
1

patRoon: Open source software platform for environmental 1

mass spectrometry based non-target screening 2

Rick Helmusa*, Thomas L. ter Laaka,b, Annemarie P. van Wezela, Pim de Voogta and Emma L. 3

Schymanskic 4

 5

a Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 6

94240, 1090 GE Amsterdam, The Netherlands 7

b KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 8

BB Nieuwegein, The Netherlands 9

c Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 10

Belvaux, Luxembourg. 11

* Corresponding author: r.helmus@uva.nl 12

Abstract 13

Mass spectrometry based non-target analysis is increasingly adopted in environmental 14

sciences to screen and identify numerous chemicals simultaneously in highly complex 15

samples. However, current data processing software either lack functionality for 16

environmental sciences, solve only part of the workflow, are not openly available and/or are 17

restricted in input data formats. In this paper we present patRoon, a new R based open-18

source software platform, which provides comprehensive, fully tailored and straightforward 19

non-target analysis workflows. This platform makes the usage, evaluation and mixing of 20

well-tested algorithms seamless by harmonizing various commonly (primarily open) 21

2

software tools under a consistent interface. In addition, patRoon offers various functionality 22

and strategies to simplify and perform automated processing of complex (environmental) 23

data effectively. patRoon implements several effective optimization strategies to 24

significantly reduce computational times. The ability of patRoon to perform a 25

straightforward and effective non-target analysis was demonstrated with real-world 26

environmental samples, showing that patRoon makes comprehensive (environmental) non-27

target analysis readily accessible to a wider community of researchers. 28

Keywords 29

High resolution mass spectrometry, compound identification, non-target analysis, 30

computational workflows 31

Introduction 32

Chemical analysis is widely applied in environmental sciences such as earth sciences, 33

biology, ecology and environmental chemistry, to study e.g. geomorphic processes, 34

(chemical) interaction between species or the occurrence, fate and effect of chemicals of 35

emerging concern in the environment. The environmental compartments investigated 36

include air, water, soil, sediment and biota, and exhibit a highly diverse chemical 37

composition and complexity. The number and quantities of chemicals encountered within 38

samples may span several orders of magnitude relative to each other. Therefore, chemical 39

analysis must discern compounds at ultra-trace levels, a requirement that can be largely met 40

with modern analytical instrumentation such as liquid or gas chromatography coupled with 41

mass spectrometry (LC-MS and GC-MS). The high sensitivity and selectivity of these 42

3

techniques enable accurate identification and quantification of chemicals in complex sample 43

materials. 44

 45

Traditionally, a ‘target analysis’ approach is performed, where identification and 46

quantitation occur by comparing experimental data with reference standards. The need to 47

pre-select compounds of interest constrains the chemical scope of target analysis, and 48

hampers the analysis of chemicals with (partially) unknown identities such as transformation 49

products and contaminants of emerging concern (CEC). In addition, the need to acquire or 50

synthesize a large number of analytical standards may not be feasible for compounds with a 51

merely suspected presence. Recent technological advancements in chromatography and 52

high resolution MS (HRMS) allows detection and tentative identification of compounds 53

without the prior need of standards [1]. This ‘non-target’ analysis (NTA) approach is 54

increasingly adopted to perform simultaneous screening of up to thousands of chemicals in 55

the environment, such as finding new CEC [1–6], identifying chemical transformation 56

(by)products [7–12] and identification of toxicants in the environment [13–16]. 57

 58

Studies employing environmental NTA typically allow the detection of hundreds to 59

thousands of different chemicals [17, 18]. Effectively processing such data requires 60

workflows to automatically extract and prioritize NTA data, perform chemical identification 61

and assist in interpreting the complex resulting datasets. Currently available tools often 62

originate from other research domains such as life sciences and may lack functionality or 63

require extensive optimization before being suitable for environmental analysis. Examples 64

include handling chemicals with low sample-to-sample abundance, recognition of 65

4

halogenated compounds, usage of data sources with environmentally relevant substances, 66

or temporal and spatial trends. Furthermore, existing tools solve only part of the workflow, 67

generally use differing and incompatible data formats and employ different user interfaces. 68

Hence, the need to learn, combine, optimize and sometimes develop or adapt various 69

specialized software tools, and perform tedious transformation of datasets currently hinders 70

further adoption of NTA, especially in more routine settings lacking appropriate in-house 71

computational expertise. 72

 73

An NTA workflow can be generalized as a four step process (Figure 1) [1]. Firstly, data from 74

LC or GC-HRMS is either acquired or retrieved retrospectively, and pre-treated for 75

subsequent analysis (Figure 1a). This pre-treatment may involve conversion to open data 76

formats (e.g. mzML [19] or mzXML [20]) to increase operability with open-source software, 77

re-calibration of mass spectra to improve accuracy and centroiding [21] or other raw data 78

reduction steps to conserve space such as trimming chromatographs or filtering mass scans 79

(e.g. with the functionality from the ProteoWizard suite [22]). Secondly (Figure 1b), features 80

with unique chromatographic and mass spectral properties (e.g. retention time, accurate 81

mass, signal intensity) are automatically extracted and features considered equivalent 82

across sample analyses are grouped to allow qualitative and (semi-) quantitative comparison 83

further down the workflow. Thirdly (Figure 1c), the feature dataset quality is refined, for 84

instance, via rule-based filters (e.g. minimum intensity and absence in sample blanks) and 85

grouping of features based on a defined relationship such as adducts or homologous series 86

(e.g. “componentization”). Further prioritization during this step of the workflow is often 87

required for efficient data analysis, for instance, based on chemical properties (e.g. mass 88

5

defect and isotopic pattern), suspected presence (i.e. “suspect screening”) or intensity 89

trends in time and/or space (e.g. reviewed in [1]). Finally (Figure 1d), prioritized features are 90

annotated, for instance by assigning chemical formulae or compounds from a chemical 91

database (e.g. PubChem [23] or CompTox [24]) based on the exact mass of the feature. The 92

resulting candidates are ranked by conformity with MS data, such as match with theoretical 93

isotopic pattern and in silico or library MS fragmentation spectra, and study-specific 94

metadata, such as number of scientific references and toxicity data [1, 25]. 95

 96

Various open and closed software tools are already available to implement (parts of) the 97

NTA workflow. Commercial software tools such as MetaboScape [26], UNIFI [27], Compound 98

Discoverer [28] and ProGenesis QI [29] provide a familiar and easy to use graphical user 99

interface, may contain instrument specific functionalities and optimizations and typically 100

come with support for their installation and usage. However, they are generally not open-101

source or open-access and are often restricted to proprietary data formats. This leads to 102

difficulties in data sharing, as exact algorithm implementations and parameter choices are 103

hidden, while maintenance, auditing or code extension by other parties is often not 104

possible. Many open-source or open-access tools are available to process mass 105

spectrometry data (e.g. [30, 31] and summarized in Table 1). While many tools were 106

originally developed to process metabolomics and proteomics data, approaches such as 107

XCMS [32] and MZmine [33] have also been applied to environmental NTA studies [6, 34]. 108

Many open tools are easily interfaced with the R statistical environment [35] (Table 1). 109

Leveraging this open scripting environment inherently allows defining highly flexible and 110

reproducible workflows and increases the accessibility of such workflows to a wider 111

6

audience as a result of the widespread usage of R in data sciences. Various open tools 112

overlap in functionality (Table 1), and are implemented with differing algorithms or 113

employing different data sources. As a consequence, tools may generate different results, as 114

has been shown when generating feature data [36–40] or performing structural annotations 115

[25, 41]. Thus, a flexible platform to combine and evaluate various algorithms that is 116

independent of closed MS vendor input data formats is desired in order to tailor an optimal 117

NTA workflow to the particular study types and methodological characteristics. 118

 119

Table 1. Overview of commonly used open-source or open-access software tools to implement NTA workflows. 120

<Table from end of this document should be placed here> 121

 122

Here, we present an R based open-source software platform called patRoon (‘pattern’ in 123

Dutch) providing comprehensive NTA data processing from HRMS data pre-treatment, 124

detection and grouping of features, through to molecular formula and compound 125

annotation. In patRoon, various (primarily open) tools commonly used for NTA data 126

processing are harmonized within a consistent and easy to use interface. In addition, new 127

functionality is implemented that simplify and improve NTA data processing, such as 128

automated chemical annotation, visualization and reporting of results, comparing and 129

combining results from different algorithms, and data reduction and prioritization 130

strategies. The architecture of patRoon is designed to be extendible in order to 131

accommodate for rapid developments in the NTA research field. 132

7

Implementation 133

The implementation section starts with an overview of the patRoon workflows. Subsequent 134

sections provide details on additional functionality implemented by patRoon which relate to 135

data processing, annotation, visualization and reporting. Finally, a detailed description is 136

given of the software architecture. patRoon is then demonstrated in the Results and 137

discussion section. The software tools and databases used for the implementation of 138

patRoon are summarized in Additional file 1. 139

Workflow in patRoon 140

patRoon encompasses a comprehensive workflow for HRMS based NTA (Figure 2). All steps 141

within the workflow are optional and the order of execution is largely customizable. Some 142

steps depend on data from previous steps (blue arrows) or may alter or amend data from 143

each other (red arrows). The workflow commonly starts with pre-treatment (PT) of raw 144

HRMS data. Next, feature data is generated, which consists of finding features (FTS) in each 145

sample, an optional retention time alignment step, and then grouping into “feature groups” 146

(FG). FTS and FG may be preceded by automatic parameter optimization (PO), or followed 147

by suspect screening (SUS). The feature data may then finally be used for componentization 148

(CMT) and/or annotation steps, which involves generation of MS peak lists (MSPL), as well 149

as formula and compound annotations (FOR/COM). At any moment during the workflow, 150

the generated data may be inspected, visualized and treated by e.g. rule based filtering. 151

These operations are discussed in the next section. 152

 153

8

Several commonly used open software tools, such as OpenMS [52], XCMS [32], MetFrag [48] 154

and SIRIUS [54–58], and closed software tools, such as Bruker DataAnalysis [61] (chosen due 155

to institutional needs), are interfaced to provide a choice between multiple algorithms for 156

each workflow step (Additional file 3: Table S1). Customization of the NTA workflow may be 157

achieved by freely selecting and mixing algorithms from different software tools. For 158

instance, a workflow that uses XCMS to group features allows that these features originate 159

from other algorithms than those supported by XCMS (e.g. those from OpenMS), a situation 160

that would require tedious data transformation when XCMS is used standalone. 161

 162

To ease parameter selection over the various feature finding and grouping algorithms, an 163

automated feature optimization (FO) approach was adopted from the isotopologue 164

parameter optimization (IPO) R package [62], which employs design of experiments to 165

optimize LC-MS data processing parameters [63]. IPO was integrated in patRoon, and its 166

code base was extended to (a) apply to other feature finding and grouping algorithms 167

supported by patRoon (i.e. XCMS, OpenMS and enviPick), (b) support isotope detection with 168

