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Advancement in satellite technology, and the ability to mass-produce cost-effective small satellites has created a
compelling interest in Distributed Space System (DSS), such as Low Earth Orbit (LEO) satellite constellations.
Optimization of DSS is a complex Multidisciplinary Design Optimization (MDO) problem involving a large
number of variables and coupling relations. This paper focuses on comparing three different MDO architectures
for a DSS design problem. Initially, an overview of the constellation model, the subsystems model, and the cou-
pling relationships between the subsystems and the constellation are provided. The modelling of the subsystems
and the constellation configuration are carried out in OpenMDAO. Later, three monolithic MDO architectures,
namely, Individual Discipline Feasible (IDF), Simultaneous Analysis and Design (SAND) and Multidisciplinary
Feasible (MDF) are compared by implementing them to the developed DSS model. The results indicate IDF
outperforms the rest of the architectures for the conceptual design of DSS. The optimum objective function
obtained by IDF is 1% lower than SAND and 7% lower than MDF. While the functional evaluation required for
IDF is 50% lower than SAND and 90% lower than MDF.
Keywords: MDO Architecture, Satellite Design, Satellite System Engineering, Distributed Space Systems

1. Introduction

In the emerging NewSpace industry, driven by the
advancements and miniaturization of electronics, the
capabilities and application of small satellites are grow-
ing tremendously. Small satellites offer unique benefits
such as shorter development time, lower cost, relatively
simple maintenance, and mass producibility. As a re-
sult, small satellites are currently considered for almost
every space applications.1 Small satellites are predom-
inant in Low Earth Orbits (LEO).24 The ground cov-
erage capacity of a small satellite operating in LEO is
limited and often operate in a group to accomplish a
commercial mission. Distributed Space Systems (DSS)
is a system in which several satellites work together to
achieve a common goal which is not feasible with a sin-
gle small satellite. There is always a growing demand
for cost-effective DSS operable in LEO. Previous re-
searches on DSS8,9, 12,26 were focused on optimizing the
geometric configuration of the satellite constellation to
improve coverage and reduce the overall cost. However,
the satellite subsystems and their parameters were not

considered for the optimization. The long-term success
of a DSS hinges on substantial cost reduction. This is
possible only when the connection between the constel-
lation configuration and satellite subsystems are fully
exploited. Therefore, design of DSS considering all the
disciplines with interdisciplinary coupling needs to be
optimized. Because of its disciplinary boundaries, DSS
cannot be optimized as a standard constrained non-
linear programming problem and has to be considered
as a Multidisciplinary design problem.

The optimum solution to a multidisciplinary design
problem can be achieved not only by considering the
design of individual disciplines in the system but also
their interactions. Multidisciplinary Design Optimiza-
tion (MDO) is a field of engineering that is used to solve
optimization problems involving more than one disci-
pline. Like any other optimization, the primary focus
of MDO is to identify an optimal solution in a speci-
fied design space subject to constraints. Optimization
of individual subsystems can conflict with each other
when assembled. Therefore, the entire system has to
be optimized holistically. Modelling of subsystem in-
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teractions with each other in a DSS complicates the
optimization problem as the subsystem compatibility
has to be maintained along with the objective function
minimization. There are several ways to overcome this
challenge with problem formulation procedure called
MDO architecture.

Martins and Lambe21 presented 14 different MDO
architectures that are found in the literature. MDO
architectures are broadly classified as hierarchical and
non-hierarchical architectures. In hierarchical archi-
tecture, each child element has a parent element with
which it exclusively interacts.7 Whereas, in the non-
hierarchical architectures, there are substantial inter-
actions among the child elements, as well as the par-
ent element. Non-hierarchical approach is needed for
our case as there are strong interactions among the
child elements. Based on the problem formulation, non-
hierarchical architectures are further classified into two
types. When the problem is formulated as a single opti-
mization problem, it is called monolithic architecture.
Whereas, when the problem is decomposed into sub-
problems and reassembled to have a combined solution,
it is called Distributed architecture.

