ϕ

(l)
d (x) = c−1

d

∑l
k=1 C

k
l (−1)k+1 1

kϕ
(1)
d (x/k),

where cd =
∑l
k=1 C

k
l (−1)k+1 1

k . One can check that ϕ
(l)
d is compactly supported, equal to 1 on [−1, 1], and

that for all k ∈ {0, . . . , l},
∫
R x

kϕ
(l)
d (x)dx = 0, for l ≥ 1. With these notations, we estimate the parameter

(θ1, θ2, σ) by minimization of the contrast function (19), implementing the just built truncation function

ϕ
(l)

c∆β
n,i

(Xti+1
−Xti), where l ∈ N and c > 0 will be specified latter.

For numerical simulations, we choose T = 1 000, n will be chosen equal to 2 000, 10 000 and 50 000,
θ1 = −1, θ2 = 2, σ = 0.5 and X0 = x0 = 0. We estimate the bias and standard deviation of our
estimators using a Monte Carlo method based on 2 000 replications. As a start, we consider a situation
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without jumps λ = 0 , in which we remove the truncation function ϕ in the contrast, as it is useless in
absence of jumps.

Mean (std) for θ1 = −1 Mean (std) for θ2 = 2 Mean (std) for σ = 0.5
∆n = 0.5

θ̃Euler
n -0.7922 (0.0348) 1.5843 (0.0701) 0.3980 (0.0062)

θ̃n -1.0063 (0.0578) 2.0128 (0.1166) 0.5017 (0.0099)
∆n = 0.1

θ̃Euler
n -0.9536 (0.0422) 1.9068 (0.0857) 0.4761 (0.0034)

θ̃n -1.0053 (0.0465) 2.0106 (0.0944) 0.5003 (0.0037)
∆n = 0.02

θ̃Euler
n -0.9940 (0.0442) 1.9888 (0.0895) 0.4951 (0.0016)

θ̃n -1.0039 (0.0437) 2.0084 (0.0886) 0.5001 (0.0016)

Table 3: Process without jump

In Table 3, we compare the estimator which uses the Kessler exact bias corrections given by (21)
and (22), with an estimator based on the Euler scheme approximation. From Table 3 we see that the
estimator θ̃Euler

n based on Euler contrast exhibits some bias which is completely removed using Kessler’s
correction. The improvement provided by Kessler approximation is particularly evident for n small.

Next, we set a jump intensity λ = 0.1, with jumps size whose common law is N (4, 0.25) and set
γ = 1. Also in this case, we compare the results obtained basing the estimation on Kessler or on Euler
approximations for the quantities m and m2. Numerical simulations are provided for the truncation
function ϕ(0), where c = 2 and β = 0, 49. A plot of this function can be found in Figure 1.

Mean (std) for θ1 = −1 Mean (std) for θ2 = 2 Mean (std) for σ = 0.5
∆n = 0.5

θ̃Euler
n -0.7301 (0.0274) 1.5796 (0.0512) 0.4843 (0.0223)

θ̃n -0.9095 (0.0423) 1.8697 (0.0763) 0.5967 (0.0234)
∆n = 0.1

θ̃Euler
n -0.9509 (0.0153) 1.9213 (0.0338) 0.4761 (0.0034)

θ̃n -0.9988 (0.0178) 1.9974 (0.0390) 0.5002 (0.0035)
∆n = 0.02

θ̃Euler
n -0.9909 (0.0165) 1.9858 (0.0361) 0.4951 (0.0016)

θ̃n -1.0013 (0.0166) 2.0028 (0.0374) 0.5000 (0.0016)

Table 4: Gaussian jumps with λ = 0.1

Results in Table 4 show that the estimator deriving from Kessler approximation works well, better
than the one deriving from Euler approximations. The bias is visibly reduced for all the choices of n,
especially when n is small. It matches with our theoretical results for which, implementing an oscillating
truncation function, the discretization step can goes to zero arbitrarily slow. We remark that by the choice
of a symmetric truncation function one has

∫
R uϕ

(0)(u)du = 0 and it can be seen that this conditions is
sufficient, in the expansion of m and m2, to suppress the largest contribution of the discrete part of the
generator.

When the number of jumps is greater, e.g. for λ = 10, we choose once again c = 2 and β = 0, 49
but, unlike before, T is fixed equal to 100 and n is 10 000, 50 000 and 500 000. Now the law of the jumps
is N (0, 1). We compare the results we get by considering different oscillating truncation functions ϕ(0),

ϕ
(2)
1.4 and ϕ

(4)
1.2, whose plots are given in Figure 1.

We see in Table 5 that the use of the more oscillating kernels ϕ
(2)
1.4, ϕ

(4)
1.2 yields to a smaller bias than

using ϕ(0).

The estimator we get using ϕ
(4)
1.2 performs particularly well in this situation, it has a negligible bias

and a small standard deviation.
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Mean (std) for θ1 = −1 Mean (std) for θ2 = 2 Mean (std) for σ = 0.5
∆n = 0.01

θ̃n using ϕ(0) -0.9611 (0.0477) 1.9229 (0.1440) 1.1037 (0.0229)

θ̃n using ϕ
(2)
1.4 -0.9979 (0.0387) 1.9967 (0.1157) 0.3272 (0.0310)

θ̃n using ϕ
(4)
1.2 -0.9979 (0.1020) 1.9924 (0.3123) 0.5376 (0.1013)

∆n = 0.002

θ̃n using ϕ(0) -0.9948 (0.0307) 1.9890 (0.0926) 0.7121 (0.0110)

θ̃n using ϕ
(2)
1.4 -1.0007 (0.0241) 2.0007 (0.0707) 0.4863 (0.0031)

θ̃n using ϕ
(4)
1.2 -0.9996 (0.0374) 1.9994 (0.1116) 0.5007 (0.0144)

∆n = 0.0002

θ̃n using ϕ(0) -1.0008 (0.0237) 1.9991 (0.0717) 0.5331 (0.0027)

θ̃n using ϕ
(2)
1.4 -1.0009 (0.0217) 2.0021 (0.0643) 0.4995 (0.0005)

θ̃n using ϕ
(4)
1.2 -0.9996 (0.0226) 1.9978 (0.0677) 0.4999 (0.0010)

Table 5: Gaussian jumps with λ = 10

(a) ϕ(0) (b) ϕ
(2)
1.4 (c) ϕ

(4)
1.2

Figure 1: Plot of the truncation functions

6 Future perspectives

In future perspectives, we plan to generalize the obtained results. There are many remaining questions
of interest, both from a theoretical and a numerical point of view.
As explained in the introduction, in this paper we extend previous works in which only the drift parameter
was considered (see for example [15] and [2]). We may wonder what happens if the jump coefficient has
another parameter, that we here denote as η. A first, simple answer is that, if the jumps are centered
(which means

∫
R zF (z)dz = 0), then the knowledge of the jumps is no longer needed. Hence, as discussed

below Proposition 4, it is enough to use the approximation of m and m2 proposed in Proposition 2 of [2]
and in Proposition 2 in order to make the contrast explicit. After that, we can still use our main results to
estimate jointly the drift and the volatility parameters and the lack of knowledge of the jump parameter
is not a problem. Estimating the three parameters jointly, that is a different story. In [36], Shimizu and
Yoshida deal with it. They propose a contrast function which has two terms: the first corresponds to
the contrast for an usual diffusion process, while the second concerns the discretization of the likelihood
function of a compound Poisson process with Lévy density. In the abovementioned work they show the
asymptotic normality of the estimators under some conditions on the sampling step which are more and
more restrictive as the intensity of the jumps is high and, when the intensity is finite, they reduces to
n∆2

n → 0.
One may wonder how to modify the contrast function introduced in (4) in order to estimate jointly the
three parameters under the general balance condition n∆n → ∞ and n∆k

n → 0 for all k ≥ 2. The
natural idea is to add to (4) a term, corresponding to the one introduced by Shimizu and Yoshida, which
regards the discretization of the likelihood function of the jumps. In order to weaken the condition on
the sampling step we need to introduce in such a term a third unknown quantity that we would define on
the specif purpose to make ∂ηUn a triangular array of martingale increments. However, it is not a simple
issue. First of all, it is not trivial to understand how to correct the contrast function and, furthermore, it
would become much more difficult to investigate the asymptotic behaviour of the new contrast function
and of its derivatives.

For practical implementation, the question of approximation of m and m2 is crucial, and therefore
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one has to face the issue of choosing the threshold level, characterized here by c, β and ϕ. Indeed, though
the efficiency of the estimators has been established theoretically, it is known that in general their real
performance strongly depends on a choice of tuning parameters; see for example Shimizu [35], Iacus and
Yoshida [19]. The filter is each time based on only one increment of the data and so, in this sense,
this filter can be regarded as a local method. In [20], Inatsugu and Yoshida introduce a global filtering
method, which they call α threshold method. It uses all of the data to more accurately detect increments
having jumps, based on the order statistics associated with all increments. Even if the α - threshold
method involves the tuning parameter α to determine a selection rule for increments, it is robust against
the choice of such a parameter.
In this work we use a local threshold method, having in mind a different objective. Here the idea, indeed,
is mainly to remove the bias caused by a wrong choice of the threshold parameters rather than determine
a good one. On contrary to more conventional threshold methods, the quantities m and m2 depend here
by construction on the threshold level and may compensate for too large threshold. However, as seen in
Section 5, the quantities m and m2 can be numerically very far from the approximations derived through
the Euler scheme approximation and through the approximation scheme at higher order (as proposed
in Proposition 3). A perspective would be to approximate numerically these two quantities, using for
instance a Monte Carlo approach, and provide more accurate corrections than the ones here proposed.

7 Preliminary results

Before proving the main statistical results of Section 3, we need to state several propositions which will
be useful in the sequel. They will be proven in Section A.1.

7.1 Limit theorems

The asymptotic properties of estimators are deduced from the asymptotic behavior of the contrast func-
tion. We therefore state some propositions useful to get the asymptotic behavior of Un.

Proposition 5. Suppose that Assumptions 1 to 4 and AStep hold, ∆n → 0 and Tn → ∞ and f is a

differentiable function R×Θ→ R such that |f(x, θ)| ≤ c(1+ |x|c), |∂xf(x, θ)| ≤ c(1+ |x|c) and, for ϑ = µ
and ϑ = σ, |∂ϑf(x, θ)| ≤ c(1 + |x|c). Then x 7→ f(x, θ) is a π-integrable function for any θ ∈ Θ and the
following convergences hold as n→∞ :

1.| 1
Tn

∑n−1
i=0 ∆n,if(Xti , θ)1{|Xti |≤∆−kn,i} −

∫
R f(x, θ)π(dx)| P−→ 0,

2. | 1
Tn

∑n−1
i=0 ∆n,if(Xti , θ)ϕ∆β

n,i
(Xti+1

−Xti)1{|Xti |≤∆−kn,i} −
∫
R f(x, θ)π(dx)| P−→ 0,

3. | 1n
∑n−1
i=0 f(Xti , θ)1{|Xti |≤∆−kn,i} −

∫
R f(x, θ)π(dx)| P−→ 0,

4. | 1n
∑n−1
i=0 f(Xti , θ)ϕ∆β

n,i
(Xti+1 −Xti)1{|Xti |≤∆−kn,i} −

∫
R f(x, θ)π(dx)| P−→ 0.

Statements 1 − 2 and 3 − 4 of the proposition here above, as well as the first and the second point
of Proposition 6 below, turn out being similar if the sampling step ∆n,i = ∆n considered is uniform.
Otherwise, we need these two different convergences because, in order to estimate µ and σ jointly, we
have to deal with different scaling of the contrast function.

Proposition 6. Suppose that Assumptions 1 to 4 and AStep hold, ∆n → 0 and Tn → ∞ and f :

R×Θ→ R. Moreover we suppose that ∃c: |f(x, θ)| ≤ c(1 + |x|c) and that β ∈ ( 1
4 ,

1
2 ).

Then, ∀θ ∈ Θ,

1.
1

Tn

n−1∑
i=0

f(Xti , θ) (Xti+1
−m(µ, σ,Xti))

2 ϕ∆β
n,i

(Xti+1
−Xti)1{|Xti |≤∆−kn,i}

P−→
∫
R
f(x, θ)a2(x, σ0)π(dx).

2.
1

n

n−1∑
i=0

f(Xti , θ)

∆n,i
(Xti+1 −m(µ, σ,Xti))

2 ϕ∆β
n,i

(Xti+1 −Xti)1{|Xti |≤∆−kn,i}
P−→
∫
R
f(x, θ)a2(x, σ0)π(dx).

The proof relies on the following lemma. In the sequel we will denote Ei[.] for E[.|Fti ], where (Fs)s is
the filtration defined in Lemma 1.

Lemma 3. Suppose that Assumptions 1 to 4 hold. Moreover we suppose that β ∈ ( 1
4 ,

1
2 ). Then

1.Ei[(Xti+1
−m(µ, σ,Xti))

2 ϕ2
∆β
n,i

(Xti+1
−Xti)] = ∆n,ia

2(Xti , σ0) +R(θ,∆1+β
n,i , Xti), (23)

2.Ei[(Xti+1 −m(µ, σ,Xti))
4 ϕ4

∆β
n,i

(Xti+1 −Xti)] = 3∆2
n,ia

4(Xti , σ0) +R(θ,∆
7
4 +β
n,i , Xti), (24)
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3.For k ≥ 1, |Ei[(Xti+1 −m(µ, σ,Xti))ϕ
k
∆β
n,i

(Xti+1 −Xti)]| ≤ R(θ,∆n,i, Xti), (25)

4.For k ≥ 2, ∀k′ > 0, Ei[|Xti+1 −m(µ, σ,Xti)|k |ϕ∆β
n,i

(Xti+1 −Xti)|k
′
] ≤ R(θ,∆

k
2∧(1+βk)
n,i , Xti). (26)

5.∀k′ > 0, Ei[(Xti+1
−m(µ0, σ0, Xti))

3|ϕ∆β
n,i

(Xti+1
−Xti)|k

′
] = R(θ0,∆

4
3 +β
n,i , Xti).

We observe that the first and the second points here above are particular cases of the the fourth one,
in which we get some better estimation. In particular, we can identify in detail the main term.
Concerning the fifth point, instead, we remark that for k = 3 we don’t have the main contribution of the

Brownian part anymore, which gave us the rest function of size ∆
k
2
n,i in (26). In this case the main term

of the development is given by the square of the Brownian integral times the jump part, which magnitude
can be estimated by 4

3 + β.

In next lemma we consider the derivatives of ϕ, getting an improvement of the estimations here above. It
relies on the fact that, from the definition we gave of such a function, we know its derivatives are different
from zero only if the increments of our process are smaller than 2∆β

n,i (as it was for ϕ) and bigger than

∆β
n,i (extra bound that we did not get using ϕ). Having therefore no longer only an upper bound but

also a lower bound for Xti+1
−Xti , it is now possible to prove a better version of (26):

Lemma 4. Suppose that Assumptions A1-A5 A7 and Ad hold. Then ∀p ≥ 1, ∀k ≥ 1 and ∀r > 0,

Ei[|Xθ
ti+1
−m(µ, σ,Xti)|p|ϕ

(k)

∆β
n,i

(Xθ
ti+1
−Xθ

ti)|
r] ≤ R(θ, h1+βp, Xti).

Considering only the jump part, the following result holds:

Lemma 5. Suppose that Assumptions A1-A4 holds. Then, ∀q ≥ 1 we have

Ei[|∆XJ
i ϕ∆β

n,i
(∆iX)|q] = R(θ0,∆

(1+βq)∧q
n,i , Xti),

where ∆XJ
i :=

∫ ti+1

ti

∫
R zγ(Xs−)µ̃(ds, dz).

Other estimation about the expected value of the jump part in the presence of an indicator function
which is 0 if the increments are bigger than c∆β

n,i are gathered in Lemma 4 of [3].

Using the lemmas stated here above, it is possible to prove the following proposition, that will be proved
in Section A.1 and which is useful to show the tightness of the contrast function.

Proposition 7. Suppose that Assumptions 1 to 4 and AStep hold, ∆n → 0 and Tn → ∞ and gi,n is

a differentiable function R × Θ → R such that |gi,n(x, θ)| ≤ c(1 + |x|c) and, for ϑ = µ and ϑ = σ,
|∂ϑgi,n(x, θ)| ≤ c(1 + |x|c). We define

Sn(θ) :=
1

Tn

n−1∑
i=0

(Xti+1
−m(µ, σ,Xti))ϕ∆β

n,i
(Xti+1

−Xti)gi,n(Xti , θ).

Then Sn(θ) is tight in (C(Θ), ‖.‖∞).

7.2 Derivatives of m and m2

We now state some propositions which concern the derivatives of m and m2 that will be useful in the
sequel. We introduce the following notation for the derivative operators ∂ϑ := ∂

∂ϑ , for ϑ = µ and ϑ = σ.

Proposition 8. Suppose that Assumptions A1-A5 A7 and Ad hold. Then, for |x| ≤ ∆−k0
n,i and ∀ε > 0,

we have
1. ∂µm(µ, σ,Xti) = ∆n,i∂µb(Xti , µ) +R(θ,∆

5
2−β−ε
n,i , Xti),

2. |∂σm(µ, σ,Xti)| ≤ R(θ,∆n,i, Xti),

3. |∂µm2(µ, σ,Xti)| ≤ R(θ,∆2
n,i, Xti),

4. ∂σm2(µ, σ,Xti) = 2∆n,i∂σa(Xti , σ)a(Xti , σ) +R(θ,∆1+β
n,i , Xti).
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We denote ∂2
ϑ := ∂2

∂ϑ2 and ∂2
µσ := ∂2

∂µ∂σ . Estimation on the second derivatives are gathered in the
following proposition:

Proposition 9. Suppose that Assumptions A1 - A5, A7 and Ad hold. Then

|∂2
µσm(µ, σ,Xti)| ≤ R(θ,∆

3
2
n,i, Xti), |∂2

σm(µ, σ,Xti)| ≤ R(θ,∆n,i, Xti), (27)

∂2
µm(µ, σ,Xti) = ∆n,i∂

2
µb(µ,Xti) +R(θ,∆

3
2
n,i, Xti), (28)

|∂2
µσm2(µ, σ,Xti)| ≤ R(θ,∆2

n,i, Xti), |∂2
µm2(µ, σ,Xti)| ≤ R(θ,∆2

n,i, Xti), (29)

∂2
σm2(µ, σ,Xti) = 2∆n,i∂σa(σ,Xti)a(σ,Xti) +R(θ,∆

3
2
n,i, Xti). (30)

Deriving once again, the orders do not get worse. Indeed, the following estimations hold.

Proposition 10. Suppose that Assumptions A1 - A5, A7 and Ad hold. Then

1. |∂3
µm2(µ, σ,Xti)| ≤ R(θ,∆2

n,i, Xti); 2. |∂3
σµσm2(µ, σ,Xti)| ≤ R(θ,∆2

n,i, Xti),

3. |∂3
µµσm2(µ, σ,Xti)| ≤ R(θ,∆2

n,i, Xti); 4. |∂3
σm2(µ, σ,Xti)| ≤ R(θ,∆n,i, Xti),

5. |∂3
µm(µ, σ,Xti)| ≤ R(θ,∆n,i, Xti); 6. |∂3

σµσm(µ, σ,Xti)| ≤ R(θ,∆
3
2
n,i, Xti),

7. |∂3
µµσm(µ, σ,Xti)| ≤ R(θ,∆

3
2
n,i, Xti); 8. |∂3

σm(µ, σ,Xti)| ≤ R(θ,∆n,i, Xti).

The notation here above proposed for the third derivatives is the natural extension of the one intro-
duced in Proposition 9 for the second derivatives.
Propositions 8, 9 and 10 will be proved in the appendix.

8 Proof of main results

We first of all study the asymptotic behaviour of the contrast, from which we find the consistency of our
estimator.
We underline that, to get the consistency of the drift parameter, the normalization of the contrast function
is different than the normalization we use to find the consistency of σ̂n. Even if it doesn’t seem a natural
choice, it works well on the basis of Proposition 6.

8.1 Contrast’s convergence

To prove the contrast convergences, the development (10) of m2 will be useful. We have shown in [2] (see
(16) also) that under Assumptions (A1)-(A4) the following development of m(µ, σ, x) holds :

m(µ, σ, x) = x+ ∆n,ib(x, µ) +RJ(∆n,i, x) + r1(µ, σ, x), (31)

where r1(µ, σ, x) is a particularR(θ,∆1+δ
n,i , Xti) function (with δ > 0) andRJ(∆n,i, x) = −∆n,i

∫
R zγ(x)[1−

ϕ∆β
n,i

(γ(x)z)]F (z)dz; the J underlines that it turns out from a jump term. It has the same properties of

the function R defined in Section 4.2 but it does not depend on θ.
Let us now prove the consistency of θ̂n. The first step are the following lemmas:

Lemma 6. Suppose that A1 - A5, AStep and Ad hold. Moreover we suppose that β ∈ ( 1
4 ,

1
2 ). Then

1

n
Un(µ, σ)

P−→
∫
R

[
c(x, σ0)

c(x, σ)
+ log(c(x, σ))]π(dx), (32)

where c(x, σ) = a2(x, σ) and π is the invariant distribution defined in Lemma 2.

Lemma 6 is useful to prove the consistency of σ̂n, while we will use next lemma to show the consistency
of µ̂n

Lemma 7. Suppose that A1 - A5, AStep and Ad hold. Moreover we suppose that β ∈ ( 1
4 ,

1
2 ) and that

2δ1 > 1. Then

1

Tn
(Un(µ, σ)−Un(µ0, σ))

P−→
∫
R

(b(x, µ0)− b(x, µ))2

c(x, σ)
π(dx)+

∫
R
[r(µ, σ, x)−r(µ0, σ, x)](1− c(x, σ0)

c(x, σ)
)π(dx),

(33)
where r(µ, σ, x) is the particular R(θ, 1, x) function who turns out from the development (10) of m2.
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8.1.1 Proof of Lemma 6

Proof. We first of all observe that by the equation (10) we have, for |Xti | ≤ ∆−kn,i ,

1

m2(µ, σ,Xti)
=

1

∆n,ic(Xti , σ)(1 + ∆δ1
n,i

r(Xti )

c(Xti ,σ) + ∆n,ir(µ, σ,Xti) +R(θ,∆1+δ2
n,i , Xti))

=

=
1

∆n,ic(Xti , σ)
(1−∆δ1

n,i

r(Xti)

c(Xti , σ)
−∆n,ir(µ, σ,Xti) +R(θ,∆

2δ1∧(1+δ2)∧2
n,i , Xti)). (34)

In the sequel we will just write r̄ for 2δ1∧(1+δ2)∧2. We observe that, as a consequence of the Assumption
Ad, we have for both ϑ = µ and ϑ = σ, |∂ϑR(θ,∆r̄

n,i, Xti)| ≤ R(θ,∆r̄
n,i, Xti), where the two rest functions

are not necessarily the same.
Similarly,

log(
m2(µ, σ,Xti)

∆n,i
) = log(c(Xti , σ)) + log(1 + ∆δ1

n,i

r(Xti)

c(Xti , σ)
+ ∆n,ir(µ, σ,Xti) +R(θ,∆1+δ2

n,i , Xti)) =

= log(c(Xti , σ)) + ∆δ1
n,i

r(Xti)

c(Xti , σ)
+ ∆n,ir(µ, σ,Xti) +R(θ,∆r̄

n,i, Xti). (35)

Using both (34) and (35) in the definition of Un(µ, σ), we have to show that

1

n

n−1∑
i=0

(Xti+1 −m(µ, σ,Xti))
2

∆n,ic(Xti , σ)
ϕ∆β

n,i
(Xti+1

−Xti)1{|Xti |≤∆−kn,i}(1−∆δ1
n,i

r(Xti)

c(Xti , σ)
−∆n,ir(µ, σ,Xti)+R(θ,∆r̄

n,i, Xti))+

+
1

n

n−1∑
i=0

(log(c(Xti , σ))+∆δ1
n,i

r(Xti)

c(Xti , σ)
+∆n,ir(µ, σ,Xti)+R(θ,∆r̄

n,i, Xti))ϕ∆β
n,i

(Xti+1
−Xti)1{|Xti |≤∆−kn,i} =:

8∑
j=1

Inj

converges to the right hand side of (32). We know that In1
P−→
∫
R( c(x,σ0)

c(x,σ) )π(dx) because of Proposition 6.

Using the third point of Proposition 5, In5
P−→
∫
R log(c(x, σ))π(dx). All the other terms converge to zero

in norm 1 and so in probability. Indeed, passing through the conditional expectation and using the first
point of Lemma 3 we have

E[|In2 |] ≤
1

n

n−1∑
i=0

E[|
∆δ1
n,ir(Xti)

∆n,ic2(Xti , σ)
Ei[(Xti+1 −m(µ, σ,Xti))

2ϕ∆β
n,i

(Xti+1 −Xti)]1{|Xti |≤∆−kn,i}|] ≤

≤ ∆δ1
n

n

n−1∑
i=0

E[|R(θ, 1, Xti)|] ≤ c∆δ1
n ,

reminding that r(Xti) is a function R(θ, 1, Xti) by its definition and having used the property (9) on R,
its polynomial growth and the third point of Lemma 2. In the same way we obtain

E[|In3 |] ≤ c∆n and E[|In4 |] ≤ c∆r̄
n,

that goes to zero since r̄ = 2δ1 ∧ (1 + δ2) ∧ 2 is always positive.
Concerning In6 , as a consequence of the definition of r(x) and the fact that ∆n,i ≤ ∆n we have again

E[|In6 |] ≤
∆δ1
n

n

n−1∑
i=0

E[|R(θ, 1, Xti)|] ≤ c∆δ1
n ,

which converges to zero for n→∞. Again, acting in the same way we have

E[|In7 |] ≤ c∆n and E[|In8 |] ≤ c∆r̄
n.

Convergence (32) follows.

8.1.2 Proof of Lemma 7

Proof. Using again (34) and (35) we have that

1

Tn
(Un(µ, σ)−Un(µ0, σ)) =

1

Tn

n−1∑
i=0

[
(Xti+1

−m(µ, σ,Xti))
2

∆n,ic(Xti , σ)
−

(Xti+1
−m(µ0, σ,Xti))

2

∆n,ic(Xti , σ)
]ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i}+
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+
1

Tn

n−1∑
i=0

∆δ1
n,i

r(Xti)

c(Xti , σ)
[
(Xti+1 −m(µ, σ,Xti))

2

∆n,ic(Xti , σ)
−

(Xti+1 −m(µ0, σ,Xti))
2

∆n,ic(Xti , σ)
]ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i}+

+
1

Tn

n−1∑
i=0

∆n,ir(µ, σ,Xti)[1−
(Xti+1

−m(µ, σ,Xti))
2

∆n,ic(Xti , σ)
]ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i}+

− 1

Tn

n−1∑
i=0

∆n,ir(µ0, σ,Xti)[1−
(Xti+1 −m(µ0, σ,Xti))

2

∆n,ic(Xti , σ)
]ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i}+

+
1

Tn

n−1∑
i=0

[R((µ, σ),∆r̄
n,i, Xti) +R((µ, σ),∆r̄

n,i, Xti)
(Xti+1

−m(µ, σ,Xti))
2

∆n,ic(Xti , σ)
]ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i}+

+
1

Tn

n−1∑
i=0

[R((µ0, σ),∆r̄
n,i, Xti)+R((µ0, σ),∆r̄

n,i, Xti)
(Xti+1

−m(µ0, σ,Xti))
2

∆n,ic(Xti , σ)
]ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i} =:

6∑
j=1

Inj ,

where we have introduced the notation ∆iX := Xti+1 −Xti and we recall that r̄ = 2δ1 ∧ (1 + δ2) ∧ 2.

