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Abstract 13 

Mass spectrometry based non-target analysis is increasingly adopted in environmental 14 

sciences to screen and identify numerous chemicals simultaneously in highly complex 15 

samples. However, current data processing software either lack functionality for 16 

environmental sciences, solve only part of the workflow, are not openly available and/or are 17 

restricted in input data formats. In this paper we present patRoon, a new R based open-18 

source software platform, which provides comprehensive, fully tailored and straightforward 19 

non-target analysis workflows. This platform makes the usage, evaluation and mixing of 20 

well-tested algorithms seamless by harmonizing various commonly (primarily open) 21 
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software tools under a consistent interface. In addition, patRoon offers various functionality 22 

and strategies to simplify and perform automated processing of complex (environmental) 23 

data effectively. patRoon implements several effective optimization strategies to 24 

significantly reduce computational times. The ability of patRoon to perform a 25 

straightforward and effective non-target analysis was demonstrated with real-world 26 

environmental samples, showing that patRoon makes comprehensive (environmental) non-27 

target analysis readily accessible to a wider community of researchers.  28 

Keywords 29 
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computational workflows 31 

Introduction 32 

Chemical analysis is widely applied in environmental sciences such as earth sciences, 33 

biology, ecology and environmental chemistry, to study e.g. geomorphic processes, 34 

(chemical) interaction between species or the occurrence, fate and effect of chemicals of 35 

emerging concern in the environment. The environmental compartments investigated 36 

include air, water, soil, sediment and biota, and exhibit a highly diverse chemical 37 

composition and complexity. The number and quantities of chemicals encountered within 38 

samples may span several orders of magnitude relative to each other. Therefore, chemical 39 

analysis must discern compounds at ultra-trace levels, a requirement that can be largely met 40 

with modern analytical instrumentation such as liquid or gas chromatography coupled with 41 

mass spectrometry (LC-MS and GC-MS). The high sensitivity and selectivity of these 42 
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techniques enable accurate identification and quantification of chemicals in complex sample 43 

materials. 44 

 45 

Traditionally, a ‘target analysis’ approach is performed, where identification and 46 

quantitation occur by comparing experimental data with reference standards. The need to 47 

pre-select compounds of interest constrains the chemical scope of target analysis, and 48 

hampers the analysis of chemicals with (partially) unknown identities such as transformation 49 

products and contaminants of emerging concern (CEC). In addition, the need to acquire or 50 

synthesize a large number of analytical standards may not be feasible for compounds with a 51 

merely suspected presence. Recent technological advancements in chromatography and 52 

high resolution MS (HRMS) allows detection and tentative identification of compounds 53 

without the prior need of standards [1]. This ‘non-target’ analysis (NTA) approach is 54 

increasingly adopted to perform simultaneous screening of up to thousands of chemicals in 55 

the environment, such as finding new CEC [1–6], identifying chemical transformation 56 

(by)products [7–12] and identification of toxicants in the environment [13–16].  57 

 58 

Studies employing environmental NTA typically allow the detection of hundreds to 59 

thousands of different chemicals [17, 18]. Effectively processing such data requires 60 

workflows to automatically extract and prioritize NTA data, perform chemical identification 61 

and assist in interpreting the complex resulting datasets. Currently available tools often 62 

originate from other research domains such as life sciences and may lack functionality or 63 

require extensive optimization before being suitable for environmental analysis. Examples 64 

include handling chemicals with low sample-to-sample abundance, recognition of 65 
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halogenated compounds, usage of data sources with environmentally relevant substances, 66 

or temporal and spatial trends. Furthermore, existing tools solve only part of the workflow, 67 

generally use differing and incompatible data formats and employ different user interfaces. 68 

Hence, the need to learn, combine, optimize and sometimes develop or adapt various 69 

specialized software tools, and perform tedious transformation of datasets currently hinders 70 

further adoption of NTA, especially in more routine settings lacking appropriate in-house 71 

computational expertise.  72 

 73 

An NTA workflow can be generalized as a four step process (Figure 1) [1]. Firstly, data from 74 

LC or GC-HRMS is either acquired or retrieved retrospectively, and pre-treated for 75 

subsequent analysis (Figure 1a). This pre-treatment may involve conversion to open data 76 

formats (e.g. mzML [19] or mzXML [20]) to increase operability with open-source software, 77 

re-calibration of mass spectra to improve accuracy and centroiding [21] or other raw data 78 

reduction steps to conserve space such as trimming chromatographs or filtering mass scans 79 

(e.g. with the functionality from the ProteoWizard suite [22]). Secondly (Figure 1b), features 80 

with unique chromatographic and mass spectral properties (e.g. retention time, accurate 81 

mass, signal intensity) are automatically extracted and features considered equivalent 82 

across sample analyses are grouped to allow qualitative and (semi-) quantitative comparison 83 

further down the workflow. Thirdly (Figure 1c), the feature dataset quality is refined, for 84 

instance, via rule-based filters (e.g. minimum intensity and absence in sample blanks) and 85 

grouping of features based on a defined relationship such as adducts or homologous series 86 

(e.g. “componentization”). Further prioritization during this step of the workflow is often 87 

required for efficient data analysis, for instance, based on chemical properties (e.g. mass 88 
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defect and isotopic pattern), suspected presence (i.e. “suspect screening”) or intensity 89 

trends in time and/or space (e.g. reviewed in [1]). Finally (Figure 1d), prioritized features are 90 

annotated, for instance by assigning chemical formulae or compounds from a chemical 91 

database (e.g. PubChem [23] or CompTox [24]) based on the exact mass of the feature. The 92 

resulting candidates are ranked by conformity with MS data, such as match with theoretical 93 

isotopic pattern and in silico or library MS fragmentation spectra, and study-specific 94 

metadata, such as number of scientific references and toxicity data [1, 25].  95 

 96 

Various open and closed software tools are already available to implement (parts of) the 97 

NTA workflow. Commercial software tools such as MetaboScape [26], UNIFI [27], Compound 98 

Discoverer [28] and ProGenesis QI [29] provide a familiar and easy to use graphical user 99 

interface, may contain instrument specific functionalities and optimizations and typically 100 

come with support for their installation and usage. However, they are generally not open-101 

source or open-access and are often restricted to proprietary data formats. This leads to 102 

difficulties in data sharing, as exact algorithm implementations and parameter choices are 103 

hidden, while maintenance, auditing or code extension by other parties is often not 104 

possible. Many open-source or open-access tools are available to process mass 105 

spectrometry data (e.g. [30, 31] and summarized in Table 1). While many tools were 106 

originally developed to process metabolomics and proteomics data, approaches such as 107 

XCMS [32] and MZmine [33] have also been applied to environmental NTA studies [6, 34]. 108 

Many open tools are easily interfaced with the R statistical environment [35] (Table 1). 109 

Leveraging this open scripting environment inherently allows defining highly flexible and 110 

reproducible workflows and increases the accessibility of such workflows to a wider 111 
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audience as a result of the widespread usage of R in data sciences. Various open tools 112 

overlap in functionality (Table 1), and are implemented with differing algorithms or 113 

employing different data sources. As a consequence, tools may generate different results, as 114 

has been shown when generating feature data [36–40] or performing structural annotations 115 

[25, 41]. Thus, a flexible platform to combine and evaluate various algorithms that is 116 

independent of closed MS vendor input data formats is desired in order to tailor an optimal 117 

NTA workflow to the particular study types and methodological characteristics. 118 

 119 

Table 1. Overview of commonly used open-source or open-access software tools to implement NTA workflows. 120 

<Table from end of this document should be placed here> 121 

 122 

Here, we present an R based open-source software platform called patRoon (‘pattern’ in 123 

Dutch) providing comprehensive NTA data processing from HRMS data pre-treatment, 124 

detection and grouping of features, through to molecular formula and compound 125 

annotation. In patRoon, various (primarily open) tools commonly used for NTA data 126 

processing are harmonized within a consistent and easy to use interface. In addition, new 127 

functionality is implemented that simplify and improve NTA data processing, such as 128 

automated chemical annotation, visualization and reporting of results, comparing and 129 

combining results from different algorithms, and data reduction and prioritization 130 

strategies. The architecture of patRoon is designed to be extendible in order to 131 

accommodate for rapid developments in the NTA research field. 132 
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Implementation 133 

The implementation section starts with an overview of the patRoon workflows. Subsequent 134 

sections provide details on additional functionality implemented by patRoon which relate to 135 

data processing, annotation, visualization and reporting. Finally, a detailed description is 136 

given of the software architecture. patRoon is then demonstrated in the Results and 137 

discussion section. The software tools and databases used for the implementation of 138 

patRoon are summarized in Additional file 1. 139 

Workflow in patRoon 140 

patRoon encompasses a comprehensive workflow for HRMS based NTA (Figure 2). All steps 141 

within the workflow are optional and the order of execution is largely customizable. Some 142 

steps depend on data from previous steps (blue arrows) or may alter or amend data from 143 

each other (red arrows). The workflow commonly starts with pre-treatment (PT) of raw 144 

HRMS data. Next, feature data is generated, which consists of finding features (FTS) in each 145 

sample, an optional retention time alignment step, and then grouping into “feature groups” 146 

(FG). FTS and FG may be preceded by automatic parameter optimization (PO), or followed 147 

by suspect screening (SUS). The feature data may then finally be used for componentization 148 

(CMT) and/or annotation steps, which involves generation of MS peak lists (MSPL), as well 149 

as formula and compound annotations (FOR/COM). At any moment during the workflow, 150 

the generated data may be inspected, visualized and treated by e.g. rule based filtering. 151 

These operations are discussed in the next section. 152 

 153 
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Several commonly used open software tools, such as OpenMS [52], XCMS [32], MetFrag [48] 154 

and SIRIUS [54–58], and closed software tools, such as Bruker DataAnalysis [61] (chosen due 155 

to institutional needs), are interfaced to provide a choice between multiple algorithms for 156 

each workflow step (Additional file 3: Table S1). Customization of the NTA workflow may be 157 

achieved by freely selecting and mixing algorithms from different software tools. For 158 

instance, a workflow that uses XCMS to group features allows that these features originate 159 

from other algorithms than those supported by XCMS (e.g. those from OpenMS), a situation 160 

that would require tedious data transformation when XCMS is used standalone. 161 

 162 

To ease parameter selection over the various feature finding and grouping algorithms, an 163 

automated feature optimization (FO) approach was adopted from the isotopologue 164 

parameter optimization (IPO) R package [62], which employs design of experiments to 165 

optimize LC-MS data processing parameters [63]. IPO was integrated in patRoon, and its 166 

code base was extended to (a) apply to other feature finding and grouping algorithms 167 

supported by patRoon (i.e. XCMS, OpenMS and enviPick), (b) support isotope detection with 168 

OpenMS, (c) perform optimization of qualitative parameters and (d) provide a consistent 169 

output format for easy inspection and visualization of optimization results. 170 

 171 

In patRoon, componentization (CMT) refers to consolidating different (grouped) features 172 

with a prescribed relationship, which is currently either based on (a) highly similar elution 173 

profiles (i.e. retention time and peak shape), which are hypothesized to originate from the 174 

same chemical compound (based on [53, 59]), (b) participation in the same homologous 175 

series (based on [64]) or (c) the (normalized) intensity profiles across samples (based on [4, 176 
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5, 65]). Components obtained by approach (a) typically comprise adducts, isotopologues 177 

and in-source fragments, and the supported algorithms in patRoon annotate these using 178 

chemical rules. Approach (b) uses the nontarget R package [44] to calculate series from 179 

aggregated feature data from replicates. The interpretation of homologous series between 180 

replicates is assisted by merging series with overlapping features in cases where this will not 181 

yield ambiguities to other series. If merging would cause ambiguities, instead links are 182 

created that can then be explored interactively and visualized by a network graph generated 183 

using the igraph [66] and visNetwork [67] R packages (see Additional file 2: Figure S1). 184 

