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We present a computer simulation study on crystal nucleation and growth in supersaturated suspen-
sions of mono-disperse hard spheres induced by a triangular lattice substrate. The main result is that
compressed substrates are wet by the crystalline phase (the crystalline phase directly appears without
any induction time), while for stretched substrates we observe heterogeneous nucleation. The shapes
of the nucleated crystallites fluctuate strongly. In the case of homogeneous nucleation amorphous
precursors have been observed [T. Schilling et al., Phys. Rev. Lett. 105(2), 025701 (2010)]. For het-
erogeneous nucleation we do not find such precursors. The fluid is directly transformed into highly
ordered crystallites. © 2012 American Institute of Physics. [doi:10.1063/1.3679385]

I. INTRODUCTION

When a supersaturated fluid crystallizes, crystallization
is usually induced by the container walls, rather than to
proceed from a fluctuation in the bulk of the system. This
effect, called heterogeneous nucleation, is of fundamental
importance for the kinetics of phase transitions (such as
the formation of ice in the supersaturated vapor of clouds),
as well as for technological applications, in which the
properties of the walls can be designed to influence the
properties of the crystals that are formed. In this article we
discuss heterogeneous crystal nucleation and growth from
the overcompressed fluid of hard spheres.

Hard spheres have served successfully as a simple model
system for fluids and crystals over the past 50 years. The in-
teraction energy between two hard spheres is either infinite (if
they overlap) or zero (if they do not overlap), thus the phase
behavior of the model is purely determined by entropy. The
simplicity of the potential makes hard spheres particularly
suited for computer simulations; and the entropic nature of
the phase transition makes them a useful limit case for com-
parison to other systems, which are governed by an interplay
between entropy and enthalpy.

Hard spheres are not only of interest to the theoretician,
they are also often synthesized on the colloidal scale and used
in experiments on fundamental questions of statistical me-
chanics (see, e. g., Ref. 1 and references therein).

As the topic of our work, crystallization of hard spheres
on a substrate, has been studied experimentally2–7 and
theoretically8–16 before, we briefly lay out in the following,
which aspects of this topic have been focused on in the arti-
cles cited above.

The supersaturated fluid of hard spheres in contact with
a planar hard wall has been addressed in computer simula-
tion studies by Dijkstra,9 Auer, 8 and Volkov.10 These studies
show that the planar hard wall is wet by the crystalline phase,

a)Author to whom correspondence should be addressed. Electronic mail:
sven.dorosz@uni.lu.

hence crystallization proceeds layer by layer rather than by
the nucleation of crystallites. (For a review on wetting and
film growth of crystalline phases on structured and unstruc-
tured surfaces in various systems, including hard spheres, see
the article by Esztermann and Löwen.15) Also, the recent
experimental and simulation work by Sandomirski and co-
workers7 dealt with the growth of a crystalline film in contact
with a wall. Here, the wall was not planar but a fcc layer of
spheres. These authors found that the speed of the crystalliza-
tion front depends non-monotonically on the packing fraction
of the fluid and that a depletion zone is present in front of the
growing crystal.

Heterogeneous nucleation of hard sphere crystals has
mainly been addressed in the context of template-induced
crystallization. Van Blaaderen and co-workers3–5 showed how
to design structured templates to induce the epitaxial growth
of large mono-crystals and of metastable phases in a sedi-
menting liquid of hard spheres. Cacciuto and Frenkel stud-
ied the effect of finite templates of various sizes and lat-
tice structures on crystallite formation by means of computer
simulation.12 Recently this topic was taken up again and in-
vestigated in more detail experimentally and theoretically by
the groups of Dijkstra and van Blaaderen.6 For small two-
dimensional seeds of triangular as well as square symmetry,
they find that nucleation barriers depend on the seed’s sym-
metry as well as the lattice spacing. This effect is due to de-
fects and changes in crystal morphology that are induced by
the seed.

