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Abstract

The benefits of full frequency reuse in satellite communications consist of increased spectral
efficiency, physical layer security, enhanced coverage, and improved Quality of Service. This
is possible due to novel digital signal processing techniques for interference mitigation as well
as signal predistortion in non-linear high-performance amplifiers. Advanced linear precoding
and symbol-level precoding can jointly address the signal processing demands in the next-
generation satellite communications. The real-time signal precoding increases the computa-
tional complexity handled at the gateway, thus requiring low-complexity high-performance
algorithms to be developed. Additionally, extensive in-lab and field tests are required to
increase the technology readiness level and industrial adaption rate. In this thesis, we focus
on low-complexity precoding design and in-lab validations. We study the state-of-the-art
linear and symbol-level precoding techniques and multi-user MIMO test-beds available in
the literature. First, we present a novel low-complexity algorithm for sum power minimiza-
tion precoding design. This technique allows to reduce transmitted power in a multi-beam
satellite system and improves the quality of the received signal at user terminals. Next, we
demonstrate an FPGA accelerated high-throughput precoding design. The FPGA precoding
design is scalable for a different number of beams in the systems and operates in a real-time
processing regime using a commercially available software defined radio platform. One of the
highlights of this research is the creation of a real-time in-lab precoding test-bed. The test-
bed consists of a DVB-S2X precoding enabled gateway prototype, a MIMO channel emulator,
and user terminals. By using the radio frequency for transmitting and receiving the precoded
signals, we can test the performance of different precoding techniques in realistic scenarios
and channel impairments. We demonstrate an end-to-end symbol-level precoded real-time
transmission, in which user terminals can acquire and decode the precoded signals showing
an increase in performance and throughput. The in-lab validations confirm numerical results
conducted alongside in this work.
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Chapter 1
Introduction

1.1 Problem Overview and Motivation

The 5th generation of mobile radio communications systems should provide a high level of
integration and flexibility between different types of telecommunication networks. Terrestrial
and satellite systems historically were developed independently of each other which results
in technological diversity between the networks. The launched 5GPPP research program
co-funded by the European Commission is set to work towards a definition of a new common
standard for 5G networks [1]. The objective of the project METIS 2020 as a part of 5GPPP is
to build the foundation for a future mobile and wireless communications system for 2020 and
beyond [2]. These standards allow seamless joint operation of mobile cellular communications
and satellite systems as a single service. The use cases of modern satellite communications
(SATCOM) systems in 5G networks include increasing coverage of conventional terrestrial
cells, facilitating caching through multicast/broadcast data transmission, and providing off-
load backhauling for unicast user traffic [3].

The main driving commercial applications behind SATCOM technologies were and remain
services like television and different types of data broadcasting. The new era of broadband
internet and on-demand services brings new challenges to the design ideas behind SATCOM
systems. The market importance of broadband services and the limited frequency resources
pushes the SATCOM industry and academia towards the development of novel, more effi-
cient, and smart wireless communication technologies. The energy efficiency of the SATCOM
systems is an additional issue on the way towards new generation networks. Therefore, it
becomes crucial to define and investigate new network architectures that can support higher
system spectrum and energy efficiency, while providing large-scale coverage and availability.
To reduce the cost of SATCOM missions, a single wideband onboard High-Power Ampli-
fier (HPA) is used for multiple carrier amplification. This approach in comparison to the
conventional narrowband amplifier per link design allows reducing the power consumption,
heat emission, and complexity of a cooling system while lowering the amount of the payload
mass [4].

In SATCOM, aggressive reuse of available spectrum resources by exploiting Multi-user
multiple-input multiple-output (MU-MIMO) techniques brings the following benefits: in-
creased spectral efficiency; fairness of SINR over users; optimization of satellite transponders
transmit power; advanced interference mitigation; enhanced security of the physical layer
(PHY). Major research on MU-MIMO precoding techniques and interference in previous
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works [5–8] promise optimistic theoretical results in terms of increased SINR, more efficient
bandwidth utilization, and higher satellite throughput. The next challenge towards the novel
SATCOM paradigm is to design and research a realistic MU-MIMO transmitter for SAT-
COMs, which would exploit the potential of the precoding techniques.

In this sense novel software defined radio (SDR) platforms allow us to prototype a PHY
level of MIMO wireless systems of high complexity and scalability. The SDR platform gen-
erally consists of two parts: analog-to-digital (ADC) and digital-to-analog (DAC) converters
preceded by radio frequency (RF) front end on the hardware side and signal processing on
the software side, where the former should fall in with the latter. The software side can
perform with high precision all the analytical calculations. The hardware side, though, due
to the nature of the physical properties of the wireless channel and RF chains impose restric-
tions on the design of the transmitter. The SDR implementation would subject precoding
algorithms to frequency and phase misalignments, quantization noise of multichannel ADC
and DAC, non-linearities of RF components. The performance of a MIMO precoder is like-
wise reduced due to signal carrier frequency and phase mismatching between a transmitter
and users’ receivers. Correction of these impairments must be considered in the design of
the receivers. On the other hand, to enable the efficient utilization of satellite transponders,
multiple carriers have to be relayed through a single high power amplifier (HPA). However,
the non-linear nature of HPAs results in adjacent channel interference and increased Peak-to-
average power-ratio (PARP), which limits the expected performance gains. In this context,
studies on energy-efficient on-board digital predistortion techniques, to maximize the perfor-
mance of HPAs by uniformly distributing the power load are required [9]. A system could
operate continuously very close to the saturation point by applying advanced precoding tech-
niques. For the same reason, the impact of the MIMO precoding techniques on a shape and
distortions of a signal frequency spectrum must be studied as well. Furthermore, the MU-
MIMO precoder at the transmitter utilizes a closed-loop approach by employing the retrieved
channel state information (CSI) from the user terminals (UTs), hence, a feedback channel is
required for precoding to operate.

Accuracy of the CSI estimations, which are affected by imperfections of the transmitter
and all the receivers, and relevance due to the time-varying nature of a wireless channel are
not perfect in real communications systems [10]. The long round trip time and restrictive
feedback channel capacity bring complementary challenges for the CSI based precoding. Gen-
erally, due to the inability of acquiring instantaneous CSI at the gateway (GW) precoding
for mobile satellite systems can be very challenging and impose additional limitations on the
precoder design. However, there is potential for specific types of applications such as aero-
nautical/maritime systems, where the channel is predictable and there is no direct blockage
of the line of sight component [11]. Alternatively, open-loop precoding techniques are studied
for satellite communication systems [12].

Also, MU-MIMO precoding techniques, which are defined as optimization problems, re-
quire solution by time-consuming iterative Convex optimization (CVX) or Non-negative least
squares (NNLS) solving methods that must fit into relevant time window [4]. Hence, further
research on the optimization of the methods processing times to meet channel requirements
and current SDR computation power is required.

Thereby, the problem of integrating multicast satellite precoding algorithms into the over-
the-air transmitter is taken into consideration. The active development of end-to-end signal
processing algorithms for precoded SATCOM concerns as well the practical implementation
aspects of computational complexity [13] and large-scale MIMO arrays [14]. Facing the
design issues of the theoretical approaches while creating a practical implementation leads
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1.2 Main Contributions of this Thesis

us to a self-sustained evolution of the previously developed precoding techniques generating
new valuable knowledge in the academic and industrial fields of study.

1.2 Main Contributions of this Thesis

In this thesis, we investigate SLP implementation and application in realistic communications
systems. In this scope, we design low complexity algorithms to address hardware processing
limitations. Also, we build a precoding test-bed using the state-of-the-art SDR equipment for
in-lab real-time verification of the precoding algorithms. The synergy of the in-lab verification
and custom design of the precoding algorithm enables us to further analyze and achieve the
high system symbol rates at the low computational complexity cost. We verify the feasibility
and the gains of SLP over the conventional MU-MIMO precoders in terms of complexity,
SINR, and data rate.

We propose a framework for SLP design and devised a closed-form algorithm to solve
NNLS problems with a limited number of computational resources. We show both in numer-
ical simulations and in-lab demonstration that the closed-form algorithm provides a feasible
solution for convex optimization problems with a limited number of computational operations
and delivers enhanced performance in receivers.

The main contributions of the thesis are listed are as follows:

• Novel precoding algorithms with computational complexity optimization: Carried out
the practical design of the SLP algorithms and proposed the enhanced solution for the
SLP implementation. The necessary steps were considered towards practically reason-
able novel precoding design development, re-imagining the outcomes of the previously
achieved findings in the literature.

• Precoding enabled gateway, user terminals, and channel emulator for SATCOM: In
the course of the thesis preparation, a considerable amount of work was put into the
development of an in-lab real-time precoding demonstrator with satellite multi-beam
channel emulator for benchmarking and validating the performance of the precoder
design in close-to-reality conditions and facilitate further design improvements in a
practical environment.

• End-to-end precoding algorithms in-lab tests: Numerical approximations of the precod-
ing performance were validated with the in-lab data from the over-the-cable real-time
test-bed.

The main areas of this thesis are SLP algorithms optimization, computational complexity
reduction, practical precoder implementation, and in-lab demo development and validation.
In this context, convex optimization problems relative to the subject are formulated, explained
and efficient solutions are proposed. The prototyping tools and the implementation design
used for the in-lab validation are extensively discussed as well.

1.3 Organization of the Thesis

The Thesis comes in eight chapters as follows:
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• Chapter 2 gives an overview of the state-of-the-art in interference management in multi-
antenna systems, in particular SLP. It highlights the main challenges of the practical
implementation found in the existing literature. [J1], [B1].

• In Chapter 3 we propose a for sum power minimization SLP technique for M -th order
phase-shift keying (M-PSK), and amplitude and phase-shift keying (M-APSK) sym-
bol constellations, used in SATCOM. We construct a quadratic convex minimization
problem and derive a high-performance closed-form solution. [C4].

• In Chapter 4 we focus on sum power minimization SLP for M-QAM symbol constella-
tions for terrestrial wireless communication. We show that despite M -QAM constella-
tions have different symbol mapping from M-APSK, making the convex optimization
problem more difficult, we can modify and apply the same closed-form solution to
efficiently solve the problem. [C1].

• In Chapter 5 we elaborate on the closed-form solution design to operate it in the real-
time mode using FPGA hardware acceleration. We present a complete design of an
efficient SLP technique for modern SDR equipment and benchmark it against numerical
simulations. [J2].

• In Chapter 6 we demonstrate the in-lab test-bed for real-time precoded communications.
The test-bed is used to validate precoding techniques available in the literature and
developed in this Thesis. [C2], [C3], [C5].

• In Chapter 7 we benchmark the sum power minimization SLP for M-PSK performance
using the in-lab test-bed.

• We validate the design of the sum power minimization SLP for M-QAM in Chapter 8.
[J3], [C6] [C7].

• We conclude in Chapter 9 with our main research findings and discuss the possible
extensions.
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Chapter 2
Multiple-Antenna Communication Systems:
Overview

Interference in wireless systems was considered as a harmful impairment and different com-
munication standards like TDM, FDM, CDMA, etc. were devised to avoid transmissions in
the same physical channel and suppress interference harming effect on wireless services. The
emerging technology of active beamforming allowed to elaborate on the idea of space-division
multiplexing (SDM) to reuse the same frequency and time resources in multiple simultane-
ous transmissions. Basic SDM is based on power control and high beam directivity. With
evolving digital signal processors (DPS) and SDR technologies, SDM can explore advanced
interference mitigation techniques.

2.1 Multi-Antenna Transmit Systems

Phased-arrays were fast-growing technology in the past decades. The technology was ap-
plied in a wide range of communications and radar systems. The discrete solid-state active
phased arrays like the Swedish Erieye [15] and solid-state MMIC (monolithic microwave in-
tegrated circuit) active phased arrays like the L-band cellular-satellite IRIDIUM are one of
the highlights of the progress in the field [16].

Other applications can be found in acoustic active arrays for ultrasonic image reconstruc-
tion [17]. Acoustic imaging technology is now widely used for medical purposes, underwater
imaging, and nondestructive testing applications. Acoustic imaging in the air became popular
with advances in air-coupled transducers [18].

In recent years, transmitter arrays found their application in wireless power transfer [19],
becoming an underlying paradigm for simultaneous data and power transfer communica-
tions [20–23]. Another related interference scenario is found in very-high-bit-rate digital sub-
scriber line (VDSL) technology [24, 25]. The multi-antenna configuration is used for spatial
diversity to increase signal-to-interference and noise ratio by reducing the fading effect [26].
Additionally, a multi-antenna setup can be used for optimal antenna selection for channel
capacity maximization [27]. Passive and reconfigurable antenna arrays are used to enhance
antenna radiation directivity [28]. Advanced transmit diversity techniques are possible on
multi-antenna systems with an addition of DSP [29]. Furthermore, fully digital baseband
based multiple independent data streams for each spatial location were first demonstrated in
1991 by ArrayComm company [30].
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2.2 Beamforming and Precoding

Precoding is a design of the transmitted signals to efficiently deliver the intended data to the
transmitters. Precoding has been studied recently as a way to reduce co-channel interference
in wireless communications (Wi-Fi, LTE) and multi-beam satellite systems [31–34]. Some pre-
coders can be tailored for the spectrum or power efficiency. Other precoders are designed with
hardware impairments in mind, like amplifier non-linearities and digital-to-analog converter
(DAC) quantization errors [35]. For optimal precoder design, dynamic channel characteristics
have to be measured or modeled.

Downlink channel response can be measured at the receiver side and feedback to the
transmitter. In the TDD systems, the transmitter can use channel reciprocity to measure the
estimated channel directly from the uplink signals. In satellite systems channel reciprocity is
not applicable due to many reasons. In SATCOMs, FDD is used for forward and return links
instead of TDD. Switching between forward and return links in the TDD manner is inefficient
due to considerable signal propagation delays and the particularities of the design of satellite
payloads. Also, in a satellite payload, the return and forwards links are relayed through
different radio components, thus they experience different channel impairments. Instead,
implicit receiver-sided channel estimation [36] or codebook based CSI techniques are required.
Precoders use CSI to calculate optimal weights for each data stream and transmit antenna.
The optimal weights are subject to a particular precoder design.

Interference in wireless communication systems is considered a performance-limiting fac-
tor. In a MU-MIMO transmission, the interference occurs from the superposing of the trans-
mitted signals for different users sharing the same channel resources. Linear precoding tech-
niques with prior knowledge of CSI efficiently mitigate the interference at the user side with
a predistortion of the transmitted modulated signals at the transmitter to cancel the inter-
ference as shown in Fig. 2.1a. Linear precoding is calculated once per transmitted frame and
applied to all symbols irrespective of a symbol’s value.

A classical maximal ratio transmission (MRT) [37] technique calculates the weights of
the signals from the multiple transmit antennas such that the signal-to-noise ratio (SNR)
of their sum is maximized in the absence of interference, or when interference is negligible
compared to the background noise. The transmit antenna weights are matched to counter
channel fading.

In zero-forcing (ZF) beamforming [38] the weights are calculated based on the channel
inverse. Channel inversion is one of the simplest interference mitigation techniques for the
multi-user interference-limited channel [39]. This technique multiplies the vector signal to be
transmitted by the inverse of the channel matrix creating orthogonal channels to each user.
Regularizing the inverse (RZF) improves the performance over the ZF performance [40].
Generally, the regularized precoder is obtained via minimizing the mean square error (MSE)
between the transmitted and received symbols, which is, thus, also termed as minimum
MSE (MMSE) precoder [41, 42]. These methods were further studied and extended in the
recent works [43,44]. MMSE is especially useful for poorly conditioned channel matrices and
provides better SINR than ZF [40] in noise-limited scenarios.

