Separation of Concerns Within Robotic Systems
Through Proactive Computing

Alexandre Frantz
University of Luxembourg
2, avenue de 1I’Université, 4365 Esch-sur-Alzette
Email: alexandre.frantz.001 @student.uni.lu

Abstract—In this short paper, we first introduce a possible new
model for designing and implementing software in robotic sys-
tems. This model is based on proactive scenarios, coded through
dynamic sets of condition-action rules. Each scenario embeds the
required rules and can be assembled dynamically with others,
allowing the proactive system to achieve a unique objective or
behavior and instruct the robot accordingly. Furthermore, a
scenario is not aware of the existence of the other scenarios.
In fact, it only contains information about a predefined central
scenario, which oversees global decision making. In addition, each
scenario knows where to enter its suggestions, thus allowing for
a high degree in terms of separating concerns and modularity
of code. Consequently, allowing easier development, testing and
optimization of each scenario independently, possible reuse in
different robots, and finally, a faster achievement of robust and
scalable robotics software. We then show how to apply this
programming model and its functionalities during runtime, by
a proof of concept consisting of a virtual robot deployed in
the Webots™ simulator. This simulator is controlled with four
proactive scenarios (plus the central one), in charge of three
different objectives.

I. INTRODUCTION

Robotic software systems are growing in complexity and
it should be noted that most current systems mix their dif-
ferent functionalities together. Data acquisition, sensor fusion,
decision-making for several objectives and reading commands
are all handled within the same location. Therefore, preventing
scalability and extendibility, fundamentals each large system
should strive for. Moreover, this bundling of functionalities
results in large, complex and even close to obfuscated pieces of
code that are not easily optimizable, maintainable or reusable
in any optimal way.

In this paper, we will present how we addressed this
problem, through the example of a robot simulation. Initially
the simulation started as simple as possible, which was a robot
that can be user controlled or autonomously move around its
environment. Already with these functionalities, the logic was
becoming more and more complex. Data acquisition from sen-
sors, reading user input and computing the next action, were
all handled together. This produced the following question:
How could we safely extend the robot’s behavior easily in the
present and future, without having to make major changes in
each part of our code? This question will be answered in the
following sections, as we present a new model of programming
that solves the issue at stake. With that said, the introduction is

Denis Zampunieris
Faculty of Science and Telecommunications
2, avenue de 1’Université, 4365 Esch-sur-Alzette
Email: denis.zampunieris @uni.lu

followed by the problem statement section, where we present
the problem at hand and the procedure taken to overcome it.
Next, we move on towards the tools and software used during
our work, before continuing towards the proof of concept and
implementation of our new programming model. Lastly, but
certainly not least, we will present our results before ending
with a conclusion and possible future work applications.

II. PROBLEM STATEMENT

The problem we will be addressing in this paper is con-
cerned with the lack of separation of concerns within current
robotics software systems. As time progresses, demand for
more powerful and well-equipped software is mandatory for
us to keep up with the exponential progression of technol-
ogy. Software systems are bound to be scaled and extended;
however, without proper separation of concerns, these systems
will be limited. Our objective is to tackle this issue, by
applying fundamental principles of Proactive Computing. We
will use proactive behavior and scenarios to separate concerns,
consequently promoting scalability and extendibility. In fact,
the goal is to handle one concern at a time per module, as we
will prove with this new model of programming. Moreover,
the above was accomplished with the use of a proactive engine
at hand, which is a rule-running system. It was implemented
within a preprogrammed robot simulation, in order to extend
it with proactive scenarios, serving as our main example in
this paper.

Furthermore, we also provide a different way to fuse Com-
puter Science with Robotics, giving them a way to interact
and work together. This alternative method facilitates the
fusion between these two domains in a new way, through the
implementation of the above-mentioned proactive engine and
the definition of proactive scenarios, allowing us to extend the
simulation with them. The simulator will support the different
scenarios, whereas the engine will handle them accordingly.