 185 

During the annotation step, molecular formulae and/or chemical compounds are 186 

automatically assigned and ranked for all features or feature groups. The required MS peak 187 

list (MSPL) input data are extracted from all MS analysis data files and subsequently pre-188 

processed, for instance, by averaging multiple spectra within the elution profile of the 189 

feature and by removing mass peaks below user-defined thresholds. All compound 190 

databases and ranking mechanisms supported by the underlying algorithms are supported 191 

by patRoon and can be fully configured. Afterwards, formula and structural annotation data 192 

may be combined to improve candidate ranking and manual interpretation of annotated 193 

spectra. More details are outlined in the section “MS peak list retrieval, annotation and 194 

candidate ranking”. 195 

Data reduction, comparison and conversion 196 

Various rule-based filters are available for data-cleanup or study specific prioritization of all 197 

data obtained through the workflow (see Table 2), and can be inverted to inspect the data 198 
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that would be removed (i.e. negation). To process feature data, multiple filters are often 199 

applied, however, the order may influence the final result. For instance, when features were 200 

first removed from blanks by an intensity filter, a subsequent blank filter will not properly 201 

remove these features in actual samples. Similarly, a filter may need a re-run after another 202 

to ensure complete data clean-up. To reduce the influence of order upon results, filters for 203 

feature data are executed by default as follows: 204 

1. an intensity pre-filter, to ensure good quality feature data for subsequent filters; 205 

2. filters not affected by other filters, such as retention time and m/z range; 206 

3. minimum replicate abundance, blank presence and ‘regular’ minimum intensity; 207 

4. repetition of the replicate abundance filter (only if previous filters affected results); 208 

5. other filters that are possibly influenced by prior steps, such as minimum abundance 209 

in feature groups or sample analyses. 210 

Note that the above scheme only applies to those filters requested by the user, and the user 211 

can apply another order if desired. 212 

 213 

Further data subsetting allows the user to freely select data of interest, for instance, 214 

following a (statistical) prioritization approach performed by other tools. Similarly, features 215 

that are unique or overlapping in different sample analyses may be isolated, which is a 216 

straightforward but common prioritization technique for NTA studies that involve the 217 

comparison of different types of samples. 218 

 219 
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Table 2. Major rule-based filtering functionality implemented in patRoon. 220 

Filter functionality 
Features Annotation Processing 

FTS FG MSPL FOR COM CMT 

Intensity threshold  X X X    

Feature properties1 X X     
Max intensity deviation across replicates  X     
Minimum intensity above blank  X     
Minimum size or abundance  X    X 
Top most abundant/highest scoring   X X X  
Minimum scoring    X X  
Annotation2    X X X 
Organic matter rules3    X   
FTS: features; FG: feature groups; MSPL: MS peak lists; FOR: formulae; COM: compounds; CMT: components; (1) 
Retention time, chromatographic peak width, m/z and mass defect range; (2) e.g. adducts, isotopologues, 
formula composition, neutral loss; (3) expected formula composition based on [68–71]. 
 221 

Data from feature groups, components or annotations that are generated with different 222 

algorithms (or parameters thereof) can be compared to generate a consensus by only 223 

retaining data with (a) minimum overlap, (b) uniqueness or (c) by combining all results (only 224 

(c) is supported for data from components). Consensus data are useful to remove outliers, 225 

for inspection of algorithmic differences or for obtaining the maximum amount of data 226 

generated during the workflow. The consensus for formula and compound annotation data 227 

are generated by comparison of Hill-sorted formulae and the skeleton layer (first block) of 228 

the InChIKey chemical identifiers [72], respectively. For feature groups, where different 229 

algorithms may output deviating retention and/or mass properties, such a direct 230 

comparison is impossible. Instead, the dimensionality of feature groups is first reduced by 231 

averaging all feature data (i.e. retention times, m/z values and intensities) for each group. 232 

The collapsed groups have a similar data format as ‘regular’ features, where the compared 233 

objects represent the ‘sample analyses’. Subjection of this data to a feature grouping 234 

algorithm supported by patRoon (i.e. from XCMS or OpenMS) then allows straightforward 235 
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and reliable comparison of feature data from different algorithms, which is finally used to 236 

generate the consensus. 237 

 238 

Hierarchical clustering is utilized for componentization of features with similar intensity 239 

profiles or to group chemically similar candidate structures of an annotated feature. The 240 

latter “compound clustering” assists the interpretation of features with large numbers of 241 

candidate structures (e.g. hundreds to thousands). This method utilizes chemical 242 

fingerprinting and chemical similarity methods from the rcdk package [73] to cluster similar 243 

structures, and subsequent visual inspection of the maximum common substructure then 244 

allows assessment of common structural properties among candidates (methodology based 245 

on [74]). Cluster assignment for both CMT and COM approaches is performed automatically 246 

using the dynamicTreeCut R package [75]. However, clusters may be re-assigned manually 247 

by the desired amount or tree height. 248 

 249 

Several data conversion methods were implemented to allow interoperability with other 250 

software tools. All workflow data types are easily converted to commonly used R data types 251 

(e.g. data.frame or list), which allows further processing with other R packages. 252 

Furthermore, feature data may be converted to and from native XCMS objects (i.e. 253 

xcmsSet and XCMSnExp) or exported to comma-separated values (CSV) formats 254 

compatible with Bruker ProfileAnalysis or TASQ, or MZmine. 255 
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MS peak list retrieval, annotation and candidate ranking 256 

Data for MS and MS/MS peak lists for a feature are collected from spectra recorded within 257 

the chromatographic peak and averaged to improve mass accuracies and signal to noise 258 

ratios. Next, peak lists for each feature group are assigned by averaging the mass and 259 

intensity values from peak lists of the features in the group. Mass spectral averaging can be 260 

customized via several data clean-up filters and a choice between different mass clustering 261 

approaches, which allow a trade-off between computational speed and clustering accuracy. 262 

By default, peak lists for MS/MS data are obtained from spectra that originate from 263 

precursor masses within a certain tolerance of the feature mass. This tolerance in mass 264 

search range is configurable to accommodate the precursor isolation window applied during 265 

data acquisition. In addition, the precursor mass filter can be completely disabled to 266 

accommodate data processing from data-independent MS/MS experiments, where all 267 

precursor ions are fragmented simultaneously. 268 

 269 

The formula annotation process is configurable to allow a tradeoff between accuracy and 270 

calculation speeds. Candidates are assigned to each feature group, either directly by using 271 

group averaged MS peak list data, or by a consensus from formula assignments to each 272 

individual feature in the group. While the latter inherently consumes more time, it allows 273 

removal of outlier candidates (e.g. false positives due to features with poor spectra). 274 

Candidate ranking is improved by inclusion of MS/MS data in formula calculation (optional 275 

for GenForm [47] and DataAnalysis). 276 

 277 
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Formula calculation with GenForm ranks formula candidates on isotopic match (amongst 278 

others), where any other mass peaks will penalize scores. Since MS data of “real-world” 279 

samples typically includes many other mass peaks (e.g. adducts, co-eluting features, 280 

background ions), patRoon improves the scoring accuracy by automatic isolation of the 281 

feature isotopic clusters prior to GenForm execution. A generic isolation algorithm was 282 

developed, which makes no assumptions on elemental formula compositions and ion 283 

charges, by applying various rules to isolate mass peaks that are likely part of the feature 284 

isotopic cluster (see Additional file 2: Figure S2). These rules are configured to accommodate 285 

various data and study types by default. Optimization is possible, for instance, to (a) 286 

improve studies of natural or anthropogenic compounds by lowering or increasing mass 287 

defect tolerances, respectively, (b) constrain cluster size and intensity ranges for low 288 

molecular weight compounds or (c) adjust to expected instrumental performance such as 289 

mass accuracy. Note that precursor isolation can be performed independently of formula 290 

calculation, which may be useful for manual inspection of MS data. 291 

 292 

Compound annotation is usually the most time and resource intensive process during the 293 

non-target workflow. As such, instead of annotating individual features, compound 294 

assignment occurs for the complete feature group. All compound databases supported by 295 

the underlying algorithms, such as PubChem [23], ChemSpider [76] or CompTox [24] and 296 

other local CSV files, as well as the scoring terms present in these databases, such as in silico 297 

and spectral library MS/MS match, references in literature and presence in suspect lists, can 298 

be utilized with patRoon. Default scorings supported by the selected algorithm/database or 299 

sets thereof are easily selectable to simplify effective compound ranking. Furthermore, 300 
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formula annotation data may be incorporated in compound ranking, where a ‘formula 301 

score’ is calculated for each candidate formula, which is proportional to its ranking in the 302 

formula annotation data. Execution of unattended sessions is assisted by automatic restarts 303 

after occurrence of timeouts or errors (e.g. due to network connectivity) and automatic 304 

logging facilities.  305 

Visualization, reporting and graphical interface 306 

In patRoon, visualization functionality is provided for feature and annotation data (e.g. 307 

extracted ion chromatograms (EICs) and annotated spectra), to compare workflow data (i.e. 308 

by means of Venn, chord and UpSet [77] diagrams, using the VennDiagram [78], circlize [79] 309 

and UpSetR [80] R packages, respectively) and others such as plotting results from 310 

automatic feature optimization experiments and hierarchical clustering data. Reports can be 311 

generated in a common CSV text format or in a graphical format via export to a portable 312 

document file (PDF) or hypertext markup language (HTML) format. The latter are generated 313 

with the R Markdown [81, 82] and flexdashboard [83] R packages, and provide an easy to 314 

use interface for interactive sorting, searching and browsing reported data. As plotting and 315 

reporting functionalities can be performed at any stage during the workflow, the data that is 316 

included in the reports is fully configurable.  317 

 318 

While patRoon is primarily interfaced through R, several graphical user interface tools are 319 

provided to assist the (novice) user. Most importantly, patRoon provides a Shiny [84] based 320 

tool that automatically generates a commented template R script from user input, such as 321 

selection of MS data file input, workflow algorithms and other common workflow 322 
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parameters (Figure 3a). Secondly, chromatographic data of features may be inspected either 323 

by automatic addition of EICs in a Bruker DataAnalysis session or with a Shiny based 324 

interface (Figure 3b). 325 

Software architecture 326 

patRoon is distributed as an R package. Its source code is primarily written in the R 327 

language, with some support code written in C++ and JavaScript. Both Microsoft Windows 328 

(hereafter referred to as Windows) and Linux platforms are supported (support for macOS is 329 

envisaged in the future). Several external dependencies are required; notable examples are 330 

in Additional file 3: Table S1. GenForm is automatically compiled during package installation. 331 

For Windows platforms, an installation script is provided to install and configure patRoon 332 

and all of its dependencies automatically. Documentation includes a handbook, tutorial and 333 

full reference manual [85–88], which are produced with the bookdown [89, 90], R 334 

Markdown and roxygen2 [91] R packages, respectively. Example data is contained in the 335 

patRoonData R package [92, 93]. 336 

 337 

An important design goal was to provide a consistent, generic and easy to use interface that 338 

does not require the user to know the implementation and interfacing details of the 339 

supported algorithms. Each workflow step is executed by a generator function that takes 340 

the desired algorithm and its parameters as input and returns objects from a common set of 341 

data formats (see Figure 4). Names for commonly used parameters supported by multiple 342 

algorithms are standardized for consistency and defaults are set where reasonable. 343 

