10

11

12

13

14

15

16

17

18

19

20

21

patRoon: Open source software platform for environmental
mass spectrometry based non-target screening

Rick Helmus®", Thomas L. ter Laak®®, Annemarie P. van Wezel?, Pim de Voogt® and Emma L.

Schymanski©

? Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box
94240, 1090 GE Amsterdam, The Netherlands

b KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430
BB Nieuwegein, The Netherlands

 Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367
Belvaux, Luxembourg.

* Corresponding author: r.helmus@uva.nl

Abstract

Mass spectrometry based non-target analysis is increasingly adopted in environmental
sciences to screen and identify numerous chemicals simultaneously in highly complex
samples. However, current data processing software either lack functionality for
environmental sciences, solve only part of the workflow, are not openly available and/or are
restricted in input data formats. In this paper we present patRoon, a new R based open-
source software platform, which provides comprehensive, fully tailored and straightforward
non-target analysis workflows. This platform makes the usage, evaluation and mixing of

well-tested algorithms seamless by harmonizing various commonly (primarily open)

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

software tools under a consistent interface. In addition, patRoon offers various functionality
and strategies to simplify and perform automated processing of complex (environmental)
data effectively. patRoon implements several effective optimization strategies to
significantly reduce computational times. The ability of patRoon to perform a
straightforward and effective non-target analysis was demonstrated with real-world
environmental samples, showing that patRoon makes comprehensive (environmental) non-

target analysis readily accessible to a wider community of researchers.

Keywords

High resolution mass spectrometry, compound identification, non-target analysis,

computational workflows

Introduction

Chemical analysis is widely applied in environmental sciences such as earth sciences,
biology, ecology and environmental chemistry, to study e.g. geomorphic processes,
(chemical) interaction between species or the occurrence, fate and effect of chemicals of
emerging concern in the environment. The environmental compartments investigated
include air, water, soil, sediment and biota, and exhibit a highly diverse chemical
composition and complexity. The number and quantities of chemicals encountered within
samples may span several orders of magnitude relative to each other. Therefore, chemical
analysis must discern compounds at ultra-trace levels, a requirement that can be largely met
with modern analytical instrumentation such as liquid or gas chromatography coupled with

mass spectrometry (LC-MS and GC-MS). The high sensitivity and selectivity of these

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

techniques enable accurate identification and quantification of chemicals in complex sample

materials.

Traditionally, a ‘target analysis’ approach is performed, where identification and
guantitation occur by comparing experimental data with reference standards. The need to
pre-select compounds of interest constrains the chemical scope of target analysis, and
hampers the analysis of chemicals with (partially) unknown identities such as transformation
products and contaminants of emerging concern (CEC). In addition, the need to acquire or
synthesize a large number of analytical standards may not be feasible for compounds with a
merely suspected presence. Recent technological advancements in chromatography and
high resolution MS (HRMS) allows detection and tentative identification of compounds
without the prior need of standards [1]. This ‘non-target’ analysis (NTA) approach is
increasingly adopted to perform simultaneous screening of up to thousands of chemicals in
the environment, such as finding new CEC [1-6], identifying chemical transformation

(by)products [7-12] and identification of toxicants in the environment [13-16].

Studies employing environmental NTA typically allow the detection of hundreds to
thousands of different chemicals [17, 18]. Effectively processing such data requires
workflows to automatically extract and prioritize NTA data, perform chemical identification
and assist in interpreting the complex resulting datasets. Currently available tools often
originate from other research domains such as life sciences and may lack functionality or
require extensive optimization before being suitable for environmental analysis. Examples

include handling chemicals with low sample-to-sample abundance, recognition of

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

halogenated compounds, usage of data sources with environmentally relevant substances,
or temporal and spatial trends. Furthermore, existing tools solve only part of the workflow,
generally use differing and incompatible data formats and employ different user interfaces.
Hence, the need to learn, combine, optimize and sometimes develop or adapt various
specialized software tools, and perform tedious transformation of datasets currently hinders
further adoption of NTA, especially in more routine settings lacking appropriate in-house

computational expertise.

An NTA workflow can be generalized as a four step process (Figure 1) [1]. Firstly, data from
LC or GC-HRMS is either acquired or retrieved retrospectively, and pre-treated for
subsequent analysis (Figure 1a). This pre-treatment may involve conversion to open data
formats (e.g. mzML [19] or mzXML [20]) to increase operability with open-source software,
re-calibration of mass spectra to improve accuracy and centroiding [21] or other raw data
reduction steps to conserve space such as trimming chromatographs or filtering mass scans
(e.g. with the functionality from the ProteoWizard suite [22]). Secondly (Figure 1b), features
with unique chromatographic and mass spectral properties (e.g. retention time, accurate
mass, signal intensity) are automatically extracted and features considered equivalent
across sample analyses are grouped to allow qualitative and (semi-) quantitative comparison
further down the workflow. Thirdly (Figure 1c), the feature dataset quality is refined, for
instance, via rule-based filters (e.g. minimum intensity and absence in sample blanks) and
grouping of features based on a defined relationship such as adducts or homologous series
(e.g. “componentization”). Further prioritization during this step of the workflow is often
required for efficient data analysis, for instance, based on chemical properties (e.g. mass

4

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

defect and isotopic pattern), suspected presence (i.e. “suspect screening”) or intensity
trends in time and/or space (e.g. reviewed in [1]). Finally (Figure 1d), prioritized features are
annotated, for instance by assigning chemical formulae or compounds from a chemical
database (e.g. PubChem [23] or CompTox [24]) based on the exact mass of the feature. The
resulting candidates are ranked by conformity with MS data, such as match with theoretical
isotopic pattern and in silico or library MS fragmentation spectra, and study-specific

metadata, such as number of scientific references and toxicity data [1, 25].

Various open and closed software tools are already available to implement (parts of) the
NTA workflow. Commercial software tools such as MetaboScape [26], UNIFI [27], Compound
Discoverer [28] and ProGenesis QI [29] provide a familiar and easy to use graphical user
interface, may contain instrument specific functionalities and optimizations and typically
come with support for their installation and usage. However, they are generally not open-
source or open-access and are often restricted to proprietary data formats. This leads to
difficulties in data sharing, as exact algorithm implementations and parameter choices are
hidden, while maintenance, auditing or code extension by other parties is often not
possible. Many open-source or open-access tools are available to process mass
spectrometry data (e.g. [30, 31] and summarized in Table 1). While many tools were
originally developed to process metabolomics and proteomics data, approaches such as
XCMS [32] and MZmine [33] have also been applied to environmental NTA studies [6, 34].
Many open tools are easily interfaced with the R statistical environment [35] (Table 1).
Leveraging this open scripting environment inherently allows defining highly flexible and

reproducible workflows and increases the accessibility of such workflows to a wider

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

audience as a result of the widespread usage of R in data sciences. Various open tools
overlap in functionality (Table 1), and are implemented with differing algorithms or
employing different data sources. As a consequence, tools may generate different results, as
has been shown when generating feature data [36—40] or performing structural annotations
[25, 41]. Thus, a flexible platform to combine and evaluate various algorithms that is
independent of closed MS vendor input data formats is desired in order to tailor an optimal

NTA workflow to the particular study types and methodological characteristics.

Table 1. Overview of commonly used open-source or open-access software tools to implement NTA workflows.

<Table from end of this document should be placed here>

Here, we present an R based open-source software platform called patRoon (‘pattern’ in
Dutch) providing comprehensive NTA data processing from HRMS data pre-treatment,
detection and grouping of features, through to molecular formula and compound
annotation. In patRoon, various (primarily open) tools commonly used for NTA data
processing are harmonized within a consistent and easy to use interface. In addition, new
functionality is implemented that simplify and improve NTA data processing, such as
automated chemical annotation, visualization and reporting of results, comparing and
combining results from different algorithms, and data reduction and prioritization
strategies. The architecture of patRoon is designed to be extendible in order to

accommodate for rapid developments in the NTA research field.

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Implementation

The implementation section starts with an overview of the patRoon workflows. Subsequent
sections provide details on additional functionality implemented by patRoon which relate to
data processing, annotation, visualization and reporting. Finally, a detailed description is
given of the software architecture. patRoon is then demonstrated in the Results and
discussion section. The software tools and databases used for the implementation of

patRoon are summarized in Additional file 1.

Workflow in patRoon

patRoon encompasses a comprehensive workflow for HRMS based NTA (Figure 2). All steps
within the workflow are optional and the order of execution is largely customizable. Some
steps depend on data from previous steps (blue arrows) or may alter or amend data from
each other (red arrows). The workflow commonly starts with pre-treatment (PT) of raw
HRMS data. Next, feature data is generated, which consists of finding features (FTS) in each
sample, an optional retention time alignment step, and then grouping into “feature groups”
(FG). FTS and FG may be preceded by automatic parameter optimization (PO), or followed
by suspect screening (SUS). The feature data may then finally be used for componentization
(CMT) and/or annotation steps, which involves generation of MS peak lists (MSPL), as well
as formula and compound annotations (FOR/COM). At any moment during the workflow,
the generated data may be inspected, visualized and treated by e.g. rule based filtering.

These operations are discussed in the next section.

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

Several commonly used open software tools, such as OpenMS [52], XCMS [32], MetFrag [48]
and SIRIUS [54-58], and closed software tools, such as Bruker DataAnalysis [61] (chosen due
to institutional needs), are interfaced to provide a choice between multiple algorithms for
each workflow step (Additional file 3: Table S1). Customization of the NTA workflow may be
achieved by freely selecting and mixing algorithms from different software tools. For
instance, a workflow that uses XCMS to group features allows that these features originate
from other algorithms than those supported by XCMS (e.g. those from OpenMS), a situation

that would require tedious data transformation when XCMS is used standalone.

To ease parameter selection over the various feature finding and grouping algorithms, an
automated feature optimization (FO) approach was adopted from the isotopologue
parameter optimization (/IPO) R package [62], which employs design of experiments to
optimize LC-MS data processing parameters [63]. IPO was integrated in patRoon, and its
code base was extended to (a) apply to other feature finding and grouping algorithms
supported by patRoon (i.e. XCMS, OpenMS and enviPick), (b) support isotope detection with
OpenMS, (c) perform optimization of qualitative parameters and (d) provide a consistent

output format for easy inspection and visualization of optimization results.