OpenMS, (c) perform optimization of qualitative parameters and (d) provide a consistent 169

output format for easy inspection and visualization of optimization results. 170

 171

In patRoon, componentization (CMT) refers to consolidating different (grouped) features 172

with a prescribed relationship, which is currently either based on (a) highly similar elution 173

profiles (i.e. retention time and peak shape), which are hypothesized to originate from the 174

same chemical compound (based on [53, 59]), (b) participation in the same homologous 175

series (based on [64]) or (c) the (normalized) intensity profiles across samples (based on [4, 176

9

5, 65]). Components obtained by approach (a) typically comprise adducts, isotopologues 177

and in-source fragments, and the supported algorithms in patRoon annotate these using 178

chemical rules. Approach (b) uses the nontarget R package [44] to calculate series from 179

aggregated feature data from replicates. The interpretation of homologous series between 180

replicates is assisted by merging series with overlapping features in cases where this will not 181

yield ambiguities to other series. If merging would cause ambiguities, instead links are 182

created that can then be explored interactively and visualized by a network graph generated 183

using the igraph [66] and visNetwork [67] R packages (see Additional file 2: Figure S1). 184

 185

During the annotation step, molecular formulae and/or chemical compounds are 186

automatically assigned and ranked for all features or feature groups. The required MS peak 187

list (MSPL) input data are extracted from all MS analysis data files and subsequently pre-188

processed, for instance, by averaging multiple spectra within the elution profile of the 189

feature and by removing mass peaks below user-defined thresholds. All compound 190

databases and ranking mechanisms supported by the underlying algorithms are supported 191

by patRoon and can be fully configured. Afterwards, formula and structural annotation data 192

may be combined to improve candidate ranking and manual interpretation of annotated 193

spectra. More details are outlined in the section “MS peak list retrieval, annotation and 194

candidate ranking”. 195

Data reduction, comparison and conversion 196

Various rule-based filters are available for data-cleanup or study specific prioritization of all 197

data obtained through the workflow (see Table 2), and can be inverted to inspect the data 198

10

that would be removed (i.e. negation). To process feature data, multiple filters are often 199

applied, however, the order may influence the final result. For instance, when features were 200

first removed from blanks by an intensity filter, a subsequent blank filter will not properly 201

remove these features in actual samples. Similarly, a filter may need a re-run after another 202

to ensure complete data clean-up. To reduce the influence of order upon results, filters for 203

feature data are executed by default as follows: 204

1. an intensity pre-filter, to ensure good quality feature data for subsequent filters; 205

2. filters not affected by other filters, such as retention time and m/z range; 206

3. minimum replicate abundance, blank presence and ‘regular’ minimum intensity; 207

4. repetition of the replicate abundance filter (only if previous filters affected results); 208

5. other filters that are possibly influenced by prior steps, such as minimum abundance 209

in feature groups or sample analyses. 210

Note that the above scheme only applies to those filters requested by the user, and the user 211

can apply another order if desired. 212

 213

Further data subsetting allows the user to freely select data of interest, for instance, 214

following a (statistical) prioritization approach performed by other tools. Similarly, features 215

that are unique or overlapping in different sample analyses may be isolated, which is a 216

straightforward but common prioritization technique for NTA studies that involve the 217

comparison of different types of samples. 218

 219

11

Table 2. Major rule-based filtering functionality implemented in patRoon. 220

Filter functionality
Features Annotation Processing

FTS FG MSPL FOR COM CMT

Intensity threshold X X X

Feature properties1 X X
Max intensity deviation across replicates X
Minimum intensity above blank X
Minimum size or abundance X X
Top most abundant/highest scoring X X X
Minimum scoring X X
Annotation2 X X X
Organic matter rules3 X
FTS: features; FG: feature groups; MSPL: MS peak lists; FOR: formulae; COM: compounds; CMT: components; (1)
Retention time, chromatographic peak width, m/z and mass defect range; (2) e.g. adducts, isotopologues,
formula composition, neutral loss; (3) expected formula composition based on [68–71].
 221

Data from feature groups, components or annotations that are generated with different 222

algorithms (or parameters thereof) can be compared to generate a consensus by only 223

retaining data with (a) minimum overlap, (b) uniqueness or (c) by combining all results (only 224

(c) is supported for data from components). Consensus data are useful to remove outliers, 225

for inspection of algorithmic differences or for obtaining the maximum amount of data 226

generated during the workflow. The consensus for formula and compound annotation data 227

are generated by comparison of Hill-sorted formulae and the skeleton layer (first block) of 228

the InChIKey chemical identifiers [72], respectively. For feature groups, where different 229

algorithms may output deviating retention and/or mass properties, such a direct 230

comparison is impossible. Instead, the dimensionality of feature groups is first reduced by 231

averaging all feature data (i.e. retention times, m/z values and intensities) for each group. 232

The collapsed groups have a similar data format as ‘regular’ features, where the compared 233

objects represent the ‘sample analyses’. Subjection of this data to a feature grouping 234

algorithm supported by patRoon (i.e. from XCMS or OpenMS) then allows straightforward 235

12

and reliable comparison of feature data from different algorithms, which is finally used to 236

generate the consensus. 237

 238

Hierarchical clustering is utilized for componentization of features with similar intensity 239

profiles or to group chemically similar candidate structures of an annotated feature. The 240

latter “compound clustering” assists the interpretation of features with large numbers of 241

candidate structures (e.g. hundreds to thousands). This method utilizes chemical 242

fingerprinting and chemical similarity methods from the rcdk package [73] to cluster similar 243

structures, and subsequent visual inspection of the maximum common substructure then 244

allows assessment of common structural properties among candidates (methodology based 245

on [74]). Cluster assignment for both CMT and COM approaches is performed automatically 246

using the dynamicTreeCut R package [75]. However, clusters may be re-assigned manually 247

by the desired amount or tree height. 248

 249

Several data conversion methods were implemented to allow interoperability with other 250

software tools. All workflow data types are easily converted to commonly used R data types 251

(e.g. data.frame or list), which allows further processing with other R packages. 252

Furthermore, feature data may be converted to and from native XCMS objects (i.e. 253

xcmsSet and XCMSnExp) or exported to comma-separated values (CSV) formats 254

compatible with Bruker ProfileAnalysis or TASQ, or MZmine. 255

13

MS peak list retrieval, annotation and candidate ranking 256

Data for MS and MS/MS peak lists for a feature are collected from spectra recorded within 257

the chromatographic peak and averaged to improve mass accuracies and signal to noise 258

ratios. Next, peak lists for each feature group are assigned by averaging the mass and 259

intensity values from peak lists of the features in the group. Mass spectral averaging can be 260

customized via several data clean-up filters and a choice between different mass clustering 261

approaches, which allow a trade-off between computational speed and clustering accuracy. 262

By default, peak lists for MS/MS data are obtained from spectra that originate from 263

precursor masses within a certain tolerance of the feature mass. This tolerance in mass 264

search range is configurable to accommodate the precursor isolation window applied during 265

data acquisition. In addition, the precursor mass filter can be completely disabled to 266

accommodate data processing from data-independent MS/MS experiments, where all 267

precursor ions are fragmented simultaneously. 268

 269

The formula annotation process is configurable to allow a tradeoff between accuracy and 270

calculation speeds. Candidates are assigned to each feature group, either directly by using 271

group averaged MS peak list data, or by a consensus from formula assignments to each 272

individual feature in the group. While the latter inherently consumes more time, it allows 273

removal of outlier candidates (e.g. false positives due to features with poor spectra). 274

Candidate ranking is improved by inclusion of MS/MS data in formula calculation (optional 275

for GenForm [47] and DataAnalysis). 276

 277

14

Formula calculation with GenForm ranks formula candidates on isotopic match (amongst 278

others), where any other mass peaks will penalize scores. Since MS data of “real-world” 279

samples typically includes many other mass peaks (e.g. adducts, co-eluting features, 280

background ions), patRoon improves the scoring accuracy by automatic isolation of the 281

feature isotopic clusters prior to GenForm execution. A generic isolation algorithm was 282

developed, which makes no assumptions on elemental formula compositions and ion 283

charges, by applying various rules to isolate mass peaks that are likely part of the feature 284

isotopic cluster (see Additional file 2: Figure S2). These rules are configured to accommodate 285

various data and study types by default. Optimization is possible, for instance, to (a) 286

improve studies of natural or anthropogenic compounds by lowering or increasing mass 287

defect tolerances, respectively, (b) constrain cluster size and intensity ranges for low 288

molecular weight compounds or (c) adjust to expected instrumental performance such as 289

mass accuracy. Note that precursor isolation can be performed independently of formula 290

calculation, which may be useful for manual inspection of MS data. 291

 292

Compound annotation is usually the most time and resource intensive process during the 293

non-target workflow. As such, instead of annotating individual features, compound 294

assignment occurs for the complete feature group. All compound databases supported by 295

the underlying algorithms, such as PubChem [23], ChemSpider [76] or CompTox [24] and 296

other local CSV files, as well as the scoring terms present in these databases, such as in silico 297

and spectral library MS/MS match, references in literature and presence in suspect lists, can 298

be utilized with patRoon. Default scorings supported by the selected algorithm/database or 299

sets thereof are easily selectable to simplify effective compound ranking. Furthermore, 300

15

formula annotation data may be incorporated in compound ranking, where a ‘formula 301

score’ is calculated for each candidate formula, which is proportional to its ranking in the 302

formula annotation data. Execution of unattended sessions is assisted by automatic restarts 303

after occurrence of timeouts or errors (e.g. due to network connectivity) and automatic 304

logging facilities. 305

Visualization, reporting and graphical interface 306

In patRoon, visualization functionality is provided for feature and annotation data (e.g. 307

extracted ion chromatograms (EICs) and annotated spectra), to compare workflow data (i.e. 308

by means of Venn, chord and UpSet [77] diagrams, using the VennDiagram [78], circlize [79] 309

and UpSetR [80] R packages, respectively) and others such as plotting results from 310

automatic feature optimization experiments and hierarchical clustering data. Reports can be 311

generated in a common CSV text format or in a graphical format via export to a portable 312

document file (PDF) or hypertext markup language (HTML) format. The latter are generated 313

with the R Markdown [81, 82] and flexdashboard [83] R packages, and provide an easy to 314

use interface for interactive sorting, searching and browsing reported data. As plotting and 315

reporting functionalities can be performed at any stage during the workflow, the data that is 316

included in the reports is fully configurable. 317

 318

While patRoon is primarily interfaced through R, several graphical user interface tools are 319

provided to assist the (novice) user. Most importantly, patRoon provides a Shiny [84] based 320

tool that automatically generates a commented template R script from user input, such as 321

selection of MS data file input, workflow algorithms and other common workflow 322

16

parameters (Figure 3a). Secondly, chromatographic data of features may be inspected either 323

by automatic addition of EICs in a Bruker DataAnalysis session or with a Shiny based 324

interface (Figure 3b). 325

Software architecture 326

patRoon is distributed as an R package. Its source code is primarily written in the R 327

language, with some support code written in C++ and JavaScript. Both Microsoft Windows 328

(hereafter referred to as Windows) and Linux platforms are supported (support for macOS is 329

envisaged in the future). Several external dependencies are required; notable examples are 330

in Additional file 3: Table S1. GenForm is automatically compiled during package installation. 331

For Windows platforms, an installation script is provided to install and configure patRoon 332

and all of its dependencies automatically. Documentation includes a handbook, tutorial and 333

full reference manual [85–88], which are produced with the bookdown [89, 90], R 334

