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Abstract

Mass spectrometry based non-target analysis is increasingly adopted in environmental
sciences to screen and identify numerous chemicals simultaneously in highly complex
samples. However, current data processing software either lack functionality for
environmental sciences, solve only part of the workflow, are not openly available and/or are
restricted in input data formats. In this paper we present patRoon, a new R based open-
source software platform, which provides comprehensive, fully tailored and straightforward
non-target analysis workflows. This platform makes the usage, evaluation and mixing of

well-tested algorithms seamless by harmonizing various commonly (primarily open)
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software tools under a consistent interface. In addition, patRoon offers various functionality
and strategies to simplify and perform automated processing of complex (environmental)
data effectively. patRoon implements several effective optimization strategies to
significantly reduce computational times. The ability of patRoon to perform a
straightforward and effective non-target analysis was demonstrated with real-world
environmental samples, showing that patRoon makes comprehensive (environmental) non-

target analysis readily accessible to a wider community of researchers.

Keywords

High resolution mass spectrometry, compound identification, non-target analysis,

computational workflows

Introduction

Chemical analysis is widely applied in environmental sciences such as earth sciences,
biology, ecology and environmental chemistry, to study e.g. geomorphic processes,
(chemical) interaction between species or the occurrence, fate and effect of chemicals of
emerging concern in the environment. The environmental compartments investigated
include air, water, soil, sediment and biota, and exhibit a highly diverse chemical
composition and complexity. The number and quantities of chemicals encountered within
samples may span several orders of magnitude relative to each other. Therefore, chemical
analysis must discern compounds at ultra-trace levels, a requirement that can be largely met
with modern analytical instrumentation such as liquid or gas chromatography coupled with

mass spectrometry (LC-MS and GC-MS). The high sensitivity and selectivity of these
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techniques enable accurate identification and quantification of chemicals in complex sample

materials.

Traditionally, a ‘target analysis’ approach is performed, where identification and
guantitation occur by comparing experimental data with reference standards. The need to
pre-select compounds of interest constrains the chemical scope of target analysis, and
hampers the analysis of chemicals with (partially) unknown identities such as transformation
products and contaminants of emerging concern (CEC). In addition, the need to acquire or
synthesize a large number of analytical standards may not be feasible for compounds with a
merely suspected presence. Recent technological advancements in chromatography and
high resolution MS (HRMS) allows detection and tentative identification of compounds
without the prior need of standards [1]. This ‘non-target’ analysis (NTA) approach is
increasingly adopted to perform simultaneous screening of up to thousands of chemicals in
the environment, such as finding new CEC [1-6], identifying chemical transformation

(by)products [7-12] and identification of toxicants in the environment [13-16].

Studies employing environmental NTA typically allow the detection of hundreds to
thousands of different chemicals [17, 18]. Effectively processing such data requires
workflows to automatically extract and prioritize NTA data, perform chemical identification
and assist in interpreting the complex resulting datasets. Currently available tools often
originate from other research domains such as life sciences and may lack functionality or
require extensive optimization before being suitable for environmental analysis. Examples

include handling chemicals with low sample-to-sample abundance, recognition of
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halogenated compounds, usage of data sources with environmentally relevant substances,
or temporal and spatial trends. Furthermore, existing tools solve only part of the workflow,
generally use differing and incompatible data formats and employ different user interfaces.
Hence, the need to learn, combine, optimize and sometimes develop or adapt various
specialized software tools, and perform tedious transformation of datasets currently hinders
further adoption of NTA, especially in more routine settings lacking appropriate in-house

computational expertise.

An NTA workflow can be generalized as a four step process (Figure 1) [1]. Firstly, data from
LC or GC-HRMS is either acquired or retrieved retrospectively, and pre-treated for
subsequent analysis (Figure 1a). This pre-treatment may involve conversion to open data
formats (e.g. mzML [19] or mzXML [20]) to increase operability with open-source software,
re-calibration of mass spectra to improve accuracy and centroiding [21] or other raw data
reduction steps to conserve space such as trimming chromatographs or filtering mass scans
(e.g. with the functionality from the ProteoWizard suite [22]). Secondly (Figure 1b), features
with unique chromatographic and mass spectral properties (e.g. retention time, accurate
mass, signal intensity) are automatically extracted and features considered equivalent
across sample analyses are grouped to allow qualitative and (semi-) quantitative comparison
further down the workflow. Thirdly (Figure 1c), the feature dataset quality is refined, for
instance, via rule-based filters (e.g. minimum intensity and absence in sample blanks) and
grouping of features based on a defined relationship such as adducts or homologous series
(e.g. “componentization”). Further prioritization during this step of the workflow is often
required for efficient data analysis, for instance, based on chemical properties (e.g. mass

4
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defect and isotopic pattern), suspected presence (i.e. “suspect screening”) or intensity
trends in time and/or space (e.g. reviewed in [1]). Finally (Figure 1d), prioritized features are
annotated, for instance by assigning chemical formulae or compounds from a chemical
database (e.g. PubChem [23] or CompTox [24]) based on the exact mass of the feature. The
resulting candidates are ranked by conformity with MS data, such as match with theoretical
isotopic pattern and in silico or library MS fragmentation spectra, and study-specific

metadata, such as number of scientific references and toxicity data [1, 25].

Various open and closed software tools are already available to implement (parts of) the
NTA workflow. Commercial software tools such as MetaboScape [26], UNIFI [27], Compound
Discoverer [28] and ProGenesis QI [29] provide a familiar and easy to use graphical user
interface, may contain instrument specific functionalities and optimizations and typically
come with support for their installation and usage. However, they are generally not open-
source or open-access and are often restricted to proprietary data formats. This leads to
difficulties in data sharing, as exact algorithm implementations and parameter choices are
hidden, while maintenance, auditing or code extension by other parties is often not
possible. Many open-source or open-access tools are available to process mass
spectrometry data (e.g. [30, 31] and summarized in Table 1). While many tools were
originally developed to process metabolomics and proteomics data, approaches such as
XCMS [32] and MZmine [33] have also been applied to environmental NTA studies [6, 34].
Many open tools are easily interfaced with the R statistical environment [35] (Table 1).
Leveraging this open scripting environment inherently allows defining highly flexible and

reproducible workflows and increases the accessibility of such workflows to a wider
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audience as a result of the widespread usage of R in data sciences. Various open tools
overlap in functionality (Table 1), and are implemented with differing algorithms or
employing different data sources. As a consequence, tools may generate different results, as
has been shown when generating feature data [36—40] or performing structural annotations
[25, 41]. Thus, a flexible platform to combine and evaluate various algorithms that is
independent of closed MS vendor input data formats is desired in order to tailor an optimal

NTA workflow to the particular study types and methodological characteristics.

Table 1. Overview of commonly used open-source or open-access software tools to implement NTA workflows.