Heterogeneous nucleation of hard spheres on an infinite
substrate has recently been addressed by Xu and co-workers11

in a computer simulation study. In this work triangular and
square substrates as well as a hcp(1100) pattern were brought
in contact with a strongly overcompressed fluid, and the evo-
lution of the density profile perpendicular to the substrate as
well as the fraction of crystalline particles were monitored. A
metastable bcc-phase that was stabilized for long times was
observed.

Here we present an extended simulation study of crys-
tallization mechanisms and rates for a fluid of hard spheres

0021-9606/2012/136(4)/044702/5/$30.00 © 2012 American Institute of Physics136, 044702-1

Downloaded 29 Jul 2013 to 158.64.77.122. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3679385
http://dx.doi.org/10.1063/1.3679385
http://dx.doi.org/10.1063/1.3679385
mailto: sven.dorosz@uni.lu


044702-2 S. Dorosz and T. Schilling J. Chem. Phys. 136, 044702 (2012)

brought in contact with a triangular substrate for varying
overcompression and lattice distortion. To our knowledge
there is no systematic study on the effect that distortion of an
infinite substrate lattice has on the crystallization mechanism
and rate of hard spheres.

We would like to close this brief overview by pointing
out that there are other useful model systems for crystal nu-
cleation, as for example complex plasmas. In contrast to col-
loidal systems microscopic dynamics in complex plasmas are
almost undamped,17 hence they offer a complementary exper-
imental approach to the topic.

II. SETUP OF THE SYSTEM
AND SIMULATION DETAILS

The simulations were carried out by means of an event
driven molecular dynamics (MD) program for fixed particle
number, volume, and energy (for details on event driven MD
see Refs. 18–21). We simulated N = 216 000 hard spheres
of diameter σ in contact with a substrate of triangular sym-
metry formed by N = 4200 spheres of the same diameter σ .
The substrate particles were immobile (i.e., they had infinite
mass). The simulation box had periodic boundaries in x and y
directions. The substrate layers were fixed at z = ±Lz

2 for Lz

= 30σ . . . 50σ , depending on the overcompression. The initial
velocities were drawn from a Gaussian distribution and the
initial mean kinetic energy per particle was set to 3 kBT.

To monitor crystallinity, we used the local q6q6-bond-
order parameter,22, 23 which is defined as follows: For each
particle i with n(i) neighbors, the local bond-orientational
structure is characterized by

q̄6m(i) := 1

n(i)

n(i)∑
j=1

Y6m(�rij ),

where Y6m(�rij ) are the spherical harmonics with l = 6. �rij is
the displacement between particle i and its neighbor j in a
given coordinate frame. A vector �q6(i) is assigned to each
particle, the elements m = −6. . . 6 of which are defined as

q6m(i) := q̄6m(i)(∑6
m=−6 |q̄6m(i)|

)1/2 . (1)

We counted particles as neighbors if their distance satisfied
|�rij | < 1.4σ . Two neighboring particles i and j were regarded
as “bonded” within a crystalline region if �q6(i) · �q6(j ) > 0.7.
We define nb(i) as the number of “bonded” neighbors of the
ith particle. (In the online version we use the following color-
coding for the snapshots: if a particle has nb > 10, i.e., an
almost perfectly hexagonally ordered surrounding, it is color-
coded green, if nb > 5 it is color-coded brown.)

We studied various densities between particle number
density ρ := Nσ 3/V = 1.005 (which corresponds to a volume
fraction η = 0.5262) and ρ = Nσ 3/V = 1.02 (η = 0.5341). At
these densities the chemical potential difference per particle
between the metastable fluid and the stable crystalline state is
between �μ � −0.5 kBT and �μ � −0.54 kBT. The overcom-
pressed fluid configurations did not show pre-existing crys-
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FIG. 1. Representation of all combinations of density ρ and substrate lattice
constant a studied in this work. The limit of stability of the homogeneous
bulk crystal is indicated by the solid line (green online). At substrate lat-
tice constants smaller than this value (squares), we find complete wetting of
the substrate and instantaneous film growth. Systems with a larger substrate
lattice constant (circles) exhibit incomplete wetting and heterogeneous nu-
cleation up to a ≤ 1.5σ . Above this stretching, no heterogeneous nucleation
event was observed on the scale of the simulation time.

tallites that might have been created during the preparation
process.