Truncated polynomial expansion (TPE)-based precoding is a recently proposed technique
to reduce the computational complexity of RZF precoder while maintaining similar perfor-
mance [45,46]. It has been shown that even for a small number of matrix polynomial terms,
TPE-based schemes closely approach the sum rate and the minimum user rate of the optimal
RZF precoder. In terms of computational complexity, by using an appropriate implementa-
tion technique, e.g., Horners scheme, significant computation reduction can be achieved as
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Figure 2.1: Interference management in the I/Q plane for linear precoding and SLP.

compared to the RZF precoder [47].

2.3 Symbol-Level Precoding

On the other hand, SLP techniques are managing interference on an instantaneous trans-
mitted symbol level [48] instead of a transmitted frame. Aware of the correct constructive
interference (CI) regions of each data symbol, SLP can manage interference more efficiently
as shown in Fig. 2.1b. Also, SLP can preserve CI components in the received signal, such that
the interference positively contributes to the data signal power as shown in Fig. 2.1d. While
linear precoding techniques in a similar scenario will attempt to cancel CI as shown in Fig.
2.1c. Therefore, CI is the interference that pushes the data signals further into CI regions
defined by the selected modulation scheme. SLP exploits the effect of CI as an additional
degree of freedom to optimize precoded signals at the transmitter side. Thought it becomes
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apparent, that SLP has to be designed specifically for every considered modulation scheme.
The design of SLP can serve different optimization targets of the transmitted signal

waveform. In this context, SLP is actively studied in recent works [44, 49, 49–53]. In [54],
the authors use a novel SLP approach to mitigate user interference in both spatial and
temporal domains of a MIMO channel. Consumed power minimization and green energy
are trending in modern smart wireless communications [55]. In this scope, the technique
to reduce spatial peak-to-average power ratio (PAPR) is proposed in [56, 57], while in [58]
the approach is used for the peak power minimization. SLP was applied to minimize the
transmission power for green wireless communications [55]. On the other hand, academic
research shows that precoding techniques in SATCOM potentially allow more efficient spectral
utilization and substantially higher service availability [59–61]. In this context, studies on
energy efficient onboard predistortion techniques for HPAs, to maximize the performance by
uniformly distributing the power load are conducted [62–64].

2.4 Precoding for SATCOM

The new era of broadband internet and on-demand services challenges to come up with
new approaches towards the design of the SATCOM systems. The market importance of
broadband services and the limited frequency resources drive the SATCOM industry and
academia towards the development of novel smart and more efficient in terms of power and
frequency wireless communication technologies. Multi-beam satellites, on the one hand, are
more power-efficient and, on the other hand, have higher capacity in the satellite channel
through the spatial multiplexing [65]. While conventional multi-beam systems employ the
4 color reuse (4CR) scheme to mitigate interference between the beams, precoding enabled
full frequency reuse (FFR) schemes are more efficient. Therefore, the application of MIMO
in SATCOM is highly challenging due to the practical constraints, but at the same time,
extremely rewarding academic tasks [66,67] from both literature and project point of views.
The authors in [68] present a real-time demonstrator for precoded communications in multi-
beam satellites. In [69] the closed-loop ZF precoded transmission is demonstrated over-the-air
satellite link showcasing precoding practical application.

Recent works studied the practical application of precoding in SATCOM [4,12,32,34,67,
70–73]. Moreover, the SLP approach provides extra flexibility to improve the efficiency of
satellite payloads. The authors in [62] propose a novel SLP design to reduce the power peaks
in the transmitted signal to efficiently drive the nonlinear HPS and reduce the detrimental
saturation effect. In [56] the authors demonstrate a technique for spatial PAPR reduction in
the multi-beam satellite downlink. While the authors in [74] present a precoding technique
at the gateway of a multi-beam mobile satellite systems to enable a robust full frequency
reuse pattern among the beams. Energy-efficient precoding is proposed in [75,76]. In [77] the
authors propose constant-envelope precoding for satellite systems improving the robustness
of the latter to the nonlinear distortions.

Particular attention is given to joint user scheduling and precoding design in [78–83].
Distributed precoding systems for multiple gateways are studied in [84]. By deploying several
gateways, the available spectrum for the feeder link can be reused among spatially separated
gateways through very directive antennas.
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2.5 Precoding Test-beds

Precoding techniques are deployed at the transmitter side and introduce additional com-
putational complexity on top of the existing signal preprocessing algorithms. The increased
computational complexity involves defining and solving complex optimization problems at the
system’s symbol rate. Recent works try to address the implementation of the computational
complexity of precoding techniques on actual hardware [85,86].

The authors in [87] present a real-time mmWave (28 GHz) massive MIMO test-bed,
which includes a hybrid beamforming architecture based on precoding and beam selection
approaches. The presented test-bed supports up to 64 transmitting antennas with 16 ac-
tive RF feeds, simultaneously serving 12 user terminals using orthogonal frequency division
multiplexing (OFDM) in time-division duplex (TDD) mode.

In [88] the authors have developed an extensible test-bed, to realize a 100-antenna MIMO
communication test-bed. It is built up of commercial off-the-shelf hardware, making it acces-
sible and modifiable. Due to the heavy real-time processing requirements for massive MIMO,
the test-bed uses linear precoders like MRT and ZF.

A reconfigurable real-time digital baseband MIMO channel emulator was presented in [89].
The emulator implements several transceiver impairments and a wireless correlated MIMO
channel with the help of a low-complexity Rayleigh fader design. The proposed system has a
rich set of emulated effects and high emulation speed to facilitate MIMO baseband transceiver
development and testing.

The authors in [90] proposed a flexible FPGA-based channel emulator for non-stationary
MIMO fading channels. The non-stationary channel emulator is suitable for certain propa-
gation scenarios, such as high-speed train (HST) [91].

Solving optimization algorithms [92,93] for large-scale problems in real-time is not a trivial
task and is a barrier to the implementation and demonstration of SLP techniques. Recent
works focus on the complexity reduction of SLP. In [94] it is demonstrated that SLP design
can be approached as ZF precoding with transmitted symbols perturbations and in [95] the
authors devised a novel closed-form solution to exploit constructive interference in precoding
by using a similar approach. In [96] the authors proposed another closed-form sub-optimal
solution for power minimizing SLP. At the same time, the SLP technique for large-scale
antenna arrays is shown in [14].

Constructive interference (CI) vector perturbation (VP) based precoding [97] offers a
reduction in algorithm complexity [98]. Other closed-form solutions were developed in [95,96,
99] to further facilitate practical implementations of SLP techniques. In [100–103] the authors
demonstrated the feasibility to deliver low computationally complexity of SLP techniques and
implement it on actual hardware processing the baseband on a real-time basis for downlink
transmission.

In [104] the authors demonstrated a 2× 2 MIMO precoded real-time transmission system
by using lookup tables (LUTs) for storing SLP optimized symbol mapping. While the use of
the LUTs is an efficient solution for small systems with few transmitters, the large-sized LUTs
are needed for s large number of transmitters and receivers in the system. The size of the
LUTs increases as a function of MN for M -th modulation order and N number of receiver
terminals. In [105] a real-time satellite precoded transmission hardware demonstrator is
presented, where a gateway has 6 transmitting antennas and simultaneously serves 6 user
terminals with up to 32-APSK modulated signals. In this case, the required size of LUTs
would be more than 632 ≈ 7.95 × 1024 elements. It is inefficient to implement and handle
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LUTs at such a scale on the transmitter side. Therefore, there is a demand for novel, low-
complexity, real-time based algorithms for SLP precoders.

34



Chapter 3
Closed-Form Solution for M-PSK and
M-APSK Symbol-Level Precoding for
Power Minimization

In this chapter, we propose a precoder design for high-performance symbol processing. We
derive an NNLS convex optimization problem for transmit power minimization and propose a
closed-form solution to reduce the computational complexity of the technique. We benchmark
the proposed closed-form algorithm against the conventional Fast NNLS [106] algorithm.

3.1 Closed-Form Symbol-Level Precoding Design

3.1.1 System Model

We consider a system model, which focuses on the forward link of a multi-beam satellite
system. We assume the full frequency reuse scenario, in which all the beams transmit in
the same frequency and time. The multi-user interference is mitigated by using the signal
precoding technique. We define the number of transmitting antennas as Nt and the total
number of users as Nu in the coverage area. In the specified MU-MIMO channel model,
the received signal at the i-th user is given by yi = h†ix + ni, where h†i is a 1 × Nt vector
representing the complex channel coefficients between the i-th user and the Nt antennas of
the transmitter, x is defined as the Nt × 1 vector of the transmitted symbols at a certain
symbol period and ni is the independent complex circular symmetric (c.c.s.) independent
identically distributed (i.i.d) zero mean Additive White Gaussian Noise (AWGN) measured
at the i-th user’s receive antenna.

Looking at the general formulation of the received signal, which includes the whole set of
users, the linear signal model is

y = Hx + n = HWs + n, (3.1)

where y ∈ CNu×1, n ∈ CNu×1, x ∈ CNt×1, and s ∈ CNu×1 and H ∈ CNu×Nt . In this scenario,
we define the linear precoding matrix W ∈ CNt×Nu which maps the information symbols s
into precoded symbols x. We normalize the data symbols s to be unit variance in average
over the length of a frame.
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Minimization

3.1.2 Optimization Problem Definition

In this section, we define an optimization problem of a computationally efficient SLP tech-
nique, which aims to minimize the sum power of the precoded symbols at the transmitter side.
The technique is applicable on the M -th order phase-shift keying (M -PSK), and amplitude
and phase-shift keying (M -APSK) symbol constellations. The aim is to optimally preserve
constructive interference components to decrease the total transmitted power at the trans-
mitter side. The essential difference of the SLP technique from a linear precoding method is
the optimization vector u = [u1, u2, . . . , ui] ∈ CNu×1, which is recalculated for every set of
symbols s to construct the optimized precoded signal given by

x = W(Γ • s + u), (3.2)

where Γ = [Γ1,Γ2, . . . ,Γi] ∈ RNu×1 is per terminal SNR requirements. The following for-
mulation allows us to split the problem of constructing an optimal beamforming into two
independent tasks: channel orthogonalization and optimal symbol mapping for power min-
imization. In this scenario, we define the precoding matrix (W) as the Zero-Forcing linear
precoder:

WZF = Ĥ†(ĤĤ†)−1, (3.3)

where Ĥ is the channel matrix estimated from the channel state information (CSI). We choose
ZF for its properties to orthogonalize the channel so that in the case of Ĥ = H the received
symbols are a summation of the transmitted symbols, the optimization vector, and Gaussian
noise:

y = HWZF(Γ • s + u) + n = Γ • s + u + n. (3.4)

ZF is not an optimal precoder in a sense of energy efficiency and there are more efficient
techniques in the literature [107], which provide better power and BER performance on a
frame basis. By using the ZF precoding matrix we guarantee to meet the SNR constraints
in the design of SLP and simplify the precoder. The optimal symbol mapping we derive in
the following paragraphs.

90.0°

Q
u

a
d

ra
tu

re
-p

h
a

se

In-phase                                       

symbol    

~
0

symbol = 1+0i
u+0i~

op miza on

Figure 3.1: Symbol optimization of the proposed SLP.
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In Fig. 3.1 we generalize the effect of the optimization ui on a single complex data symbol
si with unit power. The optimization vector increases the absolute magnitude of the symbol
and keeps its phase in a fixed direction. In a case of the multi-ring constellation we consider,
that power of the symbols, which are mapped to the external ring, is |si| ≥ 1. All the symbols
on the internal rings with power |si| < 1 retain their original position.

To avoid operations with complex numbers in the optimization problem we reformulate
the input data to real-defined values and keep the rest of the optimization problem relevant.
We replace the complex data symbols with equivalent symbols s̃ ∈ RNu , where s̃i = 1 + ι0
for every i = 1, 2, . . . , Nu, by introducing the following transformation

Γ • s = Bs̃, (3.5)

where B is a diagonal matrix, where elements of the vector Γ • s are its diagonal elements
such as:

B =



Γ1s1 0 0 . . . 0
0 Γ2s2 0 . . . 0
0 0 Γ3s3 . . . 0
...

...
... . . . ...

0 . . . 0 0 Γisi


. (3.6)

We also replace the optimization vector u with a new real-defined vector ũ = [ũ1, ũ2, . . . , ũi] ∈
RNu×1
≥0 and rewrite the equation (3.2) as

x = WZFB(s̃ + ũ). (3.7)

The new vector optimization ũ can only acquire zero or positive real values, which ac-
commodates the objective to increase the absolute magnitude and keep the phase fixed of
the data symbols received by the terminals while pushing the sum power of the transmitted
precoded symbols to its minimum.

In the case of a single-ring M -PSK constellation, we define the optimization problem to
minimize the sum power of the precoded symbols vector x as

min
ũ

‖x‖2

s. t. ũi ≥ 0,
(3.8)

for all i = 1, 2, . . . , Nu.
By substituting (3.7) in (3.8) we get

min
ũ

‖Aũ− d‖2

s. t. ũi ≥ 0,
(3.9)

where A = WZFB and d = −WZFBs̃. Finally, we transform the objective function in (3.9)
from the complex domain to the real domain. In this case, we apply the equality between the
Euclidean norm of a complex vector z̃ = [z̃1, z̃2, . . . , z̃i] and a real vector z = [z1, z2, . . . , zi],
where z̃i = ai + ιbi and zi = [ai, bi], to rewrite (3.9) as

min
ũ

‖Ãũ− d̃‖2

s. t. ũi ≥ 0,
(3.10)
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where Ã = [Re(A); Im(A)] ∈ R2Nt×Nu and d̃ = [Re(d†), Im(d†)]†.
In a case where the symbols generated from multi-ring M -APSK constellations, we need

to fix the symbols on the internal rings (ũi = 0) and optimize the symbols only on the external
ring by increasing their absolute magnitude (ũi ≥ 0). For this, we define the optimization
problem by constraining the external and internal symbols separately as:

min
ũ

‖x‖2

s. t. ũi ≥ 0, |si| ≥ 1,
ũi = 0, |si| < 1.

(3.11)

We follow the same derivation steps as in the case of M -PSK constellations and get the
following optimization expression:

min
ũ

‖Ãũ− d̃‖2

s. t. ũi ≥ 0, |si| ≥ 1,
ũi = 0, |si| < 1.

(3.12)

We can see that the problem (3.10) is a subset of the more general problem formulation
(3.12).

The problem (3.10) is a NNLS optimization problem. It can be solved in different ways
found in the literature [106,108]. The problem (3.12) can be solved by using CVX [109,110].
After the optimization vector ũ is found, the gateway constructs the precoded signal using
the equation (3.7). If the optimal solution is not found, then all the elements of ũ are equal to
zero. In this case, the SLP technique is equivalent to the conventional ZF precoding technique

x = WZFB(s̃ + ���
0

ũ) = WZF(Γ • s). (3.13)

Thus, in the worst case scenario the proposed SLP technique performs the same as the ZF
precoding in terms of energy efficiency and sum power rate.

3.1.3 Complexity Analysis of the SLP design and the Fast NNLS Algo-
rithm

The computationally efficient SLP design, as described in the previous section, shares the
same operations as the ZF technique. For the MU-MIMO system with an equal number of the
transmitting and receiving antennas Nt = Nu = N , the asymptotic computational complexity
of the inversion of the channel matrix H is O(N3). The matrix inverse is calculated once
per symbol frame. The asymptotic complexity of the multiplication between the channel
precoding matrix W and the vector of symbols s is O(N2). The multiplication is performed
per each set of symbols in the frame.

