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Networks

Networks, or graphs, are a way of representing information where there is
a relation between elements. The generality of this definition make it a
proper tool for many different scenarios:
I In Social Media for example, the users interaction are know to build a

Social Network, but also in real-life interactions between people in a
company, school, village, etc. can be modeled with networks,

I in Chemistry the interaction between molecules can be thought of as
a network

I in transportation, moving from one point to another can be
represented as a network where nodes are intermediate points and
edges represent the possibility of movement,

I in the economics, we can represent the banking system as a network
of financial entities and money transfers, also international trade can
be represented in this way, etc.
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Network types

A network can either be:
I Directed if the edge between vertices has a one-way direction,
I weighted if edges are categorical or in R,
I attributed if the nodes have features,
I signed if edges can take negative values,
I heterogeneous if there can be different types of edges/vertices.

Heterogeneous networks can represent multiple types of relations.
For example, knowledge graphs represent the relation between
concepts. Something like Paris is in France could be represented as
two nodes: Paris and France connected by the relation is in
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Representation
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We can represent a network
using an adjacency matrix,
where a 1 at the position ij
represents that it exists a link
between nodes i and j. there
is no natural order for rows
and columns.
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Tasks on networks

In networks, given the flexibility of the representation, there exists many
different tasks:
I network classification
I node classification
I link prediction
I community detection
I network generation
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Tasks on networks

Besides the different possible tasks, there is also an important distinction:
I transductive framework: all nodes, their features and their links are

visible during training, and only the labels of the test set are
removed. This is semi-supervised learning

I inductive setting: Is a fully supervised learning problem.
Nodes/Networks to classify are not seen during training. Is a more
general, though more complex task.
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Deep Learning on Networks

Problem

Traditional Deep Learning models for images or text depend on the
regularities that not all networks have. The two main difficulties are:

I Nodes have a variable number of neighbors,
I neighbors cannot be ordered.
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Images as networks

Images can be thought
of as regular networks,
where each node is
connected to the
adjacent pixels following
a regular spatial pattern.
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Sequences as networks

Also a text can be seen as a sequential network

The cat is under the table

The same can be said with any sequential data, like time series, sensor
data, etc.
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Embeddings
I For any of the tasks on networks mentioned before, the first step is to

build an embedding representation of nodes.
I We train an encoder that maps the nodes to a low-dimensional

embedding space
I The goal is that the distances in the embedding preserve the

distances in the network.

Hamilton 2020
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Spatial/Message Passing I

I In the spatial framework, we are going to build the representation of
each node as an AGGREGATE of its neighbors,

I at each iteration (layer) embedding of a node encodes information
from more distant neighbors,

I We can initialize the embeddings the feature-vector of each node

Hamilton 2020
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Spatial/Message Passing II
I how do we AGGREGATE and UPDATE the representation from a

previous layer with the neighbors information, defines the different
types of models.

I Kipf and Welling 2017 use the average of the previous layer with the
neighbors, while Hamilton2017 use a concatenation as update and
the average as aggregate

I Xu et al. 2019 use the sum of the neighbors.

Hamilton 2020
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Further reading I

There are other frameworks for deep learning on graphs. For a timeline of
different models and future directions:

GCN

recurrent

random walks

convolutional

spectral spatial

autoencoders

Graph-U-nets

attention

timeline
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Further reading II

I recurrent (Scarselli et al. 2009)
I random walks (Perozzi and Skiena 2014; Grover and Leskovec

2016)
I spectral methods (Bruna et al. 2013)
I GCN (Kipf and Welling 2017)
I Spatial (message passing) (Hamilton, Ying, and Leskovec 2017; Xu

et al. 2019)
I attention (Veličković et al. 2018; Thekumparampil et al. 2018)
I autoencoders (Kipf and Welling 2016)
I pooling layers (Gao and Ji 2019)
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Science of Science
"The Science of Science is based on a transdisciplinary approach that
uses large data sets to study the mechanisms underlying the doing of
science" (Fortunato et al. 2018)

(Fortunato et al. 2018)
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How I use it
I use the GNN on research publications, where each article is a node with
metadata and text, and they are linked by their citations. I train the
emebdding for the link prediction task, i.e., I try to predict if to articles are
related through a citation.

Encoder z Decoder

̂

autoencoder (Kozlowski et al. 2020).
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articles embedding (Kozlowski et al. 2020).
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Computational Mechanics

I As a future project, we would like to explore the field of
computational mechanics, and build useful artifacts for exploring the
topics within the field,

I for this, we want to share with you a drive sheet for suggestions on
the most relevant journals from the field,

I you are welcome to join us!
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Other resources

Implementation of models:
https://pytorch-geometric.readthedocs.io/
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