In patRoon, componentization (CMT) refers to consolidating different (grouped) features
with a prescribed relationship, which is currently either based on (a) highly similar elution
profiles (i.e. retention time and peak shape), which are hypothesized to originate from the
same chemical compound (based on [53, 59]), (b) participation in the same homologous

series (based on [64]) or (c) the (normalized) intensity profiles across samples (based on [4,

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

5, 65]). Components obtained by approach (a) typically comprise adducts, isotopologues
and in-source fragments, and the supported algorithms in patRoon annotate these using
chemical rules. Approach (b) uses the nontarget R package [44] to calculate series from
aggregated feature data from replicates. The interpretation of homologous series between
replicates is assisted by merging series with overlapping features in cases where this will not
yield ambiguities to other series. If merging would cause ambiguities, instead links are
created that can then be explored interactively and visualized by a network graph generated

using the igraph [66] and visNetwork [67] R packages (see Additional file 2: Figure S1).

During the annotation step, molecular formulae and/or chemical compounds are
automatically assigned and ranked for all features or feature groups. The required MS peak
list (MSPL) input data are extracted from all MS analysis data files and subsequently pre-
processed, for instance, by averaging multiple spectra within the elution profile of the
feature and by removing mass peaks below user-defined thresholds. All compound
databases and ranking mechanisms supported by the underlying algorithms are supported
by patRoon and can be fully configured. Afterwards, formula and structural annotation data
may be combined to improve candidate ranking and manual interpretation of annotated
spectra. More details are outlined in the section “MS peak list retrieval, annotation and

candidate ranking”.

Data reduction, comparison and conversion

Various rule-based filters are available for data-cleanup or study specific prioritization of all

data obtained through the workflow (see Table 2), and can be inverted to inspect the data

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

that would be removed (i.e. negation). To process feature data, multiple filters are often
applied, however, the order may influence the final result. For instance, when features were
first removed from blanks by an intensity filter, a subsequent blank filter will not properly
remove these features in actual samples. Similarly, a filter may need a re-run after another
to ensure complete data clean-up. To reduce the influence of order upon results, filters for
feature data are executed by default as follows:

1. an intensity pre-filter, to ensure good quality feature data for subsequent filters;

2. filters not affected by other filters, such as retention time and m/z range;

3. minimum replicate abundance, blank presence and ‘regular’ minimum intensity;

4. repetition of the replicate abundance filter (only if previous filters affected results);

5. other filters that are possibly influenced by prior steps, such as minimum abundance

in feature groups or sample analyses.

Note that the above scheme only applies to those filters requested by the user, and the user

can apply another order if desired.

Further data subsetting allows the user to freely select data of interest, for instance,
following a (statistical) prioritization approach performed by other tools. Similarly, features
that are unique or overlapping in different sample analyses may be isolated, which is a
straightforward but common prioritization technique for NTA studies that involve the

comparison of different types of samples.

10

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Table 2. Major rule-based filtering functionality implemented in patRoon.

Features Annotation Processing

Filter functionality FIS FG MSPL FOR COM CMT

Intensity threshold X X
Feature properties’ X
Max intensity deviation across replicates
Minimum intensity above blank

Minimum size or abundance

Top most abundant/highest scoring X X X
Minimum scoring X X
Annotation? X X X
Organic matter rules® X

xX X X X X

FTS: features; FG: feature groups; MSPL: MS peak lists; FOR: formulae; COM: compounds; CMT: components; (1)
Retention time, chromatographic peak width, m/z and mass defect range; (2) e.g. adducts, isotopologues,
formula composition, neutral loss; (3) expected formula composition based on [68-71].

Data from feature groups, components or annotations that are generated with different
algorithms (or parameters thereof) can be compared to generate a consensus by only
retaining data with (a) minimum overlap, (b) uniqueness or (c) by combining all results (only
(c) is supported for data from components). Consensus data are useful to remove outliers,
for inspection of algorithmic differences or for obtaining the maximum amount of data
generated during the workflow. The consensus for formula and compound annotation data
are generated by comparison of Hill-sorted formulae and the skeleton layer (first block) of
the InChlKey chemical identifiers [72], respectively. For feature groups, where different
algorithms may output deviating retention and/or mass properties, such a direct
comparison is impossible. Instead, the dimensionality of feature groups is first reduced by
averaging all feature data (i.e. retention times, m/z values and intensities) for each group.
The collapsed groups have a similar data format as ‘regular’ features, where the compared
objects represent the ‘sample analyses’. Subjection of this data to a feature grouping

algorithm supported by patRoon (i.e. from XCMS or OpenMS) then allows straightforward

11

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

and reliable comparison of feature data from different algorithms, which is finally used to

generate the consensus.

Hierarchical clustering is utilized for componentization of features with similar intensity
profiles or to group chemically similar candidate structures of an annotated feature. The
latter “compound clustering” assists the interpretation of features with large numbers of
candidate structures (e.g. hundreds to thousands). This method utilizes chemical
fingerprinting and chemical similarity methods from the rcdk package [73] to cluster similar
structures, and subsequent visual inspection of the maximum common substructure then
allows assessment of common structural properties among candidates (methodology based
on [74]). Cluster assignment for both CMT and COM approaches is performed automatically
using the dynamicTreeCut R package [75]. However, clusters may be re-assigned manually

by the desired amount or tree height.

Several data conversion methods were implemented to allow interoperability with other
software tools. All workflow data types are easily converted to commonly used R data types
(e.g. data.frame or list), which allows further processing with other R packages.
Furthermore, feature data may be converted to and from native XCMS objects (i.e.
xcmsSet and XCMSnExp) or exported to comma-separated values (CSV) formats

compatible with Bruker ProfileAnalysis or TASQ, or MZmine.

12

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

MS peak list retrieval, annotation and candidate ranking

Data for MS and MS/MS peak lists for a feature are collected from spectra recorded within
the chromatographic peak and averaged to improve mass accuracies and signal to noise
ratios. Next, peak lists for each feature group are assigned by averaging the mass and
intensity values from peak lists of the features in the group. Mass spectral averaging can be
customized via several data clean-up filters and a choice between different mass clustering
approaches, which allow a trade-off between computational speed and clustering accuracy.
By default, peak lists for MS/MS data are obtained from spectra that originate from
precursor masses within a certain tolerance of the feature mass. This tolerance in mass
search range is configurable to accommodate the precursor isolation window applied during
data acquisition. In addition, the precursor mass filter can be completely disabled to
accommodate data processing from data-independent MS/MS experiments, where all

precursor ions are fragmented simultaneously.

The formula annotation process is configurable to allow a tradeoff between accuracy and
calculation speeds. Candidates are assigned to each feature group, either directly by using
group averaged MS peak list data, or by a consensus from formula assignments to each
individual feature in the group. While the latter inherently consumes more time, it allows
removal of outlier candidates (e.g. false positives due to features with poor spectra).
Candidate ranking is improved by inclusion of MS/MS data in formula calculation (optional

for GenForm [47] and DataAnalysis).

13

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

Formula calculation with GenForm ranks formula candidates on isotopic match (amongst
others), where any other mass peaks will penalize scores. Since MS data of “real-world”
samples typically includes many other mass peaks (e.g. adducts, co-eluting features,
background ions), patRoon improves the scoring accuracy by automatic isolation of the
feature isotopic clusters prior to GenForm execution. A generic isolation algorithm was
developed, which makes no assumptions on elemental formula compositions and ion
charges, by applying various rules to isolate mass peaks that are likely part of the feature
isotopic cluster (see Additional file 2: Figure S2). These rules are configured to accommodate
various data and study types by default. Optimization is possible, for instance, to (a)
improve studies of natural or anthropogenic compounds by lowering or increasing mass
defect tolerances, respectively, (b) constrain cluster size and intensity ranges for low
molecular weight compounds or (c) adjust to expected instrumental performance such as
mass accuracy. Note that precursor isolation can be performed independently of formula

calculation, which may be useful for manual inspection of MS data.

Compound annotation is usually the most time and resource intensive process during the
non-target workflow. As such, instead of annotating individual features, compound
assignment occurs for the complete feature group. All compound databases supported by
the underlying algorithms, such as PubChem [23], ChemSpider [76] or CompTox [24] and
other local CSV files, as well as the scoring terms present in these databases, such as in silico
and spectral library MS/MS match, references in literature and presence in suspect lists, can
be utilized with patRoon. Default scorings supported by the selected algorithm/database or
sets thereof are easily selectable to simplify effective compound ranking. Furthermore,

14

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

formula annotation data may be incorporated in compound ranking, where a ‘formula
score’ is calculated for each candidate formula, which is proportional to its ranking in the
formula annotation data. Execution of unattended sessions is assisted by automatic restarts
after occurrence of timeouts or errors (e.g. due to network connectivity) and automatic

logging facilities.

Visualization, reporting and graphical interface

In patRoon, visualization functionality is provided for feature and annotation data (e.g.
extracted ion chromatograms (EICs) and annotated spectra), to compare workflow data (i.e.
by means of Venn, chord and UpSet [77] diagrams, using the VennDiagram [78], circlize [79]
and UpSetR [80] R packages, respectively) and others such as plotting results from
automatic feature optimization experiments and hierarchical clustering data. Reports can be
generated in a common CSV text format or in a graphical format via export to a portable
document file (PDF) or hypertext markup language (HTML) format. The latter are generated
with the R Markdown [81, 82] and flexdashboard [83] R packages, and provide an easy to
use interface for interactive sorting, searching and browsing reported data. As plotting and
reporting functionalities can be performed at any stage during the workflow, the data that is

included in the reports is fully configurable.

While patRoon is primarily interfaced through R, several graphical user interface tools are
provided to assist the (novice) user. Most importantly, patRoon provides a Shiny [84] based
tool that automatically generates a commented template R script from user input, such as

selection of MS data file input, workflow algorithms and other common workflow

15

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

parameters (Figure 3a). Secondly, chromatographic data of features may be inspected either
by automatic addition of EICs in a Bruker DataAnalysis session or with a Shiny based

interface (Figure 3b).

Software architecture

patRoon is distributed as an R package. Its source code is primarily written in the R
language, with some support code written in C++ and JavaScript. Both Microsoft Windows
(hereafter referred to as Windows) and Linux platforms are supported (support for macOS is
envisaged in the future). Several external dependencies are required; notable examples are
in Additional file 3: Table S1. GenForm is automatically compiled during package installation.
For Windows platforms, an installation script is provided to install and configure patRoon
and all of its dependencies automatically. Documentation includes a handbook, tutorial and
full reference manual [85-88], which are produced with the bookdown [89, 90], R
Markdown and roxygen2 [91] R packages, respectively. Example data is contained in the

patRoonData R package [92, 93].