The most computationally demanding part of the SLP design is the Fast NNLS and
CVX algorithms, which solve the sum power minimization problems (3.10) and (3.12). The
algorithm is repeated per every set of transmitted symbols. Hereby we do not provide the
exact asymptotic complexity of the CVX algorithm, as it contains several embedded solvers
to handle different types of convex problems. On the other hand, the most computationally
complex operation of the Fast NNLS algorithm [106,108] is solving the unconstrained linear
least-squares sub-problems by using the QR decomposition. The asymptotic complexity of
the QR decomposition is of O(N3). However, in [111] the authors propose a method to reduce
considerably the level of complexity of the QR decomposition up to O(N2).
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3.1.4 Closed-Form Algorithm (CF NNLS SLP)

In this section, we propose a closed-form algorithm (CF NNLS SLP), which do not use the QR
decomposition to efficiently solve the optimization problem (3.10) and (3.12) for M -PSK and
M -APSK symbols. The Fast NNLS algorithm [106] finds the optimal regression coefficients
ũ by iteratively updating and solving the active subset P of the quadratic equations as

ũ = (Ã†Ã)−1Ã†d̃. (3.14)

For the Fast NNLS algorithm to converge the number of iteration is not fixed and can
reach up to Nu. In every iteration the equation (3.14) is partially solved thought the QR
decomposition.

We propose to substantially relax the complexity of the optimization problem by the
assumption that the regression coefficients are mutually uncorrelated. In this case, the off-
diagonal elements of the matrix product (Ã†Ã) are equal to zero as

Ã†Ã ≈


∑2Nt
j=1 Ã

2
j,1 . . . 0

... . . . ...
0 . . .

∑2Nt
j=1 Ã

2
j,Nu

 . (3.15)

By inserting (3.15) into (3.14) we derive an approximate closed-form solution for the opti-
mization problem (3.10) as

ũi = 1∑2Nt
j=1 Ã

2
j,i

2Nt∑
j=1

Ãj,id̃j ≥ 0, (3.16)

for each element i of the vector ũ. The solution of the equation (3.16) must be equal or
greater than zero and cannot take negative values.

In order to solve (3.12) we extend (3.16) to differentiate symbols from external and internal
constellation rings as

ũi =


1∑2Nt

j=1 Ã
2
j,i

∑2Nt
j=1 Ãj,id̃j ≥ 0 , |si| ≥ 1

0 , |si| < 1.
(3.17)

In the extended expression, the solution must be equal to zero for every symbol in the internal
ring |si| < 1. In this case, the internal constellation symbols are fixed to their original position.
The (3.17) can be also applied to solve the problem (3.10), thus it is a complete solution for
any type of PSK and APSK constellations.

The approximate solution (3.17) is solved and considered as converged in a single iteration
contrary to the Fast NNLS. The asymptotic complexity of the equation 3.17 is of O(N2). This
is a considerably lower complexity level than the one of the Fast NNLS algorithm, which can
use the QR decomposition multiple times in a single optimization problem.

Obviously, the solution provided in equation (3.16) is not optimal and the calculation error
of the optimization will increase following the expansion of the dimensions of the matrix Ã
as will be demonstrated in the following section of this chapter. We propose to minimize the
calculation error by introducing a scale factor ρ as follows:

x = WZFB(s̃ + ρũ). (3.18)

The scale factor ρ can be heuristically estimated ranging its values from 1, when the error is
not significant, towards 0 as the error increases.
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3.2 Theoretical Validation

We demonstrate the feasibility of the proposed SLP technique and compare the performances
between the Fast NNLS (denoted as NNLS SLP) algorithm and the closed-form solution
(denoted as CF NNLS SLP). Also, we benchmark the SLP techniques against the conventional
ZF (3.13) and MMSE precoders defined as

WMMSE = ĤH · (Ĥ · ĤH + σ2I)−1, (3.19)

where σ2 is the AWGN noise variance in the I/Q components combined and I ∈ RNu×Nu is
an identity matrix. The precoded signals are constructed accordingly as follows

xZF = WZFs, (3.20)

xMMSE = WMMSEs. (3.21)

In the numerical validation, we consider a MU-MIMO system, which has an equal number of
the transmit and receive antennas Nt = Nu = N . We accordingly generate a full rank N ×N
MIMO channel matrix with a 2-norm matrix condition number defined as

κ2(H) = ||H||2 · ||H−1||2. (3.22)

The matrix condition number corresponds to the ratio of the largest singular value of that
matrix to smallest singular value of the matrix. In the case of the MU-MIMO system, the
matrix condition number describes the power imbalance in the channel [101]. We average the
results over 500 channel matrices.

3.2.1 Averaged Sum Power Benchmark

In this benchmark, we evaluate the averaged sum power of the precoded signal designed using
ZF and the proposed SLP techniques - NNLS SLP and CF NNLS SLP. We plot the sum power
over the number of the transmit and receive antennas N in Fig. 3.2. All the benchmarks
are normalized to the power of the ZF technique, thus ZF benchmark is at 0 dB. We can
see that both NNLS SLP and CF NNLS SLP approaches construct the precoded signal at
the lower power than the ZF technique. The higher the channel rank, the lower the sum
power of the precoded signal is needed to transmit the precoded signal. We observe that the
performance of the CF NNLS SLP algorithm does not reach the performance of the NNNLS
SLP for N ≥ 5. The optimization solution of the unscaled CF NNLS SLP becomes unfeasible
around the point N = 13. The number of the off-diagonal elements of the channel matrix
increases exponentially as the matrix size is increasing. Contrary, the number of the diagonal
elements has a linear dependency. Accordingly, the sum power of the off-diagonal elements
of the matrix product (ÃT Ã) increases faster than the power of the diagonal elements. At
a certain point, the sum power of the off-diagonal elements exceeds the sum power of the
diagonal elements. As a result, the optimization problem (3.10) error is too large as in this
case the off-diagonal elements have a strong influence and must be accounted for designing
the regression coefficients. The scaled CF NNLS SLP solution on the other hand minimizes
the error and can perform even in the large dimension systems. The scaling parameter ρ was
selected heuristically and is equal to 1 for N = 2 . . . 6, ρ is equal to 0.5 for N = 7 . . . 14, and
ρ is equal to 0.33 for N = 15 . . . 20.

In Fig. 3.3 we generate variable size channel matrix while keeping its condition number
fixed. Although the rank of the channel matrix is increasing, the major sum power will be
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Figure 3.2: Averaged sum power in different channel realizations for conventional ZF, NNLS SLP
and CF NNLS SLP. The number of transmitters is equal to number of the receivers (Nt = Nu = N).
The 2-norm condition number is a function of 3N .

concentrated in the diagonal elements for any channel dimensions. We can see that in this
channel scenario both optimization algorithms perform identically. The closed-form algorithm
even without the scaling remains very close to the optimal solution in the benchmark.

The numerical results show that the mutual correlation between the regression coefficients
in the convex optimization problems (3.10) can be neglected for certain MIMO channel sce-
narios. By using the proposed closed-form algorithm, we can improve the power efficiency
of the MIMO system and considerably reduce the complexity of the precoder. The letter
is important when implementing the SLP technique on the actual hardware for the in-lab
demonstration.

3.2.2 Computation Time Benchmark

The following benchmark shows the processing time per set of N precoded symbols averaged
over duration of a frame. The benchmark was performed in the MATLAB R2018b environ-
ment using general-purpose central processing unit. Here we do not how separated results for
the CF NNLS SLP with the scaling and without it. To disable scaling, we set ρ = 1 for every
N , therefore the algorithm is the same in both cases. Fig. 3.4 shows the time evaluation
required to process the equation (3.20) for ZF, the equation 3.17 for CF NNLS SLP, and the
Fast NNLS algorithm of [108] for NNLS SLP.

We observe that the ZF and CF NNLS SLP algorithms perform at the fastest time for
any given size of the MIMO system. The processing time of the closed-form algorithm
CF NNLS SLP is significantly improved over the benchmark of the Fast NNLS algorithm.
By using the CF NNLS SLP algorithm, the transmitter can efficiently construct the precoded
symbols with the symbol-level approach. The reduced processing time is an important step
towards the in-lab implementation of the SLP technique applicable to the real-time high-
throughput satellite communications.
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Figure 3.3: Averaged sum power in different channel realizations for conventional ZF, NNLS SLP
and CF NNLS SLP. The number of transmitters is equal to number of the receivers (Nt = Nu = N).
The 2-norm condition number is equal 8 and fixed for every N .

3.2.3 Energy Efficiency Benchmark

We evaluate the energy efficiency of the MIMO system using the proposed SLP technique and
compare the performance between the Fast NNLS (NNLS SLP) algorithm and the closed-form
algorithm (CF NNLS SLP). The energy efficiency is defined as

EE(Eb/N0) = (1− BER(Eb/N0))
JNN

, (3.23)

where JN is the average sum power of the precoded signals for the channel size N and
Eb/N0 = 10 log10( 1

log2(M)σ2 ) is the energy per bit to noise power spectral density ratio for the
M = 8 PSK constellations.

The proposed SLP technique pushes the data symbols deeper into the detection region
by exploiting the constructive inter-user interference. Fig. 3.5 shows an example of received
8-PSK constellation optimized by the proposed SLP algorithm. The excursion in the symbols
results in an improved averaged Eb/N0 ratio over the whole frame of symbols, although the
instantaneous Eb/N0 ratio of some symbols does not improve in relation to the ZF technique.

The Eb/N0 is set by adding AWGN to the received signal as in (3.1). The demodulator
is considered to have a perfect phase alignment and errors in the symbols appear solely due
to the injected noise. Fig. 3.6 shows the energy efficiency of the theoretical 8-PSK curve,
and of ZF, MMSE, NNLS SLP and CF NNLS SLP algorithms averaged over the channel
matrix with conditioning number set to 24. The theoretical B̂ER for 8-PSK is obtained using
equation 8.22 in [112]:

B̂ER(Eb/N0) = 1
π

∫ (M−1)π/M

0
exp

− (Eb/N0)sin2(π/M)
sin2(θ)

dθ. (3.24)

It was shown in [112] that the upper bound of the integral in (3.24) is:

B̂ER(Eb/N0) = M − 1
M

exp

− (Eb/N0) sin2( π
M

)

. (3.25)
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Figure 3.4: Averaged processing time of ZF, NNLS SLP and CF NNLS SLP algorithms.
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Figure 3.6: Energy Efficiency curves for ZF, MMSE, NNLS SLP and CF NNLS SLP compared
to the theoretical 8-PSK baseline. The matrix condition for the precoded channel is 24 and N = 8.

We can see from Fig. 3.6 that the proposed SLP technique significantly improved the
energy efficiency of the system. The higher energy efficiency of the proposed SLP technique
is achieved when using the Fast NNLS algorithm. The proposed CF NNLS SLP algorithm
also improves the energy efficiency of the system compared to the ZF and MMSE techniques.

3.3 Summary

In this chapter, we presented the computationally and energy-efficient SLP for sum power
minimization, where the constellation symbols are optimized in a fixed-phase direction. By
using the fixed-phase symbol optimization, we further reduce the computational complexity
of the precoding at the transmitter. We demonstrated the efficiency of the precoder design
using the Fast NNLS algorithm and the proposed closed-form algorithm for solving the convex
optimization problem. The numerical validation shows that the performance of the closed-
form algorithm is nearly the same as the performance of the Fast NNLS algorithm in terms of
optimization quality for certain MIMO channel matrices. The closed-form algorithm has an
asymptotic complexity of O(N2) and has a significantly shorter processing time in comparison
to the Fast NNLS algorithm. The CF NNLS algorithm results in the increased sum power
of the precoded signal when compared to the Fast NNLS algorithm. On the other hand,
the closed-form algorithm provides a trade-off between the increased sum power and much
faster processing time. The efficient processing time and low complexity of the algorithm
are essential in the real-time transmission systems with very short symbol periods (DVB-S2,
Millimeter-wave communications).
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Chapter 4
Closed-Form Solution for M-QAM
Symbol-Level Precoding for Power
Minimization

In this chapter, we focus on terrestrial communication through a MU-MIMO channel. We
derive an energy and computationally efficient symbol-level precoding to minimize the sum
power of the transmitted signal while maintaining the minimal required SNR threshold at
the receiver terminals. The SLP technique is based on a non-negative convex quadratic
optimization problem. We improve the technique to support the optimization of M -th order
QAM constellations in the relaxed-phase region.

4.1 Symbol-Level Precoding Design

4.1.1 System Model

We consider a system model with the forward link of a multi-user multi-antenna terrestrial
communication system. We assume the system to use the full frequency reuse scenario, in
which all the antennas transmit in the same frequency and time. The multi-user interference
is managed using precoding. We define the number of transmitting antenna as Nt and the
total number of receiver terminals as Nu in the coverage area. In the specified MU-MIMO
channel model, the received signal at the i-th terminal is given by yi = h†ix + ni, where h†i
is a 1 × Nt vector representing the complex channel coefficients between the i-th terminal
and the Nt antennas of the transmitter, x is defined as the Nt × 1 vector of the transmitted
symbols at a certain symbol period and ni is the independent complex circular symmetric
(c.c.s.) independent identically distributed (i.i.d) zero mean Additive White Gaussian Noise
(AWGN) measured at the i-th terminal’s receive antenna.

Looking at the concatenated formulation of the received signal, which includes the whole
set of receiver terminals, the linear signal model is

y = Hx + n = HWs + n, (4.1)

where y = [y1, y2, . . . , yi] ∈ CNu×1, n = [n1, n2, . . . , ni] ∈ CNu×1, x ∈ CNt×1, and s ∈ CNu×1

and H = [h†i ,h
†
i , . . . ,h

†
i ] ∈ CNu×Nt . In this scenario, we define a precoding matrix W ∈
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CNt×Nu which maps the information symbols s into precoded symbols x. We consider the
data symbols s to be unit variance complex vectors |si| = 1 for every i = 1, 2, . . . , Nu.

4.1.2 Symbol-Level Precoding Design

In this section, we define an optimization problem of the computationally efficient SLP tech-
nique, which aims to minimize the sum power of the precoded symbols at the gateway side.
The technique is applicable to the M -th order quadrature amplitude modulation (M -QAM).
It reduces the sum power of the precoded symbols at the transmitter side by exploiting con-
structive interference components at the receiver side. To achieve this, the SLP technique
needs to recalculate a perturbation vector u = [u1, u2, . . . , ui] ∈ CNu×1 for a set of symbols s
in every transmission time frame to construct the optimized precoded signal given by

x = WΓ(s + u), (4.2)

where Γ is per terminal minimal SNR requirements defined as

Γ = diag
[
Γ1, Γ2, . . . , Γi

]
. (4.3)

In the following formulation, we split the problem of constructing optimal beamforming
vectors into two independent tasks: channel orthogonalization and optimal symbol mapping
for energy efficiency. In this case, we define the precoding matrix (W) as the Zero-Forcing
linear precoder:

WZF = ĤH(ĤĤH)−1, (4.4)

where Ĥ is the channel matrix estimated from the channel state information (CSI). We choose
ZF for its properties to orthogonalize the channel so that in the case of Ĥ = H the SNRs of
the received symbols are linearly related to the Γ applied on the transmitted symbols, the
perturbation vector (u) and the Gaussian noise (n):

y = HWZFΓ(s + u) + n = Γs + Γu + n. (4.5)

Thought, ZF is not an optimal precoder in a sense of energy efficiency and there are more
efficient techniques in the literature [107], which provide better performance on a frame basis.
The proposed SLP approach will build upon the ZF precoder and will improve the energy
efficiency by optimizing every transmitted set of symbols. The optimal symbol mapping we
derive in the following paragraphs.

In Fig. 4.1 we show the effect of the perturbation ui on a complex data symbol si
depending on its location in the M -QAM constellation. The perturbation vector has to
increase the absolute magnitude of the symbol and preserve detection regions. We consider
that all the symbols are mapped in the first quadrature of the complex plane by transforming
the actual complex data symbols with the equivalent symbols s̃ ∈ CNu×1, where s̃i = bisi,
Re(s̃i) ≥ 0 and Im(s̃i) ≥ 0 for every i = 1, 2, . . . , Nu. The variable bi represents the rotation
of the symbol vectors into the first quadrature of the complex plane and is defined as

bi =



1 if Re(si) > 0 and Im(si) > 0
−ι1 if Re(si) < 0 and Im(si) > 0
ι1 if Re(si) > 0 and Im(si) < 0
−1 if Re(si) < 0 and Im(si) < 0

, (4.6)
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Figure 4.1: 16-QAM constellation optimized by CF SLP algorithm.