There has been numerous efforts to compare differ-
ent architectures in the past.4,7, 10,13–15,22,28,33 When
optimizing a complex system, Hulme and Bloebaum13

arrived at a result favouring Multiple Design Fea-
sible (MDF) over Individual Design Feasible (IDF)
and All-At-Once (AAO). Another study by Marriage
and Martins,20 concluded that Collaborative Optimiza-
tion (CO) outperformed MDF when few subsystems
were highly-coupled while the others were not. On
the contrary, benchmarking by Tedford and Martins28

showed that IDF and Simultaneous Analysis and De-
sign (SAND) had the best performance over MDF and
CO for their problems. A recurring point made from
these studies is that the performance of architecture
is problem-specific, and there is no one superior archi-
tecture that is suitable for all types of problems. Di-
verse results obtained from the above studies show that
the selection of MDO architecture affects both the op-
timality of the solution as well as the computational
resources required. Very few researchers27 have opti-
mized the DSS design problem using MDO approaches
but the comparisons of MDO architectures have not
been done for this specific case. The goal of this paper
is to compare three different Monolithic architectures:
MDF, IDF and SAND for the DSS design problem. The
comparison of Distributed architecture for the DSS de-
sign problem is foreseen in the future.

The various disciplines and their interactions of DSS
are modelled in OpenMDAO,11 which is a specialized
framework for MDO optimization. The usage of such

framework removes most of the human-factors in pro-
gramming of the architectures. Therefore, the results
remain unbiased and depend only on the nature of the
problem.

The paper begins with a detailed description of the
DSS design problem, which explains the objectives and
the intricate connections between the disciplines. Next,
we describe each subsystem and its developed analyti-
cal model. Having established the background for the
DSS design problem, we proceed to examine MDF, IDF
and SAND architectures. Finally, we present the op-
timization results and compare all the MDO architec-
tures considered in the paper.

2. Problem Description

In this section, we describe a DSS model to com-
pare the selected architectures. A DSS is a complex
multidisciplinary system consists of following subsys-
tems: (i) Constellation model, (ii) Payload, (iii) Power,
(iv) Thermal, (v) Structure, (vi) Attitude Determina-
tion and Control System (ADCS), (vii) The on-board
data handling (OBDH), (viii) Telemetry, Tracking and
Command Systems (TT&C), and (ix) Propulsion. For
the initial study, we consider only Constellation, Pay-
load, Power, Thermal and structure subsystems. We
assume that ADCS, OBDH, TT&C, and Propulsion
subsystems are readily available and their mass and
power budgets are estimated based on design estima-
tion relationships.2,6, 31 The multidisciplinary design
optimization problem requires a set of design variables
and subsystem inputs to generate subsystem states by
solving the respective analysis model. The calculated
subsystem states are either needed to compute the ob-
jective/constraints or needed by other subsystems (cou-
pling). The connections between the subsystems of
modelled DSS is illustrated in Fig. 1. The set of design
variables used in this problem, and their permissible
ranges are presented in section 4.

The difference between the MDO architectures lies
in their handling of coupling variables. Most of the
design variables in this problem are continuous while
some of them are discrete. If we consider both types
of variables then the optimization problem becomes a
Mixed Integer Non-Linear Problem (MINLP) which are
very hard to solve. The discrete variables such as the
number of satellites and orbital planes are important
for reducing the launch cost but they are not directly
coupled to any other subsystem. While these discrete
variables will impact the resultant satellite design and
the computation time, it will not affect the comparison
between the architectures. Therefore, in this paper we
fix the number of satellites and orbital planes to reduce
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Fig. 1: Coupling of DSS (MDO) disciplines

MINLP to Non-Linear Problem (NLP), and optimize
only the Altitude, Inclination and Elevation angle in
the constellation discipline.

The DSS considered in this paper is an earth ob-
servation constellation operating in LEO. The constel-
lation consists of 25 satellites evenly distributed over
five orbital planes. The satellites in the constellation
are assumed to be identical to each other and have
the same optical payload. The primary constraint en-
forced in this DSS optimization problem is to provide
at least 70% coverage over Luxembourg, Belgium, and
Germany. The objective of the optimization problem
is to minimize the overall mass of the DSS system sub-
ject to various constraints. The mass of DSS msys is
calculated using equation (1).

msys = Ns × (mstruc +mpayload +mpower+ [1]

mthermal +mremaining)

where Ns is the number of satellites, mstruc is the mass
of satellite structure, mpayload is the mass of payload,
mpower is the mass of power subsystem, mthermal is the
mass of thermal subsystem and mremaining is the mass
of remaining subsystems.