Markdown and roxygen2 [91] R packages, respectively. Example data is contained in the 335

patRoonData R package [92, 93]. 336

 337

An important design goal was to provide a consistent, generic and easy to use interface that 338

does not require the user to know the implementation and interfacing details of the 339

supported algorithms. Each workflow step is executed by a generator function that takes 340

the desired algorithm and its parameters as input and returns objects from a common set of 341

data formats (see Figure 4). Names for commonly used parameters supported by multiple 342

algorithms are standardized for consistency and defaults are set where reasonable. 343

Furthermore, the format of input data such as retention time units as well as formula and 344

17

adduct specifications are harmonized and automatically converted to the format expected 345

by the algorithm. Nearly all parameters from the underlying algorithm can be set by the 346

user, hence, full configurability of the workflow is retained wherever possible. Generic 347

naming schemes are applied to output data, which assist the user in comparing results 348

originating from different algorithms. All exported functions from patRoon verify user input 349

with the checkmate [94] package, which efficiently performs tests such as correctness of 350

value range and type, and prints descriptive messages if input is incorrect. 351

 352

A set of generic methods are defined for workflow classes that perform general data 353

inspection, selection, conversion and visualization, irrespective of the algorithm that was 354

used to generate the object (see Table 3). Consequently, the implementation of common 355

function names for multiple output classes allows a predictable and consistent user 356

interface. 357

 358

Table 3. Common generic methods defined in patRoon to process workflow data. 359

Generic Purpose

length(), show(),
algorithm(), names(),
groupNames()

obtain general object information such as object length and
unique identifiers for contained results

filter() rule-based filtering operations

[, [[, $ operators subsetting or extracting data

as.data.table(),
as.data.frame()

conversion to data.table or data.frame object

unique(), overlap() extract unique or overlapping features across replicates
consensus() generates a consensus between different objects of the same

class

plot(), plotEIC(),
plotSpec()

plot general, chromatographic and annotation data

plotChord(),
plotUpSet(),

comparison of feature data or workflow objects from
different algorithms by chord, UpSet and Venn diagrams

18

plotVenn()
 360

Several optimization strategies are employed in patRoon to reduce computational 361

requirements and times. Firstly, external command line (CLI) tools are executed in parallel to 362

reduce overall execution times for repetitive (e.g. per sample analysis or per feature) 363

calculations. Commands are queued (first in, first out) and their execution is handled with 364

the processx package [95]. Secondly, functions employing time intensive algorithms 365

automatically cache their (partial) results in a local SQLite database file, which is accessed 366

via the DBI [96] and RSQLite [97] R packages. Thirdly, performance critical code dealing with 367

OpenMS data files and loading chromatographic data was written in C++ (interfaced with 368

Rcpp [98–100]) to significantly reduce times needed to read or write data. Fourthly, the 369

output files from OpenMS tools are loaded in chunks using the pugixml software library 370

[101] to ensure a low memory footprint. Finally, reading, writing and processing (large) 371

internal tabular data is performed with the data.table R package, which is a generally faster 372

and more memory efficient drop-in replacement to the native tabular data format of R 373

(data.frame), especially for large datasets [102]. 374

 375

Interfacing with ProteoWizard [22], OpenMS, GenForm, SIRIUS and MetFrag occurs by 376

wrapper code that automatically executes the CLI tools and perform the data conversions 377

necessary for input and output files. An alternative interface to MetFrag is also provided by 378

employing the metfRag R package [103], however, in our experience this option is currently 379

significantly slower than the CLI and therefore not used by default. For tools that are not 380

readily controllable from R (i.e. ProfileAnalysis, TASQ and MZmine), interfacing occurs via 381

importing or exporting CSV files (only export is supported for MZmine). Finally, the 382

19

RDCOMClient R package [104] is used to interface with Bruker DataAnalysis via the 383

distributed component object model, which allows automation of DataAnalysis functionality 384

from R that otherwise would only be available via its integrated visual basic scripting 385

environment. 386

 387

A continuous integration pipeline performs automated tests during development and 388

delivers files to simplify installation of patRoon and all its dependencies (Additional file 2: 389

Figure S3). More than 900 unit tests are performed (>80% code coverage) with the testthat 390

and vdiffr R packages [105, 106]. After successful test completion, binary R packages 391

(Windows) and Docker images (Linux) are generated to facilitate installation of patRoon with 392

tested and compatible dependencies. 393

Results and discussion 394

Benchmark and demonstration data 395

The data used to benchmark and demonstrate patRoon were obtained with an LC-HRMS 396

analysis of two different influent and effluent samples from a drinking water treatment pilot 397

installation and a procedural blank (all in triplicate). The samples originate from an 398

experiment where a set of 18 common environmental contaminants (yielding 20 individual 399

chromatographic peaks, see Additional file 3: Table S2) were spiked prior to drinking water 400

treatment. The analyses were performed using an LC-HRMS Orbitrap Fusion system 401

(ThermoFisher Scientific, Bremen, Germany) operating with positive electrospray ionization. 402

Further analytical conditions are as described in [11]. The raw data files can be obtained 403

from [107]. 404

20

Parallelization benchmarks 405

Several benchmarks were performed to test the multiprocessing functionality of patRoon. 406

Tests were performed on a personal computer equipped with an Intel® Core™ i7-8700K CPU 407

(6 cores, 12 threads), 32 gigabyte RAM, SATA SSD storage and the Windows 10 Enterprise 408

operating system. Benchmarks were performed in triplicate using the microbenchmark R 409

package [108]. Standard deviations were below ten percent (see Figure 5a). Benchmarking 410

was performed on msConvert (MC), FeatureFinderMetabo (FFM), GenForm (GF), SIRIUS (SIR) 411

and MetFrag (MF). The multiprocessing functionality was compared to native 412

multithreading for the tools that supported this (FFM, SIR and MF). In addition, the 413

performance of batch calculations with multiprocessing was compared with native batch 414

calculation modes of tools where possible (MC and SIR). Parallelization methods were tested 415

with 1-12 parallel processes or threads (i.e. up to full utilization of both CPU threads of each 416

core). Input conditions were chosen to simulate “simple” and “complex” workflows, where 417

the latter resulted in more demanding calculations with ~2-10x longer mean execution 418

times (Table 4). The caching functionality of patRoon was disabled, where appropriate, to 419

obtain representative and reproducible test results. Prior to benchmarking, candidate 420

chemical compounds from PubChem for MF tests were cached in a local database to 421

exclude influences from network connectivity. Similarly, general spectral data required to 422

post-process FFM results were cached, as this is usually loaded once during a workflow, 423

even with varying input parameters. The input features for GF tests that resulted in very 424

long individual run times (i.e. >30 seconds) were removed to avoid excessive benchmark 425

runtimes. Generating feature and MS peaklist input data for annotation related tests was 426

performed with patRoon using algorithms from OpenMS and mzR [109], respectively. Pre-427

21

treatment of feature data consisted of removal of features with low intensity and lacking 428

MS/MS data. The number of features for SIR (except tests with native batch mode) and MF 429

benchmarks were further reduced by application of blank, replicate and intensity filters to 430

avoid long total runtimes due to their relatively high individual run times. Finally, the feature 431

dataset was split in low (0-500) and high (500-1000) m/z portions, which were purposed for 432

execution of “simple” and “complex” experiments, respectively. For more details of the 433

workflow and input parameters see the R script code in Additional file 4. The software tools 434

used for benchmarking are summarized in Additional file 1. 435

 436

Table 4. Utilized conditions for "simple" (S) and "complex" (C) tests. 437

 Test Input conditions1 Executions Mean
individual
run time2

(s)

msConvert (MC) MC-S Conversion centroided input 15 4.8

MC-C Centroiding and conversion
non-centroided input

15 8.5

FeatureFinderMetabo
(FFM)3

FFM-S High intensity threshold 15 4.1

FFM-C Low intensity threshold 15 38

GenForm (GF) GF-S CHNO elements, low m/z 512 0.2

GF-C CHNOPS elements, high m/z 128 1.7

SIRIUS (SIR)3 SIR-S CHNO elements, low m/z 152 (5124) 2.3

SIR-C CHNOPS elements, high m/z 44 (1284) 7.7

MetFrag (MF)3 MF-S Limited scoring, narrow mass
search (5 ppm), low m/z.

152 3.0

MF-C Thorough scoring, wide mass
search (20 ppm), high m/z.

44 8.6

(1): Features with m/z 0 – 500 (low) and m/z 500 – 1000 (high); (2): based on a test run without parallelization
(n=3); (3) supports (configurable) native multithreading; (4) number of executions for native batch mode
benchmarks.

When multiprocessing was used all tests (except GF-S, discussed below) showed a clear 438

downward trend in execution times (down to ~200%-500%), and optimum conditions were 439

22

generally reached when the number of parallel processes equaled the number of physical 440

cores (six, see Figure 5a). When algorithms are fully parallelized, execution times are 441

expected to follow an inverse relationship with the number of parallel process (i.e. 1/n) and 442

this was observed most closely with MC, whereas execution times for other tools show a 443

less steep reduction. Furthermore, utilizing multiple threads per core (i.e. hyperthreading) 444

did not reduce execution times further and even slowed down in some cases (e.g. MF-C). 445

These deviations in scalability were not investigated in detail. Since they were more 446

noticeable under complex conditions, it is expected that this may be caused by (a) more 447

involved post-processing results after each execution, which is currently not parallelized, 448

and (b) increased memory usage, which may raise the overhead of context switches 449

performed by the operating system. Nevertheless, the experiments performed here clearly 450

show that the multiprocessing functionality of patRoon can significantly reduce execution 451

times of various steps in an NTA workflow. 452

 453

An exception, however, was the test performed with GenForm with simple conditions (GF-454

S), which exhibited no significant change in execution times with multiprocessing (Figure 455

5a). Due to the particularly small mean run times (0.2 seconds) of this test, it was 456

hypothesized that the overhead of instantiating a new process from R (inherently not 457

parallelized) dominated the overall run times. To mitigate this, a ‘batch mode’ was 458

implemented, where such process initiation occurs from a command shell sub-process 459

instead. Here, multiple commands are executed by the sub-process in series, and the 460

desired degree of parallelization is then achieved by launching several of these sub-461

processes and evenly dividing commands amongst them. The maximum size of each series 462

23

(or “batch size”) is configurable, and represents a balance between reduction of process 463

initiation overhead and potential loss of effectively load balancing of, for instance, 464

commands with highly deviating execution times. Next, various batch sizes were tested for 465

GF, both with and without multiprocessing parallelization (Additional file 2: Figure S4). For 466

GF-S, execution times clearly decreased with increasing batch sizes, however, no further 467

reduction was observed with parallelism. In contrast, serial execution of GF-C was not 468

affected by varying batch size, whereas added parallelism reduced execution times for small 469

batch sizes (≤8), but significantly increased such times for larger sizes. The results 470

demonstrate that the typical short lived GF executions clearly benefit from batch mode. In 471

addition, it is expected that by further increasing the batch size for GF-S, overall lifetimes of 472

batch sub-processes may increase sufficiently to allow better utilization of parallelization. 473