Table 4.1: Properties of perturbation vector based on symbol position.
Position Re(s̃i) Im(s̃i) Re(ui) Im(ui)

p1 ≥ 1 ≥ 1 ≥ 0 ≥ 0
p2 ≥ 1 < 1 ≥ 0 = 0
p3 < 1 ≥ 1 = 0 ≥ 0
p4 < 1 < 1 = 0 = 0

for i = 1, 2, . . . , Nu. The following equality is therefore respected

s = Bs̃, (4.7)

where B is a diagonal matrix, where the rotation vectors bi are its diagonal elements such as:

B = diag
[
b1, b2, b3, . . . , bi

]
. (4.8)

We identify 4 generalized positions of a symbol on the complex plain regardless of the
modulation order M considered and summarize the constraints on the perturbation vector
based on the position of a symbol in Table 4.1. We replace the perturbation vector u with
a new vector ũ = [ũ1, ũ2, . . . , ũi] ∈ CNu×1, where Re(ũi) ≥ 0 and Im(ũi) ≥ 0 for every
i = 1, 2, . . . , Nu. Finally, we rewrite the equation (4.2) as

x = WZFΓB(s̃ + ũ). (4.9)

We define the optimization problem to minimize the sum power of the precoded symbols
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vector x for any M -QAM constellation as

min
ũ

‖x‖2

s. t. C1 :

 Re(ũi) ≥ 0
Im(ũi) ≥ 0

, s̃i ∈ p1.

C2 :

 Re(ũi) ≥ 0
Im(ũi) = 0

, s̃i ∈ p2.

C3 :

 Re(ũi) = 0
Im(ũi) ≥ 0

, s̃i ∈ p3.

C4 :

 Re(ũi) = 0
Im(ũi) = 0

, s̃i ∈ p4,

(4.10)

for all i = 1, 2, . . . , Nu.
By substituting (4.9) in (4.10) and by applying an equality between the Euclidean norm

of a complex vector z̃ = [z̃1, z̃2, . . . , z̃i] and a real vector z = [z1, z2, . . . , zi], where z̃i = ai+ ιbi
and zi = [ai, bi], we get

min
û

‖Âû− d̂‖2

s. t. C1 :

 ûi ≥ 0
ûi+Nu ≥ 0

, s̃i ∈ p1.

C2 :

 ûi ≥ 0
ûi+Nu = 0

, s̃i ∈ p2.

C3 :

 ûi = 0
ûi+Nu ≥ 0

, s̃i ∈ p3.

C4 :

 ûi = 0
ûi+Nu = 0

, s̃i ∈ p4,

(4.11)

where Â = [Re(A),−Im(A); Im(A),Re(A)] ∈ R2Nt×2Nu , d̂ = [Re(d†), Im(d†)]† ∈ R2Nt×1,
û = [Re(ũ†), Im(ũ†)]† ∈ R2Nu×1, A = WZFΓB, and d = −WZFΓBs̃. In general, the
optimization problem (4.11) can be solved using CVX tools for MATLAB [109, 110]. In the
next section, we propose a closed-form algorithm to solve the problem with a fixed number
of iterations.

4.1.3 Closed-Form Algorithm (CF SLP)

In this section we derive the closed-form solution (CF SLP) to solve the optimization problem
(4.11) for M -QAM symbols. In the beginning, we solve the problem only for the constraint
C1 and later expand the solution to deal with the constraints C1, C2, C3 and C4 jointly.
The optimization problem (4.11) with the constraint C1 has a form of a non-negative least
squares (NNLS) problem. It can be solved using iterative Fast NNLS algorithm [106,108].
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The conventional Fast NNLS algorithm finds the optimal regression coefficients through
a number of iteration. In every iteration, it dynamically chooses and solves a subset of
quadratic equations from a complete set defined as

û = (Â†Â)−1Â†d̂. (4.12)

For the Fast NNLS algorithm to converge the number of iteration is not fixed and can reach
up to Nu. In every iteration, the equation (4.12) is solved by using the QR decomposition,
which asymptotic complexity alone is of O(Nt ×N2

u).
We propose to substantially relax the complexity of the optimization problem by the

assumption that the regression coefficients are mutually uncorrelated. In this case, the off-
diagonal elements of the matrix product (Â†Â) are equal to zero as

Â†Â ≈


∑2Nt
j=1 Â

2
j,1 . . . 0

... . . . ...
0 . . .

∑2Nt
j=1 Â

2
j,2Nu

 . (4.13)

By inserting (4.13) into (4.12) we derive an approximate closed-form solution to calculate the
perturbation vector for the optimization problem (4.11) as

ûk = 1∑2Nt
j=1 Â

2
j,k

2Nt∑
j=1

Âj,kd̂j ≥ 0, (4.14)

for each k = 1, . . . , 2Nu of the vector û. The solution of the equation (4.14) must be equal
or greater than zero and cannot take negative values.

We extend the solution derived for the constraint C1 to meet the C1, C2, C3, C4 con-
straints jointly. We can deduct a new rule from Figure 4.1 and Table 4.1 saying that if a real
or imaginary part of a symbol is mapped on the top ring of the constellation (Re(s̃i) ≥ 1 or
Im(s̃i) ≥ 1) this part can be increased accordingly to the optimal solution. In other cases,
the symbol should remain in its original position. Therefore, we define the rule as follows:

ûk =


1∑2Nt

j=1 Â
2
j,k

∑2Nt
j=1 Âj,kd̂j ≥ 0 , if ŝi ≥ 1

0 , if ŝi < 1
(4.15)

where ŝ = [Re(s̃†), Im(s̃†)]† ∈ R2Nu×1.
We rewrite equation (4.15) in as a pseudo-code in Algorithm 1 to provide some insights

on its computational complexity. We see that Algorithm 1 has a fixed number of iterations
and that the asymptotic complexity of the complete closed-form solution is O(Nt ×Nu).

Similarly to the technique derived in Chapter 3, the solution provided in equation (4.15) is
not optimal and the calculation error of the optimization will increase following the expansion
of the dimensions of the matrix Ã. We should introduce the scale factor ρ to minimize the
calculation error as

x = WZFB(s̃ + ρũ). (4.16)

The scale factor ρ can be heuristically estimated ranging its values from 1, when the error is
not significant, towards 0 as the error increases.
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Algorithm 1 Closed-Form Solution
1: Input: Â ∈ R2Nt×2Nu , d̂ ∈ R2Nt×1, ŝ ∈ R2Nu×1

2: Output: û ∈ R2Nu×1

3: for k = 1, 2, . . . , 2Nu do
4: a← 0
5: b← 0
6: for j = 1, 2, . . . , 2Nt do
7: a← a+ d̂jÂj,k
8: b← b+ Â2

j,k

9: end for
10: ûk ← a/b
11: if (ûk < 0) OR (ŝk < 1) then
12: ûk ← 0
13: end if
14: end for

4.2 Numerical Results

To generate the numerical results, we consider a MU-MIMO system, which has an equal
number of the transmit and receive antennas Nt = Nu = N . We accordingly generate a full
rank N × N MU-MIMO channel matrix with i.i.d. complex values with a 2-norm matrix
condition number defined as

κ2(H) = ||H||2 · ||H−1||2. (4.17)
The matrix condition number corresponds to the ratio of the largest singular value of that
matrix to the smallest singular value. In the case of the MU-MIMO system, the matrix
condition number describes the power imbalance in the channel. To generate a channel
matrix with random i.i.d. values and a desired condition number we calculate singular-value
decomposition (SVD) [113] of the generated matrix (H) as H = UΣV†. U is an Nu × Nu

complex unitary matrix, Σ is an Nu×Nt rectangular diagonal matrix with non-negative real
numbers on the diagonal, and V is an Nt×Nt real or complex unitary matrix. We reconstruct
Σ for its diagonal elements to monotonically increase from 1 to κ2 as

Σκ2 = diag
[
1, . . . , κ2

]
. (4.18)

The resulting channel matrix is then computed and its power is normalized as

H = UΣκ2V†√∑Nu
n=1

∑Nt
m=1 hn,mh

H
n,m

. (4.19)

We average the results over 100 channel matrix iterations with a defined condition number
(κ2). We benchmark the proposed approximate closed-form algorithm (CF SLP) and CVX
(CVX SLP) SLP algorithms and measure the total average power of the precoded symbols
generated by the techniques in selected channel scenarios. We conduct the benchmarks with
the modulation order M = 16.

4.2.1 Transmitted Signal Power

In Fig. 4.2 we see the total average power of the CF SLP and CVX SLP algorithms. The
power of the precoded symbols generated by the ZF precoder is present as a baseline for
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Figure 4.2: Total power of the transmitted precoded symbols calculated by ZF, the CF SLP and
CVX algorithms.

the benchmarks. This way we can directly compare the increase in the performance of the
techniques under the same conditions. The condition number of the channel matrices used in
the benchmarks is set as a function of 3N . For example, for 10 antennas at the transmitter,
the condition number of all the 10 × 10 channel matrices is 30, and for 20 antennas the
condition is 60. The impact of the condition number on the solution of the proposed closed-
form algorithm was previously demonstrated in Chapter 3. In this benchmark, we choose
these values to demonstrate the representative behavior of the algorithm. The CF SLP
algorithm performs very closely to the CVX SLP approach up to certain dimensions of the
channel matrices. We can see that after the certain size N of the MU-MIMO system the
CVX substantially outperforms the CF SLP algorithm in these cases. Moreover, the proposed
closed-form algorithm without scaling is performing at higher power than the baseline ZF
technique for N > 14 region. On the other hand, CF SLP with scaling is performing with
lower power than ZF even in the higher regions. The performance is also fairly close to the
performance of the CVX algorithm for systems with N < 10.

The scaling parameter ρ was selected heuristically and is equal to 1 for N = 2 . . . 6, ρ is
equal to 0.5 for N = 7 . . . 14, and ρ is equal to 0.33 for N = 15 . . . 20.

4.2.2 Received Signal Power

In Fig. 4.3 we observe the averaged received power at the receive terminals, which correspond
to the consumed power at the transmitter side shown in Fig. 4.2. The received power is
decreasing as the number of the transmitting antennas and users increases as the transmit
power is limited. The CF SLP algorithm provides higher received power for terminals than
ZF in the whole benchmark region due to the perturbation vector ũ is positively contributing
to the power of the symbols. The CF SLP with the introduced scaling provides less received
power than the CVX algorithm.
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Figure 4.3: Received power per UT of the received precoded symbols calculated by ZF, the
CF SLP and CVX algorithms.

4.2.3 Signal Processing Time

The following benchmark shows the average processing time per set of N precoded symbols.
The benchmark was launched in the MATLAB R2018b environment using a general-purpose
central processing unit. Fig. 4.4 shows the time required to process for the ZF, the CF SLP,
and the CVX SLP algorithms. Here we do not how separated results for the CF SLP with
the scaling and without it. To disable scaling, we set ρ = 1 for every N , therefore the al-
gorithm is the same in both cases. The ZF and CF SLP algorithms perform much faster
in the conducted benchmark than CVX. The significant improvement of the processing time
is a considerable advantage for the closed-form algorithm over CVX. The algorithm poten-
tially allows implementing symbol-level precoding for advanced energy-efficient interference
mitigation in novel high-throughput wireless communications.

4.3 Summary

In this chapter, we presented the closed-form algorithm to solve a convex quadratic optimiza-
tion problem for sum power minimization in the energy-efficient symbol-level precoding. We
derive the optimization problem for sum power minimization of symbols in M -QAM con-
stellation and propose a closed-form algorithm to solve this problem with low computational
complexity. We demonstrated with numerical benchmarks the efficiency of the precoder de-
sign solved by CVX and the proposed closed-form algorithm. The numerical results demon-
strated the feasibility of the closed-form algorithm to reduce sum power in a MU-MIMO
system. The developed closed-form algorithm provides a trade-off between the efficiency of
sum power minimization and much faster processing time. The faster processing time and
low complexity of the algorithm are important for the realistic implementation of precoding
for energy-efficient wireless communications.

52



4.3 Summary

2 4 6 8 10 12 14 16 18 20

Number of antennas at the transmitter

10-4

10-2

100

102

P
ro

c
e

s
s
in

g
 t

im
e

 p
e

r 
s
e

t 
o

f 
s
y
m

b
o

ls
 (

s
)

ZF

CVX SLP

CF SLP

Figure 4.4: Average processing time of the precoded symbols calculated by ZF, the CF SLP and
CVX algorithms.
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Chapter 5
FPGA Acceleration for M-APSK
Symbol-Level Precoding Design

In Chapter 3 we design a closed-form solution of a NNLS convex optimization problem for the
computationally efficient SLP. The closed-form sub-optimal solution showed a very promising
trade-off of the SLP technique performance and processing time when benchmarked against
the conventional convex optimization Fast NNLS algorithm [108]. Its computational com-
plexity is in the same order as one of ZF and does not require additional linear algebra
operations. Numerical tests revealed a comparable processing time per set of symbols in
both ZF and the SLP techniques.

In this chapter, we expand the computationally efficient SLP design to operate in the
real-time regime. We develop a complete field-programmable gate array (FPGA) hardware
accelerated closed-form algorithm of the SLP technique and optimize it for an actual model
of an FPGA silicon chip. For this, we use Vivado High-Level Synthesis (HLS) to translate
the algorithm into an Hardware Description Language (HDL) core and integrate the design
into an FPGA. We estimate the resource utilization and cycle period. We deploy the HDL
core on an actual FPGA board and benchmark its performance in terms of energy efficiency
and compare the results with numerical estimations. We draw our conclusion based on the
benchmark results and show that the closed-form solution fairly improves the energy efficiency
of precoded communications and utilizes a reasonable amount of FPGA resources.

5.1 Computationally Efficient Symbol-Level Precoding

In [114] we benchmarked the symbols throughput of the proposed SLP algorithm in MATLAB
environment and achieved over 200 kSymbols per second by running the closed-form algo-
rithm on a standard Intel Central processing unit (CPU). It was shown, that the throughput
is only 2 times slower than the performance of the conventional ZF algorithm [40] running
on the same CPU. For comparison, by solving the same optimization problem with Fast
NNLS algorithm [106] we could reach only around 5 kSymbols per second. For multi-ring
constellations, a power minimization problem cannot be solved using the Fast NNLS and
more complicated algorithms are required. In [100] we benchmarked the symbol throughput
of around 10 Symbols per second in case of 16-APSK modulation while running the opti-
mization code in a similar environment. On the other hand, the closed-form SLP technique
can be universally applied for single-ring and multi-ring modulations. It is a good candidate
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for realistic real-time hardware implementation in a condition of limited FPGA resources as
the same code can be used for multiple modulation types. The same algorithm is optimized
for single- and multi-ring constellations and thus no additional algorithm must be developed.
We devise an FPGA accelerated design of the precoding technique. Towards a better compre-
hension of the FPGA code design, in this section, we cover the main implementation aspects
of SLP and the approximate closed-form solution.

5.1.1 System Model

We consider a system model, which focuses on the forward link of a multiuser multi-antenna
wireless communication system. We assume the full frequency reuse scenario, in which all the
antennas transmit in the same frequency and time. The multi-user interference is mitigated
using precoding. We define the number of transmitting antenna as Nt and the total number
of receiver terminals as Nu in the coverage area. In the specified MIMO channel model, the
received signal at the i-th terminal is given by yi = h†ix + ni, where h†i is a 1 × Nt vector
representing the complex channel coefficients between the i-th terminal and the Nt antennas
of the transmitter, x is defined as the Nt × 1 vector of the transmitted symbols at a certain
symbol period and ni is the independent complex circular symmetric (c.c.s.) independent
identically distributed (i.i.d.) zero mean Additive White Gaussian Noise (AWGN) measured
at the i-th terminal’s receive antenna.