An important design goal was to provide a consistent, generic and easy to use interface that
does not require the user to know the implementation and interfacing details of the
supported algorithms. Each workflow step is executed by a generator function that takes
the desired algorithm and its parameters as input and returns objects from a common set of
data formats (see Figure 4). Names for commonly used parameters supported by multiple
algorithms are standardized for consistency and defaults are set where reasonable.

Furthermore, the format of input data such as retention time units as well as formula and

16

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

adduct specifications are harmonized and automatically converted to the format expected
by the algorithm. Nearly all parameters from the underlying algorithm can be set by the
user, hence, full configurability of the workflow is retained wherever possible. Generic
naming schemes are applied to output data, which assist the user in comparing results
originating from different algorithms. All exported functions from patRoon verify user input
with the checkmate [94] package, which efficiently performs tests such as correctness of

value range and type, and prints descriptive messages if input is incorrect.

A set of generic methods are defined for workflow classes that perform general data
inspection, selection, conversion and visualization, irrespective of the algorithm that was
used to generate the object (see Table 3). Consequently, the implementation of common
function names for multiple output classes allows a predictable and consistent user

interface.

Table 3. Common generic methods defined in patRoon to process workflow data.

Generic Purpose

length(), show(),
algorithm(), names(),
groupNames ()

obtain general object information such as object length and
unique identifiers for contained results

filter() rule-based filtering operations

[, [[,$ operators subsetting or extracting data

as.data.table(), conversion to data.table or data.frame object
as.data.frame()

unique(), overlap() extract unique or overlapping features across replicates
consensus() generates a consensus between different objects of the same

class

plot(), plotEIC(), plot general, chromatographic and annotation data

plotSpec()
plotChord(), comparison of feature data or workflow objects from
plotUpSet(), different algorithms by chord, UpSet and Venn diagrams

17

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

plotVenn()

Several optimization strategies are employed in patRoon to reduce computational
requirements and times. Firstly, external command line (CLI) tools are executed in parallel to
reduce overall execution times for repetitive (e.g. per sample analysis or per feature)
calculations. Commands are queued (first in, first out) and their execution is handled with
the processx package [95]. Secondly, functions employing time intensive algorithms
automatically cache their (partial) results in a local SQLite database file, which is accessed
via the DBI [96] and RSQLite [97] R packages. Thirdly, performance critical code dealing with
OpenMS data files and loading chromatographic data was written in C++ (interfaced with
Rcpp [98-100]) to significantly reduce times needed to read or write data. Fourthly, the
output files from OpenMS tools are loaded in chunks using the pugixml software library
[101] to ensure a low memory footprint. Finally, reading, writing and processing (large)
internal tabular data is performed with the data.table R package, which is a generally faster
and more memory efficient drop-in replacement to the native tabular data format of R

(data.frame), especially for large datasets [102].

Interfacing with ProteoWizard [22], OpenMS, GenForm, SIRIUS and MetFrag occurs by
wrapper code that automatically executes the CLI tools and perform the data conversions
necessary for input and output files. An alternative interface to MetFrag is also provided by
employing the metfRag R package [103], however, in our experience this option is currently
significantly slower than the CLI and therefore not used by default. For tools that are not
readily controllable from R (i.e. ProfileAnalysis, TASQ and MZmine), interfacing occurs via

importing or exporting CSV files (only export is supported for MZmine). Finally, the
18

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

RDCOM(Client R package [104] is used to interface with Bruker DataAnalysis via the
distributed component object model, which allows automation of DataAnalysis functionality
from R that otherwise would only be available via its integrated visual basic scripting

environment.

A continuous integration pipeline performs automated tests during development and
delivers files to simplify installation of patRoon and all its dependencies (Additional file 2:
Figure S3). More than 900 unit tests are performed (>80% code coverage) with the testthat
and vdiffr R packages [105, 106]. After successful test completion, binary R packages
(Windows) and Docker images (Linux) are generated to facilitate installation of patRoon with

tested and compatible dependencies.

Results and discussion

Benchmark and demonstration data

The data used to benchmark and demonstrate patRoon were obtained with an LC-HRMS
analysis of two different influent and effluent samples from a drinking water treatment pilot
installation and a procedural blank (all in triplicate). The samples originate from an
experiment where a set of 18 common environmental contaminants (yielding 20 individual
chromatographic peaks, see Additional file 3: Table S2) were spiked prior to drinking water
treatment. The analyses were performed using an LC-HRMS Orbitrap Fusion system
(ThermoFisher Scientific, Bremen, Germany) operating with positive electrospray ionization.
Further analytical conditions are as described in [11]. The raw data files can be obtained

from [107].
19

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

Parallelization benchmarks

Several benchmarks were performed to test the multiprocessing functionality of patRoon.
Tests were performed on a personal computer equipped with an Intel® Core™ i7-8700K CPU
(6 cores, 12 threads), 32 gigabyte RAM, SATA SSD storage and the Windows 10 Enterprise
operating system. Benchmarks were performed in triplicate using the microbenchmark R
package [108]. Standard deviations were below ten percent (see Figure 5a). Benchmarking
was performed on msConvert (MC), FeatureFinderMetabo (FFM), GenForm (GF), SIRIUS (SIR)
and MetFrag (MF). The multiprocessing functionality was compared to native
multithreading for the tools that supported this (FFM, SIR and MF). In addition, the
performance of batch calculations with multiprocessing was compared with native batch
calculation modes of tools where possible (MC and SIR). Parallelization methods were tested
with 1-12 parallel processes or threads (i.e. up to full utilization of both CPU threads of each
core). Input conditions were chosen to simulate “simple” and “complex” workflows, where
the latter resulted in more demanding calculations with ~2-10x longer mean execution
times (Table 4). The caching functionality of patRoon was disabled, where appropriate, to
obtain representative and reproducible test results. Prior to benchmarking, candidate
chemical compounds from PubChem for MF tests were cached in a local database to
exclude influences from network connectivity. Similarly, general spectral data required to
post-process FFM results were cached, as this is usually loaded once during a workflow,
even with varying input parameters. The input features for GF tests that resulted in very
long individual run times (i.e. >30 seconds) were removed to avoid excessive benchmark
runtimes. Generating feature and MS peaklist input data for annotation related tests was

performed with patRoon using algorithms from OpenMS and mzR [109], respectively. Pre-

20

428

429

430

431

432

433

434

435

436

437

438

439

treatment of feature data consisted of removal of features with low intensity and lacking
MS/MS data. The number of features for SIR (except tests with native batch mode) and MF
benchmarks were further reduced by application of blank, replicate and intensity filters to
avoid long total runtimes due to their relatively high individual run times. Finally, the feature
dataset was split in low (0-500) and high (500-1000) m/z portions, which were purposed for
execution of “simple” and “complex” experiments, respectively. For more details of the
workflow and input parameters see the R script code in Additional file 4. The software tools

used for benchmarking are summarized in Additional file 1.

Table 4. Utilized conditions for "simple" (S) and "complex" (C) tests.

Test Input conditions’ Executions Mean
individual
run time?

(s)
msConvert (MC) MC-S Conversion centroided input 15 4.8
MC-C Centroiding and conversion 15 8.5
non-centroided input
FeatureFinderMetabo FFM-S High intensity threshold 15 4.1
3
(FFM) FFM-C Low intensity threshold 15 38
GenForm (GF) GF-S CHNO elements, low m/z 512 0.2
GF-C CHNOPS elements, high m/z 128 1.7
SIRIUS (SIR)? SIR-S CHNO elements, low m/z 152 (512%) 2.3
SIR-C CHNOPS elements, high m/z 44 (1284 7.7
MetFrag (MF)? MF-S Limited scoring, narrow mass 152 3.0
search (5 ppm), low m/z.
MF-C Thorough scoring, wide mass 44 8.6

search (20 ppm), high m/z.

(1): Features with m/z 0 — 500 (low) and m/z 500 — 1000 (high); (2): based on a test run without parallelization
(n=3); (3) supports (configurable) native multithreading; (4) number of executions for native batch mode
benchmarks.

When multiprocessing was used all tests (except GF-S, discussed below) showed a clear

downward trend in execution times (down to ~200%-500%), and optimum conditions were

21

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

generally reached when the number of parallel processes equaled the number of physical
cores (six, see Figure 5a). When algorithms are fully parallelized, execution times are
expected to follow an inverse relationship with the number of parallel process (i.e. 1/n) and
this was observed most closely with MC, whereas execution times for other tools show a
less steep reduction. Furthermore, utilizing multiple threads per core (i.e. hyperthreading)
did not reduce execution times further and even slowed down in some cases (e.g. MF-C).
These deviations in scalability were not investigated in detail. Since they were more
noticeable under complex conditions, it is expected that this may be caused by (a) more
involved post-processing results after each execution, which is currently not parallelized,
and (b) increased memory usage, which may raise the overhead of context switches
performed by the operating system. Nevertheless, the experiments performed here clearly
show that the multiprocessing functionality of patRoon can significantly reduce execution

times of various steps in an NTA workflow.

An exception, however, was the test performed with GenForm with simple conditions (GF-
S), which exhibited no significant change in execution times with multiprocessing (Figure
5a). Due to the particularly small mean run times (0.2 seconds) of this test, it was
hypothesized that the overhead of instantiating a new process from R (inherently not
parallelized) dominated the overall run times. To mitigate this, a ‘batch mode’ was
implemented, where such process initiation occurs from a command shell sub-process
instead. Here, multiple commands are executed by the sub-process in series, and the
desired degree of parallelization is then achieved by launching several of these sub-
processes and evenly dividing commands amongst them. The maximum size of each series

22

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

(or “batch size”) is configurable, and represents a balance between reduction of process
initiation overhead and potential loss of effectively load balancing of, for instance,
commands with highly deviating execution times. Next, various batch sizes were tested for
GF, both with and without multiprocessing parallelization (Additional file 2: Figure S4). For
GF-S, execution times clearly decreased with increasing batch sizes, however, no further
reduction was observed with parallelism. In contrast, serial execution of GF-C was not
affected by varying batch size, whereas added parallelism reduced execution times for small
batch sizes (<8), but significantly increased such times for larger sizes. The results
demonstrate that the typical short lived GF executions clearly benefit from batch mode. In
addition, it is expected that by further increasing the batch size for GF-S, overall lifetimes of
batch sub-processes may increase sufficiently to allow better utilization of parallelization.
However, since GF-C results for larger batch sizes clearly show possible performance
degradation for more complex calculations (e.g. due to suboptimal load balancing), eight
was considered as a ‘safe’ default which improves overall performance for both simple and

complex calculation scenarios (Figure 5b).