However, since GF-C results for larger batch sizes clearly show possible performance 474

degradation for more complex calculations (e.g. due to suboptimal load balancing), eight 475

was considered as a ‘safe’ default which improves overall performance for both simple and 476

complex calculation scenarios (Figure 5b). 477

 478

Utilizing native multithreading for FFM, SIR (without native batch mode) and MF yields only 479

relatively small reductions in their execution times (Figure 5b). Under optimum conditions 480

(6-8 threads), the most significant drop was observed for SIR-C (~40%), followed by FFM-S, 481

FFM-C and MF-C (~20%). These results suggest that native multithreading only yields partial 482

parallelization, which primarily occurs with complex input conditions. Note that SIRIUS 483

supports different linear programming solvers (Gurobi [110], CPLEX [111] and the default 484

GLPK [112]), which may influence overall performance and parallelization [113]. 485

24

Nevertheless, a comparison between these solvers did not reveal significant changes with 486

our experimental conditions (Additional file 2: Figure S5). Combining the multiprocessing 487

functionality with native multithreading under optimum conditions (i.e. 6 parallel 488

processes/threads) only reduces execution times for SIR-C (Figure 5b). As such, both 489

performance improvements and scalability of the multiprocessing implementation of 490

patRoon appear highly effective at this stage. 491

 492

The native batch modes of MC and SIR allow calculations from multiple inputs within a 493

single execution. This reduces the total number of tool executions, which may (1) lower the 494

accumulated overhead associated with starting and finishing tool executions and (2) hamper 495

effective parallelization from multiprocessing, especially if executions are less than the 496

available CPU cores. The combination of multiprocessing (optimum conditions) and native 497

batch mode was benchmarked with increasing number of inputs per tool execution (i.e. the 498

native batch size; Additional file 2: Figure S6). For MC, execution times were largely 499

unaffected by the input batch size if multiprocessing was disabled, which indicates a low 500

execution overhead. Lowest execution times were observed when multiprocessing was 501

enabled with small batch sizes (≤25% of the total inputs), which indicates a lack of native 502

parallelization support. In contrast, SIR showed significantly lower overall execution times 503

with increasing batch sizes (up to ~7000% and ~320% for SIR-S and SIR-C, respectively), 504

while enabling multiprocessing did not reduce execution times for batch sizes >1. These 505

results show that (1) SIR has a relative large execution overhead, which impairs 506

multiprocessing performance gains, and (2) supports effective native parallelized batch 507

execution. Thus, SIR performs most optimal if all calculations are performed within a single 508

25

execution. Similar to previous SIR benchmarks, no significant differences were found across 509

different linear solvers (Additional file 2: Figure S7). The results demonstrate that 510

multiprocessing may improve efficiency for batch calculations with tools with low execution 511

overhead and/or lack of native parallelization. Nonetheless, the dramatic improvement in 512

SIR calculation times when using the native batch mode indicates that software authors 513

should generally consider implementing native threaded batch mode functionality if large 514

batch calculations are an expected use case. 515

 516

Finally, the implemented optimization strategies were tested for a complete patRoon NTA 517

workflow consisting of typical data processing steps and using all previously tested tools. 518

The chosen input conditions roughly fell in between the aforementioned “simple” and 519

“complex” conditions (see code in Additional file 4). Note that optimization strategies were 520

unavailable for some steps (e.g. grouping of features and collection of MS peak lists), and 521

native batch mode was not used in order to demonstrate the usefulness of multiprocessing 522

for tools that do not support this (e.g. other tools than MC and SIR and those potentially 523

available in future versions of patRoon). Regardless, the benchmarks revealed a reduction in 524

total run times of ~50% (from ~200 to ~100 minutes; Figure 5c). Since execution times of 525

each step may vary significantly, the inclusion of different combinations of steps may 526

significantly influence overall execution times. 527

 528

The use of multiprocessing for all tools (except SIR), the implemented batch mode strategies 529

for GF and the use of the native batch mode supported by SIR were set as default in 530

patRoon with the determined optimal parameters from the benchmarks results. However, 531

26

the user can still freely configure all these options to potentially apply further optimizations 532

or otherwise (partially) disable parallelization to conserve system resources acquired by 533

patRoon. 534

 535

As a final note, it is important to realize that these benchmarks display execution times that 536

also involve preparing and processing results and include other overhead such as process 537

creation from R. For this reason, a direct comparison with standalone execution of 538

investigated tools was not possible. Nevertheless, the various optimization strategies 539

employed by patRoon minimize such overhead, and the added parallelization functionality 540

often provide a clear advantage in efficiency when using typical CLI tools in an R based NTA 541

workflow, especially considering the now widespread availability of computing systems with 542

increasing numbers of cores. 543

Demonstration: suspect screening 544

The previous section investigated several parallelization strategies implemented in patRoon 545

for efficient data processing. A common method in environmental NTA studies to increase 546

data processing efficiency and reducing the data complexity is by merely screening for 547

chemicals of interest. This section demonstrates such a suspect screening workflow with 548

patRoon, consisting of (a) raw data pre-treatment, (b) extracting, grouping and suspect 549

screening of feature data, and finally (c) annotating features to confirm their identity. During 550

the workflow several rule-based filters are applied to improve data quality. The ‘suspects’ in 551

this demonstration are, in fact, a set of compounds spiked to influent samples (Additional 552

file 3: Table S2), hence, they were used for validation purposes of the workflow. After 553

27

completion of the suspect screening workflow, several methods are demonstrated to 554

inspect the resulting data. 555

Suspect screening: workflow 556

The code described here can easily be generated with the newProject() function, which 557

automatically generates a ready-to-use R script based on user input (section “Visualization, 558

reporting and graphical interface”). 559

 560

First, the patRoon R package is loaded and a data.frame is generated with the file 561

information of the sample analyses and their replicate and blank assignments. Next, this 562

information is used to centroid and convert the raw analyses files to the open mzML file 563

format, a necessary step for further processing. 564

 565

The next step involves finding features and grouping them across samples. This example 566

uses the OpenMS algorithms and sets several algorithm specific parameters that were 567

manually optimized for the employed analytical instrumentation to optimize the workflow 568

output. Other algorithms (e.g. enviPick, XCMS) are easily selected by changing the 569

algorithm function parameter. 570

library(patRoon)

Generate analysis file information for all files in a directory,

assign replicate group names to all triplicates and specify which

should be used for blank subtraction.
anaInfo <- generateAnalysisInfo("../data",

 groups = c(rep("blank", 3),

 rep("influent-A", 3),

 rep("effluent-A", 3),

 rep("influent-B", 3),

 rep("effluent-B", 3)),

 blanks = "blank")

convertMSFiles(anaInfo = anaInfo, from = "thermo", to = "mzML",

 algorithm = "pwiz", centroid = "vendor")

28

 571

Several rule-based filters are then applied for general data clean-up, followed by the 572

removal of sample blanks from the feature dataset. 573

 574
Next, features are screened with a given suspect list, which is a CSV file read into a 575

data.frame containing the name, SMILES and (optionally) retention time for each suspect 576

(see Additional file 5). While the list in this demonstration is rather small (18 compounds, 577

see SX), larger lists containing several thousands of compounds such as those available on 578

the NORMAN network Suspect List Exchange [114] can also be used. The screening results 579

are returned in a data.frame, where each row is a hit (a suspect may occur multiple times) 580

containing the linked feature group identifier and other information such as detected m/z 581

and retention time (deviations). Finally, this table is used to transform the original feature 582

groups object (fGroups) by removing any unassigned features and tagging remainders by 583

their suspect name. 584

 585

features <- findFeatures(anaInfo, algorithm = "openms",

 noiseThrInt = 4E3,

 chromFWHM = 3, minFWHM = 1, maxFWHM = 30,

 chromSNR = 5, mzPPM = 5)

fGroups <- groupFeatures(features, algorithm = "openms")

fGroups <- filter(fGroups,

 # minimum absolute feature intensity

 absMinIntensity = 1E5,

 # must be present in all replicates

 relMinReplicateAbundance = 1,

 # max relative standard deviation replicate intensities

 maxReplicateIntRSD = 0.75,

 # minimum feature intensity above blank

 blankThreshold = 5,

 # remove blank analyses afterwards

 removeBlanks = TRUE)

suspects <- read.csv("suspects.csv")

scr <- screenSuspects(fGroups, suspects, mzWindow = 0.002,

 rtWindow = 6, adduct = "[M+H]+")
fGroupsSusp <- groupFeaturesScreening(fGroups, scr)

29

In the final step of this workflow annotation is performed, which consists of (a) generation 586

of MS peak list data, (b) general clean-up to only retain significant MS/MS mass peaks, 587

automatic annotation of (c) formulae and (d) chemical compounds, and (e) combining both 588

annotation data to improve ranking of candidate compounds. As with previous workflow 589

steps, the desired algorithms (mzR, GenForm and MetFrag in this example) are set using the 590

algorithm function parameter. Similarly, the compound database used by MetFrag (here 591

CompTox via a local CSV file obtained from [115]) can easily be changed to other databases 592

such as PubChem, ChemSpider or another local file. 593

 594

Suspect screening: data inspection 595

All data generated during the workflow (e.g. features, peak lists, annotations) can be 596

inspected by overloads of common R methods. 597

mslists <- generateMSPeakLists(fGroupsSusp, "mzr",

 precursorMzWindow = 0.5)

mslists <- filter(mslists, relMSMSIntThr = 0.02, topMSMSPeaks = 10)

formulas <- generateFormulas(fGroupsSusp, "genform", mslists,

 adduct = "[M+H]+",

 elements = "CHNOPSClBr")

Configure location of CompTox CSV file

options(patRoon.path.MetFragCompTox =

 "C:/CompTox_17March2019_SelectMetaData.csv")
compounds <- generateCompounds(fGroupsSusp, mslists, "metfrag",

 adduct = "[M+H]+",

 database = "comptox")

compounds <- addFormulaScoring(compounds, formulas, updateScore = TRUE)

30

 598

Furthermore, all workflow data can easily be subset with e.g. the R subset operator (“[“), 599

for instance, to perform a (hypothetical) prioritization of features that are most intense in 600

the effluent samples. 601

 602

intensities for each feature in first group

> fGroups[[1]]

[1] 210235.3 242051.9 254323.8 260419.1 205407.0 261099.1 0.0

0.0 0.0 0.0 0.0 0.0

averaged MS/MS peak list for feature group of carbamazepine suspect

> mslists[["Carbamazepine"]]$MSMS

mz intensity precursor

1: 192.0804 284478.607 FALSE

2: 193.0880 69396.510 FALSE

3: 194.0960 1126534.943 FALSE

4: 237.1019 5406.667 TRUE

compound annotation data for all features(subset shown for clarity)

> as.data.frame(compounds)[1:5, 1:5]
group explainedPeaks score neutralMass SMILES