III. TOOLS AND RELATED SOFTWARE
A. Proactive Computing

The notion of proactive computing was initially introduced
by David Tennenhouse in 2000 [11] and refers to the idea
of transitioning from interactive systems, towards proactive
systems (PS). In fact, until now interactive computing is
done from a human-centered perspective, whereas proactive

computing will be human-supervised. The difference between
the two forms of computing, is that on one side we have the
user incorporated within the execution loop (i.e. interactive
computing), whereas on the contrary, the user is “above the
loop” (i.e. proactive computing). The main motivation is to
provide a system that can proactively determine our needs
and dynamically act. Thus, allowing the PS to act for and on
behalf of the user on their own initiative [2,3,7], excluding
them from the “loop”. The main advantage of this transition
is faster computation time, because computers will handle
decision making themselves. With this idea in mind, Professor
Zampunieris and his team developed a rule-based proactive
engine at the University of Luxembourg. This engine has been
used in many projects, focusing mainly in the domains of e-
Learning, cognitive science and eHealth [1].

B. Proactive Engine

The main topic of this paper relies on the use of the
above-mentioned proactive engine (PE). The PE, which is
coded in Java, strongly encompasses the principles of Object-
Oriented Programming and event-driven programming as well
[1]. Therefore, making it a perfect middleware for our robot
simulation. The engine can be directly attached on other
systems or be used together with a database, which acts as the
middleware and handles communication. With these aspects
introduced, it is equally important to provide a description of
the PE’s structure which consists of rules, scenarios and the
database.

The engine consists of two queues, called currentQueue and
nextQueue. The first contains the rules that will be executed in
the current iteration, whereas the second contains the rules that
are to be executed in the next iteration step [6]. The engine
inserts rules in the queues and executes them in a First in First
Out manner. Once a rule has been iterated over, it is removed
from the currentQueue and the engine will fetch the next one
in order (i.e. located in nextQueue), however there is a way
to keep the rule executing in later iterations, which we will
explain shortly. The detailed explanation behind the engine’s
iteration can be found in references [6,4].

C. Proactive Scenarios

A collection of rules with a common goal define a certain
scenario. These so-called scenarios create context for a specific
situation, that the PE will handle and execute accordingly. For
example, we could have a data acquisition scenario, which
dynamically collects data from sensors and determines when
to ask for more. A proactive system may have more than
one scenario, and ideally these scenarios must not know more
information than their own. Each scenario is initialized by
the meta-rule, which determines based on context, when to
activate all its rules during execution [6].

D. The Database

It acts as the middleware between two systems, linking one
system with the proactive engine. Namely, the engine may also
be used to read/write data between the two systems, such that

we can achieve communication. However, another important
use of the database, is to save the state of the proactive system,
acting as a failsafe that contains crucial information of the
engine. The information can be historical data from sensors
and results obtained by executing the rules before a crash [6].

E. Webots™ Simulation Software

The simulation environment that we chose as is Webots™
and we believe that it is a great candidate for our work.
Webots™ is a professional robot simulator that is used for
not only R&D (research and development), but also for
educational purposes. The simulator provides a complete de-
velopment environment, which allows us to primarily model,
program and simulate the use of robots. Each robot is con-
trolled by a specific file, called the “controller”. The compiler
will execute this file, which contains the behavioral logic
behind our robot. The simulator offers a great GUI (graphical
user interface) with which we can construct our environment,
by adding/removing objects, robots etc. Furthermore, each
controller can be programmed with a multitude of languages,
such as Java, Python, C, C++ and more [9, 10]

IV. PROOF OF CONCEPT

Before reading the following paragraphs, it is recomended
to get a first view of the simulation structure beforehand which
is represented in Figure 1.

A. Robot Side

The robot side consists of two main java class files, the fist
being the RobotSuperclass and the second being the Proac-
tiveController. These two files are called controllers and are
compiled and executed within Webots™. The RobotSuperclass
controller, acts as a common superclass for the controllers
that have been defined for our robot simulation. In fact, there
are more controllers that are attached to different robots;
however, they will not be covered in this paper. The inheriting
class (i.e. ProactiveController), is the main controller file we
are interested in. The superclass defines common methods
and variables that are used in the hierarchy, whereas as
the inheriting class in our diagram, implements the methods
needed to run our proactive robot. The two-colored arrows,
blue and red, represent the writing and reading actions on the
database.