We have already proved in Lemma 4 of [2] that In1
P−→
∫
R

(b(x,µ0)−b(x,µ))2

c(x,σ) π(dx). We observe that In2 differs

from In1 only from the presence of ∆δ1
n,i

r(Xti )

c(Xti ,σ) and so, since δ1 is positive, acting exactly as we did in

order to prove the convergence of In1 it is possible to show that the added ∆δ1
n,i make In2 converge to zero

in probability.
Concerning In3 ,

1

Tn

n−1∑
i=0

∆n,ir(µ, σ,Xti)ϕ∆β
n,i

(∆iX)1{|Xti |≤∆−kn,i}
P−→
∫
R
r(µ, σ, x)π(dx) (36)

as a consequence of the second point of Proposition 5. Moreover, using the third point of Proposition 6,
we have that

1

Tn

n−1∑
i=0

∆n,ir(µ, σ,Xti)
(Xti+1

−m(µ, σ,Xti))
2

∆n,ic(Xti , σ)
ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i}

P−→
∫
R
r(µ, σ, x)

c(x, σ0)

c(x, σ)
π(dx).

(37)
From (36) and (37) it follows

In3
P−→
∫
R
r(µ, σ, x)[1− c(x, σ0)

c(x, σ)
]π(dx).

Acting on In4 exactly like we did on In3 we get

In4
P−→
∫
R
r(µ0, σ, x)[1− c(x, σ0)

c(x, σ)
]π(dx).

Concerning In5 , it is

1

Tn

n−1∑
i=0

R(θ,∆r̄
n,i, Xti)ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i} ≤ ∆r̄−1

n

1

n

n−1∑
i=0

R(θ, 1, Xti)ϕ∆β
n,i

(∆iX),

which converges to zero in norm 1 and so in probability because of the boundedness of ϕ, the polynomial
growth of R, the fact that 1

Tn
= O( 1

n∆n
) and that r−1 is always positive since we have assumed 2δ1 > 1.

Moreover, passing through the conditional expectation and using the first point of Lemma 3 we have that

1

Tn

n−1∑
i=0

E[R(θ,∆r̄
n,i, Xti)Ei[

(Xti+1 −m(µ, σ,Xti))
2

∆n,ic(Xti , σ)
ϕ∆β

n,i
(∆iX)]1{|Xti |≤∆−kn,i}] ≤ ∆r̄−1

n

1

n

n−1∑
i=0

E[R(θ, 1, Xti)] ≤ c∆r̄−1
n .

We have therefore proved that the second part of In5 converges to 0 in norm 1 and therefore in probability.

It follows In5
P−→ 0 and, acting exactly in the same way, we have also In6

P−→ 0. It yields (33).
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8.2 Consistency of the estimator.

In order to prove the consistency of θ̂n, we need that the convergences (32) and (33) take place in proba-
bility uniformly in both the parameters, we want therefore to show the uniformity of the convergence in
θ.
We regard Un(µ,σ)

n and Sn(µ, σ) := 1
Tn

(Un(µ, σ) − Un(µ0, σ)) as random elements taking values in
(C(Θ), ‖.‖∞). It suffices to prove the tightness of these sequences; to do it we need some estimations for
the derivatives of m and m2 with respect to both the parameters, which are stated in Proposition 8, that
will be proved in the Appendix. Such a proposition will be also useful to study the asymptotic behavior
of the derivatives of the contrast function. We observe that, as a consequence of (31) and Proposition 8,
for ϑ = µ or ϑ = σ it is |∂ϑr1(µ, σ, x)| ≤ R(θ,∆n,i, Xti).

Lemma 8. Suppose that Assumption A1-A5, Ad, AStep and A7 are satisfied. Then, the sequence Un(µ,σ)
n

is tight in (C(Θ), ‖.‖∞).

Proof. The tightness is implied by supn
1
nE[supµ,σ |∂ϑUn(µ, σ)|] <∞ (see Corollary B.1 in [33]), for ϑ = µ

and ϑ = σ. It is

∂ϑUn(µ, σ) =

n−1∑
i=0

[
−2∂ϑm(µ, σ,Xti)(Xti+1 −m(µ, σ,Xti))

m2(µ, σ,Xti)
−
∂ϑm2(µ, σ,Xti)(Xti+1 −m(µ, σ,Xti))

2

m2
2(µ, σ,Xti)

+

(38)

+
∂ϑm2(µ, σ,Xti)

m2(µ, σ,Xti)
]ϕ∆β

n,i
(∆iX)]1{|Xti |≤∆−kn,i}.

Using the first and the third point of Proposition 8 and the development (10) of m2 it follows

E[sup
µ,σ
|∂µUn(µ, σ)|] ≤

n−1∑
i=0

E[sup
µ,σ
|R(θ, 1, Xti)(Xti+1

−m(µ, σ,Xti))ϕ∆β
n,i

(∆iX)|1i,n]+

+

n−1∑
i=0

E[sup
µ,σ
|R(θ, 1, Xti)(Xti+1

−m(µ, σ,Xti))
2ϕ∆β

n,i
(∆iX)|1i,n] +

n−1∑
i=0

E[sup
µ,σ
|R(θ,∆n,i, Xti)|1i,n], (39)

where we have used 1i,n instead of 1{|Xti |≤∆−kn,i} to shorten the notation.

We observe that
E[sup

µ,σ
|R(θ, 1, Xti)(Xti+1 −m(µ, σ,Xti))ϕ∆β

n,i
(∆iX)|1i,n] ≤

≤ E[(sup
µ,σ
|R(θ, 1, Xti)|)(sup

µ,σ
|(Xti+1

−m(µ, σ,Xti))ϕ∆β
n,i

(∆iX)|)1i,n] ≤

≤ E[(sup
µ,σ
|R(θ, 1, Xti)|1i,n)(|(Xti+1

−m(µ0, σ,Xti))ϕ∆β
n,i

(∆iX)|)]+

+cE[(sup
µ,σ
|R(θ, 1, Xti)|)(sup

µ,σ
|m(µ, σ,Xti)−m(µ0, σ,Xti))|)1i,n]. (40)

We can now use Cauchy-Schwartz inequality and (23) in Lemma 3 on the first, while on the second we
use the development (31) of m getting that (40) is upper bounded by

cE[R(θ,∆n,i, Xti)]
1
2 +cE[(sup

µ,σ
|R(θ, 1, Xti)|)(sup

µ,σ
|∆n,i(b(Xti , µ)−b(Xti , µ0))+r1(µ, σ,Xti)−r1(µ0, σ,Xti)|)] ≤

≤ c∆
1
2
n + cE[sup

µ,σ
|R(θ,∆n,i, Xti)|] ≤ c∆

1
2
n + c∆n ≤ c∆

1
2
n , (41)

where we have also used the boundedness of ϕ, the fact that R has polynomial growth uniformly in θ
and the third point of Lemma 2 to say that our process has finite moments.
In the same way,

E[sup
µ,σ
|R(θ, 1, Xti)(Xti+1−m(µ, σ,Xti))

2ϕ∆β
n,i

(∆iX)|1i,n] ≤ E[sup
µ,σ
|R(θ,∆n,i, Xti)|]+E[sup

µ,σ
|R(θ,∆2

n,i, Xti)|] ≤ c∆n.

(42)
Replacing (41) and (42) in (39) it follows

sup
n

1

n
E[sup

µ,σ
|∂µUn(µ, σ)|] ≤ c∆

1
2
n ≤ c <∞.
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We can act in the same way on ∂σUn(µ, σ). Considering this time the second and the fourth point of
Proposition 8 and still using the development (10) of m2 and (23) in Lemma 3 it follows

sup
n

1

n
E[sup

µ,σ
|∂σUn(µ, σ)|] ≤ sup

n

1

n

n−1∑
i=0

E[sup
µ,σ
|R(θ,∆

1
2
n,i, Xti) +R(θ, 1, Xti)|] ≤ c <∞.

The tightness is therefore proved.

Lemma 9. Suppose that Assumption A1-A5, A7, AStep and Ad are satisfied. We suppose moreover that

δ1 in the Assumption Ad is such that 2δ1 > 1. Then, the sequence Sn(µ, σ) = 1
Tn

(Un(µ, σ) − Un(µ0, σ))
is tight in (C(Θ), ‖.‖∞).

Proof. We take again the notation used in the proof of Lemma 7, for which Sn(µ, σ) =
∑6
j=1 I

n
j . Since

the sum of tight sequences is still tight, we will proceed showing that they are all tight. We start with
In3 ; acting as we did in Lemma 8, we prove that supn E[supµ,σ |∂ϑIn3 |] < ∞. We observe that, for ϑ = µ
and ϑ = σ,

∂ϑI
n
3 =

1

Tn

n−1∑
i=0

∆n,i[∂ϑr(µ, σ,Xti)(1−
(Xti+1 −m(µ, σ,Xti))

2

∆n,ic(Xti , σ)
)+

−r(µ, σ,Xti)∂ϑ(
(Xti+1

−m(µ, σ,Xti))
2

∆n,ic(Xti , σ)
)]ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i} =: In3,1 + In3,2.

On In3,1 we use the first point of Lemma 3 and that |∂ϑr(µ, σ,Xti)| ≤ R(θ, 1, Xti) as stated in Assumption
Ad to get

sup
n

E[sup
µ,σ
|In3,1|] ≤ c+ sup

n

1

n∆n

n−1∑
i=0

E[Ei[sup
µ,σ
|R(θ, 1, Xti)(Xti+1 −m(µ, σ,Xti))

2ϕ∆β
n,i

(∆iX)|1i,n]] ≤ c

(43)
where we have used the polynomial growth of R, the third point of Lemma 2 and (42) and the notation
1i,n instead of 1{|Xti |≤∆−kn,i}.

Concerning In3,2, the derivatives of
(Xti+1

−m(µ,σ,Xti ))
2

∆n,ic(Xti ,σ) with respect to µ and σ are different but in both

cases they are upper bounded, using the first and the second point of Proposition 8, by |R(θ, 1, Xti)(Xti+1−
m(µ, σ,Xti))ϕ∆β

n,i
(∆iX)|. We can therefore use (40) and (41), getting

sup
n

E[sup
µ,σ
|In3,2|] ≤ c sup

n
∆

1
2
n ≤ c <∞. (44)

From (43) and (44) it follows the tightness of In3 . Acting exactly in the same way on In4 it is clear it is
tight too. Concerning In5 and In6 , recalling that the function R(θ,∆r̄

n,i, Xti) turns out from (34) and it is
such that its derivatives with respect to both the parameters remains of the same order, we observe it is
possible to act like we did on In3 getting

sup
n

E[sup
µ,σ
|In5 |] ≤ c∆r̄−1

n + c∆
r̄− 1

2
n <∞,

since we have chosen 2δ1 > 1 and so r̄ − 1 is positive. Clearly the same estimation hold for In6 .
We now prove that In1 is tight. To do it we observe that, using the development (31) and the dynamic
(3) of the process X we have

Xti+1 −m(µ, σ,Xti) =

∫ ti+1

ti

b(Xs, µ0)ds+

∫ ti+1

ti

a(σ0, Xs)dWs +

∫ ti+1

ti

∫
R\{0}

γ(Xs−)zµ̃(ds, dz)+ (45)

−RJ(∆n,i, Xti)−∆n,ib(Xti , µ)− r1(µ, σ,Xti).

It is worth noting that only the last two terms here above depend on µ and so replacing (45) in In1 some
terms are deleted by compensation. Therefore we can define

In1,1 :=
1

Tn

n−1∑
i=0

ϕ∆β
n,i

(∆iX)1{|Xti |≤∆−kn,i}
∆n,ic(σ,Xti)

[∆2
n,i(b

2(Xti , µ)− b2(Xti , µ0)) + r2
1(µ, σ,Xti)− r2

1(µ0, σ,Xti)+

+2∆n,ib(Xti , µ)r1(µ, σ,Xti)− 2∆n,ib(Xti , µ0)r1(µ0, σ,Xti) + 2[

∫ ti+1

ti

b(Xs, µ0)ds+ ∆XJ
i +

21



−RJ(∆n,i, Xti)][∆n,i(b(Xti , µ)− b(Xti , µ0)) + r1(µ, σ,Xti)− r1(µ0, σ,Xti)],

where we have denoted by ∆XJ
i the jump part in ∆Xi, that is

∫ ti+1

ti

∫
R\{0} γ(Xs−)zµ̃(ds, dz).

Moreover we define

In1,2 :=
1

Tn

n−1∑
i=0

2(b(Xti , µ)− b(Xti , µ0))
∫ ti+1

ti
a(σ0, Xs)dWs

c(σ,Xti)
ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i},

In1,3 :=
1

Tn

n−1∑
i=0

2(r1(µ, σ,Xti)− r1(µ0, σ,Xti))
∫ ti+1

ti
a(σ0, Xs)dWs

∆n,ic(σ,Xti)
ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i}.

It is In1 = In1,1 + In1,2 + In1,3. We are going to prove that In1,1 is tight showing that the expected value of the
derivatives is bounded, like we have already done. On In1,2 and In1,3 we will use instead the Kolmogorov
criterion for which, if for some positive constant H independent of n and for m ≥ r > 2, Sn is a sequence
such that

E[(Sn(θ))m] ≤ H ∀θ ∈ Θ, (46)

E[(Sn(θ1)− Sn(θ2))m] ≤ H|µ1 − µ2|r +H|σ1 − σ2|r ∀θ1, θ2 ∈ Θ, (47)

then Sn is tight.
Let us start considering In1,1: we want to show that supn E[supµ,σ |∂ϑIn1,1|] <∞. We observe it is

∂µI
n
1,1 =

1

Tn

n−1∑
i=0

ϕ∆β
n,i

(∆iX)1{|Xti |≤∆−kn,i}
∆n,ic(σ,Xti)

[∆2
n,i(2b ∂µb)(Xti , µ)+(2r1∂µr1)(µ, σ,Xti)+2∆n,i((∂µb)(Xti , µ)r1(µ, σ,Xti)+

+b(Xti , µ)(∂µr1)(µ, σ,Xti))+2(

∫ ti+1

ti

b(Xs, µ0)ds+∆XJ
i −RJ(∆n,i, Xti))(∆n,i∂µb(Xti , µ)+∂µr1(µ, σ,Xti))];

∂σI
n
1,1 =

1

Tn

n−1∑
i=0

ϕ∆β
n,i

(∆iX)1{|Xti |≤∆−kn,i}
∆n,ic(σ,Xti)

[2r1∂σr1(µ, σ,Xti)−2r1∂σr1(µ0, σ,Xti)+2∆n,i(b(Xti , µ)∂σr1(µ, σ,Xti)+

−b(Xti , µ0)∂σr1(µ0, σ,Xti))+2(

∫ ti+1

ti

b(Xs, µ0)ds+∆XJ
i −RJ(∆n,i, Xti))(∂σr1(µ0, σ,Xti)−∂σr1(µ, σ,Xti))]+

−
∂σc(Xti , σ)ϕ∆β

n,i
(∆iX)1{|Xti |≤∆−kn,i}

∆n,ic2(σ,Xti)
[∆2

n,i(b
2(Xti , µ)− b2(Xti , µ0)) + r2

1(µ, σ,Xti)− r2
1(µ0, σ,Xti)+

+2∆n,ib(Xti , µ)r1(µ, σ,Xti)− 2∆n,ib(Xti , µ0)r1(µ0, σ,Xti) + 2(

∫ ti+1

ti

b(Xs, µ0)ds+ ∆XJ
i +

−RJ(∆n,i, Xti))(∆n,i(b(Xti , µ)− b(Xti , µ0)) + r1(µ, σ,Xti)− r1(µ0, σ,Xti))].

Using the polynomial growth of b and recalling that r1 is the particular R(θ,∆1+δ
n,i , Xti) function that

turns out from the development (31) of m and it is such that |∂ϑr1(µ, σ,Xti)| ≤ R(θ,∆n,i, Xti) as a
consequence of the first two points of Proposition 8, we get

|∂ϑIn1,1| ≤
c

n∆n

n−1∑
i=0

|ϕ∆β
n,i

(∆iX)|[R(θ,∆n,i, Xti) +R(θ,∆1+δ
n,i , Xti)+

+2(|
∫ ti+1

ti

b(Xs, µ0)ds|+ |∆XJ
i |+RJ(∆n,i, Xti))(R(θ, 1, Xti) +R(θ,∆δ

n,i, Xti))].

Using Lemma 5, the boundedness of ϕ, the fact that 1
Tn

= O( 1
n∆n

) and that 2Ei[|
∫ ti+1

ti
b(Xs, µ0)ds|] is a

R(θ0,∆n,i, Xti), it follows

sup
n

E[sup
µ,σ
|∂ϑIn1,1|] ≤ sup

n
(

1

n∆n

n−1∑
i=0

E[sup
µ,σ
|R(θ,∆n,i, Xti)+(R(θ0,∆n,i, Xti)+R

J(∆n,i, Xti))R(θ, 1, Xti)|]+

+
1

n∆n

n−1∑
i=0

E[(sup
µ,σ
|R(θ, 1, Xti)|)Ei[|∆XJ

i ϕ∆β
n,i

(∆iX)|]]) ≤ c,

where in the last inequality we have used Lemma 5 here above, the polynomial growth of R uniform in
θ and the third point of Lemma 2. In1,1 is therefore tight.
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We now show that (46) and (47) hold on In1,2. Indeed, using Burkholder and Jensen inequalities, we get
E[|In1,2(θ1)− In1,2(θ2)|m] ≤

≤ c

nm∆m
n

n
m
2 −1

n−1∑
i=0

E[|b(Xti , µ1)− b(Xti , µ0)

c(σ1, Xti)
−b(Xti , µ2)− b(Xti , µ0)

c(σ2, Xti)
|m|
∫ ti+1

ti

a(σ0, Xs)dWs|m|ϕ∆β
n,i

(∆iX)|m].

(48)
We observe that, as a consequence of the finite-increments theorem, we have

|b(Xti , µ1)− b(Xti , µ0)

c(σ1, Xti)
− b(Xti , µ2)− b(Xti , µ0)

c(σ2, Xti)
|m ≤ |∂µb(Xti , µ̃)

c(Xti , σ̃)
(µ1 − µ2)+ (49)

− (b(Xti , µ̃)− b(Xti , µ0))∂σc(Xti , σ̃)

c(Xti , σ̃)
(σ1 − σ2)|m ≤ R(θ, 1, Xti)|µ1 − µ2|m +R(θ, 1, Xti)|σ1 − σ2|m,

where actually the functions R are calculated in a point θ̃ := (µ̃, σ̃), with µ̃ ∈ (µ1, µ2) and σ̃ ∈ (σ1, σ2)
but, since the property (8) of R is uniform in θ, we have chosen to write it simply as R(θ, 1, Xti). Using
also the boundedness of ϕ, we get that (48) is upper bounded by

cn
m
2 −1

nm∆m
n

n−1∑
i=0

E[|
∫ ti+1

ti

a(σ0, Xs)dWs|mR(θ, 1, Xti)]|µ1−µ2)|m+E[|
∫ ti+1

ti

a(σ0, Xs)dWs|mR(θ, 1, Xti)]|σ1−σ2|m.

Using Burkholder-Davis-Gundy inequality we have, ∀p ≥ 2,

E[(

∫ ti+1

ti

a(σ,Xs)dWs)
p] ≤ E[(

∫ ti+1

ti

a2(σ,Xs)ds)
p
2 ] ≤ E[R(θ,∆n,i, Xti)

p
2 ] = c∆

p
2
n,i, (50)

where in the last inequality we have used the polynomial growth of a and the third point of Lemma 2.
From Holder inequality and (50) it therefore follows

E[|In1,2(θ1)− In1,2(θ2)|m] ≤ c

(n∆n)
m
2
|µ1 − µ2|m +

c

(n∆n)
m
2
|σ1 − σ2|m ≤ c|µ1 − µ2|m + c|σ1 − σ2|m,

where we have also used that n∆n →∞ for n→∞. For r := m (47) is proved.
Concerning (46), acting in the same way we get

E[|In1,2(θ)|m] ≤ cn
m
2 −1

nm∆m
n

n−1∑
i=0

E[R(θ1, 1, Xti)
m|
∫ ti+1

ti

a(σ0, Xs)dWs|m|ϕ∆β
n,i

(∆iX)|m] ≤ c

(n∆n)
m
2
≤ c.

In1,2 is hence tight. The tightness of In1,3 is obtained acting exactly in the same way, remarking that

|r1(µ0, σ1, Xti)− r1(µ1, σ1, Xti)

∆n,ic(σ1, Xti)
− r1(µ0, σ2, Xti)− r1(µ2, σ2, Xti)

∆n,ic(σ2, Xti)
|m ≤ |∂µr1(µ̃, σ̃, Xti)

∆n,ic(Xti , σ̃)
(µ1 − µ2)+

+[
∂σr1(µ0, σ̃,Xti)− ∂σr1(µ̃, σ̃, Xti)

∆n,ic(σ̃, Xti)
− ∂σc(σ̃, Xti)(r1(µ0, σ̃,Xti)− r1(µ̃, σ̃, Xti))

∆n,ic(σ̃, Xti)
](σ1 − σ2)|m ≤ (51)

≤ R(θ, 1, Xti)|µ1 − µ2|m +R(θ, 1, Xti)|σ1 − σ2|m,

as a consequence of the fact that (r1(µ, σ,Xti))
m and (∂ϑr1(µ, σ,Xti))

m are respectively upper bounded

by R(θ,∆
m(1+δ)
n,i , Xti) and R(θ,∆m

n,i, Xti).
Concerning In2 , we act like we did on In1 . We still use (45) getting In2,1, In2,2 and In2,3. We observe that, if

we define snj as In1,j =:
∑n−1
i=0 s

n
j , then In2,j =

∑n−1
i=0 ∆δ

n,i
r(Xti )

c(σ,Xti )
snj .

By the computation of ∂µI
n
2,1 and ∂σI

n
2,1 it follows that

sup
n

E[sup
µ,σ
|∂ϑIn2,1|] ≤ sup

n
(c∆δ

n + c∆δ+β
n ) ≤ c.

In order to prove that also In2,2 and In2,3 are tight we still use Kolmogorov criterion. From (49) and (50)
it follows

E[|In2,2(θ1)− In2,2(θ2)|m] ≤ c ∆δm
n

(n∆n)
m
2
|µ1 − µ2|m + c

∆δm
n

(n∆n)
m
2
|σ1 − σ2|m ≤ c|µ1 − µ2|m + c|σ1 − σ2|m

and E[(In2,2(θ))m] ≤ c.
The tightness of In2,3 is obtained in the same way, through Kolmogorov criterion and (51).
The sequence Sn is therefore tight in (C(Θ), ‖.‖∞), as we wanted.
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8.2.1 Proof of Theorem 1.

Proof. Let us begin with the consistency of σ̂n. An application of lemmas 6 and 8 yields

1

n
Un(µ, σ)

P−→ U(σ, σ0) :=

∫
R

[
c(x, σ0)

c(x, σ)
+ log(c(x, σ))]π(dx) (52)

uniformly in θ.
In order to prove that the uniform convergence here above implies the consistency of σ̂n, since the
convergence in probability is equivalent to the existence, for any subsequence, of a subsequence converging
almost surely, we will consider that the convergence in (52) is almost sure and prove that it implies that
σ̂n → σ0 almost surely. For a fixed ω, thanks to the compactness of Θ, there exists a subsequence
nk such that (µ̂nk , σ̂nk) tends to a limit θ∞ := (µ∞, σ∞). Hence, (52) together with the continuity of
σ 7→ U(σ, σ0), implies

1

nk
Unk(µ̂nk , σ̂nk)(ω)→ U(σ∞, σ0).

But, by the definition of our estimator θ̂n,

1

nk
Unk(µ̂nk , σ̂nk) ≤ 1

nk
Unk(µ̂nk , σ0).

So, using again the convergence (52), we get U(σ∞, σ0) ≤ U(σ0, σ0). On the other hand, since for all
y > 0, y0 > 0 it is y0

y + log(y) ≥ 1 + log(y0) we deduce, using also the identifiability stated in Assumption

A6 and Proposition 8.1 in Supplemental materials of [15], that σ∞ = σ0. We have proved that any

convergent subsequence of σ̂n tends to σ0, hence σ̂n
P−→ σ0 and we are done.

Concerning the consistency of µ̂n, we have from Lemmas 7 and 9 that the convergence (33) holds uniformly
in θ. In order to deduce the consistency of µ̂n the method is similar to the previous one. We know now
that (µ̂nk , σ̂nk) tends to (µ∞, σ0), hence

1

Tnk
(Unk(µ̂nk , σ̂nk)− Unk(µ0, σ̂nk))

P−→
∫
R

(b(x, µ0)− b(x, µ∞))2

c(x, σ0)
π(dx) ≥ 0.

But Unk(µ̂nk , σ̂nk) − Unk(µ0, σ̂nk) ≤ 0 and so we conclude by A6, getting µ∞ = µ0 and therefore the
consistency of µ̂n.

8.3 Asymptotic normality of the estimator.

The proof of the asymptotic normality goes along a classical route (see for instance Section 5a of [14]).
We define the following notations:

Mn :=

(
1√
Tn

0

0 1√
n

)
.

Let

Sn :=

(√
Tn(µ̂n − µ0)√
n(σ̂n − σ0)

)
, Ln(θ0) :=

(
− 1√

Tn
∂µUn(µ0, σ0)

− 1√
n
∂σUn(µ0, σ0)

)
and

Cn(θ) =

(
1
Tn

∂2

∂µ2Un(µ, σ) 1√
nTn

∂2

∂µσUn(µ, σ)
1√
nTn

∂2

∂µσUn(µ, σ) 1
n
∂2

∂σ2Un(µ, σ)

)
.

Then
Mn∇2

θUn(µ, σ)Mn = Cn(θ). (53)

Now, by Taylor’s formula,∫ 1

0

∇2
θUn(θ0 + u(θ̂n − θ0))du

(
µ̂n − µ0

σ̂n − σ0

)
= −∇θUn(θ0),

since ∇θUn(θ̂n) = 0. Then, using (53), we have∫ 1

0

Cn(θ0 + u(θ̂n − θ0))duSn = Ln(θ0). (54)

We deduce from this equality that, in order to prove the asymptotic normality of θ̂n and hence to end
the proof of Theorem 2, it is enough to prove the following lemmas:
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Lemma 10. Suppose that Assumptions A1-A8 and Ad hold. Then, as n→∞,

Ln(θ0)
d−→ L ∼ N(0,K ′),

where K ′ =

(
4
∫
R(

∂µb(x,µ0)
a(x,σ0) )2π(dx) 0

0 8
∫
R(∂σa(x,σ0)

a(x,σ0) )2π(dx)

)
.