Utilizing native multithreading for FFM, SIR (without native batch mode) and MF yields only
relatively small reductions in their execution times (Figure 5b). Under optimum conditions
(6-8 threads), the most significant drop was observed for SIR-C (~40%), followed by FFM-S,
FFM-C and MF-C (~20%). These results suggest that native multithreading only yields partial
parallelization, which primarily occurs with complex input conditions. Note that S/RIUS
supports different linear programming solvers (Gurobi [110], CPLEX [111] and the default

GLPK [112]), which may influence overall performance and parallelization [113].

23

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

Nevertheless, a comparison between these solvers did not reveal significant changes with
our experimental conditions (Additional file 2: Figure S5). Combining the multiprocessing
functionality with native multithreading under optimum conditions (i.e. 6 parallel
processes/threads) only reduces execution times for SIR-C (Figure 5b). As such, both
performance improvements and scalability of the multiprocessing implementation of

patRoon appear highly effective at this stage.

The native batch modes of MC and SIR allow calculations from multiple inputs within a
single execution. This reduces the total number of tool executions, which may (1) lower the
accumulated overhead associated with starting and finishing tool executions and (2) hamper
effective parallelization from multiprocessing, especially if executions are less than the
available CPU cores. The combination of multiprocessing (optimum conditions) and native
batch mode was benchmarked with increasing number of inputs per tool execution (i.e. the
native batch size; Additional file 2: Figure S6). For MC, execution times were largely
unaffected by the input batch size if multiprocessing was disabled, which indicates a low
execution overhead. Lowest execution times were observed when multiprocessing was
enabled with small batch sizes (£25% of the total inputs), which indicates a lack of native
parallelization support. In contrast, SIR showed significantly lower overall execution times
with increasing batch sizes (up to ~7000% and ~320% for SIR-S and SIR-C, respectively),
while enabling multiprocessing did not reduce execution times for batch sizes >1. These
results show that (1) SIR has a relative large execution overhead, which impairs
multiprocessing performance gains, and (2) supports effective native parallelized batch
execution. Thus, SIR performs most optimal if all calculations are performed within a single

24

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

execution. Similar to previous SIR benchmarks, no significant differences were found across
different linear solvers (Additional file 2: Figure S7). The results demonstrate that
multiprocessing may improve efficiency for batch calculations with tools with low execution
overhead and/or lack of native parallelization. Nonetheless, the dramatic improvement in
SIR calculation times when using the native batch mode indicates that software authors
should generally consider implementing native threaded batch mode functionality if large

batch calculations are an expected use case.

Finally, the implemented optimization strategies were tested for a complete patRoon NTA
workflow consisting of typical data processing steps and using all previously tested tools.
The chosen input conditions roughly fell in between the aforementioned “simple” and
“complex” conditions (see code in Additional file 4). Note that optimization strategies were
unavailable for some steps (e.g. grouping of features and collection of MS peak lists), and
native batch mode was not used in order to demonstrate the usefulness of multiprocessing
for tools that do not support this (e.g. other tools than MC and SIR and those potentially
available in future versions of patRoon). Regardless, the benchmarks revealed a reduction in
total run times of ~50% (from ~200 to ~100 minutes; Figure 5c). Since execution times of
each step may vary significantly, the inclusion of different combinations of steps may

significantly influence overall execution times.

The use of multiprocessing for all tools (except SIR), the implemented batch mode strategies
for GF and the use of the native batch mode supported by SIR were set as default in
patRoon with the determined optimal parameters from the benchmarks results. However,

25

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

the user can still freely configure all these options to potentially apply further optimizations
or otherwise (partially) disable parallelization to conserve system resources acquired by

patRoon.

As a final note, it is important to realize that these benchmarks display execution times that
also involve preparing and processing results and include other overhead such as process
creation from R. For this reason, a direct comparison with standalone execution of
investigated tools was not possible. Nevertheless, the various optimization strategies
employed by patRoon minimize such overhead, and the added parallelization functionality
often provide a clear advantage in efficiency when using typical CLI tools in an R based NTA
workflow, especially considering the now widespread availability of computing systems with

increasing numbers of cores.

Demonstration: suspect screening

The previous section investigated several parallelization strategies implemented in patRoon
for efficient data processing. A common method in environmental NTA studies to increase
data processing efficiency and reducing the data complexity is by merely screening for
chemicals of interest. This section demonstrates such a suspect screening workflow with
patRoon, consisting of (a) raw data pre-treatment, (b) extracting, grouping and suspect
screening of feature data, and finally (c) annotating features to confirm their identity. During
the workflow several rule-based filters are applied to improve data quality. The ‘suspects’ in
this demonstration are, in fact, a set of compounds spiked to influent samples (Additional

file 3: Table S2), hence, they were used for validation purposes of the workflow. After

26

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

completion of the suspect screening workflow, several methods are demonstrated to

inspect the resulting data.

Suspect screening: workflow

The code described here can easily be generated with the newProject() function, which
automatically generates a ready-to-use R script based on user input (section “Visualization,

reporting and graphical interface”).

First, the patRoon R package is loaded and a data.frame is generated with the file
information of the sample analyses and their replicate and blank assignments. Next, this
information is used to centroid and convert the raw analyses files to the open mzML file
format, a necessary step for further processing.

library(patRoon)

Generate analysis file information for all files in a directory,
assign replicate group names to all triplicates and specify which
should be used for blank subtraction.
analnfo <- generateAnalysisInfo("../data",
groups = c(rep("blank", 3),
rep("influent-A",
rep("effluent-A",
rep("influent-B",
rep("effluent-B",

~— N N

~ N N~
~

blanks = "blank")
convertMSFiles (analInfo = analInfo, from = "thermo", to = "mzML",
algorithm = "pwiz", centroid = "vendor")

The next step involves finding features and grouping them across samples. This example
uses the OpenMS algorithms and sets several algorithm specific parameters that were
manually optimized for the employed analytical instrumentation to optimize the workflow
output. Other algorithms (e.g. enviPick, XCMS) are easily selected by changing the

algorithm function parameter.

27

571

572

573

574
575

576

577

578

579

580

581

582

583

584

585

features <- findFeatures(anaInfo, algorithm = "openms",

noiseThrInt = 4E3,
chromFWHM = 3, minFWHM = 1, maxFWHM = ,
chromSNR = 5, mzPPM = 5)

fGroups <- groupFeatures (features, algorithm = "openms"

Several rule-based filters are then applied for general data clean-up, followed by the
removal of sample blanks from the feature dataset.

fGroups <- filter (fGroups,
minimum absolute feature intensity

absMinIntensity = 1E5,

must be present in all replicates
relMinReplicateAbundance = 1,

max relative standard deviation replicate intensities
maxReplicateIntRSD = ,

minimum feature intensity above blank

blankThreshold = 5,

remove blank analyses afterwards
removeBlanks = TRUE)

Next, features are screened with a given suspect list, which is a CSV file read into a’
data.frame containing the name, SMILES and (optionally) retention time for each suspect
(see Additional file 5). While the list in this demonstration is rather small (18 compounds,
see SX), larger lists containing several thousands of compounds such as those available on
the NORMAN network Suspect List Exchange [114] can also be used. The screening results
are returned in a data.frame, where each row is a hit (a suspect may occur multiple times)
containing the linked feature group identifier and other information such as detected m/z
and retention time (deviations). Finally, this table is used to transform the original feature
groups object (fGroups) by removing any unassigned features and tagging remainders by
their suspect name.

suspects <- read.csv("suspects.csv")

scr <- screenSuspects (fGroups, suspects, mzWindow = ,
rtWindow = 6, adduct = "[M+H]+")

fGroupsSusp <- groupFeaturesScreening (fGroups, scr)

28

586

587

588

589

590

591

592

593

594

595

596

597

In the final step of this workflow annotation is performed, which consists of (a) generation
of MS peak list data, (b) general clean-up to only retain significant MS/MS mass peaks,
automatic annotation of (c) formulae and (d) chemical compounds, and (e) combining both
annotation data to improve ranking of candidate compounds. As with previous workflow
steps, the desired algorithms (mzR, GenForm and MetFrag in this example) are set using the
algorithm function parameter. Similarly, the compound database used by MetFrag (here

CompTox via a local CSV file obtained from [115]) can easily be changed to other databases

such as PubChem, ChemSpider or another local file.

mslists <- generateMSPeakLists (fGroupsSusp, "mzr",
precursorMzWindow =)
mslists <- filter(mslists, relMSMSIntThr = , topMSMSPeaks =)

formulas <- generateFormulas (fGroupsSusp, "genform", mslists,
adduct = " [M+H]+",
elements = "CHNOPSCIBr')
Configure location of CompTox CSV file
options (patRoon.path.MetFragCompTox =
"C:/CompTox 17March2019 SelectMetaData.csv")
compounds <- generateCompounds (fGroupsSusp, mslists, "metfrag",
adduct = " [M+H]+",
database = "comptox")
compounds <- addFormulaScoring(compounds, formulas, updateScore = TRUE)

Suspect screening: data inspection

All data generated during the workflow (e.g. features, peak lists, annotations) can be

inspected by overloads of common R methods.