1 n-Methylbenzotriazole-1 4 12.268046 133.064 NC1=NC2=CC=CC=C2N1

2 n-Methylbenzotriazole-1 5 9.546212 133.064 CC1=CC2=C(NN=N2)C=C1

3 n-Methylbenzotriazole-1 5 6.722034 133.064 NC1=CC=C2NN=CC2=C1

4 n-Methylbenzotriazole-1 5 6.715495 133.064 CC1=C2NN=NC2=CC=C1

5 n-Methylbenzotriazole-1 4 6.483770 133.064 CN1N=NC2=CC=CC=C12

obtain table with replicate averaged feature intensities

> intTab <- as.data.frame(fGroupsSusp, average = TRUE)

> head(intTab)[, 1:5] # show first 5 rows/columns
group ret mz influent-A effluent-A

1 n-Methylbenzotriazole-1 600.6524 134.0709 2021597.7 0.0

2 n-Methylbenzotriazole-2 607.5665 134.0709 2399435.6 192759.6

3 Barbital 137.3162 185.0918 145150.0 0.0

4 Benzotriazole 478.6665 120.0553 1494092.0 190069.0

5 Carbamazepine 797.5051 237.1018 2849756.3 0.0

6 Carbendazim 378.8226 192.0764 504191.7 0.0

obtain group names from the 5 highest intense features in either

of the effluents

> top1 <- intTab$group[order(intTab[["effluent-A"]],

 decreasing = TRUE)][1:5]

> top2 <- intTab$group[order(intTab[["effluent-B"]],

 decreasing = TRUE)][1:5]

> top <- union(top1, top2)

> top

[1] "Metformin" "Terbuthylazine"

[3] "Triphenylphosphine oxide" "Melamine-2"

[5] "n-Methylbenzotriazole-2" "Benzotriazole"

[7] "n-Methylbenzotriazole-1" "Propranolol"

subset original object

> fGroupsSusp <- fGroupsSusp[, top]

31

Visualization of data generated during the workflow is performed by various plotting 603

functions (see Figure 6). 604

 605
The final step in a patRoon NTA workflow involves automatic generation of comprehensive 606

reports of various formats which allow (interactive) exploration of all data (see Additional 607

file 2: Figure S8). 608

 609

Suspect screening: results 610

A summary of data generated during the NTA workflow demonstrated here is shown in 611

Table 5 and Additional file 3: Table S2. The complete workflow finished in approximately 8 612

minutes (employing a laptop with an Intel® Core™ I7-8550U CPU, 16 gigabyte RAM, NVME 613

SSD and the Windows 10 Pro operating system). While nearly 60 000 features were grouped 614

into nearly 20 000 feature groups, the majority (97%, 678 remaining) were filtered out 615

during the various pre-treatment filter steps. Regardless, most suspects were found (17/18 616

attributed to 19/20 individual chromatographic peaks), and the missing suspect (aniline) 617

could be detected when lowering the intensity threshold of the filter() function used to 618

post-filter feature groups in the workflow. The majority of suspects (17) were annotated 619

with the correct chemical compound as first candidate, the two n-methylbenzotriazole 620

plot unique features in influents

plot(fGroups[rGroups = c("influent-A", "influent-B")],

 colourBy = "rGroups", onlyUnique = TRUE)

all EICs for a feature group

plotEIC(fGroupsSusp[, "Terbuthylazine"], colourBy = "rGroup")

plotSpec(compounds, index = 1, groupName = "Benzotriazole",

 mslists)

plotUpSet(fGroupsSusp)

plotChord(fGroupsSusp, average = TRUE)

plotVenn(fGroupsSusp, which = c("influent-B", "effluent-B"))

reportCSV(fGroupsSusp, formulas = formulas, compounds = compounds)

reportPDF(fGroupsSusp, formulas = formulas,

 compounds = compounds, MSPeakLists = mslists)

reportHTML(fGroupsSusp, formulas = formulas,

 compounds = compounds, MSPeakLists = mslists)

32

isomer suspects were ranked as second or fourth. Results for formulae assignments were 621

similar, with the exception of dimethomorph, where the formula was ranked in only the top 622

twenty-five (the candidate chemical compound was ranked first, however). 623

 624

While this demonstration conveys a relative simple NTA with ‘known suspects’, the results 625

show that patRoon (a) allows a straightforward approach to perform a complete and 626

tailored NTA workflow, (b) provides powerful general data clean-up functionality to 627

prioritize data and (c) realizes effective automated annotation of detected features. 628

 629

Table 5. Summarizing results for the demonstrated patRoon NTA workflow. 630

 Amount

Features Total found 57 113 (mean 3,808/sample)
Feature groups Raw dataset 19 970

Replicate filters (1st pass1) 4 719 (-76%)
Blank filter 2 933 (-85%)
Intensity filters 964 (-95%)
Replicate filters (2nd pass1) 678 (-97%)

Suspects Total found 19 out of 20
Annotated 19

Formulae Total candidates 163 (mean 9/feature group)
Correctly ranked 1st 13 (68%)
Correctly ranked 1st-2nd 16 (84%)
Correctly ranked 1st-5th 17 (89%)

Compounds Total candidates 1 017 (mean 54/feature group)
Correctly ranked 1st 17 (85%)
Correctly ranked 1st-2nd 18 (90%)
Correctly ranked 1st-5th 19 (100%)

(1): Replicate filters are repeated if necessary, see section “Data reduction, comparison and conversion”.

Conclusions 631

This paper presents patRoon, a fully open source platform that provides a comprehensive 632

MS based NTA data processing workflow developed in the R environment. Major workflow 633

33

functionality is implemented through the usage of existing and well-tested software tools, 634

connecting primarily open and a few closed approaches. The workflows are easily setup for 635

common use cases, while full customization and mixing of algorithms allows for execution of 636

completely tailored workflows. In addition, extensive functionality related to data 637

processing, annotation, visualization, reporting and others was implemented in patRoon to 638

provide an important toolbox for effectively handling complex NTA studies. The easy and 639

predictable interface of patRoon lowers the computational expertise required of users, 640

making it available for a broad audience. Major implemented optimization strategies were 641

demonstrated to reduce computational times. Furthermore, a typical suspect screening 642

workflow was demonstrated on real-world data from an environmental study related to 643

drinking water treatment. 644

 645

patRoon has been under development for several years and has already been applied in a 646

variety of studies, such as the characterization of organic matter [71], elucidation of 647

transformation products of biocides [7, 12] and assessment of removal of polar organics 648

reversed-osmosis drinking water treatment [14]. patRoon will undergo further 649

development, and extension of integrated workflow algorithms is planned for new and less 650

commonly used ones, while additional componentization strategies will be implemented to 651

help prioritizing data. Addition of new workflow functionality is foreseen, such as usage of 652

ion-mobility spectrometry data to assist annotation, automated screening of transformation 653

products (e.g. utilizing tools such as BioTransformer [116]), prediction of feature quantities 654

for prioritization purposes (recently reviewed in [117]) and automated chemical 655

classification (e.g. through ClassyFire [118]). Finally, interfacing with other R based mass 656

34

spectrometry software such as those provided by the “R for Mass Spectrometry” initiative 657

[119] is planned to further improve the interoperability of patRoon. The use in real-world 658

studies, feedback from users and developments within the non-target analysis community, 659

are all critical in determining future directions and improvements of patRoon. We envisage 660

that the open availability, straightforward usage, vendor independence and comprehensive 661

functionality will be useful to the community and result in a broad adoption of patRoon. 662

Availability and requirements 663

Project name: patRoon 664

Project home page: https://github.com/rickhelmus/patRoon 665

Operating system(s): Platform independent (tested on Microsoft Windows and Linux) 666

Programming language(s): R, C++, JavaScript 667

Other requirements: Depending on utilized algorithms (see installation instructions in [85, 668

88]) 669

License: GNU GPL version 3 670

Any restrictions to use by non-academics: none 671

Abbreviations 672

CEC: Chemical of emerging concern 673

CLI: Command-line interface 674

CMP: Compound annotation 675

CMT: Componentization 676

CSV: Comma-separated value 677

35

DBI: The database interface 678

EIC: Extracted ion chromatogram 679

FFM(-S/C): FeatureFinderMetabo (simple/complex conditions) 680

FG: Feature groups 681

FOR: Formula annotation 682

FTS: Features 683

GC: Gas chromatography 684

GC-MS: GC coupled to mass spectrometry 685

GF(-S/C): GenForm (simple/complex conditions) 686

HTML: Hypertext markup language 687

HRMS: High resolution mass spectrometry 688

IPO: Isotopologue parameter optimization 689

LC: Liquid chromatography 690

LC-MS: LC coupled to mass spectrometry 691

MC(-S/C): msConvert (simple/complex conditions) 692

MF(-S/C): MetFrag (simple/complex conditions) 693

MS/MS: Tandem mass spectrometry 694

MSPL: MS peak list 695

NTA: Non-target analysis 696

PDF: Portable document format 697

PO: Parameter optimization 698

PT: Pre-treatment 699

SIR(-S/C): SIRIUS (simple/complex conditions) 700

36

SUS: Suspect screening 701

XCMS: Various forms (X) of chromatography mass spectrometry (R package MS data 702

processing) 703

Definitions 704

Features (FTS): data points assigned with unique chromatographic and mass spectral 705

information (e.g. retention time, peak area and accurate m/z), which potentially described a 706

compound in a sample analysis. 707

Feature group (FG): A group of features considered equivalent across sample analyses. 708

MS peak list (MSPL): tabular data (m/z and intensity) for MS or MS/MS peaks attributed to a 709

feature and used as input data for annotation purposes. 710

Formula/Compound (FOR/CMP): a chemical formula or compound candidate revealed 711

during feature annotation. 712

Component (CMT): A collection of feature groups that are somehow linked, such as MS 713

adducts, homologous series or highly similar intensity trends. 714

Declarations 715

Availability of data and materials 716

The source code of patRoon and online versions of its manuals are available for download 717

from https://github.com/rickhelmus/patRoon and archived in [120]. The raw data used for 718

benchmarking and demonstration purposes in this manuscript is archived in [107]. The 719

scripts used to perform benchmarking and the input suspect list for demonstration purposes 720

are provided as Additional file 4 and 5, respectively. 721

https://github.com/rickhelmus/patRoon

37

Competing interests 722

The authors declare that they have no competing interests. 723

Funding 724

This work was internally funded by the Institute of Biodiversity and Ecosystem Dynamics 725

(University of Amsterdam). ELS is supported by the Luxembourg National Research Fund 726

(FNR) for project A18/BM/12341006. 727

Authors’ contributions 728

RH wrote the manuscript, source code, designed the experiments and interpreted the 729

results. ELS provided valuable feedback to improve the software. ELS and other authors 730

supervised this work and contributed to writing the manuscript. All authors read and 731

approved the final manuscript. 732

Acknowledgements 733

The many authors involved in the open mass spectrometry software development 734

community are highly acknowledged as their contributions are the foundation for the 735

development of patRoon. In addition, Vittorio Albergamo, Andrea Brunner, Thomas Wagner, 736

Olaf Brock and other users of patRoon are thanked for testing and providing feedback for 737

future developments. We thank the Dutch drinking water companies Dunea and PWN for 738

sharing the raw HRMS data that was used for benchmarking and demonstration purposes. 739

Markus Fleischauer is acknowledged for his feedback on execution of batch execution of 740