<Table from end of this document should be placed here>

Here, we present an R based open-source software platform called patRoon (‘pattern’ in
Dutch) providing comprehensive NTA data processing from HRMS data pre-treatment,
detection and grouping of features, through to molecular formula and compound
annotation. In patRoon, various (primarily open) tools commonly used for NTA data
processing are harmonized within a consistent and easy to use interface. In addition, new
functionality is implemented that simplify and improve NTA data processing, such as
automated chemical annotation, visualization and reporting of results, comparing and
combining results from different algorithms, and data reduction and prioritization
strategies. The architecture of patRoon is designed to be extendible in order to

accommodate for rapid developments in the NTA research field.
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Implementation

The implementation section starts with an overview of the patRoon workflows. Subsequent
sections provide details on additional functionality implemented by patRoon which relate to
data processing, annotation, visualization and reporting. Finally, a detailed description is
given of the software architecture. patRoon is then demonstrated in the Results and
discussion section. The software tools and databases used for the implementation of

patRoon are summarized in Additional file 1.

Workflow in patRoon

patRoon encompasses a comprehensive workflow for HRMS based NTA (Figure 2). All steps
within the workflow are optional and the order of execution is largely customizable. Some
steps depend on data from previous steps (blue arrows) or may alter or amend data from
each other (red arrows). The workflow commonly starts with pre-treatment (PT) of raw
HRMS data. Next, feature data is generated, which consists of finding features (FTS) in each
sample, an optional retention time alignment step, and then grouping into “feature groups”
(FG). FTS and FG may be preceded by automatic parameter optimization (PO), or followed
by suspect screening (SUS). The feature data may then finally be used for componentization
(CMT) and/or annotation steps, which involves generation of MS peak lists (MSPL), as well
as formula and compound annotations (FOR/COM). At any moment during the workflow,
the generated data may be inspected, visualized and treated by e.g. rule based filtering.

These operations are discussed in the next section.
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Several commonly used open software tools, such as OpenMS [52], XCMS [32], MetFrag [48]
and SIRIUS [54-58], and closed software tools, such as Bruker DataAnalysis [61] (chosen due
to institutional needs), are interfaced to provide a choice between multiple algorithms for
each workflow step (Additional file 3: Table S1). Customization of the NTA workflow may be
achieved by freely selecting and mixing algorithms from different software tools. For
instance, a workflow that uses XCMS to group features allows that these features originate
from other algorithms than those supported by XCMS (e.g. those from OpenMS), a situation

that would require tedious data transformation when XCMS is used standalone.

To ease parameter selection over the various feature finding and grouping algorithms, an
automated feature optimization (FO) approach was adopted from the isotopologue
parameter optimization (/IPO) R package [62], which employs design of experiments to
optimize LC-MS data processing parameters [63]. IPO was integrated in patRoon, and its
code base was extended to (a) apply to other feature finding and grouping algorithms
supported by patRoon (i.e. XCMS, OpenMS and enviPick), (b) support isotope detection with
OpenMS, (c) perform optimization of qualitative parameters and (d) provide a consistent

output format for easy inspection and visualization of optimization results.

In patRoon, componentization (CMT) refers to consolidating different (grouped) features
with a prescribed relationship, which is currently either based on (a) highly similar elution
profiles (i.e. retention time and peak shape), which are hypothesized to originate from the
same chemical compound (based on [53, 59]), (b) participation in the same homologous

series (based on [64]) or (c) the (normalized) intensity profiles across samples (based on [4,
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5, 65]). Components obtained by approach (a) typically comprise adducts, isotopologues
and in-source fragments, and the supported algorithms in patRoon annotate these using
chemical rules. Approach (b) uses the nontarget R package [44] to calculate series from
aggregated feature data from replicates. The interpretation of homologous series between
replicates is assisted by merging series with overlapping features in cases where this will not
yield ambiguities to other series. If merging would cause ambiguities, instead links are
created that can then be explored interactively and visualized by a network graph generated

using the igraph [66] and visNetwork [67] R packages (see Additional file 2: Figure S1).

During the annotation step, molecular formulae and/or chemical compounds are
automatically assigned and ranked for all features or feature groups. The required MS peak
list (MSPL) input data are extracted from all MS analysis data files and subsequently pre-
processed, for instance, by averaging multiple spectra within the elution profile of the
feature and by removing mass peaks below user-defined thresholds. All compound
databases and ranking mechanisms supported by the underlying algorithms are supported
by patRoon and can be fully configured. Afterwards, formula and structural annotation data
may be combined to improve candidate ranking and manual interpretation of annotated
spectra. More details are outlined in the section “MS peak list retrieval, annotation and

candidate ranking”.

Data reduction, comparison and conversion

Various rule-based filters are available for data-cleanup or study specific prioritization of all

data obtained through the workflow (see Table 2), and can be inverted to inspect the data
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that would be removed (i.e. negation). To process feature data, multiple filters are often
applied, however, the order may influence the final result. For instance, when features were
first removed from blanks by an intensity filter, a subsequent blank filter will not properly
remove these features in actual samples. Similarly, a filter may need a re-run after another
to ensure complete data clean-up. To reduce the influence of order upon results, filters for
feature data are executed by default as follows:

1. an intensity pre-filter, to ensure good quality feature data for subsequent filters;

2. filters not affected by other filters, such as retention time and m/z range;

3. minimum replicate abundance, blank presence and ‘regular’ minimum intensity;

4. repetition of the replicate abundance filter (only if previous filters affected results);

5. other filters that are possibly influenced by prior steps, such as minimum abundance

in feature groups or sample analyses.

Note that the above scheme only applies to those filters requested by the user, and the user

can apply another order if desired.

Further data subsetting allows the user to freely select data of interest, for instance,
following a (statistical) prioritization approach performed by other tools. Similarly, features
that are unique or overlapping in different sample analyses may be isolated, which is a
straightforward but common prioritization technique for NTA studies that involve the

comparison of different types of samples.

10
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Table 2. Major rule-based filtering functionality implemented in patRoon.

Features Annotation Processing

Filter functionality FIS FG MSPL FOR COM  CMT

Intensity threshold X X
Feature properties’ X
Max intensity deviation across replicates
Minimum intensity above blank

Minimum size or abundance

Top most abundant/highest scoring X X X
Minimum scoring X X
Annotation? X X X
Organic matter rules® X

xX X X X X

FTS: features; FG: feature groups; MSPL: MS peak lists; FOR: formulae; COM: compounds; CMT: components; (1)
Retention time, chromatographic peak width, m/z and mass defect range; (2) e.g. adducts, isotopologues,
formula composition, neutral loss; (3) expected formula composition based on [68-71].

Data from feature groups, components or annotations that are generated with different
algorithms (or parameters thereof) can be compared to generate a consensus by only
retaining data with (a) minimum overlap, (b) uniqueness or (c) by combining all results (only
(c) is supported for data from components). Consensus data are useful to remove outliers,
for inspection of algorithmic differences or for obtaining the maximum amount of data
generated during the workflow. The consensus for formula and compound annotation data
are generated by comparison of Hill-sorted formulae and the skeleton layer (first block) of
the InChlKey chemical identifiers [72], respectively. For feature groups, where different
algorithms may output deviating retention and/or mass properties, such a direct
comparison is impossible. Instead, the dimensionality of feature groups is first reduced by
averaging all feature data (i.e. retention times, m/z values and intensities) for each group.
The collapsed groups have a similar data format as ‘regular’ features, where the compared
objects represent the ‘sample analyses’. Subjection of this data to a feature grouping

algorithm supported by patRoon (i.e. from XCMS or OpenMS) then allows straightforward

11
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and reliable comparison of feature data from different algorithms, which is finally used to

generate the consensus.