Lemma 11. Suppose that Assumptions A1-A8 and Ad hold. Then the following statements hold:

1. Cn(θ0)
P−→ B =

(
−2
∫
R(

∂µb(x,µ0)
a(x,σ0) )2π(dx) 0

0 4
∫
R(∂σa(x,σ0)

a(x,σ0) )2π(dx)

)
,

2. sup
{|θ̃|≤εn}

|Cn(θ0 + θ̃)− Cn(θ0)| P−→ 0, where εn → 0.

8.3.1 Proof of Lemma 10.

Proof. As a consequence of a combination of Theorem 3.2 and Theorem 3.4 in [18] (c.f. also Section A.2
in the Appendix of [33]) we get the result if we prove that Ln(θ0) is a triangular array of martingale
increments such that, for a constant r > 0, the following convergences hold.
We define ζi and ζ̃i such that ∂µUn(µ0, σ0) =:

∑n−1
i=0 ζi(θ0) and ∂σUn(µ0, σ0) =:

∑n−1
i=0 ζ̃i(θ0). Then it

must be

1

Tn

n−1∑
i=0

Ei[ζ2
i (θ0)]

P−→ 4

∫
R

(
∂µb(x, µ0)

a(x, σ0)
)2π(dx)

1

(
√
Tn)2+r

n−1∑
i=0

Ei[ζ2+r
i (θ0)]

P−→ 0, (55)

1

n

n−1∑
i=0

Ei[ζ̃2
i (θ0)]

P−→ 8

∫
R
(
∂σa(x, σ0)

a(x, σ0)
)2π(dx)

1

(
√
n)2+r

n−1∑
i=0

Ei[ζ̃2+r
i (θ0)]

P−→ 0, (56)

1√
nTn

n−1∑
i=0

|Ei[ζi(θ0)ζ̃i(θ0)]| P−→ 0. (57)

First of all we observe that Ln(θ0) is a triangular array of martingale increments as a consequence of the
definitions of m and m2. Indeed, using (38), we clearly have

Ei[ζi(θ0)] =
−2∂µm(µ0, σ0, Xti)

m2(µ0, σ0, Xti)
Ei[(Xti+1

−m(µ0, σ0, Xti))ϕ∆β
n,i

(∆iX)]1{|Xti |≤∆−kn,i}+

+
∂µm2(µ0, σ0, Xti)

m2(µ0, σ0, Xti)
Ei[(1−

(Xti+1 −m(µ0, σ0, Xti))
2

m2(µ0, σ0, Xti)
)ϕ∆β

n,i
(∆iX)]1{|Xti |≤∆−kn,i} = 0.

In the same way, computing the derivative with respect to σ we clearly have Ei[ζ̃i(θ0)] = 0.
Concerning ∂µUn, using (34) we can see ζi(θ0) as

−2∂µm(µ0, σ0, Xti)

∆n,ic(Xti , σ0)
(Xti+1

−m(µ0, σ0, Xti))ϕ∆β
n,i

(∆iX)1{|Xti |≤∆−kn,i} +Ri,n(θ0) =: ζ̂i(θ0) +Ri,n(θ0),

we have already proved in Lemma 6 of [2] the asymptotic normality of 1√
Tn

∑n−1
i=0 ζ̂i(θ0) and, in particular,

that convergences (55) hold with ζ̂i(θ0) instead of ζi(θ0).

In order to conclude the proof of (55), it is enough to have 1
Tn

∑n−1
i=0 Ei[R2

i,n(θ0)]
P−→ 0 and

( 1√
Tn

)2+r
∑n−1
i=0 Ei[R2+r

i,n (θ0)]
P−→ 0. It is

1

Tn

n−1∑
i=0

Ei[R2
i,n(θ0)] ≤ c

n∆n

n−1∑
i=0

(
∂µm(µ0, σ0, Xti)R(θ,∆δ1∧1

n,i Xti)

∆n,ic(Xti , σ0)
)2Ei[(Xti+1−m(µ0, σ0, Xti))

2ϕ2
∆β
n,i

(∆iX)]+

+
c

n∆n

n−1∑
i=0

(
∂µm2(µ0, σ0, Xti)

m2(µ0, σ0, Xti)
)21{|Xti |≤∆−kn,i}+

+
c

n∆n

n−1∑
i=0

(
∂µm2(µ0, σ0, Xti)

m2(µ0, σ0, Xti)
)2
Ei[(Xti+1 −m(µ0, σ0, Xti))

4ϕ2
∆β
n,i

(∆iX)]1{|Xti |≤∆−kn,i}
m2

2(µ0, σ0, Xti)
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As a consequence of the first and the third point of Proposition 8 and using first and second point of
Lemma 3 it is upper bounded by

c

n

n−1∑
i=0

R(θ0,∆
2δ1∧2
n,i , Xti) +

c

n∆n

n−1∑
i=0

R(θ0,∆
2
n,i, Xti),

which converges to zero in norm 1 and so in probability.
Acting in the same way, using this time the fourth point of Lemma 3 twice, for k = (2+r) and k = 2(2+r),

it follows that also ( 1√
Tn

)2+r
∑n−1
i=0 Ei[R2+r

i,n (θ0)] goes to zero in probability.

Concerning the derivative of the contrast with respect to σ, it is

1

n

n−1∑
i=0

Ei[ζ̃2
i (θ0)] =

1

n

n−1∑
i=0

Ei[(A2
i + 2AiBi +B2

i )ϕ2
∆β
n,i

(∆iX)]1{|Xti |≤∆−kn,i},

where we have defined

Ai :=
−2∂σm(µ0, σ0, Xti)(Xti+1

−m(µ0, σ0, Xti))

m2(µ0, σ0, Xti)

and

Bi := (
∂σm2(µ0, σ0, Xti)

m2(µ0, σ0, Xti)
)(1−

(Xti+1
−m(µ0, σ0, Xti))

2

m2(µ0, σ0, Xti)
).

By the development (10) of m2, the second point of Proposition 8 and equation (23) in Lemma 3 we have

1

n

n−1∑
i=0

Ei[A2
iϕ

2
∆β
n,i

(∆iX)]1{|Xti |≤∆−kn,i} ≤
1

n

n−1∑
i=0

R(θ0,∆n,i, Xti),

that goes to zero in norm 1 because of the property (9) of R, its polynomial growth and the third point
of Lemma 2. The convergence to zero in probability follows.
On the mixed term we use the development (10) of m2, the second and the fourth point of Proposition
8 to get respectively an upper bound on the derivatives with respect to σ of m and m2 and the first and
the fifth point of Lemma 3 to obtain the following:

1

n

n−1∑
i=0

|Ei[2AiBiϕ2
∆β
n,i

(∆iX)]1{|Xti |≤∆−kn,i}| ≤
1

n

n−1∑
i=0

[
|Ei[(Xti+1 −m(µ0, σ0, Xti))ϕ

2
∆β
n,i

(∆iX)]|+

+R(θ0,∆
−1
n,i, Xti)|Ei[(Xti+1

−m(µ0, σ0, Xti))
3ϕ2

∆β
n,i

(∆iX)]|
]
≤ 1

n

n−1∑
i=0

[R(θ0,∆n,i, Xti)+R(θ0,∆
1
3 +β
n,i , Xti)].

We obtain that the mixed term converges to zero in probability for the same argument we gave for the
convergence of A2

i : because of the property (9) of R, its polynomial growth and the third point of Lemma
2 we get the convergence in norm 1 which implies the convergence in probability.
We now study the convergence of the term

1

n

n−1∑
i=0

Ei[B2
i ϕ

2
∆β
n,i

(∆iX)]1{|Xti |≤∆−kn,i}.

Using the fourth point of Proposition 8, the development (10) of m2 and (34), it is

1

n

n−1∑
i=0

[(
2∂σa(Xti , σ0)a(Xti , σ0)

c(Xti , σ0)
)2+R(θ0,∆

β∧δ1
n,i , Xti)]Ei[(1−

(Xti+1
−m(µ0, σ0, Xti))

2

m2(µ0, σ0, Xti)
)2ϕ2

∆β
n,i

(∆iX)]1{|Xti |≤∆−kn,i}.

(58)
We now need the following lemma:

Lemma 12. Suppose that Assumptions A1-A4 hold. Then, ∀q ≥ 1,

Ei[|ϕ∆β
n,i

(∆iX)|q] = 1 +R(θ,∆n,i, Xti).

Proof. Lemma 12.
We can see Ei[|ϕ∆β

n,i
(∆iX)|q] as 1 + Ei[|ϕ∆β

n,i
(∆iX)|q − 1].

Because of the definition of ϕ,the expected value here above is different from zero only if |∆iX| ≥ ∆β
n,i.

Hence, using (71) it is

Ei[|ϕ∆β
n,i

(∆iX)|q − 1] ≤ cEi[1{|∆iX|≥∆β
n,i}] ≤ R(θ,∆n,i, Xti).
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Using the lemma here above, still the development (10) of m2 and (23) and (24) in Lemma 3 we have

Ei[(1−
(Xti+1

−m(µ0, σ0, Xti))
2

m2(µ0, σ0, Xti)
)2ϕ2

∆β
n,i

(∆iX)] = 1 +R(θ0,∆
1∧δ1
n,i , Xti) + 3

a4(Xti , σ0)

c2(Xti , σ0)
− 2

a2(Xti , σ0)

c(Xti , σ0)
+

+R(θ0,∆
δ1∧(β− 1

4 )
n,i , Xti) = 2 +R(θ0,∆

δ1∧(β− 1
4 )

n,i , Xti),

we remind that c(x, σ) = a2(x, σ). Replacing the last equation in (58) we get

1

n

n−1∑
i=0

2 · 4(∂σa(Xti , σ0))2

c(Xti , σ0)
1{|Xti |≤∆−kn,i} +

1

n

n−1∑
i=0

R(θ0,∆
β∧δ1∧(β− 1

4 )
n,i , Xti).

The first term here above converges to 8
∫
R(∂σa(x,σ0)

a(x,σ0) )2π(dx) as a consequence of the third point of

Proposition 5 while the second one clearly goes to zero in norm 1 and so in probability thanks to the
polynomial growth of R, its property (9) and the assumption we made β > 1

4 . It follows the first
convergence of (56). To obtain the second one we observe it is

1

n1+ r
2

n−1∑
i=0

Ei[ζ̃2+r
i (θ0)] ≤ 1

n1+ r
2

n−1∑
i=0

(
−2∂σm(µ0, σ0, Xti)

m2(µ0, σ0, Xti)
)2+r1{|Xti |≤∆−kn,i}Ei[(Xti+1−m(µ0, σ0, Xti))

2+rϕ2+r

∆β
n,i

(∆iX)]+

+
1

n1+ r
2

n−1∑
i=0

(
∂σm2(µ0, σ0, Xti)

m2(µ0, σ0, Xti)
)2+r1{|Xti |≤∆−kn,i}(c+

c

m2+r
2 (µ0, σ0, Xti)

Ei[(Xti+1
−m(µ0, σ0, Xti))

2(2+r)ϕ
2(2+r)

∆β
n,i

(∆iX)]) ≤

≤ ∆
(1+ r

2 )∧(1+β(2+r))
n

1

n1+ r
2

n−1∑
i=0

R(θ0, 1, Xti)+
1

n1+ r
2

n−1∑
i=0

R(θ0, 1, Xti)+∆0∧(1+2β(2+r)−(2+r))
n

1

n1+ r
2

n−1∑
i=0

R(θ0, 1, Xti),

(59)
where we have acted like before using the development (10) on m2 and the second and the fourth point
of Proposition 8. Besides, we have used the fourth point of Lemma 3 with k = 2 + r and k = 2(2 + r),
respectively. It is now clear that the first two terms of (59) go to zero in norm 1 and so in probability
for n → ∞. Concerning the third one, if the minimum between 0 and 1 + 2β(2 + r) − (2 + r) is 0 it
is exactly like the second one and so we know it goes to zero in probability, otherwise it can be seen

as 1

(n∆n)
r
2

∆
1+2β(2+r)−(2+r)+ r

2
n

1
n

∑n−1
i=0 R(θ0, 1, Xti), that goes to zero since n∆n → ∞ for n → ∞ and

because of the fact that the exponent on ∆n is always positive. Indeed 1 + 2β(2 + r) − (2 + r) + r
2 > 0

iff 2β(2 + r) > 1 + r
2 , that is β >

1+ r
2

2(2+r) = 1
4 .

To conclude, we prove the convergence (57). We have

1√
nTn

n−1∑
i=0

|Ei[ζi(θ0)ζ̃i(θ0)]| = 1√
nTn

n−1∑
i=0

|Ei
[
[(

4∂µm∂σm

m2
2

)(µ0, σ0, Xti)(Xti+1 −m(µ0, σ0, Xti))
2+

−2(
∂µm∂σm2 + ∂µm2 ∂σm

m2
2

)(µ0, σ0, Xti)(Xti+1
−m(µ0, σ0, Xti))(1−

(Xti+1
−m(µ0, σ0, Xti))

2

m2(µ0, σ0, Xti)
)+ (60)

+
∂µm2 ∂σm2

m2
2

)(µ0, σ0, Xti)(1−
(Xti+1

−m(µ0, σ0, Xti))
2

m2(µ0, σ0, Xti)
)2]ϕ2

∆β
n,i

(∆iX)
]
|1{|Xti |≤∆−kn,i}.

Now using the four points of Proposition 8, the first, second, third and fifth points of Lemma 3 and the
lemma here above we get that (60) is upper bounded by

1

n
√

∆n

n−1∑
i=0

R(θ0,∆n,i, Xti) +R(θ0,∆
1
3 +β
n,i , Xti) +R(θ0,∆

4
3 +β
n,i , Xti) ≤ ∆

β− 1
6

n
1

n

n−1∑
i=0

R(θ0, 1, Xti),

which converges to zero in norm 1 and so in probability since we have chosen β > 1
4 >

1
6 .

8.3.2 Proof of Lemma 11.

Proof. Point 1.
We start showing the convergence of Cn(θ0) to B. We observe that

∂2
µσUn(µ0, σ0) =

n−1∑
i=0

[
−2(Xti+1 −m)∂2

µσm

m2
−2

∂µm∂σm

m2
+

2(Xti+1 −m)∂µm∂σm2

m2
2

+
2(Xti+1 −m)∂µm2∂σm

m2
2

+

(61)
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+
2(Xti+1 −m)2∂µm2∂σm2

m3
2

+
∂2
µσm2

m2
(1−

(Xti+1 −m)2

m2
)−∂µm2∂σm2

m2
2

]ϕ∆β
n,i

(∆Xi)1{|Xti |≤∆−kn,i} =:

7∑
j=1

n−1∑
i=0

Ini,j

where, for shortness, we omit that m, m2 and their derivatives are calculated in (µ0, σ0, Xti).

In order to show that 1√
nTn

∂2
µσUn(µ0, σ0)

P−→ 0 we will use repeatedly Lemma 9 in [14] and the estimation

of the derivatives of m and m2 gathered in Propositions 8 and 9.∑n−1
i=0 I

n
i,1 goes to zero in probability for n→∞ because Ini,1 is centered and, using also the first point of

Lemma 3

1

Tn

1

n

n−1∑
i=0

Ei[(Ini,1)2] ≤ 1

n∆n

1

n

n−1∑
i=0

R(θ,∆n,i, Xti)R(θ,∆n,i, Xti) ≤
1

n∆n

1

n
∆2
n

n−1∑
i=0

R(θ, 1, Xti),

which converges to zero in norm 1 and so in probability as a consequence of the polynomial growth of R
and the third point of Lemma 2.

∑n−1
i=0 I

n
i,2 goes to zero in norm 1 and so in probability. Indeed, using

the development (10) of m2 and the first two point of Proposition 8, it is

E[
1√
nTn
|
n−1∑
i=0

Ini,2|] ≤ ∆
− 1

2
n

1

n

n−1∑
i=0

E[|R(θ,∆n, Xti)|] ≤ c∆
1
2
n ,

which goes to zero.
Concerning Ini,3, it is still centered and from the first and fourth points of Proposition 8 and the first
point of Lemma 3 it follows

1

Tn

1

n

n−1∑
i=0

Ei[(Ini,3)2] ≤ 1

n∆n

1

n

n−1∑
i=0

R(θ, 1, Xti)R(θ,∆n,i, Xti) ≤
1

n∆n

1

n
∆n

n−1∑
i=0

R(θ, 1, Xti),

which converges to 0 in norm 1 and so in probability. Hence, 1√
nTn

∑n−1
i=0 I

n
i,3

P−→ 0 from Lemma 9 in [14].

The same applies to Ini,4, which squared is upper bounded by 1
n∆n

1
n

∑n−1
i=0 R(θ,∆2

n,i, Xti)R(θ,∆n,i, Xti) ≤
1

n∆n

1
n∆3

n

∑n−1
i=0 R(θ, 1, Xti).

On
∑n−1
i=0 I

n
i,5 we prove the convergence in norm 1 and so we have the convergence in probability: from

the first point of Lemma 3, the development (10) of m2 and the third and the fourth points of Proposition
8, it is

1√
nTn

n−1∑
i=0

E[|Ini,5|] ≤
1

n
√

∆n

n−1∑
i=0

R(θ,∆n,i, Xti)R(θ, 1, Xti) ≤ ∆
1
2
n

1

n

n−1∑
i=0

R(θ, 1, Xti),

which goes to zero.
We observe that, as a consequence of the definition of m2, Ini,6 is centered. In order to apply Lemma 9 in
[14] we evaluate its squared value, that is

1

Tn

1

n

n−1∑
i=0

Ei[(Ini,6)2] ≤ 1

n∆n

1

n

n−1∑
i=0

R(θ,∆n,i, Xti)R(θ, 1, Xti) ≤ ∆n
1

n∆n

1

n

n−1∑
i=0

R(θ, 1, Xti),

where we have also used the estimation of the mixed second derivative of m2 contained in Proposition 9.
To conclude the proof about the mixed derivative of the contrast function, we observe that

∑n−1
i=0 I

n
i,7

converges to 0 in L1 from the third and the fourth point of Proposition 8 and the boundedness of ϕ. We
obtain

1√
nTn

E[|
n−1∑
i=0

Ini,7|] ≤ ∆
− 1

2
n

1

n

n−1∑
i=0

E[R(θ,∆n,i, Xti)] ≤ c∆
1
2
n ,

that goes to 0 as we wanted.

The next step is to prove that 1
Tn
∂2
µUn(µ0, σ0)

P−→ −2
∫
R(

∂µb(x,µ0)
a(x,σ0) )2π(dx). In order to do it we compute

∂2
µUn(µ0, σ0) and we observe it is exactly like (61) but all the derivatives are with respect to µ. For such a

reason we keep referring to (61) and we write ∂2
µUn(µ0, σ0) =:

∑7
j=1

∑n−1
i=0 Ĩ

n
i,j . We are going to show, in

particular, that 1
Tn

∑n−1
i=0 Ĩ

n
i,2 converges to the wanted integral, while 1

Tn
(
∑n−1
i=0 Ĩ

n
i,1 +

∑7
j=3

∑n−1
i=0 Ĩ

n
i,j)

P−→
0. Indeed, we observe that Ĩni,1, Ĩni,3, Ĩni,4, Ĩni,6 are still centered and, using Lemma 3 and Propositions 8
and 9 it is easy to show that their squared values are upper bounded in the following way:

1

T 2
n

n−1∑
i=0

Ei[(Ĩni,1)2] ≤ 1

n∆n
∆−1
n

1

n

n−1∑
i=0

R(θ,∆n,i, Xti)R(θ, 1, Xti) ≤
1

n∆n

1

n

n−1∑
i=0

R(θ, 1, Xti),
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that goes to zero in norm 1 and so in probability since n∆n →∞ for n→∞.

1

T 2
n

n−1∑
i=0

Ei[(Ĩni,3)2] ≤ 1

n∆n
∆−1
n

1

n

n−1∑
i=0

R(θ,∆n,i, Xti)R(θ,∆2
n,i, Xti) ≤ ∆2

n

1

n∆n

1

n

n−1∑
i=0

R(θ, 1, Xti)
P−→ 0.

Now Ĩni,4 and Ĩni,3 are exactly the same quantity and so the estimation here above clearly holds also for

Ĩni,4 instead of Ĩni,3. Concerning Ĩni,6, we have

1

T 2
n

n−1∑
i=0

Ei[(Ĩni,6)2] ≤ 1

n∆n
∆−1
n

1

n

n−1∑
i=0

R(θ,∆2
n,i, Xti)R(θ, 1, Xti) ≤ ∆n

1

n∆n

1

n

n−1∑
i=0

R(θ, 1, Xti)
P−→ 0.

The application of Lemma 9 in [14] gives us 1
Tn

∑n−1
i=0 (Ĩni,1 + Ĩni,3 + Ĩni,4 + Ĩni,6)

P−→ 0. We now prove the

convergence to 0 in norm 1 of 1
Tn

∑n−1
i=0 (Ĩni,5 + Ĩni,7). Indeed, using again the first point of Lemma 3, the

development (10) of m2 and the last two points of Proposition 9 it is 1
Tn

∑n−1
i=0 E[|Ĩni,5 + Ĩni,7|] ≤

≤ 1

n∆n

n−1∑
i=0

E[R(θ,∆n,i, Xti)R(θ,∆n,i, Xti) +R(θ,∆2
n,i, Xti)] ≤ ∆n

1

n

n−1∑
i=0

E[R(θ, 1, Xti)] ≤ c∆n,

which clearly goes to 0.
Concerning the principal term 1

Tn

∑n−1
i=0 Ĩ

n
i,2, we observe that using (34) and the first point of Proposition

8, it is

(∂µm)2

m2
(µ0, σ0, Xti) =

(∆n,i∂µb(µ0, Xti) +R(θ0,∆
5
2−β−ε
n,i , Xti))

2

∆n,ic(σ0, Xti)
(1−∆δ1

n,i

r(Xti)

c(Xti , σ0)
−∆n,ir(µ0, σ0, Xti)+

+R(θ0,∆
r̄
n,i, Xti)) =

∆n,i(∂µb(µ0, Xti))
2

c(σ0, Xti)
+R(θ0,∆

( 5
2−β−ε)∧(1+δ1)
n,i , Xti),

with r̄ = 2∧ (1 + δ2)∧ 2δ1, as defined below (34). In the last equality we have used that the other terms
are negligible. Now we have that

1

Tn

n−1∑
i=0

−2
∆n,i(∂µb(µ0, Xti))

2

c(σ0, Xti)
ϕ∆β

n,i
(∆Xi)1{|Xti |≤∆−kn,i}

P−→ −2

∫
R

(
∂µb(x, µ0)

a(x, σ0)
)2π(dx),

as a consequence of the second point of Proposition 5 while
1

n∆n

∑n−1
i=0 −2R(θ0,∆

( 5
2−β−ε)∧(1+δ1)
n,i , Xti)ϕ∆β

n,i
(∆Xi)1{|Xti |≤∆−kn,i} is upper bounded in norm 1 by

∆
( 3

2−β−ε)∧δ1
n

1

n

n−1∑
i=0

E[R(θ0, 1, Xti)] ≤ c∆
( 3

2−β−ε)∧δ1
n ,

that converges to 0 since the exponent on ∆n is always positive.
To prove the first point of Lemma 11 we are left to show the convergence of 1

n∂
2
σUn(µ0, σ0).

Again, we still refer to (61) observing that that the only difference is that all the derivatives are with

respect to σ. We write ∂2
σUn(µ0, σ0) =:

∑7
j=1

∑n−1
i=0 Î

n
i,j .

We keep using Lemma 9 in [14] joint with the development (10) and Propositions 8 and 9 to show that
the centered terms go to zero in probability, that is

1

n

n−1∑
i=0

(Îni,1 + Îni,3 + Îni,4 + Îni,6)ϕ∆β
n,i

(∆Xi)1{|Xti |≤∆−kn,i}
P−→ 0.

Moreover,

1

n

n−1∑
i=0

E[|Îni,2|] ≤
1

n

n−1∑
i=0

E[R(θ,∆n,i, Xti)] ≤ c∆n → 0.

We are left to deal with the principal terms Îni,5 and Îni,7 and so we study the convergence of

1
n

∑n−1
i=0

(∂σm2)2

m2
2

(
2(Xti+1

−m)2

m2
− 1)ϕ∆β

n,i
(∆Xi)1{|Xti |≤∆−kn,i}. From the development (10) of m2 and the

development of ∂σm2 stated in the fourth point of Proposition 8 it follows that the conditional expected
value of the quantity here above is
1
n

∑n−1
i=0

(2∆n,i∂σa(Xti ,σ0)a(Xti ,σ0))2

(∆n,ia2(Xti ,σ0))2 (
2(Xti+1

−m)2

∆n,ia2(Xti ,σ0) − 1)1{|Xti |≤∆−kn,i} plus a negligible term that comes from
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the developments (10) and (34) and it converges to zero in norm 1 and so in probability.
The principal term is therefore such that, using the second point of Proposition 6 and the third of
Proposition 5, we get

1

n

n−1∑
i=0

(Îni,5 + Îni,7)
P−→ 4

∫
R

(
∂σa(x, σ0)

a(x, σ0)
)2π(dx).

Point 2.
We start proving that 1√

nTn
sup|θ̃|≤εn |∂

2
µσUn(θ0 + θ̃) − ∂2

µσUn(θ0)| goes to 0 in probability for εn that
goes to 0.
In order to do that, it is enough to show that the sequence 1√

nTn
∂2
µσUn(θ) is tight, which is implied by

supn
1√
nTn

E[supµ,σ |∂ϑ(∂2
µσUn(µ, σ))|] <∞ (see Corollary B.1 in [33]), for ϑ = µ or ϑ = σ.

We observe it is

∂3
µσϑUn(µ, σ) :=

n−1∑
i=0

[
2∂ϑm∂

2
µσm− 2(Xti+1 −m)∂3

µσϑm

m2
+

2(Xti+1
−m)∂2

µσm∂ϑm2

m2
2

−2
(∂2
µϑm∂σm+ ∂µm∂

2
σϑm)

m2
+

+
2∂µm∂σm∂ϑm2

m2
2

−2∂ϑm∂µm∂σm2

m2
2

+
2(Xti+1

−m)(∂2
µϑm∂σm2 + ∂µm∂

2
σϑm2)

m2
2

−
4(Xti+1 −m)∂µm∂σm2∂ϑm2

m3
2

+

−2∂ϑm∂µm2∂σm

m2
2

+
2(Xti+1

−m)(∂2
µϑm2∂σm+ ∂µm2∂

2
σϑm)

m2
2

−
4(Xti+1 −m)∂µm2∂σm∂ϑm2

m3
2

+

−
4(Xti+1

−m)∂ϑm∂µm2∂σm2

m3
2

+
2(Xti+1 −m)2(∂2

µϑm2∂σm2 + ∂µm2∂
2
σϑm2)

m3
2

−
6(Xti+1

−m)2∂µm2∂σm2∂ϑm2

m4
2

+

+(
∂3
µσϑm2

m2
−
∂2
µσm2∂ϑm2

m2
2

)(1−
(Xti+1

−m)2

m2
) +

∂2
µσm2

m2
(
2(Xti+1

−m)∂ϑm

m2
+

(Xti+1
−m)2∂ϑm2

m2
2

)+

−
∂2
µϑm2∂σm2 + ∂µm2∂

2
σϑm2

m2
2

+
2∂µm2∂σm2∂ϑm2

m3
2

]ϕ∆β
n,i

(∆Xi)1{|Xti |≤∆−kn,i} =:

n−1∑
i=0

17∑
j=1

Ii,j(µ, σ, ϑ).

