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Example: NORMAN Collaborative Trial 2015
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Example: ELIXIR (https://elixir-europe.org/)
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Our (Community) Challenge: Identifying Chemicals

RT: 0.00 - 24.51

High resolution 100~
mass spectrometry  : *3

Ralative Abundan

Known
Sample
1 10 100 1000 10000 100000 1 million 1 billion chemicals .... .... ....

Schymanski et al. (2014) DOI: 10.1021/es4044374; Vermeulen et al. (2020) DOI: 10.1126/science.aay3164
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Our Context ("worst case”): The Exposome

At its most complete, the exposome
encompasses life-course environmental
exposures (including lifestyle factors),
from the prenatal period onwards.

o P

Christopher P. Wild, 2005.
DOI: 10.1158/1055-9965.EPI-05-0456

Image c/o uni.lu (LCSB); modified from Vermeulen et al (2020) Science. DOI: 10.1126/science.aay3164
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Our Aim: Generating Insight from Measurements

Analytical methods

Data interpretation
Hypothesis generation

Jinsight
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Mod. From Fig. 2, Sevin et al 2015, Current Opinion in Biotechnology. DOI: 10.1016/j.copbio.2014.10.001
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General Scheme(s) of Mass Spectrometry
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Top: chemwiki.ucdavis.edu. Bottom H. Rdst & M. Steiner. Own work. https://commons.wikimedia.org/w/index.php?curid=11640370
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Mass Spectra are our “fingerprints”
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https://metabolomics-usi.ucsd.edu/spectrum/?usi=mzspec:MASSBANK::accession:EQ300803
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From Sample to Numbers (Masses) to Molecules

o ldentification = turning numbers into structures

Centroid m/= Intensity Peak /f enviPat: isotope pattern calculator
16l1.9861%9 9351899 1a703.46 2 -

sg7Centroid mfz Intensity  Pe '__' MGSSBGnk enviPat Web 1.9
301328,15935 238566120 10553.

29533Gbentrn1d m/ = Intensity massbank.eu

1gq 313.10996 11814826 19
233 341 Centroid m/z Inte - HO
261418 "344.22769 51987536 < h S d
. 327. . = STRUCTURE ELUCIDATION
313308 517, 388.25377 60307600 em pl er o0 i
COINETINCLCIE LU ELEYERY Search and share chemistry SN

285130 300.20157 41579912 3’. B
158322 432.28016 57288816 < z
374 161- - o
245 222.14853 16837780 o) <
gy 270 2 P
327 309, 520.33139 53009472 "{%\ s
oo -
201=== . 256.17528 22821594 4L proTe
271236 . 564.35737 49034776 | Il ||| || |
311300 "195.12247 14729078 _
309149 0 ~"177.11203 57083604 Chemistry Dashboard
257132 O "330.21222 18400328
232113 | - "149.11706 28238136 a S S a n
341273 | 374.23852 21067090 |
217240 _"152.12783 13161081
. )
121280 608.3834 396450992 “—
287432 136.11173 0089895 &6
163250 20%. N e vamiiost
250 257.370.28003 33475212 Mass FrRoNTIER ==
265291 1gq,220.18018 216320686 Confident Path from Spectra to Structure i 2
203 1g97.239.14859 13535417 R AT
259133 308.27955 29077566 )
cog 271 T
255 164.12742 4326578 56 ey
o Y bt vt b
476 a5 237.16927 26437514 SR
[l . ™ ==—
15s 130.10821 19003838 sl
man 102.1588 19299540 " Bt -

418.26455 220325850



How to measure? LC vs GC?
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Brack et al 2016. DOI: 10.1016/j.scitotenv.2015.11.102



http://dx.doi.org/10.1016/j.scitotenv.2015.11.102

How to measure? lonisation

16

Singh, RR et al (2020) DOI: 10.1007/s00216-020-02716-3 ; Ulrich, EM et al (2019) DOI: 10.1007/s00216-018-1435-6
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How to measure? Widely Varying Concentrations
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Rappaport et al (2014) Environmental Health Perspectives. DOI: 10.1289/ehp.1308015
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Our challenge? We have many unknowns ...

RT: 0.00 - 24.51
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(I) Data from Schymanski et al 2014, ES&T DOI: 10.1021/es4044374. (r) E. coli data provided by N. Zamboni, IMSB, ETH Zdrich.
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...and insufficient reference data (mass spectra)

MEDIZINISCHE
UNIVERSITAT

o Mass spectra are our “fingerprints” for identification
o Only available for ~0.1-4 % of Exposomics-relevant resources
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H. Oberacher et al. (2020) Environmental Sciences Europe 32: 43. DOI: 10.1186/s12302-020-00314-9
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What we measure (in dust): LC vs GC rm
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Rostkowski et al 2019. DOI: 10.1007/s00216-019-01615-6 PAHS hydrocarbons  alkenes
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What we measure in biota/water/sediment

Retrospective screening of REACH chemicals in
Black Sea samples (various matrices)
Occurrence Results
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Emerging contaminants in different countries
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Alygizakis NA et al (2018) DOI: 10.1021/acs.est.8b00365 and DOI: 10.5281/zenodo0.2623815
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NORMAN Digital Sample Freezing Platform

intevsity

“Live” retrospective screening of known and unknown
chemicals in European samples (various matrices)
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Real-time Monitoring of the Rhine River
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Previously unknown chemicals detected due to “stand-out” patterns
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Historical Contamination in Lake Sediments gawag
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Micropollutant Time Trends In

Riverbank Filtration Systems
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Target vs Non-target

éawag

aquatic research
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Our Aim: Generating Insight from Measurements

Analytical methods

Automated spectral data]

Data interpretation
Hypothesis generation

‘insight
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Mod. From Fig. 2, Sevin et al 2015, Current Opinion in Biotechnology. DOI: 10.1016/j.copbio.2014.10.001
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Sampling extraction (SPE) HPLC separation | HR-MS/MS
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Conversion (Proteowizard) and Peak Picking (enviPick, xcms, MZmine, ...)
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Non-target Identification: Where to start?