Furthermore, the format of input data such as retention time units as well as formula and 344 
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adduct specifications are harmonized and automatically converted to the format expected 345 

by the algorithm. Nearly all parameters from the underlying algorithm can be set by the 346 

user, hence, full configurability of the workflow is retained wherever possible. Generic 347 

naming schemes are applied to output data, which assist the user in comparing results 348 

originating from different algorithms. All exported functions from patRoon verify user input 349 

with the checkmate [94] package, which efficiently performs tests such as correctness of 350 

value range and type, and prints descriptive messages if input is incorrect. 351 

 352 

A set of generic methods are defined for workflow classes that perform general data 353 

inspection, selection, conversion and visualization, irrespective of the algorithm that was 354 

used to generate the object (see Table 3). Consequently, the implementation of common 355 

function names for multiple output classes allows a predictable and consistent user 356 

interface. 357 

 358 

Table 3. Common generic methods defined in patRoon to process workflow data. 359 

Generic Purpose 

length(), show(), 
algorithm(), names(), 
groupNames() 

obtain general object information such as object length and 
unique identifiers for contained results 

filter() rule-based filtering operations 

[, [[, $ operators subsetting or extracting data 

as.data.table(), 
as.data.frame() 

conversion to data.table or data.frame object 

unique(), overlap() extract unique or overlapping features across replicates 
consensus() generates a consensus between different objects of the same 

class 

plot(), plotEIC(),  
plotSpec() 

plot general, chromatographic and annotation data 

plotChord(), 
plotUpSet(), 

comparison of feature data or workflow objects from 
different algorithms by chord, UpSet and Venn diagrams 
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plotVenn() 
 360 

Several optimization strategies are employed in patRoon to reduce computational 361 

requirements and times. Firstly, external command line (CLI) tools are executed in parallel to 362 

reduce overall execution times for repetitive (e.g. per sample analysis or per feature) 363 

calculations. Commands are queued (first in, first out) and their execution is handled with 364 

the processx package [95]. Secondly, functions employing time intensive algorithms 365 

automatically cache their (partial) results in a local SQLite database file, which is accessed 366 

via the DBI [96] and RSQLite [97] R packages. Thirdly, performance critical code dealing with 367 

OpenMS data files and loading chromatographic data was written in C++ (interfaced with 368 

Rcpp [98–100]) to significantly reduce times needed to read or write data. Fourthly, the 369 

output files from OpenMS tools are loaded in chunks using the pugixml software library 370 

[101] to ensure a low memory footprint. Finally, reading, writing and processing (large) 371 

internal tabular data is performed with the data.table R package, which is a generally faster 372 

and more memory efficient drop-in replacement to the native tabular data format of R 373 

(data.frame), especially for large datasets [102]. 374 

 375 

Interfacing with ProteoWizard [22], OpenMS, GenForm, SIRIUS and MetFrag occurs by 376 

wrapper code that automatically executes the CLI tools and perform the data conversions 377 

necessary for input and output files. An alternative interface to MetFrag is also provided by 378 

employing the metfRag R package [103], however, in our experience this option is currently 379 

significantly slower than the CLI and therefore not used by default. For tools that are not 380 

readily controllable from R (i.e. ProfileAnalysis, TASQ and MZmine), interfacing occurs via 381 

importing or exporting CSV files (only export is supported for MZmine). Finally, the 382 
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RDCOMClient R package [104] is used to interface with Bruker DataAnalysis via the 383 

distributed component object model, which allows automation of DataAnalysis functionality 384 

from R that otherwise would only be available via its integrated visual basic scripting 385 

environment. 386 

 387 

A continuous integration pipeline performs automated tests during development and 388 

delivers files to simplify installation of patRoon and all its dependencies (Additional file 2: 389 

Figure S3). More than 900 unit tests are performed (>80% code coverage) with the testthat 390 

and vdiffr R packages [105, 106]. After successful test completion, binary R packages 391 

(Windows) and Docker images (Linux) are generated to facilitate installation of patRoon with 392 

tested and compatible dependencies. 393 

Results and discussion 394 

Benchmark and demonstration data 395 

The data used to benchmark and demonstrate patRoon were obtained with an LC-HRMS 396 

analysis of two different influent and effluent samples from a drinking water treatment pilot 397 

installation and a procedural blank (all in triplicate). The samples originate from an 398 

experiment where a set of 18 common environmental contaminants (yielding 20 individual 399 

chromatographic peaks, see Additional file 3: Table S2) were spiked prior to drinking water 400 

treatment. The analyses were performed using an LC-HRMS Orbitrap Fusion system 401 

(ThermoFisher Scientific, Bremen, Germany) operating with positive electrospray ionization. 402 

Further analytical conditions are as described in [11]. The raw data files can be obtained 403 

from [107]. 404 
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Parallelization benchmarks 405 

Several benchmarks were performed to test the multiprocessing functionality of patRoon. 406 

Tests were performed on a personal computer equipped with an Intel® Core™ i7-8700K CPU 407 

(6 cores, 12 threads), 32 gigabyte RAM, SATA SSD storage and the Windows 10 Enterprise 408 

operating system. Benchmarks were performed in triplicate using the microbenchmark R 409 

package [108]. Standard deviations were below ten percent (see Figure 5a). Benchmarking 410 

was performed on msConvert (MC), FeatureFinderMetabo (FFM), GenForm (GF), SIRIUS (SIR) 411 

and MetFrag (MF). The multiprocessing functionality was compared to native 412 

multithreading for the tools that supported this (FFM, SIR and MF). In addition, the 413 

performance of batch calculations with multiprocessing was compared with native batch 414 

calculation modes of tools where possible (MC and SIR). Parallelization methods were tested 415 

with 1-12 parallel processes or threads (i.e. up to full utilization of both CPU threads of each 416 

core). Input conditions were chosen to simulate “simple” and “complex” workflows, where 417 

the latter resulted in more demanding calculations with ~2-10x longer mean execution 418 

times (Table 4). The caching functionality of patRoon was disabled, where appropriate, to 419 

obtain representative and reproducible test results. Prior to benchmarking, candidate 420 

chemical compounds from PubChem for MF tests were cached in a local database to 421 

exclude influences from network connectivity. Similarly, general spectral data required to 422 

post-process FFM results were cached, as this is usually loaded once during a workflow, 423 

even with varying input parameters. The input features for GF tests that resulted in very 424 

long individual run times (i.e. >30 seconds) were removed to avoid excessive benchmark 425 

runtimes. Generating feature and MS peaklist input data for annotation related tests was 426 

performed with patRoon using algorithms from OpenMS and mzR [109], respectively. Pre-427 
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treatment of feature data consisted of removal of features with low intensity and lacking 428 

MS/MS data. The number of features for SIR (except tests with native batch mode) and MF 429 

benchmarks were further reduced by application of blank, replicate and intensity filters to 430 

avoid long total runtimes due to their relatively high individual run times. Finally, the feature 431 

dataset was split in low (0-500) and high (500-1000) m/z portions, which were purposed for 432 

execution of “simple” and “complex” experiments, respectively. For more details of the 433 

workflow and input parameters see the R script code in Additional file 4. The software tools 434 

used for benchmarking are summarized in Additional file 1.  435 

 436 

Table 4. Utilized conditions for "simple" (S) and "complex" (C) tests. 437 

 Test Input conditions1 Executions Mean 
individual 
run time2 

(s) 

msConvert (MC) MC-S Conversion centroided input 15 4.8 

MC-C Centroiding and conversion 
non-centroided input 

15 8.5 

FeatureFinderMetabo 
(FFM)3 

FFM-S High intensity threshold 15 4.1 

FFM-C Low intensity threshold 15 38 

GenForm (GF) GF-S CHNO elements, low m/z 512 0.2 

GF-C CHNOPS elements, high m/z 128 1.7 

SIRIUS (SIR)3 SIR-S CHNO elements, low m/z 152 (5124) 2.3 

SIR-C CHNOPS elements, high m/z 44 (1284) 7.7 

MetFrag (MF)3 MF-S Limited scoring, narrow mass 
search (5 ppm), low m/z. 

152 3.0 

MF-C Thorough scoring, wide mass 
search (20 ppm), high m/z. 

44 8.6 

(1): Features with m/z 0 – 500 (low) and m/z 500 – 1000 (high); (2): based on a test run without parallelization 
(n=3); (3) supports (configurable) native multithreading; (4) number of executions for native batch mode 
benchmarks. 

When multiprocessing was used all tests (except GF-S, discussed below) showed a clear 438 

downward trend in execution times (down to ~200%-500%), and optimum conditions were 439 
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generally reached when the number of parallel processes equaled the number of physical 440 

cores (six, see Figure 5a). When algorithms are fully parallelized, execution times are 441 

expected to follow an inverse relationship with the number of parallel process (i.e. 1/n) and 442 

this was observed most closely with MC, whereas execution times for other tools show a 443 

less steep reduction. Furthermore, utilizing multiple threads per core (i.e. hyperthreading) 444 

did not reduce execution times further and even slowed down in some cases (e.g. MF-C). 445 

These deviations in scalability were not investigated in detail. Since they were more 446 

noticeable under complex conditions, it is expected that this may be caused by (a) more 447 

involved post-processing results after each execution, which is currently not parallelized, 448 

and (b) increased memory usage, which may raise the overhead of context switches 449 

performed by the operating system. Nevertheless, the experiments performed here clearly 450 

show that the multiprocessing functionality of patRoon can significantly reduce execution 451 

times of various steps in an NTA workflow. 452 

 453 

An exception, however, was the test performed with GenForm with simple conditions (GF-454 

S), which exhibited no significant change in execution times with multiprocessing (Figure 455 

5a). Due to the particularly small mean run times (0.2 seconds) of this test, it was 456 

hypothesized that the overhead of instantiating a new process from R (inherently not 457 

parallelized) dominated the overall run times. To mitigate this, a ‘batch mode’ was 458 

implemented, where such process initiation occurs from a command shell sub-process 459 

instead. Here, multiple commands are executed by the sub-process in series, and the 460 

desired degree of parallelization is then achieved by launching several of these sub-461 

processes and evenly dividing commands amongst them. The maximum size of each series 462 
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(or “batch size”) is configurable, and represents a balance between reduction of process 463 

initiation overhead and potential loss of effectively load balancing of, for instance, 464 

commands with highly deviating execution times. Next, various batch sizes were tested for 465 

GF, both with and without multiprocessing parallelization (Additional file 2: Figure S4). For 466 

GF-S, execution times clearly decreased with increasing batch sizes, however, no further 467 

reduction was observed with parallelism. In contrast, serial execution of GF-C was not 468 

affected by varying batch size, whereas added parallelism reduced execution times for small 469 

batch sizes (≤8), but significantly increased such times for larger sizes. The results 470 

demonstrate that the typical short lived GF executions clearly benefit from batch mode. In 471 

addition, it is expected that by further increasing the batch size for GF-S, overall lifetimes of 472 

batch sub-processes may increase sufficiently to allow better utilization of parallelization. 473 

However, since GF-C results for larger batch sizes clearly show possible performance 474 

degradation for more complex calculations (e.g. due to suboptimal load balancing), eight 475 

was considered as a ‘safe’ default which improves overall performance for both simple and 476 

complex calculation scenarios (Figure 5b).  477 

 478 

Utilizing native multithreading for FFM, SIR (without native batch mode) and MF yields only 479 

relatively small reductions in their execution times (Figure 5b). Under optimum conditions 480 

(6-8 threads), the most significant drop was observed for SIR-C (~40%), followed by FFM-S, 481 