Now using Assumption Ad, the estimation on the derivatives of m and m2 gathered in Propositions 8, 9
and 10 and the inequalities (40), (41) and (42) it follows

E[sup
µ,σ
|∂µ(∂2

µσUn(µ, σ))|] = E[sup
µ,σ
|
n−1∑
i=0

17∑
j=1

Ii,j(µ, σ, µ)|] ≤ c n∆
1
2
n .

In the same way we get

E[sup
µ,σ
|∂σ(∂2

µσUn(µ, σ)|] = E[sup
µ,σ
|
n−1∑
i=0

17∑
j=1

Ii,j(µ, σ, σ)|] ≤ c n∆
1
2
n,i.

Hence, for both ϑ = µ and ϑ = σ we can say it is supn
1√
nTn

E[supµ,σ |∂ϑ(∂2
µσUn(µ, σ)|] ≤ c < ∞; that

implies the tightness of our sequence and so that 1√
nTn

sup|θ̃|≤εn |∂
2
µσUn(θ0 + θ̃) − ∂2

µσUn(θ0)| goes to 0

in probability for εn that goes to 0.
To prove the convergence to 0 in probability of 1

n sup|θ̃|≤εn |∂
2
σUn(θ0 + θ̃) − ∂2

σUn(θ0)| for εn that goes

to 0 we act in the same way: we show that the sequence 1
n∂

2
σUn(θ) is tight through the criterion

supn
1
nE[supµ,σ |∂ϑ(∂2

σUn(µ, σ))|] <∞.
We observe that, computing the derivative with respect to ϑ of ∂2

σUn(µ, σ), we obtain 17 terms analogous
to the case just studied, with the only difference that also the derivatives that were with respect to µ are
now with respect to σ. In particular, it is ∂ϑ(∂2

σUn(µ, σ)) =
∑n−1
i=0

∑17
j=1 Ii,j(σ, σ, ϑ).

We still use Assumption Ad, the estimation on the derivatives of m and m2 gathered in Propositions 8,
9 and 10 and the inequalities (40), (41) and (42) to prove that E[supµ,σ |∂σ(∂2

σUn(µ, σ)|] <∞. Indeed, it
is

E[sup
µ,σ
|∂σ(∂2

σUn(µ, σ)|] = E[sup
µ,σ
|
n−1∑
i=0

17∑
j=1

Ii,j(σ, σ, σ)|] ≤ c.

Moreover, since the order in which we compute the derivatives of the contrast function commute, we have

E[sup
µ,σ
|∂µ(∂2

σUn(µ, σ)|] = E[sup
µ,σ
|
n−1∑
i=0

17∑
j=1

Ii,j(σ, σ, µ)|] = E[sup
µ,σ
|
n−1∑
i=0

17∑
j=1

Ii,j(µ, σ, σ)|] ≤
n−1∑
i=0

c∆
1
2
n,i.

30



We can therefore say that, for both ϑ = µ and ϑ = σ, it is supn
1
nE[supµ,σ |∂ϑ(∂2

σUn(µ, σ)|] ≤ c < ∞;
that implies the tightness.

We are now left to show that 1
Tn

sup|θ̃|≤εn |∂
2
µUn(θ0 + θ̃) − ∂2

µUn(θ0)| P−→ 0 for εn → 0. We still consider

the notation introduced in the first point for which ∂2
µUn(θ) =:

∑7
j=1

∑n−1
i=0 Ĩ

n
i,j(θ) with ∂2

µUn(θ) that is
as in (61) but both the derivatives are calculated with respect to µ.

From Proposition 7 we already know that 1
Tn

∑n−1
i=0 Ĩ

n
i,j(θ) are tight sequences for j ∈ {1, 3, 4}; having

taken as gi,n(θ,Xti) respectively
−2∂2

µm(µ,σ,Xti )

m2(µ,σ,Xti )
and

2∂µm(µ,σ,Xti )∂µm2(µ,σ,Xti )

m2
2(µ,σ,Xti )

, twice. We see that the

assumptions required on gi,n hold as a consequence of the estimation on the derivatives of m and m2

gathered in Propositions 8 and 9 and the development Ad of m2.
We also show the tightness of the other terms proving that, for both ϑ = µ and ϑ = σ,
supn

1
Tn

E[supµ,σ |
∑n−1
i=0 ∂ϑ(Ĩni,2+Ĩni,5+Ĩni,6+Ĩni,7)|] ≤ c. Indeed, using the estimation on the first derivatives

of m and m2 gathered in Proposition 8 and the development Ad of m2 it is

sup
n

1

Tn
E[sup

µ,σ
|
n−1∑
i=0

∂µĨ
n
i,2|] ≤ sup

n

c

n∆n

n−1∑
i=0

(∆n,i + ∆2
n,i) ≤ c,

sup
n

1

Tn
E[sup

µ,σ
|
n−1∑
i=0

∂σ Ĩ
n
i,2|] ≤ sup

n

c

n∆n

n−1∑
i=0

(∆n,i + ∆n,i) ≤ c.

In the same way, using Assumption Ad, the estimation on the derivatives of m and m2 gathered in
Propositions 8, 9 and 10 and the inequalities (40), (41) and (42) it follows

sup
n

1

Tn
E[sup

µ,σ
|
n−1∑
i=0

∂µ(Ĩni,5 + Ĩni,6 + Ĩni,7)|] ≤ sup
n

c

n∆n
(∆

5
2∧2∧3
n + ∆

1∧2∧ 3
2∧2

n + ∆2∧3
n ) ≤ c;

sup
n

1

n∆n
E[sup

µ,σ
|
n−1∑
i=0

∂σ(Ĩni,5 + Ĩni,6 + Ĩni,7)|] ≤ sup
n

c

n∆n
(∆

5
2∧2∧2
n + ∆

1∧1∧ 3
2∧2

n + ∆1∧2
n ) ≤ c.

We have therefore proved that the sequence 1
Tn
∂2
µUn(θ) is tight, which implies the convergence to zero in

probability of 1
Tn

sup|θ̃|≤εn |∂
2
µUn(θ0 + θ̃)− ∂2

µUn(θ0)|.

8.3.3 Proof of Theorem 2.

Proof. By (54) we get

(

∫ 1

0

[Cn(θ0 + u(θ̂n − θ0))− Cn(θ0)]du+ Cn(θ0))Sn = Ln(θ0).

We find that the matrix ∫ 1

0

[Cn(θ0 + u(θ̂n − θ0))− Cn(θ0)]du+ Cn(θ0) (62)

converges in probability to the nonsingular matrix B. Hence, taking the limit on both sides after multi-

plying by the inverse of (62), we see by the continuous mapping theorem that Sn
d−→ B−1L ∼ N(0,K−1).

The asymptotic normality of Sn is therefore proved.

8.4 Proof of Proposition 1

We observe that, having assumed Ad on m̃2 and as a consequence of the first point of Aρ, the developments
(10) and (31) keep holding true with m̃ and m̃2 instead of m and m2 with the only difference that the
function r1(µ, σ, x) in the development of m̃ contains also the rest function R(θ,∆ρ1

n,i, x). Now it is
possible to prove on m̃ and m̃2 every result stated in Section 8.1 following the proof we give with m̃
and m̃2 replacing m and m2, since the only tools we use are the here above discussed developments.
Moreover, the results stated in Section 8.2 hold true also on m̃ and m̃2 for the third point of Aρ.
The substantial difference between m and m2 and their approximation is that we have defined m and
m2 as in (5) and (6) on purpose to make Ln(θ0) a triangular array of martingale increments without
requiring any constraint on the rate at which the step discretization has to go to zero. Defining Ũn(µ, σ)
the contrast function in which we have replaced m and m2 with their approximation m̃ and m̃2, we have
that

L̃n(θ0) :=

(
− 1√

Tn
∂µŨn(µ0, σ0)

− 1√
n
∂σŨn(µ0, σ0)

)
is no longer a triangular array of martingale increments regardless and so we have to provide an alternative
to Lemma 10, which is gathered in the following lemma.
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Lemma 13. Suppose that Assumptions A1-A8, Ad, AStep and Aρ hold, with 0 < k < k0, and that
√
n∆

ρ1−1/2
n → 0 and

√
n∆ρ2−1

n → 0 as n→∞. Then, as n→∞,

L̃n(θ0)
d−→ L ∼ N(0,K ′),

where K ′ =

(
4
∫
R(

∂µb(x,µ0)
a(x,σ0) )2π(dx) 0

0 8
∫
R(∂σa(x,σ0)

a(x,σ0) )2π(dx)

)
.

Proof. The result follows from a combination of Theorem 3.2 and Theorem 3.4 in [18] (c.f. also Section
A.2 in the Appendix of [33]). We get the lemma proven if, for a constant r > 0, the following convergences
hold.
We define ζi and ζ̃i such that ∂µŨn(µ0, σ0) =:

∑n−1
i=0 ζi(θ0) and ∂σŨn(µ0, σ0) =:

∑n−1
i=0 ζ̃i(θ0). Then it

must be
1√
Tn

n−1∑
i=0

|Ei[ζi(θ0)]| P−→ 0
1√
n

n−1∑
i=0

|Ei[ζ̃i(θ0)]| P−→ 0, (63)

1

Tn

n−1∑
i=0

Ei[ζ2
i (θ0)]

P−→ 4

∫
R

(
∂µb(x, µ0)

a(x, σ0)
)2π(dx)

1

(
√
Tn)2+r

n−1∑
i=0

Ei[ζ2+r
i (θ0)]

P−→ 0, (64)

1

n

n−1∑
i=0

Ei[ζ̃2
i (θ0)]

P−→ 8

∫
R
(
∂σa(x, σ0)

a(x, σ0)
)2π(dx)

1

(
√
n)2+r

n−1∑
i=0

Ei[ζ̃2+r
i (θ0)]

P−→ 0, (65)

1√
nTn

n−1∑
i=0

|Ei[ζi(θ0)ζ̃i(θ0)]| P−→ 0. (66)

It is enough to follow the proof of (55), (56) and (57) with m̃ and m̃2 instead of m and m2 to get (64),
(65) and (66).
We are left to show (63). We observe that, by the definition of m and the first point of Aρ, we have

|Ei[(Xti+1
− m̃(µ0, σ0, Xti))ϕ∆β

n,i
(∆iX)]| = |Ei[(Xti+1

−m(µ0, σ0, Xti))ϕ∆β
n,i

(∆iX)]+

+Ei[(m(µ0, σ0, Xti)− m̃(µ0, σ0, Xti))ϕ∆β
n,i

(∆iX)]| ≤ R(θ0,∆
ρ1

n,i, Xti). (67)

In the same way, using also the definition of m2 and the estimation which assesses the quality of the
approximation of m2 through m̃2, still in the first point of Aρ, we get

Ei[(1−
(Xti+1

− m̃(µ0, σ0, Xti))
2

m̃2(µ0, σ0, Xti)
)ϕ∆β

n,i
(∆iX)] =

= Ei[(1−
(Xti+1

−m(µ0, σ0, Xti))
2

m2(µ0, σ0, Xti)
)ϕ∆β

n,i
(∆iX)]+

+Ei[(
(Xti+1 − m̃(µ0, σ0, Xti))

2

m̃2(µ0, σ0, Xti)
−

(Xti+1 −m(µ0, σ0, Xti))
2

m2(µ0, σ0, Xti)
)ϕ∆β

n,i
(∆iX)] =

= 0 + (
1

m̃2(µ0, σ0, Xti)
− 1

m2(µ0, σ0, Xti)
)Ei[(Xti+1

−m(µ0, σ0, Xti))
2ϕ∆β

n,i
(∆iX)]+

+Ei[
(m(µ0, σ0, Xti)− m̃(µ0, σ0, Xti))

2 + 2(m(µ0, σ0, Xti)− m̃(µ0, σ0, Xti))(Xti+1
−m(µ0, σ0, Xti))

m̃2(µ0, σ0, Xti)
ϕ∆β

n,i
(∆iX)].

Now, using also the development Ad for m2 and m̃2 and the first and the third point of Lemma 3, the
absolute value of the equation here above is upper bounded by

R(θ0,∆
ρ2−1
n,i , Xti) +R(θ0,∆

2ρ1−1
n,i , Xti) +R(θ0,∆

ρ1

n,i, Xti) = R(θ0,∆
(ρ2−1)∧ρ1

n,i , Xti). (68)

We compute hereafter the derivatives of Ũn with respect to µ, obtaining

Ei[ζi(θ0)] =
−2∂µm̃(µ0, σ0, Xti)

m̃2(µ0, σ0, Xti)
Ei[(Xti+1

− m̃(µ0, σ0, Xti))ϕ∆β
n,i

(∆iX)]1{|Xti |≤∆−kn,i}+ (69)

+
∂µm̃2(µ0, σ0, Xti)

m̃2(µ0, σ0, Xti)
Ei[(1−

(Xti+1
− m̃(µ0, σ0, Xti))

2

m2(µ0, σ0, Xti)
)ϕ∆β

n,i
(∆iX)]1{|Xti |≤∆−kn,i}.
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As a consequence of the third point of Aρ, Proposition 8 still holds replacing the derivatives of m and
m2 with the derivatives of m̃ and m̃2. Therefore, using also Ad and the equations (67) and (68), we have

1√
Tn

n−1∑
i=0

|Ei[ζi(θ0)]| ≤ c√
n∆n

n−1∑
i=0

(R(θ0,∆
ρ1

n,i, Xti)+R(θ0,∆
ρ2∧ρ1+1
n,i , Xti)) ≤

∆
(ρ1− 1

2 )∧(ρ2− 1
2 )

n √
n

n−1∑
i=0

R(θ0, 1, Xti),

which converges to 0 in norm 1 and so in probability for
√
n∆

(ρ1− 1
2 )∧(ρ2− 1

2 )
n → 0 for n→∞, as we have

required.

To show Lemma 13 holds true we have to prove finally that 1√
n

∑n−1
i=0 |Ei[ζ̃i(θ0)]| P−→ 0 for n→∞, recalling

that Ei[ζ̃i(θ0)] is defined as (69) but with the derivatives with respect to σ which take now the place of
the derivatives with respect to µ. From Proposition 8, Ad and the equations (67) and (68), it follows

1√
n

n−1∑
i=0

Ei[ζ̃i(θ0)] ≤ c√
n

n−1∑
i=0

(R(θ0,∆
ρ1

n,i, Xti) +R(θ0,∆
ρ2−1∧ρ1

n,i , Xti)) ≤
∆
ρ1∧(ρ2−1)
n √

n

n−1∑
i=0

R(θ0, 1, Xti),

which converges to 0 in norm 1 and so in probability for
√
n∆

ρ1∧(ρ2−1)
n → 0 for n → ∞, as we have

required.
We get L̃n(θ0) is asymptotically normal, as we wanted.

After having replaced Lemma 10 with the Lemma 13 just showed, it is enough to follow the proof of
the asymptotic normality of the estimator θ̂n given in Sections 8.1−8.3 to get the asymptotic normality
of θ̃n.

A Appendix

In this section we prove all the technical results we have introduced, starting from the preliminary results
stated in Section 7.

A.1 Proof of limit theorems

We first show Proposition 5, observing that its last two points are the discretized version of the first point
of Lemma 2.

A.1.1 Proof of Proposition 5

Proof. The first two points have already been proved in Proposition 3 of [2].

We want to show that 1
n

∑n−1
i=0 f(Xti , θ) converges in L2 to

∫
R f(x, θ)π(dx).

Since V ar( 1
n

∑n−1
i=0 f(Xti , θ)) ≤ 1

n2

∑n−1
i=0

∑n−1
j=0 Cov(f(Xti , θ), f(Xtj , θ)), we need to estimate the covari-

ance.
We know that, under our assumptions, the process X is β- mixing with exponential decay (see [27]) that
is ∃γ > 0 such that βX(k) = O(e−γk); with βX(k) as defined in Section 1.3.2 of [10]. If a process is β-
mixing, then it is also α-mixing and so the following estimation holds (see Theorem 3 in Section 1.2.2 of
[10])

|Cov(Xti , Xtj )| ≤ c ‖Xti‖p
∥∥Xtj

∥∥
q
α

1
r (Xti , Xtj )

with p, q and r such that 1
p + 1

q + 1
r = 1. Using that α(Xti , Xtj ) ≤ βX(|ti−tj |) = O(e−γ|ti−tj |), in our case

the inequality here above becomes |Cov(f(Xti , θ), f(Xtj , θ))| ≤ ce−
1
r γ|ti−tj |, where we have also used the

polynomial growth of f and the third point of Lemma 2 to include the two norms in the constant c.
We introduce a partition of (0, Tn] based on the sets Ak := (k Tnn , (k+ 1)Tnn ], for which (0, Tn] = ∪n−1

k=0Ak.
Now each point ti in (0, Tn] can be seen as tk,h, where k identifies the particular set Ak to which the
point belongs while, defining Mk as |Ak|, h is a number in {1, ...,Mk} which enumerates the points in
each set. It follows

c

n2

n−1∑
i=0

n−1∑
j=0

e−
1
r γ|ti−tj | ≤ c

n2

n−1∑
k1=0

n−1∑
k2=0

Mk1∑
h1=1

Mk2∑
h2=1

e−
1
r γ|tk1,h1

−tk2,h2
| ≤ ce

1
r
Tn
n

n2

n−1∑
k1=0

n−1∑
k2=0

Mk1∑
h1=1

Mk2∑
h2=1

e−
1
r γ|k1−k2|Tnn ,

where the last inequality is a consequence of the following estimation: for each k1, k2 ∈ {0, ..., n− 1} it
is |tk1,h1

− tk2,h2
| ≥ |k1 − k2|Tnn −

Tn
n .

Now we observe that the exponent does not depend on h anymore, hence the last term here above can

be upper bounded by ce
1
r
Tn
n

n2

∑n−1
k1=0

∑n−1
k2=0Mk1

Mk2
e−

1
r γ|k1−k2|Tnn .
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Moreover, remarking that the length of each interval Ak is Tn
n , it is easy to show that we can always

upper bound Mk with Tn
n

1
∆min

, with Tn =
∑n−1
i=0 ∆n,i ≤ n∆n and so Mk ≤ ∆n

∆min
, that we have assumed

bounded by a constant c1.

Furthermore, still using that Tn ≤ n∆n, we have e
1
r
Tn
n ≤ e

1
r∆n ≤ c because, by our hypothesis, ∆max

goes to 0 for n→∞. To conclude, we have to show that c
n2

∑n−1
k1=0

∑n−1
k2=0 e

− 1
r γ|k1−k2|Tnn → 0 for n→∞.

We define j := k1 − k2 and we apply a change of variable, getting

c

n2

n−1∑
k1=0

n−1∑
k2=0

e−
1
r γ|k1−k2|Tnn ≤ c

n2

n−1∑
j=−(n−1)

e−
1
r γ|j|

Tn
n |n−j| ≤ c

n

n−1∑
j=−(n−1)

e−
1
r γ|j|∆min ≤ c

n(1− e− 1
r γ∆min)

≤ c

Tn
,

that goes to 0 for n that goes to ∞. We therefore get | 1n
∑n−1
i=0 f(Xti , θ)−

∫
R f(x, θ)π(dx)| P−→ 0.

In order to show the third point we observe that

| 1
n

n−1∑
i=0

f(Xti , θ)1{|Xti |≤∆−kn,i} −
∫
R
f(x, θ)π(dx)| ≤ | 1

n

n−1∑
i=0

f(Xti , θ)1{|Xti |≤∆−kn,i} −
1

n

n−1∑
i=0

f(Xti , θ)|+

+| 1
n

n−1∑
i=0

f(Xti , θ)−
∫
R
f(x, θ)π(dx)|.

We have already proved that the second goes to 0 in probability, while the first is
| 1n
∑n−1
i=0 f(Xti , θ)1{|Xti |>∆−kn,i}|, that converges to 0 in L1 as a consequence of the polynomial growth of

f and the third point of Lemma 2 and so in probability.
We act in the same way in order to show the fourth point, observing that, by the definition of ϕ, it is

| 1
n

n−1∑
i=0

f(Xti , θ)1{|Xti |≤∆−kn,i}(ϕ∆β
n,i

(∆Xi)− 1)| ≤ c

n

n−1∑
i=0

|f(Xti , θ)|1{|Xti |≤∆−kn,i}1{|Xti |≥∆β
n,i}. (70)

We observe that, since ∆Xc
i = ∆Xi − ∆XJ

i , if |∆Xi| ≥ ∆β
n,i and |∆XJ

i | <
∆β
n,i

2 , then |∆Xc
i | must be

more than
∆β
n,i

2 . Hence

E[1{|∆Xi|≥∆β
n,i}] = E[1{

|∆Xi|≥∆β
n,i,|∆XJi |<

∆
β
n,i
2

}] + E[1{
|∆Xi|≥∆β

n,i,|∆XJi |≥
∆
β
n,i
2

}] ≤

≤ P(|∆Xc
i | ≥

∆β
n,i

2
)+P(|∆XJ

i | ≥
∆β
n,i

2
) ≤ cE[|∆Xc

i |r]
∆βr
n,i

+R(θ,∆n,i, Xti) ≤ R(θ,∆
( 1

2−β)r∧1
n,i , Xti) = R(θ,∆n,i, Xti).

(71)
On the first probability here above we have used Tchebychev inequality and the fourth point of Lemma

1, for |∆XJ
i | ≥

∆β
n,i

2 the fact that the intensity of jumps is finite and therefore the probability to have at

least one jump bigger than
∆β
n,i

2 can be computed and it is of order ∆n. Moreover, by the arbitrariness

of r > 1, we get that R(θ,∆
( 1

2−β)r
n,i , Xti) is negligible compared to R(θ,∆n,i, Xti).

From Holder inequality, the polynomial growth of f , the third point of Lemma 2 and (71) it follows
that the right hand side of (70) goes to 0 in norm 1 and so in probability. The proposition is therefore
proved.

We now prove Proposition 6, that is a consequence of Lemma 3.

A.1.2 Proof of Proposition 6

Proof. In order to show that the first convergence holds, we define
sni := 1

Tn
f(Xti , θ) (Xti+1

−m(µ, σ,Xti))
2 ϕ∆β

n,i
(Xti+1

− Xti)1{|Xti |≤∆−kn,i}. From Lemma 9 in [14], if we

show that
n−1∑
i=0

Ei[sni ]
P−→
∫
R
f(x, θ)a2(x, σ0)π(dx) and

n−1∑
i=0

Ei[(sni )2]→ 0,

then the proposition is proved. We observe that (23) yields

n−1∑
i=0

Ei[sni ] =
1

Tn

n−1∑
i=0

∆n,if(Xti , θ)a
2(Xti , σ0)1{|Xti |≤∆−kn,i} +

1

Tn

n−1∑
i=0

∆n,if(Xti , θ)R(θ0,∆
β
n,i, Xti).
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The first term here above converges in probability to
∫
R f(x, θ)a2(x, σ0)π(dx) as a consequence of the

first point of Proposition 5, while the second is upper bounded by
∆β
n

1
n

∑n−1
i=0 f(Xti , θ)R(θ0, 1, Xti), which converges to zero in norm 1 (and so in probability) by the poly-

nomial growth of both R and f and the third point of Lemma 2. Moreover, using (24) and the fact that
1
Tn

= O( 1
n∆n

), we have

n−1∑
i=0

|Ei[(sni )2]| ≤ 1

(n∆n)2

n−1∑
i=0

(f(Xti , θ))
2R(θ0,∆

2
n,i, Xti) ≤

1

n2

n−1∑
i=0

f2(Xti , θ)R(θ0, 1, Xti),

which goes to zero in norm 1 and so in probability for n → ∞ as a consequence of the polynomial
growth of both R and f and the third point of Lemma 2. The first point is therefore proved. In order

to show the second point of Proposition 6 is enough to act on the sequence s̃ni := 1
n

f(Xti ,θ)

∆n,i
(Xti+1

−
m(µ, σ,Xti))

2 ϕ∆β
n,i

(Xti+1
− Xti)1{|Xti |≤∆−kn,i} exactly like we have just did here above, with the only

difference that the third point of Proposition 5 has to be applied instead of the first one.

A.1.3 Proof of Lemma 3

Proof. Replacing m(µ, σ,Xti) with its development (31) and using the dynamic (3) of X we have

Xti+1
−m(µ, σ,Xti) =

∫ ti+1

ti

b(Xs, µ0)ds+

∫ ti+1

ti

a(Xs, σ0)dWs+

∫ ti+1

ti

∫
R
zγ(Xs−)µ̃(ds, dz)+R(θ,∆n,i, Xti) =

=:

∫ ti+1

ti

a(Xs, σ0)dWs +Bi,n. (72)

In order to prove (23) we start considering

Ei[(Xti+1
−m(µ, σ,Xti))

2ϕ∆β
n,i

(Xti+1
−Xti)] = Ei[(

∫ ti+1

ti

a(Xs, σ0)dWs)
2ϕ∆β

n,i
(Xti+1

−Xti)]+

+Ei[(Bi,n)2ϕ∆β
n,i

(Xti+1 −Xti)] + 2Ei[Bi,n(

∫ ti+1

ti

a(Xs, σ0)dWs)ϕ∆β
n,i

(Xti+1 −Xti)].

Now the first term on the right hand side here above is

Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
2] + Ei[(

∫ ti+1

ti

a(Xs, σ0)dWs)
2(ϕ∆β

n,i
(Xti+1

−Xti)− 1)] =

= ∆n,ia
2(Xti , σ0)+Ei[

∫ ti+1

ti

[a2(Xs, σ0)−a2(Xti , σ0)]ds]+Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
2(ϕ∆β

n,i
(Xti+1−Xti)−1)].

(73)
Moreover,

|Ei[
∫ ti+1

ti

[a2(Xs, σ0)− a2(Xti , σ0)]ds] + Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
2(ϕ∆β

n,i
(Xti+1

−Xti)− 1)]| ≤

≤
∫ ti+1

ti

Ei[|2a∂xa(Xu, σ0)||Xs −Xti |]ds+ Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
2p]

1
pEi[1{|∆Xi|≥∆β

n,i}]
1
q , (74)

where Xu ∈ (Xs, Xti) and we have used Holder inequality and the definition of ϕ, that is equal to 1 for

|∆Xi| < ∆β
n,i.