9

Molecular formula

4 N[ 7 )
Componentization Prioritization
(nontarget) (enviMass)
9 S
4 N

@ Masses of interest

9

determination

p
(enviPat, GenForm) |ce MS/MS Extraction
. J

(RMassBank)

~

9

9

|

Non-target identification

(MetFrag)
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scientific question
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Targets, Non-targets and Isotopes (ESI-) by Intensity
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Non-target Identification: Where to start?

4 N

Molecular formula
determination
(enviPat, GenForm)

- /

9

©

4 N
Componentization Prioritization
(nontarget) (enviMass)
g , g

Masses of interest

9

p
MS/MS Extraction
(RMassBank)

~

9

Non-target identification
(MetFrag)

Centroid Scan Start Scan Start RT  End Scan  End RT Chrom.
m/z Intensity Peak S/N  Number RT (min.) Number (min.) Number (min.) S/N
169.8336 3325231 5329.19 134 093 79 0.55 646 4.55 0.991
299.095 3170282 4921.75 1149 8.13 595 4.18 1597 11.31 0.973
365.1626 3203921 4917.57 2094 14.86 2017 14.31 2200 15.61 0.986
163.04 2891540 4754.39 792 5.58 79 0.55 3514 2495 0.985
132.8678 3211435 4736.29 148 1.03 79 0.55 3514 24.95 0.938
309.1519 2837347 4531.15 2493 17.69 2233 15.84 2857 20.27 0.956
134.8651 3063484 4518.08 148 1.03 79 0.55 3514 2495 0.951
234.7607 2748982 4266.01 155 1.08 79 0.55 415 292 0.994
311.095 2770672 4249.3 1114 7.88 763 5.37 1513 10.7 0.961
293.1747 2720875 422098 1688 11.95 1030 7.28 2185 15.5 0.988
257.0483 2577542 4130.58 750 5.28 316 221 1366 9.67 0.988
(T74.0557 2507792 4073.03 155 T.08 78 0.55 514 7205 0.

213.9636 2352410 3890.96 645 4.54 631 4.44 778 5.48 0.995

\162.3364 2376150 3202 14 134 093 79 0.55 1381 978 09
297.0798 2561181 3789.71 1170 8.27 679 4.78 1288 9.12 0.964
201.113 2299642 3706.57 1128 7.98 442 3.11 1696 12.01 0.984
310.1024 2335010 3645.29 1310 9.27 1288 9.12 1624 115 0.983
241.0716 2141622 3536.71 2514 17.84 1813 12.84 3514 2495 0.855
374.1311 2580159 3382.28 771 5.43 5 898 6.34 0.991

Gather
Experimental
Evidence
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Grouping Adducts and Isotopes
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Gathering Evidence for Identification | @

Determining the molecular mass and elements, adducts present nentarget

Intensity
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Schymanski et al. 2015, ABC, http://www.eawagq.ch/forschung/uchem/software/

DOI: 10.1007/s00216-015-8681-7
M. Loos, et al. 2015, DOI:
10.1021/acs.analchem.5b00941

http://cran.r-project.org/web/packages/nontarget/

http://cran.r-project.org/web/packages/enviPat/
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Gathering Evidence for Identification I

Detecting the presence of elements with enviPat and nontarget
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Detecting Isotope Signals in Samples

“Classic” environmental strategy: Cl isotopes nontarget
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Peak Grouping in Workflows

This can be done automatically with nontarget / enviMass (and others)

m.Z

209.0853 44881960

max_int
589.3655 47715916
329.2335 46938304

2:m/z
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236.
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Non-target Identification: Where to start?
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Centroid Scan Start Scan Start RT  End Scan  End RT Chrom.
m/z Intensity Peak S/N  Number RT (min.) Number (min.) Number (min.) S/N
169.8336 3325231 5329.19 134 093 79 0.55 646 4.55 0.991
299.095 3170282 4921.75 1149 8.13 595 4.18 1597 11.31 0.973
365.1626 3203921 4917.57 2094 14.86 2017 14.31 2200 15.61 0.986
163.04 2891540 4754.39 792 5.58 79 0.55 3514 2495 0.985
132.8678 3211435 4736.29 148 1.03 79 0.55 3514 24.95 0.938
309.1519 2837347 4531.15 2493 17.69 2233 15.84 2857 20.27 0.956
134.8651 3063484 4518.08 148 1.03 79 0.55 3514 2495 0.951
234.7607 2748982 4266.01 155 1.08 79 0.55 415 292 0.994
311.095 2770672 4249.3 1114 7.88 763 5.37 1513 10.7 0.961
293.1747 2720875 422098 1688 11.95 1030 7.28 2185 15.5 0.988
257.0483 2577542 4130.58 750 5.28 316 221 1366 9.67 0.988
(T74.0557 2507792 4073.03 155 T.08 78 0.55 514 7205 0.

213.9636 2352410 3890.96 645 4.54 631 4.44 778 5.48 0.995

\162.3364 2376150 3202 14 134 093 79 0.55 1381 978 09
297.0798 2561181 3789.71 1170 8.27 679 4.78 1288 9.12 0.964
201.113 2299642 3706.57 1128 7.98 442 3.11 1696 12.01 0.984
310.1024 2335010 3645.29 1310 9.27 1288 9.12 1624 115 0.983
241.0716 2141622 3536.71 2514 17.84 1813 12.84 3514 2495 0.855
374.1311 2580159 3382.28 771 5.43 709 5 898 6.34 0.991
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Targets, Non-targets and Isotopes (ESI-)
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MS2: Extracting Mass Spectra | \ R|M‘a|s|s|Bank

online resources:
CTS, CACTUS

Automatic MS and MS/MS Spectral Annotation with
Recalibration and Clean-up - Experimental Details
Remove interfering peaks - Compound Information

after
recalibration

before
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http://bioconductor.org/packages/RMassBank/
Stravs, Schymanski, Singer and Hollender, 2013,
Journal of Mass Spectrometry, 48, 89-99. DOI: 10.1002/jms.3131
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MS2: Extracting Mass Spectra |l

https://qit-r3lab.uni.lu/eci/shinyscreen
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Non-target Identification: Next Step: Candidates!
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Componentization
(nontarget)

9

Prioritization
(enviMass)

9

4 N

Molecular formula
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Masses of interest

9

4 N\
(enviPat, GenForm) |ce MS/MS Extraction
\_ Yy, (RMassBank)
g S -
Non-target identification
(MetFrag)
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MS1:
213.
214.