3. DSS Subsystems

In this section, the mathematical model for all the
considered disciplines in the Distributed Space System
is detailed. Here the parent element is DSS and the
children elements are as follows: Constellation, Pay-
load, Power, Thermal and Structure.

3.1 Constellation Model

Coverage goal of the DSS can be achieved by nu-
merous constellation patterns. However, we con-
sider Walker Delta pattern for its simplicity and cost-
effectiveness.30,32 The constellation parameters i, Ns,

p, and f define the distribution of the satellites in space,
where i is the inclination, Ns is the total number of
satellites, p is the number of orbital planes, and f is
the phase difference between satellites in the adjacent
plane. Walker Delta constellation pattern is denoted
by i : Ns/p/f . The number of satellite in each orbit
is given by s = Ns

p where p | Ns. In this paper, to
avoid collisions between satellites, the phase difference
between adjacent satellites in a single plane is calcu-
lated by f × 360◦

Ns
, where f is an integer between 0 to

(p – 1).
The orbital parameters of a satellite in the three-

dimensional space include the six Keplerian elements:
semi-major axis (a), eccentricity (e), inclination (i),
the longitude of ascending node (Ω), the argument of
perigee (ω), and true anomaly (ν). Since the Walker
Delta constellation consists of circular orbits, e = 0 and
ω = 0. Therefore, a is equal to the radius of the orbit,
and ν becomes the angle from the ascending node to
the satellite’s position vector. The right ascension of as-
cending node is given by Ω = 360◦

p . At epoch νn = fn
where n = 1, 2, ..., Ns. The optimization design vari-
ables for the constellation discipline are the Altitude
(h), i and elevation angle (ε). The constraints set for
this problem is to achieve total temporal coverage of at
least 70%.

At first, the satellite’s initial state is determined
from the orbital parameters. Then, the satellite state
is propagated around the Earth over a defined time,
12 days in our case. Finally, the coverage is computed
and updated for each satellite. Detailed descriptions of
these steps are as follows:

Satellite State Determination The state (~Y ) of
the satellite at any a given point in space is deter-
mined by the position and velocity vectors of the satel-
lite. Equation (2-4) represent the state (~YPQW ), posi-
tion (~rPQW ), and velocity (~vPQW ) vectors in the Per-
ifocal coordinate system, PQW , where µ is the stan-
dard gravitational parameter. Here, P axis is towards
perigee (ω), Q axis is 90◦ from P in the direction of
satellite motion, and W axis is normal to the orbit.

~YPQW =

[
~rPQW
~vPQW

]
[2]

~rPQW =


acos(ν)

1+ecos(ν)
asin(ν)

1+ecos(ν)

0

 [3]

~vPQW =


−
√

µ
p sin(ν)√

µ
p (e+ cos(ν))

0

 [4]
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Since ω = 0, the perifocal frame of reference becomes
obsolete for further calculation. Therefore, using co-
ordinate transformation, the state variables are trans-
formed into the Earth-Centred Inertial (ECI) system,
IJK, where I axis points towards the vernal equinox
direction, J axis is 90◦ towards the east in the equato-
rial plane and K axis goes through the north pole.

Satellite State Propagation Due to the gravita-
tional attractions between the satellite and the Earth,
the movement of a satellite in an orbit around the earth
is considered as a two-body problem. In an ideal case,
this is represented by simple equations of motion. How-
ever, in an actual case, there are perturbations due to
the following: (i) Non-homogeneity and oblateness of
Earth, (ii) Third-body effects, (iii) atmospheric drag,
and (iv) solar pressure. The effect of the perturbations
in the satellite cannot be neglected in a real-world sce-
nario. Cowell’s Formulation3 accounts for these effects
by adding the perturbing accelerations to the two-body
equation of motion, as shown in equation (5).