Using Cauchy-Schwartz inequality and the second point of Lemma 1 on the first term of (74) and
Burkholder-Davis-Gundy inequality and (71) on the second we have that the right hand side is upper
bounded by∫ ti+1

ti

R(θ0,∆
1
2
n,i, Xti)ds+R(θ0,∆n,i, Xti)R(θ0,∆

1
q

n,i, Xti) ≤ R(θ0,∆
3
2
n,i, Xti) +R(θ0,∆

2−ε
n,i , Xti),

where we have taken q next to 1.
Replacing in (73) we get

Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
2ϕ∆β

n,i
(Xti+1

−Xti)] = ∆n,ia
2(Xti , σ0) +R(θ0,∆

3
2
n,i, Xti). (75)

35



Now we evaluate the contribution of (Bi,n)2:

Ei[(Bi,n)2ϕ∆β
n,i

(Xti+1
−Xti)] ≤ cEi[(

∫ ti+1

ti

b(Xs, µ0)ds)2ϕ∆β
n,i

(Xti+1
−Xti)]+

+cEi[(
∫ ti+1

ti

∫
R
γ(Xs−)zµ̃(ds, dz))2ϕ∆β

n,i
(Xti+1 −Xti)] +R(θ,∆2

n,i, Xti) ≤ c∆n,i

∫ ti+1

ti

Ei[b2(Xs, µ)]ds+

+R(θ0,∆
1+2β
n,i , Xti) = R(θ0,∆

2
n,i, Xti) +R(θ0,∆

1+2β
n,i , Xti) = R(θ0,∆

1+2β
n,i , Xti), (76)

where we have used Jensen inequality, Lemma 5 and the fact that R(θ0,∆
2
n,i, Xti) is always negligible

compared to R(θ0,∆
1+2β
n,i , Xti) since 2 > 1 + 2β.

We observe that (75) still holds with 1 instead of ϕ (see (73) ). Using it, Cauchy-Schwartz inequality and
(76) it follows

Ei[Bi,n(

∫ ti+1

ti

a(Xs, σ0)dWs)ϕ∆β
n,i

(Xti+1
−Xti)] ≤ cEi[(

∫ ti+1

ti

a(Xs, σ0)dWs)
2]

1
2Ei[(Bi,n)2ϕ2

∆β
n,i

(Xti+1−Xti)]
1
2 ≤

≤ R(θ0,∆n,i, Xti)
1
2R(θ0,∆

1+2β
n,i , Xti)

1
2 = R(θ0,∆

1+β
n,i , Xti). (77)

From (72), (75) - (77) it follows (23).

Concerning (24), we have

Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
4ϕ∆β

n,i
(∆Xi)] = Ei[(

∫ ti+1

ti

a(Xs, σ0)dWs)
4]+Ei[(

∫ ti+1

ti

a(Xs, σ0)dWs)
4(ϕ∆β

n,i
(∆Xi)−1)].

(78)
Using Holder inequality and the definition of ϕ we have that the second term here above is upper bounded
by

Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
4p]

1
pPi(|∆Xi| ≥ ∆β

n,i)
1
q ≤ R(θ0,∆

2
n,i, Xti)R(θ0,∆

1
q

n,i, Xti) = R(θ0,∆
3−ε
n,i , Xti),

(79)
where we have used BDG inequality, (71) and we have taken q next to 1. Moreover,

Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
4] = Ei[(

∫ ti+1

ti

a(Xti , σ0)dWs)
4]+Ei[(

∫ ti+1

ti

[a(Xs, σ0)−a(Xti , σ0)]dWs)
4]+ (80)

+

3∑
j=1

(
4

j

)
Ei[(

∫ ti+1

ti

a(Xti , σ0)dWs)
j(

∫ ti+1

ti

[a(Xs, σ0)− a(Xti , σ0)]dWs)
4−j ].

Since the expected value of the fourth moment of the gaussian law is known we have

Ei[(
∫ ti+1

ti

a(Xti , σ0)dWs)
4] = 3∆2

n,ia
4(Xti , σ0). (81)

On the second term of the right hand side of (80) we use again BDG inequality to get

Ei[(
∫ ti+1

ti

[a(Xs, σ0)− a(Xti , σ0)]dWs)
4] ≤ cEi[(

∫ ti+1

ti

[a(Xs, σ0)− a(Xti , σ0)]2ds)2] ≤

≤ c∆n,i

∫ ti+1

ti

‖∂xa‖4∞ Ei[|Xs −Xti |4]ds ≤ c∆n,i

∫ ti+1

ti

|s− ti|(1 + |Xti |4)ds ≤ R(θ0,∆
3
n,i, Xti), (82)

where we have also used Jensen inequality and the second point of Lemma 1.
Concerning the last term in the right hand side of (80), from Holder inequality it is upper bounded by

3∑
j=1

(
4

j

)
Ei[(

∫ ti+1

ti

a(Xti , σ0)dWs)
jp1 ]

1
p1 Ei[(

∫ ti+1

ti

[a(Xs, σ0)− a(Xti , σ0)]dWs)
(4−j)p2 ]

1
p2 .

Now we take p1 = 4
j and so p2 = 4

4−j . Therefore, using also (81) and (82), the expression here above is

3∑
j=1

(
4

j

)
Ei[(

∫ ti+1

ti

a(Xti , σ0)dWs)
4]
j
4Ei[(

∫ ti+1

ti

[a(Xs, σ0)− a(Xti , σ0)]dWs)
4]

4−j
4 ≤
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≤
3∑
j=1

(
4

j

)
R(θ0,∆

2
n,i, Xti)

j
4R(θ0,∆

3
n,i, Xti)

4−j
4 ≤

3∑
j=1

(
4

j

)
R(θ0,∆

3− j4
n,i , Xti) = R(θ0,∆

9
4
n,i, Xti), (83)

since when j = 1 and j = 2 we get terms that are negligible if compared to R(θ0,∆
9
4
n,i, Xti).

Replacing (79), (81) - (83) in (78) it follows

Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
4ϕ∆β

n,i
(∆Xi)] = 3∆2

n,ia
4(Xti , σ0) +R(θ0,∆

9
4
n,i, Xti). (84)

We now study the contribution of Bi,n. First,

Ei[(Bi,n)4|ϕ∆β
n,i

(∆Xi)|] ≤ cEi[(
∫ ti+1

ti

b(Xs, µ0)ds)4|ϕ∆β
n,i

(∆Xi)|]+

+cEi[(
∫ ti+1

ti

∫
R
γ(Xs−)zµ̃(ds, dz))4|ϕ∆β

n,i
(∆Xi)|] +R(θ,∆4

n,i, Xti) ≤ c∆3
n,i

∫ ti+1

ti

Ei[b4(Xs, µ0)]ds+

+R(θ0,∆
1+4β
n,i , Xti) = R(θ0,∆

4
n,i, Xti) +R(θ0,∆

1+4β
n,i , Xti) = R(θ0,∆

1+4β
n,i , Xti), (85)

where we have used Jensen inequality, Lemma 5 and the fact that R(θ0,∆
4
n,i, Xti) is always negligible

compared to R(θ0,∆
1+4β
n,i , Xti) since 4 > 1 + 4β.

Using (72) we have that

Ei[(Xti+1
−m(µ, σ,Xti))

4|ϕ∆β
n,i

(∆Xi)|] = Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
4|ϕ∆β

n,i
(∆Xi)|]+Ei[(Bi,n)4|ϕ∆β

n,i
(∆Xi)|]+

(86)

+

3∑
j=1

(
4

j

)
Ei[(

∫ ti+1

ti

a(Xs, σ0)dWs)
j(Bi,n)4−j |ϕ∆β

n,i
(∆Xi)|].

On the last term here above we act like we did in (77), using holder inequality and taking p1 = 4
j . It

follows, using also (80), (81), (82), (83) and (85), that it is upper bounded by

3∑
j=1

(
4

j

)
R(θ0,∆

2
n,i, Xti)

j
4R(θ0,∆

1+4β
n,i , Xti)

4−j
4 =

3∑
j=1

(
4

j

)
R(θ0,∆

1+4β+ j
4 (1−4β)

n,i , Xti). (87)

Since we have chosen β > 1
4 , the terms in which j = 1, 2 are negligible compared to the one in which

j = 3 and so we get R(θ0,∆
7
4 +β
n,i , Xti). From (84)- (87) it follows (24).

In order to show (25) we start considering Bi,n:

|Ei[Bi,nϕk∆β
n,i

(∆Xi)]| ≤ R(θ0,∆n,i, Xti) + cEi[|
∫ ti+1

ti

b(Xs, µ)ds|] + cEi[|
∫ ti+1

ti

∫
R
zγ(Xs−)µ̃(ds, dz)|] ≤

≤ R(θ0,∆n,i, Xti) + cEi[
∫ ti+1

ti

|b(Xs, µ)|ds] + cEi[
∫ ti+1

ti

(

∫
R
|z|F (z)dz)|γ(Xs−)|ds] ≤ R(θ0,∆n,i, Xti),

(88)
having used the definition of Bi,n given in (72), the boundedness of ϕk, the polynomial growth of both b
and γ and the third point of Lemma 1.
Moreover,

|Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)ϕ
k
∆β
n,i

(∆Xi)]| = |Ei[
∫ ti+1

ti

a(Xs, σ0)dWs]+Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)(ϕ
k
∆β
n,i

(∆Xi)−1)]| ≤

≤ R(θ0,∆
1
2
n,i, Xti)Ei[1{|∆Xi|≥∆β

n,i}]
1
q ≤ R(θ0,∆

3
2−ε
n,i , Xti), (89)

where we have used (71) and taken q next to 1. From the inequality here above and (88) it follows (25).

Concerning (26); we have

Ei[|Xti+1−m(µ, σ,Xti)|k|ϕ∆β
n,i

(∆Xi)|k
′
] ≤ cEi[|

∫ ti+1

ti

a(Xs, σ0)dWs|k|ϕ∆β
n,i

(∆Xi)|k
′
]+cEi[|Bi,n|k|ϕ∆β

n,i
(∆Xi)|k

′
] ≤

≤ R(θ0,∆
k
2
n,i, Xti) +R(θ0,∆

k
n,i, Xti) +R(θ0,∆

1+kβ
n,i , Xti) = R(θ0,∆

k
2∧(1+kβ)
n,i , Xti),
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where we have used on the first term here above the fact that ϕ is bounded and BDG inequality while
on the second we have acted like we did in (76) or (85), with q that this time is equal to k.

We now want to show the fifth and last point of the lemma. Using (72) we have

(Xti+1
−m(µ0, σ0, Xti))

3 =

3∑
j=0

(
3

j

)
(

∫ ti+1

ti

a(Xs, σ0)dWs)
jB3−j

i,n .

Therefore

Ei[(Xti+1 −m(µ0, σ0, Xti))
3ϕk

′

∆β
n,i

(∆Xi)] =

3∑
j=0

(
3

j

)
Ei[(

∫ ti+1

ti

a(Xs, σ0)dWs)
jB3−j

i,n ϕk
′

∆β
n,i

(∆Xi)].

We observe that, for j = 3, it is

Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
3ϕk

′

∆β
n,i

(∆Xi)] = Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
3]+Ei[(

∫ ti+1

ti

a(Xs, σ0)dWs)
3(ϕk

′

∆β
n,i

(∆Xi)−1)] ≤

≤ cEi[(
∫ ti+1

ti

a(Xti , σ0)dWs)
3] + cEi[(

∫ ti+1

ti

[a(Xs, σ0)− a(Xti , σ0)]dWs)
3] +R(θ0,∆

5
2−ε
n,i , Xti).

We remark that the first term here above is centered while on the second we can act like we did on (82)
(still with an exponent that is 3 instead of 4), obtaining

Ei[(
∫ ti+1

ti

[a(Xs, σ0)− a(Xti , σ0)]dWs)
3] ≤ R(θ0,∆

5
2
n,i, Xti).

For j = 0, instead, we get a term on which we act like we did in (76) or (85), with q that this time is

equal to 3 and so we can upper bound it with R(θ0,∆
(1+3β)∧3
n,i , Xti).

For j = 1 and j = 2 we use Holder inequality, getting

Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
jB3−j

i,n ϕk
′

∆β
n,i

(∆Xi)] ≤ Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
jp]

1
pEi[B(3−j)q

i,n ϕk
′q

∆β
n,i

(∆Xi)]
1
q ≤

≤ Ei[(
∫ ti+1

ti

a(Xs, σ0)dWs)
3]
j
3E[B3

i,nϕ
k′ 3

3−j

∆β
n,i

(∆Xi)]
1− j3 = R(θ0,∆

3
2
j
3

n,i , Xti)R(θ0,∆
(1+3β)(1− j3 )
n,i , Xti) =

= R(θ0,∆
1+3β+j( 1

6−β)
n,i , Xti).

Now, since β > 1
4 > 1

6 , the term we get for j = 1 is negligible compared to the one we get for j = 2,

which is R(θ0,∆
4
3 +β
n,i , Xti). In conclusion we have

Ei[(Xti+1
−m(µ0, σ0, Xti))

3ϕk
′

∆β
n,i

(∆Xi)] = R(θ0,∆
5
2−ε
n,i , Xti) +R(θ0,∆

(1+3β)∧3
n,i , Xti)+

+R(θ0,∆
4
3 +β
n,i , Xti) = R(θ0,∆

4
3 +β
n,i , Xti),

since we can always find an ε > 0 for which 5
2 − ε > 1 + 3β > 4

3 + β. The result follows.

A.1.4 Proof of Lemma 4

Proof. We first of all observe that, for all k ≥ 1, |ϕ′
∆β
n,i

(Xθ
ti+1
−Xθ

ti)|
k is different from 0 only if |Xθ

ti+1
−

Xθ
ti | ∈ [∆β

n,i, 2∆β
n,i]. Recalling that from its definition (72)Bi,n =

∫ ti+1

ti
b(Xs, µ)ds+

∫ ti+1

ti

∫
R zγ(Xs−)µ̃(ds, dz)+

R(θ,∆n,i, Xti), it follows

E[|Xθ
ti+1
−m(µ, σ,Xti)|p|ϕ′∆β

n,i

(Xθ
ti+1
−Xθ

ti)|
k] ≤ cE[|

∫ ti+1

ti

a(Xθ
s , σ)dWs|p1{|Xθti+1

−Xθti |∈[∆β
n,i,2∆β

n,i]
}]+

(90)
+cE[|Bi,n|p1{|Xθti+1

−Xθti |∈[∆β
n,i,2∆β

n,i]
}].

On the first term here above we use Holder inequality, (50) and (71), remarking that
{
|Xθ

ti+1
−Xθ

ti | ∈ [∆β
n,i, 2∆β

n,i]
}
⊂{

|Xθ
ti+1
−Xθ

ti | ≥ ∆β
n,i

}
. We get it is upper bounded by

E[|
∫ ti+1

ti

a(Xθ
s , σ)dWs|pp1 ]

1
p1 E[1{|Xθti+1

−Xθti |∈[∆β
n,i,2∆β

n,i]
}]

1
p2 ≤ R(θ,∆

p
2
n,i, Xti)R(θ,∆n,i, Xti)

1
p2 = R(θ,∆

p
2 +1−ε
n,i , Xti),
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for all ε > 0. In the last inequality we have taken p1 big and p2 next to 1.
We now study the second term of (90). From the definition of Bi,n given here above, Holder inequality,
the polynomial growth of b and still (71) we get that the second term of (90) is upper bounded by
R(θ,∆p+1−ε

n,i , Xti) + E[|∆XJ
i |p1{|Xθti+1

−Xθti |∈[∆β
n,i,2∆β

n,i]
}].

We now recall that ∆Xc
i = (Xθ

ti+1
−Xθ

ti)−∆XJ
i and so when |Xθ

ti+1
−Xθ

ti | ≤ 2∆β
n,i and |∆XJ

i | ≥ 4∆β
n,i,

then |∆Xc
i | must be more than 2∆β

n,i. Hence

E[|∆XJ
i |p1{|Xθti+1

−Xθti |∈[∆β
n,i,2∆β

n,i]
}] ≤ E[|∆XJ

i |p1{|Xθti+1
−Xθti |∈[∆β

n,i,2∆β
n,i],|∆XJi |≥4∆β

n,i

}]+

+E[|∆XJ
i |p1{|Xθti+1

−Xθti |∈[∆β
n,i,2∆β

n,i],|∆XJi |≤4∆β
n,i

}] ≤ cE[|∆XJ
i |pp1 ]

1
p1 P(|∆Xc

i | ≥ 2∆β
n,i)

1
p2 +

+c∆βp
n,iP(|Xθ

ti+1
−Xθ

ti | ∈ [∆β
n,i, 2∆β

n,i], |∆X
J
i | ≤ 4∆β

n,i) ≤ (91)

≤ R(θ,∆
1
p1
n,i, Xti)R(θ,∆

( 1
2
−β)r

p2
n,i , Xti)+R(θ,∆1+βp

n,i , Xti) = R(θ,∆
( 1

2−β)r−ε
n,i , Xti)+R(θ,∆1+βp

n,i , Xti) = R(θ,∆1+βp
n,i , Xti),

where we have used Kunita inequality (for pp1 ≥ 2, that holds since we take p1 big and p2 next to 1),
Tchebyschev inequality as we did in (71) on the first term and still (71) on the second. Moreover we have
used that, by the arbitrariness of r > 0, we can always find r and ε such that ( 1

2 − β)r− ε > 1 + βp. The
result follows.

A.1.5 Proof of Lemma 5

Proof. The case q ≥ 2 has already been proved in Lemma 10 of [2] so, we are going to focus on the case
q ∈ [1, 2).
For all n ∈ N and i ∈ N we define the set on which all the jumps of L on the interval (ti, ti+1] are small:

N i
n :=

{
|∆Ls| ≤

4∆β
n,i

γmin
; ∀s ∈ (ti, ti+1]

}
.

We split the jumps on Ni,n and its complementary, getting

Ei[|∆XJ
i ϕ∆β

n,i
(Xti+1

−Xti)|q1Nin ] + Ei[|∆XJ
i ϕ∆β

n,i
(Xti+1

−Xti)|q1(Nin)c ]. (92)

We now observe that, by the definition of N i
n, the first term here above is upper bounded by

Ei[|
∫ ti+1

ti

∫
|z|≤

4∆
β
n,i

γmin

z γ(Xs−)µ̃(ds, dz)|q + |
∫ ti+1

ti

∫
|z|≥

4∆
β
n,i

γmin

|z| |γ(Xs−)|µ̄(ds, dz)|q].

From our assumptions on the jump density the second term here above is upper bounded by aR(θ,∆q
n,i, Xti)

function while on the first one we use Lemma 2.1.5 of [21]. We can therefore upper bound it with

cEi[
∫ ti+1

ti

∫
|z|≤

4∆
β
n,i

γmin

|z|q|γ(Xs−)|qµ̄(ds, dz)] ≤ R(θ,∆1+βq
n,i , Xti),

having used again that µ̄(ds, dz) = F (dz)ds and Assumption 4 on F . It follows

Ei[|∆XJ
i ϕ∆β

n,i
(∆Xi)|q1Nin ] ≤ R(θ,∆q

n,i, Xti) +R(θ,∆1+βq
n,i , Xti) = R(θ,∆q

n,i, Xti).

Regarding the second term of (92), we have that |∆XJ
i | ≤ |∆Xi| + |∆Xc

i | and, as we have already

remarked several times, by the definition of ϕ it is different from zero only if |∆Xi|q ≤ c∆βq
n,i. It follows

Ei[|∆Xi|q|ϕ∆β
n,i

(∆Xi)|q1(Nin)c ] ≤ c∆βq
n,iPi((N

i
n)c) ≤ R(θ,∆1+βq

n,i , Xti),

where the last inequality is a consequence of the following:

Pi((N i
n)c) = Pi(∃s ∈ (ti, ti+1] : |∆Ls| >

4∆β
n,i

γmin
) ≤ c

∫ ti+1

ti

∫ ∞
4∆
β
n,i

γmin

F (z)dzds ≤ c∆n,i.

In the same way

Ei[|∆Xc
i |q|ϕ∆β

n,i
(∆Xi)|q1(Nin)c ] ≤ c∆

1
2 q−ε
n,i ∆1−ε

n,i (1 + |Xti |c) = R(θ,∆
1+ 1

2 q
n,i , Xti).

Putting all pieces together we have

Ei[|∆XJ
i |q|ϕ∆β

n,i
(∆Xi)|q] ≤ R(θ,∆q

n,i, Xti),

that is the result we wanted remarking that, for q ∈ [1, 2), 1 + βq > q and so ∆q
n,i = ∆

q∧(1+βq)
n,i .
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A.1.6 Proof of Proposition 7

Proof. We want to prove the tightness of the sequence Sn(θ). Since the sum of tight sequences is still tight,
we show the tightness of the sequence Sn1(θ) and Sn2(θ) which are such that Sn(θ) = Sn1(θ) + Sn2(θ):

Sn1(θ) :=
1

Tn

n−1∑
i=0

(Xti+1 −m(µ0, σ0, Xti))ϕ∆β
n,i

(Xti+1 −Xti)gi,n(θ,Xti) and

Sn2(θ) :=
1

Tn

n−1∑
i=0

(m(µ0, σ0, Xti)−m(µ, σ,Xti))ϕ∆β
n,i

(Xti+1
−Xti)gi,n(θ,Xti).

We prove that Sn1(θ) is tight using Kolmogorov criterion, we therefore want to show that inequalities
analogous to (46) and (47) hold. Starting with the proof of (47) we have that, using Burkholder and
Jensen inequality,

E[|Sn1(θ1)−Sn1(θ2)|m] ≤ cn
m
2 −1

(n∆n)m

n−1∑
i=0

E[|(Xti+1
−m(µ0, σ0, Xti))|m|ϕm∆β

n,i

(Xti+1
−Xti)|gi,n(θ1, Xti)−gi,n(θ2, Xti)|m].

(93)
We observe that, using finite-increments theorem and the assumption on the derivatives of gi,n with
respect to the parameters, it is

|gi,n(θ1, Xti)− gi,n(θ2, Xti)|m ≤ |R(θ, 1, Xti)|m|µ1 − µ2|m + |R(θ, 1, Xti)|m|σ1 − σ2|m (94)

where actually the function R is computed in a point θ̃ := (µ̃, σ̃), with µ̃ ∈ (µ1, µ2) and σ̃ ∈ (σ1, σ2) but,
since the property (8) of R is uniform in θ, we have chosen to write it simply as R(θ, 1, Xti). Replacing
(94) in (93) and using the fourth point of Lemma 3 it follows

E[|Sn1(θ1)−Sn1(θ2)|m] ≤ cn
m
2 −1

(n∆n)m
n∆

m
2 ∧(1+mβ)
n (|µ1−µ2|m+|σ1−σ2|m) ≤ c

(n∆n)
m
2

∆
0∧(1+mβ−m2 )
n (|µ1−µ2|m+|σ1−σ2|m),

with 1

(n∆n)
m
2

∆
0∧(1+mβ−m2 )
n < c because n∆n is lower bounded by a constant and we can always find an

m ≥ 2 for which 1 +mβ − m
2 > 0 since β ∈ ( 1

4 ,
1
2 ). Hence, (47) is proved.

Acting exactly in the same way but using this time the control on gi,n instead of on its derivatives we
have also an estimation for Sn1 analogous to (46); the tightness of Sn1 follows.
Concerning Sn2 we observe that, for ϑ = µ and ϑ = σ, it is

|∂ϑSn2(θ)| ≤ c|∂ϑm(µ, σ,Xti)||gi,n(θ,Xti)|+ c|m(µ0, σ0, Xti)−m(µ, σ,Xti)||∂ϑgi,n(θ,Xti)|.

From the controls we have assumed on gi,n and its derivatives, the finite-increments theorem and the first
and the second point of Proposition 8 we have |∂ϑSn2(θ)| ≤ R(θ,∆n,i, Xti). Therefore for both ϑ = µ
and ϑ = σ, using also that 1

Tn
= O( 1

n∆n
), we get

sup
n

E[sup
µ,σ
|∂ϑSn2(θ)|] ≤ sup

n

c

Tn

n−1∑
i=0

E[sup
µ,σ
|R(θ,∆n,i, Xti)] ≤ c.

The tightness of Sn2 (and therefore of Sn) follows.

A.2 Proof of derivatives of m and m2

In order to prove the developments and the bounds on the derivatives of m and m2, the following lemmas
will be useful. We point out that Xθ

t is Xθ,x
t and so the process starts in 0: Xθ,x

0 = x.

Lemma 14. Suppose that Assumptions from 1 to 4 and A7 hold. Then, ∀p ≥ 2 ∃c > 0: ∀h ≤ ∆n ∀x we
have

E[|
∂µX

θ,x
h

h
|p] ≤ c(1 + |x|c), E[|

∂2
µX

θ,x
h

h
|p] ≤ c(1 + |x|c), (95)

E[|
∂σX

θ,x
h

h
1
2

|p] ≤ c(1 + |x|c), E[|
∂2
σµX

θ,x
h

h
3
2

|p] ≤ c(1 + |x|c), (96)

E[|
∂2
σX

θ,x
h

h
1
2

|p] ≤ c(1 + |x|c), (97)
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E[|
∂3
σX

θ,x
h

h
1
2

|p] ≤ c(1 + |x|c), E[|
∂3
µX

θ,x
h

h
|p] ≤ c(1 + |x|c) (98)

E[|
∂3
σµσX

θ,x
h

h
3
2

|p] ≤ c(1 + |x|c), E[|
∂3
µµσX

θ,x
h

h
3
2

|p] ≤ c(1 + |x|c), (99)

Proof. Lemma 14.
Inequalities (95) have already been proved in Lemma 9 of [2]. To show the first inequality of (96), we
observe that the dynamic of the process ∂σX

θ,x is known (cf. [7], section 5):

∂σX
θ,x
h =

∫ h

0

∂xb(µ,X
θ,x
s )∂σX

θ,x
s ds+

∫ h

0

(∂xa(σ,Xθ,x
s )∂σX

θ,x
s +∂σa(σ,Xθ,x

s ))dWs+

∫ h

0

∫
R
∂xγ(Xθ,x

s− )∂σX
θ,x
s zµ̃(dz, ds).