214

215.
215.

/

Centroid Scan Start Scan Start RT  End Scan  End RT Chrom.
m/z Intensity Peak S/N  Number RT (min.) Number (min.) Number (min.) S/N
169.8336 3325231 5329.19 134 093 79 0.55 646 4.55 0.991
299.095 3170282 4921.75 1149 8.13 595 4.18 1597 11.31 0.973
365.1626 3203921 4917.57 2094 14.86 2017 14.31 2200 15.61 0.986
163.04 2891540 4754.39 792 5.58 79 0.55 3514 2495 0.985
132.8678 3211435 4736.29 148 1.03 79 0.55 3514 24.95 0.938
309.1519 2837347 4531.15 2493 17.69 2233 15.84 2857 20.27 0.956
134.8651 3063484 4518.08 148 1.03 79 0.55 3514 2495 0.951
234.7607 2748982 4266.01 155 1.08 79 0.55 415 292 0.994
311.095 2770672 4249.3 1114 7.88 763 5.37 1513 10.7 0.961
293.1747 2720875 422098 1688 11.95 1030 7.28 2185 15.5 0.988
257.0483 2577542 4130.58 750 5.28 316 221 1366 9.67 0.988
(T73.0557 2587702 4073.03 T55 T.08 79 0.55 3512 73,05 0.
213.9636 2352410 3890.96 645 4.54 631 4.44 778 5.48 0.995
1628364 2376150 320 14 134 093 79 0.55 1381 978 09
297.0798 2561181 3789.71 1170 8.27 679 4.78 1288 9.12 0.964
201.113 2299642 3706.57 1128 7.9 442 3.11 1696 12.01 0.984
310.1024 2335010 3645.29 1310 9. 1288 9.12 1624 115 0.983
241.0716 2141622 3536.71 2514 12.84 3514 2495 0.855
374.1311 2580159 3382.28 771 5 898 6.34 0.991
MS/MS:
9637 1168637.0 [M-H]"~ 134.0054 339689.4
9630 14790.0 M+1/15N 150.0001 77271.2
.9670 94077.2 M+1/13C 213.9607 632466.8
9595 104643.6 M+2/348S
9679 7060.2 M+2/13C
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Our Aim: Generating Insight from Measurements

Analytical methods

Data interpretation
Hypothesis generation

‘insight
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Our (Community) Challenge: Identifying Chemicals
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Our Toolkit: MassBank EU — Mass Spectra

http://massbank.eu/MassBank und https://github.com/MassBank/

MassBank Europe n’ MassBank.eu

Home Search Record Index Data Privacy Imprint MassBank ﬂ

Contributor top 10
Search Recorc @ Fac_Eng_Univ_Tokyo : 14.0%
[ @ RIKEN © 13.0%
[Famr Com 1lniv Thlaen - 44 nor | @ Eawaa - 12 0%
— ® © & GitHub, Inc. (US) | https://github.com/MassBank
\ | [Washinglon_siac o s 22 ccBank MoNA - MassBank of North America
. p Forked from sneumann/RMassBank . .
riken. Playground for experiments on the ¢ Submitter ngh Scores
[t /devel/bioc/html/RMassBank.html Name Avg. Score Spectra
News MegrR Y11 &3 @77 1 1
Q, Clayton Bloszies L 0. 0.0 & ¢ 4
Dear friends of MassBank, Q Makoto Arita % %Ak 254
Update 9 September 2020: The new MassBank data re MassBank-web ®  QPrasad Phapale % %k %k Kk 1,293
f : The web server application and direc
2/Ic:.ar:;ts'.pliiSbaur"LI;dEl;rzogpge.n 'el'?ver;iljfds; version is 2020.09 with th: web cerver 4 QRyoNakabayashi * %k Kk 8.655
. @iava ¥11 w5 Oe2 11 5 Q, Anjana Elapavalore % % & K K 7,299

>88’1OO Spectra 6 Q Kourosh Hooshmand L. 0.0 &t 20
"'16,500 Compounds MassBank-data 7 QBryan Roberts * %k %k Kk 37

Official repository of open data Mas: g Q CASMI Team % % % kI 648

>4 7 CO ntrl b uto rS library repository mass-spectro

9 Q, Philippe Kopplin L0 .0 0 61 903

Shell ¥23 %14 ®23 [1C 10 QEawagTeam % %k & F 11,894


http://massbank.eu/MassBank
https://github.com/MassBank/

Our Toolkit: PubChem — Finding the “*known unknowns”

https://pubchem.ncbi.nim.nih.gov/

m) National Library of Medicine

National Center for Biotechnology Information

PUb©hem About Blog Submit Contact

Explore Chemistry

Quickly find chemical information from authoritative sources

Browse COVID-19 data available in PubChem X

Try aspirin EGFR C9H804 57-27-2 Cl=CE=CE-CHE=—C InChl=1S/C3H60/c1-3(2)4/h1-2H3

D Use Entrez

o 2

Draw Structure Upload ID List Browse Data Periodic Table

1 1 1 M Compounds 2 87 M Substances 273 M Bioactivities 31 M Literature 7 5 6 Data Sources

See More Statistics ) Explore Data Sources » 48

Kim S, Chen J, Cheng T, et al. PubChem 2019 update: .... Nucleic Acids Res. 2019;47(D1):D1102-D1109. doi:10.1093/nar/gky1033
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Our Toolkit: MetFrag — Annotating/ldentifying Masses