Looking at the concatenated formulation of the received signal, which includes the whole
set of receiver terminals, the linear signal model is

y = Hx + n = HWs + n, (5.1)

where y = [y1, y2, . . . , yi] ∈ CNu×1, n = [n1, n2, . . . , ni] ∈ CNu×1, x ∈ CNt×1, and s ∈ CNu×1

and H = [h†i ,h
†
i , . . . ,h

†
i ] ∈ CNu×Nt . In this scenario, we define a precoding matrix W ∈

CNt×Nu which maps the information symbols s into precoded symbols x. We consider the
data symbols s to be unit variance complex vectors |si| = 1 for every i = 1, 2, . . . , Nu.

5.1.2 Optimization Problem Definition

We consider the optimization problem of the computationally efficient SLP technique, which
aims to minimize the sum power of the precoded symbols at the gateway side. The tech-
nique applies to the M -th order amplitude and phase-shift keying (M -APSK) modulations.
It reduces the sum power of the precoded symbols by optimally increasing the amplitudes
of the initial data symbols to exploit the constructive interference at the receiver side. The
method optimally preserves constructive interference components to decrease the total trans-
mitted power at the transmitter side. The essential difference of the SLP technique from a
linear precoding method is the optimization vector u = [u1, u2, . . . , ui] ∈ CNu×1, which is
recalculated for every set of symbols s to construct the optimized precoded signal given by

x = W(Γ • s + u), (5.2)

where Γ = [Γ1,Γ2, . . . ,Γi] ∈ RNu×1 is per terminal SNR requirements. The following formula-
tion allows us to split the problem of constructing optimal beamforming into two independent
tasks: channel orthogonalization and optimal symbol mapping for energy efficiency. In this
scenario, we define the precoding matrix (W) as the Zero-Forcing linear precoder:

WZF = Ĥ†(ĤĤ†)−1, (5.3)
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where Ĥ is the channel matrix estimated from the channel state information (CSI). We choose
ZF for its properties to orthogonalize the channel so that in the case of Ĥ = H the received
symbols are a summation of the transmitted symbols, the optimization vector and Gaussian
noise:

y = HWZF(Γ • s + u) + n = Γ • s + u + n. (5.4)

By using the ZF precoding matrix we guarantee to meet the SNR constraints in the design
of SLP and simplify the precoder. The optimal symbol mapping we derive in the following
paragraphs.
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Figure 5.1: Symbol optimization of the proposed Symbol-Level Precoding.

In Fig. 5.1 we demonstrate the effect of the optimization ui on a single complex data
symbol si with unit power. The optimization vector increases the absolute magnitude of the
symbol and keeps its phase in a fixed direction. In a case of the multi-ring constellation we
consider, that power of the symbols, which are mapped to the external ring, is |si| ≥ 1. All
the symbols on the internal rings with power |si| < 1 retain their original position.

The optimization problem, which we consider in this implementation can be summarized
as in Chapter 3

min
ũ

‖Ãũ− d̃‖2

s. t. ũi ≥ 0, |si| ≥ 1,
ũi = 0, |si| < 1,

(5.5)

for all i = 1, 2, . . . , Nu. Where Ã = [Re(A); Im(A)] ∈ R2Nt×Nu , d̃ = [Re(d†), Im(d†)]† , and
A = WZFB and d = −WZFBs̃. B is defined as in (3.6).

The problem (5.5) can be solved by using CVX [109,110] and the algorithm proposed in
Chapter 3.
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5.1.3 Approximate Closed-Form Solution

We consider the closed-form solution (CF NNLS SLP) developed in Chapter 3:

ũi =


1∑2Nt

j=1 Ã
2
j,i

∑2Nt
j=1 Ãj,id̃j ≥ 0 , |si| ≥ 1

0 , |si| < 1.
(5.6)

In the expression the solution must be equal to zero (ui = 0) for every symbol in the internal
rings |si| < 1 and must be non-negative (ui ≥ 0) for every symbols in the external ring
|si| = 1. In this case the internal constellation symbols are fixed to their original position.
The (5.6) can be also applied to solve the problem (5.5), thus it is a complete solution for
any type of PSK and APSK modulations.

The approximate solution (5.6) is solved and considered as converged in a single iteration
contrary to the Fast NNLS. The asymptotic complexity of the complete approximate closed-
form solution is O(Nt ×Nu), which is considerably less complex than Fast NNLS.

5.2 FPGA Implementation Design of CF NNLS SLP

We use Vivado HLS to design the HDL core. Vivado HLS accelerates IP creation by enabling
C, C++, and System C specifications to be directly targeted into Xilinx programmable de-
vices without the need to manually create a register-transfer level (RTL) design. Thus,
in this section, we translate the computationally efficient SLP technique to a pseudo-code
and analyze its computational complexity. We optimize the core for the Xilinx Kintex-7
xc7k410TFFG-2 FPGA model. This particular model is installed in a wide set of commer-
cially available SDRs by National Instruments, like NI USRP (Universal Software Radio
Peripheral) 2954R and FlexRIO (Reconfigurable IO) 7976R.

5.2.1 Algorithm Description

For the convenience of the implementation analysis, we rewrite the equation (5.6) as a pseudo-
code algorithm (2). The algorithm consists of only two for loops, where each of them has a
constant number of iterations, which allows us to design the FPGA core at the target symbol
throughput. The input arguments of the algorithm is the matrix Ã and the vector d̃. The
output is a vector of the regression coefficients ũ.

Finally, we derive the complete pseudo-code of the computationally efficient SLP tech-
nique in Algorithm 3. The input arguments of the algorithm is a Zero-Forcing precoding
matrix ŴZF and a vector of data symbols s. There is no dedicated input for the vector of
SNR requirements Γ as it is directly incorporated into the matrix WZF as ŴZF = WZFΓ.
The output is a vector of precoded symbols x. We implement the condition check for multi-
ring modulation at line 22 to fully implement the approximate closed-form solution (5.6).
Therefore, the described algorithm does not need a configuration parameter to indicate the
type of symbol modulation at the input.

5.2.2 HDL Core I/O Ports Description

The input and output (I/O) ports of the HDL core are presented in Table 5.1. We designed
the core using the AXIS handshake for the optimal data transfer towards and from the core.
The input port W receives a precomputed precoding matrix and has no handshake signaling.
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Algorithm 2 Closed-Form Solution Algorithm
1: Input: (Ã ∈ R2Nt×Nu , d̃ ∈ RNt×1)
2: Output: ũ ∈ RNu×1

3: for i = 1, 2, . . . , Nu do
4: a← 0
5: b← 0
6: for j = 1, 2, . . . , 2Nt do
7: a← a+ d̃jÃj,i
8: b← b+ Ã2

j,i

9: end for
10: ũi ← a/b
11: if (ũi < 0) then
12: ũi ← 0
13: end if
14: end for

The data on this port should be ready before signaling to the port s TREADY. The bit width
of the data ports depends on the bit width of the complex fixed-point format (c f p).

The detailed format of the port W is described in Table 5.2. The real and imaginary
parts of each entry of the matrix WZF are concatenated and are mapped to a vector in the
order as shown in the table. The entries of the matrix are concatenated row by row so that
the first row should start at the bit 0, following by the second row and the last row should
end at the most significant bit (MSB).

The format of the port s TDATA is described in Table 5.3. The real and imaginary parts
of each entry of the vector s are concatenated and are mapped to a vector in the order as
shown in the table. The first entry starts at the bit 0, following by the second entry and the
last entry ends at the most significant bit.

The format of the port x0 TDATA is described in Table 5.4. The real part of the first
symbol is placed at the bit 0. Its imaginary part is appended after the real part. The rest of
the symbols are concatenated in the same order until the MSB is the imaginary part of the
last symbol.

5.2.3 Functional Behavior Description

In Fig. 5.3 we see the complete flow of the core functional behavior for multiple sets of
symbols. In this demonstration, we feed the port W of the core with an identity matrix
IN ∈ RN×N during all the cycles defined as

IN =



1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 . . . 0 0 1


. (5.7)

The core reads Nt × Nu elements of the matrix and a set of Nu symbols in parallel in a
single cycle. During the iteration cycle 0 we feed the s TDATA port with a vector of symbols
s1 = [0.7071 + 0.7071i, 0.7071 + 0.7071i, . . . , 0.7071 + 0.7071] ∈ CN and switch s TVALID
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Table 5.1: HDL core I/O ports.
Symbol I/O Width Name Description
ap clk I 1 Primary clock Primary system

clock. The system
is synchronous and
operates at the ris-
ing edge of this clk
signal.

W I c f p*Nt*Nu Precoding matrix Complex values of
the Zero-Forcing
precoding matrix
reshaped to a vector.

s TDATA I c f p*Nu Vector of input symbols Complex values of
the input symbols.

s TVALID I 1 AXIS input valid Data input valid.
When asserted the
data are valid for
input on the port
s TDATA.

s TREADY O 1 AXIS input ready Data input ready.
When high the core
signals that the port
s TDATA is ready
for input.

x0 TDATA O c f p*Nu Vector of output symbols Complex values of
the output symbols.

x0 TVALID O 1 AXIS output valid Data output valid.
When high the core
signals that the data
are valid for output
on port x0 TDATA.

x0 TREADY I 1 AXIS output ready Data output ready.
When asserted the
data are ready to
output on the port
s TDATA.

Table 5.2: Data port W format.
W[MSB downto 0]

Im(WZFNt,Nu
) Re(WZFNt,Nu

) . . . Im(WZF1,1) Re(WZF1,1)

Table 5.3: Data port s TDATA format.
s TDATA[MSB downto 0]

Im(sNu) Re(sNu) . . . Im(s1) Re(s1)
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Algorithm 3 Complete SLP algorithm
1: Input: (ŴZF ∈ RNt×Nu , s ∈ RNu×1)
2: Output: x ∈ RNt×1

3: for j = 1, 2, . . . , Nt do . Compute matrix A
4: for i = 1, 2, . . . , Nu do
5: Aj,i ←WZFj,isi
6: end for
7: end for
8: for j = 1, 2, . . . , Nt do . Build matrix Ã
9: for i = 1, 2, . . . , Nu do

10: Ãj,i ← Re(Aj,i)
11: Ãj+Nt,i ← Im(Aj,i)
12: end for
13: end for
14: for j = 1, 2, . . . , 2Nt do . Compute vector d̃
15: d̃i ← 0
16: for i = 1, 2, . . . , Nu do
17: d̃j ← d̃j + Ãj,i
18: end for
19: end for
20: ũ← Algorithm 2(Ã, (−d̃)) . Compute vector ũ
21: for i = 1, 2, . . . , Nu do
22: if |si| < 1 then . Eq. (5.6) condition
23: ũi ← 0
24: end if
25: end for
26: for j = 1, 2, . . . , Nu do . Compute vector x
27: xj ← 0
28: for i = 1, 2, . . . , Nt do
29: xj ← xj +WZFj,isi +WZFj,iũi
30: end for
31: end for

from low to high. At the interval cycle 1 we switch s TVALID back to low. We feed the port
s TDATA with a new set of symbols s2 = [−0.7071−0.7071i,−0.7071−0.7071i, . . . ,−0.7071−
0.7071] ∈ CN and switch s TVALID again from low to high for the period of interval cycle 2.
We can see, that the port x0 TVALID switches from low to high during the same iteration
cycle. We can read the data on the port x0 TDATA. At the interval cycle 4 we feed the port
s TDATA again with the set of symbols s1. We can see, that the output data corresponds to
the input data delayed by 2 cycles as x = INs1 at the cycle 2 and x = INs2 at the cycle 4.
The core produces output data every 2 cycles, which are delayed by 2 cycles with respect to
the corresponding input data.

5.2.4 FPGA Resource and Timing Performance

We define the complex fixed-point format as 16 signed bits (C1.15) for the design of the HDL
core. The format allocates 16 signed bits to real values and 16 bits to complex values, which
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Figure 5.2: Core schematic symbol.

Table 5.4: Data port x0 TDATA format.
x0 TDATA[MSB downto 0]

Im(xNu) Re(xNu) . . . Im(x1) Re(x1)

Table 5.5: HDL core resource occupation on Kintex-7 (xc7k410TFFG900-2).
# of stream DSP Slices LUT Baudrate per stream Total throughput

4 4% 2% 3% 83 MBd 332 MBd
6 33% 8% 15% 83 MBd 498 MBd
8 59% 13% 24% 83 MBd 664 MBd
10 92% 19% 34% 83 MBd 830 MBd

Available 1540 508400 254200

results in a total of 32 bits for a single complex value. We target the HDL core to operate
at the symbol rate of 83 MSymbols per second. The motivation behind the target is the
new symbols rates, which are considered in the DVB-S2X standard [115]. We estimate the
resource consumption by the core design for a number of transmitting antennas and receiver
terminals N = Nt = Nu = 4, 6, 8 and 10. In Table 5.5 we see the numerical estimation
of the FPGA resource utilization for a different number of beams. For all the scenarios the
core is optimized to operate at a 166 MHz clock (≈ 6 ns per cycle) with a cycle interval
2. The clock allows to operate at the 166 MHz/2 = 83 MSymbols per second symbol rate
per each receiver terminal. For the 10 transmitting antennas and 10 receiver terminals case,
the design utilizes around 92 percent of the DSP blocks available at the given FPGA model
(xc7k410TFFG-2).
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Figure 5.3: Functional behavior of the control ports for the first 7 iteration cycles.

5.3 Experimental Validation

In this section, we benchmark the performance of Algorithm 3 implemented on the HDL
core and deployed on an actual FPGA against the same algorithm running in a MATLAB
environment. The HDL core is implemented using fixed-point arithmetic, while MATLAB is
running in a float-point precision mode. We estimate the difference between the arithmetic
precision implementations.
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Figure 5.4: Schematic block diagram of the benchmark of the SLP implementation.

In Fig. 5.4 we show the block diagram of the conducted benchmark. We benchmark energy
efficiency (EE) of the presented SLP technique implemented on FPGA and in MATLAB
environments. In MATLAB we generate data bits, a channel matrix H, a precoding matrix
W and modulated data symbols s. We generate a Nt × Nu channel matrix with a specific
2-norm matrix condition number.

We calculate precoded symbols x1 using the ZF and the computationally efficient SLP
implemented in MATLAB with CVX (CVX SLP), Fast NNLS (NNLS SLP) or the approxi-
mate closed-form (CF NNLS SLP) optimization algorithms. We use Fast NNLS algorithm for
M -PSK and CVX for M -APSK constellations optimization. The approximate closed-form
algorithm is used for both these constellations. We transfer the same set of the generated
symbols with the precoding matrix to the FPGA node, which runs the HDL core to calculate
precoded symbols x2 using the approximate closed-form algorithm (FPGA SLP). The two
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versions x1 and x2 of the precoded symbols are multiplied by the channel matrix and mixed
with the AWGN noise. We demodulate the resulting signals and calculates BER scores for
each precoding algorithm. Finally, we calculate EE as

EE(Eb/N0) = log2(M)(1− BER(Eb/N0))
‖xnorm‖2

, (5.8)

where ‖xnorm‖2 is the normalized average sum power of the precoded symbols and Eb/N0 =
10 log10( 1

log2(M)σ2 ) is the energy per bit to noise power spectral density ratio.
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Figure 5.5: Energy efficiency curves of 8-PSK for FPGA implementation of FPGA SLP compared
to ZF, NNLS SLP and CF NNLS SLP on MATLAB.