SIRIUS. Finally, Olaf Brock is acknowledged for the design of some of the visualizations of 741

benchmarking data. 742

38

References 743

1. Hollender J, Schymanski EL, Singer HP, Ferguson PL (2017) Nontarget Screening with 744

High Resolution Mass Spectrometry in the Environment: Ready to Go? Environ Sci 745

Technol 51:11505–11512 . https://doi.org/10.1021/acs.est.7b02184 746

2. Chiaia-Hernandez AC, Schymanski EL, Kumar P, Singer HP, Hollender J (2014) Suspect 747

and nontarget screening approaches to identify organic contaminant records in lake 748

sediments. Anal Bioanal Chem 406:7323–7335 . https://doi.org/10.1007/s00216-014-749

8166-0 750

3. Sjerps RMA, Vughs D, van Leerdam JA, ter Laak TL, van Wezel AP (2016) Data-driven 751

prioritization of chemicals for various water types using suspect screening LC-HRMS. 752

Water Research 93:254–264 . https://doi.org/10.1016/j.watres.2016.02.034 753

4. Chiaia-Hernández AC, Günthardt BF, Frey MP, Hollender J (2017) Unravelling 754

Contaminants in the Anthropocene Using Statistical Analysis of Liquid 755

Chromatography–High-Resolution Mass Spectrometry Nontarget Screening Data 756

Recorded in Lake Sediments. Environ Sci Technol 51:12547–12556 . 757

https://doi.org/10.1021/acs.est.7b03357 758

5. Albergamo V, Schollée JE, Schymanski EL, Helmus R, Timmer H, Hollender J, de Voogt P 759

(2019) Nontarget Screening Reveals Time Trends of Polar Micropollutants in a 760

Riverbank Filtration System. Environ Sci Technol 53:7584–7594 . 761

https://doi.org/10.1021/acs.est.9b01750 762

6. Hernández F, Bakker J, Bijlsma L, de Boer J, Botero-Coy AM, Bruinen de Bruin Y, Fischer 763

S, Hollender J, Kasprzyk-Hordern B, Lamoree M, López FJ, Laak TL ter, van Leerdam JA, 764

Sancho JV, Schymanski EL, de Voogt P, Hogendoorn EA (2019) The role of analytical 765

39

chemistry in exposure science: Focus on the aquatic environment. Chemosphere 766

222:564–583 . https://doi.org/10.1016/j.chemosphere.2019.01.118 767

7. Wagner TV, Helmus R, Quiton Tapia S, Rijnaarts HHM, de Voogt P, Langenhoff AAM, 768

Parsons JR (2020) Non-target screening reveals the mechanisms responsible for the 769

antagonistic inhibiting effect of the biocides DBNPA and glutaraldehyde on benzoic 770

acid biodegradation. Journal of Hazardous Materials 386:121661 . 771

https://doi.org/10.1016/j.jhazmat.2019.121661 772

8. Kolkman A, Martijn BJ, Vughs D, Baken KA, van Wezel AP (2015) Tracing Nitrogenous 773

Disinfection Byproducts after Medium Pressure UV Water Treatment by Stable Isotope 774

Labeling and High Resolution Mass Spectrometry. Environ Sci Technol 49:4458–4465 . 775

https://doi.org/10.1021/es506063h 776

9. Schollée JE, Schymanski EL, Avak SE, Loos M, Hollender J (2015) Prioritizing Unknown 777

Transformation Products from Biologically-Treated Wastewater Using High-Resolution 778

Mass Spectrometry, Multivariate Statistics, and Metabolic Logic. Anal Chem 87:12121–779

12129 . https://doi.org/10.1021/acs.analchem.5b02905 780

10. Brunner AM, Vughs D, Siegers W, Bertelkamp C, Hofman-Caris R, Kolkman A, ter Laak T 781

(2019) Monitoring transformation product formation in the drinking water treatments 782

rapid sand filtration and ozonation. Chemosphere 214:801–811 . 783

https://doi.org/10.1016/j.chemosphere.2018.09.140 784

11. Brunner AM, Bertelkamp C, Dingemans MML, Kolkman A, Wols B, Harmsen D, Siegers 785

W, Martijn BJ, Oorthuizen WA, ter Laak TL (2020) Integration of target analyses, non-786

target screening and effect-based monitoring to assess OMP related water quality 787

40

changes in drinking water treatment. Science of The Total Environment 705:135779 . 788

https://doi.org/10.1016/j.scitotenv.2019.135779 789

12. Wagner TV, Helmus R, Becker E, Rijnaarts HHM, Voogt P de, Langenhoff AAM, Parsons 790

JR (2020) Impact of transformation, photodegradation and interaction with 791

glutaraldehyde on the acute toxicity of the biocide DBNPA in cooling tower water. 792

Environ Sci: Water Res Technol 6:1058–1068 . https://doi.org/10.1039/C9EW01018A 793

13. Jonker W, Lamoree MH, Houtman CJ, Hamers T, Somsen GW, Kool J (2015) Rapid 794

activity-directed screening of estrogens by parallel coupling of liquid chromatography 795

with a functional gene reporter assay and mass spectrometry. Journal of 796

Chromatography A 1406:165–174 . https://doi.org/10.1016/j.chroma.2015.06.012 797

14. Albergamo V, Escher BI, Schymanski EL, Helmus R, Dingemans MML, Cornelissen ER, 798

Kraak MHS, Hollender J, Voogt P de (2019) Evaluation of reverse osmosis drinking 799

water treatment of riverbank filtrate using bioanalytical tools and non-target 800

screening. Environ Sci: Water Res Technol 6:103–116 . 801

https://doi.org/10.1039/C9EW00741E 802

15. Brunner AM, Dingemans MML, Baken KA, van Wezel AP (2019) Prioritizing 803

anthropogenic chemicals in drinking water and sources through combined use of mass 804

spectrometry and ToxCast toxicity data. Journal of Hazardous Materials 364:332–338 . 805

https://doi.org/10.1016/j.jhazmat.2018.10.044 806

16. Zwart N, Jonker W, Broek R ten, de Boer J, Somsen G, Kool J, Hamers T, Houtman CJ, 807

Lamoree MH (2020) Identification of mutagenic and endocrine disrupting compounds 808

in surface water and wastewater treatment plant effluents using high-resolution 809

41

effect-directed analysis. Water Research 168:115204 . 810

https://doi.org/10.1016/j.watres.2019.115204 811

17. Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, Schulze T, 812

Haglund P, Letzel T, Grosse S, Thomaidis NS, Bletsou A, Zwiener C, Ibáñez M, Portolés 813

T, de Boer R, Reid MJ, Onghena M, Kunkel U, Schulz W, Guillon A, Noyon N, Leroy G, 814

Bados P, Bogialli S, Stipaničev D, Rostkowski P, Hollender J (2015) Non-target screening 815

with high-resolution mass spectrometry: critical review using a collaborative trial on 816

water analysis. Anal Bioanal Chem 407:6237–6255 . https://doi.org/10.1007/s00216-817

015-8681-7 818

18. Peisl BYL, Schymanski EL, Wilmes P (2018) Dark matter in host-microbiome 819

metabolomics: Tackling the unknowns–A review. Analytica Chimica Acta 1037:13–27 . 820

https://doi.org/10.1016/j.aca.2017.12.034 821

19. Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, Tang WH, 822

Römpp A, Neumann S, Pizarro AD, Montecchi-Palazzi L, Tasman N, Coleman M, 823

Reisinger F, Souda P, Hermjakob H, Binz P-A, Deutsch EW (2011) mzML—a Community 824

Standard for Mass Spectrometry Data. Molecular & Cellular Proteomics 10: . 825

https://doi.org/10.1074/mcp.R110.000133 826

20. Pedrioli PGA, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, 827

Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp 828

E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, 829

Aebersold R (2004) A common open representation of mass spectrometry data and its 830

application to proteomics research. Nat Biotechnol 22:1459–1466 . 831

https://doi.org/10.1038/nbt1031 832

42

21. Urban J, Afseth NK, Štys D (2014) Fundamental definitions and confusions in mass 833

spectrometry about mass assignment, centroiding and resolution. TrAC Trends in 834

Analytical Chemistry 53:126–136 . https://doi.org/10.1016/j.trac.2013.07.010 835

22. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, 836

Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker 837

TA, Brusniak M-Y, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, 838

Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, 839

Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, 840

Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for 841

mass spectrometry and proteomics. Nat Biotechnol 30:918–920 . 842

https://doi.org/10.1038/nbt.2377 843

23. PubChem National Center for Biotechnology Information PubChem Database. 844

https://pubchem.ncbi.nlm.nih.gov/. Accessed 6 Feb 2020 845

24. Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, Patlewicz G, 846

Shah I, Wambaugh JF, Judson RS, Richard AM (2017) The CompTox Chemistry 847

Dashboard: a community data resource for environmental chemistry. Journal of 848

Cheminformatics 9:61 . https://doi.org/10.1186/s13321-017-0247-6 849

25. Blaženović I, Kind T, Torbašinović H, Obrenović S, Mehta SS, Tsugawa H, Wermuth T, 850

Schauer N, Jahn M, Biedendieck R, Jahn D, Fiehn O (2017) Comprehensive comparison 851

of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is 852

needed to achieve 93% accuracy. Journal of Cheminformatics 9:32 . 853

https://doi.org/10.1186/s13321-017-0219-x 854

43

26. Bruker MetaboScape. https://www.bruker.com/products/mass-spectrometry-and-855

separations/ms-software/metaboscape.html. Accessed 6 Feb 2020 856

27. Waters UNIFI Scientific Information System. 857

https://www.waters.com/waters/en_US/UNIFI-Scientific-Information-858

System/nav.htm?cid=134801359&locale=en_US. Accessed 6 Feb 2020 859

28. Thermo Scientific Compound Discoverer Software. 860

https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-861

chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-862

analysis/compound-discoverer-software.html. Accessed 6 Feb 2020 863

29. Progenesis QI. http://www.nonlinear.com/progenesis/qi/. Accessed 6 Feb 2020 864

30. Misra BB, Mohapatra S (2019) Tools and resources for metabolomics research 865

community: A 2017–2018 update. ELECTROPHORESIS 40:227–246 . 866

https://doi.org/10.1002/elps.201800428 867

31. Stanstrup J, Broeckling CD, Helmus R, Hoffmann N, Mathé E, Naake T, Nicolotti L, 868

Peters K, Rainer J, Salek RM, Schulze T, Schymanski EL, Stravs MA, Thévenot EA, 869

Treutler H, Weber RJM, Willighagen E, Witting M, Neumann S (2019) The 870

metaRbolomics Toolbox in Bioconductor and beyond. Metabolites 9:200 . 871

https://doi.org/10.3390/metabo9100200 872

32. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS:  Processing Mass 873

Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, 874

and Identification. Anal Chem 78:779–787 . https://doi.org/10.1021/ac051437y 875

44

33. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: Modular framework 876

for processing, visualizing, and analyzing mass spectrometry-based molecular profile 877

data. BMC Bioinformatics 11:395 . https://doi.org/10.1186/1471-2105-11-395 878

34. Hohrenk LL, Itzel F, Baetz N, Tuerk J, Vosough M, Schmidt TC (2020) Comparison of 879

Software Tools for Liquid Chromatography–High-Resolution Mass Spectrometry Data 880