29

598

599

600

601

602

intensities for each feature in first group

> fGroups[[1]]

[1] 210235.3 242051.9 254323.8 260419.1 205407.0 261099.1 0.0
0.0 0.0 0.0 0.0 0.0

averaged MS/MS peak list for feature group of carbamazepine suspect
> mslists[["Carbamazepine"]]$MSMS

mz intensity precursor
1: 192.0804 284478.607 FALSE
2: 193.0880 69396.510 FALSE
3: 194.0960 1126534.943 FALSE
4: 237.1019 5406.667 TRUE

compound annotation data for all features (subset shown for clarity)
> as.data.frame (compounds) [1:5, : 5]

group explainedPeaks score neutralMass SMILES

1 n-Methylbenzotriazole-1 4 12.268046 133.064 NC1=NC2=CC=CC=C2N1
n-Methylbenzotriazole-1 5 9.546212 133.064 CCl=CC2=C (NN=N2)C=Cl
n-Methylbenzotriazole-1 6.722034 133.0064 NC1=CC=C2NN=CC2=C1
n-Methylbenzotriazole-1 6.715495 133.0064 CC1=C2NN=NC2=CC=C1

6

g w N
01 O

n-Methylbenzotriazole-1 .483770 133.064 CN1N=NC2=CC=CC=C12

Furthermore, all workflow data can easily be subset with e.g. the R subset operator (“[“),
for instance, to perform a (hypothetical) prioritization of features that are most intense in
the effluent samples.

obtain table with replicate averaged feature intensities
> intTab <- as.data.frame (fGroupsSusp, average = TRUE)

> head (intTab) [, :5] # show first 5 rows/columns
group ret mz influent-A effluent-A
1 n-Methylbenzotriazole-1 600.6524 134.0709 2021597.7 0.0

2 n-Methylbenzotriazole-2 607.5665 134.0709 2399435.6 192759.6
3 Barbital 137.3162 185.0918 145150.0 0.0
4 Benzotriazole 478.6665 120.0553 1494092.0 190069.0
5 Carbamazepine 797.5051 237.1018 2849756.3 0.0
6 Carbendazim 378.8226 192.0764 504191.7 0.0

=+

obtain group names from the 5 highest intense features in either
of the effluents
> topl <- intTab$group[order (intTab[["effluent-A"]1],
decreasing = TRUE)][1:5]
top2 <- intTab$groupl[order (intTab[["effluent-B"]11],
decreasing = TRUE)][1:5]

=+

\

> top <- union(topl, top2)

> top

[1] "Metformin" "Terbuthylazine"
[3] "Triphenylphosphine oxide" "Melamine-2"

[5] "n-Methylbenzotriazole-2" "Benzotriazole"
[7] "n-Methylbenzotriazole-1" "Propranolol"

subset original object
> fGroupsSusp <- fGroupsSuspl[, topl

30

603

604

605
606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Visualization of data generated during the workflow is performed by various plotting
functions (see Figure 6).

plot unique features in influents
plot (fGroups[rGroups = c("influent-A", "influent-B")],

colourBy = "rGroups", onlyUnique = TRUE)
all EICs for a feature group
plotEIC (fGroupsSusp[, "Terbuthylazine"], colourBy = "rGroup"
plotSpec (compounds, index = 1, groupName = "Benzotriazole',
mslists)

plotUpSet (fGroupsSusp)
plotChord (fGroupsSusp, average = TRUE)
plotVenn (fGroupsSusp, which = c("influent-B", "effluent-B"))

The final step in a patRoon NTA workflow involves automatic generation of comprehensive
reports of various formats which allow (interactive) exploration of all data (see Additional
file 2: Figure S8).

reportCSV (fGroupsSusp, formulas
reportPDF (£GroupsSusp, formulas

formulas, compounds = compounds)
formulas,

compounds = compounds, MSPeakLists = mslists)
reportHTML (fGroupsSusp, formulas = formulas,
compounds = compounds, MSPeakLists = mslists)

Suspect screening: results

A summary of data generated during the NTA workflow demonstrated here is shown in
Table 5 and Additional file 3: Table S2. The complete workflow finished in approximately 8
minutes (employing a laptop with an Intel® Core™ 17-8550U CPU, 16 gigabyte RAM, NVME
SSD and the Windows 10 Pro operating system). While nearly 60 000 features were grouped
into nearly 20 000 feature groups, the majority (97%, 678 remaining) were filtered out
during the various pre-treatment filter steps. Regardless, most suspects were found (17/18
attributed to 19/20 individual chromatographic peaks), and the missing suspect (aniline)
could be detected when lowering the intensity threshold of the filter() function used to
post-filter feature groups in the workflow. The majority of suspects (17) were annotated

with the correct chemical compound as first candidate, the two n-methylbenzotriazole

31

621

622

623

624

625

626

627

628

629

630

631

632

633

isomer suspects were ranked as second or fourth. Results for formulae assignments were
similar, with the exception of dimethomorph, where the formula was ranked in only the top

twenty-five (the candidate chemical compound was ranked first, however).

While this demonstration conveys a relative simple NTA with ‘known suspects’, the results
show that patRoon (a) allows a straightforward approach to perform a complete and

tailored NTA workflow, (b) provides powerful general data clean-up functionality to

prioritize data and (c) realizes effective automated annotation of detected features.

Table 5. Summarizing results for the demonstrated patRoon NTA workflow.

Amount
Features Total found 57 113 (mean 3,808/sample)
Feature groups Raw dataset 19970

Replicate filters (1 pass?)
Blank filter

Intensity filters

Replicate filters (2" pass’)
Total found

Annotated

Total candidates
Correctly ranked 1°*
Correctly ranked 1°%-2™
Correctly ranked 1°%-5™
Total candidates

Correctly ranked 1%
Correctly ranked 1°%-2™
Correctly ranked 1

Suspects

Formulae

Compounds

st_5th

4719 (-76%)

2 933 (-85%)

964 (-95%)

678 (-97%)

19 out of 20

19

163 (mean 9/feature group)
13 (68%)

16 (84%)

17 (89%)

1 017 (mean 54/feature group)
17 (85%)

18 (90%)

19 (100%)

(1): Replicate filters are repeated if necessary, see section “Data reduction, comparison and conversion”.

Conclusions

This paper presents patRoon, a fully open source platform that provides a comprehensive

MS based NTA data processing workflow developed in the R environment. Major workflow

32

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

functionality is implemented through the usage of existing and well-tested software tools,
connecting primarily open and a few closed approaches. The workflows are easily setup for
common use cases, while full customization and mixing of algorithms allows for execution of
completely tailored workflows. In addition, extensive functionality related to data
processing, annotation, visualization, reporting and others was implemented in patRoon to
provide an important toolbox for effectively handling complex NTA studies. The easy and
predictable interface of patRoon lowers the computational expertise required of users,
making it available for a broad audience. Major implemented optimization strategies were
demonstrated to reduce computational times. Furthermore, a typical suspect screening
workflow was demonstrated on real-world data from an environmental study related to

drinking water treatment.

patRoon has been under development for several years and has already been applied in a
variety of studies, such as the characterization of organic matter [71], elucidation of
transformation products of biocides [7, 12] and assessment of removal of polar organics
reversed-osmosis drinking water treatment [14]. patRoon will undergo further
development, and extension of integrated workflow algorithms is planned for new and less
commonly used ones, while additional componentization strategies will be implemented to
help prioritizing data. Addition of new workflow functionality is foreseen, such as usage of
ion-mobility spectrometry data to assist annotation, automated screening of transformation
products (e.g. utilizing tools such as BioTransformer [116]), prediction of feature quantities
for prioritization purposes (recently reviewed in [117]) and automated chemical
classification (e.g. through ClassyFire [118]). Finally, interfacing with other R based mass

33

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

spectrometry software such as those provided by the “R for Mass Spectrometry” initiative
[119] is planned to further improve the interoperability of patRoon. The use in real-world
studies, feedback from users and developments within the non-target analysis community,
are all critical in determining future directions and improvements of patRoon. We envisage
that the open availability, straightforward usage, vendor independence and comprehensive

functionality will be useful to the community and result in a broad adoption of patRoon.

Availability and requirements

Project name: patRoon

Project home page: https://github.com/rickhelmus/patRoon

Operating system(s): Platform independent (tested on Microsoft Windows and Linux)
Programming language(s): R, C++, JavaScript

Other requirements: Depending on utilized algorithms (see installation instructions in [85,
88])

License: GNU GPL version 3

Any restrictions to use by non-academics: none

Abbreviations

CEC: Chemical of emerging concern
CLI: Command-line interface

CMP: Compound annotation

CMT: Componentization

CSV: Comma-separated value

34

678 DBI: The database interface

679 EIC: Extracted ion chromatogram

680 FFM(-S/C): FeatureFinderMetabo (simple/complex conditions)
681 FG: Feature groups

682 FOR: Formula annotation

683 FTS: Features

684 GC: Gas chromatography

685 GC-MS: GC coupled to mass spectrometry

686 GF(-S/C): GenForm (simple/complex conditions)
687 HTML: Hypertext markup language

688 HRMS: High resolution mass spectrometry

689 IPO: Isotopologue parameter optimization

690 LC: Liquid chromatography

691 LC-MS: LC coupled to mass spectrometry

692 MC(-S/C): msConvert (simple/complex conditions)
693 MF(-S/C): MetFrag (simple/complex conditions)
694 MS/MS: Tandem mass spectrometry

695 MSPL: MS peak list

696 NTA: Non-target analysis

697 PDF: Portable document format

698 PO: Parameter optimization

699 PT: Pre-treatment

700 SIR(-S/C): SIRIUS (simple/complex conditions)

35

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

SUS: Suspect screening
XCMS: Various forms (X) of chromatography mass spectrometry (R package MS data

processing)

Definitions

Features (FTS): data points assigned with unique chromatographic and mass spectral
information (e.g. retention time, peak area and accurate m/z), which potentially described a
compound in a sample analysis.

Feature group (FG): A group of features considered equivalent across sample analyses.

MS peak list (MSPL): tabular data (m/z and intensity) for MS or MS/MS peaks attributed to a
feature and used as input data for annotation purposes.

Formula/Compound (FOR/CMP): a chemical formula or compound candidate revealed
during feature annotation.

Component (CMT): A collection of feature groups that are somehow linked, such as MS

adducts, homologous series or highly similar intensity trends.

Declarations

Availability of data and materials

The source code of patRoon and online versions of its manuals are available for download

from https://github.com/rickhelmus/patRoon and archived in [120]. The raw data used for

benchmarking and demonstration purposes in this manuscript is archived in [107]. The
scripts used to perform benchmarking and the input suspect list for demonstration purposes

are provided as Additional file 4 and 5, respectively.

36

https://github.com/rickhelmus/patRoon

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

Competing interests

The authors declare that they have no competing interests.

Funding

This work was internally funded by the Institute of Biodiversity and Ecosystem Dynamics
(University of Amsterdam). ELS is supported by the Luxembourg National Research Fund

(FNR) for project A18/BM/12341006.

Authors’ contributions

RH wrote the manuscript, source code, designed the experiments and interpreted the
results. ELS provided valuable feedback to improve the software. ELS and other authors
supervised this work and contributed to writing the manuscript. All authors read and

approved the final manuscript.

Acknowledgements

The many authors involved in the open mass spectrometry software development
community are highly acknowledged as their contributions are the foundation for the
development of patRoon. In addition, Vittorio Albergamo, Andrea Brunner, Thomas Wagner,
Olaf Brock and other users of patRoon are thanked for testing and providing feedback for
future developments. We thank the Dutch drinking water companies Dunea and PWN for
sharing the raw HRMS data that was used for benchmarking and demonstration purposes.
Markus Fleischauer is acknowledged for his feedback on execution of batch execution of
SIRIUS. Finally, Olaf Brock is acknowledged for the design of some of the visualizations of

benchmarking data.

37

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

References

1.