~̈r = − µ
r3
~r + ~ap [5]

where perturbing acceleration, ~ap, is the total accel-
eration caused by all other forces acting on the satel-
lite and ~̈r is the resultant satellite acceleration. The
specific form of ~ap depends on the number of pertur-
bation sources considered in the problem. In this pa-
per, we assume a simplified acceleration model that
includes perturbations due to the non-spherical central
body. This perturbing acceleration on the satellite is
obtained from the gradient of the gravitational poten-
tial of the non-spherical Earth that is modelled using
spherical harmonics.16 The perturbations arising from
the second (J2), third (J3) and fourth (J4) harmonics
are considered for our calculation. The components of
the perturbing acceleration vector due to J2, J3, and
J4 harmonics used for the calculation are found in29

and are added linearly to equation (5).
Combining the state vector (2) and Cowell’s second

order equation of motion, the state of the satellite is
reformulated into a first-order system as follows:

~̇Y =

[
~v

−µ~rr3 + ~ap

]
[6]

Equation (6) is known as the variation of Cowell’s
formulation and is solved by using numerical integra-
tion methods.

Coverage Analysis The satellite observational area
is the field of view from the satellite that projects a
circular or rectangular footprint on the Earth. Access

between the satellite and a target point in the footprint
area at a given time represents the instantaneous cover-
age of the satellite. With the latitudes and longitudes of
the sub-satellite point (Θs, Λs), and the latitudes and
longitudes of the target (Θt, Λt), the value of Earth
Central angle λ is calculated using equation (7).19

cosλ = sinΘssinΘt + cosΘscosΘtcos|Λs − Λt| [7]

Then the nadir η is calculated using the design vari-
able ε from equation (8) which is used to calculate the
maximum earth central angle λmax.

sin ηmax = cos εmin
RE

h+RE
[8]

λmax = 90◦ − εmin − ηmin [9]

A total of three hundred grid points, evenly dis-
tributed among the intended region (Luxembourg, Bel-
gium and Germany) are selected as targets for this
study. The condition for the coverage, λ < λmax is
checked for each grid point. The total temporal cover-
age is determined by equation (10).

C =

∑n
i=1

∑m
j=1 Tij

nm
[10]

where C indicates the coverage performance of the
constellation, n is the number of time points consid-
ered, m is the number of grid points and Tij is the
coverage matrix. C should be at least 70% as per the
constraints set for the problem.

3.2 Payload

Payload, being the most important subsystem of a
satellite, drives the system design. Therefore, payload
parameters such as size, weight and power requirement
are needed at the initial stage of the satellite design.
Usually for constellation missions, the payload is well
defined and needs to be populated properly in orbit.
However, in our case, the payload design is also opti-
mized. It is unlikely to know the exact value of the
payload parameters at the early stage. Therefore, we
use viable estimation techniques to find its approximate
value.31 For earth observation mission, we consider an
optical payload operating in a spectral range of 10.8µm.
Given the satellite altitude, the size of the payload is
estimated using the relation in the following equations.

f =
hdx

X/Nsamp
[11]

D =
Bf

Qdx
[12]
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where h is the altitude, f is the focal length, D is the
aperture diameter, dx is the width of cross-track de-
tectors, X is the cross-track ground pixel resolution,
Nsamp is the cross-track detector samples in one pixel,
B is the operating wavelength and Q is the quality fac-
tor for imaging. Based on the estimated aperture diam-
eter Dpayload, the mass mpayload, and power Ppayload of
the payload is determined by sub-scaling from a refer-
ence payload using following relations.31

R = Dpayload/D0 [13]

mpayload ≈ KR3W0 [14]

Ppayload ≈ KR3P0 [15]

where R is the aperture ratio, D0, W0, and P0 are the
aperture diameter, mass, and power of the reference
payload respectively and K is the scaling factor which
is 2 when R is less than 0.5, and 1 otherwise.

To increase the overall system coverage, we must en-
sure that the satellite footprints overlap. Therefore, the
swath of a satellite must be greater than the successive
node crossings at the Equator. This implies that the
orbits maintain substantial margins at higher latitudes
which ultimately increases the coverage. The swath of
the satellite is given by 2λmax. Successive node cross-
ings are determined from the perpendicular separation
between the orbits as given in equation below.