IPB

MetFrag
{-: rag In silico fragmentation for computer assisted identification of metabolite mass spectra
Database Settings
Database: { PubChem ‘ = J Include references: [l Parent lon: [ ] { [M+H]+ ‘ x ‘ { Calculate J
Neutral Mass: 253.966126 | Search ppm: |5
Formula: [ ]
Identifiers: [ ]
 Retrieve Candidates |
» Candidate Filter & Score Settings
Fragmentation Settings & Processing
MS/MS Peak list
Mzppm: 5
90.97445 681 ~
106.94476 274
Mzabs: 0.001 110.02750 110
115.98965 95
117.98540 384
Mode: | M+H]+ W 124.93547 613
124.99015 146
125.99793 207
Tree depth: {2 - J 133.95592 777
143.98846 478
144.99625 352 ”
Group candidates i -
Show Spectrum

Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., 2016, DOI: 10.1186/s13321-016-0115-9



https://doi.org/10.1186/s13321-016-0115-9

MetFrag + PubChem + MS/MS only

Status: 2010

mz [M-H]~
213.9637

+ 5 ppm \\\\\\‘ Pub(jhen1

5 ppm

0.001 Da ~—__ m“.—ag

Ranked Candidates

Candidate Score Distribution

i S e MS/MS
o 134.0054 339689
o —‘\““‘-—~\ 150.0001 77271
00 213.9607 ©32466
e e e e 50
Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., 2016, DOI: 10.1186/s13321-016-0115-9



https://doi.org/10.1186/s13321-016-0115-9

Challenge: MetFrag + PubChem + MS/MS only

o MS/MS doesn'’t provide sufficient information alone ...

MetFragRL, PubChem 2016
MS/MS only (n=473)

0 20 40 60 80 100%
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Ruttkies et al. (2016) DOI: 10.1186/s13321-016-0115-9, Bolton & Schymanski (2020), DOI: 10.5281/zenodo0.3611238 & in prep.
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https://doi.org/10.5281/zenodo.3611238

MS/MS does not provide sufficient information alone...

m?fag Pub(Chem

Candidate Score Distribution
N

7

Sy

|
CH,
B Final Score

| MetFrag

1.2

1.0

Nicotine

/

0.8 1

0.6 4

Score

0.4 4

0.2

0.0 A

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Candidate Index

MetFrag + PubChem + Formula Search + https://massbank.eu/MassBank/RecordDisplay.jsp?id=EQ300804&dsn=Eawag



https://massbank.eu/MassBank/RecordDisplay.jsp?id=EQ300804&dsn=Eawag

éawag

aquatic research

salutiTns

IPB

MetFrag — MS/MS and MORE! (3

Status: 2016

Bé

References

mz [M-H]~ \IEPAM\ ox. Data

213.9637 Data Sources
* 5 ppm Pub@hem Exposure Info

MS-ready links

Elements: C,N, S
> ppn & 4
0.001 Da \ Literature ~ Patents

. -*reag;
o_? o \uspect Lists
OH
| QCTOFF IDENT
RT: 4.54 min ~

355 TnChI/RTs [ SEPA

. suspects m

MassBank of North America

n’ MassBank.eu MS/MS
P 134.0054 339689
: 150.0001 77271

W] ' AN S — 213.9607 632466
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Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., 2016, DOI: 10.1186/s13321-016-0115-9
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MetFrag + PubChem + MS/MS + Metadata

o Adding literature, references & RT boosts to ~71 % rank 1!

. Rank=3 Missing

( MetFragRL, PubChem 2016
MS/MS only (n=473)

MetFragRL, PubChem 2016
k MS/MS + Metadata (n=1298)

0 20 40 60 80 100%
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Ruttkies et al. (2016) DOI: 10.1186/s13321-016-0115-9, Bolton & Schymanski (2020), DOI: 10.5281/zenodo0.3611238 & in prep.
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Connecting multiple lines of evidence for identification

4 )
m?rag sill MassBank.eu o Pub@hem
suspects
\_ J
Candidate Score Distribution
5 g
P { (- Final Score \
‘-\._ | /\ S I MetFrag
3 - b — S | ExactSpectralSimilarity
w Nicotine B SuspectlistScore
§ 2 I FatentsCount

\E PubMedReferen ::ECc:uthj

600 800

1000 1200

1400

1600 1800 2000

Candidate Index

2200 2400 2600 2800 3000 3200

MetFrag + PubChem + Formula + MoNA + SusDat + Pat + Refs + https://massbank.eu/MassBank/RecordDisplay.jsp?id=EQ300804&dsn=Eawag
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Connecting multiple lines of evidence for identification

4 )

m?rag sl MassBank.eu o Pub@hem

suspects

Challenge: the growing number of candidates ...
Need: wide coverage and high efficiency!

Candidate Score Distribution

. )
. Candidates with high information content — i
s e
@ Candidates with low information content B pubedeerencecount

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Candidate Index

MetFrag + PubChem + Formula + MoNA + SusDat + Pat + Refs + https://massbank.eu/MassBank/RecordDisplay.jsp?id=EQ300804&dsn=Eawag



https://massbank.eu/MassBank/RecordDisplay.jsp?id=EQ300804&dsn=Eawag

The 111 million Pub@hem Challenge .. |[n+ ettt

~ PubChem Compound TOC 7 33,765,953 111 million ... OR ...
> Aarochemicslinormaton (1) 12,002 the most relevant / annotated?
» Biologic Description ? 4,539,532 .
» Biological Test Results ? 3 467,416 EnVII’OnmentBJ USG Case
» Biomolecular Interactions and Pathways ? 109,610 PUbChelete tlero 316 K

» Chemical and Physical Properties 7 237,729

o Exposomics Use Case:
» Classification ? 18,569,627 . .
» Diseases [3 PubChemlLite tierl: 360 K

» Drug and Medication Information ? 415955
» Food Additives and Ingredients  ? 7,447