Hollender J, Schymanski EL, Singer HP, Ferguson PL (2017) Nontarget Screening with
High Resolution Mass Spectrometry in the Environment: Ready to Go? Environ Sci
Technol 51:11505-11512 . https://doi.org/10.1021/acs.est.7b02184

Chiaia-Hernandez AC, Schymanski EL, Kumar P, Singer HP, Hollender J (2014) Suspect
and nontarget screening approaches to identify organic contaminant records in lake
sediments. Anal Bioanal Chem 406:7323-7335 . https://doi.org/10.1007/s00216-014-
8166-0

Sjerps RMA, Vughs D, van Leerdam JA, ter Laak TL, van Wezel AP (2016) Data-driven
prioritization of chemicals for various water types using suspect screening LC-HRMS.
Water Research 93:254-264 . https://doi.org/10.1016/j.watres.2016.02.034
Chiaia-Hernandez AC, Glnthardt BF, Frey MP, Hollender J (2017) Unravelling
Contaminants in the Anthropocene Using Statistical Analysis of Liquid
Chromatography—High-Resolution Mass Spectrometry Nontarget Screening Data
Recorded in Lake Sediments. Environ Sci Technol 51:12547-12556
https://doi.org/10.1021/acs.est.7b03357

Albergamo V, Schollée JE, Schymanski EL, Helmus R, Timmer H, Hollender J, de Voogt P
(2019) Nontarget Screening Reveals Time Trends of Polar Micropollutants in a
Riverbank Filtration System. Environ Sci Technol 53:7584-7594
https://doi.org/10.1021/acs.est.9b01750

Hernandez F, Bakker J, Bijlsma L, de Boer J, Botero-Coy AM, Bruinen de Bruin Y, Fischer
S, Hollender J, Kasprzyk-Hordern B, Lamoree M, Lépez FJ, Laak TL ter, van Leerdam JA,

Sancho JV, Schymanski EL, de Voogt P, Hogendoorn EA (2019) The role of analytical
38

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

10.

11.

chemistry in exposure science: Focus on the aquatic environment. Chemosphere
222:564-583 . https://doi.org/10.1016/j.chemosphere.2019.01.118

Wagner TV, Helmus R, Quiton Tapia S, Rijnaarts HHM, de Voogt P, Langenhoff AAM,
Parsons JR (2020) Non-target screening reveals the mechanisms responsible for the
antagonistic inhibiting effect of the biocides DBNPA and glutaraldehyde on benzoic
acid biodegradation. Journal of Hazardous Materials 386:121661
https://doi.org/10.1016/j.jhazmat.2019.121661

Kolkman A, Martijn BJ, Vughs D, Baken KA, van Wezel AP (2015) Tracing Nitrogenous
Disinfection Byproducts after Medium Pressure UV Water Treatment by Stable Isotope
Labeling and High Resolution Mass Spectrometry. Environ Sci Technol 49:4458-4465 .
https://doi.org/10.1021/es506063h

Schollée JE, Schymanski EL, Avak SE, Loos M, Hollender J (2015) Prioritizing Unknown
Transformation Products from Biologically-Treated Wastewater Using High-Resolution
Mass Spectrometry, Multivariate Statistics, and Metabolic Logic. Anal Chem 87:12121-
12129 . https://doi.org/10.1021/acs.analchem.5b02905

Brunner AM, Vughs D, Siegers W, Bertelkamp C, Hofman-Caris R, Kolkman A, ter Laak T
(2019) Monitoring transformation product formation in the drinking water treatments
rapid sand filtration and ozonation. @ Chemosphere 214:801-811
https://doi.org/10.1016/j.chemosphere.2018.09.140

Brunner AM, Bertelkamp C, Dingemans MML, Kolkman A, Wols B, Harmsen D, Siegers
W, Martijn BJ, Oorthuizen WA, ter Laak TL (2020) Integration of target analyses, non-

target screening and effect-based monitoring to assess OMP related water quality

39

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

12.

13.

14.

15.

16.

changes in drinking water treatment. Science of The Total Environment 705:135779 .
https://doi.org/10.1016/].scitotenv.2019.135779

Wagner TV, Helmus R, Becker E, Rijnaarts HHM, Voogt P de, Langenhoff AAM, Parsons
JR (2020) Impact of transformation, photodegradation and interaction with
glutaraldehyde on the acute toxicity of the biocide DBNPA in cooling tower water.
Environ Sci: Water Res Technol 6:1058—1068 . https://doi.org/10.1039/C9EW01018A
Jonker W, Lamoree MH, Houtman CJ, Hamers T, Somsen GW, Kool J (2015) Rapid
activity-directed screening of estrogens by parallel coupling of liquid chromatography
with a functional gene reporter assay and mass spectrometry. Journal of
Chromatography A 1406:165-174 . https://doi.org/10.1016/j.chroma.2015.06.012
Albergamo V, Escher Bl, Schymanski EL, Helmus R, Dingemans MML, Cornelissen ER,
Kraak MHS, Hollender J, Voogt P de (2019) Evaluation of reverse osmosis drinking
water treatment of riverbank filtrate using bioanalytical tools and non-target
screening. Environ Sci: Water Res Technol 6:103-116
https://doi.org/10.1039/C9EW00741E

Brunner AM, Dingemans MML, Baken KA, van Wezel AP (2019) Prioritizing
anthropogenic chemicals in drinking water and sources through combined use of mass
spectrometry and ToxCast toxicity data. Journal of Hazardous Materials 364:332—-338 .
https://doi.org/10.1016/j.jhazmat.2018.10.044

Zwart N, Jonker W, Broek R ten, de Boer J, Somsen G, Kool J, Hamers T, Houtman CJ,
Lamoree MH (2020) Identification of mutagenic and endocrine disrupting compounds

in surface water and wastewater treatment plant effluents using high-resolution

40

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

17.

18.

19.

20.

effect-directed analysis. Water Research 168:115204
https://doi.org/10.1016/j.watres.2019.115204

Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, Schulze T,
Haglund P, Letzel T, Grosse S, Thomaidis NS, Bletsou A, Zwiener C, Ibafiez M, Portolés
T, de Boer R, Reid MJ, Onghena M, Kunkel U, Schulz W, Guillon A, Noyon N, Leroy G,
Bados P, Bogialli S, Stipanic¢ev D, Rostkowski P, Hollender J (2015) Non-target screening
with high-resolution mass spectrometry: critical review using a collaborative trial on
water analysis. Anal Bioanal Chem 407:6237-6255 . https://doi.org/10.1007/s00216-
015-8681-7

Peisl BYL, Schymanski EL, Wilmes P (2018) Dark matter in host-microbiome
metabolomics: Tackling the unknowns—A review. Analytica Chimica Acta 1037:13-27 .
https://doi.org/10.1016/j.aca.2017.12.034

Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, Tang WH,
Rompp A, Neumann S, Pizarro AD, Montecchi-Palazzi L, Tasman N, Coleman M,
Reisinger F, Souda P, Hermjakob H, Binz P-A, Deutsch EW (2011) mzML—a Community
Standard for Mass Spectrometry Data. Molecular & Cellular Proteomics 10:
https://doi.org/10.1074/mcp.R110.000133

Pedrioli PGA, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E,
Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp
E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W,
Aebersold R (2004) A common open representation of mass spectrometry data and its
application to proteomics research. Nat Biotechnol 22:1459-1466
https://doi.org/10.1038/nbt1031

41

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

21.

22.

23.

24,

25.

Urban J, Afseth NK, Stys D (2014) Fundamental definitions and confusions in mass
spectrometry about mass assignment, centroiding and resolution. TrAC Trends in
Analytical Chemistry 53:126-136 . https://doi.org/10.1016/j.trac.2013.07.010
Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L,
Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker
TA, Brusniak M-Y, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL,
Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T,
Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL,
Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for
mass spectrometry and proteomics. Nat Biotechnol 30:918-920
https://doi.org/10.1038/nbt.2377

PubChem National Center for Biotechnology Information PubChem Database.
https://pubchem.ncbi.nlm.nih.gov/. Accessed 6 Feb 2020

Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, Patlewicz G,
Shah I, Wambaugh JF, Judson RS, Richard AM (2017) The CompTox Chemistry
Dashboard: a community data resource for environmental chemistry. Journal of
Cheminformatics 9:61 . https://doi.org/10.1186/s13321-017-0247-6

Blazenovié |, Kind T, Torbasinovié¢ H, Obrenovi¢ S, Mehta SS, Tsugawa H, Wermuth T,
Schauer N, Jahn M, Biedendieck R, Jahn D, Fiehn O (2017) Comprehensive comparison
of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is
needed to achieve 93% accuracy. Journal of Cheminformatics 9:32

https://doi.org/10.1186/s13321-017-0219-x

42

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

26.

27.

28.

29.

30.

31.

32.

Bruker MetaboScape. https://www.bruker.com/products/mass-spectrometry-and-
separations/ms-software/metaboscape.html. Accessed 6 Feb 2020

Waters UNIFI Scientific Information System.
https://www.waters.com/waters/en_US/UNIFI-Scientific-Information-
System/nav.htm?cid=134801359&locale=en_US. Accessed 6 Feb 2020

Thermo Scientific Compound Discoverer Software.
https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-
chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-
analysis/compound-discoverer-software.html. Accessed 6 Feb 2020

Progenesis Ql. http://www.nonlinear.com/progenesis/qi/. Accessed 6 Feb 2020

Misra BB, Mohapatra S (2019) Tools and resources for metabolomics research
community: A 2017-2018 update. ELECTROPHORESIS 40:227-246
https://doi.org/10.1002/elps.201800428

Stanstrup J, Broeckling CD, Helmus R, Hoffmann N, Mathé E, Naake T, Nicolotti L,
Peters K, Rainer J, Salek RM, Schulze T, Schymanski EL, Stravs MA, Thévenot EA,
Treutler H, Weber RIM, Willighagen E, Witting M, Neumann S (2019) The
metaRbolomics Toolbox in Bioconductor and beyond. Metabolites 9:200
https://doi.org/10.3390/metabo9100200

Smith CA, Want EJ, O’'Maille G, Abagyan R, Siuzdak G (2006) XCMS: Processing Mass
Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching,

and Identification. Anal Chem 78:779-787 . https://doi.org/10.1021/ac051437y

43

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

33.

34.

35.

36.

37.

38.

39.