(100)
From now on, we will drop the dependence of the starting point in order to make the notation easier.
Taking the Lp norm of (100) we get it is upper bounded by the sum of three terms. On the first one we
use Jensen inequality and the fact that the derivatives of b with rapport to x are supposed bounded to
obtain

E[|
∫ h

0

(∂xb(µ,X
θ
s )∂σX

θ
sds|p] ≤ hp−1

∫ h

0

E[|∂xb(µ,Xθ
s )|p|∂σXθ

s |p]ds ≤ chp−1

∫ h

0

E[|∂σXθ
s |p]ds. (101)

Let us now consider the stochastic integral. Using Burkholder-Davis-Gundy inequality we have

E[|
∫ h

0

(∂xa(σ,Xθ
s )∂σX

θ
s + ∂σa(σ,Xθ

s ))dWs|p] ≤ cE[|
∫ h

0

(∂xa(σ,Xθ
s ))2(∂σX

θ
s )2ds|

p
2 ]+

+cE[|
∫ h

0

(∂σa(σ,Xθ
s ))2ds|

p
2 ] ≤ ch

p
2−1

∫ h

0

E[|∂σXθ
s |p]ds+ ch

p
2−1

∫ h

0

E[(1 + |Xθ
s |c)]ds ≤ (102)

≤ ch
p
2−1

∫ h

0

E[|∂σXθ
s |p]ds+ ch

p
2 (1 + |x|c),

where we have used Jensen inequality, the fact that, by A7, the derivatives of a with rapport to x are
supposed bounded and those with rapport to σ have polynomial growth and the second point of Lemma
1.
We now consider the third term on the right hand side of (100), it can be estimated using Kunita
inequality (cf. the Appendix of [21]):

E[|
∫ h

0

∫
R
∂xγ(Xθ

s−)∂σX
θ
s zµ̃(dz, ds)|p] ≤ cE[

∫ h

0

∫
R
|∂xγ(Xθ

s−)∂σX
θ
s |p|z|pµ̄(dz, ds)]+

+cE[|
∫ h

0

∫
R

(∂xγ(Xθ
s−)∂σX

θ
s )2z2µ̄(dz, ds)|

p
2 ] ≤ c

∫ h

0

E[|∂xγ(Xθ
s−)|p|∂σXθ

s |p](
∫
R
|z|pF (z)dz)ds+

+cE[|
∫ h

0

(∂xγ(Xθ
s−)∂σX

θ
s )2(

∫
R
z2F (z)dz)ds|

p
2 ] ≤ c

∫ h

0

E[|∂σXθ
s |p]ds+ cE[|

∫ h

0

(∂σX
θ
s )2ds|

p
2 ],

where in the last two inequalities we have just used the definition of the compensated measure µ̄,the
third point of Assumption 4 and the fact that the derivatives of γ are supposed bounded. By the Jensen
inequality we get

E[|
∫ h

0

∫
R
∂xγ(Xθ

s−)∂σX
θ
s zµ̃(dz, ds)|p] ≤ c(1 + h

p
2−1)

∫ h

0

E[|∂σXθ
s |p]ds. (103)

From (101), (102) and (103), it follows

E[|∂σXθ
h|p] ≤ c(hp−1 + h

p
2−1 + 1)

∫ h

0

E[|∂σXθ
s |p]ds+ ch

p
2 (1 + |x|c).

Gronwall Lemma gives us

E[|∂σXθ
h|p] ≤ ch

p
2 (1 + |x|c)ec(h

p−1+h
p
2
−1+1),

we therefore obtain the first inequality in (96). Concerning the second, we observe we can deduce the
dynamic of the process ∂µσX

θ from (100). It is

∂2
µσX

θ
h =

∫ h

0

(∂2
xb(µ,X

θ
s )∂σX

θ
s∂µX

θ
s+∂2

µxb(µ,X
θ
s )∂σX

θ
s+∂xb(µ,X

θ
s )∂2

σµX
θ
s )ds+

∫ h

0

(∂2
xa(σ,Xθ

s )∂σX
θ
s∂µX

θ
s+
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+∂2
σxa(σ,Xθ

s )∂µX
θ
s +∂xa(σ,Xθ

s )∂2
σµX

θ
s )dWs+

∫ h

0

∫
R

(∂2
xγ(Xθ

s−)∂σX
θ
s∂µX

θ
s +∂xγ(Xθ

s−)∂2
σµX

θ
s )zµ̃(ds, dz)

On the p-norm of the first integral we use Jensen inequality, the fact that the derivatives with respect
to x are bounded and the estimation we have already proved on the Lp norm of the derivatives of our
process with respect to µ and σ. We get it is upper bounded by

chp−1

∫ h

0

(E[|∂σXθ
s∂µX

θ
s |p]+E[|∂σXθ

s |p]+E[|∂2
σµX

θ
s |p])ds ≤ c(h

5
2p+h

3
2p)(1+|x|c)+chp−1

∫ h

0

E[|∂2
σµX

θ
s |p]ds,

having also used Holder inequality. Acting in the same way on the stochastic integral we get it is upper
bounded by

ch
p
2 (h

3
2p + hp)(1 + |x|c) + ch

p
2−1

∫ h

0

E[|∂2
σµX

θ
s |p]ds,

while we upper bound the third term in the dynamic of ∂2
σµX

θ, acting as we did in order to show (103),
with

ch
3
2p+1(1 + |x|c) + c

∫ h

0

E[|∂2
σµX

θ
s |p]ds+ ch2p(1 + |x|c) + ch

p
2−1

∫ h

0

E[|∂2
σµX

θ
s |p]ds.

In total we have, not considering the negligible terms,

E[|∂2
σµX

θ
h|p] ≤ ch

3
2p(1 + |x|c) + c(hp−1 + h

p
2−1 + 1)

∫ h

0

E[|∂2
σµX

θ
s |p]ds.

From Gronwall Lemma it follows the second inequality of (96), as we wanted.
We are left to show (97). Again, the dynamic of ∂2

σX
θ is known:

∂2
σX

θ
h =

∫ h

0

(∂2
xb(µ,X

θ
s )(∂σX

θ
s )2 + ∂xb(µ,X

θ
s )∂2

σX
θ
s )ds+

∫ h

0

(∂2
xa(σ,Xθ

s )(∂σX
θ
s )2 + 2∂2

σxa(σ,Xθ
s )∂σX

θ
s+

+∂xa(σ,Xθ
s )∂2

σX
θ
s + ∂2

σa(σ,Xθ
s ))dWs +

∫ h

0

∫
R

(∂2
xγ(Xθ

s−)(∂σX
θ
s )2 + ∂xγ(Xθ

s−)∂2
σX

θ
s )zµ̃(ds, dz). (104)

Acting exactly like we did for the estimation of the p-moments of the processes ∂σX
θ and ∂2

σµX
θ we get

E[|∂2
σX

θ
h|p] ≤ c(1 + |x|c)(h2p + h

3
2p + hp + h

p
2 + hp+1) + c(hp−1 + h

p
2−1 + 1)

∫ h

0

E[|∂2
σX

θ
s |p]ds. (105)

Using Gronwall Lemma and remarking that the other terms are negligible compared to ch
p
2 (1 + |x|c), we

obtain the result wanted.
Concerning the third derivatives, it is easy to see that, writing the dynamics of ∂3

σX
θ
h, ∂3

µX
θ
h, ∂3

σµσX
θ
h

and ∂3
µµσX

θ
h the principal terms are such that their order are, respectively, h

1
2 , h and twice h

3
2 . Acting

exactly like before, (98) and (99) follow.

We are left to show one last proposition, before showing Propositions 8, 9 and 10:

Proposition 11. Suppose that Assumptions 1 to 4 hold. Moreover suppose that (Zh)h is a family of
random variables such that E[|Zh|p|Xθ

0 = x] ≤ c(1 + |x|c). Then ∀k ≥ 1 ∀ε > 0, we have

sup
h∈[0,∆n]

E[|Zh||ϕ(k)

hβ
(Xθ

h − x)||Xθ
0 = x] = R(θ, h1−ε, x).

We have used ϕ
(k)

hβ
(y) in order to denote the k-th derivative ϕ(k)( y

hβ
).

Proof. Proposition 11.

Once again, |ϕ(k)

hβ
(Xθ

h − x)| is different from 0 only if |Xθ
h − x| ∈ [hβ , 2hβ ]. We can therefore use Holder

inequality (with p big and q next to 1) and (71) to get, ∀h ∈ [0,∆n],

E[|Zh||ϕ(k)

hβ
(Xθ

h−x)||Xθ
0 = x] ≤ E[|Zh|p|Xθ

0 = x]
1
pE[1{|Xθh−x|∈[hβ ,2hβ ]}|X

θ
0 = x]

1
q ≤ R(θ, h, x)

1
q = R(θ, h1−ε, x).
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A.2.1 Proof of Proposition 8

Proof. The first point has already been showed in Proposition 8 of [2], we start proving the second. Since
by the homogeneity of the equation m and m2 depend only on the difference ti+1 − ti we can consider
WLOG ∀h ≤ ∆n

m(µ, σ, x) :=
E[Xθ

hϕhβ (Xθ
h −Xθ

0 )|Xθ
0 = x]

E[ϕhβ (Xθ
h −Xθ

0 )|Xθ
0 = x]

=
E[Xθ

hϕhβ (Xθ
h − x)]

E[ϕhβ (Xθ
h − x)]

. (106)

Hence,

∂σm(µ, σ, x) =
E[(∂σX

θ
h)ϕhβ (Xθ

h − x)] + E[Xθ
hh
−β(∂σX

θ
h)ϕ′hβ (Xθ

h − x)]

E[ϕhβ (Xθ
h − x)]

−m(µ, σ, x)
E[h−β(∂σX

θ
h)ϕ′hβ (Xθ

h − x)]

E[ϕhβ (Xθ
h − x)]

.

On the numerator of the second and third term we use Proposition 11 taking as Zh, respectively, Xθ
h
∂σX

θ
h

h
1
2

and
∂σX

θ
h

h
1
2

. We get, remarking moreover that from (31) m(µ, σ, x) is R(θ, 1, x) and from Theorem 1 in [2]

also the denominator is lower bounded for |x| < |h|−k,

|∂σm(µ, σ, x)| ≤ R(θ, 1, x)|E[(∂σX
θ
h)ϕhβ (Xθ

h − x)]|+R(θ, h
3
2−β−ε, x). (107)

To estimate |E[(∂σX
θ
h)ϕhβ (Xθ

h − x)]| we replace the dynamic (100) of ∂σX
θ
h. On the first integral we use

Holder inequality and (101) to get

|E[

∫ h

0

(∂xb(X
θ,x
s , µ)∂σX

θ,x
s dsϕhβ (Xθ

h − x)]| ≤ (chp−1

∫ h

0

E[|∂σXθ,x
s |p])

1
p ≤ ch 3

2 (1 + |x|c) = R(θ, h
3
2 , x),

where in the last inequality we have also used the first inequality of (96). On
∫ h

0
∂xa(Xθ,x

s , σ)∂σX
θ,x
s dWs

we use again Holder inequality, (102) (considering only the estimation on its first term) and the first
inequality of (96) to obtain

|E[

∫ h

0

∂xa(Xθ,x
s , σ)∂σX

θ,x
s dWsϕhβ (Xθ

h − x)]| ≤ R(θ, h, x).

Concerning |E[
∫ h

0
∂σa(Xθ,x

s , σ)dWsϕhβ (Xθ
h − x)]|, we act on it like we did in (89), with ∂σa instead of a.

We therefore get |E[
∫ h

0
∂σa(Xθ,x

s , σ)dWsϕhβ (Xθ
h − x)]| ≤ R(θ, h, x). To conclude the proof of this point

we use on the jump part Holder inequality, (103) and the first inequality of (96). We get

|E[

∫ h

0

∫
R
∂xγ(Xθ

s−)∂σX
θ
s zµ̃(dz, ds)ϕhβ (Xθ

h−x)]| ≤ (c(1+h
p
2−1)

∫ h

0

E[|∂σXθ
s |p]ds)

1
p ≤ R(θ, h( 1

p+ 1
2 )∧1, x).

We can take p = 2, finding |E[(∂σX
θ
h)ϕhβ (Xθ

h − x)]| = R(θ, h, x). Replacing it in (107) and observing
that 3

2 − β is always more than 1, it follows the second point of Proposition 8.
In order to prove the third and the fourth point we first of all need to compute the derivative of m2 with
respect to both the parameters. We can just write

∂ϑm2(µ, σ, x) = 2
E[(Xθ

h −m(µ, σ, x))(∂ϑX
θ
h − ∂ϑm(µ, σ, x))ϕhβ (Xθ

h − x)]

E[ϕhβ (Xθ
h − x)]

+

+
E[(Xθ

h −m(µ, σ, x))2h−β(∂ϑX
θ
h)ϕ′hβ (Xθ

h − x)]

E[ϕhβ (Xθ
h − x)]

−m2(µ, σ, x)h−β
E[(∂ϑX

θ
h)ϕ′hβ (Xθ

h − x)]

E[ϕhβ (Xθ
h − x)]

=: I1,θ+I2,θ+I3,θ.

We are going to show that, considering the derivatives with respect to both µ and σ, I2,θ and I3,θ are
negligible compared to I1,θ. In order to prove it we use Theorem 1 of [2] on the denominator of I2,θ
and I3,θ, while on the numerator of I2,θ we use Holder inequality, (95) if we consider the derivative with
respect to µ or the first equation of (96) if we consider the derivative with respect to σ and Lemma 4.
On the numerator of I3,θ we use Proposition 11 and we remind that, as a consequence of Ad, m2 is a
R(θ, h, x) function. It follows

|I2,µ + I3,µ| ≤ R(θ, h2+β−ε, x) +R(θ, h3−β−ε, x) = R(θ, h2+β−ε, x); (108)

|I2,σ + I3,σ| ≤ R(θ, h
3
2 +β−ε, x) +R(θ, h

5
2−β−ε, x) = R(θ, h

3
2 +β−ε, x). (109)

Concerning I1,θ, its numerator is

2E[(Xθ
h −m(µ, σ, x))∂θX

θ
hϕhβ (Xθ

h − x)]− 2∂θm(µ, σ, x))E[(Xθ
h −m(µ, σ, x))ϕhβ (Xθ

h − x)] =: Iθ1,1 + Iθ1,2.
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From the first two points we have already proved of Proposition 8 and the third point of Lemma 3 we get

|Iµ1,2| ≤ R(θ, h2, x), |Iσ1,2| ≤ R(θ, h2, x). (110)

Now we consider Iθ1,1 and we act differently depending on if we are dealing with the derivative with
rapport to µ or those with rapport to σ. We start studying Iσ1,1. Using a notation analogous to the one
used in the proof of Lemma 3, we set

Xθ
h −m(µ, σ, x) =:

∫ h

0

a(Xθ
s , σ)dWs +Bh

and so it turns we have

Iσ1,1 = 2E[(

∫ h

0

a(Xθ
s , σ)dWs)∂σX

θ
hϕhβ (Xθ

h − x)] + 2E[(Bh)∂σX
θ
hϕhβ (Xθ

h − x)]. (111)

On the second term here above we use Cauchy-Schwartz inequality, control analogous to (76) and the
first estimation in (96), getting

E[(Bh)∂σX
θ
hϕhβ (Xθ

h−x)] ≤ cE[(Bh)2ϕ2
hβ (Xθ

h−x)]
1
2E[(∂σX

θ
h)2]

1
2 ≤ R(θ, h1+2β , x)

1
2R(θ, h

1
2 , x) = R(θ, h1+β , x).

(112)
To evaluate the first term on the right hand side of (111) we replace the dynamic (100) of ∂σX

θ
h, isolating

the principal term: ∂σX
θ
h :=

∫ h
0
∂σa(Xθ

s , σ)dWs +Gσ. We get

E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

∂σa(Xθ
s , σ)dWs)]+E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

∂σa(Xθ
s , σ)dWs)(ϕhβ (Xθ

h−x)−1)]+

(113)

+E[(

∫ h

0

a(Xθ
s , σ)dWs)Gσϕhβ (Xθ

h − x)].

On the first term here above we add and substract both a(x, σ) and ∂σa(x, σ) getting a main term
and three terms of increments. We observe it holds the following estimation, using Cauchy-Schwartz
inequality, (50) and the first point of Lemma 1

E[(

∫ h

0

[a(Xθ
s , σ)−a(x, σ)]dWs)(

∫ h

0

∂σa(Xθ
s , σ)dWs)] ≤ E[(

∫ h

0

[a(Xθ
s , σ)−a(x, σ)]dWs)

2]
1
2E[(

∫ h

0

∂σa(Xθ
s , σ)dWs)

2]
1
2 ≤

(114)

≤ cE[

∫ h

0

(Xs − x)2ds]
1
2R(θ, h

1
2 , x) ≤ R(θ, h, x)R(θ, h

1
2 , x) = R(θ, h

3
2 , x).

We can act in the same way considering the increments of ∂σa or the term on which we have the increments
of both a and ∂σa. It follows that the first term of (113) is

E[(

∫ h

0

a(x, σ)dWs)(

∫ h

0

∂σa(x, σ)dWs)] +R(θ, h
3
2 , x) = h a(x, σ)∂σa(x, σ) +R(θ, h

3
2 , x). (115)

On the second term of (113) we use Holder inequality twice (with p big and q next to 1), (50) twice and
(71). We get it is upper bounded by

E[|(
∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

∂σa(Xθ
s , σ)dWs)|p]

1
pE[(ϕhβ (Xθ

h−x)−1)q]
1
q ≤ R(θ, h, x)R(θ, h, x)

1
q = R(θ, h2−ε, x)

Concerning the third term of (113), we first of all use Cauchy-Schwartz inequality, the fact that ϕ is
bounded in absolute value and (50) in order to estimate the stochastic integral while, to estimate the
2-norm of Gσ, we use (101), the estimation (102) about the negligible part of the stochastic integral and
(103). It follows it is upper bounded by

R(θ, h
1
2 , x)c(h

3
2 + h) = R(θ, h

3
2 , x), (116)

where we have also used the first estimation (96) to estimate the expected value. From (112), (115) -
(116) it follows

Iσ1,1 = h a(x, σ)∂σa(x, σ) +R(θ, h1+β , x).

Using also (109) and (110) we get the development of ∂σm2 we wanted.
We are left to prove the third point of Proposition 8. It means, comparing it with (108) and (110), to
prove that |Iµ1,1| ≤ R(θ, h2, x). We observe that (111) still holds with the derivative with respect to µ
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instead of those with respect to σ. We now recall that Bh =
∫ h

0
b(Xs, µ)ds + R(θ, h, x) + ∆XJ

h and we

replace it in E[Bh(∂µX
θ
s )ϕhβ (Xθ

h − x)], getting

|E[(

∫ h

0

b(Xs, µ)ds)(∂µX
θ
s )ϕhβ (Xθ

h−x)]+R(θ, h, x)E[(∂µX
θ
s )ϕhβ (Xθ

h−x)]+E[(∆XJ
h )(∂µX

θ
s )ϕhβ (Xθ

h−x)]| ≤

(117)

≤ R(θ, h2, x) +R(θ, h1+βq, x)
1
qR(θ, h, x) = R(θ, h2, x) +R(θ, h2+β−ε, x) = R(θ, h2, x),

where we have used Holder inequality (having taken p big and q next to 1), the fact that ϕ is bounded, the
polynomial growth of b, the first estimation in (95) and Lemma 5 (in a non-conditional form). Concerning

the first term of (111), we still replace the dynamic of ∂µX
θ
s :=

∫ h
0
∂µb(X

θ
s , µ)ds + Gµ, where Gµ is the

negligible part in the dynamic of ∂µX
θ
s and it is such that

E[|Gµ|p] ≤ c(1 + h
p
2−1 + hp−1)

∫ h

0

E[|∂µXθ
s |p]ds ≤ c(hp+1 + h

3
2p + h2p)(1 + |x|c)

(see Lemma 9 in [2]). We have also used the first inequality of (95). It follows E[|Gµ|p]
1
p ≤ R(θ, h1+ 1

p , x),
for p ≥ 2. The first term of (111) is therefore

E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

∂µb(X
θ
s , µ)ds)] + E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

∂µb(X
θ
s , µ)ds)(1− ϕhβ (Xθ

h − x))]+

(118)

+E[(

∫ h

0

a(Xθ
s , σ)dWs)Gµϕhβ (Xθ

h − x)].

Now on the first term here above we act like we did for the estimation of the derivative with respect to
σ: we get

h ∂µb(x, µ)E[

∫ h

0

a(Xθ
s , σ)dWs] + E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

[b(Xθ
s , µ)− b(x, µ)]ds)]

Now we observe that the first expected value is 0, while on the others we can use Cauchy-Schwartz
inequality, (50) and we estimate the increments like in (114):

E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

[b(Xθ
s , µ)−b(x, µ)]ds)] ≤ E[(

∫ h

0

a(Xθ
s , σ)dWs)

2]
1
2E[(

∫ h

0

[b(Xθ
s , µ)−b(x, µ)]ds)2]

1
2 ≤

≤ R(θ, h
1
2 , x)E[h

∫ h

0

(Xθ
s − x)2ds]

1
2 ≤ R(θ, h

1
2 , x)R(θ, h

3
2 , x) = R(θ, h2, x),

where we have also used the first point of Lemma 1.
On the second term of (118) we act like we did on the second term of (113), using Holder inequality
twice (with p big and q next to 1), (50), the polynomial growth of both a and b and (71). We get

E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

∂µb(X
θ
s , µ)ds)(1−ϕhβ (Xθ

h−x))] ≤ R(θ, h
1
2 , x)R(θ, h, x)R(θ, h1−ε, x) = R(θ, h

5
2−ε, x).

Using on the third term of (118) Cauchy-Schwartz inequality, (50), the fact that |ϕ| is bounded and the
estimation of the Lp norm of Gµ given above (118) for p = 2, we get it is upper bounded in absolute
value by R(θ, h2, x).
It follows |Iµ1,1| ≤ R(θ, h2, x), as we wanted.

A.2.2 Proof of Proposition 9

Proof. We first of all write ∂2
µσm. Again, since by the homogeneity of the equation m and m2 depend

only on the difference ti+1 − ti we can consider, for all h ≤ ∆n, m(µ, σ, x) as in (106). Hence, writing ϕ

for ϕhβ (Xθ
h − x) (and ϕ(k) for ϕ

(k)

hβ
(Xθ

h − x)), we have ∂2
µσm(µ, σ, x) =

E[(∂2
µσX

θ
h)ϕ]

E[ϕ]
+

2h−βE[(∂µX
θ
h)(∂σX

θ
h)ϕ′]

E[ϕ]
− h−βE[(∂µX

θ
h)ϕ′]E[(∂σX

θ
h)ϕ]

(E[ϕ])2
+
h−βE[Xθ

h(∂2
µσX

θ
h)ϕ′]

E[ϕ]
+

+
h−2βE[Xθ

h(∂σX
θ
h)(∂µX

θ
h)ϕ′′]

E[ϕ]
−∂µm

h−βE[(∂σX
θ
h)ϕ′]

E[ϕ]
−h
−2βE[Xθ

h(∂σX
θ
h)ϕ′]E[(∂µX

θ
h)ϕ′]

(E[ϕ])2
−
h−βmE[(∂2

µσX
θ
h)ϕ′]

E[ϕ]
+

(119)
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−h
−2βmE[(∂µX

θ
h)(∂σX

θ
h)ϕ′′]

E[ϕ]
+
h−2βmE[(∂σX

θ
h)ϕ′]E[(∂µX

θ
h)ϕ′]

(E[ϕ])2
=:

10∑
j=1

Inj .

Now on In2 and
∑10
j=4 I

n
j we use Proposition 11, where Zh are respectively

∂µX
θ
h

h
∂σX

θ
h

h
1
2

, Xθ
h

∂2
µσX

θ
h

h
3
2

, Xθ
h
∂µX

θ
h

h
∂σX

θ
h

h
1
2

,

∂σX
θ
h

h
1
2

, Xθ
h
∂σX

θ
h

h
1
2

in the first and
∂µX

θ
h

h in the second expected value of In7 ,
∂2
µσX

θ
h

h
3
2

,
∂µX

θ
h

h
∂σX

θ
h

h
1
2

,
∂σX

θ
h

h
1
2

in the

first expected value of In10 and
∂µX

θ
h

h
1
2

in the second one. Recalling moreover that |m(µ, σ, x)| ≤ R(θ, 1, x),

|∂µm(µ, σ, x)| ≤ R(θ, h, x) and the denominator gives always R(θ, 1, x) it follows

|In2 +

10∑
j=4

Inj | ≤ R(θ, h
5
2−β−ε, x)+R(θ, h

5
2−2β−ε, x)+R(θ, h3−β−ε, x)+R(θ, h

7
2−2β−ε, x) = R(θ, h

5
2−2β−ε, x).

(120)
On In1 we use Holder inequality, the fact that |ϕ| is bounded, second inequality in (96) and still the fact
that the denominator is R(θ, 1, x) to get

|In1 | ≤ R(θ, h
3
2 , x). (121)

We now deal with the numerator of In3 , the denominator is still R(θ, 1, x) as a consequence of Lemma 12.
In the second expected value we apply Holder inequality, the boundedness of |ϕ| and first inequality of

(96) while on the first we use Proposition 11 with Zh that this time is
∂µX

θ
h

h . We get

|In3 | ≤ R(θ, h
5
2−β−ε, x). (122)

From (120), (121) and (122) it follows the first inequality in (27).
In order to prove the second inequality in (27) we compute ∂2

σm(µ, σ, x), getting 10 terms as in (119) in

which the derivatives are always with respect to σ. We therefore say that ∂2
σm(µ, σ, x) :=

∑10
j=1 Ĩ

n
j . On

Ĩn2 and
∑10
j=4 Ĩ

n
j we still use Proposition 11 taking as Z respectively

(∂σX
θ
h)2

h , Xθ
h
∂2
σX

θ
h

h
1
2

, Xθ
h

(∂σX
θ
h)2

h ,
∂σX

θ
h

h
1
2

,

Xθ
h
∂σX

θ
h

h
1
2

in the first and
∂σX

θ
h

h
1
2

in the second expected value of Ĩn7 ,
∂2
σX

θ
h

h
1
2

,
(∂σX

θ
h)2

h ,
∂σX

θ
h

h
1
2

in both the first

and the second expected values of Ĩn10. Recalling also that |∂σm(µ, σ, x)| ≤ R(θ,∆n,i, x) it follows

|Ĩn2 +

10∑
j=4

Ĩnj | ≤ R(θ, h2−β−ε, x)+R(θ, h
3
2−β−ε, x)+R(θ, h2−2β−ε, x)+R(θ, h

5
2−β−ε, x)+R(θ, h3−2β−ε, x) = R(θ, h

3
2−β−ε, x).

(123)
Concerning the numerator of Ĩn3 , using Holder inequality, first inequality in (96), the boundedness of ϕ

and Proposition 11 for Z =
∂σX

θ
h

h
1
2

it follows

|Ĩn3 | ≤ R(θ, h2−β−ε, x). (124)

We now have to study Ĩn1 . We replace the dynamic (104) isolating the principal term: ∂2
σX

θ
h =:∫ h

0
∂2
σa(σ,Xθ

s )dWs +Gσσ.

Gσσ is the negligible part and, as a consequence of (105), (in which we recall that ch
p
2 (1 + |x|c) comes

from the principal term), we already know that

E[|Gσσ|p] ≤ c(1 + |x|c)(h2p + h
3
2p + hp + hp+1) + c(hp−1 + h

p
2−1 + 1)

∫ h

0

E[|∂2
σX

θ
s |p]ds ≤ c(1 + |x|c)h

p
2 +1.

(125)

Therefore, ∀p ≥ 2, E[|Gσσ|p]
1
p ≤ R(θ, h

1
2 + 1

p , x).
We can see Ĩn1 in the following way:

Ĩn1 = E[

∫ h

0

∂2
σa(σ,Xθ

s )dWs] + E[(

∫ h

0

∂2
σa(σ,Xθ

s )dWs)(ϕhβ (Xθ
h − x)− 1)] + E[Gσσϕhβ (Xθ

h − x)].

