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Abstract
We show a general formula expressing the least common multiple of several
positive integers in terms of various greatest common divisors. This generalizes the
well-known formula which states that the least common multiple of two positive
integers equals their product divided by their greatest common divisor. The proof is
based on the inclusion-exclusion principle for multisets, which is also proved in this
note.

Formulas for the least common multiple

Consider two positive integers a and b: it is well-known that we can express their least
common multiple through their greatest common divisor as follows:

a-b
ged(a, b)

For three positive integers a, b, c we have a similar formula:

lem(a, b) =

a-b-c-ged(a,b,c)
ged(a, b) - ged(a, ¢) - ged (b, ¢)
For n positive integers a4, . . ., a,, we have a general formula for their least common mul-

tiple expressed through various greatest common divisors. To ease notation we define
the ged of a single positive integer to be the number itself and the gcd of an empty set

lem(a,b,c¢) =

of numbers as 1. If I is any subset of {1,...,n}, we then write gcd() for the greatest
common divisor of the elements a; with ¢+ € I. We thus have the formula
lem(ay,...,a,) = H gcd(])(*l)#f (1)
I1C{1,...,n}

which can be rewritten as

[rcq,...ny ged()
“#lodd

- ng{l,...,n} ng(I) '

#1 even

lem(ay,...,a,)

In this last formula we have a quotient with as many factors in the numerator as in the de-
nominator because a set has as many subsets with odd cardinality as with even cardinality.
Notice that we recover the two initial formulas with our new notation:

ged(a) - ged(b)

ged() - ged(a, b)

ged(a) - ged(b) - ged(c) - ged(a, b, ¢)

ged() - ged(a, b) - ged(a, c) - ged(b, ¢)

We prove the general formula () by making use of the inclusion-exclusion principle for
multisets.

lem(a,b) =

lem(a, b, c) =



Inclusion-Exclusion Principle for Multisets

Multisets are like sets, but the elements can be repeated: the number of times that an
element appears in a multiset is its multiplicity (if an element does not appear, then its
multiplicity is zero). An equality between two multisets means that the elements are the
same, and they appear with the same multiplicity. One similarly defines the inclusion
between two multisets, where we have an inequality between the two multiplicities.

The union AU B of two multisets A and B is the smallest multiset containing both A and
B, and one similarly defines the intersection A N B. Notice that the multiplicity of an
element in the union is the maximum between the two multiplicities in A and in B, and
for the intersection we have the minimum instead. We also have the sum A 4+ B which is
obtained by putting together the elements of A and of B: the multiplicity for an element
in A 4+ B is the sum of the two multiplicities in A and in B. Moreover, if B C A we
define the difference A — B as the multiset C' such that A = B + C' (the multiplicities
in C' are the difference of the multiplicities in A and B). Notice that we can immediately
generalize the operations of union, intersection, and sum to finitely many multisets.

The inclusion-exclusion principle for two multisets A, B states that we have
AUB=A+B—-(ANB).
For three multisets A, B, C', we have the identity
AUBUC=A+B+C+(AnBNC)—(AnB)—(ANnC)—(BNC).

Finally, the general formula of the inclusion-exclusion principle for n > 2 multisets A,
to A, is the identity

Ji= > N4 - ¥ Na @

i=1 1C{1,2,...n} i€l 1C{1,2,...n} i€l
#1I odd #I even, I#)

To prove the inclusion-exclusion principle it suffices to show that the multiplicity for an
element in | J;_, A; is the same as its multiplicity in the multiset on the right-hand side of
(2). Writing m; for the multiplicity of the element in A; we have to show that

max m; = E minm; — E min m; . 3)
1€{1,...,n} i€l el
I1C{1,2,...,n} I1C{1,2,....,n}
#1 odd #1 even, I#]

Without loss of generality suppose that m,, is the maximum of the multiplicities. Then for
all sets I # {n} we have min;c; m; = min;ep g} m;. We deduce that the above formula
is equivalent to

My, = m, + min m; — min m; . 4
c Z iel\{n} Z iel\{n} @)
7{1727"’7,”} Ig{17277n}
#I odd, I#{n} #1 even, I£(D
The above equality is true because the subsets of {1,2,...,n — 1} with odd (respectively,
even) cardinality correspond to the subsets of {1,2,...,n} of even (respectively, odd)

cardinality containing n and hence the two sums cancel out.



Proof of the formula for the least common multiple

The fundamental theorem of arithmetic states that every positive integer is a product of
prime numbers, and this in a unique way up to rearranging the prime factors (prime num-
bers are considered to be products with just one factor, and the number 1 is the empty
product). To any positive integer we may then associate the multiset of its prime factors,
and we have a very elegant correspondence between the positive integers and the finite
multisets of prime numbers.

Several arithmetic notions related to divisibility translate to basic notions for multisets, be-
cause the divisibility between two positive integers corresponds to an inclusion between
their multisets of prime factors. We deduce that the least common multiple corresponds
to the union of the multisets of prime factors, while the greatest common divisor cor-
responds to the intersection of the multisets of prime factors. Moreover, the product of
positive integers corresponds to the sum of the multisets of prime factors, and a quotient
(between a multiple and a divisor) corresponds to the difference of the multisets of prime
factors.

With this correspondence, the formula in (I)) immediately translates to the identity in (2),
which we have proven. One detail: notice that || [C{1,..n} £1 even ged(7) is a divisor of
Ircqi.. ny 41000 80d(1) because, as it is clear from the inclusion-exclusion principle for
multisets, we have the inclusion
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IC{1,2,...n} i€l IC{1,2,...n} i€l
#I even, I#£) #1I odd

As a concluding remark, the formulas which we have shown imply that all which is done
in terms of the least common multiple can be described through the greatest common
divisor.