Hierarchical clustering is utilized for componentization of features with similar intensity
profiles or to group chemically similar candidate structures of an annotated feature. The
latter “compound clustering” assists the interpretation of features with large numbers of
candidate structures (e.g. hundreds to thousands). This method utilizes chemical
fingerprinting and chemical similarity methods from the rcdk package [73] to cluster similar
structures, and subsequent visual inspection of the maximum common substructure then
allows assessment of common structural properties among candidates (methodology based
on [74]). Cluster assignment for both CMT and COM approaches is performed automatically
using the dynamicTreeCut R package [75]. However, clusters may be re-assigned manually

by the desired amount or tree height.

Several data conversion methods were implemented to allow interoperability with other
software tools. All workflow data types are easily converted to commonly used R data types
(e.g. data.frame or list), which allows further processing with other R packages.
Furthermore, feature data may be converted to and from native XCMS objects (i.e.
xcmsSet and XCMSnExp) or exported to comma-separated values (CSV) formats

compatible with Bruker ProfileAnalysis or TASQ, or MZmine.

12
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MS peak list retrieval, annotation and candidate ranking

Data for MS and MS/MS peak lists for a feature are collected from spectra recorded within
the chromatographic peak and averaged to improve mass accuracies and signal to noise
ratios. Next, peak lists for each feature group are assigned by averaging the mass and
intensity values from peak lists of the features in the group. Mass spectral averaging can be
customized via several data clean-up filters and a choice between different mass clustering
approaches, which allow a trade-off between computational speed and clustering accuracy.
By default, peak lists for MS/MS data are obtained from spectra that originate from
precursor masses within a certain tolerance of the feature mass. This tolerance in mass
search range is configurable to accommodate the precursor isolation window applied during
data acquisition. In addition, the precursor mass filter can be completely disabled to
accommodate data processing from data-independent MS/MS experiments, where all

precursor ions are fragmented simultaneously.

The formula annotation process is configurable to allow a tradeoff between accuracy and
calculation speeds. Candidates are assigned to each feature group, either directly by using
group averaged MS peak list data, or by a consensus from formula assignments to each
individual feature in the group. While the latter inherently consumes more time, it allows
removal of outlier candidates (e.g. false positives due to features with poor spectra).
Candidate ranking is improved by inclusion of MS/MS data in formula calculation (optional

for GenForm [47] and DataAnalysis).
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Formula calculation with GenForm ranks formula candidates on isotopic match (amongst
others), where any other mass peaks will penalize scores. Since MS data of “real-world”
samples typically includes many other mass peaks (e.g. adducts, co-eluting features,
background ions), patRoon improves the scoring accuracy by automatic isolation of the
feature isotopic clusters prior to GenForm execution. A generic isolation algorithm was
developed, which makes no assumptions on elemental formula compositions and ion
charges, by applying various rules to isolate mass peaks that are likely part of the feature
isotopic cluster (see Additional file 2: Figure S2). These rules are configured to accommodate
various data and study types by default. Optimization is possible, for instance, to (a)
improve studies of natural or anthropogenic compounds by lowering or increasing mass
defect tolerances, respectively, (b) constrain cluster size and intensity ranges for low
molecular weight compounds or (c) adjust to expected instrumental performance such as
mass accuracy. Note that precursor isolation can be performed independently of formula

calculation, which may be useful for manual inspection of MS data.

Compound annotation is usually the most time and resource intensive process during the
non-target workflow. As such, instead of annotating individual features, compound
assignment occurs for the complete feature group. All compound databases supported by
the underlying algorithms, such as PubChem [23], ChemSpider [76] or CompTox [24] and
other local CSV files, as well as the scoring terms present in these databases, such as in silico
and spectral library MS/MS match, references in literature and presence in suspect lists, can
be utilized with patRoon. Default scorings supported by the selected algorithm/database or
sets thereof are easily selectable to simplify effective compound ranking. Furthermore,

14
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formula annotation data may be incorporated in compound ranking, where a ‘formula
score’ is calculated for each candidate formula, which is proportional to its ranking in the
formula annotation data. Execution of unattended sessions is assisted by automatic restarts
after occurrence of timeouts or errors (e.g. due to network connectivity) and automatic

logging facilities.

Visualization, reporting and graphical interface

In patRoon, visualization functionality is provided for feature and annotation data (e.g.
extracted ion chromatograms (EICs) and annotated spectra), to compare workflow data (i.e.
by means of Venn, chord and UpSet [77] diagrams, using the VennDiagram [78], circlize [79]
and UpSetR [80] R packages, respectively) and others such as plotting results from
automatic feature optimization experiments and hierarchical clustering data. Reports can be
generated in a common CSV text format or in a graphical format via export to a portable
document file (PDF) or hypertext markup language (HTML) format. The latter are generated
with the R Markdown [81, 82] and flexdashboard [83] R packages, and provide an easy to
use interface for interactive sorting, searching and browsing reported data. As plotting and
reporting functionalities can be performed at any stage during the workflow, the data that is

included in the reports is fully configurable.

While patRoon is primarily interfaced through R, several graphical user interface tools are
provided to assist the (novice) user. Most importantly, patRoon provides a Shiny [84] based
tool that automatically generates a commented template R script from user input, such as

selection of MS data file input, workflow algorithms and other common workflow

15
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parameters (Figure 3a). Secondly, chromatographic data of features may be inspected either
by automatic addition of EICs in a Bruker DataAnalysis session or with a Shiny based

interface (Figure 3b).

Software architecture

patRoon is distributed as an R package. Its source code is primarily written in the R
language, with some support code written in C++ and JavaScript. Both Microsoft Windows
(hereafter referred to as Windows) and Linux platforms are supported (support for macOS is
envisaged in the future). Several external dependencies are required; notable examples are
in Additional file 3: Table S1. GenForm is automatically compiled during package installation.
For Windows platforms, an installation script is provided to install and configure patRoon
and all of its dependencies automatically. Documentation includes a handbook, tutorial and
full reference manual [85-88], which are produced with the bookdown [89, 90], R
Markdown and roxygen2 [91] R packages, respectively. Example data is contained in the

patRoonData R package [92, 93].

An important design goal was to provide a consistent, generic and easy to use interface that
does not require the user to know the implementation and interfacing details of the
supported algorithms. Each workflow step is executed by a generator function that takes
the desired algorithm and its parameters as input and returns objects from a common set of
data formats (see Figure 4). Names for commonly used parameters supported by multiple
algorithms are standardized for consistency and defaults are set where reasonable.