The first expected value is zero, on the second we use Holder inequality, (50) and (71) to get it is

upper bounded by R(θ, h
3
2−ε, x). On the third term here above we use Cauchy-Schwartz inequality, the

boundedness of ϕ and (125) for p = 2 getting it is R(θ, h, x).
It follows second inequality in (27). Equation (28) has already been proved in Proposition 8 in [2].
Concerning the second derivatives of m2, it is ∂2

σµm2 =

=
2E[(∂µX

θ
h − ∂µm)(∂σX

θ
h − ∂σm)ϕ]

E[ϕ]
+

2E[(Xθ
h −m)(∂2

µσX
θ
h − ∂2

µσm)ϕ]

E[ϕ]
+

2E[(Xθ
h −m)(∂µX

θ
h − ∂µm)h−β ∂σX

θ
h ϕ
′]

E[ϕ]
+
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−2E[(Xθ
h −m)(∂µX

θ
h − ∂µm)h−β ϕ]E[∂σX

θ
h ϕ
′]

(E[ϕ])2
+

2E[(Xθ
h −m)(∂σX

θ
h − ∂σm)h−β ∂µX

θ
h ϕ
′]

E[ϕ]
+

+
E[(Xθ

h −m)2(∂µX
θ
h)h−2β (∂σX

θ
h)ϕ′′]

E[ϕ]
+
E[(Xθ

h −m)2(∂2
µσX

θ
h)h−βϕ′]

E[ϕ]
−E[(Xθ

h −m)2(∂µX
θ
h)h−β ϕ′]E[h−β∂σX

θ
h ϕ
′]

(E[ϕ])2
+

(126)

−∂σm2
E[h−β∂µX

θ
h ϕ
′]

E[ϕ]
−m2

E[h−2β(∂µX
θ
h)(∂σX

θ
h)ϕ′′]

E[ϕ]
−m2

E[h−β(∂2
µσX

θ
h)ϕ′]

E[ϕ]
+m2

E[h−2β(∂µX
θ
h)ϕ′]E[(∂σX

θ
h)ϕ′]

(E[ϕ])2
=

=:

12∑
j=1

Inj .

On In1 we use the first and the second point of Proposition 8 to say that both the derivatives of m are
R(θ, h, x). From the boundedness of ϕ, Lemma 12 and the estimation of the derivatives of X gathered
in Lemma 14 it follows

| − 2E[(∂µX
θ
h − ∂µm)∂σmϕ]| ≤ R(θ, h2, x).

We now have to study
2E[∂µX

θ
h∂σX

θ
hϕ]− 2∂µmE[∂σX

θ
hϕ] =: In1,1 + In1,2.

We start considering In1,2. As we have already done after (112), we see ∂σX
θ
h as

∫ h
0
∂σa(Xθ

s , σ)dWs +Gσ,
hence

|In1,2| ≤ R(θ, h, x)|E[(

∫ h

0

∂σa(Xθ
s , σ)dWs)(ϕ−1)]+E[Gσϕ]| ≤ R(θ, h, x)[R(θ, h

3
2−ε, x)+R(θ, h, x)] = R(θ, h2, x),

where in the last inequality we have used on the first term Holder inequality, Burkholder - Davis - Gundy
inequality and (71) while on the second we have used Cauchy - Schwartz inequality and the fact that the
2- norm of Gσ is upper bounded by a R(θ, h, x) function as a consequence of (101), (102) and (103).
Concerning In1,1, replacing again ∂σX

θ
h and using the estimation on the 2-norm of Gσ as we have already

done it follows

|In1,1| ≤ c|E[(

∫ h

0

∂σa(Xθ
s , σ)dWs)∂µX

θ
hϕ]|+R(θ, h2, x).

Now we observe we have already proved in the conclusion of Proposition 8, starting below (117), that

Iµ1,1 := 2E[[(
∫ h

0
a(Xθ

s , σ)dWs)∂µX
θ
hϕ] is such that |Iµ1,1| ≤ R(θ, h2, x). Acting exactly in the same way,

considering now ∂σa(Xθ
s , σ) in the stochastic integral instead of a(Xθ

s , σ), we get that |In1,1| ≤ R(θ, h2, x)
and so, using also Lemma 12, |In1 | ≤ R(θ, h2, x).

Considering In2 , it is In2 =: In2,1 + In2,2, where In2,1 :=
2E[(Xθh−m)(∂2

µσX
θ
h)ϕ]

E[ϕ] and

In2,2 =: (−∂2
µσm)

2E[(Xθh−m)ϕ]
E[ϕ] .

Now on In2,1 we use Cauchy-Schwartz inequality, first point of Lemma 3 and (96) getting |In2,1| ≤
R(θ, h2, x), while on In2,2 we use the third point of Lemma 3 and (119) we have just proved in order

to obtain |In2,2| ≤ R(θ, h
5
2 , x). The application of Holder inequality, Lemma 4, Lemma 14 and the first

point of Proposition 8 on the numerator of In3 gives us

|In3 | ≤ h−βR(θ, h1+βp, x)
1
pR(θ, h

3
2 , x).

It is enough to take p next to 1 to get it is negligible compared to R(θ, h2, x). We act on the first expected
value of In4 like we did on In2 while on the second we use Proposition 11. It yields

|In4 | ≤ h−βR(θ, h
3
2−ε, x)R(θ, h

3
2 , x) = R(θ, h3−β−ε, x).

On In5 we act like we did on In3 , hence

|In5 | ≤ h−βR(θ, h1+βp, x)
1
pR(θ, h

3
2−ε, x),

that is negligible. In the same way

|In6 | ≤ h−2βR(θ, h1+2βp, x)
1
pR(θ, h

3
2−ε, x),

|In7 | ≤ h−βR(θ, h1+2βp, x)
1
pR(θ, h

3
2−ε, x) and

|In8 | ≤ h−2βR(θ, h1+2βp, x)
1
pR(θ, h1−ε, x)R(θ, h

3
2−ε, x).
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We recall that |∂σm2(µ, σ, x)| ≤ R(θ, h, x) and |m2(µ, σ, x)| ≤ R(θ, h, x), therefore

|In9 | ≤ h−βR(θ, h, x)R(θ, h2−ε, x) = R(θ, h3−β−ε, x),

|In10| ≤ h−2βR(θ, h, x)R(θ, h
5
2−ε, x) = R(θ, h

7
2−2β−ε, x),

|In11| ≤ h−βR(θ, h, x)R(θ, h
5
2−ε, x) = R(θ, h

7
2−β−ε, x),

|In12| ≤ h−2βR(θ, h, x)R(θ, h2−ε, x)R(θ, h
3
2−ε, x) = R(θ, h

9
2−2β−ε, x).

First inequality in (29) follows. In order to show the second one we should compute ∂2
µm2(µ, σ, x). Since

it is exactly like ∂2
µσm2(µ, σ, x) but with all the derivatives with respect to µ, we still refer to (126) and

we will write ∂2
µm2(µ, σ, x) =:

∑12
j=1 Ĩ

n
j .

On Ĩn1 ,
∑12
j=3 Ĩ

n
j we act exactly like we did here above, getting

|Ĩn1 +

12∑
j=3

Ĩnj | ≤ R(θ, h2, x)+h−βR(θ, h1+βp, x)
1
pR(θ, h2, x)+h−βR(θ, h

3
2 , x)R(θ, h2−ε, x)+h−βR(θ, h1+βp, x)

1
pR(θ, h2, x)+

+h−2βR(θ, h1+2βp, x)
1
pR(θ, h2, x)+h−βR(θ, h1+2βp, x)

1
pR(θ, h, x)+h−2βR(θ, h1+2βp, x)

1
pR(θ, h, x)R(θ, h2−ε, x)+

+h−βR(θ, h2, x)R(θ, h2−ε, x)+h−2βR(θ, h, x)R(θ, h3−ε, x)+h−βR(θ, h, x)R(θ, h2−ε, x)+h−2βR(θ, h, x)R(θ, h4−ε, x),

that is a R(θ, h2, x) function as a consequence of the fact that, choosing p next to 1, all terms are negli-
gible compared to the first one.

We now deal with Ĩn2 . We still need to split it in Ĩn2,1 and Ĩn2,2, where Ĩn2,1 :=
2E[(Xθh−m)(∂2

µX
θ
h)ϕ]

E[ϕ] and

Ĩn2,2 =: (−∂2
µm)

2E[(Xθh−m)ϕ]
E[ϕ] .

Using on Ĩn2,2 Lemma 3 and (28) we obtain |Ĩn2,2| ≤ R(θ, h2, x).

In order to estimate Ĩn2,1 we isolate the principal term in the dynamic of ∂2
µX

θ
h, getting ∂2

µX
θ
h =∫ h

0
∂2
µb(X

θ
s , µ)ds+Gµµ, where Gµµ is the negligible part and it is such that, for p ≥ 2,

E[|Gµµ|p] ≤ c(1 + |x|c)(h2p + hp+1) = R(θ, hp+1, x), (127)

as showed in the proof of Lemma 9 in [2].
Replacing in the definition of Ĩn2,1 we have

|Ĩn2,1| ≤ |
2E[Gµµ(Xθ

h −m)ϕ]

E[ϕ]
|+ |

2E[
∫ h

0
∂2
µb(X

θ
s , µ)ds(Xθ

h −m)ϕ]

E[ϕ]
|.

Now on the first term here above we use Cauchy-Schwartz inequality, the first point of Lemma 3 and
(127) obtaining it is upper bounded by R(θ, h

3
2 , x)R(θ, h

1
2 , x) = R(θ, h2, x), while the second one is upper

bounded by

ch∂2
µb(x, µ)|E[(Xθ

h −m)ϕ]|+ c|E[

∫ h

0

[∂2
µb(X

θ
s , µ)− ∂2

µb(x, µ)]ds(Xθ
h −m)ϕ]| ≤

≤ hR(θ, h, x) +R(θ, h
3
2 , x)R(θ, h

1
2 , x) = R(θ, h2, x),

where we have also used Lemma 12 in order to say that the denominator is lowed bounded by 1+R(θ, h, x),
Cauchy-Schwartz inequality, the first point of Lemma 3 and an estimation analogous to (82) for the in-
crements of the derivative of b. It follows |Ĩn2,1| ≤ R(θ, h2, x).
Second inequality in (29) follows.

We now want to show (30). To do it, we need to compute ∂2
σm2(µ, σ, x). Again, we still refer to

(126) considering all the derivatives with respect to σ, writing ∂2
σm2(µ, σ, x) =:

∑12
j=1 Î

n
j . From În3 to În12

all the terms are negligible. Indeed, acting like we did on both
∑12
j=3 I

n
j and

∑12
j=3 Ĩ

n
j we have

|
12∑
j=3

Înj | ≤ h−βR(θ, h1+βp, x)
1
pR(θ, h, x)+h−βR(θ, h1+βp, x)

1
pR(θ, h2−ε, x)+h−βR(θ, h1+βp, x)

1
pR(θ, h, x)+

+h−2βR(θ, h1+2βp, x)
1
pR(θ, h, x)+h−βR(θ, h1+2βp, x)

1
pR(θ, h

1
2 , x)+h−2βR(θ, h1+2βp, x)

1
pR(θ, h

1
2 , x)R(θ, h

3
2−ε, x)+

+h−βR(θ, h, x)R(θ, h
3
2−ε, x)+h−2βR(θ, h, x)R(θ, h2−ε, x)+h−βR(θ, h, x)R(θ, h

3
2−ε, x)+h−2βR(θ, h, x)R(θ, h3−2ε, x),
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that is always negligible compared to R(θ, h
3
2 ,x) taking p next to 1. We now consider În1 . Its numerator

is
E[(∂σX

θ
h)2ϕ] + (∂σm)2E[ϕ]− 2(∂σm)E[(∂σX

θ
h)ϕ] =: În1,1 + În1,2 + În1,3.

We start considering În1,1 , in which we replace the dynamic of ∂σX
θ
h :=

∫ h
0
∂σa(σ,Xθ

s )dWs +Gσ, where

we have already seen that, for p ≥ 2, E[|Gσ|p] ≤ c(h
3p
2 + hp + h

p
2 +1)(1 + |x|c) = R(θ, h

p
2 +1, x). We

therefore can say that, taking p = 2 and using (50), we have

În1,1 = E[(

∫ h

0

∂σa(σ,Xθ
s )dWs)

2ϕ] +R(θ, h
3
2 , x) +R(θ, h2, x).

The first term here above can be seen as

E[(

∫ h

0

∂σa(σ,Xθ
s )dWs)

2(ϕ− 1)] + E[

∫ h

0

[(∂σa)2(σ,Xθ
s )− (∂σa)2(σ, x)]ds] + h(∂σa)2(σ, x).

Acting like we did in (73) - (75), we have

|E[(

∫ h

0

∂σa(σ,Xθ
s )dWs)

2(ϕ− 1)] + E[

∫ h

0

[(∂σa(σ,Xθ
s ))2 − (∂σa(σ, x))2]ds]| ≤ R(θ, h

3
2 , x)

and so we get
În1,1 = h(∂σa(σ, x))2 +R(θ, h

3
2 , x).

On În1,2 we use the second point of Proposition 8 and Lemma 12 to get |În1,2| ≤ R(θ, h2, x). In the same

way, from second point of Proposition 8, the boundedness of ϕ and (96) we get |În1,3| ≤ R(θ, h
3
2 , x). It

follows În1 = h(∂σa(σ, x))2 +R(θ, h
3
2 , x).

We now study În2 , that the denominator is still 1 + R(θ, h, x) as a consequence of Lemma 12 while the
numerator can be seen as

2E[(Xθ
h −m)∂2

σX
θ
hϕ]− 2∂2

σmE[(Xθ
h −m)ϕ] =: În2,1 + În2,2.

In order to deal with În2,1 we consider the reformulation (72), so we have 2E[(
∫ h

0
a(Xθ

s , σ)dWs)(∂
2
σX

θ
h)ϕ]+

2E[(Bh)(∂2
σX

θ
h)ϕ].

The second, as a consequence of Holder inequality, the definition of Bh, Lemma 5 used to estimate the

jumps and the first inequality in (96) is upper bounded by R(θ, h(1+βp)∧p, x)
1
pR(θ, h

1
2 , x). Taking p next

to 1 it follows its order is h
3
2 .

In order to study E[(
∫ h

0
a(Xθ

s , σ)dWs)(∂
2
σX

θ
h)ϕ] we introduce once again the notation used above (125),

for which ∂2
σX

θ
h =

∫ h
0
∂2
σa(σ,Xθ

s )dWs +Gσσ. Hence, we have

E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

∂2
σa(σ,Xθ

s )dWs)ϕ] + E[(

∫ h

0

a(Xθ
s , σ)dWs)(Gσσ)ϕ].

The second term here above is, using Cauchy-Schwartz inequality, (50), the boundedness of ϕ and (125),

just R(θ, h
3
2 , x) while the first one is

E[(

∫ h

0

a(Xθ
s , σ)dWs)(

∫ h

0

∂2
σa(σ,Xθ

s )dWs)(ϕ− 1)] + E[

∫ h

0

a(Xθ
s , σ)∂2

σa(σ,Xθ
s )ds] = R(θ, h2, x)+

+E[

∫ h

0

[a(Xθ
s , σ)− a(x, σ)]∂2

σa(σ,Xθ
s )ds] + a(x, σ)E[

∫ h

0

[∂2
σa(σ,Xθ

s )− ∂2
σa(σ, x)]ds)] + ha(x, σ)∂2

σa(σ, x),

where we have also used Holder inequality, (50) and (71). Now we observe that

|E[

∫ h

0

[a(Xθ
s , σ)−a(x, σ)]∂2

σa(σ,Xθ
s )ds]| ≤ c

∫ h

0

E[|Xθ
s−x|2]

1
2E[|∂2

σa(σ,Xθ
s )|2]

1
2 ds ≤

∫ h

0

R(θ, h
1
2 , x) = R(θ, h

3
2 , x).

Acting in the same way on a(x, σ)E[
∫ h

0
[∂2
σa(σ,Xθ

s )− ∂2
σa(σ, x)]ds)] it follows that

În2,1 = ha(x, σ)∂2
σa(σ, x) +R(θ, h

3
2 , x).

On În2,2 we use the second inequality in (27) and the third point of Lemma 3 and so we obtain

|În2,2| ≤ R(θ, h2, x),

the result follows.
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A.2.3 Proof of Proposition 10

Proof. We define ∂2
µm2(µ, σ, x) as

∑12
j=1 Ĩ

n
j =:

∑12
j=1

NĨn
j

DĨn
j

and we recall that, as stated in Proposition 9,

|Ĩnj | ≤ R(θ,∆2
n,i, x) . We can therefore see its derivative with respect to µ in the following way:

∂3
µm2(µ, σ, x) =

12∑
j=1

(
∂µNĨnj
DĨnj

− Ĩnj
∂µDĨnj

DĨnj

). (128)

We start considering the second term here above: we remind that DĨnj
can be E[ϕ] or (E[ϕ])2. In both

cases its derivative is, using Proposition 11, a R(θ, h2−β−ε, x) function; which makes the second term

of (128) upper bounded by
∑12
j=1 |Ĩnj |R(θ, h2−β−ε, x) ≤ R(θ, h4−β−ε, x), as a consequence of the second

inequality of (29).
Concerning the first term of (128), we know that DĨnj

is a R(θ, 1, x) function because of Lemma 12, while

the magnitude of the derivative of the numerator does not get bigger since the order of Xθ
h and m remains

the same by deriving them once more (as gathered in the second inequality of (98) and in Remark 10 of
[2]) and the fact that, by deriving ϕ, there comes out h−βϕ′∂µX

θ
h. From the first inequality in (95) such

terms are negligible compared to the ones we have already studied.
The first term of (128) is therefore still a R(θ, h2, x) function.
The same reasoning applies to the study of the other seven third derivatives.

A.3 Development of m2(µ, σ, x)

In order to prove our main results we need a development of m2, that we stated in Ad and we find, under
the choice of a particular oscillating function ϕ, in Propositions 2, 3 and 4.
The main tools is the iteration of the Dynkin’s formula that provides us the following expansion for every
function f : R→ R such that f is in C2(k+1):

E[f(Xθ
ti+1

)|Xθ
ti = x] =

k∑
j=0

∆j
n,i

j!
Ajf(x) +

∫ ti+1

ti

∫ u1

ti

...

∫ uk

ti

E[Ak+1f(Xθ
uk+1

)|Xθ
ti = x] duk+1...du2 du1

(129)
where A denotes the generator of the diffusion, setting A0 = Id. A is the sum of the continuous and
discrete part: A := Āc +Ad, with

Ācf(x) =
1

2
a2(x, σ)f ′′(x) + b̄(x, µ)f ′(x);

b̄(x, µ) = b(x, µ)−
∫
R zγ(x)F (z)dz and

Adf(x) =

∫
R

(f(x+ γ(x)z)− f(x))F (z)dz.

A.3.1 Proof of Proposition 2.

Proof. We first of all observe that, by the definition of m2 and m it is

m2(µ, σ, x) =
E[(Xθ

ti+1
)2ϕ∆β

n,i
(Xθ

ti+1
−Xθ

ti)|X
θ
ti = x]

E[ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

− (m(µ, σ, x))2.

It has already been showed in Proposition 2 in [2] that

m(µ, σ, x) = x+

bβ(M+2)c∑
k=1

A
(k)
K1

(x)
∆k
n,i

k!
+R(θ,∆

β(M+2)
n,i , x),

where A
(k)
K1

(x) = Āc(h1)(x), with h1(y) = (y − x).
Acting like we did in Proposition 2 of [2], we want to find a development for

E[(Xθ
ti+1

)2ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

E[ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

=:
n∆n,i

(x)

d∆n,i(x)
.

First we focus on the expression of n. We define the set of rest functions Rp in the following way:

Rp :=

{
r(x, y,∆p

n,i, θ) s. t. ∀l ≥ 0,∀l′ ∈ {0, 1} ,∃c, | ∂
l ∂l
′

∂yl ∂ϑl′
r(x, y,∆p

n,i, θ)| ≤ c(1 + |x|c + |y|c)∆p
n,i, for ϑ = µ, ϑ = σ

}
.
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It is worth noting that, if r ∈ Rp, then both Ācr and Adr are in Rp, where the integral-differential
operators Āc and Ad are applied with respect to the second variable y (see details in proof of Proposition
2 in [2]).
We also introduce the set F̃p:

F̃p :=

g̃(y, θ) s.t. g̃(y, θ) =

p∑
k=0

ϕ(k)((y − x)∆−βn,i )∆
−kβ
n,i (

k∑
j=0

hk,j(x, y, θ)∆
βj
n,i)


where, ∀k, j, ∀l ≥ 0, ∀l′ ∈ {0, 1}, ∃c such that, for ϑ = µ and ϑ = σ, supθ∈Θ | ∂

l ∂l
′

∂yl ∂ϑl′
hk,j(x, y, θ)| ≤

c(1 + |x|c + |y|c), with c that depends on k, j, l and l′. By the same proof as in Proposition 2 of [2] it is
possible to prove that, if g̃ ∈ F̃p then Ācg̃ ∈ F̃p+2 and, for all g̃ ∈ F̃p,

Adg̃(y, θ) = −λg̃(y, θ) + r(x, y,∆
β(M+2−p)
n,i , θ). (130)

It has also been proved that, as a consequence of the equation here above, the following relation holds:

AiN ◦ ... ◦Ai1 g̃(y) = Āl(i1,...,iN )
c g̃(y)(−λ)N−l(i1,...,iN ) + r(x, y,∆

β(M+2)−2βl(i1,...,iN )
n,i ),

for g̃ ∈ F̃0 and with l(i1, ..., iN ) the number of c in {i1, ..., iN}, the iterations considered.

We observe that ḡ(y) := y2ϕ((y − x)∆−βn,i ) belongs to F̃0. To find its development through Dynkin’s
formula we can act exactly like we did in Proposition 2 of [2].
We get that the principal term in the development of the numerator is

N∑
l=0

∆l
n,i

l!
A

(l)
K2

(x)

N−l∑
k′=0

∆k′

n,i(−λ)k
′

k′!
+ r(x, x,∆

β(M+2)
n,i , θ), (131)

with AK2
(x) = Āc(h2)(x) for h2(y) = y2 and r(x, y,∆

β(M+2)
n,i , θ) ∈ Rβ(M+2). The integral rest term in

the Dynkin formula is

|
∫ ti+1

ti

∫ u1

ti

...

∫ uN

ti

E[AN+1h2(XuN+1
)|Xti = x]duN+1...du2du1| ≤ R(θ,∆

(1−2β)(N+1)
n,i , x). (132)

Using (131) and (132) we have the following development:

n∆n,i(x) =

N∑
l=0

∆l
n,i

l!
A

(l)
K2

(x)

N−l∑
k′=0

∆k′

n,i(−λ)k
′

k′!
+R(θ,∆

β(M+2)
n,i , x) +R(θ,∆

(1−2β)(N+1)
n,i , x). (133)

If (N + 1)(1− 2β) ≥ β(M + 2), it entails

n∆n,i
(x) =

bβ(M+2)c∑
l=0

∆l
n,i

l!
A

(l)
K2

(x)

bβ(M+2)c∑
k′=0

∆k′

n,i(−λ)k
′

k′!
+R(θ,∆

β(M+2)
n,i , x). (134)

To get the control (12) on the derivatives of (134), we show that one can differentiate with respect to the
parameters the remainder term.

We remark that, as r(x, y,∆
β(M+2)
n,i , θ) is in Rβ(M+2) and because of the definition of such a set, we clearly

have that for ϑ = µ and ϑ = σ, the function ∂ϑr(x, y,∆
β(M+2)
n,i , θ) is still a R(θ,∆

β(M+2)
n,i , x) function.

Concerning the derivatives of the integral rest, we have that, since AN+1ḡ ∈ F̃2(N+1),

AN+1ḡ(y) =

2N∑
k=0

ϕ(k)((y − x)∆−βn,i )∆
−βk
n,i (

k∑
j=0

h̃k,j(x, y, θ)∆
βj
n,i);

where h̃k,j are polynomial functions of a, b and their derivatives. Then, for ϑ = µ and ϑ = σ it is

∂ϑE[AN+1ḡ(XuN+1
)|Xti = x] = E[∂ϑA

N+1ḡ(XuN+1
) + ∂XA

N+1ḡ(XuN+1
)∂ϑXuN+1

|Xti = x].

We use an upper bound on the conditional moments of the derivative of X with respect to both the
parameters (see Lemma 14 in the Appendix) and we act as for (132) to get a control of the integral rest.

From the computation of ∂XA
N+1ḡ(XuN+1

) it shows up an extra ∆−βn,i but we can always choose N such

that the derivatives of the integral rest remain negligible compared to R(θ,∆
β(M+2)
n,i , x).
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We now consider the denominator d∆n,i(x): since it is exactly like it was in the development of m, we
have already proved in Proposition 2 of [2] that its expansion is

d∆n,i
(x) =

bβ(M+2)c∑
k=0

∆k
n,i

k!
(−λ)k + r(x, x,∆

β(M+2)
n,i ), (135)

where λ is the intensity of jumps defined in the fourth point of Assumption 4 and r is a rest function
which belongs to Rβ(M+2).

Acting exactly as we have done on the numerator we get that the derivatives of r(x, x,∆
β(M+2)
n,i ) are still

R(θ,∆
β(M+2)
n,i , x) functions and that the derivatives of the integral rest remain negligible compared to

R(θ,∆
β(M+2)
n,i , x).

From the expansion of d∆n,i
(x) we can say that there exists k0 > 0 such that for |x| ≤ ∆−k0

n,i , d∆n,i
(x) ≥ 1

2
∀n, i ≤ n: we are avoiding the possibility that the denominator is in the neighborhood of 0. Hence, for
|x| ≤ ∆k0

n,i, the development of m2 is

n∆n,i
(x)

d∆n,i
(x)
− (m(µ, σ, x))2 =

bβ(M+2)c∑
l=0

∆l
n,i

l!
A

(l)
K2

(x)− (x+

bβ(M+2)c∑
k=1

A
(k)
K1

(x)
∆k
n,i

k!
)2 + r(x, x,∆

β(M+2)
n,i , θ).

(136)

The expansion (11) follows after remarking that A
(0)
K2

(x) = 0.
Moreover, since the rest term in the development of m comes from the same place as the rest in the

fraction just studied, also its derivatives with respect to µ and σ remain R(θ,∆
β(M+2)
n,i , x) functions. The

result follows.

We now prove Proposition 4, Proposition 3 is a consequence of it.

A.3.2 Proof of Proposition 4

We recall that

m2(µ, σ, x) =
E[(Xθ

ti+1
−m(µ, σ,Xti))

2ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

E[ϕ∆β
n,i

(Xθ
ti+1
−Xθ

ti)|X
θ
ti = x]

:=
ñ∆n,i(x)

d̃∆n,i(x)
.

The expansion (15) in Proposition 4 is a consequence of the following two expansions for ñ∆n,i
(x) and

d̃∆n,i
(x),

ñ∆n,i
(x) = ∆n,ia

2(x, σ) +
∆1+3β
n,i

γ(x)

∫
R
v2ϕ(v)F (

v∆β
n,i

γ(x)
)dv + ∆2

n,i[3b̄
2(x, µ) + h2(x, θ)− λa2(x, σ)]

+
∆2+β
n,i a

2(x, σ)

2γ(x)

∫
u:|u|≤2

[2ϕ(u) + uϕ′(u) + u2ϕ′′(u)]F (
u∆β

n,i

γ(x)
)du+R(θ,∆

(3−2β)∧(2+β)
n,i , x), (137)

d̃∆n,i
(x) = 1−∆n,iλ+

∆1+β
n,i

γ(x)

∫
u:|u|≤2

ϕ(u)F (
u∆β

n,i

γ(x)
)du+R(θ,∆2−2β

n,i , x). (138)

The fact that the order of the remainder term in (15) is unchanged by derivation with respect to the
parameters µ and σ, will be a consequence of a similar property for the remainder terms appearing in
(137)–(138).