Pluskal T, Castillo S, Villar-Briones A, Oresi¢ M (2010) MZmine 2: Modular framework
for processing, visualizing, and analyzing mass spectrometry-based molecular profile
data. BMC Bioinformatics 11:395 . https://doi.org/10.1186/1471-2105-11-395

Hohrenk LL, Itzel F, Baetz N, Tuerk J, Vosough M, Schmidt TC (2020) Comparison of
Software Tools for Liquid Chromatography—High-Resolution Mass Spectrometry Data
Processing in Nontarget Screening of Environmental Samples. Anal Chem 92:1898-
1907 . https://doi.org/10.1021/acs.analchem.9b04095

R Core Team (2019) R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria

Lange E, Tautenhahn R, Neumann S, Gropl C (2008) Critical assessment of alignment
procedures for LC-MS proteomics and metabolomics measurements. BMC
Bioinformatics 9:375 . https://doi.org/10.1186/1471-2105-9-375

Niu W, Knight E, Xia Q, McGarvey BD (2014) Comparative evaluation of eight software
programs for alignment of gas chromatography—mass spectrometry chromatograms in
metabolomics experiments. Journal of Chromatography A 1374:199-206
https://doi.org/10.1016/j.chroma.2014.11.005

Myers OD, Sumner SJ, Li S, Barnes S, Du X (2017) Detailed Investigation and
Comparison of the XCMS and MZmine 2 Chromatogram Construction and
Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry
Metabolomics Data. Anal Chem 89:8689-8695
https://doi.org/10.1021/acs.analchem.7b01069

Hao L, Wang J, Page D, Asthana S, Zetterberg H, Carlsson C, Okonkwo OC, Li L (2018)
Comparative Evaluation of MS-based Metabolomics Software and Its Application to

44

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

40.

41.

42.

43.

44,

45.

46.

Preclinical Alzheimer’s Disease. Scientific Reports 8:9291
https://doi.org/10.1038/s41598-018-27031-x

Myers OD, Sumner SJ, Li S, Barnes S, Du X (2017) One Step Forward for Reducing False
Positive and False Negative Compound Identifications from Mass Spectrometry
Metabolomics Data: New Algorithms for Constructing Extracted lon Chromatograms
and Detecting Chromatographic Peaks. Anal Chem 89:8696-8703
https://doi.org/10.1021/acs.analchem.7b00947

Schymanski EL, Neumann S (2013) CASMI: And the Winner is . . . Metabolites 3:412—-
439 . https://doi.org/10.3390/metabo3020412

Allen F, Pon A, Wilson M, Greiner R, Wishart D (2014) CFM-ID: a web server for
annotation, spectrum prediction and metabolite identification from tandem mass
spectra. Nucleic Acids Res 42:W94—-W99 . https://doi.org/10.1093/nar/gku436

Allen F, Greiner R, Wishart D (2015) Competitive fragmentation modeling of ESI-
MS/MS spectra for putative metabolite identification. Metabolomics 11:98-110 .
https://doi.org/10.1007/s11306-014-0676-4

Loos M (2016) nontarget: Detecting Isotope, Adduct and Homologue Relations in LC-
MS Data. https://CRAN.R-project.org/package=nontarget

Loos M (2016) enviPick: Peak Picking for High Resolution Mass Spectrometry Data.
https://CRAN.R-project.org/package=enviPick. Accessed 2 Oct 2018

Loos M (2018) enviMass version 3.5 LC-HRMS trend detection workflow - R package.

https://doi.org/10.5281/zenodo0.1213098

45

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

47.

48.

49.

50.

51.

52.

Meringer M, Reinker S, Zhang J, Muller A MS/MS data improves automated
determination of molecular formulas by mass spectrometry. MATCH Commun Math
Comput Chem 259-290

Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) MetFrag relaunched:
incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics 8:3
. https://doi.org/10.1186/s13321-016-0115-9

FOR-IDENT LC. https://water.for-ident.org/#!home. Accessed 7 Feb 2020

Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, lkeda K, Kanazawa M, VanderGheynst J,
Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for
comprehensive metabolome analysis. Nat Methods 12:523-526
https://doi.org/10.1038/nmeth.3393

Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O,
Arita M (2016) Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation
and Structure Elucidation Using MS-FINDER Software. Anal Chem 88:7946-7958 .
https://doi.org/10.1021/acs.analchem.6b00770

Rost HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H-
C, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G,
Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS,
Malmstrom L, Aebersold R, Reinert K, Kohlbacher O (2016) OpenMS: a flexible open-
source software platform for mass spectrometry data analysis. Nature Methods

13:741-748 . https://doi.org/10.1038/nmeth.3959

46

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

53.

54.

55.

56.

57.

58.

59.

Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2014) RAMClust: A Novel
Feature Clustering Method Enables Spectral-Matching-Based Annotation for
Metabolomics Data. Anal Chem 86:6812-6817 . https://doi.org/10.1021/ac501530d
Bocker S, Letzel MC, Liptdk Z, Pervukhin A (2009) SIRIUS: decomposing isotope patterns
for metabolite identification. Bioinformatics 25:218-224
https://doi.org/10.1093/bioinformatics/btn603

Diihrkop K, Shen H, Meusel M, Rousu J, Bocker S (2015) Searching molecular structure
databases with tandem mass spectra using CSl:FingerID. PNAS 112:12580-12585 .
https://doi.org/10.1073/pnas.1509788112

Diihrkop K, Bocker S (2015) Fragmentation Trees Reloaded. In: Przytycka TM (ed)
Research in Computational Molecular Biology. Springer International Publishing, pp
65-79

Bocker S, Dihrkop K (2016) Fragmentation trees reloaded. Journal of Cheminformatics
8:5 . https://doi.org/10.1186/s13321-016-0116-8

Diihrkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein
PC, Rousu J, Bocker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into
metabolite structure information. Nat Methods 16:299-302
https://doi.org/10.1038/s41592-019-0344-8

Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S (2012) CAMERA: An
Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid
Chromatography/Mass Spectrometry Data Sets. Anal Chem 84:283-289

https://doi.org/10.1021/ac202450g

47

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

60.

61.

62.

63.

64.

65.

66.

67.

Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: A Web-Based
Platform to Process Untargeted Metabolomic Data. Anal Chem 84:5035-5039 .
https://doi.org/10.1021/ac300698c

Bruker DataAnalysis. https://www.bruker.com/. Accessed 20 Mar 2020

Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, Neumann S,
Trausinger G, Sinner F, Pieber T, Magnes C (2015) IPO: a tool for automated
optimization of XCMS parameters. BMC Bioinformatics 16:118
https://doi.org/10.1186/s12859-015-0562-8

Eliasson M, Rannar S, Madsen R, Donten MA, Marsden-Edwards E, Moritz T, Shockcor
JP, Johansson E, Trygg J (2012) Strategy for Optimizing LC-MS Data Processing in
Metabolomics: A Design of Experiments Approach. Anal Chem 84:6869-6876 .
https://doi.org/10.1021/ac301482k

Loos M, Singer H (2017) Nontargeted homologue series extraction from hyphenated
high resolution mass spectrometry data. J Cheminform 9:12
https://doi.org/10.1186/s13321-017-0197-z

Schollée JE, Bourgin M, von Gunten U, McArdell CS, Hollender J (2018) Non-target
screening to trace ozonation transformation products in a wastewater treatment train
including different post-treatments. = Water Research 142:267-278
https://doi.org/10.1016/j.watres.2018.05.045

Csardi G, Nepusz T (2006) The igraph software package for complex network research.
InterJournal Complex Systems:1695

Almende B.V., Thieurmel B, Robert T (2019) visNetwork: Network Visualization using
“vis.js” Library. https://CRAN.R-project.org/package=visNetwork

48

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

68.

69.

70.

71.

72.

73.

74.

Kujawinski EB, Behn MD (2006) Automated Analysis of Electrospray lonization Fourier
Transform lon Cyclotron Resonance Mass Spectra of Natural Organic Matter. Anal
Chem 78:4363-4373 . https://doi.org/10.1021/ac0600306

Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-
resolution mass data of natural organic matter. Rapid Communications in Mass
Spectrometry 20:926-932 . https://doi.org/10.1002/rcm.2386

Koch BP, Dittmar T (2016) From mass to structure: an aromaticity index for high-
resolution mass data of natural organic matter. Rapid Communications in Mass
Spectrometry 30:250-250 . https://doi.org/10.1002/rcm.7433

Brock O, Helmus R, Kalbitz K, Jansen B Non-target screening of leaf litter-derived
dissolved organic matter using liquid chromatography coupled to high-resolution mass
spectrometry (LC-QTOF-MS). European Journal of Soil Science.
https://doi.org/10.1111/ejss.12894

Heller SR, McNaught A, Pletnev |, Stein S, Tchekhovskoi D (2015) InChl, the IUPAC
International Chemical Identifier. Journal of Cheminformatics 7:23
https://doi.org/10.1186/s13321-015-0068-4

Guha R (2007) Chemical Informatics Functionality in R. Journal of Statistical Software
18:1-16

Schymanski EL, Gerlich M, Ruttkies C, Neumann S (2014) Solving CASMI 2013 with
MetFrag, MetFusion and MOLGEN-MS/MS. Mass Spectrometry 3:50036-S0036 .

https://doi.org/10.5702/massspectrometry.S0036

49

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Langfelder P, Zhang B (2016) dynamicTreeCut: Methods for Detection of Clusters in
Hierarchical Clustering Dendrogrames. https://CRAN.R-
project.org/package=dynamicTreeCut

Royal Society of Chemistry ChemSpider. http://www.chemspider.com. Accessed 6 Feb
2020

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: Visualization of
Intersecting Sets. IEEE Transactions on Visualization and Computer Graphics 20:1983—
1992 . https://doi.org/10.1109/TVCG.2014.2346248

Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-
customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35
https://doi.org/10.1186/1471-2105-12-35

Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances
circular visualization in R. Bioinformatics 30:2811-2812

Gehlenborg N (2019) UpSetR: A More Scalable Alternative to Venn and Euler Diagrams
for Visualizing Intersecting Sets. https://CRAN.R-project.org/package=UpSetR

Xie Y, Allaire JJ, Grolemund G (2018) R Markdown: The Definitive Guide. Chapman and
Hall/CRC, Boca Raton, Florida

Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang
W, lannone R (2019) rmarkdown: Dynamic Documents for R

lannone R, Allaire JJ, Borges B (2018) flexdashboard: R Markdown Format for Flexible
Dashboards. https://CRAN.R-project.org/package=flexdashboard

Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2019) shiny: Web Application
Framework for R. https://CRAN.R-project.org/package=shiny