In Fig. 5.5 we can see the energy efficiency curves as a function of Eb/N0 of the ZF, NNLS
SLP, and CF NNLS SLP algorithms for 8-PSK constellation symbols. We average the results
over 50 iterations of Nt = Nu = 6 channel matrices with a condition number (κ2(H)) fixed to
18. The difference between the performance of the Fast NNLS and the CF algorithms running
in the MATLAB environment is around 2.5 dB due to the approximation method used in the
closed-form solution. We also observe an additional 1 dB difference between the MATLAB
and FPGA implementations of the CF algorithm due to the fixed-point implementation.

In Fig. 5.6 we demonstrate energy efficiency benchmarks as a function of Eb/N0 of the
ZF, CVX SLP, and CF NNLS SLP algorithms for 16-APSK symbols. We generate 16-APSK
symbols with constellation radius ratio γ = 3.15 and average the results over 10 iterations
of Nt = Nu = 6 channel matrix with a condition number κ2(H) = 18. In this case, we
observe that CVX optimization is 1 dB more efficient than the CF algorithm in the MATLAB
environment. But as we previously discussed and demonstrated in [100] CVX has much lower
symbol throughput than the CF algorithm and ZF. The FPGA implementation of the CF
algorithm demonstrate similar result with an additional 1 dB performance loss due to the
fixed-point implementation.

The CF algorithm designed for FPGAs delivers considerably improved energy efficiency
when compared to ZF in all the benchmarks. The Fast NNLS and CVX solutions are shown
to outperform the CF algorithm, but they are not designed to run in real-time on an FPGA.
The FPGA implementation operates at a high symbol throughput but has an additional
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Figure 5.6: Energy efficiency curves of 16-APSK (γ = 3.15) for FPGA implementation of FPGA
SLP compared to ZF, CVX SLP and CF NNLS SLP on MATLAB.

energy efficiency loss of 1 dB due to losses in fixed-point arithmetic. This drawback can be
addressed if we choose to increase the number of bits in the fixed-point arithmetic at the cost
of extra FPGA resources.

5.4 Summary

In this chapter, we devised an FPGA accelerated design of the energy and computationally
efficient symbol-level precoding operating in a real-time operation mode, the first such case
to our knowledge. We successfully deployed and validated the design on an actual FPGA
platform.

We describe the algorithmic code, the I/O ports mapping, and the functional behavior of
the FPGA design. We optimized the design of the HDL core to operate at up to 83 MSymbols
per second throughput per each receiver terminal with up to 20 simultaneously operating
terminal units while utilizing a reasonable amount of the FPGA resources. The achieved
symbol throughput is considered for the DVB-S2X standard [115] communications. The
designed HDL core universally supports single- and multi-ring symbol modulations with fixed-
phase optimization. It can directly operate with any M -PSK and M -APSK constellation and
does not need to reconfigure. The approximate closed-form algorithm, which we developed
for the FPGA design, demonstrated a 2 dB loss of energy efficiency during the conducted
benchmarks against conventional Fast NNLS and CVX optimization algorithms. We also
measured an additional 1 dB loss of energy efficiency of the approximate closed-form algorithm
when deployed on an actual FPGA platform. This can be addressed with increased precision
of the fixed-point implementation at the expense of FPGA resources.
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Chapter 6
In-lab Real-time Test-bed for Precoded
Communications in Multi-Beam UHTS
Systems

In this chapter, we show the implementation of the in-lab test-bed for the closed-loop precoded
SATCOM. We describe the design and functionality of the multi-beam DVB-S2X compliant
GW, the satellite MIMO Channel Emulator and the set of UTs. We validate the design
requirements using reasonable software and hardware resources.

We implemented the physical layer of the DVB-S2X standard using commercial SDR
platforms. Developing on SDR allows us to rapidly prototype and deploy the precoded
transmission in a more realistic environment rather than using only numerical simulations.

6.1 In-lab test-bed

In this chapter, we present a in-lab test-bed to demonstrate closed-loop precoded communi-
cations for interference mitigation in multi-beam Ultra High Throughput Satellites (UHTS)
under realistic environments. For this matter, we designed a scalable architecture of the
gateway and user terminals compatible with the DVB-S2X superframe structure. Fig. 6.1
shows the block diagram of the test-bed and on Fig. 6.2 we show the actual photo of the
test-bed during a public demonstration.

We use the commercially available SDR platform developed by National Instruments (NI).
The platform consists of two NI PXI (PCI EXtension for Instruments) 1085 chassis, which
allow centralised connection of the set of the NI USRP 2954R and FlexRIO 7976R. The NI
USRP and FlexRIO have integrated FPGA module Kintex-7 from Xilinx.

The gateway simultaneously transmits 6 precoded signals towards 6 user terminals through
a 6 × 6 multi-beam satellite channel emulator. The channel emulator acquires the gateway
signals, applies the impairments of the satellite payload, Gaussian noise, and the multi-beam
interference and transmits the signals to the UTs. The UTs estimate the CSI based on the
DVB-S2X standard pilots and report the estimated values to the gateway through a dedi-
cated feedback channel over an Ethernet link. The gateway uses this CSI data to compute a
precoding matrix. The table 6.1 summaries the current capabilities and the final targets of
the test-bed.
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Figure 6.1: Block diagram of the in-lab test-bed.

6.1.1 System Model

We consider a system model, which focuses on the forward link of a multi-beam satellite
system. We assume a full frequency reuse scenario, in which all the beams transmit in the
same frequency and time. The multi-user interference is mitigated by using signal precoding
techniques. The number of transmitting antennas is equal to the total number of users
in the coverage area. In this case, we consider a 6 × 6 MIMO channel. In the specified
MIMO channel model, the received signal at the i-th terminal is given by yi = h†if(x) +
ni, where h†i is a 1 × 6 vector representing the complex channel coefficients between the
i-th terminal and the 6 antennas of the transmitter, x is defined as the 6 × 1 vector of
the transmitted symbols of DVB-S2X superframe at a certain symbol period and ni is the
independent complex circular symmetric (c.c.s.) independent identically distributed (i.i.d)
zero mean Additive White Gaussian Noise (AWGN) inserted to the i-th terminal’s receive
signal. The function f(x) represents the non-linear behaviour of the satellite channel.

Looking at the general formulation of the received signal, which includes the whole set of
terminals, the signal model is

y = Hf(x) + n = Hf(Ws) + n, (6.1)
where y ∈ C6×1, n ∈ C6×1, x ∈ C6×1, and s ∈ C6×1 and H ∈ C6×6. We consider the data
symbols s to be unit variance complex vectors |sk| = 1 for every k = 1 . . . 6.

6.1.2 Gateway

The gateway operates with a central NI FlexRIO FPGA and 3 NI USRP nodes. The 3
NI USRP nodes are connected to the same oscillator reference clock source. A single NI
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Figure 6.2: Photo of the in-lab test-bed.

Table 6.1: Parameters of the in-lab test-bed.
Parameter Value

Gateway IQ channels 6
Sampling frequency 24.8 MHz
Oversampling factor 4
Gateway TX freq. 1.21 GHz

Channel Emulator RX freq. 1.21 GHz
Channel Emulator TX freq. 960 MHz

User Terminal RX freq. 960 MHz
Filter roll-off factor 0.2

Forward Error Correction LDPC with BCH
LDPC code rate 1/2, 2/3, 3/4, 4/5
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Figure 6.3: Block diagram of the DVB-S2X Gateway.

USRP has only 2 RF outputs. In order to transmit 6 independent signals on 6 RF channels
simultaneously, we need to utilize 3 NI USRP nodes. It is required to have the synchronized
frequency and time clocks in all the nodes while performing joint beamforming. The Fig. 6.3
shows the logical connections between the NI FlexRio, the NI USRP nodes, and the controller
(NI PXI HOST). Here the upper blue section represents the processes implemented in the
host computer and the lower yellow section represents the blocks implemented in the FPGA
for fast processing.

The FPGA IP block of the DVB-S2X deployed in the NI FlexRio generates 6 parallel
streams of symbols of the DVB-S2X superframe. Each stream carriers terminal-specific data.
The streams can be independently configured through the dedicated graphical interface as
shown in Fig. 6.4.

We implemented the configurations, which are covered by the DVB Standards [115,
116], namely: MODulation and CODing Mode (MODCOD), Super-Frame Format Indica-
tor (SFFI), Index Stream, Index of the Walsh-Hadamard (WH) matrix, scramble flag for
Pilots and Start Of Super-Frame (SOSF).

The streams are jointly precoded by the PRECODE IP block. The PRECODE IP block
multiplies 6 symbols from a single time slot with the precoding matrix W and performs the
SLP optimization. Additionally, the precoding mask controls precoding behavior over the
segments of the DVB-S2X superframe as illustrated in Fig. 6.5.

Through the configuration panel we can enable and disabled Zero-Forcing and SLP Pre-
coding techniques for each segment of the DVB-S2X superframe. We disable Precoding for
SOSF and P pilots under normal operation. The SOSF is a known sequence, which can be
reliably detected at a user terminal even in a high interference environment. The P pilots
are not precoded because they are used by UTs to estimate the CSI (Ĥ).
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Figure 6.4: DVB-S2X Gateway configuration graphical interface.

Figure 6.5: Precoding mask configaration for DVB-S2X superframe structure.
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Figure 6.6: Frequency characteristics of the transmitted signal.

The streams with 6 superframes are transferred to the 3 NI USRP nodes, where the
signals are oversampled using the Pulshaping filter IP block. The filter’s impulse response is
given by the Raised-cosine function with different roll-off factors. The roll-off factor of the
filter response is configurable according to the DVB-S2X standard. In this iteration of the
in-lab test-bed, we implemented the roll-off factors of 0.2, 0.15, 0.1, and 0.05. We measured
the actual filter’s frequency response for these roll-off values as shown in Fig. 6.6. The
oversampled signals are processed by the digital upconverter (DUC) and transmitted to the
RF domain at the desired carrier frequency.

6.1.3 Channel Emulator

The channel emulator is running on a PXI HOST controller, a NI FlexRIO module for central
signal processing, and 3 NI USRP nodes for the RF front-end. The nodes are interconnected
as shown in Fig. 6.7. Each NI USRP node acquires two streams of the sampled baseband,
which are generated by the digital down converter (DDC). Therefore, by utilizing 3 syn-
chronized RIO USRP nodes the channel emulator simultaneously samples 6 independent RF
baseband streams. The RF inputs and outputs of the NI USRP nodes operate in RF bands
of the Low Noise Block (LNB) in the GW uplink and the LNB on the UTs downlink. All the
effects that occur in the actual Ka-band are emulated in the channel emulator.

We designed and implemented custom IP blocks into USRP FPGA nodes to emulate the
channel impairments in real time. We designed and build an additive white Gaussian noise
(AWGN) generator [117] with configurable amplitude.

The streams from the 3 USRP nodes are transferred to the FlexRIO FPGA. The channel
matrix (H) is jointly applied towards all the streams by the MIMO Channel Emulator IP
block. The desired channel matrix is controlled by the PXI HOST. The 6 × 6 matrix of
complex coefficients is based on the realistic satellite beam pattern illustrated in Fig. 6.8.
The beam pattern makes use of the Ka-band exclusive band 19.7 to 20.2 GHz. We consider a
scenario of full frequency reuse, where the same frequency band is applied in every beam. We
can simultaneously select up to 6 user terminals in the coverage area and generate realistic
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Figure 6.7: Block diagram of the channel emulator.

channel coefficients.
The resulting signals with added interference are transferred back to the corresponding

NI USRP nodes. In every NI USRP node, the signal is upsampled in DUC and sent through
the RF analog outputs. The RF inputs and outputs of the channel emulator operate at
different carrier frequencies as shown in the Table. 6.1. Using this configuration we decrease
the mutual coupling between the transmission and reception links through the RF part of
the Channel Emulator to facilitate the accuracy of the designed channel matrix.

6.1.4 User Terminal

The User Terminals (UT) are the are ground-based users which collect the transmitted wave-
forms and recover the transmitted data bits. The UTs are implemented using the same SDR
platform used in for the Gateway and the Channel Emulator, the USRP RIO NI2944. We use
6 USRPs for each independent UT. The FPGA of a single USRP performs signal processing
of the UT chains and communicates with the host computer.

Fig. 6.9 shows an architectural block diagram of the UT implementation. The FPGA
interface the RF daughter boards, which down-convert the incoming RF signal using an
analog local oscillator. The FPGA reads the ADCs sampled data coming in four sampled
streams for the two IQ down-converted pairs. The sampling rate of this particular SDR
platform is 200 MSPS. After sampling, two DDC blocks take the two IQ sampled streams.
Each DDC shifts in frequency the IQ streams using a Numerically Controlled Oscillator, and
applies a decimation filter in order to produce a decimated output stream at a selectable
sampling rate. The frequency shifting performed in the DDC has the advantage of avoiding
the problematic zero-frequency part of the spectrum after analog down-conversion, which
usually is corrupted by some leakage of the local oscillator signal.

Due to the efficient FPGA accelerated processing, a single USRP RIO FPGA unit is ca-
pable to receive DVB-S2X compliant signal in real-time. The DVB-S2X processing chain is
capable of recovering the format 2 and 3 super-frames from the DVB-S2X standard. These
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Figure 6.8: ESA71 beam pattern, antenna performance.

processes include frequency acquisition, matched filtering, time synchronization, frame (in-
cluding Super-Frame) synchronization, fine phase tracking, and CSI estimation. The recov-
ered symbols contain the payload data plus the pilot structure of the DVB-S2X framing. All
the frame fields and the CSI information are passed to the host computer for their further
utilization. The host computer reports the CSI information to the central GW using a custom
feedback channel.

We use a custom web server for CSI feedback through the Internet. The CSI web server
acts as a middleman between the UTs and the GW. The purpose of the server is to store, log
and provide CSI and telemetry data. The server can be accessed by the GW and the UTs
though the Internet or local networks and can be used in the over satellite and in-lab demo
for reliable CSI data transfer.

6.2 Summary

In this chapter, we present the in-lab test-bed for precoding in DVB-S2X systems. The in-
lab test-bed is a full-chain closed-loop communication system with a multi-beam gateway
transmitter, MIMO channel emulator, and user terminals with real-time CSI estimation.
With the in-lab test-bed, we are able to show experimentally the application of precoding in
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Figure 6.9: Block diagram of the User Terminal.

satellite communications based on the DVB-S2X standard.
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Chapter 7
In-lab Validation of M-APSK Symbol-Level
Precoding

7.1 Introduction

In this chapter, we investigate coded BER and FER and spectral efficiency performance of
the closed-form SLP running in a real-time operation mode. We implemented a DVB-S2X
compatible receiver. The receiver estimates SINR from the pilots embedded into the DVB-
S2X frame and decodes information bits from the data symbols using Logarithmic Likelihood
ratio (LLR) estimations and the Low Density Parity Check (LDPC) decoder. We compare
the SINR, BER, FER, and spectral efficiency performance of SLP to a conventional ZF
precoding technique. In this benchmark, the receiver was not modified in any way to decode
symbols modified by the SLP processing at the GW side. Thus, we investigate the impact of
the SLP symbols on a conventional receiver chain. The benchmark resembles a realistic SLP
processing deployment in communication systems, where only the transmitter is modified,
while the user terminals stay unchanged.

7.2 System Parameters

7.2.1 SINR Estimation

To evaluate the performance of the precoding techniques, we consider the signal-to-interference-
plus-noise ratio (SINR) measured on the actual pilots at the UT side rather than using SINR
estimation based on the precoding matrix [49]. SINR estimation is suitable for SLP tech-
niques, where SINR depends on both the precoding matrix and the symbol constructive
interference. The authors in [118] showed that estimating SINR at the UT side is more reli-
able than SINR calculated at the gateway side. The DVB-S2 implementation guidelines [116]
describe the Signal-to-Noise Ratio Estimation (SNORE) algorithm (Fig. 7.1).
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Figure 7.1: SNORE algorithm.