Proof of (137). In order to develop the numerator ñ∆n,i
(x), we define the function hi,n(y) := (y −

m(µ, σ, x))2ϕ∆β
n,i

(y − x) and we use Dynkin formula (129) on it, up to third order. It becomes

E[hi,n(Xθ
ti+1

)|Xθ
ti = x] = hi,n(x)+∆n,iAhi,n(x)+

1

2
∆2
n,iA

2hi,n(x)+
1

6

∫ ti+1

ti

∫ u1

ti

∫ u2

ti

E[A3hi,n(Xθ
u3

)|Xθ
ti = x]du3du2du1.

(139)
We now successively study the contribution of each term in the Dynkin’s development.

By the definition of hi,n, we have hi,n(x) = (x−m(µ, σ, x))2.
We recall that Ahi,n(x) = Āchi,n(x) +Adhi,n(x), where Āchi,n(x) = 1

2a
2(x, σ)h′′i,n(x) + b̄(x, µ)h′i,n(x)

and

Adhi,n(x) =

∫
R

[hi,n(x+ zγ(x))− hi,n(x)]F (z)dz =

∫
R

(x+ zγ(x)−m(µ, σ, x))2ϕ∆β
n,i

(zγ(x))F (z)dz+
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−(x−m(µ, σ, x))2

∫
R
ϕ∆β

n,i
(0)F (z)dz = (x−m(µ, σ, x))2

∫
R

[ϕ∆β
n,i

(zγ(x))− ϕ∆β
n,i

(0)]F (z)dz+ (140)

+γ2(x)

∫
R
z2ϕ∆β

n,i
(zγ(x))F (z)dz + 2(x−m(µ, σ, x))γ(x)

∫
R
zϕ∆β

n,i
(zγ(x))F (z)dz.

Using now the boundedness of ϕ, the fact that
∫
R F (z)dz = λ and the development of m (31), we have

that the first term here above is a R(θ,∆2
n,i, x) function and, from Proposition 8, also its derivatives with

respect to both the parameters are R(θ,∆2
n,i, x) functions.

On the second term of (140) we apply the change of variable v := γ(x)z

∆β
n,i

, getting
∆3β
n,i

γ(x)

∫
R v

2ϕ(v)F (
v∆β

n,i

γ(x) )dv.

On the third we use the definition of ϕ for which ϕ(ζ) = 0 for ζ such that |ζ| ≥ 2 and again the development
of m to get it is upper bounded by

|c(x−m(µ, σ, x))γ(x)

∫
z:|z|≤

2∆
β
n,i

γ(x)

zF (z)dz| ≤ R(θ,∆1+β
n,i , x). (141)

Again, we can calculate the derivatives with respect to ϑ for both ϑ = µ and ϑ = σ, getting a term that
is still a R(θ,∆1+β

n,i , x) function by Proposition 8.
It follows

Adhi,n(x) = R(θ,∆2
n,i, x) + ∆2β

n,i

∫
R
v2ϕ(v)F (

v∆β
n,i

γ(x)
)dv +R(θ,∆1+β

n,i , x).

In order to compute Āchi,n(x) we need the derivatives of hi,n, they are

h′i,n(y) = 2(y −m(µ, σ, x))ϕ∆β
n,i

(y − x) + (y −m(µ, σ, x))2∆−βn,iϕ
′
∆β
n,i

(y − x),

h′′i,n(y) = 2ϕ∆β
n,i

(y− x) + 4(y−m(µ, σ, x))∆−βn,iϕ
′
∆β
n,i

(y− x) + (y−m(µ, σ, x))2∆−2β
n,i ϕ

′′
∆β
n,i

(y− x), (142)

h
(3)
i,n(y) = 6∆−βn,iϕ

′
∆β
n,i

(y − x) + 6(y −m(µ, σ, x))∆−2β
n,i ϕ

′′
∆β
n,i

(y − x) + (y −m(µ, σ, x))2∆−3β
n,i ϕ

(3)

∆β
n,i

(y − x),

h
(4)
i,n(y) = 12∆−2β

n,i ϕ
′′
∆β
n,i

(y− x) + 8(y−m(µ, σ, x))∆−3β
n,i ϕ

(3)

∆β
n,i

(y− x) + (y−m(µ, σ, x))2∆−4β
n,i ϕ

(4)

∆β
n,i

(y− x);

we have calculated the derivatives up to the fourth because they will be useful in the sequel.
Replacing the first two derivatives, calculated in x, it follows

Āchi,n(x) = a2(x, σ) + 2(x−m(µ, σ, x))b̄(x, µ). (143)

Therefore we have

Ei[hi,n(Xθ
ti+1

)] = (x−m(µ, σ, x))2+∆n,ia
2(x, σ)+

∆1+3β
n,i

γ(x)

∫
R
v2ϕ(v)F (

v∆β
n,i

γ(x)
)dv+2∆n,i(x−m(µ, σ, x))b̄(x, µ)+

(144)

+R(θ,∆2+β
n,i , x) +

1

2
∆2
n,iA

2hi,n(x) +
1

6

∫ ti+1

ti

∫ u1

ti

∫ u2

ti

E[A3hi,n(Xθ
u3

)|Xθ
ti = x]du3du2du1.

We now study A2hi,n(x). We recall it is

A2hi,n(x) = Ā2
chi,n(x) + ĀcAdhi,n(x) +AdĀchi,n(x) +A2

dhi,n(x).

We observe that we can write Ā2
chi,n(x) as

∑4
j=1 hj(x, θ)h

(j)
i,n(x), where, for each j ∈ {1, 2, 3, 4}, hj is a

function of a, b̄ and their derivatives up to second order: h1 = 1
2a

2b̄
′′

+ b̄b̄′, h2 = 1
2a

2(a′)2 + 1
2a

3a′′ +
a2b̄′ + aa′b̄ + b̄2, h3 = a3a′ + a2b̄ and h4 = 1

4a
4. Moreover, recalling that by the definition of ϕ we have

ϕ∆β
n,i

(0) = 1 and ϕ
(k)

∆β
n,i

(0) = 0 ∀k ≥ 1, it follows h′i,n(x) = 2(x −m(µ, σ, x)), h′′i,n(x) = 2 and h
(l)
i,n = 0

∀l ≥ 3. We obtain

Ā2
chi,n(x) = 2h1(x, θ)(x−m(µ, σ, x)) + 2h2(x, θ) = R(θ,∆n,i, x) + 2h2(x, θ), (145)

where the last equality is a consequence of the development (31) of m.
Concerning ĀcAdhi,n(x), it is 1

2a
2(x, σ)(Adhi,n(x))′′ + b̄(x, µ)(Adhi,n(x))′. We start considering

(Adhi,n(x))′ =

∫
R
[h′i,n(x+ zγ(x))(1 + zγ′(x))− h′i,n(x)]F (z)dz.

We now observe that, ∀k ≥ 1 and ∀y ∈ R, |y−m(µ, σ, x)|k|ϕ∆β
n,i

(y−x)| ≤ (|y−x|k+|x−m(µ, σ, x)|k)|ϕ∆β
n,i

(y−

x)|. We have that |y − x|k|ϕ∆β
n,i

(y − x)| ≤ c∆kβ
n,i|ϕ∆β

n,i
(y − x)| as a consequence of the definition of ϕ
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while, using the development (31) of m , it follows |x−m(µ, σ, x)|k|ϕ∆β
n,i

(y−x)| ≤ R(θ,∆k
n,i, x). Putting

the pieces together it is

|y −m(µ, σ, x)|k|ϕ∆β
n,i

(y − x)| ≤ R(θ,∆βk
n,i, x) +R(θ,∆k

n,i, x) = R(θ,∆βk
n,i, x); (146)

it is easy to remark that the same reasoning holds with the derivatives of ϕ instead of ϕ. We underline
that from the estimation (146) here above and the computation of the derivatives of hi,n we get that,
∀l ≥ 0, each term of the l-derivative of hi,n has the same size. Indeed, each time we derive ϕ an extra

∆−βn,i turns out but we can recover it on the basis of (146). In particular, ∀l ≥ 0 it follows∥∥∥h(l)
i,n

∥∥∥
∞
≤ R(θ,∆

β(2−l)
n,i , x). (147)

Therefore we obtain
|(Adhi,n(x))′| ≤ c∆β

n,i(2λ+ c ‖γ′‖∞). (148)

Concerning the second derivative of Adhi,n(x), it is

(Adhi,n(x))′′ =

∫
R

[h′′i,n(x+ zγ(x))(1 + zγ′(x))2 + h′i,n(x+ zγ(x))zγ′′(x)− h′′i,n(x)]F (z)dz =

=

∫
R

[h′′i,n(x+zγ(x))−h′′i,n(x)+2zγ′(x)h′′i,n(x+zγ(x))+z2(γ′(x))2h′′i,n(x+zγ(x))+h′i,n(x+zγ(x))zγ′′(x)]F (z)dz =

5∑
j=1

Ij .

On I3 and I4 we act like we did on the integral in (141), observing that in the computation of h′′i,n we

always have ϕ or its derivatives which make the integrals different from 0 only for |z| ≤ c∆β
n,i. On I5

we use (147) for l = 1, getting |I5| ≤ R(θ,∆β
n,i, x). We observe that, by the computation of h′′i,n(x) we

obtain I2 = −2λ.
To conclude the study of ĀcAdhi,n(x) we have to deal with I1:∫

R
h′′i,n(x+ zγ(x))F (z)dz =

∫
R

2ϕ∆β
n,i

(zγ(x))F (z)dz + 4∆−βn,i (x−m(µ, σ, x))

∫
R
ϕ′

∆β
n,i

(zγ(x))F (z)dz+

(149)

+4∆−βn,i

∫
R
zγ(x)ϕ′

∆β
n,i

(zγ(x))F (z)dz + ∆−2β
n,i

∫
R

((x−m(µ, σ, x)) + zγ(x))2ϕ′′
∆β
n,i

(zγ(x))F (z)dz.

Applying the change of variable u := zγ(x)

∆β
n,i

and recalling that from the development of m it follows

|x−m(µ, σ, x)|k ≤ R(θ,∆k
n,i, x) for each k ≥ 1, we obtain∫

R
h′′i,n(x+zγ(x))F (z)dz =

∆β
n,i

γ(x)

∫
R

(2ϕ(u)+uϕ′(u)+u2ϕ′′(u))F (
u∆β

n,i

γ(x)
)du+R(θ,∆

(1−β)∧(2−2β)∧(1−2β)
n,i , x).

It is worth noting that the magnitude of the first term in the left hand side of the equation here above
depends on the density F .
Remarking also that ϕ(u) = 0 for each u such that |u| ≥ 2, it follows

(Adhi,n(x))′′ =
∆β
n,i

γ(x)

∫
u:|u|≤2

(2ϕ(u) + uϕ′(u) + u2ϕ′′(u))F (
u∆β

n,i

γ(x)
)du− 2λ+R(θ,∆

(1−2β)∧β
n,i , x). (150)

From the definition of ĀcAdhi,n(x), (148) and (150) we get

ĀcAdhi,n(x) =
∆β
n,ia

2(x, σ)

2γ(x)

∫
R
(2ϕ(u) + uϕ′(u) + u2ϕ′′(u))F (

u∆β
n,i

γ(x)
)du− a2(x, σ)λ+R(θ,∆

(1−2β)∧β
n,i , x).

(151)
Now we deal with

AdĀchi,n(x) =

∫
R

[Āchi,n(x+ zγ(x))− Āchi,n(x)]F (z)dz. (152)

From (143) it follows∫
R
Āchi,n(x)F (z)dz = λa2(x, σ) + 2λ(x−m(µ, σ, x))b̄(x, µ) = λa2(x, σ) +R(θ,∆n,i, x), (153)

where we have also used the development (31) of m. Moreover,∫
R
Āchi,n(x+zγ(x))F (z)dz =

∫
R
[
1

2
a2(x+zγ(x), σ)h′′i,n(x+zγ(x))+ b̄(x+zγ(x), µ)h′i,n(x+zγ(x))]F (z)dz.

(154)
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Acting on the first term of the right hand side of the equation here above exactly like we did in (149) we
get it is equal to

∆β
n,i

2γ(x)

∫
u:|u|≤2

a2(x+ u∆β
n,i, σ)(2ϕ(u) + uϕ′(u) + u2ϕ′′(u))F (

u∆β
n,i

γ(x)
)du+R(θ,∆1−2β

n,i , x). (155)

We upper bound the second term of the right hand side of (154), instead, using (147) for l = 1. It yields

|
∫
R
b̄(x+ zγ(x), µ)h′i,n(x+ zγ(x))F (z)dz| ≤ R(θ,∆β

n,i, x), (156)

where we have also used the polynomial growth of b. Replacing in (152) the equations (153) - (156) we
obtain

AdĀchi,n(x) =
∆β
n,i

2γ(x)

∫
u:|u|≤2

a2(x+u∆β
n,i, σ)(2ϕ(u)+uϕ′(u)+u2ϕ′′(u))F (

u∆β
n,i

γ(x)
)du−λa2(x, σ)+R(θ,∆

(1−2β)∧β
n,i , x).

(157)
We have to study AdAdhi,n(x). It is

|A2
dhi,n(x)| = |

∫
R

[Adhi,n(x+zγ(x))−Adhi,n(x)]F (z)dz| ≤
∫
R
‖(Adhi,n)′‖∞ |zγ(x)|F (z)dz ≤ R(θ,∆β

n,i, x),

(158)
where we have used the definition Adh

′
i,n and (147), remarking that the estimation (148) holds also in

no matter which y ∈ R.
From (145), (151), (157) and (158) it follows

1

2
∆2
n,iA

2hi,n(x) = ∆2
n,ih2(x, θ)− λ∆2

n,ia
2(x, σ)+ (159)

+
∆2+β
n,i

4γ(x)

∫
u:|u|≤2

[a2(x, σ)+a2(x+u∆β
n,i, σ)](2ϕ(u)+uϕ′(u)+u2ϕ′′(u))F (

u∆β
n,i

γ(x)
)du+R(θ,∆

(3−2β)∧(2+β)
n,i , x).

To complete the study of the numerator ofm2 we need to estimate 1
6

∫ ti+1

ti

∫ u1

ti

∫ u2

ti
E[A3hi,n(Xθ

u3
)|Xθ

ti =

x]du3du2du1. We introduce the following norm on Cp functions, with p ≥ 0, c > 0:

‖f‖∞,c,p :=

p∑
k=0

sup
y∈R
| f

(k)(y)

(1 + |y|)c
|.

We observe it is∫
R
|f(y+zγ(y))|F (z)dz =

∫
R

|f(y + zγ(y))|(1 + |y + zγ(y)|)c̃

(1 + |y + zγ(y)|)c̃
F (z)dz ≤ ‖f‖∞,c̃,0

∫
R

(1+|y+zγ(y)|)c̃F (z)dz.

We can therefore evaluate the norm of Adf , getting

‖Adf‖∞,c̃,0 =

∥∥∥∥ Adf

(1 + |y|)c̃

∥∥∥∥
∞
≤ c ‖f‖∞,c̃,0 (

∫
R(1 + |y|c̃ + (1 + |y|)c̃|z|c̃)F (z)dz

(1 + |y|)c̃
+ λ) ≤ c ‖f‖∞,c̃,0 .

By similar computations on the derivatives of Adf we obtain, ∀p ≥ 0, with p ≤ 4, ‖Adf‖∞,c̃,p ≤ c ‖f‖∞,c̃,p
(similar calculations are in Theorem 2.3 of [30]).
In order to find an upper bound for the norm of Ācf we observe that, from the polynomial growth of
both the coefficients a and b, it follows

| Ācf

(1 + |y|)c̃+2
| = |

1
2a

2(y, σ)f ′′(y)

(1 + |y|)c̃+2
+
b(y, µ)f ′(y)

(1 + |y|)c̃+2
| ≤ c

(1 + |y|)c̃
|f ′′(y)|+ c

(1 + |y|)c̃
|f ′(y)|.

Hence, we deduce that
∥∥Ācf∥∥∞,c̃+2,0

≤ c ‖f‖∞,c̃,2. Acting again with similar computation on the follow-

ing derivatives, as done detailing in the proof of Theorem 2.3 in [30], we get
∥∥Ācf∥∥∞,c̃+2,p

≤ c ‖f‖∞,c̃,p+2.

We want to use the estimations on ‖Adf‖∞,c̃,p and
∥∥Ācf∥∥∞,c̃,p and equation (147) to evaluate each term

of
E[A3hin(Xθ

u3
)|Xθ

ti = x] but Ā3
chi,n. We observe it is, for c̃ ≥ 4,

Ei[A3
dhi,n(Xθ

u3
)] ≤

∥∥A3
dhi,n

∥∥
∞,c̃,0 Ei[(1 + |Xθ

u3
|)c̃] ≤ c ‖hi,n‖∞,c̃,0R(θ, 1, x) ≤ R(θ,∆2β

n,i, x);

Ei[AdAdĀchi,n(Xθ
u3

)] ≤
∥∥AdAdĀchi,n∥∥∞,c̃,0 Ei[(1 + |Xθ

u3
|)c̃] ≤ c ‖hi,n‖∞,c̃−2,2R(θ, 1, x) ≤ R(θ, 1, x);
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remarking that the same estimation holds for AdĀcAdhin and ĀcAdAdhin . Moreover we have

Ei[ĀcĀcAdhi,n(Xθ
u3

)] ≤
∥∥ĀcĀcAdhi,n∥∥∞,c̃,0 Ei[(1 + |Xθ

u3
|)c̃] ≤ c ‖hi,n‖∞,c̃−4,4R(θ, 1, x) ≤ R(θ,∆−2β

n,i , x)

and we can upper bound ĀcAdĀchi,n and AdĀcĀchi,n with the same quantity.
We are now left to study Ei[Ā3

chi,n(Xθ
u3

)]. As we have already done considering Ā2
chi,n(x), we see

Ā3
chi,n as linear combination of the derivatives of hi,n: Ā3

chi,n(y) :=
∑6
j=1 hj(y, θ)h

(j)
i,n(y) where for each

j ∈ {1, ..., 6} hj is a function of a, b and their derivatives up to fourth order.

Using a conditional version of Proposition 11 we get ∀ε > 0, ∀j ≥ 3 Ei[|hj(Xθ
u3
, θ)h

(j)
i,n(Xθ

u3
)|] ≤

R(θ,∆
1+(2−j)β−ε
n,i , x).

Concerning the first two terms of the sum, we have

|Ei[h1(Xθ
u3
, θ)h′i,n(Xθ

u3
)+h2(Xθ

u3
, θ)h′′i,n(Xθ

u3
)]| ≤

∥∥h′i,n∥∥∞ Ei[|h1(Xθ
u3
, θ)|]+

∥∥h′′i,n∥∥∞ Ei[|h2(Xθ
u3
, θ)|] ≤ R(θ, 1, x),

which follows from (147) and from the polynomial growth of a, b and their derivatives, which constitute
the functions h1 and h2. Putting all the pieces together we get

1

6

∫ ti+1

ti

∫ u1

ti

∫ u2

ti

E[A3hi,n(Xθ
u3

)|Xθ
ti = x]du3du2du1 ≤ R(θ,∆

(3−2β)∧(4−4β−ε)
n,i , x) = R(θ,∆3−2β

n,i , x).

From (144), (159) and the equation here above it follows Ei[hi,n(Xθ
ti+1

)] =

= (x−m(µ, σ, x))2+∆n,ia
2(x, σ)+

∆1+3β
n,i

γ(x)

∫
R
v2ϕ(v)F (

v∆β
n,i

γ(x)
)dv+2∆n,i(x−m(µ, σ, x))b̄(x, µ)+∆2

n,ih2(x, θ)+

(160)

−λ∆2
n,ia

2(x, σ)+
∆2+β
n,i

4γ(x)

∫
u:|u|≤2

[a2(x, σ)+a2(x+u∆β
n,i, σ)](2ϕ(u)+uϕ′(u)+u2ϕ′′(u))F (

u∆β
n,i

γ(x)
)du+R(θ,∆

(3−2β)∧(2+β)
n,i , x).

The expansion (137) follows from (160) and (16), with the smoothness of z 7→ a2(z, σ), and
∫
R F (z)dz <

∞.

Proof of (138). Concerning the denominator of m2, we still use Dynkin formula up to third order, this

time on fi,n(y) := ϕ∆β
n,i

(y − x). We observe that, by the building, fi,n(x) = 1 and f
(k)
i,n (x) = 0 for each

k ≥ 1. Hence, Ācfi,n(x) = 0 and

Adfi,n(x) =

∫
R

[fi,n(x+ γ(x)z)− 1]F (z)dz =

∫
z:|z|≤

2∆
β
n,i

|γ(x)|

ϕ∆β
n,i

(zγ(x))F (z)dz − λ.

As we have already done we can see the first term here above, after the change of variable u := zγ(x)

∆β
n,i

, as

∆β
n,i

γ(x)

∫
u:|u|≤2

ϕ(u)F (
u∆β

n,i

γ(x) )du, which order depends on the density F .

Concerning the study of A2fi,n(x), we first of all remark that Ā2
cfi,n(x) = 0.

Moreover, we observe it is f
(k)
i,n (y) = ∆−βkn,i ϕ

(k)

∆β
n,i

(y−x) and so by the boundedness of ϕ and its derivatives

we get that, for each k ≥ 1, ∥∥∥f (k)
i,n

∥∥∥
∞
≤ R(θ,∆−βkn,i , x). (161)

We therefore have, ∀y ∈ R,

|(Adfi,n(y))′| = |
∫
R
f ′i,n(y + zγ(y))(1 + zγ′(y))F (z)dz − λf ′i,n(y)| ≤ R(θ,∆−βn,i , y)

and, in the same way, |(Adfi,n(y))′′| ≤ R(θ,∆−2β
n,i , y). It follows

|ĀcAdfi,n(x)| = |1
2
a2(x, σ)(Adfi,n(x))′′ + b(x, µ)(Adfi,n(x))′| ≤ R(θ,∆−2β

n,i , x);

|AdĀcfi,n(x)| = |
∫
R
Ācfi,n(x+ zγ(x))F (z)dz| ≤ R(θ,∆−2β

n,i , x)

and, using also finite-increments theorem, |AdAdfi,n(x)| ≤ R(θ,∆−βn,i , x). Putting pieces together we have

| 12∆2
n,iA

2fi,n(x)| ≤ R(θ,∆2−2β
n,i , x).

Considering the integral rest of the Dynkin formula , we act like we did in the study of the numerator,
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passing through the use of the norm ‖.‖∞,c,p and the estimation of the derivatives of fi,n gathered in
(161). It yields

Ei[A3
dfin(Xθ

u3
)] ≤ R(θ, 1, x), Ei[AdAdĀcfin(Xθ

u3
)] ≤ R(θ,∆−2β

n,i , x),

Ei[AdĀcĀcfin(Xθ
u3

)] ≤ R(θ,∆−4β
n,i , x), Ei[Ā3

cfin(Xθ
u3

)] ≤ R(θ,∆1−6β−ε
n,i , x),

having also used Proposition 11 to get the last one estimation here above. It turns out the denominator
is

1−∆n,iλ+
∆1+β
n,i

γ(x)

∫
u:|u|≤2

ϕ(u)F (
u∆β

n,i

γ(x)
)du+R(θ,∆2−2β

n,i , x); (162)

since we can always find an ε > 0 for which 4 − 6β − ε > 2 − 2β and we have 3 − 4β > 2 − 2β. This
concludes the proof of the expansion (138).

To conclude the proof of the Proposition 4 we are left to show that the derivatives with respect to
both the parameters of the rest terms in the expansions (137)–(138) are still rest functions and their
order remains the same.
We observe that up to the development of second order in Dynkin formula, the rest functions R are totally
explicit in our computation and so it is possible to calculate its derivatives with respect to both µ and
σ. As we have already seen during the proof, we can use the estimations on ∂ϑm(µ, σ, x) for ϑ = µ and
ϑ = σ gathered in Proposition 8 and the fact that (x−m(µ, σ, x)) is a R(θ,∆n,i, x) function to get that
size of hi,n and of the rest functions does not change after having derived with respect to the parameters.
Concerning the integral rest coming from the third order of the Dynkin formula, we have that

∂ϑEi[A3hi,n(Xθ
u3

)] = Ei[∂ϑA3hi,n(Xθ
u3

)] + Ei[∂XA3hi,n(Xθ
u3

)∂ϑX].

On the first term of the right hand side here above we can act exactly like we did on Ei[A3hi,n(Xθ
u3

)]
getting a rest function whose order does not change, while from the computation of ∂XA

3hi,n(Xθ
u3

)

an extra ∆−βn,i appears but, since from Lemma 14 the norm 1 of ∂ϑX is R(θ,∆n,i, x) for ϑ = µ and

R(θ,∆
1
2
n,i, x) for ϑ = σ, it is enough to use previously Holder inequality and observe that both 1

2 − β and
1− β are positive to get that the second term here above is negligible compared to the first.

A.3.3 Proof of Proposition 3

Proposition 3 is a particular case in which Proposition 4 holds. The proof relies on the fact that the

intensity F is supposed to be C1 and so we can move from F (
u∆β

n,i

γ(x) ) to F (0) through finite-increments

theorem.

Proof. From (15) we get the proposition proved remarking that

∆1+2β
n,i

∫
R
u2ϕ(u)F (

u∆β
n,i

γ(x)
)du = ∆1+2β

n,i

∫
R
u2ϕ(u)F (0)du+ ∆1+2β

n,i

∫
R
u2ϕ(u)[F (

u∆β
n,i

γ(x)
)− F (0)]du

and, from finite-increments theorem, the last term is in absolute value upper bounded by

c∆1+3β
n,i

1
|γ(x)|

∫
R |u|

3|ϕ(u)||F ′(ũ)|du = R(θ,∆1+3β
n,i , x), where ũ ∈ (0,

u∆β
n,i

γ(x) ).

Moreover, by the smoothness on F we have required, it follows that terms in (15) whose size depends on

the density F are now upper bounded by a R(θ,∆2+β
n,i , x) function. It yields (14).
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[12] Figueroa-López, J. E. (2011). Sieve-based confidence intervals and bands for Lévy densities.
Bernoulli, 17(2), 643-670.

[13] Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes.
Statistics: A Journal of Theoretical and Applied Statistics, 20(4), 547-557.

[14] Genon-Catalot, V. and Jacod, J. (1993). On the estimation of the diffusion coefficient for multi-
dimensional diffusion processes. Annales de linstitut Henri Poincar (B) Probabilits et Statistiques,
29, 119-151.

[15] Gloter, A., Loukianova, D. and Mai, H. (2018). Jump filtering and efficient drift estimation for
Lvy-driven SDEs. The Annals of Statistics, 46(4), 1445-1480.

[16] Gobet, E. (2002). LAN property for ergodic diffusions with discrete observations. In Annales de
l’IHP Probabilités et statistiques (Vol. 38, No. 5, pp. 711-737).

[17] Gugushvili, S. (2012). Nonparametric inference for discretely sampled Lévy processes. In Annales de
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