Figure 1 shows the densities ρ and substrate lattice con-
stants a (of the fcc-(111) plane) for which we carried out sim-
ulations. The lattice constant indicated by the solid line (green
online) corresponds to the bulk crystal at the spinodal, i.e.,
at the density at which the crystal ceases to be metastable
with respect to the liquid. We obtained this density by sim-
ulation as well as from density functional theory (DFT).24

The corresponding lattice constant is asp = 1.15σ (DFT), re-
spectively, asp = 1.14σ (simulation). One result of our study
is that this line separates the parameter space into regions
of different crystallization mechanisms. For a < asp, we ob-
served the instantaneous formation of a film, which then grew
with time. For a > asp, the system crystallized via heteroge-
neous nucleation. The transition between the two mechanisms
seems to be continuous. For a ≥ 1.5σ , no heterogeneous nu-
cleation event was observed on the scale of the simulation
time.

III. COMPLETE WETTING OF THE SUBSTRATE

For all compressed substrates (a < asp) we observed
the formation and growth of a crystalline film. Typical snap-
shots are presented in Figure 2. (Here, we chose a system at
a = 1.1σ , close to asp, and a bulk density of ρ = 1.01.) The
time scale of the MD simulation is expressed in multiples of
τ = σ 2/6D, with D being the long-time self-diffusion coeffi-
cient in the bulk fluid obtained in the same MD simulations. In
the regime of densities analyzed, the diffusion constant varies
by only 5%.)

In order to analyze the crystalline layers quantitatively,
we computed the two-dimensional (2D) bond-order parame-
ter ψ6 for planes perpendicular to the z direction (ψ6 is the
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FIG. 2. Snapshots t = τ (left) and t = 100τ after bringing the overcom-
pressed fluid in contact with the substrate, a = 1.1σ (slightly less than asp),
ρ = 1.01. Only crystalline particles are shown (nb > 5).

2D equivalent of q̄6.),

ψ6(i) := 1

n(i)

n(i)∑
j=1

ei6θij ,

where θ ij is the angle of the vector �rij and an arbitrary but
fixed axis in the plane. We impose a cut-off at |�rij | < 1.4σ

and demand for a crystalline particle that ψ6(i)ψ∗
6 (j ) > 0.7

for six neighbors.
To discuss the analysis in detail, we pick three substrate

lattice constants a = {1.01σ , 1.05σ , 1.1σ} at a fixed density
ρ = 1.005.

Figure 3 shows a vertical density profile. As a function of
time the layering becomes more pronounced, as seen from the
growth of the maxima and the appearance of voids in between
the layers. (A quantitative analysis of the growth rate for dif-
ferent substrate lattice constants is not reported, because the
lateral dimension was too small.) According to these profiles
we identify the particles that belong to a given layer and study
the hexagonal structure in the plane. The overall defect den-
sity η in a given layer n with a total number of N(n) particles
is defined as

η(n) := N (n) − Ncrys(n)

N (n)
, (2)

with Ncrys(n) being the number of crystalline particles in layer
n. The analysis of the defect density is shown in Figure 4. We
have also included the total number of particles N(n) in each
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FIG. 3. Density profile perpendicular to the substrate for half of the system
at different times. ρ = 1.01, a = 1.1σ . A film of layers grows.
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FIG. 4. (left) Defect density as a function of the index of each layer counted
from the substrate for three different substrate lattice constants. The data
shown has been obtained in the long-time limit t > 400 τ and it is averaged
over three independent runs each. (right) Number of particles N(n) in each
layer n.

layer n for the three cases of a. Further the substrate is com-
pressed with respect to the equilibrium lattice, the larger is the
defect density in the first layer. With larger distance from the
substrate the defect density for all three values of a converges
to a substrate independent value. At this point stresses induced
by the substrate do not play a role in the growing crystal any-
more. Only the tension induced by the shape of the periodic
box, which is not commensurate with the equilibrium lattice,
matters.