The Proactive Controller is in charge for controlling our
robot, given some instruction from the PE. Within the con-
troller, we initialize all the sensors and variables needed to
execute instructions and send data to the PE. For example, the
GPS, the Inertial Unit (IU), the Distance Sensors (DS) and
the variable mode (enumeration) that defines the robot’s next
action. Furthermore, we write and read data on the database
for specific reasons. The sensor values are written on their
corresponding tables, for the PE to read and determine the next
action. In turn, the controller continuously reads the database
for the next instruction and switches the value of the mode
accordingly. The different values are stored in an enumeration,
and the mode is updated within a switch during runtime.

Engine Side

']
=

']
—

2
=]

StartUp A A
A
sendRobotCommand

A

—> ReadCommands P

4>| BatteryMonitor |—>| MoveToRecharge |
-
—
> GetCheckpoint | | MoveToCheckpoint |
-«
— :Generats q cl
--> cwit o p Read

Engine and Robot Sides Structure in

PriorityArray
CommandArray
B g

Simulation
Robot Side

RobotSuperclass

ProactiveController

-
=

Fig. 1. Engine and Robot side Structure

B. Engine Side

The engine side consists of five main scenarios that define
our robot simulation. Each scenario performs the necessary
computations to achieve their goal, and is comprised of rules
that define them. These rules perform the necessary compu-
tations to achieve their scenario’s goal. The computations are
dependent on the values read from the database. Once a rule
has decided to propose an instruction to the robot, it writes on
a common 1 x n array called: CommandArray (see Figure 1).
Each scenario has been given a default index, which defines its
priority, to enter their proposal in the array. Moreover, once
a command has been selected to be sent to the robot, the
corresponding rules generate the “SendRobotCommand” rule,
that writes into the database.

Scenario 1: Data Acquisition

This scenario is defined by three main rules: GetGPS,
GetDS and GetIU. Each of these rules check that there exists
a value from the corresponding sensors (GPS, DS and IU)
within a certain interval. Once the time passed is greater than
the interval, the rules directly write on the database that they
require new data on a given sensor. It is important to note, that
these rules are not required to write on the CommandArray,
since they do not have a specific priority.

Scenario 2: Reach Destination

Here, we have defined a scenario that moves the robot to

one or more checkpoints. The rules in charge of this process
are: GetCheckpoint and MoveToCheckpoint. As the names
suggest, the first one retrieves the first non-reached destination
from the database and generates the second rule. Move-
ToCheckpoint in turn, instructs the robot to move towards the
checkpoint, by using the GPS and IU values. It will clone
itself until the checkpoint has been reached. Furthermore, after
reaching the current destination, the process restarts and the
scenario retrieves, if any, the next non-reached destination.
Finally, all the suggested commands that the scenario wants
the robot to execute, are written on the common array.

Scenario 3: Obstacle Avoidance

The PE is also able to determine whether there is always
an obstacle in the path of the robot. In the case that the
robot is about to collide with one, the Obstacle Avoidance
Scenario intervenes. The scenario is defined by only one rule:
AvoidObstacles, whose job is to determine, based on the values
of the DS if an obstacle is too close to the robot. If the case
is true, the scenario enters a suggestion in the common array,
which stops the robot if it is accepted.

Scenario 4: Battery Monitor

Our robot is consuming battery while it has moved a certain
distance and it is the goal of this scenario to determine
whether it is time to recharge its batteries. This scenario
works almost identically to the 2nd one, with one small

difference. The process starts with the BatteryMonitor rule,
that reads the battery levels from the database and decides
if the robot can reach its destination. If it is, the rule clones
itself and restarts the same process. In the case it that the
robot does not have enough battery, the same rule generated
the MoveToRecharge rule. It should be noted that this rule is
identical to the MoveToCheckpoint rule of the 2nd scenario.
It instructs the robot to move to the recharge point (defined
by GPS coordinates within the database), and once it has been
reached it recharges the robot’s batteries. The rule clones until
the recharge point is reached.

Scenario 5: Decision Making and Strategy

The last and most important scenario of our PE oversees
the decision-making mechanism of the whole system. It is
defined by one rule, ReadRobotCommands and two important
arrays: PriorityArray and CommandArray. The rule determines
which command to write to the database, and consequently
send to the robot, based on the priority of each scenario.
The process starts by retrieving highest interger (priority)
within the PriorityArray. The value is stored, and then the
rule retrieves the string in the CommandArray, with the given
index (priority). If a value exists, the rule writes it to the
database, else, we retrieve the second highest priority and its
command. The process repeats until the engine is terminated.
Lastly, within the PriorityArray we can define the strategy we
wish to follow during runtime. This strategy constraint defines
the priority of each scenario and can be dynamically changed
during execution to fulfill different goals.