50

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Helmus R (2020) patRoon 1.0.0 manuals. Zenodo.
https://doi.org/10.5281/zenodo.3889937

patRoon reference. https://rickhelmus.github.io/patRoon/reference/index.html.
Accessed 11 Jun 2020

patRoon tutorial. https://rickhelmus.github.io/patRoon/articles/tutorial.html.
Accessed 11 Jun 2020

Helmus R patRoon handbook.
https://rickhelmus.github.io/patRoon/handbook_bd/index.html. Accessed 11 Jun 2020
Xie Y (2016) bookdown: Authoring Books and Technical Documents with R Markdown.
Chapman and Hall/CRC, Boca Raton, Florida

Xie Y (2019) bookdown: Authoring Books and Technical Documents with R Markdown
Wickham H, Danenberg P, Csardi G, Eugster M (2019) roxygen2: In-Line Documentation
for R. https://CRAN.R-project.org/package=roxygen2

Helmus R (2020) patRoonData. https://github.com/rickhelmus/patRoonData. Accessed
18 Mar 2020

Helmus R, Albergamo Vv (2020) patRoonData: 1.0.0. Zenodo.
https://doi.org/10.5281/zenodo0.3743266

Lang M (2017) checkmate: Fast Argument Checks for Defensive R Programming. The R
Journal 9:437-445

Csardi G, Chang W (2019) processx: Execute and Control System Processes.
https://CRAN.R-project.org/package=processx

R Special Interest Group on Databases (R-SIG-DB), Wickham H, Mdller K (2019) DBI: R
Database Interface. https://CRAN.R-project.org/package=DBI

51

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

Miller K, Wickham H, James DA, Falcon S (2019) RSQLite: “SQLite” Interface for R.
https://CRAN.R-project.org/package=RSQLlite

Eddelbuettel D, Frangois R (2011) Rcpp: Seamless R and C++ Integration. Journal of
Statistical Software 40:1-18 . https://doi.org/10.18637/jss.v040.i08

Eddelbuettel D (2013) Seamless R and C++ Integration with Rcpp. Springer, New York
Eddelbuettel D, Balamuta JJ (2017) Extending R with C++: A Brief Introduction to Rcpp.
PeerJ Preprints 5:e3188v1 . https://doi.org/10.7287/peerj.preprints.3188v1

Kapoulkine A pugixml. https://pugixml.org/. Accessed 6 Feb 2020

Dowle M, Srinivasan A (2019) data.table: Extension of ‘data.frame’. https://CRAN.R-
project.org/package=data.table

MetFragR. http://ipb-halle.github.io/MetFrag/projects/metfragr/. Accessed 6 Feb 2020
Lang DT (2019) RDCOMClient: R-DCOM client

Wickham H (2011) testthat: Get Started with Testing. The R Journal 3:5-10

Henry L, Sutherland C, Hong D, Luciani TJ, Decorde M, Lise V (2019) vdiffr: Visual
Regression Testing and Graphical Diffing. https://CRAN.R-project.org/package=vdiffr
Helmus R (2020) patRoon benchmarking & demonstration data. Zenodo.
https://doi.org/10.5281/zenodo0.3885448

Mersmann O (2019) microbenchmark: Accurate Timing Functions. https://CRAN.R-
project.org/package=microbenchmark

Fischer B, Neumann S, Gatto L, Kou Q, Rainer J (2020) mzR: parser for netCDF, mzXML,
mzData and mzML and mzldentML files (mass spectrometry data).
https://bioconductor.org/packages/mzR/. Accessed 6 Apr 2020

Gurobi. https://www.gurobi.com/. Accessed 6 Feb 2020

52

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

111.

112.

113.

114.

115.

116.

117.

118.

119.

CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer. Accessed 6 Feb
2020
GNU Project - Free Software Foundation (FSF) GLPK (GNU Linear Programming Kit).

https://www.gnu.org/software/glpk/. Accessed 6 Feb 2020

Bocker S, Dihrkop K, Fleischauer M, Ludwig M (2019) SIRIUS Documentation Release
4.0.1
NORMAN Suspect List Exchange — NORMAN SLE. https://www.norman-

network.com/nds/SLE/. Accessed 13 Mar 2020

CompTox March 2019 Csv file.
ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry Data/Chemistry_Dashboard/
MetFrag_metadata_files/CompTox_17March2019_SelectMetaData.csv
Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C, Wishart
DS (2019) BioTransformer: a comprehensive computational tool for small molecule
metabolism prediction and metabolite identification. Journal of Cheminformatics 11:2 .
https://doi.org/10.1186/s13321-018-0324-5

Kruve A (2019) Semi-quantitative non-target analysis of water with liquid
chromatography/high-resolution mass spectrometry: How far are we? Rapid
Communications in Mass Spectrometry 33:54-63 . https://doi.org/10.1002/rcm.8208
Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E,
Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS (2016) ClassyFire:
automated chemical classification with a comprehensive, computable taxonomy. J
Cheminform 8:61 . https://doi.org/10.1186/s13321-016-0174-y

R for Mass Spectrometry. www.rformassspectrometry.org. Accessed 13 Mar 2020

53

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

120. Rick Helmus (2020) patRoon 1.0.0. Zenodo. https://doi.org/10.5281/zenodo.3889856

Figures

Figure 1. Generic workflow for environmental non-target analysis.

Figure 2. Overview of the NTA patRoon workflow. All steps are optional. Steps that are
connected by blue and straight arrows represent a one-way data dependency, whereas
steps connected with red curved and dashed arrows represent steps with two-way data

interaction.

Figure 3. Graphical user interface tools in patRoon. Tools are provided (a) to create a new

patRoon data analysis project and (b) to inspect feature chromatography data.

Figure 4. Interface for the patRoon workflow. The workflow steps are performed by a set of
functions that execute the selected algorithm and return the data in a harmonized format
by utilizing the ‘S4’ object oriented programming approach of R. These objects all derive
from a common base class and may be further sub-classed in algorithm specific classes (as is
exemplified for features). Generic functions are defined for all workflow classes to
implement further data processing functionality in a predictable and algorithm independent

manner (see also Table 3). Further information is provided in the reference manual [85, 86].

Figure 5. Parallelization benchmark results. (a) Benchmark results for commonly used CLI

tools applied in patRoon workflows under varying parallelization conditions. Tests were

54

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

performed with “simple” (left) and “complex” (right) input conditions (Table 4) to simulate
varying workflow complexity. Parallelization was performed with the multiprocessing
functionality of patRoon (top) or by using native multithreading (bottom, for tools that
supported this). Graphs represent number of processes or threads versus relative execution
time (normalized to sequential results). The dotted grey lines represent the theoretical
trend if maximum parallelization performance is achieved. The dashed blue line represents
the number of physical cores that became the default selection in patRoon based on these
results. (b) Comparison of execution times (normalized to the execution times of the
unoptimized results) when tools are executed without optimizations (green), executed with
native multithreading (FFM, SIR and MF) or batch mode (GF) (orange), executed with
multiprocessing (purple) or a combination of the latter two (pink), using simple (left) and
complex (right) input conditions. (c) Overview of execution times for a complete patRoon
workflow executed under optimized versus unoptimized conditions. All results for MC and

SIR were obtained without enabling their native batch mode.

Figure 6. Common visualization functionality of patRoon applied to the demonstrated
workflow. From left to right: an m/z vs retention time plot of all feature groups, an EIC for
the tramadol suspect found in both influent samples, a compound annotated spectrum for
the 1,2,3-benzotriazole suspect and comparison of feature presence between sample

groups using UpSet [77], Venn and chord diagrams.

55

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

Supplementary information

Additional file 1: Comma-separated file (.csv). Overview of software and databases that are
used in the implementation in patRoon. This table summarizes all the software and
databases that are described in the implementation section of the main text.

Additional file 2: Word document (.docx). Supplementary figures. Additional figures that
illustrate implementation details of patRoon and miscellaneous benchmarking results.
Additional file 3: Word document (.docx). Supplementary tables. Additional tables with
more details on the implementation and suspect screening demonstration.

Additional file 4: Zip archive (.zip). Source code for benchmarks. Archive with several R
scripts that were used to perform the parallelization benchmarks.

Additional file 5: Comma-separated file (.csv). Demonstration suspect list. Suspect list that
was used for the patRoon demonstration. The list was based on the detected compounds

reported in [11], and SMILES identifiers for each suspect were collected from PubChem [23].

56

HRMS Primary

data Features Annotation Interface Language OS License References
PP FTS FG C SUS MS FA CA LA HS GA C RT
CFM-ID X X CLI, Web C++ Cross LGPLv2.1 [42, 43]
b enviMass, ' GUI R
enviPick, X' X X X X X X Wetl) ! Cross GPLv3.0' [44-46]
nontarget
GenForm X CL C++ Cross’ LGPLv2.0 [47]
MetF LI, R
d Metfrag X X x xR Cross LGPLv2.0 [48]
Web
e FOR-IDENT x* X X Web HTML Cross Closed [49]
f MS-DIAL, .
MS-EINDER X X X X X X X X X CLI, GUI C# Win LGPLv3.0 [50, 51]
MZmine X X X X X X X X x X GUI Java Cross GPLv2.0 [33]
h M i LI | Win, Li
OpenMS X" XX X X< X X CL, GUl, "N 5N Bsp/3-Clause [52]
Python Mac
i ProteoWizard: X CLl, GUI C++ Win, Lin Apache 2.0 [22]
i RAMClustR X X R R Cross GPLv2.0 [53]
k SIRIUS and
CSlFingerlD X X X CLI, GUI Java Cross GPLv3.0 [54-58]
| XCMS and
CAMERA X X X X R R Cross GPLv2.0 [32,59]
m XCMS Online X X! X' X X X Web R Cross Closed [60]
n patRoon X X" oxox o ox o ox* o x* o x x ¥ x xR R Cross GPLv3.0

P: pre-processing; FTS: find features; FG: group features across samples; C: data clean up; SUS: suspect screening; MS: automatic MS data extraction for
annotation purposes; FA: formula annotation; CA/LA: compound annotation (in silico/library); HS: unsupervised homologous series extraction; GA: grouping
and annotating chemically related features (e.g. adducts, isotopes, in-source fragments); RT: retention time prediction; Bold: functionality integrated in
patRoon; superscript: implemented with algorithms by given rows (omitted if only native); CLI: command-line interface; GUI: graphical user interface; Web:
interfaced via internet browser; OS: Supported Operating Systems; Win: Microsoft Windows; (Lin): GNU/Linux, (Mac): macOS; Cross: cross-platform; (1):
enviMass is distributed commercially; (2): Only Microsoft Windows binaries are distributed.

57