Furthermore, the format of input data such as retention time units as well as formula and

16
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adduct specifications are harmonized and automatically converted to the format expected
by the algorithm. Nearly all parameters from the underlying algorithm can be set by the
user, hence, full configurability of the workflow is retained wherever possible. Generic
naming schemes are applied to output data, which assist the user in comparing results
originating from different algorithms. All exported functions from patRoon verify user input
with the checkmate [94] package, which efficiently performs tests such as correctness of

value range and type, and prints descriptive messages if input is incorrect.

A set of generic methods are defined for workflow classes that perform general data
inspection, selection, conversion and visualization, irrespective of the algorithm that was
used to generate the object (see Table 3). Consequently, the implementation of common
function names for multiple output classes allows a predictable and consistent user

interface.

Table 3. Common generic methods defined in patRoon to process workflow data.

Generic Purpose

length(), show(),
algorithm(), names(),
groupNames ()

obtain general object information such as object length and
unique identifiers for contained results

filter() rule-based filtering operations

[, [[,$ operators subsetting or extracting data

as.data.table(), conversion to data.table or data.frame object
as.data.frame()

unique(), overlap() extract unique or overlapping features across replicates
consensus() generates a consensus between different objects of the same

class

plot(), plotEIC(), plot general, chromatographic and annotation data

plotSpec()
plotChord(), comparison of feature data or workflow objects from
plotUpSet(), different algorithms by chord, UpSet and Venn diagrams

17
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plotVenn()

Several optimization strategies are employed in patRoon to reduce computational
requirements and times. Firstly, external command line (CLI) tools are executed in parallel to
reduce overall execution times for repetitive (e.g. per sample analysis or per feature)
calculations. Commands are queued (first in, first out) and their execution is handled with
the processx package [95]. Secondly, functions employing time intensive algorithms
automatically cache their (partial) results in a local SQLite database file, which is accessed
via the DBI [96] and RSQLite [97] R packages. Thirdly, performance critical code dealing with
OpenMS data files and loading chromatographic data was written in C++ (interfaced with
Rcpp [98-100]) to significantly reduce times needed to read or write data. Fourthly, the
output files from OpenMS tools are loaded in chunks using the pugixml software library
[101] to ensure a low memory footprint. Finally, reading, writing and processing (large)
internal tabular data is performed with the data.table R package, which is a generally faster
and more memory efficient drop-in replacement to the native tabular data format of R

(data.frame), especially for large datasets [102].

Interfacing with ProteoWizard [22], OpenMS, GenForm, SIRIUS and MetFrag occurs by
wrapper code that automatically executes the CLI tools and perform the data conversions
necessary for input and output files. An alternative interface to MetFrag is also provided by
employing the metfRag R package [103], however, in our experience this option is currently
significantly slower than the CLI and therefore not used by default. For tools that are not
readily controllable from R (i.e. ProfileAnalysis, TASQ and MZmine), interfacing occurs via

importing or exporting CSV files (only export is supported for MZmine). Finally, the
18
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RDCOM(Client R package [104] is used to interface with Bruker DataAnalysis via the
distributed component object model, which allows automation of DataAnalysis functionality
from R that otherwise would only be available via its integrated visual basic scripting

environment.

A continuous integration pipeline performs automated tests during development and
delivers files to simplify installation of patRoon and all its dependencies (Additional file 2:
Figure S3). More than 900 unit tests are performed (>80% code coverage) with the testthat
and vdiffr R packages [105, 106]. After successful test completion, binary R packages
(Windows) and Docker images (Linux) are generated to facilitate installation of patRoon with

tested and compatible dependencies.

Results and discussion

Benchmark and demonstration data

The data used to benchmark and demonstrate patRoon were obtained with an LC-HRMS
analysis of two different influent and effluent samples from a drinking water treatment pilot
installation and a procedural blank (all in triplicate). The samples originate from an
experiment where a set of 18 common environmental contaminants (yielding 20 individual
chromatographic peaks, see Additional file 3: Table S2) were spiked prior to drinking water
treatment. The analyses were performed using an LC-HRMS Orbitrap Fusion system
(ThermoFisher Scientific, Bremen, Germany) operating with positive electrospray ionization.
Further analytical conditions are as described in [11]. The raw data files can be obtained

from [107].
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Parallelization benchmarks

Several benchmarks were performed to test the multiprocessing functionality of patRoon.
Tests were performed on a personal computer equipped with an Intel® Core™ i7-8700K CPU
(6 cores, 12 threads), 32 gigabyte RAM, SATA SSD storage and the Windows 10 Enterprise
operating system. Benchmarks were performed in triplicate using the microbenchmark R
package [108]. Standard deviations were below ten percent (see Figure 5a). Benchmarking
was performed on msConvert (MC), FeatureFinderMetabo (FFM), GenForm (GF), SIRIUS (SIR)
and MetFrag (MF). The multiprocessing functionality was compared to native
multithreading for the tools that supported this (FFM, SIR and MF). In addition, the
performance of batch calculations with multiprocessing was compared with native batch
calculation modes of tools where possible (MC and SIR). Parallelization methods were tested
with 1-12 parallel processes or threads (i.e. up to full utilization of both CPU threads of each
core). Input conditions were chosen to simulate “simple” and “complex” workflows, where
the latter resulted in more demanding calculations with ~2-10x longer mean execution
times (Table 4). The caching functionality of patRoon was disabled, where appropriate, to
obtain representative and reproducible test results. Prior to benchmarking, candidate
chemical compounds from PubChem for MF tests were cached in a local database to
exclude influences from network connectivity. Similarly, general spectral data required to
post-process FFM results were cached, as this is usually loaded once during a workflow,
even with varying input parameters. The input features for GF tests that resulted in very
long individual run times (i.e. >30 seconds) were removed to avoid excessive benchmark
runtimes. Generating feature and MS peaklist input data for annotation related tests was

performed with patRoon using algorithms from OpenMS and mzR [109], respectively. Pre-
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treatment of feature data consisted of removal of features with low intensity and lacking
MS/MS data. The number of features for SIR (except tests with native batch mode) and MF
benchmarks were further reduced by application of blank, replicate and intensity filters to
avoid long total runtimes due to their relatively high individual run times. Finally, the feature
dataset was split in low (0-500) and high (500-1000) m/z portions, which were purposed for
execution of “simple” and “complex” experiments, respectively. For more details of the
workflow and input parameters see the R script code in Additional file 4. The software tools

used for benchmarking are summarized in Additional file 1.

Table 4. Utilized conditions for "simple" (S) and "complex" (C) tests.

Test Input conditions’ Executions Mean
individual
run time?

(s)
msConvert (MC) MC-S Conversion centroided input 15 4.8
MC-C Centroiding and conversion 15 8.5
non-centroided input
FeatureFinderMetabo FFM-S  High intensity threshold 15 4.1
3
(FFM) FFM-C  Low intensity threshold 15 38
GenForm (GF) GF-S CHNO elements, low m/z 512 0.2
GF-C CHNOPS elements, high m/z 128 1.7
SIRIUS (SIR)? SIR-S  CHNO elements, low m/z 152 (512%) 2.3
SIR-C CHNOPS elements, high m/z 44 (1284 7.7
MetFrag (MF)? MF-S Limited scoring, narrow mass 152 3.0
search (5 ppm), low m/z.
MF-C Thorough scoring, wide mass 44 8.6

search (20 ppm), high m/z.