C. Database Side

The database was created using the MySQL workbench™
and contains eight schemas. As mentioned previously, the
database’s role is to act as middleware, establishing commu-
nication between robot and engine. Each side reads and write
data on the database schemas, which are the following:

— Battery_level: Contains the battery levels that the robot
inserts

— Battery_recharged: Contains the level we wish to
recharge the battery to

— Checkpoints: Contains the checkpoints the robot must
reach

— Distance_sensor_data: Contains data on the DS

— Engine_comments: Contains the instructions the robot
must execute, sent from the PE

— Gps_Stored_values: Contains the GPS coordinates of the
robot

— Tudata: Contains the IU values during iteration

— Recharge_station: Contains the coordinates of the
Recharge Station

D. Relation between scenarios

The scenarios are running in parallel within the PE and are
initiated in the following order:

Scenario 1 — Scenario 4 — Scenario 2 — Scenario 3 —
Scenario 5

They will work together, without explicit interaction, to
instruct the robot towards the destination, given the current
strategy setting. Firstly, the StartUp rule will initialize all the
scenarios, while at the same time, the robot awaits instructions
from the PE and initializes its battery levels to the max value
(that value is sent to the database). Scenario 1 will repeat
itself and ask for the robot to update its sensor values in
the database, whereas Scenario 3 will determine whether the
battery levels are too low to reach our destination. Next,
Scenario 2 will retrieve the first non-reached destination and
generate the rule MoveToCheckpoint, which will instruct the
robot towards the destination (i.e.. insert its suggestion in the
CommandArray). While this process is executed, Scenario 4
makes sure that there is no risk of collision by checking the
DS values from the database. Finally, Scenario 5 will read the
suggestions of all the rules and determine which one to send
to the robot, based on the highest priority which is defined by
the current strategy. Once the robot has reached its destination,
the PE has achieved its goal.

V. RESULTS-DISCUSSION

We mentioned in previous sections that we created a robot
simulation using Webots™. In fact, we created a world which
consists of a circular arena that the robot traverses during
execution. The arena itself contains certain obstacles, such that
we can apply our obstacle avoidance. We should also note, that
on the arena we are free to define multiple destinations and one
recharge point. Furthermore, to test our battery consumption,
obstacle avoidance and the rest of our scenarios, we simulated
multiple instances of our world with different values for our
parameters. For example, different destination coordinates,
battery levels, and obstacles.

With the implementation of the proactive engine within
the robot simulation, we can argue that we have successfully
addressed and solved our problem.With the addition of the
PE we have separated the functionalities with the definition of
scenarios and rules, each contributing to the robot’s objective.
The decision making, data acquisition, and the computations
behind the robot’s goal, have been moved to the engine
side. Consequently reducing the controller’s complexity and
only containing code that defines how the robot executes
commands. Whereas, the engine handles all the necessary
computations to control the robot.

Moreover, the defined scenarios do not interact explicitly
with each other. However, each scenario contains information
only about itself, and works independently towards the same
objective. Since they can work in parallel, each concern is
handled in its own location and together they create a working
system that can successfully instruct the robot. For example,
the data acquisition scenario requests sensor information from
the robot, the scenario dedicated to move the robot to its
objective, reads the information and determines how to instruct
the robot, and finally the decision making scenario determines
which instruction has the highest priority in the end. In other
words, we achieved separation of concerns and proved that we

can address our problem in a different way, namely through
proactive behavior and rule-based systems.

Finally, the communication is achieved with the use of the
database, acting as the middleware between the two sides,
and without it we would not be able to implement the PE.
The database schemas contain all the data needed to exchange
information and allow the two sides to communicate. In
fact, the use of the database is the default design for our
middleware, to link a proactive system with another one. The
main advantages are, that we do not need to modify both
systems to great extent, to facilitate communication, as well
as allowing the developer to program the extended system in
a different language. Furthermore, one could imagine another
way of directly linking the robot environment with the PE,
theoretically this would be possible by defining a different
communication layer between the two sides.