» Identification ? 5,746

January 14, 2020 [ Dataset | open Access | ‘ ‘

» Information Sources ? 20,654,780

PubChemlLite tier0 and tierT

(® Bolton, Evan; (» Schymanski, Emma

» Literature ? 1,668,437

» Names and |dentifiers ? 1,310,169 - : . . : i Communities
i LCSB Environmental - Remove
» Patents 2?2 22,144,888 Dilabase Seltngs Cheminformatics
Group
» Pharmacology and Biochemistry 2 130,367
Database: lPubChemLite_‘14Jan2020 = ‘
» Related Records ? 5,297,096 '
» Safety and Hazards ? 125,607 Neutral Mass: 162.11576 S h k] 503 482
: eultra ass _ earch ppm - @ views & downloads
» Spectral Information ? 761,478 See more details...
Formula: | C10H14N2 |

» Structures ? 5026,225
» Toxicity ? 114,554 |dentifiers: ( |

» Use and Manufacturing ? 108,745 -
Retrieve Candidates 37 Candidates *ra g
Chemical Safety ? 122,739 v

57

Bolton & Schymanski (2020). PubChemlL.ite tierO and tierl (Version PubChemLite.0.2.0) DOI: 10.5281/zenod0.3611238
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PubChemLite: tailor-made database + metadata

4 )

m?rag sl MassBank.eu o Pub@hem

suspects

Candidate Score Distribution

. . } 7 v (- Final Score \
=

s | B MetFrag

[ _ T T CH3
- e \ I ExactSpectralSimilarity
4. Nicotine I SuspectlistScore

o
- I AnnoTypeCount
5 N I Il Patent_Count
o ] ) E PubMed_Count J
. — >(o_o .0 0 0 0 0 0 0 0 0 0 0 ¢4 s s 4 o * o : . ' '
— - T —=_2 9% 0 ¢ % e o
0 ) .
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Candidate Index

MetFrag+PubChemLite+Formula+MoNA+SusDat+Pat+Refs+Anno + https://massbank.eu/MassBank/RecordDisplay.jsp?id=EQ300804&dsn=Eawag
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How does PubChemlLite perform?

m U.S. National Library of Medicine

National Center for Biotechnology Information

o 111 M => 300 K ... how does this influence performance?

l. Rank=1 I . Rank=2 . Rank=3-5 . Rank=5
r —

MetFragRL, PubChem 2016
MS/MS only (n=473)

Missing

MetFragRL, PubChemLite tierO
MS/MS, Ref, Patents, FPSum (n=1298)

MetFragRL, PubChem 2016
\ MS/MS + Metadata (n=1298)

MS/MS, Ref, Patents, FPSum (n=1298)
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Ruttkies et al. (2016) DOI: 10.1186/s13321-016-0115-9, Bolton & Schymanski (2020), DOI: 10.5281/zenod0.3611238 & in prep
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Schymanski et al. (in prep.) https://www.norman-network.com/nds/SLE/


https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/SLE/
https://zenodo.org/communities/norman-sle
https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101

NORMAN-SLE on Zenodo

https://zenodo.org/communities/norman-sle/

NORMAN Suspect L1

Recent uploads
Search NORMAN Suspect List Exchange

S61 | UJICCSLIB | Collision Cross Sectior

(%) Celma, Alberto; () Fabregat-Safont, David; (&) Ibafe
Félix; (& Sancho, Juan Vicente,

This is the collection associated with list S61 UJICCSI
https://www.norman-network.com/nds/SLE/ A list of

compounds (both positive and negative ionization mo
instrument) pr

Uploaded on July 30, 2020

2 more version(s) exist for this record

& Communities

NORMAN Suspect
List Exchange

1,049

@& views

See more details...

Publication date:
November 21, 2019

DOI:

DOI 10.5281/zenodo.3966751

Keyword(s):

Collision Cross Section | lon Mobility
Svpecsorsrng | msws ] ccs

Related identifiers:
Supplement to
https://www.norman-network.com
/nds/SLE/

% Remove

1,166

& downloads

Eﬂable Accessible |nteror.Jerable Reusable
9%
JORLIE: -3 %

& emma.schymanski@unillu |

NORMAN Suspect List
Exchange

This is a public repository (under
development) for suspect lists currently
available on the NORMAN Suspect List
Exchange: https:/www.norman-
network.com/?g=suspect-list-exchange

Read more

Curated by:
schymane

Curation policy:
This community will collect data that is
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NORMAN-SLE on Pub(€hem U5, NatiorlLrayof edicne

') © @& https://pubchem.ncbi.nim.nih.gov/source/NORMAN Suspect List Exchange e @ W v INn O ©

m U.S. National Library of Medicine

National Center for Biotechnology Information

Pub@hem NORMAN Suspect List Exchange s
o NORMAN Network (c/o Emma ~ I etherlandé er:;":'
Organization: : Map Satellite e L J
Schymanski) Dortmund
Antwerp Esseno ©
Category: R h and Devel t o
ategory esearch and Developmen Bru%sels Colggne Germa n
https://www.norman-network.com/ ollille )
URL: Belgium
nds/SLE/ Frankfurt
[e]
Contact Name: Emma Schymanski Lux't}‘o'urg
Manréheim Nuremb
6 avenue du Swing, Belvaux, ;
Address: :
Luxembourg, 4367 P%"S Stuttgart @
o
Data Source ID: 23819 e Augsburgo \.
144,980 Live Substances A 4
) ) Tours Zirich <
Data in PubChem: 11,208 Annotations o o
Liechte =
1 Classification G Qwit7zarland \‘\’H/"L/ &
o I A Mapdata ©2020 GeoBasis-DE/BKG (©2009), Google, Inst. Geogr. Nacional = Terms of Use
Last Updated: 2020/08/01
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Huge thanks to Evan Bolton, Jian Zhang (Jeff), Paul Thiessen, Ben Shoemaker and the PubChem team for this!