Processing in Nontarget Screening of Environmental Samples. Anal Chem 92:1898–881

1907 . https://doi.org/10.1021/acs.analchem.9b04095 882

35. R Core Team (2019) R: A Language and Environment for Statistical Computing. R 883

Foundation for Statistical Computing, Vienna, Austria 884

36. Lange E, Tautenhahn R, Neumann S, Gröpl C (2008) Critical assessment of alignment 885

procedures for LC-MS proteomics and metabolomics measurements. BMC 886

Bioinformatics 9:375 . https://doi.org/10.1186/1471-2105-9-375 887

37. Niu W, Knight E, Xia Q, McGarvey BD (2014) Comparative evaluation of eight software 888

programs for alignment of gas chromatography–mass spectrometry chromatograms in 889

metabolomics experiments. Journal of Chromatography A 1374:199–206 . 890

https://doi.org/10.1016/j.chroma.2014.11.005 891

38. Myers OD, Sumner SJ, Li S, Barnes S, Du X (2017) Detailed Investigation and 892

Comparison of the XCMS and MZmine 2 Chromatogram Construction and 893

Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry 894

Metabolomics Data. Anal Chem 89:8689–8695 . 895

https://doi.org/10.1021/acs.analchem.7b01069 896

39. Hao L, Wang J, Page D, Asthana S, Zetterberg H, Carlsson C, Okonkwo OC, Li L (2018) 897

Comparative Evaluation of MS-based Metabolomics Software and Its Application to 898

45

Preclinical Alzheimer’s Disease. Scientific Reports 8:9291 . 899

https://doi.org/10.1038/s41598-018-27031-x 900

40. Myers OD, Sumner SJ, Li S, Barnes S, Du X (2017) One Step Forward for Reducing False 901

Positive and False Negative Compound Identifications from Mass Spectrometry 902

Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms 903

and Detecting Chromatographic Peaks. Anal Chem 89:8696–8703 . 904

https://doi.org/10.1021/acs.analchem.7b00947 905

41. Schymanski EL, Neumann S (2013) CASMI: And the Winner is . . . Metabolites 3:412–906

439 . https://doi.org/10.3390/metabo3020412 907

42. Allen F, Pon A, Wilson M, Greiner R, Wishart D (2014) CFM-ID: a web server for 908

annotation, spectrum prediction and metabolite identification from tandem mass 909

spectra. Nucleic Acids Res 42:W94–W99 . https://doi.org/10.1093/nar/gku436 910

43. Allen F, Greiner R, Wishart D (2015) Competitive fragmentation modeling of ESI-911

MS/MS spectra for putative metabolite identification. Metabolomics 11:98–110 . 912

https://doi.org/10.1007/s11306-014-0676-4 913

44. Loos M (2016) nontarget: Detecting Isotope, Adduct and Homologue Relations in LC-914

MS Data. https://CRAN.R-project.org/package=nontarget 915

45. Loos M (2016) enviPick: Peak Picking for High Resolution Mass Spectrometry Data. 916

https://CRAN.R-project.org/package=enviPick. Accessed 2 Oct 2018 917

46. Loos M (2018) enviMass version 3.5 LC-HRMS trend detection workflow - R package. 918

https://doi.org/10.5281/zenodo.1213098 919

46

47. Meringer M, Reinker S, Zhang J, Muller A MS/MS data improves automated 920

determination of molecular formulas by mass spectrometry. MATCH Commun Math 921

Comput Chem 259–290 922

48. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) MetFrag relaunched: 923

incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics 8:3 924

. https://doi.org/10.1186/s13321-016-0115-9 925

49. FOR-IDENT LC. https://water.for-ident.org/#!home. Accessed 7 Feb 2020 926

50. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, 927

Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for 928

comprehensive metabolome analysis. Nat Methods 12:523–526 . 929

https://doi.org/10.1038/nmeth.3393 930

51. Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, 931

Arita M (2016) Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation 932

and Structure Elucidation Using MS-FINDER Software. Anal Chem 88:7946–7958 . 933

https://doi.org/10.1021/acs.analchem.6b00770 934

52. Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H-935

C, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, 936

Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, 937

Malmström L, Aebersold R, Reinert K, Kohlbacher O (2016) OpenMS: a flexible open-938

source software platform for mass spectrometry data analysis. Nature Methods 939

13:741–748 . https://doi.org/10.1038/nmeth.3959 940

47

53. Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2014) RAMClust: A Novel 941

Feature Clustering Method Enables Spectral-Matching-Based Annotation for 942

Metabolomics Data. Anal Chem 86:6812–6817 . https://doi.org/10.1021/ac501530d 943

54. Böcker S, Letzel MC, Lipták Z, Pervukhin A (2009) SIRIUS: decomposing isotope patterns 944

for metabolite identification. Bioinformatics 25:218–224 . 945

https://doi.org/10.1093/bioinformatics/btn603 946

55. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure 947

databases with tandem mass spectra using CSI:FingerID. PNAS 112:12580–12585 . 948

https://doi.org/10.1073/pnas.1509788112 949

56. Dührkop K, Böcker S (2015) Fragmentation Trees Reloaded. In: Przytycka TM (ed) 950

Research in Computational Molecular Biology. Springer International Publishing, pp 951

65–79 952

57. Böcker S, Dührkop K (2016) Fragmentation trees reloaded. Journal of Cheminformatics 953

8:5 . https://doi.org/10.1186/s13321-016-0116-8 954

58. Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein 955

PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into 956

metabolite structure information. Nat Methods 16:299–302 . 957

https://doi.org/10.1038/s41592-019-0344-8 958

59. Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S (2012) CAMERA: An 959

Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid 960

Chromatography/Mass Spectrometry Data Sets. Anal Chem 84:283–289 . 961

https://doi.org/10.1021/ac202450g 962

48

60. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: A Web-Based 963

Platform to Process Untargeted Metabolomic Data. Anal Chem 84:5035–5039 . 964

https://doi.org/10.1021/ac300698c 965

61. Bruker DataAnalysis. https://www.bruker.com/. Accessed 20 Mar 2020 966

62. Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, Neumann S, 967

Trausinger G, Sinner F, Pieber T, Magnes C (2015) IPO: a tool for automated 968

optimization of XCMS parameters. BMC Bioinformatics 16:118 . 969

https://doi.org/10.1186/s12859-015-0562-8 970

63. Eliasson M, Rännar S, Madsen R, Donten MA, Marsden-Edwards E, Moritz T, Shockcor 971

JP, Johansson E, Trygg J (2012) Strategy for Optimizing LC-MS Data Processing in 972

Metabolomics: A Design of Experiments Approach. Anal Chem 84:6869–6876 . 973

https://doi.org/10.1021/ac301482k 974

64. Loos M, Singer H (2017) Nontargeted homologue series extraction from hyphenated 975

high resolution mass spectrometry data. J Cheminform 9:12 . 976

https://doi.org/10.1186/s13321-017-0197-z 977

65. Schollée JE, Bourgin M, von Gunten U, McArdell CS, Hollender J (2018) Non-target 978

screening to trace ozonation transformation products in a wastewater treatment train 979

including different post-treatments. Water Research 142:267–278 . 980

https://doi.org/10.1016/j.watres.2018.05.045 981

66. Csardi G, Nepusz T (2006) The igraph software package for complex network research. 982

InterJournal Complex Systems:1695 983

67. Almende B.V., Thieurmel B, Robert T (2019) visNetwork: Network Visualization using 984

“vis.js” Library. https://CRAN.R-project.org/package=visNetwork 985

49

68. Kujawinski EB, Behn MD (2006) Automated Analysis of Electrospray Ionization Fourier 986

Transform Ion Cyclotron Resonance Mass Spectra of Natural Organic Matter. Anal 987

Chem 78:4363–4373 . https://doi.org/10.1021/ac0600306 988

69. Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-989

resolution mass data of natural organic matter. Rapid Communications in Mass 990

Spectrometry 20:926–932 . https://doi.org/10.1002/rcm.2386 991

70. Koch BP, Dittmar T (2016) From mass to structure: an aromaticity index for high-992

resolution mass data of natural organic matter. Rapid Communications in Mass 993

Spectrometry 30:250–250 . https://doi.org/10.1002/rcm.7433 994

71. Brock O, Helmus R, Kalbitz K, Jansen B Non-target screening of leaf litter-derived 995

dissolved organic matter using liquid chromatography coupled to high-resolution mass 996

spectrometry (LC-QTOF-MS). European Journal of Soil Science. 997

https://doi.org/10.1111/ejss.12894 998

72. Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC 999

International Chemical Identifier. Journal of Cheminformatics 7:23 . 1000

https://doi.org/10.1186/s13321-015-0068-4 1001

73. Guha R (2007) Chemical Informatics Functionality in R. Journal of Statistical Software 1002

18:1–16 1003

74. Schymanski EL, Gerlich M, Ruttkies C, Neumann S (2014) Solving CASMI 2013 with 1004

MetFrag, MetFusion and MOLGEN-MS/MS. Mass Spectrometry 3:S0036–S0036 . 1005

https://doi.org/10.5702/massspectrometry.S0036 1006

50

75. Langfelder P, Zhang B (2016) dynamicTreeCut: Methods for Detection of Clusters in 1007

Hierarchical Clustering Dendrograms. https://CRAN.R-1008

project.org/package=dynamicTreeCut 1009

76. Royal Society of Chemistry ChemSpider. http://www.chemspider.com. Accessed 6 Feb 1010

2020 1011

77. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: Visualization of 1012

Intersecting Sets. IEEE Transactions on Visualization and Computer Graphics 20:1983–1013

1992 . https://doi.org/10.1109/TVCG.2014.2346248 1014

78. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-1015

customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35 . 1016

https://doi.org/10.1186/1471-2105-12-35 1017

79. Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances 1018

circular visualization in R. Bioinformatics 30:2811–2812 1019

80. Gehlenborg N (2019) UpSetR: A More Scalable Alternative to Venn and Euler Diagrams 1020

for Visualizing Intersecting Sets. https://CRAN.R-project.org/package=UpSetR 1021

81. Xie Y, Allaire JJ, Grolemund G (2018) R Markdown: The Definitive Guide. Chapman and 1022

Hall/CRC, Boca Raton, Florida 1023

82. Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang 1024

W, Iannone R (2019) rmarkdown: Dynamic Documents for R 1025

83. Iannone R, Allaire JJ, Borges B (2018) flexdashboard: R Markdown Format for Flexible 1026

Dashboards. https://CRAN.R-project.org/package=flexdashboard 1027

84. Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2019) shiny: Web Application 1028

Framework for R. https://CRAN.R-project.org/package=shiny 1029

51

85. Helmus R (2020) patRoon 1.0.0 manuals. Zenodo. 1030

https://doi.org/10.5281/zenodo.3889937 1031

86. patRoon reference. https://rickhelmus.github.io/patRoon/reference/index.html. 1032

Accessed 11 Jun 2020 1033

87. patRoon tutorial. https://rickhelmus.github.io/patRoon/articles/tutorial.html. 1034

Accessed 11 Jun 2020 1035

88. Helmus R patRoon handbook. 1036

https://rickhelmus.github.io/patRoon/handbook_bd/index.html. Accessed 11 Jun 2020 1037