Figure 5 shows the covering of the substrate for the first
three layers after t = 400 τ . There is no preference of fcc over
hcp. An analysis of the subsequent layers showed that the
stacking is random-hcp. This is in agreement with the small
free energy difference of 26 ± 6 × 10−5kBT/σ 2 per particle.25

Domains of equal structure are much larger for the case
a = 1.1σ than for a = 1.01σ , where there are more domain
walls. No single crystal phase evolved on the recorded time
scales.

IV. HETEROGENEOUS NUCLEATION NEAR
THE SUBSTRATE

For the parameter regime 1.15σ ≤ a ≤ 1.4σ , we observe
the formation of crystallites at the substrate. Figure 6 shows
snapshots of typical crystallites at the first nucleation event
(Figure 6(a)) and at a much later time (Figure 6(b)).

FIG. 5. Snapshots of the first three layers on top of the substrate for (left)
a = 1.01σ and (right) a = 1.10σ . The snapshots correspond to the data ana-
lyzed in Figure 4. There is no preference of fcc over hcp.
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FIG. 6. Snapshots at different times after bringing the overcompressed fluid
in contact with the substrate, a = 1.4σ , ρ = 1.01. Crystallite formation at
the wall dominates the nucleation process. For clarity, we are not showing
the substrate. (a) Shown is the nucleation event at which the first crystallite
reaches 100 solid particles. (b) Shown is the state of the system at a much
later time.
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FIG. 7. Time evolution of size of the largest cluster for varying density ρ.
The data is averaged over eight independent runs at each given density. The
lattice constant is set to a = 1.4σ .

We define the nucleation event as the moment when the
first crystalline cluster reaches a size of 100 particles, see
Figure 6(a) for a snapshot. In all simulations we observed
irreversible growth above this threshold. Below this threshold
crystallites appeared and decayed again. Changing this value
by ±10 particles does not affect any of the results presented
in the following.

In Figure 7, we show that the mean size of the
largest crystallite can be described by a growth law that is
approximately exponential with time once the nucleation
event has set in. (The time scale is reset to the nucleation
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FIG. 8. Eigenvalues of the gyration tensor for all crystallites observed during
the simulation at a = 1.4σ and ρ = 1.01. The data is plotted independent of
time as a function of the number of solid particles in the crystallite. It was
checked that the eigenvector of the smallest eigenvalue is perpendicular to
the substrate surface.

event for each simulation run to compare the growth law. For
each pair of a and ρ all data shown here is averaged over
eight independent runs.)

The structure of the nuclei is analyzed by means of the
tensor of gyration, which we diagonalized to obtain the princi-
pal moments. We identified the eigenvector with the smallest
eigenvalue �esmall and checked that it was parallel to the sub-
strate normal ( �esmall · �ez > 0.9 is satisfied by more than 90%
of the crystallites; however, deviations are stronger for small
crystallites of less than 50 particles). As a function of the total
number of particles in a crystallite we present the principal
moments in Figure 8. Even up to Ncrys = 4000 the statistics
do not support the interpretation of the droplets growing as a
spherical cap (or any other simple geometry) on the substrate.
They are rather ramified instead.

In the case of homogeneous nucleation from the over-
compressed bulk fluid in hard spheres, a process mediated by
amorphous precursors has been observed.26, 27 We carefully
checked the heterogeneous nucleation data and did not find
any evidence of such precursors of low crystalline symmetry.
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. (right) Nucleation rates as a function of the bulk density ρ for different substrate lattice constants a.
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TABLE I. Nucleation rates for different substrate lattice spacings a and densities ρ. All rates averaged over eight runs. The rates are given in units of 6D/σ 5.