(1): Features with m/z 0 — 500 (low) and m/z 500 — 1000 (high); (2): based on a test run without parallelization
(n=3); (3) supports (configurable) native multithreading; (4) number of executions for native batch mode
benchmarks.

When multiprocessing was used all tests (except GF-S, discussed below) showed a clear

downward trend in execution times (down to ~200%-500%), and optimum conditions were
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generally reached when the number of parallel processes equaled the number of physical
cores (six, see Figure 5a). When algorithms are fully parallelized, execution times are
expected to follow an inverse relationship with the number of parallel process (i.e. 1/n) and
this was observed most closely with MC, whereas execution times for other tools show a
less steep reduction. Furthermore, utilizing multiple threads per core (i.e. hyperthreading)
did not reduce execution times further and even slowed down in some cases (e.g. MF-C).
These deviations in scalability were not investigated in detail. Since they were more
noticeable under complex conditions, it is expected that this may be caused by (a) more
involved post-processing results after each execution, which is currently not parallelized,
and (b) increased memory usage, which may raise the overhead of context switches
performed by the operating system. Nevertheless, the experiments performed here clearly
show that the multiprocessing functionality of patRoon can significantly reduce execution

times of various steps in an NTA workflow.

An exception, however, was the test performed with GenForm with simple conditions (GF-
S), which exhibited no significant change in execution times with multiprocessing (Figure
5a). Due to the particularly small mean run times (0.2 seconds) of this test, it was
hypothesized that the overhead of instantiating a new process from R (inherently not
parallelized) dominated the overall run times. To mitigate this, a ‘batch mode’ was
implemented, where such process initiation occurs from a command shell sub-process
instead. Here, multiple commands are executed by the sub-process in series, and the
desired degree of parallelization is then achieved by launching several of these sub-
processes and evenly dividing commands amongst them. The maximum size of each series
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(or “batch size”) is configurable, and represents a balance between reduction of process
initiation overhead and potential loss of effectively load balancing of, for instance,
commands with highly deviating execution times. Next, various batch sizes were tested for
GF, both with and without multiprocessing parallelization (Additional file 2: Figure S4). For
GF-S, execution times clearly decreased with increasing batch sizes, however, no further
reduction was observed with parallelism. In contrast, serial execution of GF-C was not
affected by varying batch size, whereas added parallelism reduced execution times for small
batch sizes (<8), but significantly increased such times for larger sizes. The results
demonstrate that the typical short lived GF executions clearly benefit from batch mode. In
addition, it is expected that by further increasing the batch size for GF-S, overall lifetimes of
batch sub-processes may increase sufficiently to allow better utilization of parallelization.
However, since GF-C results for larger batch sizes clearly show possible performance
degradation for more complex calculations (e.g. due to suboptimal load balancing), eight
was considered as a ‘safe’ default which improves overall performance for both simple and

complex calculation scenarios (Figure 5b).

Utilizing native multithreading for FFM, SIR (without native batch mode) and MF yields only
relatively small reductions in their execution times (Figure 5b). Under optimum conditions
(6-8 threads), the most significant drop was observed for SIR-C (~40%), followed by FFM-S,
FFM-C and MF-C (~20%). These results suggest that native multithreading only yields partial
parallelization, which primarily occurs with complex input conditions. Note that S/RIUS
supports different linear programming solvers (Gurobi [110], CPLEX [111] and the default

GLPK [112]), which may influence overall performance and parallelization [113].
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Nevertheless, a comparison between these solvers did not reveal significant changes with
our experimental conditions (Additional file 2: Figure S5). Combining the multiprocessing
functionality with native multithreading under optimum conditions (i.e. 6 parallel
processes/threads) only reduces execution times for SIR-C (Figure 5b). As such, both
performance improvements and scalability of the multiprocessing implementation of

patRoon appear highly effective at this stage.

The native batch modes of MC and SIR allow calculations from multiple inputs within a
single execution. This reduces the total number of tool executions, which may (1) lower the
accumulated overhead associated with starting and finishing tool executions and (2) hamper
effective parallelization from multiprocessing, especially if executions are less than the
available CPU cores. The combination of multiprocessing (optimum conditions) and native
batch mode was benchmarked with increasing number of inputs per tool execution (i.e. the
native batch size; Additional file 2: Figure S6). For MC, execution times were largely
unaffected by the input batch size if multiprocessing was disabled, which indicates a low
execution overhead. Lowest execution times were observed when multiprocessing was
enabled with small batch sizes (£25% of the total inputs), which indicates a lack of native
parallelization support. In contrast, SIR showed significantly lower overall execution times
with increasing batch sizes (up to ~7000% and ~320% for SIR-S and SIR-C, respectively),
while enabling multiprocessing did not reduce execution times for batch sizes >1. These
results show that (1) SIR has a relative large execution overhead, which impairs
multiprocessing performance gains, and (2) supports effective native parallelized batch
execution. Thus, SIR performs most optimal if all calculations are performed within a single
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execution. Similar to previous SIR benchmarks, no significant differences were found across
different linear solvers (Additional file 2: Figure S7). The results demonstrate that
multiprocessing may improve efficiency for batch calculations with tools with low execution
overhead and/or lack of native parallelization. Nonetheless, the dramatic improvement in
SIR calculation times when using the native batch mode indicates that software authors
should generally consider implementing native threaded batch mode functionality if large

batch calculations are an expected use case.

Finally, the implemented optimization strategies were tested for a complete patRoon NTA
workflow consisting of typical data processing steps and using all previously tested tools.
The chosen input conditions roughly fell in between the aforementioned “simple” and
“complex” conditions (see code in Additional file 4). Note that optimization strategies were
unavailable for some steps (e.g. grouping of features and collection of MS peak lists), and
native batch mode was not used in order to demonstrate the usefulness of multiprocessing
for tools that do not support this (e.g. other tools than MC and SIR and those potentially
available in future versions of patRoon). Regardless, the benchmarks revealed a reduction in
total run times of ~50% (from ~200 to ~100 minutes; Figure 5c). Since execution times of
each step may vary significantly, the inclusion of different combinations of steps may

significantly influence overall execution times.

The use of multiprocessing for all tools (except SIR), the implemented batch mode strategies
for GF and the use of the native batch mode supported by SIR were set as default in
patRoon with the determined optimal parameters from the benchmarks results. However,
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the user can still freely configure all these options to potentially apply further optimizations
or otherwise (partially) disable parallelization to conserve system resources acquired by

patRoon.

As a final note, it is important to realize that these benchmarks display execution times that
also involve preparing and processing results and include other overhead such as process
creation from R. For this reason, a direct comparison with standalone execution of
investigated tools was not possible. Nevertheless, the various optimization strategies
employed by patRoon minimize such overhead, and the added parallelization functionality
often provide a clear advantage in efficiency when using typical CLI tools in an R based NTA
workflow, especially considering the now widespread availability of computing systems with

increasing numbers of cores.