89. Xie Y (2016) bookdown: Authoring Books and Technical Documents with R Markdown. 1038

Chapman and Hall/CRC, Boca Raton, Florida 1039

90. Xie Y (2019) bookdown: Authoring Books and Technical Documents with R Markdown 1040

91. Wickham H, Danenberg P, Csárdi G, Eugster M (2019) roxygen2: In-Line Documentation 1041

for R. https://CRAN.R-project.org/package=roxygen2 1042

92. Helmus R (2020) patRoonData. https://github.com/rickhelmus/patRoonData. Accessed 1043

18 Mar 2020 1044

93. Helmus R, Albergamo V (2020) patRoonData: 1.0.0. Zenodo. 1045

https://doi.org/10.5281/zenodo.3743266 1046

94. Lang M (2017) checkmate: Fast Argument Checks for Defensive R Programming. The R 1047

Journal 9:437–445 1048

95. Csárdi G, Chang W (2019) processx: Execute and Control System Processes. 1049

https://CRAN.R-project.org/package=processx 1050

96. R Special Interest Group on Databases (R-SIG-DB), Wickham H, Müller K (2019) DBI: R 1051

Database Interface. https://CRAN.R-project.org/package=DBI 1052

52

97. Müller K, Wickham H, James DA, Falcon S (2019) RSQLite: “SQLite” Interface for R. 1053

https://CRAN.R-project.org/package=RSQLite 1054

98. Eddelbuettel D, François R (2011) Rcpp: Seamless R and C++ Integration. Journal of 1055

Statistical Software 40:1–18 . https://doi.org/10.18637/jss.v040.i08 1056

99. Eddelbuettel D (2013) Seamless R and C++ Integration with Rcpp. Springer, New York 1057

100. Eddelbuettel D, Balamuta JJ (2017) Extending R with C++: A Brief Introduction to Rcpp. 1058

PeerJ Preprints 5:e3188v1 . https://doi.org/10.7287/peerj.preprints.3188v1 1059

101. Kapoulkine A pugixml. https://pugixml.org/. Accessed 6 Feb 2020 1060

102. Dowle M, Srinivasan A (2019) data.table: Extension of `data.frame`. https://CRAN.R-1061

project.org/package=data.table 1062

103. MetFragR. http://ipb-halle.github.io/MetFrag/projects/metfragr/. Accessed 6 Feb 2020 1063

104. Lang DT (2019) RDCOMClient: R-DCOM client 1064

105. Wickham H (2011) testthat: Get Started with Testing. The R Journal 3:5–10 1065

106. Henry L, Sutherland C, Hong D, Luciani TJ, Decorde M, Lise V (2019) vdiffr: Visual 1066

Regression Testing and Graphical Diffing. https://CRAN.R-project.org/package=vdiffr 1067

107. Helmus R (2020) patRoon benchmarking & demonstration data. Zenodo. 1068

https://doi.org/10.5281/zenodo.3885448 1069

108. Mersmann O (2019) microbenchmark: Accurate Timing Functions. https://CRAN.R-1070

project.org/package=microbenchmark 1071

109. Fischer B, Neumann S, Gatto L, Kou Q, Rainer J (2020) mzR: parser for netCDF, mzXML, 1072

mzData and mzML and mzIdentML files (mass spectrometry data). 1073

https://bioconductor.org/packages/mzR/. Accessed 6 Apr 2020 1074

110. Gurobi. https://www.gurobi.com/. Accessed 6 Feb 2020 1075

53

111. CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer. Accessed 6 Feb 1076

2020 1077

112. GNU Project - Free Software Foundation (FSF) GLPK (GNU Linear Programming Kit). 1078

https://www.gnu.org/software/glpk/. Accessed 6 Feb 2020 1079

113. Böcker S, Dührkop K, Fleischauer M, Ludwig M (2019) SIRIUS Documentation Release 1080

4.0.1 1081

114. NORMAN Suspect List Exchange – NORMAN SLE. https://www.norman-1082

network.com/nds/SLE/. Accessed 13 Mar 2020 1083

115. CompTox March 2019 CSV file. 1084

ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/1085

MetFrag_metadata_files/CompTox_17March2019_SelectMetaData.csv 1086

116. Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C, Wishart 1087

DS (2019) BioTransformer: a comprehensive computational tool for small molecule 1088

metabolism prediction and metabolite identification. Journal of Cheminformatics 11:2 . 1089

https://doi.org/10.1186/s13321-018-0324-5 1090

117. Kruve A (2019) Semi-quantitative non-target analysis of water with liquid 1091

chromatography/high-resolution mass spectrometry: How far are we? Rapid 1092

Communications in Mass Spectrometry 33:54–63 . https://doi.org/10.1002/rcm.8208 1093

118. Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, 1094

Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS (2016) ClassyFire: 1095

automated chemical classification with a comprehensive, computable taxonomy. J 1096

Cheminform 8:61 . https://doi.org/10.1186/s13321-016-0174-y 1097

119. R for Mass Spectrometry. www.rformassspectrometry.org. Accessed 13 Mar 2020 1098

54

120. Rick Helmus (2020) patRoon 1.0.0. Zenodo. https://doi.org/10.5281/zenodo.3889856 1099

Figures 1100

Figure 1. Generic workflow for environmental non-target analysis. 1101

 1102

Figure 2. Overview of the NTA patRoon workflow. All steps are optional. Steps that are 1103

connected by blue and straight arrows represent a one-way data dependency, whereas 1104

steps connected with red curved and dashed arrows represent steps with two-way data 1105

interaction. 1106

 1107

Figure 3. Graphical user interface tools in patRoon. Tools are provided (a) to create a new 1108

patRoon data analysis project and (b) to inspect feature chromatography data. 1109

 1110

Figure 4. Interface for the patRoon workflow. The workflow steps are performed by a set of 1111

functions that execute the selected algorithm and return the data in a harmonized format 1112

by utilizing the ‘S4’ object oriented programming approach of R. These objects all derive 1113

from a common base class and may be further sub-classed in algorithm specific classes (as is 1114

exemplified for features). Generic functions are defined for all workflow classes to 1115

implement further data processing functionality in a predictable and algorithm independent 1116

manner (see also Table 3). Further information is provided in the reference manual [85, 86]. 1117

 1118

Figure 5. Parallelization benchmark results. (a) Benchmark results for commonly used CLI 1119

tools applied in patRoon workflows under varying parallelization conditions. Tests were 1120

55

performed with “simple” (left) and “complex” (right) input conditions (Table 4) to simulate 1121

varying workflow complexity. Parallelization was performed with the multiprocessing 1122

functionality of patRoon (top) or by using native multithreading (bottom, for tools that 1123

supported this). Graphs represent number of processes or threads versus relative execution 1124

time (normalized to sequential results). The dotted grey lines represent the theoretical 1125

trend if maximum parallelization performance is achieved. The dashed blue line represents 1126

the number of physical cores that became the default selection in patRoon based on these 1127

results. (b) Comparison of execution times (normalized to the execution times of the 1128

unoptimized results) when tools are executed without optimizations (green), executed with 1129

native multithreading (FFM, SIR and MF) or batch mode (GF) (orange), executed with 1130

multiprocessing (purple) or a combination of the latter two (pink), using simple (left) and 1131

complex (right) input conditions. (c) Overview of execution times for a complete patRoon 1132

workflow executed under optimized versus unoptimized conditions. All results for MC and 1133

SIR were obtained without enabling their native batch mode. 1134

 1135

Figure 6. Common visualization functionality of patRoon applied to the demonstrated 1136

workflow. From left to right: an m/z vs retention time plot of all feature groups, an EIC for 1137

the tramadol suspect found in both influent samples, a compound annotated spectrum for 1138

the 1,2,3-benzotriazole suspect and comparison of feature presence between sample 1139

groups using UpSet [77], Venn and chord diagrams. 1140

56

Supplementary information 1141

Additional file 1: Comma-separated file (.csv). Overview of software and databases that are 1142

used in the implementation in patRoon. This table summarizes all the software and 1143

databases that are described in the implementation section of the main text. 1144

Additional file 2: Word document (.docx). Supplementary figures. Additional figures that 1145

illustrate implementation details of patRoon and miscellaneous benchmarking results. 1146

Additional file 3: Word document (.docx). Supplementary tables. Additional tables with 1147

more details on the implementation and suspect screening demonstration. 1148

Additional file 4: Zip archive (.zip). Source code for benchmarks. Archive with several R 1149

scripts that were used to perform the parallelization benchmarks. 1150

Additional file 5: Comma-separated file (.csv). Demonstration suspect list. Suspect list that 1151

was used for the patRoon demonstration. The list was based on the detected compounds 1152

reported in [11], and SMILES identifiers for each suspect were collected from PubChem [23]. 1153

 1154

57

HRMS
data Features Annotation Interface

Primary
Language OS License References

PP FTS FG C SUS MS FA CA LA HS GA C RT

a CFM-ID

 X X CLI, Web C++ Cross LGPLv2.1 [42, 43]

b enviMass,
enviPick,
nontarget

X
i
 X X X X X X

GUI, R,
Web

R Cross GPLv3.0
1
 [44–46]

c GenForm

 X CLI C++ Cross
2
 LGPLv2.0 [47]

d MetFrag

 X X X X
CLI, R,
Web

Java Cross LGPLv2.0 [48]

e FOR-IDENT X
d
 X X Web HTML Cross Closed [49]

f MS-DIAL,
MS-FINDER

X X X X X X X X X CLI, GUI C# Win LGPLv3.0 [50, 51]

g MZmine X X
gl

 X X X X X X
k
 X X

gl
 GUI Java Cross GPLv2.0 [33]

h OpenMS
X

hi
 X X X X

k
 X X

CLI, GUI,
Python

C++
Win, Lin,
Mac

BSD/3-Clause [52]

i ProteoWizard X CLI, GUI C++ Win, Lin Apache 2.0 [22]

j RAMClustR

 X X R R Cross GPLv2.0 [53]

k SIRIUS and
CSI:FingerID

 X X X CLI, GUI Java Cross GPLv3.0 [54–58]

l XCMS and
CAMERA

X X X X R R Cross GPLv2.0 [32, 59]

m XCMS Online X X
l
 X

l
 X X X Web R Cross Closed [60]

n patRoon X
hi

 X
bhl

 X
hl

 X X X X
ck

 X
dk

 X
d
 X

b
 X

jl
 X X

d
 R R Cross GPLv3.0

P: pre-processing; FTS: find features; FG: group features across samples; C: data clean up; SUS: suspect screening; MS: automatic MS data extraction for
annotation purposes; FA: formula annotation; CA/LA: compound annotation (in silico/library); HS: unsupervised homologous series extraction; GA: grouping
and annotating chemically related features (e.g. adducts, isotopes, in-source fragments); RT: retention time prediction; Bold: functionality integrated in
patRoon; superscript: implemented with algorithms by given rows (omitted if only native); CLI: command-line interface; GUI: graphical user interface; Web:
interfaced via internet browser; OS: Supported Operating Systems; Win: Microsoft Windows; (Lin): GNU/Linux, (Mac): macOS; Cross: cross-platform; (1):
enviMass is distributed commercially; (2): Only Microsoft Windows binaries are distributed.