NORMAN-SLE on Pub(€hem [ Ui, o) vy o e

o https://pubchem.ncbi.nim.nih.gov/classification/#hid=101

PubChem Classification Browser Help

Browse PubChem data using a classification of interest, or search for PubChem records annotated with the desired classification/term (e.g., MeSH:
phenylpropionates, or Gene Ontology: DNA repair). More...

Select classification Search selected classification by

NORMAN Suspect List Exchange ~ Keyword v | Enter desired search term Search

Classification description (from NORMAN Suspect List Exchange)

The NORMAN Suspect List Exchange (NORMAN-SLE) is a central access point for NORMAN members (and others) to find suspect lists relevant for their environmental
monitoring questions. More...

Data type counts to display Display zero count nodes?

Browse NORMAN Suspect List Exchange Tree
v NORMAN Suspect List Exchange Classification ? # 130,864
» S13 | EUCOSMETICS | Combined Inventory of Ingredients Employed in Cosmetic Products (2000) and Revised Inventory (2006) ? 4,131
» S25| OECDPFAS | List of PFAS from the OECD ? 3,680
» S50 | CCSCOMPEND | The Unified Collision Cross Section (CCS) Compendium ? 647
» S60 | SWISSPEST19 | Swiss Pesticides and Metabolites from Kiefer etal 2019 7 1,354
» S61 | UJICCSLIB | Collision Cross Section (CCS) Library from UJl 2 574

» S66 | EAWAGTPS | Parent-Transformation Product Pairs from Eawag ? 258


https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101

Missing Entries in PubChemlLite [NIH) N

o Assessing the missing entries ...

. Rank=1 . Hank=2 . Rank=3-3 . Rank=3 Missing

PubChemlLite tierO 18 Nov 2019
MS/MS, Ref, Patents, FPSum (n=977)

PubChemlLite tier0 14 Jan 2020
MS/MS, Ref, Patents, Anno (n=977)

0% 20 40 60 80 100

¥ NORMAN Suspect List Exchange Classificaton ? » 117,037
» 513 | EUCOSMETICS | Combined Inventory of Ingredients Employed in Cosmetic Products (2000) and
» S525| OECDPFAS | List of PFAS fromthe OECD ? 3,680

» S50 | CCSCOMPEND | The Unified Collision Cross Section (CCS) Compendium ? 647

» S60 | SWISSPEST19 | Swiss Pesticides and Metabolites ? 1,358

» S61 | UJICCSLIB | Collision Cross Section (CCS) Library fromUJI 2 574

[ » S66 | EAWAGTPS | Parent-Transformation Product Pairs from Eawag ? 258

» S68 | HSDBTPS | Transformation Products Exiracted from HSDB Content in PubChem 2 97

64

Ruttkies et al. (2016) DOI: 10.1186/s13321-016-0115-9, Bolton & Schymanski (2020), DOI: 10.5281/zen0do0.3611238 & in prep.



https://link.springer.com/article/10.1186/s13321-016-0115-9
https://doi.org/10.5281/zenodo.3611238

Transformation Products: Filling the Data Gaps!

Pub@hem NORMAN Suspect List Exchange

~ NORMAN Suspect List Exchange Classification 2 2 417,037

» S13 | EUCOSMETICS | Combined Inventory of Ingredients Employed in Cosmetic Products (2000) and Revised Inventory (2006) ? 4,122

» S25| OECDPFAS | List of PFAS from the OECD ? 3,680

» S50 | CCSCOMPEND | The Unified Collision Cross Section (CCS) Compendium ? 647

» S60 | SWISSPEST19 | Swiss Pesticides and Metabolites ? 1,358

» S61 | UJICCSLIB | Collision Cross Section (CCS) Library from UJI 2 574

» S66 | EAWAGTPS | Parent-Transformation Product Pairs from Eawag ? 258

» S68 | HSDBTPS | Transformation Products Extracted from HSDB Content in PubChem ? 97

» S69 | LUXPEST | Pesticide Screening List for Luxembourg ? 386 v
» S72 | NTUPHTW | Pharmaceutically Active Substances from Pub@hem Terbuthylazine (Compound)

S00 | SUSDAT | Merged NORMAN Suspect List: SusDat 7 .

8.5 Transformations @@
S01 | MASSBANK | NORMAN Compounds in MassBank EU |

Page 3 of 25 i View More Rows & Details [7] ¥
S02 | STOFFIDENT | HSWT/LfU STOFF-IDENT Database of y F9¢ 3 0f 25 ftems  View More Rows & Details [ = Download
S03 | NORMANCT15 | NORMAN Collaborative Trial Targets an SORT BY Please Choose One v
S04 | UJIBADE | Target List from UJI used in Bade et al 2015 Predecessor Predecessor Transformation  Successor Successor Name Evidence DOI

Image Name Image

S05 | KWRSJERPS | KWR Drinking Water Suspect List 2 4

S06 | ITNANTIBIOTIC | Antibiotic List from the ITN MSCA ANS'

Mammalian 6-Chloro-1,3,5-
Terbuthylazine . triazine-2,4- 10.5281/zenodo.382]
metabolism diamine

S07 | EAWAGSURF | Eawag Surfactants Suspect List 2 13

S09 | PFASTRIER | PFAS Suspect List of fluorinated substance

S08 | ATHENSSUS | University of Athens Surfactants and Susg
%l, Terbutylazine Deethylation %‘L ;I'ieerst;:;c]yyllazinef 10.1007/513361-017-



NORMAN-SLE on Pub(€hem [ Ui, o) vy o e

Pub@hem Terbuthylazine (Compound)

Microbiocides, Algicides, Herbicides
S69 | LUXPEST | Pesticide Screening List for Luxembourg | DOI:10.5281/zenodo.3862688

» NORMAN Suspect List Exchange

Pesticides -> Herbicides -> Triazine herbicides -> Chlorotriazine herbicides
S66 | EAWAGTPS | Parent-Transformation Product Pairs from Eawag | DOI:10.5281/zenodo.3754448

» NORMAN Suspect List Exchange

7.2 Agrochemical Transformations @G

Terbutylazine has known environmental transformation products that include Terbutylazine-2-hydroxy,
Terbutylazine-desethyl, and Terbutylazine-desethyl-2-hydroxy.