Demonstration: suspect screening

The previous section investigated several parallelization strategies implemented in patRoon
for efficient data processing. A common method in environmental NTA studies to increase
data processing efficiency and reducing the data complexity is by merely screening for
chemicals of interest. This section demonstrates such a suspect screening workflow with
patRoon, consisting of (a) raw data pre-treatment, (b) extracting, grouping and suspect
screening of feature data, and finally (c) annotating features to confirm their identity. During
the workflow several rule-based filters are applied to improve data quality. The ‘suspects’ in
this demonstration are, in fact, a set of compounds spiked to influent samples (Additional

file 3: Table S2), hence, they were used for validation purposes of the workflow. After
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completion of the suspect screening workflow, several methods are demonstrated to

inspect the resulting data.

Suspect screening: workflow

The code described here can easily be generated with the newProject() function, which
automatically generates a ready-to-use R script based on user input (section “Visualization,

reporting and graphical interface”).

First, the patRoon R package is loaded and a data.frame is generated with the file
information of the sample analyses and their replicate and blank assignments. Next, this
information is used to centroid and convert the raw analyses files to the open mzML file
format, a necessary step for further processing.

library(patRoon)

# Generate analysis file information for all files in a directory,
# assign replicate group names to all triplicates and specify which
# should be used for blank subtraction.
analnfo <- generateAnalysisInfo("../data",
groups = c(rep("blank", 3),
rep("influent-A",
rep("effluent-A",
rep("influent-B",
rep("effluent-B",

~— N N

~ N N~
~

blanks = "blank")
convertMSFiles (analInfo = analInfo, from = "thermo", to = "mzML",
algorithm = "pwiz", centroid = "vendor")

The next step involves finding features and grouping them across samples. This example
uses the OpenMS algorithms and sets several algorithm specific parameters that were
manually optimized for the employed analytical instrumentation to optimize the workflow
output. Other algorithms (e.g. enviPick, XCMS) are easily selected by changing the

algorithm function parameter.
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features <- findFeatures(anaInfo, algorithm = "openms",

noiseThrInt = 4E3,
chromFWHM = 3, minFWHM = 1, maxFWHM = ,
chromSNR = 5, mzPPM = 5)

fGroups <- groupFeatures (features, algorithm = "openms"

Several rule-based filters are then applied for general data clean-up, followed by the
removal of sample blanks from the feature dataset.

fGroups <- filter (fGroups,
# minimum absolute feature intensity

absMinIntensity = 1E5,

# must be present in all replicates
relMinReplicateAbundance = 1,

# max relative standard deviation replicate intensities
maxReplicateIntRSD = ,

# minimum feature intensity above blank

blankThreshold = 5,

# remove blank analyses afterwards
removeBlanks = TRUE)

Next, features are screened with a given suspect list, which is a CSV file read into a’
data.frame containing the name, SMILES and (optionally) retention time for each suspect
(see Additional file 5). While the list in this demonstration is rather small (18 compounds,
see SX), larger lists containing several thousands of compounds such as those available on
the NORMAN network Suspect List Exchange [114] can also be used. The screening results
are returned in a data.frame, where each row is a hit (a suspect may occur multiple times)
containing the linked feature group identifier and other information such as detected m/z
and retention time (deviations). Finally, this table is used to transform the original feature
groups object (fGroups) by removing any unassigned features and tagging remainders by
their suspect name.

suspects <- read.csv("suspects.csv")

scr <- screenSuspects (fGroups, suspects, mzWindow = ,
rtWindow = 6, adduct = "[M+H]+")

fGroupsSusp <- groupFeaturesScreening (fGroups, scr)
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In the final step of this workflow annotation is performed, which consists of (a) generation
of MS peak list data, (b) general clean-up to only retain significant MS/MS mass peaks,
automatic annotation of (c) formulae and (d) chemical compounds, and (e) combining both
annotation data to improve ranking of candidate compounds. As with previous workflow
steps, the desired algorithms (mzR, GenForm and MetFrag in this example) are set using the
algorithm function parameter. Similarly, the compound database used by MetFrag (here

CompTox via a local CSV file obtained from [115]) can easily be changed to other databases

such as PubChem, ChemSpider or another local file.

mslists <- generateMSPeakLists (fGroupsSusp, "mzr",
precursorMzWindow = )
mslists <- filter(mslists, relMSMSIntThr = , topMSMSPeaks = )

formulas <- generateFormulas (fGroupsSusp, "genform", mslists,
adduct = " [M+H]+",
elements = "CHNOPSCIBr')
# Configure location of CompTox CSV file
options (patRoon.path.MetFragCompTox =
"C:/CompTox 17March2019 SelectMetaData.csv")
compounds <- generateCompounds (fGroupsSusp, mslists, "metfrag",
adduct = " [M+H]+",
database = "comptox")
compounds <- addFormulaScoring(compounds, formulas, updateScore = TRUE)

Suspect screening: data inspection

All data generated during the workflow (e.g. features, peak lists, annotations) can be

inspected by overloads of common R methods.

29



598

599

600

601

602

# intensities for each feature in first group

> fGroups[[1]]

[1] 210235.3 242051.9 254323.8 260419.1 205407.0 261099.1 0.0
0.0 0.0 0.0 0.0 0.0

# averaged MS/MS peak list for feature group of carbamazepine suspect
> mslists[["Carbamazepine"]]$MSMS

mz intensity precursor
1: 192.0804 284478.607 FALSE
2: 193.0880 69396.510 FALSE
3: 194.0960 1126534.943 FALSE
4: 237.1019 5406.667 TRUE

# compound annotation data for all features (subset shown for clarity)
> as.data.frame (compounds) [1:5, : 5]

group explainedPeaks score neutralMass SMILES

1 n-Methylbenzotriazole-1 4 12.268046 133.064 NC1=NC2=CC=CC=C2N1
n-Methylbenzotriazole-1 5 9.546212 133.064 CCl=CC2=C (NN=N2)C=Cl
n-Methylbenzotriazole-1 6.722034 133.0064 NC1=CC=C2NN=CC2=C1
n-Methylbenzotriazole-1 6.715495 133.0064 CC1=C2NN=NC2=CC=C1

6

g w N
01 O

n-Methylbenzotriazole-1 .483770 133.064 CN1N=NC2=CC=CC=C12

Furthermore, all workflow data can easily be subset with e.g. the R subset operator (“[“),
for instance, to perform a (hypothetical) prioritization of features that are most intense in
the effluent samples.