The SNORE algorithm work in data-aided (DA) operating mode. The DA mode is bias-
free until very low Ec/Nt < −20 dB [116]. The pilot presence allows us to use the DA
version of the SNORE algorithm operating on the pilot time slots and therefore we insert
pilots into the beginning of transmitted frames for each user. The pilot sequence for i-th UT
is generated as in [115] part E.3.5.3. The pilot fields are determined by a Walsh-Hadamard
(WH) sequence of size 32 plus padding of a WH sequence of size 16. A set of 25 = 32
orthogonal WH sequences result from the following recursive construction principle:

Pm =
[
Pm−1 Pm−1

Pm−1 −Pm−1

]
, (7.1)

starting from m > 1 and P1 = 1 until P32 is denoted. The i-th row of P32 corresponds to
the i-th WH sequence with i = 1 . . . 32. For the sake of padding, a matrix of size 32× 16 is
appended. This matrix is generated from P16 by repeating P16 vertically to get:

Ppadding =
[
P16; P16

]
. (7.2)

Combining both matrices together yields:

Ppilot3 =
[
P32; Ppadding

]
, (7.3)

hosting the whole set of possible pilot sequences row by row. The selection of the parameter
i is a static choice for the transmit signal, thus we transmit i-th sequence to the i-th UT.
The pilot sequences are multiplied by (1 + ι)

√
2 to generate complex symbols.

At each UT, SINR is calculated as follow:

Eb
N0

= Ps
PN

, (7.4)

where PS - power of the intended signal and PN - power of noise plus interference. We
calculate Ps as

PS = 1
48 |

48∑
t=1

yi[t]× Ppilot3i[t]|
2 (7.5)

We calculate PN from the total signal power

PN = PR − Ps, (7.6)

where PR = 1
48
∑48
t=1 |yi[t]|2.
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7.2.2 LLR Calculation

For robust communication under noisy channels, the UT performs the Forward Error Cor-
rection (FEC) of the recovered DVB-S2X encoded payloads symbols. The soft demodulation
is performed using a LLR algorithm. The LDPC decoder uses the LLR values to recover
information bits from the symbols. The classical formulation of the LLR is:

LLRj = ln

∑b:bj=0 exp
(
−‖r−c(b)‖2

2σ2

)
∑
b:bj=1 exp

(
−‖r−c(b)‖2

2σ2

)
 , (7.7)

where σ2 is the noise variance, r is the received complex symbol, and c is the nominal
constellation complex point. Thus, to compute the j-th bit LLR from r, one may compute
the squared distance to each of the constellation points, separating those constellation points
that have a 0 in bit j from those that have a 1. A common approximation to the LLR is to
approximate each sum in 7.7 by its largest term, i.e., by using only the nearest constellation
point that has bj = 0 in the numerator, and the nearest neighbor that has bj = 1 in the
denominator. The approximate LLR can be expressed as in [119]

LLRj = 1
2σ2

(
‖r − c1‖2 − ‖r − c0‖2

)
. (7.8)

Equation 7.8 is used in the following benchmarks. The LLR values obtained are quantized
into 6-bit fixed-point values, represented as five bits for the integer part (one of these 5 bits
is used for the sign) and one bit for the fractional part of the LLR, so obtaining values that
range from -15.5 up to +15.5. For this particular case, the quantization is implemented in
a saturated and symmetrical fashion, to avoid the -16 minimum value, which represents a
bias in the calculation. The fixed-point arithmetic operations are implemented due to the
receiver’s hardware performance requirements.

7.2.3 LDPC

The error correction capability of a FEC system strongly depends on the amount of redun-
dancy as well as on the coding algorithm itself. The LDPC codes are powerful, capacity-
approaching channel codes and have exceptional error correction capabilities. The high de-
gree of parallelism that they offer enables efficient, high-throughput hardware architectures.
The LDPC decoder in the receiver implements the LDPC Block Codes (LDPC-BC) or QC-
LDPC Quasi-Cyclic LDPC Codes as mentioned in the literature [115, 116]. These LDPC
codes are based on block-structured LDPC codes with circular block matrices. The entire
parity check matrix can be partitioned into an array of block matrices, each block matrix is
either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix
designed in this way can be conveniently represented by a base matrix represented by cyclic
shifts. The main advantage of this feature is that they offer high throughput at low imple-
mentation complexity. The current LDPC decoder implementation uses an approximation of
the log-domain LDPC iterative decoding algorithm (Belief propagation) known as Layered
Offset Min-Sum Algorithm [120]. The decoder is highly reconfigurable and is tailored for the
DVB-S2 standard.

The supported modes of the available LDPC decoder block are shown in Table 7.1.
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Table 7.1: LDPC decoder supported modes.
Mode Frame Size Code rate (CR)

0 64800 1/2
1 32400 1/2
2 64800 2/3
3 32400 2/3
4 64800 3/4
5 32400 3/4
6 64800 5/6
7 32400 5/6

7.3 Channel Coefficients and CSI

We use a realistic channel matrix generated based on provided beam pattern as shown in
Fig. 7.2. In Fig. 7.3 we can see the example channel matrix used in the channel emulator,
which corresponds to the selected beams in the pattern. The condition number of the channel
matrix is 3.52984. It is possible to use other beam patterns and beam scenarios by configuring
the channel emulator.

Figure 7.2: Channel selected beams configuration.
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Figure 7.3: Applied channel matrix in the channel emulator.

Next, we see the actual channel estimated by the UTs and reported to the GW in Fig.
7.4. This estimation differs from the actual channel matrix applied in the channel emulator
due to hardware impairments, digital scaling factor, and cable losses between the GW and
the UTs. We run numerical simulations of this estimated CSI data to evaluate the theoretical
performance of the SLP and ZF precoders.

Figure 7.4: Estimated channel matrix.

In Fig. 7.5 we can see the estimated TX power of ZF and SLP vs the SNR target at the
UTs. The TX power of the SLP is not greater than ZF for the given channel configuration.
On the same figure, we see that SLP delivers more RX power than ZF to the UTs under the
same channel conditions. At this stage, we verified that the provided channel matrix can be
exploited by SLP to minimize the TX power and improve the RX power.
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TX and RX power vs Energy per symbol over noise power
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Figure 7.5: TX and RX power vs Energy per symbol over noise power.

In Fig. 7.6 we can see the expected RX power gains per each UT for the ZF and the SLP
techniques. We can see, that using the estimated channel matrix and the SLP technique the
expected gains due to SLP modified symbols appear in the UTs 2, 3, 5, and 6.
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Figure 7.6: Average RX power per UT.
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(a) UT 1 (b) UT 2

(c) UT 3 (d) UT 4

(e) UT 5 (f) UT 6

Figure 7.7: Received P2 pilots and bundle frame QPSK symbols at UTs modified by
CF NNLS SLP.

7.4 Experimental Validation

7.4.1 Received Symbols of CF NNLS SLP

In Fig. 7.7 we can see received P2 pilots and bundle frame QPSK symbols for each UT. The
phase of the P2 pilots is not fully recovered as we see the rotated QPSK constellations. The
UTs use the information about the phase and amplitude of the pilots to recover the phase
and amplitude of the bundle frame (BF) symbols. The BF symbols modified by the SLP are
visible in the UTs 2, 3, 5, and 6. These results matching the theoretically estimated gains
per each UT from the previous section, which indicates that the SLP algorithm is correctly
deployed in the hardware.

Also, in Fig. 7.8 we see how the SLP technique optimizes symbol constellations from
higher order PSK and APSK constellations. The symbols on the external rings of the con-
stellations are always optimized in the fixed-phase direction. The symbols from the internal
rings keep their original position and are not optimized by the SLP to avoid inter-symbol
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(a) QPSK (b) 8-PSK

(c) 16-APSK (d) 32-APSK

Figure 7.8: Received PSK and APSK symbols at UTs modified by CF NNLS SLP.

interference at the UTs. As discussed in Chapter 5 the SLP algorithm adapts automatically
to the selected constellation and does not need to be reconfigured.

7.4.2 SINR Performance of CF NNLS SLP

We set the relative noise power in the channel emulator to 0 to measure the SINR (SINR0)
at the UT for the ZF technique. We then increase the relative noise power with a 0.2 dB
step to measure the SINR estimations in the region of our interest. We calculate the average
SINR value and the standard deviation of the average at each point by measuring SINR from
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1000 bundle frames. We also calculate the SINR value at the channel emulator as SINR0 +
relative noise power.

In Fig. 7.9 we can see the estimated and expected SINR curves. In the ZF case, the
SINR estimation is close to the SINR, calculated using the relative noise power at the chan-
nel emulator. The values are within the range of the standard deviation from the channel
emulator SINR values. In the SLP case, the estimation of the SINR in the high SINR region
(> 8 dB) is lower than the channel emulator SINR and SINR estimated for ZF. Below the
8 dB threshold, SINR estimated in SLP is consistently higher than the channel emulator
SINR and the ZF SINR values. The P2 pilot symbols with an amplitude excursion due to
SLP in the interference-limited scenario are treated by the SNORE algorithm as interference,
resulting in underestimation of the SINR. In the noise-limited scenario, these symbols result
in consistent overestimation of the SINR.
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Figure 7.9: Experimental SINR curves for ZF and SLP techniques, and the channel emulator
estimated SINR vs the relative noise power.

7.4.3 Coded Bit Error Rate Performance of CF NNLS SLP

In Fig. 7.10 we show LDPC BER using QPSK constellation. Each point is averaged from
1 million LDPC blocks, where each block is 64800 bits long. The BER curves are plotted
against the SINR estimated at the channel emulator, which is based on the noise power rather
than the estimated SINR by SLP or ZF to achieve a fair comparison of both systems.

We can see that SLP BER saturates (BER = 1) at lower SINR values than in the ZF
case. The result is reproduced for every CR.
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Figure 7.10: LDPC BER plots for ZF and CF NNLS SLP vs the channel emulator SINR.

7.4.4 Frame Error Rate Performance of CF NNLS SLP

In Fig. 7.11 we show the LDPC frame error rate using QPSK constellation. The total length
of an LDPC blocks with payload and parity check bits is 64800 bits. After the decoding
process, the parity check bits are removed and the payload is transferred into the FER
calculator. BCH (Bose-Chaudhuri-Hocquenghem) code is applied to correct the residual
errors. Each point is an average of 1 million blocks. The FER curves are plotted against
the channel emulator SINR as in the case of BER benchmarks. We can see that SLP FER
saturates (FER = 1) at lower SINR values than in the ZF case. The result is reproduced for
every CR.
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Figure 7.11: LDPC FER plots for ZF and CF NNLS SLP vs the expected SINR.
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7.4.5 Spectral Efficiency of CF NNLS SLP

Spectral efficiency can be expressed as:

SE = Rb
Bw

(1− FER)

b/s
Hz

, (7.9)

where payload bit rate is:
Rb = log2(M)RsCR(b/s), (7.10)

and the signal bandwidth is:

Bw = 1
Ts

(β + 1)(Hz). (7.11)

Given that the symbol period and the symbol rate are related as Ts = 1
Rs

(s), for QPSK
modulation order is M = 4, and the matched filter roll-off factor is β = 0.2, we substitute
eq. (7.10) and (7.11) back to eq. (7.9) and get the final expression for the spectral efficiency:

SE = 2CR
(0.2 + 1)(1− FER)

b/s
Hz

 (7.12)

In Fig. 7.12 we can see the spectral efficiency of the ZF and SLP techniques vs SINR. We
can see that SLP saturates at the maximum spectral efficiency at lower SINR values than
ZF. In the case of the CR 1/2 SLP achieves the maximum SE at 2.2 dB, for CR 2/3 - 3.1 dB,
CR 3/4 - 4.5 dB, and CR 5/6 - 6 dB. We can see that SLP has a consistent advantage in
SE over ZF. We can see that SLP modified symbols can be correctly decoded by a receiver
which has no prior knowledge of the modifications in the symbols of the conventional QPSK
constellation. Additionally, these modifications result in lower BER and FER as well improves
SE.
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Figure 7.12: Experimental spectral efficiency plots for ZF and CF NNLS SLP vs the expected
SINR.
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7.5 Summary

In this chapter, we experimentally demonstrated that SLP can improve received signal quality
in terms of SINR and Spectral efficiency then compared to ZF precoding. We showed that the
design of the receiver does not need prior modifications to correctly decode symbols, modified
by the SLP technique. We used the conventional LLR and LDPC decoder to extract the
information bits from the symbols. SLP achieves higher spectral efficiency and lower FER at
the same noise power introduced by the channel emulator. At the same, the SLP transmits
power remains lower than for ZF. On another hand, we discovered, that the SNORE algorithm
tends to underestimate or overestimate SNR values due to modified pilot symbols by the
SLP. This can be avoided if the SLP techniques are not applied towards the transmitted pilot
symbols at the gateway.
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Chapter 8
In-lab Validation of M-QAM Symbol-Level
Precoding

In this chapter, we demonstrate theoretically and experimentally the benefits of the precoder
in terms of energy and computationally efficiency for M -QAM constellations. Towards this
objective, we more thoroughly describe the practical implementation aspects of the hardware
demonstrator, which consists of: a MIMO transmitter with the capability to perform real-
time SLP algorithm, a MIMO channel emulator, and a set of receivers with CSI estimation
capabilities. We estimate the optimal use cases of the SLP precoder in such a system.

We demonstrate an important connection between the condition number of the MIMO
channel matrix and the performance of the SLP technique. The results show, that the SLP
can perform better than ZF at the particular channel matrix conditions, while for some
channel matrices the performance of ZF and the SLP is the same.

We present practical issues and their solutions towards utilizing the SLP techniques on
the receiver side. We discuss the impact of the SLP precoding algorithm on the symbol con-
stellation and synchronization and demodulation issues with a conventional receiver, which
influence the actual Quality of Service.

8.1 Symbol-Level Precoding Design

8.1.1 System Model

The general system model focuses on the forward link of a multi-antenna system, which aims
at reusing the total available bandwidth among all beams of the coverage. We define the
number of transmitting antenna elements as Nt and the total number of users as Nu in the
coverage area. In the specified MIMO channel model, the received signal at the i-th user
is yi = h†ix + ni, where h†i is a 1 × Nt vector representing the complex channel coefficients
between the i-th user and the Nt antennas of the transmitter, x is defined as the Nt×1 vector
of the transmitted symbols at a certain symbol period and ni is the independent complex
circularly-symmetric (c.c.s.) independent identically distributed (i.i.d) zero mean Additive
White Gaussian Noise (AWGN) measured at the i-th user’s receive antenna. We assuming a
system having Nt = Nu = N , which is the present case. Looking at the general formulation
of the received signal, which includes the whole set of users, the linear signal model is:

y = Hx + n = HWs + n (8.1)
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In this scenario, we define the linear precoding matrix W ∈ CN×N which maps information
symbols s into precoded symbols x.

8.1.2 Precoding technique

We implemented the symbol-level precoding technique (CF SLP) presented in Chapter 4 into
the demonstrator among side the Zero-Forcing technique [40]. The essential difference from
the ZF precoding method is the optimization vector u ∈ CN , which is recalculated per every
symbol set s to construct optimal precoded signal as

x = WZF(√γs + u), (8.2)

where WZF = ĤH · (Ĥ · ĤH)−1 is a Zero-Forcing precoding matrix, Ĥ ∈ CN×N - a channel
matrix estimated from CSI and √γ - the SNR requirement. The vector u adds a positive
excursion to the user symbols s. The excursion is always increasing the amplitude of the
symbols. It is calculated for each set of symbols to increase SNR at the receiver side due to
optimally preserved constructive interference components, which occur in the MIMO channel.
This effect decreases the total power of the precoded transmission signal x at the transmitter
side. We define a convex optimization problem to minimize ‖x‖2 with the SNR constrain as

min
u
‖x‖2

s. t.|y| ≥ |s|
, (8.3)

for HWZF = I and n = 0. It was shown in [100], that the problem (8.3) can be transformed
into a non-negative least squares (NNLS) problem as

min
ũ

‖W̃ZFBũ− d‖2

subject to ũ ≥ 0
, (8.4)

where d = −W̃ZF(√γs̃), W̃ = [Re(WZF),−Im(WZF); Im(WZF),Re(WZF)],
s̃ = [Re(sT ), Im(sT )]T , ũ = [Re(uT ), Im(uT )]T , and B is defined as in (4.8).