S = sin−1(sin(∆L)sin(i)) [16]

where ∆L is the longitudinal shift per orbit and i is the
orbit inclination angle.

3.3 Power Subsystem

The electrical power required to operate the satel-
lite is generated by the Power subsystem with the help
of solar panels. In addition to power generation, the
power subsystem is also responsible for storing, dis-
tributing, and regulating the electrical power to each
subsystem as needed. The area of solar panels influ-
ences the power generation as well as the size of the
satellite. The size and capacity of the rechargeable
battery to store the generated power depends on the
duration of the satellite in eclipse.

Solar Panel Sizing The solar arrays must be sized
such that the power generated by it is greater than the
power required by the satellite. The area of the solar
panel is determined by the amount of power required
by the satellite. The power required by the satellite is

calculated as follows:

Preq =
PpayloadTpayload + PthermalTe + PbattTe + PothersT

T − Te
[17]

where Ppayload is the power required by the payload in
time Tpayload , Pthermal is the power required by the
thermal subsystem operated during ecliplse Te, Pbatt
is the power required to charge the battery, Pothers is
the combined power required by the remaining for the
total orbital period T . The power generated by the
solar panel27 depends on various factors as given in the
following equation.

Pgen = S0XiXsXeX0AsηFc(βp∆T + 1)cos(χ) [18]

where S0 = 1367W/m2 is the solar constant, Xi =
0.95, Xs = 0.9637, Xe = 1 and X0 = 0.98 are the
correction factors, As is the area of solar panel, η is the
photoelectric conversion efficiency, Fc is the solar array
loss coefficient, βp is the power temperature coefficient,
χ is the worst-case sun vector deviation from the solar
panel normal. Using required and generated power, the
surplus power27 is calculated as follows:

Psurplus = (1− dy)LtPgen − (1 + 5%)Preq [19]

where dy is the annual power degradation of the solar
panels and Lt is the mission lifetime.

Battery Sizing During the eclipse, the power
generated by the solar panel is zero. A rechargeable
battery is required to maintain the supply of power to
the satellite. The discharge capacity, C of the battery
depends on the duration of the eclipse and the power
required during the eclipse. The Depth-of-Discharge,
DOD of the battery, is taken as 80% of the rated
capacity Crated.

With the area of the solar panels as design variable
and the estimated battery capacity, the mass of the
power subsystem, mpower is calculated from equation
below.

mpower = ρsAs + Crated.VDB/µb [20]

where ρs is the areal density of solar array, VDB is the
battery voltage and µb is the specific energy of the bat-
tery.

3.4 Thermal Subsystem

The satellite in an orbit is subject to radiation from
the sun, thermal radiation from the earth, and albedo.
The temperature within the satellite must be main-
tained to keep the electronics in their operational range.

IAC–20–D1.4B.6 Page 5 of 15



71st International Astronautical Congress (IAC) - The CyberSpace Edition, 12-14 October 2020.
Copyright c© 2020 by International Astronautical Federation (IAF). All rights reserved.

Excess heat collected inside the satellite is ejected to
the outer space by the radiators located in sun-facing
direction. The common heat sources are external envi-
ronment and internal heat generation. While the com-
mon heat sinks are controlled heat rejection from the
radiator and heat leaks from the insulation. Initially,
the satellite is assumed to in steady-state equilibrium.
The heat balance equation for the satellite is given by
equation (21).2,19

Qsource = Qsink

Qexternal +Qinternal = QRadiator +QMLI [21]

We assume that the predominant source of radiation
is the sun and other external radiations are negligi-
ble. The entire satellite is encapsulated by Multi-Layer
Insulation (MLI) except the faces where the radiators
are mounted. The heat leaks from MLI are insignif-
icant and is neglected in the calculation. Therefore,
using Stefan-Boltzmann law the heat balance equation
is rewritten as follows:

αS0AR +Qinternal = εARσT
4 [22]

where α is the Absorbity of the material, ε is the Emis-
sivity of the material, S0 is the solar constant, σ is the
Stefan-Boltzmann constant, T is the satellite temper-
ature, AR is the radiator area and Qinternal is the in-
ternal heat generation. With equation (22) and AR as
the design variable, the temperature T is calculated for
hot and cold cases. Qinternal is assumed as 60% of the
satellite power during hot case and 40% of the satellite
power during cold case. The temperature during the
hot case must not exceed 340K and the temperature
during the cold case must not be less than 263K. Fi-
nally, the mass and power of the thermal subsystem are
estimated by equations (23,24) respectively.

mthermal = AR ρR [23]

pthermal = εσART
4 [24]

where ρR is the areal radiator density.