# obtain table with replicate averaged feature intensities
> intTab <- as.data.frame (fGroupsSusp, average = TRUE)

> head (intTab) [, :5] # show first 5 rows/columns
group ret mz influent-A effluent-A
1 n-Methylbenzotriazole-1 600.6524 134.0709 2021597.7 0.0

2 n-Methylbenzotriazole-2 607.5665 134.0709 2399435.6 192759.6
3 Barbital 137.3162 185.0918 145150.0 0.0
4 Benzotriazole 478.6665 120.0553 1494092.0 190069.0
5 Carbamazepine 797.5051 237.1018 2849756.3 0.0
6 Carbendazim 378.8226 192.0764 504191.7 0.0

=+

obtain group names from the 5 highest intense features in either
of the effluents
> topl <- intTab$group[order (intTab[["effluent-A"]1],
decreasing = TRUE)][1:5]
top2 <- intTab$groupl[order (intTab[["effluent-B"]11],
decreasing = TRUE)][1:5]

=+

\

> top <- union(topl, top2)

> top

[1] "Metformin" "Terbuthylazine"
[3] "Triphenylphosphine oxide" "Melamine-2"

[5] "n-Methylbenzotriazole-2" "Benzotriazole"
[7] "n-Methylbenzotriazole-1" "Propranolol"

# subset original object
> fGroupsSusp <- fGroupsSuspl[, topl
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Visualization of data generated during the workflow is performed by various plotting
functions (see Figure 6).

# plot unique features in influents
plot (fGroups[rGroups = c("influent-A", "influent-B")],

colourBy = "rGroups", onlyUnique = TRUE)
# all EICs for a feature group
plotEIC (fGroupsSusp[, "Terbuthylazine"], colourBy = "rGroup"
plotSpec (compounds, index = 1, groupName = "Benzotriazole',
mslists)

plotUpSet (fGroupsSusp)
plotChord (fGroupsSusp, average = TRUE)
plotVenn (fGroupsSusp, which = c("influent-B", "effluent-B"))

The final step in a patRoon NTA workflow involves automatic generation of comprehensive
reports of various formats which allow (interactive) exploration of all data (see Additional
file 2: Figure S8).

reportCSV (fGroupsSusp, formulas
reportPDF (£GroupsSusp, formulas

formulas, compounds = compounds)
formulas,

compounds = compounds, MSPeakLists = mslists)
reportHTML (fGroupsSusp, formulas = formulas,
compounds = compounds, MSPeakLists = mslists)

Suspect screening: results

A summary of data generated during the NTA workflow demonstrated here is shown in
Table 5 and Additional file 3: Table S2. The complete workflow finished in approximately 8
minutes (employing a laptop with an Intel® Core™ 17-8550U CPU, 16 gigabyte RAM, NVME
SSD and the Windows 10 Pro operating system). While nearly 60 000 features were grouped
into nearly 20 000 feature groups, the majority (97%, 678 remaining) were filtered out
during the various pre-treatment filter steps. Regardless, most suspects were found (17/18
attributed to 19/20 individual chromatographic peaks), and the missing suspect (aniline)
could be detected when lowering the intensity threshold of the filter() function used to
post-filter feature groups in the workflow. The majority of suspects (17) were annotated

with the correct chemical compound as first candidate, the two n-methylbenzotriazole
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isomer suspects were ranked as second or fourth. Results for formulae assignments were
similar, with the exception of dimethomorph, where the formula was ranked in only the top

twenty-five (the candidate chemical compound was ranked first, however).

While this demonstration conveys a relative simple NTA with ‘known suspects’, the results
show that patRoon (a) allows a straightforward approach to perform a complete and

tailored NTA workflow, (b) provides powerful general data clean-up functionality to

prioritize data and (c) realizes effective automated annotation of detected features.

Table 5. Summarizing results for the demonstrated patRoon NTA workflow.

Amount
Features Total found 57 113 (mean 3,808/sample)
Feature groups  Raw dataset 19970

Replicate filters (1 pass?)
Blank filter

Intensity filters

Replicate filters (2" pass’)
Total found

Annotated

Total candidates
Correctly ranked 1°*
Correctly ranked 1°%-2™
Correctly ranked 1°%-5™
Total candidates

Correctly ranked 1%
Correctly ranked 1°%-2™
Correctly ranked 1

Suspects

Formulae

Compounds

st_5th

4719 (-76%)

2 933 (-85%)

964 (-95%)

678 (-97%)

19 out of 20

19

163 (mean 9/feature group)
13 (68%)

16 (84%)

17 (89%)

1 017 (mean 54/feature group)
17 (85%)

18 (90%)

19 (100%)

(1): Replicate filters are repeated if necessary, see section “Data reduction, comparison and conversion”.

Conclusions

This paper presents patRoon, a fully open source platform that provides a comprehensive

MS based NTA data processing workflow developed in the R environment. Major workflow
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functionality is implemented through the usage of existing and well-tested software tools,
connecting primarily open and a few closed approaches. The workflows are easily setup for
common use cases, while full customization and mixing of algorithms allows for execution of
completely tailored workflows. In addition, extensive functionality related to data
processing, annotation, visualization, reporting and others was implemented in patRoon to
provide an important toolbox for effectively handling complex NTA studies. The easy and
predictable interface of patRoon lowers the computational expertise required of users,
making it available for a broad audience. Major implemented optimization strategies were
demonstrated to reduce computational times. Furthermore, a typical suspect screening
workflow was demonstrated on real-world data from an environmental study related to

drinking water treatment.

patRoon has been under development for several years and has already been applied in a
variety of studies, such as the characterization of organic matter [71], elucidation of
transformation products of biocides [7, 12] and assessment of removal of polar organics
reversed-osmosis drinking water treatment [14]. patRoon will undergo further
development, and extension of integrated workflow algorithms is planned for new and less
commonly used ones, while additional componentization strategies will be implemented to
help prioritizing data. Addition of new workflow functionality is foreseen, such as usage of
ion-mobility spectrometry data to assist annotation, automated screening of transformation
products (e.g. utilizing tools such as BioTransformer [116]), prediction of feature quantities
for prioritization purposes (recently reviewed in [117]) and automated chemical
classification (e.g. through ClassyFire [118]). Finally, interfacing with other R based mass
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spectrometry software such as those provided by the “R for Mass Spectrometry” initiative
[119] is planned to further improve the interoperability of patRoon. The use in real-world
studies, feedback from users and developments within the non-target analysis community,
are all critical in determining future directions and improvements of patRoon. We envisage
that the open availability, straightforward usage, vendor independence and comprehensive

functionality will be useful to the community and result in a broad adoption of patRoon.