If there is no solutions for a particular channel matrix, then u = 0 and symbol-level
precoding (8.2) turns into the Zero-Forcing precoding as

xzf = WZFs. (8.5)

Therefore, the minimal performance of the proposed precoding technique is expected at the
level of the Zero-Forcing method in a statistically averaged CSI data. If at least one element of
the optimization vector u is non-zero, then user symbols with an excursion can be constructed
to minimize the power of the precoded signal so that (‖x‖2 < ‖xzf‖2).

8.1.3 Impact of the proposed SLP on constellation

Following the previous discussion of the CF SLP algorithm, Figure 8.1 shows how one symbol
of the QPSK constellation can have an amplitude excursion in the positive quadrant space
due to the presented optimization vector u. Here we obtain a theoretical BER expression
assuming that the receiver recovers perfectly the phase of the reference symbols. This phase
recovery may be approached in a realistic scenario using repetitive pilot symbols (precoded or
not) which are not modified. Also, an accurate synchronization can be maintained if modified
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Figure 8.1: Symbol excursion in CF SLP in the vertical or horizontal axis.

symbols have on average the same phase of the mapping symbols. We reach such a condition
by defining the excursion ratio of the mapping symbol as ε = Re(ui)/Re(si) for i = 1, . . . , N .
The excursion ratio limits the maximum value of u with respect to the magnitude of the
constellation symbols s. For the particular case of a symbol of a QPSK modulation, the BER
is pes = 0.5(Q(√γ) + Q

(√
γ(1 + ε)

)
) where Q(·) is the standard Gaussian complementary

cumulative distribution function, and γ is the SNR, where we assume that the received
signal is affected by an additive zero-mean circularly-symmetric complex Gaussian noise.
The ensemble BER is computed to be 0.75Q(√γ) + 0.25Q(√γ(1 + ε)), under the assumption
that all symbols have the same probability and half of the symbols have the same amplitude
excursion in one dimension and the other half do not have any excursions.

8.2 Numerical Simulation

8.2.1 Benchmark System Parameters

We evaluate the performance of the proposed technique and compare it to other benchmark
precoding methods, namely ZF and MMSE. We generate 2 × 2 MIMO channel matrix with
a specific 2-norm matrix condition number defined as

κ2(H) = ||H||2 · ||H−1||2, (8.6)

and injected the AWGN noise. The 2-norm corresponds to the ratio of the largest singular
value of that matrix to the smallest singular value. By varying 2-norm from low to high values,
we perform the benchmark with the channel matrices conditioned from a close-to-diagonal
to a close-to-singular and increasing the power imbalance in the channel. The corresponding
benchmark measurements for all the techniques performed using the same channel matrix
generation.
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8.2.2 Simulated Bit Error Rate Performance of CF SLP

Figures 8.2 and 8.3 show the theoretical BER performance of the CF SLP compared to ZF
and MMSE techniques. The BER values at each SNR value is averaged over 106 samples. The
CF SLP performs better than ZF in terms of improved BER. The advantage of CF SLP over
ZF becomes more prominent with the increasing condition number of the channel matrix.
In this case, the CF SLP technique generates the user symbols with even higher excursion
which results in lower BER values (Figure 8.3). It is noticeable, that CF SLP benchmarks at
lower BER than ZF in the whole range of the Eb/N0 and lower than MMSE techniques for
Eb/N0 higher than 0 dB.
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Figure 8.2: Simulated BER values averaged over 106 samples for ZF, MMSE and CF SLP com-
pared to the theoretical QPSK BER curve. The perfect compensation of the phase rotation at the
receiver is considered. The condition number of the channel matrix is 3.
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Figure 8.3: Simulated BER values averaged over 106 samples for ZF, MMSE and CF SLP com-
pared to the theoretical QPSK BER curve. The perfect compensation of the phase rotation at the
receiver is considered. The condition number of the channel matrix is 6.
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8.2.3 Simulated Total Consumed Power of CF SLP

Table 8.1 shows the difference between the total average power of the precoded symbols
generated using ZF and CF SLP algorithms. We can see that with the higher channel matrix
condition number we generate less total power using the CF SLP algorithm. At the same
time, we observe an improved Quality of Service over the ZF as we saw in the previous
section. At the greater condition number of the channel matrix, the power unbalance at
the receivers is higher. The interfering signal can be higher in power than the useful signal
for one of the receivers. The occurring inter-user interference can be both constructive and
destructive toward the useful signal. The CF SLP technique does not cancel the components
of constructive interference, which provide additional excursion of the mapping symbols and
push the symbols deeper into their detection region providing higher BER score. The ZF
cancels all the components of interference to have constant mapping symbols, and therefore
requires more energy at the transmitter than the CF SLP.

Table 8.1: Reduction of the total average power of the precoded symbols in 2× 2 MIMO system
by CF SLP.

Matrix condition number Power reduction
2.5 0.03 dB
3 0.04 dB

3.5 0.07 dB
4 0.09 dB
5 0.35 dB
6 0.72 dB
8 0.88 dB

8.3 Experimental Validation

8.3.1 Symbol-Level Optimized Precoding Evaluation

We use the aforementioned experimental environment to benchmark the optimized symbol-
level precoding technique. We generate a set of random channel matrices H with unitary
matrix F-norm, defined by ||H||F = trace(HHH), and for different matrix conditioning num-
bers, defined by 8.6.

For each channel matrix generation, we apply the CF SLP and compare the results to
conventional channel-inversion ZF precoding. In both cases, we normalize the precoding
matrix to have a unitary 2-norm, so that we obtain a constant value for the expectancy of
transmitted power per antenna. Under these constraints, we measured the power in the two
receivers and compare the results for different channel realizations for a set of channel matrix
conditioning numbers between 2.5 and 4, as is shown in Figures 8.4 and 8.5. It is worth
noting that in both cases ZF and CF SLP we use the same channel inversion matrix.
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Figure 8.4: Different realizations of the total transmitted power on 2 output antenna ports, for
conventional ZF and CF SLP.

We see in Figure 8.4 that the Zero-Forcing technique generates a signal with a higher
averaged total transmitted power than the CF SLP technique. The reduction of the trans-
mitted power by CF SLP is increasing as the matrix condition number increases comparing
to ZF. The magnitudes of the power reduction very closely match the theoretically values
from Table 8.1. By enabling the CF SLP the total power is reduced by 0.03 dB (theoretical
- 0.04 dB) at the condition number 3 and by 0.07 dB (theoretical - 0.09 dB) at the condition
number 4.
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Figure 8.5: Different realizations of detected power, in 2 receivers indistinctly, for conventional
ZF and CF SLP.
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From Figure 8.5 we can observe that the received power for ZF precoding is not a constant
for a given conditioning number as should be expected from the theory. These variations come
from the imperfections in the actual hardware implementation. Some of these imperfections
are the limited accuracy in the CSI estimation and its quantization error. Nevertheless, these
imperfections have the same impact on the ZF and the CF SLP, we can observe that the
CF SLP has gains in the received power. These gains become more frequent as the matrix
conditioning number is increased. There are particular channel realizations in which the CF
SLP performs the same as ZF for both receivers and other realizations in which the optimized
symbol is only produced for one of the receivers. Up to this point, we have observed the gains
in received power for CF SLP. In the following, we will observe how this gain is translated
into BER performance in the receiver.

8.3.2 Uncoded Bit Error Performance of CF SLP

Figure 8.6 shows an example of received modified constellation with the CF SLP algorithm
with some AWGN already applied. The symbol excursion will help for the cases in which
the phase is correctly recovered and also for very low SNR conditions in which the received
signal is very affected by additive noise.
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Figure 8.6: Received symbols modified by CF SLP.

The SNR is set by injecting of artificial AWGN in the channel emulator. The noise
power can be accurately controlled to adjust the desired SNR, knowing the exact value of
the received signal power. First, we performed a single link BER measurement using an
unmodified QPSK constellation. We use it as a reference to evaluate the effects of imperfect
phase synchronization for low SNR values. The phase-locked loop of the demodulator is reset
for every frame. For the case of CF SLP, the precoded pilot symbols are not modified from
the QPSK original mapping points.

We performed measurements of BER for ZF and CF SLP for different channel matrices,
where the SNR was estimated using ZF precoding. This is a fair comparison, since, despite
the average received power can increase while using CF SLP, minimal received power can still
match the one gained with ZF precoding for some symbols. Figure 8.7 shows the theoretical
ideal QPSK BER values, the BER for a single non-interference link, and the BER for ZF and
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CF SLP for a particular matrix with conditioning number 2.5 which gives and excursion (in
the horizontal and vertical axis) of 4%.
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Figure 8.7: Experimental BER plots for ZF and CF SLP compared to an experimental baseline
non-interference QPSK BER and to the theoretical BER curve. The matrix condition for the precoded
channel is 2.5. The CF SLP in this case provides an excursion of 4.

Here we see a degradation of the BER which use precoding compared to the single link
BER curve. This may occur due to inaccurate CSI estimation, which results in residual
interference and affects the BER performance. However, the case of precoded signals, we
obtain twice spectral efficiency since the system provides two separate streams using the same
frequency band. We showed that the CF SLP performs better than ZF for low SNR values and
that the ZF performs better at some points of higher SNR values using a conventional receiver.
The experiment is repeated with some channel matrices with higher proposed excursion
values, which in some cases gives a degradation in BER performance for high SNR values.
Most of these errors are due to the lack of phase synchronization and phase tracking. These
effects can be observed as a rotated shaking in the constellation plots in the graphical user
interface at the receiver.

It is worth clarifying that, at the transmitter, the QPSK modulator maps the trans-
mitted symbols in correspondence to optimization excursion from the CF SLP. However, at
the receiver QPSK demodulator normalizes the received symbols in correspondence to the
conventional QPSK symbol constellations.

Figure 8.8 shows the BER curves for ZF and CF SLP for a particular matrix with a
conditioning number of 3 which gives and excursion (in the horizontal and vertical axis) of
20%. Here we can observe how the CF SLP scores lower BER than the conventional ZF for
Eb/N0 values lower than 8 dB.
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Figure 8.8: Experimental BER plots for ZF and CF SLP compared to an experimental baseline
QPSK BER and the theoretical BER curve. The matrix condition number for the precoded channel
is 3 The CF SLP in this case provides an excursion of 20%.

8.4 Summary

In this chapter, we presented the theoretical and experimental results using the hardware
demonstration of precoded satellite communications based on state-of-art SLP technique.
The SLP beamforming benchmarked similar BER results to ZF beamforming in the case
scenario of high SNR. However, it is experimentally proven that the CF SLP technique takes
advantage of unbalanced channel matrices with strong interference components to increase
received signal SNR, improve service quality, and minimize the transmit power at the gateway.

Therefore, we showed that the SLP technique can provide better SNR performance than
the conventional ZF technique in real-time transmissions for low SNR scenarios. The theoret-
ical simulation data predicted improvement of the BER performance for high SNR scenarios.
However, a decrease in the BER performance was observed in the experimental data. This
performance decrease, which is generated by an imperfection in the carrier synchronization,
and tracking can be avoided if global synchronization is achieved. Some examples of this are
the multi-carrier or OFDM systems in which many carriers are jointly synchronized and aided
by additional synchronization carrier pilots. Another example in which this method can be
applied is in the low SNR regimes of single-carrier communications, which maintain phase
coherency along time, such as the satellite communication standards as DVB-S2X, where the
receiver synchronization is improved over longer averaging periods. Besides, the improve-
ments for the evaluated method will increase with higher-order MIMO systems, where the
gains obtained from the symbol-level optimization can increase.

We demonstrated, that the condition number of the channel matrix has an impact on
the performance of the CF SLP technique in theoretical and experimental benchmarks. At
the larger condition number of the channel matrix, the power unbalance at the receivers is
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higher, which enables the CF SLP technique to exploit occurring constructive interference
between the users. We show experimentally the feasibility of the proposed SLP in terms of
complexity and energy efficiency.
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Chapter 9
Conclusions and Future Works

9.1 Main Conclusion

In this thesis, we worked on the computationally and energy-efficient SLP for the sum power
minimization for M -APSK and M -QAM modulated waveforms. We developed the closed-
form algorithms for real-time SLP operation. The closed-form algorithm has an asymptotic
complexity of O(N2) and has a significantly faster processing time in comparison to other
optimization algorithms (Fast NNLS and CVX) for convex quadratic optimization problems.
The closed-form algorithm provides a trade-off between the increased sum power and much
faster processing time. The efficient processing time and low complexity of the algorithm are
essential in the real-time transmission systems with very short symbol periods like DVB-S2X
and millimeter-wave communications.

We implemented the closed-form algorithm in the in-lab hardware demonstrator for pre-
coding in DVB-S2X systems. The hardware demonstrator is a full-chain closed-loop commu-
nication system with a multi-beam gateway transmitter, MIMO channel emulator, and user
terminals with real-time CSI estimation and feedback. With the hardware demonstrator, we
were able to experimentally show demonstrated the application of the conventional linear
precoding and SLP in realistic satellite communications based on the DVB-S2X standard.
For the in-lab demonstration, we implemented the closed-form SLP into the FPGA platform.
We optimized the design of the FPGA code to operate at up to 83 MSymbols per second
throughput per each receiver terminal with up to 20 simultaneously operating terminal units
while utilizing a reasonable amount of the FPGA resources. The designed HDL core uni-
versally supports single- and multi-level symbol modulations with fixed-phase optimization.
It can directly operate with any M -PSK and M -APSK constellation and does not need to
reconfigure. The approximate closed-form algorithm, which we developed for the FPGA de-
sign, demonstrated a 2 dB loss of energy efficiency during the conducted benchmarks against
conventional Fast NNLS and CVX optimization algorithms. We also measured an additional
1 dB loss of energy efficiency of the approximate closed-form algorithm when deployed on
an actual FPGA platform. Finally, we were able to experimentally demonstrate that SLP
can improve received signal quality in terms of SINR and Spectral efficiency then compared
to ZF precoding. We showed that the design of the receiver does not need prior modifica-
tions to correctly decode symbols, modified by the SLP technique. We used the conventional
LLR and LDPC decoder to extract the information bits from the symbols. SLP achieves
higher spectrum efficiency and lower FER at the same noise power introduced by the channel
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emulator. At the same, the SLP transmitting power remains lower than for ZF.

9.2 Future Works

Although the results presented in this thesis have demonstrated the effectiveness of the pro-
posed designs and optimization methods for SLP communications, many opportunities for
extending the scope of this thesis remain open. This section discusses some of the topics that
we consider particularly interesting for extension and new problems.

Hereby, we name several possible extensions:

• Enhance pilots and SINR estimation for ACM with SLP: It was shown that
the conventional algorithm for SINR estimation treats symbols, which are modified by
SLP, as a source of interference. Thus, the SINR is underestimated in such cases, which
will affect the adaptive coding and modulation (ACM) selection.

• Enhance LLR calculation: The current LLR calculation can be improved for SLP
symbols for further improve FEC. Currently, LLR distances are calculated between
received symbols and expected symbol points. Improved performance is expected if
LLR distances are calculated between the received symbols and constructive interference
regions of expected symbols.

• Perform over-the-air precoding: The current in-lab test-bed is suitable for over-
the-air (OTA) precoding validations. We plan to set up a 2 by 2 test-bed using an
actual multi-beam satellite link. The OTA test-bed will provide more accurate precod-
ing performance analysis and help to facilitate the adoption of the technology in the
industry.
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