3.5 Structure Subsystem

The structure of the satellite is the mechanical en-
closure enveloping the satellite subsystems to protect
them from the launch and space environments. The
structural elements are treated as a separate subsys-
tem for design and analysis purposes. This subsystem
stays in contact with a launch vehicle, and it expe-
riences severe static and dynamic loads. The load-
carrying capacity of a satellite depends on the strength

Fig. 2: Satellite cross section

and stiffness of the structure subsystem that can be im-
proved by careful selection of materials, and adequate
reinforcement. However, it is necessary to keep the
mass of the satellite as light as possible to reduce the
launch cost. The shape of the satellite has significant
importance, especially when solar panels, radiators or
any other elements are mounted on its surfaces. Satel-
lite exits not only in regular shapes such as cylinder,
cuboid, sphere but also in irregular shapes.

The satellite considered here is a semi-monocoque
cuboid whose length in X and Y directions are equal as
shown in Fig. 2. It has four side panels, four stiffeners
at the corners, and four trays/frames perpendicular to
the stiffeners. The launch adapter in the launcher is at-
tached to the outside of the bottom tray, A. The trays
B and C hold payload and other subsystems, while the
tray D covers the cuboid. The number of elements in
our structural design is fixed and its dimensions are
optimized. The space-grade aluminium alloy - AL7075
T6 is selected as the material for our design. Its mate-
rial properties is indicated in Table 1. The structural
model presented in this paper is based on the analyti-
cal structural design methodologies provided in the lit-
erature.2,5, 23,25 The design variables and constraints
for structural optimization are the geometric dimen-
sions and launch loads, respectively. The magnitude of
launch loads varies with the launchers. We consider a
launcher with severe launch loads shown in Table 2.

Static Model A static model or time-invariant satel-
lite model is used to evaluate the structure under quasi-
static limit loads imposed by the launcher. For pre-
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Table 1: AL7075 T6 material properties

E (GPa) ν G (GPa) ρ (kg/m3) σ (MPa) τ (MPa)

71.7 0.33 26.9 2810 503 331

Table 2: Launch loads considered

Launch load Longitudinal Lateral

Acceleration (g) ± 10g ± 7.5g
Frequency (Hz) ≥ 90Hz ≥ 60Hz

liminary calculations, the model assumes the satellite
is considered as a cantilever beam fixed at the base
through the launch adapter. The satellite experiences
the maximum axial load of 10g and a uniform lateral
load of 7.5g. Then the maximum normal stress, σmax
and maximum shear stress, τmax are calculated from
following equations.

Asat = 4[Ab + tp(LXY − tp)] [25]

σmax =
Mmaxhp

2Ix
+
Flong
Asat

[26]

τmax =
VmaxQ

IxLXY
[27]

where Asat is the cross sectional area of the satellite,
LXY is the satellite dimension in X and Y direction,
tp is the thickness of the side panels, Ix is the satel-
lite moment of inertia, Mmax is the maximum bending
moment and Vmax is the maximum shear force. The
Lateral load, Flat and longitudinal load, Flong is ob-
tained by substituting lateral acceleration alat and lon-
gitudinal accelerations along in F = msat × a, respec-
tively. The calculated stress should be less than the
yield strength of the material indicated in Table 1.