FFM-C and MF-C (~20%). These results suggest that native multithreading only yields partial 482 

parallelization, which primarily occurs with complex input conditions. Note that SIRIUS 483 

supports different linear programming solvers (Gurobi [110], CPLEX [111] and the default 484 

GLPK [112]), which may influence overall performance and parallelization [113]. 485 
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Nevertheless, a comparison between these solvers did not reveal significant changes with 486 

our experimental conditions (Additional file 2: Figure S5). Combining the multiprocessing 487 

functionality with native multithreading under optimum conditions (i.e. 6 parallel 488 

processes/threads) only reduces execution times for SIR-C (Figure 5b). As such, both 489 

performance improvements and scalability of the multiprocessing implementation of 490 

patRoon appear highly effective at this stage. 491 

 492 

The native batch modes of MC and SIR allow calculations from multiple inputs within a 493 

single execution. This reduces the total number of tool executions, which may (1) lower the 494 

accumulated overhead associated with starting and finishing tool executions and (2) hamper 495 

effective parallelization from multiprocessing, especially if executions are less than the 496 

available CPU cores. The combination of multiprocessing (optimum conditions) and native 497 

batch mode was benchmarked with increasing number of inputs per tool execution (i.e. the 498 

native batch size; Additional file 2: Figure S6). For MC, execution times were largely 499 

unaffected by the input batch size if multiprocessing was disabled, which indicates a low 500 

execution overhead. Lowest execution times were observed when multiprocessing was 501 

enabled with small batch sizes (≤25% of the total inputs), which indicates a lack of native 502 

parallelization support. In contrast, SIR showed significantly lower overall execution times 503 

with increasing batch sizes (up to ~7000% and ~320% for SIR-S and SIR-C, respectively), 504 

while enabling multiprocessing did not reduce execution times for batch sizes >1. These 505 

results show that (1) SIR has a relative large execution overhead, which impairs 506 

multiprocessing performance gains, and (2) supports effective native parallelized batch 507 

execution. Thus, SIR performs most optimal if all calculations are performed within a single 508 
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execution. Similar to previous SIR benchmarks, no significant differences were found across 509 

different linear solvers (Additional file 2: Figure S7). The results demonstrate that 510 

multiprocessing may improve efficiency for batch calculations with tools with low execution 511 

overhead and/or lack of native parallelization. Nonetheless, the dramatic improvement in 512 

SIR calculation times when using the native batch mode indicates that software authors 513 

should generally consider implementing native threaded batch mode functionality if large 514 

batch calculations are an expected use case. 515 

 516 

Finally, the implemented optimization strategies were tested for a complete patRoon NTA 517 

workflow consisting of typical data processing steps and using all previously tested tools. 518 

The chosen input conditions roughly fell in between the aforementioned “simple” and 519 

“complex” conditions (see code in Additional file 4). Note that optimization strategies were 520 

unavailable for some steps (e.g. grouping of features and collection of MS peak lists), and 521 

native batch mode was not used in order to demonstrate the usefulness of multiprocessing 522 

for tools that do not support this (e.g. other tools than MC and SIR and those potentially 523 

available in future versions of patRoon). Regardless, the benchmarks revealed a reduction in 524 

total run times of ~50% (from ~200 to ~100 minutes; Figure 5c). Since execution times of 525 

each step may vary significantly, the inclusion of different combinations of steps may 526 

significantly influence overall execution times. 527 

 528 

The use of multiprocessing for all tools (except SIR), the implemented batch mode strategies 529 

for GF and the use of the native batch mode supported by SIR were set as default in 530 

patRoon with the determined optimal parameters from the benchmarks results. However, 531 
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the user can still freely configure all these options to potentially apply further optimizations 532 

or otherwise (partially) disable parallelization to conserve system resources acquired by 533 

patRoon. 534 

 535 

As a final note, it is important to realize that these benchmarks display execution times that 536 

also involve preparing and processing results and include other overhead such as process 537 

creation from R. For this reason, a direct comparison with standalone execution of 538 

investigated tools was not possible. Nevertheless, the various optimization strategies 539 

employed by patRoon minimize such overhead, and the added parallelization functionality 540 

often provide a clear advantage in efficiency when using typical CLI tools in an R based NTA 541 

workflow, especially considering the now widespread availability of computing systems with 542 

increasing numbers of cores. 543 

Demonstration: suspect screening 544 

The previous section investigated several parallelization strategies implemented in patRoon 545 

for efficient data processing. A common method in environmental NTA studies to increase 546 

data processing efficiency and reducing the data complexity is by merely screening for 547 

chemicals of interest. This section demonstrates such a suspect screening workflow with 548 

patRoon, consisting of (a) raw data pre-treatment, (b) extracting, grouping and suspect 549 

screening of feature data, and finally (c) annotating features to confirm their identity. During 550 

the workflow several rule-based filters are applied to improve data quality. The ‘suspects’ in 551 

this demonstration are, in fact, a set of compounds spiked to influent samples (Additional 552 

file 3: Table S2), hence, they were used for validation purposes of the workflow. After 553 
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completion of the suspect screening workflow, several methods are demonstrated to 554 

inspect the resulting data. 555 

Suspect screening: workflow 556 

The code described here can easily be generated with the newProject() function, which 557 

automatically generates a ready-to-use R script based on user input (section “Visualization, 558 

reporting and graphical interface”). 559 

  560 

First, the patRoon R package is loaded and a data.frame is generated with the file 561 

information of the sample analyses and their replicate and blank assignments. Next, this 562 

information is used to centroid and convert the raw analyses files to the open mzML file 563 

format, a necessary step for further processing. 564 

 565 

The next step involves finding features and grouping them across samples. This example 566 

uses the OpenMS algorithms and sets several algorithm specific parameters that were 567 

manually optimized for the employed analytical instrumentation to optimize the workflow 568 

output. Other algorithms (e.g. enviPick, XCMS) are easily selected by changing the 569 

algorithm function parameter.  570 

library(patRoon) 

 

# Generate analysis file information for all files in a directory, 

# assign replicate group names to all triplicates and specify which 

# should be used for blank subtraction. 
anaInfo <- generateAnalysisInfo("../data", 

                                groups = c(rep("blank", 3), 

                                           rep("influent-A", 3), 

                                           rep("effluent-A", 3), 

                                           rep("influent-B", 3), 

                                           rep("effluent-B", 3)), 

                                blanks = "blank") 

 

convertMSFiles(anaInfo = anaInfo, from = "thermo", to = "mzML", 

               algorithm = "pwiz", centroid = "vendor") 
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 571 

Several rule-based filters are then applied for general data clean-up, followed by the 572 

removal of sample blanks from the feature dataset. 573 

 574 
Next, features are screened with a given suspect list, which is a CSV file read into a 575 

data.frame containing the name, SMILES and (optionally) retention time for each suspect 576 

(see Additional file 5). While the list in this demonstration is rather small (18 compounds, 577 

see SX), larger lists containing several thousands of compounds such as those available on 578 

the NORMAN network Suspect List Exchange [114] can also be used. The screening results 579 

are returned in a data.frame, where each row is a hit (a suspect may occur multiple times) 580 

containing the linked feature group identifier and other information such as detected m/z 581 

and retention time (deviations). Finally, this table is used to transform the original feature 582 

groups object (fGroups) by removing any unassigned features and tagging remainders by 583 

their suspect name. 584 

 585 

features <- findFeatures(anaInfo, algorithm = "openms", 

                         noiseThrInt = 4E3, 

                         chromFWHM = 3, minFWHM = 1, maxFWHM = 30, 

                         chromSNR = 5, mzPPM = 5) 

fGroups <- groupFeatures(features, algorithm = "openms") 
 

fGroups <- filter(fGroups, 

                  # minimum absolute feature intensity 

                  absMinIntensity = 1E5, 

                  # must be present in all replicates 

                  relMinReplicateAbundance = 1, 

                  # max relative standard deviation replicate intensities 

                  maxReplicateIntRSD = 0.75, 

                  # minimum feature intensity above blank 

                  blankThreshold = 5, 

                  # remove blank analyses afterwards 

                  removeBlanks = TRUE) 

 

 

suspects <- read.csv("suspects.csv") 

scr <- screenSuspects(fGroups, suspects, mzWindow = 0.002, 

                      rtWindow = 6, adduct = "[M+H]+") 
fGroupsSusp <- groupFeaturesScreening(fGroups, scr) 
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In the final step of this workflow annotation is performed, which consists of (a) generation 586 

of MS peak list data, (b) general clean-up to only retain significant MS/MS mass peaks, 587 

automatic annotation of (c) formulae and (d) chemical compounds, and (e) combining both 588 

annotation data to improve ranking of candidate compounds. As with previous workflow 589 

steps, the desired algorithms (mzR, GenForm and MetFrag in this example) are set using the 590 

algorithm function parameter. Similarly, the compound database used by MetFrag (here 591 

CompTox via a local CSV file obtained from [115]) can easily be changed to other databases 592 

such as PubChem, ChemSpider or another local file. 593 

 594 

Suspect screening: data inspection 595 

All data generated during the workflow (e.g. features, peak lists, annotations) can be 596 

inspected by overloads of common R methods.  597 

mslists <- generateMSPeakLists(fGroupsSusp, "mzr",  

                               precursorMzWindow = 0.5) 

mslists <- filter(mslists, relMSMSIntThr = 0.02, topMSMSPeaks = 10) 

 

formulas <- generateFormulas(fGroupsSusp, "genform", mslists, 

                             adduct = "[M+H]+", 

                             elements = "CHNOPSClBr") 

# Configure location of CompTox CSV file 

options(patRoon.path.MetFragCompTox = 

            "C:/CompTox_17March2019_SelectMetaData.csv") 
compounds <- generateCompounds(fGroupsSusp, mslists, "metfrag", 

                               adduct = "[M+H]+", 

                               database = "comptox") 

compounds <- addFormulaScoring(compounds, formulas, updateScore = TRUE) 
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 598 

Furthermore, all workflow data can easily be subset with e.g. the R subset operator (“[“), 599 

for instance, to perform a (hypothetical) prioritization of features that are most intense in 600 

the effluent samples. 601 

 602 

# intensities for each feature in first group 

> fGroups[[1]] 

[1] 210235.3 242051.9 254323.8 260419.1 205407.0 261099.1      0.0      

0.0      0.0      0.0      0.0      0.0 

 

# averaged MS/MS peak list for feature group of carbamazepine suspect 

> mslists[["Carbamazepine"]]$MSMS 

mz           intensity    precursor 

1: 192.0804  284478.607     FALSE 

2: 193.0880   69396.510     FALSE 

3: 194.0960 1126534.943     FALSE 

4: 237.1019    5406.667      TRUE 

 

# compound annotation data for all features(subset shown for clarity) 

> as.data.frame(compounds)[1:5, 1:5] 
group              explainedPeaks score neutralMass  SMILES 

1 n-Methylbenzotriazole-1  4 12.268046  133.064   NC1=NC2=CC=CC=C2N1 

2 n-Methylbenzotriazole-1  5  9.546212  133.064 CC1=CC2=C(NN=N2)C=C1 

3 n-Methylbenzotriazole-1  5  6.722034  133.064   NC1=CC=C2NN=CC2=C1 

4 n-Methylbenzotriazole-1  5  6.715495  133.064   CC1=C2NN=NC2=CC=C1 

5 n-Methylbenzotriazole-1  4  6.483770  133.064   CN1N=NC2=CC=CC=C12 

 

# obtain table with replicate averaged feature intensities 

> intTab <- as.data.frame(fGroupsSusp, average = TRUE) 