S66 | EAWAGTPS | Parent-Transformation Product Pairs from Fawag | DOI:10.5281/zenodo.3754448

» NORMAN Suspect List Exchange

Terbutylazine has known environmental transformation products that include CSAA036479, CSAA04949,
CSCD648241, CSCD692760, GS31398, MT1, GS 26379, MT13, GS 23158, Terbutylazine metabolite MT14,

Terbutylazine metabolite MT23, and Terbutylazine metabolite MT24. 66

S60 | SWISSPEST19 | Swiss Pesticides and Metabolites from Kiefer et al 2019 | DOI:10.5281/zenodo.3544759



Missing Entries in PubChemlLite [NIH) N

o Assessing the missing entries ...

. Rank=1

Missing

PubChemlLite tierO 18 Nov 2019
MS/MS, Ref, Patents, FPSum (n=977)

PubChemlLite tier0 14 Jan 2020
MS/MS, Ref, Patents, Anno (n=977)

PubChemlLite tier0 22 May 2020
MS/MS, Ref, Patents, Anno (n=977)

PubChemlLite tier0 12 Jun 2020
MS/MS, Ref, Patents, Anno (n=977)

0% 20 40 60 80 100

¥ NORMAN Suspect List Exchange Classificaton ? » 117,037

» 513 | EUCOSMETICS | Combined Inventory of Ingredients Employed in Cosmetic Products (2000) and
» S525| OECDPFAS | List of PFAS fromthe OECD ? 3,680

» S50 | CCSCOMPEND | The Unified Collision Cross Section (CCS) Compendium ? 647

» S60 | SWISSPEST19 | Swiss Pesticides and Metabolites ? 1,358

» S61 | UJICCSLIB | Collision Cross Section (CCS) Library fromUJI 2 574

» S66 | EAWAGTPS | Parent-Transformation Product Pairs from Eawag ? 258

» S68 | HSDBTPS | Transformation Products Exiracted from HSDB Content in PubChem 2 97
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Ruttkies et al. (2016) DOI: 10.1186/s13321-016-0115-9, Bolton & Schymanski (2020), DOI: 10.5281/zen0do0.3611238 & in prep.
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Jessy Krier (2020) Master’s Thesis, defended July 2020. Figure 34.



Suspect Screening for Lux-Relevant Pesticides

Sampling Extraction LC separation HRMS/MS

386 :'mi?ue Suspect List
— pesticides

S69 | LUXPEST | Pesticide Screening List for

[ Y
SUSPECIS < /Ms annotaftio>

with MetFrag

= Putative
( unique :
pesticides . suSPECt(S,)
[ identification
Y I’ Y

Level 1 36 pesticides at Level 2a (MoNA>0.9)

© Krier Jessy
Jessy Krier (2020) S69 | LUXPEST, Zenodo. http://doi.org/10.5281/zenodo.3862689 69

Jessy Krier (2020) Master’s Thesis, defended July 2020. Figure 8
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Data-Driven TP/Metabolite Search

Sampling Extraction LC separation HRMS/MS

1 ( 181 unique 2
( ) 386 “"'q“e Suspect List {transformatlor) ( )
pesncldes produm

4* Pub(Clhem

9.7 Transformations

/MS annotation . .
mthMetPrag 9.3 Metabolism/Metabolites
= Putative 135 unique
(Upesiciaes )| _ suspect(s)  {ransiomat
[ identification At
|
v . v
Level 1 36 pesticides at Level 2a (MoNA>0.9)
© Krier Jessy
70

Jessy Krier (2020) Master’s Thesis, defended July 2020. Figure 8.



Literature Mining for Metabolites / TPs — and Curation

Pub@hem Terbuthylazine (Compound)

8.3 Metabolism/Metabolites

® 4

Metabolism of terbuthylazine in rats is similar to other chloro-s-triazine herbicides. The major routes of

metabolism are hydrolysis of the chlorine moiety and mono- or didealkylation. Hydroxylation of one or

both of the dealkylated amine groups may also occur.

USEPA; Reregistration Eligibility Decision (RED) Database for Terbuthylazine (5915-41-3). EPA 738-R-95-005 p.12 (March

1995). Available from, as of October 11, 2012: http.//www.epa.gov/pesticides/reregistration/status.htm

» Hazardous Substances Data Bank (HSDB)

Urine and feces contained up to 25 and 15 identified metabolites, re
Degradation of the triazine ring did not occur. Ammeline and amme
dealkylated/hydroxylated metabolites common to all triazines, were

USEPA; Reregistration Eligibility Decision (RED) Database for Terbuthylazine (.
1995). Available from, as of October 11, 2012: http.//www.epa.qgov/pesticides/

» Hazardous Substances Data Bank (HSDB)

In mammals, following oral administration, ...a de-ethyl metabolite fc
of products formed by oxidation of one methyl group of the tert-but

Tomlin CDS, ed. Terbuthylazine (5915-41-3). In: The e-Pesticide Manual, Versi
Protection Council

» Hazardous Substances Data Bank (HSDB)

https://www.simolecule.com/cdkdepict/depict.html

| Color on White | ‘ No Annotation

v ‘ |Chira| Hydrogens (smart) ~ ‘ ‘ Do Not Abbreviate v

Terbutylazine CID:22206

OH

A,
~ A X

2-hydroxy-terbutylazine CID:135495928

(hydroxy-t-butyl)-Terbutylazine CID:779516


https://www.simolecule.com/cdkdepict/depict.html

o

suspects Pub@hem

Living Data Connections

Upload Communities & emma.schymanski@unilu |«

June 11,2020

S68 | HSDBTPS | Transformation Products
Extracted from HSDB Content in PubChem

LCSB-ECI; Krier, Jessy; {® Schymanski, Emma; PubChem Team; (& Bolton, Evan; (& Thiessen, Paul; (® Zhang, Jeff