ρ\a 1.15 σ 1.20 σ 1.25 σ 1.30 σ 1.35 σ 1.40 σ

1.005 (1.3 ± 0.2) × 10−5

1.0075 (1.4 ± 0.2) × 10−5

1.01 (1.4 ± 0.2) × 10−5 (1.1 ± 0.2) × 10−5 (7.5 ± 0.7) × 10−6 (4.8 ± 0.5) × 10−6 (3.7 ± 0.5) × 10−6 (2.0 ± 0.4) × 10−6

1.0125 (1.5 ± 0.2) × 10−5 (1.1 ± 0.1) × 10−5 (7.9 ± 0.8) × 10−6 (5.2 ± 0.6) × 10−6 (4.0 ± 0.6) × 10−6 (2.1 ± 0.5) × 10−6

1.015 (1.5 ± 0.2) × 10−5 (1.2 ± 0.1) × 10−5 (8.5 ± 0.7) × 10−6 (5.6 ± 0.6) × 10−6 (4.8 ± 0.8) × 10−6 (2.3 ± 0.4) × 10−6

1.0175 (1.6 ± 0.2) × 10−5 (1.3 ± 0.1) × 10−5 (8.8 ± 0.9) × 10−6 (6.0 ± 0.8) × 10−6 (4 ± 1) × 10−6 (2.8 ± 0.5) × 10−6

1.02 (1.3 ± 0.1) × 10−5 (9 ± 1) × 10−6 (5.9 ± 0.7) × 10−6 (4.6 ± 0.8) × 10−6 (2.8 ± 0.4) × 10−6

Nucleation at the substrate immediately produces highly
ordered crystallites. Presumably the orientational symmetry
breaking due to the substrate suffices to significantly reduce
the induction time needed to create bond-orientational order.

Figure 9(left) shows the nucleation rates as a function of
the substrate lattice constant for different bulk densities (also
listed in Table I.) We determine the nucleation rate by averag-
ing over the times required to form the first cluster for eight
independent trajectories. (We did not include the times for
subsequent events. Hence, the nucleation rates should not be
affected by interactions between clusters, as they occur close
to the line of stability.) Compared to the bulk nucleation rates
(see, e. g., Refs. 26 and 28 for a compilation of experimental
as well as simulation results), we note that the heterogeneous
nucleation rates are increased by several orders of magnitude
especially at low densities. It is remarkable that the nucle-
ation rates do not decrease exponentially as in the homoge-
nous case for smaller densities. We rather observe, in Figure 9
(right) a linear decrease in this regime of densities. This linear
behavior is seen for all lattice constants that we analyzed. The
slopes do not show a significant dependence on a.

V. CONCLUSION

We have studied the crystallization of an overcompressed
fluid of hard spheres in contact with a fixed triangular lattice
substrate by means of event driven molecular dynamics simu-
lation. Depending on the lattice constant of the substrate, the
system either crystallizes directly, without an induction time,
or it crystallizes via nucleation. The value of the lattice con-
stant that separates the two regimes is the value at which the
bulk crystal, when being stretched, becomes unstable with re-
spect to the liquid. If the substrate lattice constant is smaller
than this value, crystallization proceeds via the formation of
a complete film which grows layer by layer. The stacking is
random-hcp with a large density of defects.

If the substrate is stretched to lattice constants at which
the bulk crystal is unstable, crystallization proceeds via het-
erogeneous nucleation. For moderate stretching, the nucle-
ation rates are larger by several orders of magnitude with
respect to homogeneous nucleation. The crystallites that are
formed are very irregular in shape even when they contain up
to several thousand particles.

In the case of homogeneous nucleation amorphous pre-
cursors have been observed.26, 27 For heterogeneous nucle-
ation we do not find such precursors. The fluid is directly
transformed into highly ordered crystallites.
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