> head(intTab)[, 1:5] # show first 5 rows/columns 
group                     ret       mz       influent-A effluent-A 

1 n-Methylbenzotriazole-1 600.6524 134.0709  2021597.7        0.0 

2 n-Methylbenzotriazole-2 607.5665 134.0709  2399435.6   192759.6 

3                Barbital 137.3162 185.0918   145150.0        0.0 

4           Benzotriazole 478.6665 120.0553  1494092.0   190069.0 

5           Carbamazepine 797.5051 237.1018  2849756.3        0.0 

6             Carbendazim 378.8226 192.0764   504191.7        0.0 

 

# obtain group names from the 5 highest intense features in either 

# of the effluents 

> top1 <- intTab$group[order(intTab[["effluent-A"]], 

                             decreasing = TRUE)][1:5] 

> top2 <- intTab$group[order(intTab[["effluent-B"]], 

                             decreasing = TRUE)][1:5] 

> top <- union(top1, top2) 

> top 

[1] "Metformin"                "Terbuthylazine"           

[3] "Triphenylphosphine oxide" "Melamine-2"               

[5] "n-Methylbenzotriazole-2"  "Benzotriazole"            

[7] "n-Methylbenzotriazole-1"  "Propranolol" 

 

# subset original object 

> fGroupsSusp <- fGroupsSusp[, top] 
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Visualization of data generated during the workflow is performed by various plotting 603 

functions (see Figure 6). 604 

 605 
The final step in a patRoon NTA workflow involves automatic generation of comprehensive 606 

reports of various formats which allow (interactive) exploration of all data (see Additional 607 

file 2: Figure S8).  608 

 609 

Suspect screening: results 610 

A summary of data generated during the NTA workflow demonstrated here is shown in 611 

Table 5 and Additional file 3: Table S2. The complete workflow finished in approximately 8 612 

minutes (employing a laptop with an Intel® Core™ I7-8550U CPU, 16 gigabyte RAM, NVME 613 

SSD and the Windows 10 Pro operating system). While nearly 60 000 features were grouped 614 

into nearly 20 000 feature groups, the majority (97%, 678 remaining) were filtered out 615 

during the various pre-treatment filter steps. Regardless, most suspects were found (17/18 616 

attributed to 19/20 individual chromatographic peaks), and the missing suspect (aniline) 617 

could be detected when lowering the intensity threshold of the filter() function used to 618 

post-filter feature groups in the workflow. The majority of suspects (17) were annotated 619 

with the correct chemical compound as first candidate, the two n-methylbenzotriazole 620 

# plot unique features in influents 

plot(fGroups[rGroups = c("influent-A", "influent-B")], 

     colourBy = "rGroups", onlyUnique = TRUE) 

# all EICs for a feature group 

plotEIC(fGroupsSusp[, "Terbuthylazine"], colourBy = "rGroup") 

plotSpec(compounds, index = 1, groupName = "Benzotriazole", 

         mslists) 

plotUpSet(fGroupsSusp) 

plotChord(fGroupsSusp, average = TRUE) 

plotVenn(fGroupsSusp, which = c("influent-B", "effluent-B")) 

 

reportCSV(fGroupsSusp, formulas = formulas, compounds = compounds) 

reportPDF(fGroupsSusp, formulas = formulas, 

          compounds = compounds, MSPeakLists = mslists) 

reportHTML(fGroupsSusp, formulas = formulas, 

           compounds = compounds, MSPeakLists = mslists) 
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isomer suspects were ranked as second or fourth. Results for formulae assignments were 621 

similar, with the exception of dimethomorph, where the formula was ranked in only the top 622 

twenty-five (the candidate chemical compound was ranked first, however).   623 

 624 

While this demonstration conveys a relative simple NTA with ‘known suspects’, the results 625 

show that patRoon (a) allows a straightforward approach to perform a complete and 626 

tailored NTA workflow, (b) provides powerful general data clean-up functionality to 627 

prioritize data and (c) realizes effective automated annotation of detected features. 628 

 629 

Table 5. Summarizing results for the demonstrated patRoon NTA workflow. 630 

 Amount 

Features Total found 57 113 (mean 3,808/sample) 
Feature groups Raw dataset 19 970 

Replicate filters (1st pass1) 4 719 (-76%) 
Blank filter 2 933 (-85%) 
Intensity filters 964 (-95%) 
Replicate filters (2nd pass1) 678 (-97%) 

Suspects Total found 19 out of 20 
Annotated 19 

Formulae Total candidates 163 (mean 9/feature group) 
Correctly ranked 1st 13 (68%) 
Correctly ranked 1st-2nd 16 (84%) 
Correctly ranked 1st-5th 17 (89%) 

Compounds Total candidates 1 017 (mean 54/feature group) 
Correctly ranked 1st 17 (85%) 
Correctly ranked 1st-2nd 18 (90%) 
Correctly ranked 1st-5th 19 (100%) 

(1): Replicate filters are repeated if necessary, see section “Data reduction, comparison and conversion”. 

Conclusions 631 

This paper presents patRoon, a fully open source platform that provides a comprehensive 632 

MS based NTA data processing workflow developed in the R environment. Major workflow 633 
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functionality is implemented through the usage of existing and well-tested software tools, 634 

connecting primarily open and a few closed approaches. The workflows are easily setup for 635 

common use cases, while full customization and mixing of algorithms allows for execution of 636 

completely tailored workflows. In addition, extensive functionality related to data 637 

processing, annotation, visualization, reporting and others was implemented in patRoon to 638 

provide an important toolbox for effectively handling complex NTA studies. The easy and 639 

predictable interface of patRoon lowers the computational expertise required of users, 640 

making it available for a broad audience. Major implemented optimization strategies were 641 

demonstrated to reduce computational times. Furthermore, a typical suspect screening 642 

workflow was demonstrated on real-world data from an environmental study related to 643 

drinking water treatment. 644 

 645 

patRoon has been under development for several years and has already been applied in a 646 

variety of studies, such as the characterization of organic matter [71], elucidation of 647 

transformation products of biocides [7, 12] and assessment of removal of polar organics 648 

reversed-osmosis drinking water treatment [14]. patRoon will undergo further 649 

development, and extension of integrated workflow algorithms is planned for new and less 650 

commonly used ones, while additional componentization strategies will be implemented to 651 

help prioritizing data. Addition of new workflow functionality is foreseen, such as usage of 652 

ion-mobility spectrometry data to assist annotation, automated screening of transformation 653 

products (e.g. utilizing tools such as BioTransformer [116]), prediction of feature quantities 654 

for prioritization purposes (recently reviewed in [117]) and automated chemical 655 

classification (e.g. through ClassyFire [118]). Finally, interfacing with other R based mass 656 
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spectrometry software such as those provided by the “R for Mass Spectrometry” initiative 657 

[119] is planned to further improve the interoperability of patRoon. The use in real-world 658 

studies, feedback from users and developments within the non-target analysis community, 659 

are all critical in determining future directions and improvements of patRoon. We envisage 660 

that the open availability, straightforward usage, vendor independence and comprehensive 661 

functionality will be useful to the community and result in a broad adoption of patRoon.   662 

Availability and requirements 663 

Project name: patRoon 664 

Project home page: https://github.com/rickhelmus/patRoon 665 

Operating system(s): Platform independent (tested on Microsoft Windows and Linux) 666 

Programming language(s): R, C++, JavaScript 667 

Other requirements: Depending on utilized algorithms (see installation instructions in [85, 668 

88]) 669 

License: GNU GPL version 3 670 

Any restrictions to use by non-academics: none 671 

Abbreviations 672 

CEC: Chemical of emerging concern 673 

CLI: Command-line interface 674 

CMP: Compound annotation 675 

CMT: Componentization 676 

CSV: Comma-separated value 677 
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DBI: The database interface 678 

EIC: Extracted ion chromatogram 679 

FFM(-S/C): FeatureFinderMetabo (simple/complex conditions) 680 

FG: Feature groups 681 

FOR: Formula annotation 682 

FTS: Features 683 

GC: Gas chromatography 684 

GC-MS: GC coupled to mass spectrometry 685 

GF(-S/C): GenForm (simple/complex conditions) 686 

HTML: Hypertext markup language 687 

HRMS: High resolution mass spectrometry 688 

IPO: Isotopologue parameter optimization 689 

LC: Liquid chromatography 690 

LC-MS: LC coupled to mass spectrometry 691 

MC(-S/C): msConvert (simple/complex conditions) 692 

MF(-S/C): MetFrag (simple/complex conditions) 693 

MS/MS: Tandem mass spectrometry 694 

MSPL: MS peak list 695 

NTA: Non-target analysis 696 

PDF: Portable document format 697 

PO: Parameter optimization 698 

PT: Pre-treatment 699 

SIR(-S/C): SIRIUS (simple/complex conditions) 700 
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SUS: Suspect screening 701 

XCMS: Various forms (X) of chromatography mass spectrometry (R package MS data 702 

processing) 703 

Definitions 704 

Features (FTS): data points assigned with unique chromatographic and mass spectral 705 

information (e.g. retention time, peak area and accurate m/z), which potentially described a 706 

compound in a sample analysis. 707 

Feature group (FG): A group of features considered equivalent across sample analyses. 708 

MS peak list (MSPL): tabular data (m/z and intensity) for MS or MS/MS peaks attributed to a 709 

feature and used as input data for annotation purposes. 710 

Formula/Compound (FOR/CMP): a chemical formula or compound candidate revealed 711 

during feature annotation. 712 

Component (CMT): A collection of feature groups that are somehow linked, such as MS 713 

adducts, homologous series or highly similar intensity trends. 714 

Declarations 715 
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The source code of patRoon and online versions of its manuals are available for download 717 
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scripts used to perform benchmarking and the input suspect list for demonstration purposes 720 

are provided as Additional file 4 and 5, respectively. 721 

https://github.com/rickhelmus/patRoon


37 

 

Competing interests 722 

The authors declare that they have no competing interests. 723 

Funding 724 

This work was internally funded by the Institute of Biodiversity and Ecosystem Dynamics 725 

(University of Amsterdam). ELS is supported by the Luxembourg National Research Fund 726 

(FNR) for project A18/BM/12341006. 727 

Authors’ contributions 728 

RH wrote the manuscript, source code, designed the experiments and interpreted the 729 

results. ELS provided valuable feedback to improve the software. ELS and other authors 730 

supervised this work and contributed to writing the manuscript. All authors read and 731 

approved the final manuscript. 732 

Acknowledgements 733 

The many authors involved in the open mass spectrometry software development 734 

community are highly acknowledged as their contributions are the foundation for the 735 

development of patRoon. In addition, Vittorio Albergamo, Andrea Brunner, Thomas Wagner, 736 

Olaf Brock and other users of patRoon are thanked for testing and providing feedback for 737 

future developments. We thank the Dutch drinking water companies Dunea and PWN for 738 

sharing the raw HRMS data that was used for benchmarking and demonstration purposes. 739 

Markus Fleischauer is acknowledged for his feedback on execution of batch execution of 740 

SIRIUS. Finally, Olaf Brock is acknowledged for the design of some of the visualizations of 741 

benchmarking data. 742 



38 

 

References 743 

1.  Hollender J, Schymanski EL, Singer HP, Ferguson PL (2017) Nontarget Screening with 744 

High Resolution Mass Spectrometry in the Environment: Ready to Go? Environ Sci 745 

Technol 51:11505–11512 . https://doi.org/10.1021/acs.est.7b02184 746 

2.  Chiaia-Hernandez AC, Schymanski EL, Kumar P, Singer HP, Hollender J (2014) Suspect 747 

and nontarget screening approaches to identify organic contaminant records in lake 748 

sediments. Anal Bioanal Chem 406:7323–7335 . https://doi.org/10.1007/s00216-014-749 