VI. CONCLUSION

We have presented our work regarding the extension of a
robot environment, by implementing a proactive engine within
the simulation. We stated our problem, which is the lack
of separation of concerns in robotic systems and proposed
a viable and effective solution for it. The proactive engine
at hand allowed us to use proactive behavior and rule-driven
programming, to define proactive scenarios and rules, therefore
achieving separation of concerns. We managed to move the
functionalities that were originally handled on the robot side,
towards the engine side, such that we can implement them
in separate scenarios which run in parallel. Therefore, the
robot is explicitly directed by the engine and only executes
the commands it has been sent. On the other hand, the engine
handles the original functionalities, such as data acquisition,
decision-making and moving from one objective to the next. In
addition, the strategy feature that is embedded in our decision-
making scenario, allow the users to change and define new
strategies, and therefore context, before or during runtime.
Moreover, the database serves as the middleware that handles
data exchange and communications between the robot and en-
gine sides. Lastly, but certainly not least, not only did we solve
the problem at stake, we also provided a way to link Computer
Science with Robotics through our simulation environment and
the proactive engine, therefore breaking barriers and creating
links.

VII. FUTURE WORK

A possibility for future work applications of our proactive
engine, is to extend outside of the confined spaces of a simu-
lation, towards a real-life robot. We could argue that the same
principles of our work, could be implemented in a simulator
that supports ROS (Robot Operating System), such as Gazebo
[8]. Once the simulations return the results we expected, we
will be one step closer to implementing the PE in a physical
robot, and test how it performs. This idea provides a new
way of controlling and managing robots, through proactive
behavior, and opens doors to more possibilities that could be
scaled to a large variety of applications, such as smart homes,

medicine, and teaching. Furthermore, one might ask how we
can negate critical errors within the system, such as a rule
failing to execute and needing to clear the CommandArray,
such that no inappropriate command executes. In fact, this
could be handled by simply extending the proactive engine
with the creation of fail-safe dedicated scenarios which handle
exactly this concern.

REFERENCES

[1] Gilles Neyens, Confidence-Based Decision-Making Support for Multi-
Sensor Systems Doctoral Thesis, University of Luxembourg, Luxembourg
2019
Gilles Neyens, Denis Zampunieris, Proactive Model for Handling Con-
flicts in Sensor Data Fusion Applied to Robotic Systems Proceedings of
the 14th International Conference on Software Technologies (ICSOFT),
2019 Prague, Czech Republic, 26 - 28 July, 2019
Gilles Neyens, Denis Zampunieris, Proactive Middleware for Fault De-
tection and Advanced Conflict Handling in Sensor Fusion Proceedings of
the 18th International Conference, ICAISC 2019 Zakopane, Poland, June
16-20, 2019, Part I & II
Gilles Neyens, Denis Zampunieris, A rule-based approach for self-
optimisation in autonomic eHealth systems Workshop Proceedings ot the
6th International Workshop on ”’Self-Optimisation in Autonomic & Or-
ganic Computing Systems” in ARCS 2018 - 31st International Conference
on Architecture of Computing Systems, Braunschweig, Germany, 09 - 12
April, 2018
Dobrican Remus-Alexandru, Denis Zampunieris, A Proactive Solution,
using Wearable and Mobile Applications, for Closing the Gap between
the Rehabilitation Team and Cardiac Patients Proceedings of the IEEE
International Conference on Healthcare Informatics 2016 (ICHI 2016)
Denis Zampunieris, Implementation of a Proactive Learning Management
System Proceedings of “E-Learn - World Conference on E-Learning in
Corporate, Government, Healthcare & Higher Education” 2006
Salovaara, A. , Oulasvirta, A. 5)Six modes of proactive resource man-
agement: auser-centric typology for proactive behaviors Proceedings of
the Third Nordic Conference on Human-Computer Interaction 2004,
Tampere, Finland, October 23-27, 2004
Wikipedia, Robot Operating System,
https://en.wikipedia.org/wiki/Robot_Operating_System
Cyberbotics Ltd, Webots User
https://cyberbotics.com/doc/guide/index
[10] Wikipedia, Webots: https://en.wikipedia.org/wiki/Webots
[11] David Tennenhouse, Proactive Computing Communications of the
ACM, May 2000

[2

—

3

—

[4

=

[5

—

[6

—_

[7

—

[8 ROS

[t}

[9 Guide:

—