Availability and requirements

Project name: patRoon

Project home page: https://github.com/rickhelmus/patRoon

Operating system(s): Platform independent (tested on Microsoft Windows and Linux)
Programming language(s): R, C++, JavaScript

Other requirements: Depending on utilized algorithms (see installation instructions in [85,
88])

License: GNU GPL version 3

Any restrictions to use by non-academics: none

Abbreviations

CEC: Chemical of emerging concern
CLI: Command-line interface

CMP: Compound annotation

CMT: Componentization

CSV: Comma-separated value
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678  DBI: The database interface

679  EIC: Extracted ion chromatogram

680  FFM(-S/C): FeatureFinderMetabo (simple/complex conditions)
681  FG: Feature groups

682  FOR: Formula annotation

683  FTS: Features

684  GC: Gas chromatography

685  GC-MS: GC coupled to mass spectrometry

686  GF(-S/C): GenForm (simple/complex conditions)
687  HTML: Hypertext markup language

688  HRMS: High resolution mass spectrometry

689  IPO: Isotopologue parameter optimization

690 LC: Liquid chromatography

691 LC-MS: LC coupled to mass spectrometry

692  MC(-S/C): msConvert (simple/complex conditions)
693  MF(-S/C): MetFrag (simple/complex conditions)
694  MS/MS: Tandem mass spectrometry

695  MSPL: MS peak list

696  NTA: Non-target analysis

697  PDF: Portable document format

698  PO: Parameter optimization

699  PT: Pre-treatment

700  SIR(-S/C): SIRIUS (simple/complex conditions)
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SUS: Suspect screening
XCMS: Various forms (X) of chromatography mass spectrometry (R package MS data

processing)

Definitions

Features (FTS): data points assigned with unique chromatographic and mass spectral
information (e.g. retention time, peak area and accurate m/z), which potentially described a
compound in a sample analysis.

Feature group (FG): A group of features considered equivalent across sample analyses.

MS peak list (MSPL): tabular data (m/z and intensity) for MS or MS/MS peaks attributed to a
feature and used as input data for annotation purposes.

Formula/Compound (FOR/CMP): a chemical formula or compound candidate revealed
during feature annotation.

Component (CMT): A collection of feature groups that are somehow linked, such as MS

adducts, homologous series or highly similar intensity trends.
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Figures

Figure 1. Generic workflow for environmental non-target analysis.

Figure 2. Overview of the NTA patRoon workflow. All steps are optional. Steps that are
connected by blue and straight arrows represent a one-way data dependency, whereas
steps connected with red curved and dashed arrows represent steps with two-way data

interaction.

Figure 3. Graphical user interface tools in patRoon. Tools are provided (a) to create a new

patRoon data analysis project and (b) to inspect feature chromatography data.

Figure 4. Interface for the patRoon workflow. The workflow steps are performed by a set of
functions that execute the selected algorithm and return the data in a harmonized format
by utilizing the ‘S4’ object oriented programming approach of R. These objects all derive
from a common base class and may be further sub-classed in algorithm specific classes (as is
exemplified for features). Generic functions are defined for all workflow classes to
implement further data processing functionality in a predictable and algorithm independent

manner (see also Table 3). Further information is provided in the reference manual [85, 86].

Figure 5. Parallelization benchmark results. (a) Benchmark results for commonly used CLI

tools applied in patRoon workflows under varying parallelization conditions. Tests were
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performed with “simple” (left) and “complex” (right) input conditions (Table 4) to simulate
varying workflow complexity. Parallelization was performed with the multiprocessing
functionality of patRoon (top) or by using native multithreading (bottom, for tools that
supported this). Graphs represent number of processes or threads versus relative execution
time (normalized to sequential results). The dotted grey lines represent the theoretical
trend if maximum parallelization performance is achieved. The dashed blue line represents
the number of physical cores that became the default selection in patRoon based on these
results. (b) Comparison of execution times (normalized to the execution times of the
unoptimized results) when tools are executed without optimizations (green), executed with
native multithreading (FFM, SIR and MF) or batch mode (GF) (orange), executed with
multiprocessing (purple) or a combination of the latter two (pink), using simple (left) and
complex (right) input conditions. (c) Overview of execution times for a complete patRoon
workflow executed under optimized versus unoptimized conditions. All results for MC and

SIR were obtained without enabling their native batch mode.

Figure 6. Common visualization functionality of patRoon applied to the demonstrated
workflow. From left to right: an m/z vs retention time plot of all feature groups, an EIC for
the tramadol suspect found in both influent samples, a compound annotated spectrum for
the 1,2,3-benzotriazole suspect and comparison of feature presence between sample

groups using UpSet [77], Venn and chord diagrams.
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Supplementary information

Additional file 1: Comma-separated file (.csv). Overview of software and databases that are
used in the implementation in patRoon. This table summarizes all the software and
databases that are described in the implementation section of the main text.

Additional file 2: Word document (.docx). Supplementary figures. Additional figures that
illustrate implementation details of patRoon and miscellaneous benchmarking results.
Additional file 3: Word document (.docx). Supplementary tables. Additional tables with
more details on the implementation and suspect screening demonstration.

Additional file 4: Zip archive (.zip). Source code for benchmarks. Archive with several R
scripts that were used to perform the parallelization benchmarks.

Additional file 5: Comma-separated file (.csv). Demonstration suspect list. Suspect list that
was used for the patRoon demonstration. The list was based on the detected compounds

reported in [11], and SMILES identifiers for each suspect were collected from PubChem [23].

56



HRMS Primary

data  Features Annotation Interface Language OS License References
PP FTS FG C SUS MS FA CA LA HS GA C RT
CFM-ID X X CLI, Web C++ Cross LGPLv2.1 [42, 43]
b enviMass, ' GUI R
enviPick, X' X X X X X X Wetl) ! Cross GPLv3.0' [44-46]
nontarget
GenForm X CL C++ Cross’ LGPLv2.0  [47]
MetF LI, R
d Metfrag X X x xR Cross LGPLv2.0  [48]
Web
e FOR-IDENT x* X X Web HTML Cross Closed [49]
f MS-DIAL, .
MS-EINDER X X X X X X X X X CLI, GUI C# Win LGPLv3.0 [50, 51]
MZmine X X X X X X X X x X GUI Java Cross  GPLv2.0 [33]
h M i LI | Win, Li
OpenMS X" XX X X< X X CL, GUl, "N 5N Bsp/3-Clause [52]
Python Mac
i ProteoWizard: X CLl, GUI C++ Win, Lin Apache 2.0 [22]
i  RAMClustR X X R R Cross GPLv2.0 [53]
k SIRIUS and
CSlFingerlD X X X CLI, GUI Java Cross GPLv3.0 [54-58]
| XCMS and
CAMERA X X X X R R Cross GPLv2.0 [32,59]
m XCMS Online X X! X' X X X Web R Cross Closed [60]
n patRoon X X" oxox o ox o ox* o x* o x x ¥ x xR R Cross  GPLv3.0

P: pre-processing; FTS: find features; FG: group features across samples; C: data clean up; SUS: suspect screening; MS: automatic MS data extraction for
annotation purposes; FA: formula annotation; CA/LA: compound annotation (in silico/library); HS: unsupervised homologous series extraction; GA: grouping
and annotating chemically related features (e.g. adducts, isotopes, in-source fragments); RT: retention time prediction; Bold: functionality integrated in
patRoon; superscript: implemented with algorithms by given rows (omitted if only native); CLI: command-line interface; GUI: graphical user interface; Web:
interfaced via internet browser; OS: Supported Operating Systems; Win: Microsoft Windows; (Lin): GNU/Linux, (Mac): macOS; Cross: cross-platform; (1):
enviMass is distributed commercially; (2): Only Microsoft Windows binaries are distributed.

57