8166-0 750 

3.  Sjerps RMA, Vughs D, van Leerdam JA, ter Laak TL, van Wezel AP (2016) Data-driven 751 

prioritization of chemicals for various water types using suspect screening LC-HRMS. 752 

Water Research 93:254–264 . https://doi.org/10.1016/j.watres.2016.02.034 753 

4.  Chiaia-Hernández AC, Günthardt BF, Frey MP, Hollender J (2017) Unravelling 754 

Contaminants in the Anthropocene Using Statistical Analysis of Liquid 755 

Chromatography–High-Resolution Mass Spectrometry Nontarget Screening Data 756 

Recorded in Lake Sediments. Environ Sci Technol 51:12547–12556 . 757 

https://doi.org/10.1021/acs.est.7b03357 758 

5.  Albergamo V, Schollée JE, Schymanski EL, Helmus R, Timmer H, Hollender J, de Voogt P 759 

(2019) Nontarget Screening Reveals Time Trends of Polar Micropollutants in a 760 

Riverbank Filtration System. Environ Sci Technol 53:7584–7594 . 761 

https://doi.org/10.1021/acs.est.9b01750 762 

6.  Hernández F, Bakker J, Bijlsma L, de Boer J, Botero-Coy AM, Bruinen de Bruin Y, Fischer 763 

S, Hollender J, Kasprzyk-Hordern B, Lamoree M, López FJ, Laak TL ter, van Leerdam JA, 764 

Sancho JV, Schymanski EL, de Voogt P, Hogendoorn EA (2019) The role of analytical 765 



39 

 

chemistry in exposure science: Focus on the aquatic environment. Chemosphere 766 

222:564–583 . https://doi.org/10.1016/j.chemosphere.2019.01.118 767 

7.  Wagner TV, Helmus R, Quiton Tapia S, Rijnaarts HHM, de Voogt P, Langenhoff AAM, 768 

Parsons JR (2020) Non-target screening reveals the mechanisms responsible for the 769 

antagonistic inhibiting effect of the biocides DBNPA and glutaraldehyde on benzoic 770 

acid biodegradation. Journal of Hazardous Materials 386:121661 . 771 

https://doi.org/10.1016/j.jhazmat.2019.121661 772 

8.  Kolkman A, Martijn BJ, Vughs D, Baken KA, van Wezel AP (2015) Tracing Nitrogenous 773 

Disinfection Byproducts after Medium Pressure UV Water Treatment by Stable Isotope 774 

Labeling and High Resolution Mass Spectrometry. Environ Sci Technol 49:4458–4465 . 775 

https://doi.org/10.1021/es506063h 776 

9.  Schollée JE, Schymanski EL, Avak SE, Loos M, Hollender J (2015) Prioritizing Unknown 777 

Transformation Products from Biologically-Treated Wastewater Using High-Resolution 778 

Mass Spectrometry, Multivariate Statistics, and Metabolic Logic. Anal Chem 87:12121–779 

12129 . https://doi.org/10.1021/acs.analchem.5b02905 780 

10.  Brunner AM, Vughs D, Siegers W, Bertelkamp C, Hofman-Caris R, Kolkman A, ter Laak T 781 

(2019) Monitoring transformation product formation in the drinking water treatments 782 

rapid sand filtration and ozonation. Chemosphere 214:801–811 . 783 

https://doi.org/10.1016/j.chemosphere.2018.09.140 784 

11.  Brunner AM, Bertelkamp C, Dingemans MML, Kolkman A, Wols B, Harmsen D, Siegers 785 

W, Martijn BJ, Oorthuizen WA, ter Laak TL (2020) Integration of target analyses, non-786 

target screening and effect-based monitoring to assess OMP related water quality 787 



40 

 

changes in drinking water treatment. Science of The Total Environment 705:135779 . 788 

https://doi.org/10.1016/j.scitotenv.2019.135779 789 

12.  Wagner TV, Helmus R, Becker E, Rijnaarts HHM, Voogt P de, Langenhoff AAM, Parsons 790 

JR (2020) Impact of transformation, photodegradation and interaction with 791 

glutaraldehyde on the acute toxicity of the biocide DBNPA in cooling tower water. 792 

Environ Sci: Water Res Technol 6:1058–1068 . https://doi.org/10.1039/C9EW01018A 793 

13.  Jonker W, Lamoree MH, Houtman CJ, Hamers T, Somsen GW, Kool J (2015) Rapid 794 

activity-directed screening of estrogens by parallel coupling of liquid chromatography 795 

with a functional gene reporter assay and mass spectrometry. Journal of 796 

Chromatography A 1406:165–174 . https://doi.org/10.1016/j.chroma.2015.06.012 797 

14.  Albergamo V, Escher BI, Schymanski EL, Helmus R, Dingemans MML, Cornelissen ER, 798 

Kraak MHS, Hollender J, Voogt P de (2019) Evaluation of reverse osmosis drinking 799 

water treatment of riverbank filtrate using bioanalytical tools and non-target 800 

screening. Environ Sci: Water Res Technol 6:103–116 . 801 

https://doi.org/10.1039/C9EW00741E 802 

15.  Brunner AM, Dingemans MML, Baken KA, van Wezel AP (2019) Prioritizing 803 

anthropogenic chemicals in drinking water and sources through combined use of mass 804 

spectrometry and ToxCast toxicity data. Journal of Hazardous Materials 364:332–338 . 805 

https://doi.org/10.1016/j.jhazmat.2018.10.044 806 

16.  Zwart N, Jonker W, Broek R ten, de Boer J, Somsen G, Kool J, Hamers T, Houtman CJ, 807 

Lamoree MH (2020) Identification of mutagenic and endocrine disrupting compounds 808 

in surface water and wastewater treatment plant effluents using high-resolution 809 



41 

 

effect-directed analysis. Water Research 168:115204 . 810 

https://doi.org/10.1016/j.watres.2019.115204 811 

17.  Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, Schulze T, 812 

Haglund P, Letzel T, Grosse S, Thomaidis NS, Bletsou A, Zwiener C, Ibáñez M, Portolés 813 

T, de Boer R, Reid MJ, Onghena M, Kunkel U, Schulz W, Guillon A, Noyon N, Leroy G, 814 

Bados P, Bogialli S, Stipaničev D, Rostkowski P, Hollender J (2015) Non-target screening 815 

with high-resolution mass spectrometry: critical review using a collaborative trial on 816 

water analysis. Anal Bioanal Chem 407:6237–6255 . https://doi.org/10.1007/s00216-817 

015-8681-7 818 

18.  Peisl BYL, Schymanski EL, Wilmes P (2018) Dark matter in host-microbiome 819 

metabolomics: Tackling the unknowns–A review. Analytica Chimica Acta 1037:13–27 . 820 

https://doi.org/10.1016/j.aca.2017.12.034 821 

19.  Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, Tang WH, 822 

Römpp A, Neumann S, Pizarro AD, Montecchi-Palazzi L, Tasman N, Coleman M, 823 

Reisinger F, Souda P, Hermjakob H, Binz P-A, Deutsch EW (2011) mzML—a Community 824 

Standard for Mass Spectrometry Data. Molecular & Cellular Proteomics 10: . 825 

https://doi.org/10.1074/mcp.R110.000133 826 

20.  Pedrioli PGA, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, 827 

Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp 828 

E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, 829 

Aebersold R (2004) A common open representation of mass spectrometry data and its 830 

application to proteomics research. Nat Biotechnol 22:1459–1466 . 831 

https://doi.org/10.1038/nbt1031 832 



42 

 

21.  Urban J, Afseth NK, Štys D (2014) Fundamental definitions and confusions in mass 833 

spectrometry about mass assignment, centroiding and resolution. TrAC Trends in 834 

Analytical Chemistry 53:126–136 . https://doi.org/10.1016/j.trac.2013.07.010 835 

22.  Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, 836 

Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker 837 

TA, Brusniak M-Y, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, 838 

Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, 839 

Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, 840 

Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for 841 

mass spectrometry and proteomics. Nat Biotechnol 30:918–920 . 842 

https://doi.org/10.1038/nbt.2377 843 

23.  PubChem National Center for Biotechnology Information PubChem Database. 844 

https://pubchem.ncbi.nlm.nih.gov/. Accessed 6 Feb 2020 845 

24.  Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, Patlewicz G, 846 

Shah I, Wambaugh JF, Judson RS, Richard AM (2017) The CompTox Chemistry 847 

Dashboard: a community data resource for environmental chemistry. Journal of 848 

Cheminformatics 9:61 . https://doi.org/10.1186/s13321-017-0247-6 849 

25.  Blaženović I, Kind T, Torbašinović H, Obrenović S, Mehta SS, Tsugawa H, Wermuth T, 850 

Schauer N, Jahn M, Biedendieck R, Jahn D, Fiehn O (2017) Comprehensive comparison 851 

of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is 852 

needed to achieve 93% accuracy. Journal of Cheminformatics 9:32 . 853 

https://doi.org/10.1186/s13321-017-0219-x 854 



43 

 

26.  Bruker MetaboScape. https://www.bruker.com/products/mass-spectrometry-and-855 

separations/ms-software/metaboscape.html. Accessed 6 Feb 2020 856 

27.  Waters UNIFI Scientific Information System. 857 

https://www.waters.com/waters/en_US/UNIFI-Scientific-Information-858 

System/nav.htm?cid=134801359&locale=en_US. Accessed 6 Feb 2020 859 

28.  Thermo Scientific Compound Discoverer Software. 860 

https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-861 

chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-862 

analysis/compound-discoverer-software.html. Accessed 6 Feb 2020 863 

29.  Progenesis QI. http://www.nonlinear.com/progenesis/qi/. Accessed 6 Feb 2020 864 

30.  Misra BB, Mohapatra S (2019) Tools and resources for metabolomics research 865 

community: A 2017–2018 update. ELECTROPHORESIS 40:227–246 . 866 

https://doi.org/10.1002/elps.201800428 867 

31.  Stanstrup J, Broeckling CD, Helmus R, Hoffmann N, Mathé E, Naake T, Nicolotti L, 868 

Peters K, Rainer J, Salek RM, Schulze T, Schymanski EL, Stravs MA, Thévenot EA, 869 

Treutler H, Weber RJM, Willighagen E, Witting M, Neumann S (2019) The 870 

metaRbolomics Toolbox in Bioconductor and beyond. Metabolites 9:200 . 871 

https://doi.org/10.3390/metabo9100200 872 

32.  Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS:  Processing Mass 873 

Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, 874 

and Identification. Anal Chem 78:779–787 . https://doi.org/10.1021/ac051437y 875 



44 

 

33.  Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: Modular framework 876 

for processing, visualizing, and analyzing mass spectrometry-based molecular profile 877 

data. BMC Bioinformatics 11:395 . https://doi.org/10.1186/1471-2105-11-395 878 

34.  Hohrenk LL, Itzel F, Baetz N, Tuerk J, Vosough M, Schmidt TC (2020) Comparison of 879 

Software Tools for Liquid Chromatography–High-Resolution Mass Spectrometry Data 880 

Processing in Nontarget Screening of Environmental Samples. Anal Chem 92:1898–881 