New version

& Communities

LCSB Environmental

This is the collection § 0 File Edit View Repository Branch Help oup
PubChem on the NOH ;
~ Fetch origin ist

(- Current repository P Current branch
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HSDB (Hazardous Sul b Nobrenches fo compere 8.5 Transformations (A
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=* Emma Schymanski » May 28, 2020 6—methy|su|far1y|—
Update PCLite_eval_supportR Terbutryn Mammalian 1.3,5-triazin- 10.1002/bms.1200050¢
o ) metabolism 2-yllamino]-
. Emma Schymanski « May 25, 2020 hvl .
~ k. 27met ylpropanoic
Update user_PClite_eval.R acid

=* Emma Schymanski « May 20, 2020

2-[[4-(Ethylamino)-

13450 l:l[i:date PClite_eval_support.R Efmethylsuﬁanyk
) ) ) Terbutryn Ma{nlr;’nai!ian ;,_3,|?ftri.azir]1: 10.5281/zenodo.38274
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LCSB-ECI & PubChem Team. DOI 10.5281/zenodo.3890392
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Pesticides & TPs over time (tent. IDs) ‘*52
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Jessy Krier (2020) Master’s Thesis, defended July 2020. Modified from Figure 33.



More Examples? Thirdhand Smoke (THS) in Dust

Database Settings
«®
*rag
|CompT0x_0?March19_Srr‘ v J

Database:
PubChemlLite 14Jan2020 tier0 ~
Neutral Mass: PubChemLite 14Jan2020 tier1
+ HBM4EU_CECscreen_MF_1Jul2020

Formula:
NORMANSusDat 20Nov2019

Compiox_07March19. SmokingMetaData
WormdJam_10Sept19
Retrieve Candidattﬁ Zebrafish_13Nov2019_Beta

Identifiers:

Candidate Score Distribution

7 A~
g ' (|:HS — i M Final Score
® /_ B MetFrag
51 je= _—
Nicotine ExactSpectralSimilarity
41 B CIGARETTES
@ — )
o 3 B FubMedNeuro
k] -
2 B SRM25850UST
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0. \
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Candidate Index 74

Schymanski, EL, Torres, S, & Ramirez, N. (2020). Thirdhand Smoke in House Dust. Zenodo. http://doi.org/10.5281/zen0d0.3613472



http://doi.org/10.5281/zenodo.3613472

New MetaData: Disease-Specific Reference Counts

S37 LitMinedNeuro: DOI: 10.5281/zenod0.3242298

0‘] .
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. - W wn = 7] r— Q Q
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<
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Schymanski et al. DOI: 10.1039/C9EMO00068B (Perspective) Environ. Sci.: Processes Impacts, 2020.
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o] (o

Future Perspectives

o Rapid classification / interpretation of large collections

No of Components 95, 185 or 365 substances/mixture
mix504

Surfactants- M e é ‘ g =

PFAS -

Plasticizers - [ -‘i ‘ ‘ ’ ’

®  Food additives - I /
@
(O  Personal care-
Known use- .
Pharmaceuticals =
Pesticides =
1 1 [ | 1 1 [ |
0 10 20 30 40 50
mix508
PFAS -
Surfactants- H
Plasticizers = Nmmm
@ Food additives - I
[0
, , O  Personal care -
ENTACT: Elin Ulrich et al. 2018, _
https://www.epa.gov/sites/production/files/2018- Pharmaceuticals =
06/documents/comptox_cop_6-28-18.pdf and Known use- I

Ulrich, EM, et al. (2019) Anal Bioanal Chem.
DOI: 10.1007/s00216-018-1435-6

Classification Figures:
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Anjana Elapavalore, ECI (Master’s thesis) No of Components


https://www.epa.gov/sites/production/files/2018-06/documents/comptox_cop_6-28-18.pdf
https://doi.org/10.1007/s00216-018-1435-6

Next Big Challenge: Connection to Effects!

A. Chemical Analysis B. Bioanalytical tools

)

Target
analysis
Cytotoxicity
(all chemicals,
with

Suspect different

screening potencies) Rezepto(;-
mediate

. effect

Adaptive
stress
response

m/z=270.0763
m/z=211.0831 m/z=319.1654

m/z=158.9782
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Modified from Escher, Stapleton, Schymanski (2020). Science. DOI: 10.1126/science.aay6636



http://science.sciencemag.org/content/367/6476/388

Take Home Messages

RT: 0.00 - 2451

1007 3.61

o Challenge:
Increase % identified
Improve interpretation

473 633 824 748
5.5

Relative Abunda
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More? Check out our presentations at: https://zenodo.org/communities/lcsb-eci/
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Take Home Messages

o Challenge:
Increase % identified
Improve interpretation

Pub@hem Terbuthylazine (Compound)

o “Environmental Cheminformatics’ is ...

8.5 Transformations

o Capturing expert knowledge Kol o Yommtm Ry

l!]) metabolism
Machine and human readable .
. . . . E =
o Connecting this to environmental observations
. . . ﬂ‘.\‘ A Terbutylazine  Deethylation :i_f:‘-
o ldentifying and closing knowledge gaps b f

O Supporting interpretation of complex data

uuuuuuuu
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More? Check out our presentations at: https://zenodo.org/communities/lcsb-eci/
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Take Home Messages

473 833 824

o Challenge:
Increase % identified
Improve interpretation

Pub@hem Terbuthylazine (Compound)

o “Environmental Cheminformatics’ is ...

8.5 Transformations
o Capturing expert knowledge T e MG EIT
Machine and human readable

28 pgb!mm %‘:IL/
o Connecting this to environmental observations |
tﬂ?k/ Deethylation :i_ﬁ;.\"'

o ldentifying and closing knowledge gaps

O Supporting interpretation of complex data

o Finally ... information in the public domain helps everybody d__ B

nnnnnnnnn

o You never know when it will help you © H L B
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More? Check out our presentations at: https://zenodo.org/communities/lcsb-eci/
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