1907 . https://doi.org/10.1021/acs.analchem.9b04095 882 

35.  R Core Team (2019) R: A Language and Environment for Statistical Computing. R 883 

Foundation for Statistical Computing, Vienna, Austria 884 

36.  Lange E, Tautenhahn R, Neumann S, Gröpl C (2008) Critical assessment of alignment 885 

procedures for LC-MS proteomics and metabolomics measurements. BMC 886 

Bioinformatics 9:375 . https://doi.org/10.1186/1471-2105-9-375 887 

37.  Niu W, Knight E, Xia Q, McGarvey BD (2014) Comparative evaluation of eight software 888 

programs for alignment of gas chromatography–mass spectrometry chromatograms in 889 

metabolomics experiments. Journal of Chromatography A 1374:199–206 . 890 

https://doi.org/10.1016/j.chroma.2014.11.005 891 

38.  Myers OD, Sumner SJ, Li S, Barnes S, Du X (2017) Detailed Investigation and 892 

Comparison of the XCMS and MZmine 2 Chromatogram Construction and 893 

Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry 894 

Metabolomics Data. Anal Chem 89:8689–8695 . 895 

https://doi.org/10.1021/acs.analchem.7b01069 896 

39.  Hao L, Wang J, Page D, Asthana S, Zetterberg H, Carlsson C, Okonkwo OC, Li L (2018) 897 

Comparative Evaluation of MS-based Metabolomics Software and Its Application to 898 



45 

 

Preclinical Alzheimer’s Disease. Scientific Reports 8:9291 . 899 

https://doi.org/10.1038/s41598-018-27031-x 900 

40.  Myers OD, Sumner SJ, Li S, Barnes S, Du X (2017) One Step Forward for Reducing False 901 

Positive and False Negative Compound Identifications from Mass Spectrometry 902 

Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms 903 

and Detecting Chromatographic Peaks. Anal Chem 89:8696–8703 . 904 

https://doi.org/10.1021/acs.analchem.7b00947 905 

41.  Schymanski EL, Neumann S (2013) CASMI: And the Winner is . . . Metabolites 3:412–906 

439 . https://doi.org/10.3390/metabo3020412 907 

42.  Allen F, Pon A, Wilson M, Greiner R, Wishart D (2014) CFM-ID: a web server for 908 

annotation, spectrum prediction and metabolite identification from tandem mass 909 

spectra. Nucleic Acids Res 42:W94–W99 . https://doi.org/10.1093/nar/gku436 910 

43.  Allen F, Greiner R, Wishart D (2015) Competitive fragmentation modeling of ESI-911 

MS/MS spectra for putative metabolite identification. Metabolomics 11:98–110 . 912 

https://doi.org/10.1007/s11306-014-0676-4 913 

44.  Loos M (2016) nontarget: Detecting Isotope, Adduct and Homologue Relations in LC-914 

MS Data. https://CRAN.R-project.org/package=nontarget 915 

45.  Loos M (2016) enviPick: Peak Picking for High Resolution Mass Spectrometry Data. 916 

https://CRAN.R-project.org/package=enviPick. Accessed 2 Oct 2018 917 

46.  Loos M (2018) enviMass version 3.5 LC-HRMS trend detection workflow - R package. 918 

https://doi.org/10.5281/zenodo.1213098 919 



46 

 

47.  Meringer M, Reinker S, Zhang J, Muller A MS/MS data improves automated 920 

determination of molecular formulas by mass spectrometry. MATCH Commun Math 921 

Comput Chem 259–290 922 

48.  Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) MetFrag relaunched: 923 

incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics 8:3 924 

. https://doi.org/10.1186/s13321-016-0115-9 925 

49.  FOR-IDENT LC. https://water.for-ident.org/#!home. Accessed 7 Feb 2020 926 

50.  Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, 927 

Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for 928 

comprehensive metabolome analysis. Nat Methods 12:523–526 . 929 

https://doi.org/10.1038/nmeth.3393 930 

51.  Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, 931 

Arita M (2016) Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation 932 

and Structure Elucidation Using MS-FINDER Software. Anal Chem 88:7946–7958 . 933 

https://doi.org/10.1021/acs.analchem.6b00770 934 

52.  Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H-935 

C, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, 936 

Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, 937 

Malmström L, Aebersold R, Reinert K, Kohlbacher O (2016) OpenMS: a flexible open-938 

source software platform for mass spectrometry data analysis. Nature Methods 939 

13:741–748 . https://doi.org/10.1038/nmeth.3959 940 



47 

 

53.  Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2014) RAMClust: A Novel 941 

Feature Clustering Method Enables Spectral-Matching-Based Annotation for 942 

Metabolomics Data. Anal Chem 86:6812–6817 . https://doi.org/10.1021/ac501530d 943 

54.  Böcker S, Letzel MC, Lipták Z, Pervukhin A (2009) SIRIUS: decomposing isotope patterns 944 

for metabolite identification. Bioinformatics 25:218–224 . 945 

https://doi.org/10.1093/bioinformatics/btn603 946 

55.  Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure 947 

databases with tandem mass spectra using CSI:FingerID. PNAS 112:12580–12585 . 948 

https://doi.org/10.1073/pnas.1509788112 949 

56.  Dührkop K, Böcker S (2015) Fragmentation Trees Reloaded. In: Przytycka TM (ed) 950 

Research in Computational Molecular Biology. Springer International Publishing, pp 951 

65–79 952 

57.  Böcker S, Dührkop K (2016) Fragmentation trees reloaded. Journal of Cheminformatics 953 

8:5 . https://doi.org/10.1186/s13321-016-0116-8 954 

58.  Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein 955 

PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into 956 

metabolite structure information. Nat Methods 16:299–302 . 957 

https://doi.org/10.1038/s41592-019-0344-8 958 

59.  Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S (2012) CAMERA: An 959 

Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid 960 

Chromatography/Mass Spectrometry Data Sets. Anal Chem 84:283–289 . 961 

https://doi.org/10.1021/ac202450g 962 



48 

 

60.  Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: A Web-Based 963 

Platform to Process Untargeted Metabolomic Data. Anal Chem 84:5035–5039 . 964 

https://doi.org/10.1021/ac300698c 965 

61.  Bruker DataAnalysis. https://www.bruker.com/. Accessed 20 Mar 2020 966 

62.  Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, Neumann S, 967 

Trausinger G, Sinner F, Pieber T, Magnes C (2015) IPO: a tool for automated 968 

optimization of XCMS parameters. BMC Bioinformatics 16:118 . 969 

https://doi.org/10.1186/s12859-015-0562-8 970 

63.  Eliasson M, Rännar S, Madsen R, Donten MA, Marsden-Edwards E, Moritz T, Shockcor 971 

JP, Johansson E, Trygg J (2012) Strategy for Optimizing LC-MS Data Processing in 972 

Metabolomics: A Design of Experiments Approach. Anal Chem 84:6869–6876 . 973 

https://doi.org/10.1021/ac301482k 974 

64.  Loos M, Singer H (2017) Nontargeted homologue series extraction from hyphenated 975 

high resolution mass spectrometry data. J Cheminform 9:12 . 976 

https://doi.org/10.1186/s13321-017-0197-z 977 

65.  Schollée JE, Bourgin M, von Gunten U, McArdell CS, Hollender J (2018) Non-target 978 

screening to trace ozonation transformation products in a wastewater treatment train 979 

including different post-treatments. Water Research 142:267–278 . 980 

https://doi.org/10.1016/j.watres.2018.05.045 981 

66.  Csardi G, Nepusz T (2006) The igraph software package for complex network research. 982 

InterJournal Complex Systems:1695 983 

67.  Almende B.V., Thieurmel B, Robert T (2019) visNetwork: Network Visualization using 984 

“vis.js” Library. https://CRAN.R-project.org/package=visNetwork 985 



49 

 

68.  Kujawinski EB, Behn MD (2006) Automated Analysis of Electrospray Ionization Fourier 986 

Transform Ion Cyclotron Resonance Mass Spectra of Natural Organic Matter. Anal 987 

Chem 78:4363–4373 . https://doi.org/10.1021/ac0600306 988 

69.  Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-989 

resolution mass data of natural organic matter. Rapid Communications in Mass 990 

Spectrometry 20:926–932 . https://doi.org/10.1002/rcm.2386 991 

70.  Koch BP, Dittmar T (2016) From mass to structure: an aromaticity index for high-992 

resolution mass data of natural organic matter. Rapid Communications in Mass 993 

Spectrometry 30:250–250 . https://doi.org/10.1002/rcm.7433 994 

71.  Brock O, Helmus R, Kalbitz K, Jansen B Non-target screening of leaf litter-derived 995 

dissolved organic matter using liquid chromatography coupled to high-resolution mass 996 

spectrometry (LC-QTOF-MS). European Journal of Soil Science. 997 

https://doi.org/10.1111/ejss.12894 998 

72.  Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC 999 

International Chemical Identifier. Journal of Cheminformatics 7:23 . 1000 

https://doi.org/10.1186/s13321-015-0068-4 1001 

73.  Guha R (2007) Chemical Informatics Functionality in R. Journal of Statistical Software 1002 

18:1–16 1003 

74.  Schymanski EL, Gerlich M, Ruttkies C, Neumann S (2014) Solving CASMI 2013 with 1004 

MetFrag, MetFusion and MOLGEN-MS/MS. Mass Spectrometry 3:S0036–S0036 . 1005 

https://doi.org/10.5702/massspectrometry.S0036 1006 



50 

 

75.  Langfelder P, Zhang B (2016) dynamicTreeCut: Methods for Detection of Clusters in 1007 

Hierarchical Clustering Dendrograms. https://CRAN.R-1008 

project.org/package=dynamicTreeCut 1009 

76.  Royal Society of Chemistry ChemSpider. http://www.chemspider.com. Accessed 6 Feb 1010 

2020 1011 

77.  Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: Visualization of 1012 

Intersecting Sets. IEEE Transactions on Visualization and Computer Graphics 20:1983–1013 

1992 . https://doi.org/10.1109/TVCG.2014.2346248 1014 

78.  Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-1015 

customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35 . 1016 

https://doi.org/10.1186/1471-2105-12-35 1017 

79.  Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances 1018 

circular visualization in R. Bioinformatics 30:2811–2812 1019 

80.  Gehlenborg N (2019) UpSetR: A More Scalable Alternative to Venn and Euler Diagrams 1020 

for Visualizing Intersecting Sets. https://CRAN.R-project.org/package=UpSetR 1021 

81.  Xie Y, Allaire JJ, Grolemund G (2018) R Markdown: The Definitive Guide. Chapman and 1022 

Hall/CRC, Boca Raton, Florida 1023 

82.  Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang 1024 

W, Iannone R (2019) rmarkdown: Dynamic Documents for R 1025 

83.  Iannone R, Allaire JJ, Borges B (2018) flexdashboard: R Markdown Format for Flexible 1026 

Dashboards. https://CRAN.R-project.org/package=flexdashboard 1027 

84.  Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2019) shiny: Web Application 1028 

Framework for R. https://CRAN.R-project.org/package=shiny 1029 



51 

 

85.  Helmus R (2020) patRoon 1.0.0 manuals. Zenodo. 1030 

https://doi.org/10.5281/zenodo.3889937 1031 

86.  patRoon reference. https://rickhelmus.github.io/patRoon/reference/index.html. 1032 

Accessed 11 Jun 2020 1033 

87.  patRoon tutorial. https://rickhelmus.github.io/patRoon/articles/tutorial.html. 1034 

Accessed 11 Jun 2020 1035 

88.  Helmus R patRoon handbook. 1036 

https://rickhelmus.github.io/patRoon/handbook_bd/index.html. Accessed 11 Jun 2020 1037 

89.  Xie Y (2016) bookdown: Authoring Books and Technical Documents with R Markdown. 1038 

Chapman and Hall/CRC, Boca Raton, Florida 1039 

90.  Xie Y (2019) bookdown: Authoring Books and Technical Documents with R Markdown 1040 

91.  Wickham H, Danenberg P, Csárdi G, Eugster M (2019) roxygen2: In-Line Documentation 1041 

for R. https://CRAN.R-project.org/package=roxygen2 1042 

92.  Helmus R (2020) patRoonData. https://github.com/rickhelmus/patRoonData. Accessed 1043 

18 Mar 2020 1044 

93.  Helmus R, Albergamo V (2020) patRoonData: 1.0.0. Zenodo. 1045 

https://doi.org/10.5281/zenodo.3743266 1046 

94.  Lang M (2017) checkmate: Fast Argument Checks for Defensive R Programming. The R 1047 

Journal 9:437–445 1048 

95.  Csárdi G, Chang W (2019) processx: Execute and Control System Processes. 1049 

https://CRAN.R-project.org/package=processx 1050 

96.  R Special Interest Group on Databases (R-SIG-DB), Wickham H, Müller K (2019) DBI: R 1051 

Database Interface. https://CRAN.R-project.org/package=DBI 1052 



52 

 

97.  Müller K, Wickham H, James DA, Falcon S (2019) RSQLite: “SQLite” Interface for R. 1053 

https://CRAN.R-project.org/package=RSQLite 1054 

98.  Eddelbuettel D, François R (2011) Rcpp: Seamless R and C++ Integration. Journal of 1055 

Statistical Software 40:1–18 . https://doi.org/10.18637/jss.v040.i08 1056 

99.  Eddelbuettel D (2013) Seamless R and C++ Integration with Rcpp. Springer, New York 1057 

100.  Eddelbuettel D, Balamuta JJ (2017) Extending R with C++: A Brief Introduction to Rcpp. 1058 

PeerJ Preprints 5:e3188v1 . https://doi.org/10.7287/peerj.preprints.3188v1 1059 

101.  Kapoulkine A pugixml. https://pugixml.org/. Accessed 6 Feb 2020 1060 

102.  Dowle M, Srinivasan A (2019) data.table: Extension of `data.frame`. https://CRAN.R-1061 

project.org/package=data.table 1062 

103.  MetFragR. http://ipb-halle.github.io/MetFrag/projects/metfragr/. Accessed 6 Feb 2020 1063 

104.  Lang DT (2019) RDCOMClient: R-DCOM client 1064 

105.  Wickham H (2011) testthat: Get Started with Testing. The R Journal 3:5–10 1065 

106.  Henry L, Sutherland C, Hong D, Luciani TJ, Decorde M, Lise V (2019) vdiffr: Visual 1066 

Regression Testing and Graphical Diffing. https://CRAN.R-project.org/package=vdiffr 1067 

107.  Helmus R (2020) patRoon benchmarking & demonstration data. Zenodo. 1068 

https://doi.org/10.5281/zenodo.3885448 1069 

108.  Mersmann O (2019) microbenchmark: Accurate Timing Functions. https://CRAN.R-1070 

project.org/package=microbenchmark 1071 

109.  Fischer B, Neumann S, Gatto L, Kou Q, Rainer J (2020) mzR: parser for netCDF, mzXML, 1072 

mzData and mzML and mzIdentML files (mass spectrometry data). 1073 

https://bioconductor.org/packages/mzR/. Accessed 6 Apr 2020 1074 

110.  Gurobi. https://www.gurobi.com/. Accessed 6 Feb 2020 1075 



53 

 

111.  CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer. Accessed 6 Feb 1076 

2020 1077 

112.  GNU Project - Free Software Foundation (FSF) GLPK (GNU Linear Programming Kit). 1078 

https://www.gnu.org/software/glpk/. Accessed 6 Feb 2020 1079 

113.  Böcker S, Dührkop K, Fleischauer M, Ludwig M (2019) SIRIUS Documentation Release 1080 

4.0.1 1081 

114.  NORMAN Suspect List Exchange – NORMAN SLE. https://www.norman-1082 

network.com/nds/SLE/. Accessed 13 Mar 2020 1083 

115.  CompTox March 2019 CSV file. 1084 

ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/1085 

MetFrag_metadata_files/CompTox_17March2019_SelectMetaData.csv 1086 

116.  Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C, Wishart 1087 

DS (2019) BioTransformer: a comprehensive computational tool for small molecule 1088 

metabolism prediction and metabolite identification. Journal of Cheminformatics 11:2 . 1089 

https://doi.org/10.1186/s13321-018-0324-5 1090 

117.  Kruve A (2019) Semi-quantitative non-target analysis of water with liquid 1091 

chromatography/high-resolution mass spectrometry: How far are we? Rapid 1092 

Communications in Mass Spectrometry 33:54–63 . https://doi.org/10.1002/rcm.8208 1093 

118.  Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, 1094 

Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS (2016) ClassyFire: 1095 

automated chemical classification with a comprehensive, computable taxonomy. J 1096 

Cheminform 8:61 . https://doi.org/10.1186/s13321-016-0174-y 1097 

119.  R for Mass Spectrometry. www.rformassspectrometry.org. Accessed 13 Mar 2020 1098 



54 

 

120.  Rick Helmus (2020) patRoon 1.0.0. Zenodo. https://doi.org/10.5281/zenodo.3889856 1099 

Figures 1100 

Figure 1. Generic workflow for environmental non-target analysis. 1101 

 1102 

Figure 2. Overview of the NTA patRoon workflow. All steps are optional. Steps that are 1103 

connected by blue and straight arrows represent a one-way data dependency, whereas 1104 

steps connected with red curved and dashed arrows represent steps with two-way data 1105 

interaction. 1106 

 1107 

Figure 3. Graphical user interface tools in patRoon. Tools are provided (a) to create a new 1108 

patRoon data analysis project and (b) to inspect feature chromatography data. 1109 

 1110 

Figure 4. Interface for the patRoon workflow. The workflow steps are performed by a set of 1111 

functions that execute the selected algorithm and return the data in a harmonized format 1112 

by utilizing the ‘S4’ object oriented programming approach of R. These objects all derive 1113 

from a common base class and may be further sub-classed in algorithm specific classes (as is 1114 

exemplified for features). Generic functions are defined for all workflow classes to 1115 

implement further data processing functionality in a predictable and algorithm independent 1116 

manner (see also Table 3). Further information is provided in the reference manual [85, 86]. 1117 

 1118 

Figure 5. Parallelization benchmark results. (a) Benchmark results for commonly used CLI 1119 

tools applied in patRoon workflows under varying parallelization conditions. Tests were 1120 
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performed with “simple” (left) and “complex” (right) input conditions (Table 4) to simulate 1121 

varying workflow complexity. Parallelization was performed with the multiprocessing 1122 

functionality of patRoon (top) or by using native multithreading (bottom, for tools that 1123 

supported this). Graphs represent number of processes or threads versus relative execution 1124 

time (normalized to sequential results). The dotted grey lines represent the theoretical 1125 

trend if maximum parallelization performance is achieved. The dashed blue line represents 1126 

the number of physical cores that became the default selection in patRoon based on these 1127 

results. (b) Comparison of execution times (normalized to the execution times of the 1128 

unoptimized results) when tools are executed without optimizations (green), executed with 1129 

native multithreading (FFM, SIR and MF) or batch mode (GF) (orange), executed with 1130 

multiprocessing (purple) or a combination of the latter two (pink), using simple (left) and 1131 

complex (right) input conditions. (c) Overview of execution times for a complete patRoon 1132 

workflow executed under optimized versus unoptimized conditions. All results for MC and 1133 

SIR were obtained without enabling their native batch mode. 1134 

 1135 

Figure 6. Common visualization functionality of patRoon applied to the demonstrated 1136 

workflow. From left to right: an m/z vs retention time plot of all feature groups, an EIC for 1137 

the tramadol suspect found in both influent samples, a compound annotated spectrum for 1138 

the 1,2,3-benzotriazole suspect and comparison of feature presence between sample 1139 

groups using UpSet [77], Venn and chord diagrams. 1140 
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Supplementary information 1141 

Additional file 1: Comma-separated file (.csv). Overview of software and databases that are 1142 

used in the implementation in patRoon. This table summarizes all the software and 1143 

databases that are described in the implementation section of the main text. 1144 

Additional file 2: Word document (.docx). Supplementary figures. Additional figures that 1145 

illustrate implementation details of patRoon and miscellaneous benchmarking results. 1146 

Additional file 3: Word document (.docx). Supplementary tables. Additional tables with 1147 

more details on the implementation and suspect screening demonstration. 1148 

Additional file 4: Zip archive (.zip). Source code for benchmarks. Archive with several R 1149 

scripts that were used to perform the parallelization benchmarks. 1150 

Additional file 5: Comma-separated file (.csv). Demonstration suspect list. Suspect list that 1151 

was used for the patRoon demonstration. The list was based on the detected compounds 1152 

reported in [11], and SMILES identifiers for each suspect were collected from PubChem [23]. 1153 

 1154 
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HRMS 
data Features Annotation Interface 

Primary 
Language OS License References 

PP FTS FG C SUS MS FA CA LA HS GA C RT      

a CFM-ID 
 

      X X     CLI, Web C++ Cross LGPLv2.1 [42, 43] 

b enviMass, 
enviPick,  
nontarget 

X
i
 X X X X     X X   

GUI, R, 
Web 

R Cross GPLv3.0
1
 [44–46] 

c GenForm 
 

     X       CLI C++ Cross
2
 LGPLv2.0 [47] 

d MetFrag 
 

      X X   X X 
CLI, R, 
Web 

Java Cross LGPLv2.0 [48] 

e FOR-IDENT        X
d
 X    X Web HTML Cross Closed [49] 

f MS-DIAL,  
MS-FINDER  

X X X X X X X X  X   CLI, GUI C# Win LGPLv3.0 [50, 51] 

g MZmine X X
gl

 X X X X X X
k
 X  X

gl
   GUI Java Cross GPLv2.0 [33] 

h OpenMS 
X

hi
 X X   X  X

k
 X  X   

CLI, GUI, 
Python  

C++ 
Win, Lin, 
Mac 

BSD/3-Clause [52] 

i ProteoWizard X             CLI, GUI C++ Win, Lin Apache 2.0 [22] 

j RAMClustR 
 

    X     X   R R Cross GPLv2.0 [53] 

k SIRIUS and 
CSI:FingerID  

     X X    X  CLI, GUI Java Cross GPLv3.0 [54–58] 

l XCMS and 
CAMERA  

X X X       X   R R Cross GPLv2.0 [32, 59] 

m XCMS Online X X
l
 X

l
   X   X  X   Web R Cross Closed [60] 

n patRoon X
hi

 X
bhl

 X
hl

 X X X X
ck

 X
dk

 X
d
 X

b
 X

jl
 X X

d
 R R Cross GPLv3.0  

P: pre-processing; FTS: find features; FG: group features across samples; C: data clean up; SUS: suspect screening; MS: automatic MS data extraction for 
annotation purposes; FA: formula annotation; CA/LA: compound annotation (in silico/library); HS: unsupervised homologous series extraction; GA: grouping 
and annotating chemically related features (e.g. adducts, isotopes, in-source fragments); RT: retention time prediction; Bold: functionality integrated in 
patRoon; superscript: implemented with algorithms by given rows (omitted if only native); CLI: command-line interface; GUI: graphical user interface; Web: 
interfaced via internet browser; OS: Supported Operating Systems; Win: Microsoft Windows; (Lin): GNU/Linux, (Mac): macOS; Cross: cross-platform; (1): 
enviMass is distributed commercially; (2): Only Microsoft Windows binaries are distributed. 

 