Dynamic Model The satellite should withstand
both static and dynamic load applied to it. The classi-
cal methodology is to design for static loads and verify
the design for dynamic loads or vice versa. However,
in our optimization, a set of design variables is itera-
tively checked against both static and dynamic loads.
A dynamic model of the satellite predicts the natural
frequency of the satellite in the given load conditions.
The dynamic model here is a four degrees-of-freedom
spring-mass system. The mass m1, m2, m3, and m4

represent the lumped masses for trays A, B, C, and
D respectively. The launch adapters and structural el-
ements between the trays act like spring. The equa-
tions of motion in longitudinal and lateral directions

are given by equations (28,29) respectively.


m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4



z̈1
z̈2
z̈3
z̈4



+


k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4
0 0 −k4 k4



z1
z2
z3
z4

 =


0
0
0
0


[28]


Im 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4



ϕ̈
ẍ2
ẍ3
ẍ4



+


kϕ 0 0 0
0 k5 + k6 −k6 0
0 −k6 k6 + k7 −k7
0 0 −k7 k7



ϕ
x2
x3
x4

 =


0
0
0
0

 [29]

k1, kϕ are the longitudinal and lateral stiffness of the
launch adapter. k2−4 are the longitudinal stiffness, and
k5−7 are the lateral stiffness of the structural elements
between the trays A-B, B-C and C-D, respectively. Im
is the mass moment of inertia of the satellite.

With the mass and stiffness matrices, the angular
frequency of the satellite is obtained by solving the
eigenvalue problem, ([K]− ω2

n[M ]) = 0. The first nat-
ural frequency is calculated by fn = ωn/2π. The cal-
culated first lateral frequency and the first longitudinal
frequency must be greater than launcher constraints
shown in Table 2.

4. MDO Architectures

The MDO problem of the DSS is formulated to have
a single objective function (to minimize the mass of
DSS) with continuous design variables described in Ta-
ble 3. The problem is solved using three different
architectures MDF, IDF, and SAND. The main dif-
ference between the architecture lies in the handling
of interdisciplinary coupling. For a fair comparison,
all the architectures use the Sequential Least-Squares
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Quadratic Programming (SLSQP) optimizer17 and the
convergence tolerance of the optimizer set to 1× 10−3.

To describe the sequence of operation and data in-
teractions within the architecture, we use an extended
Design Structure Matrix (XDSM) proposed by Mar-
tin and Lambe.18 The conventions used in XDSM
are as follows: (i) Rounded rectangle represents the
optimizer that controls the entire optimization. (ii)
Rectangular-shaped nodes represent discipline modules
and are placed along the diagonal. (iii) Parallelogram
shaped nodes represent data and results. (iv) Thick
grey lines indicate data flow and thin black lines indi-
cate process flow. (v) Data flow in vertical direction
represents the input to the module while the data flow
in horizontal direction represents the output from the
module. (vi) In addition to the thin black lines, a num-
bering system is used to indicate the process flow. (vii)
The process flows from module-0 and continues in se-
quential order up to module-n. (viii) i → j represents
loops executed within the architecture such that a pro-
cess i is followed by process j until a specified condition
is met. (ix) Data external to the optimizer, such as
design variables initial guesses x(0), variables at their
optimum x∗, and discipline-specific variables are placed
in the outer nodes.

IDF and SAND are decoupled while, MDF requires a
solver to handle the coupling.The following sub-sections
present a brief description of problem formulations in
MDF, IFD, and SAND architectures and their respec-
tive XDSM diagrams for the given DSS model.

4.1 Simultaneous Analysis and Design (SAND)

As the name suggests, the SAND architecture si-
multaneously analyses and designs the system. This is
performed by including state variables (ȳ) and coupling
variables (y) from each discipline to the set of design
variables (x). The analysis models are reformulated to
provide residuals for each disciplinary equations. These
residuals are treated as equality constraints for this ar-
chitecture. The general mathematical formulation of
SAND architecture21 is shown below.

min f(x, y)

w.r.t. x, y, ȳ

s.t. gi(x0, xi, yi) ≥ 0 for i = 1, ..., N

Ri(x0, xi, y, ȳi) = 0 for i = 1, ..., N

[30]

The XDSM of the DSS problem implementation in
SAND architecture is shown in Fig. 3. The design
variables and their acceptable range are given in Table
3.

4.2 Multidisciplinary Feasible (MDF)

MDF architecture consists of Multidisciplinary anal-
ysis (MDA) modules over which the optimizer is placed.
This implies that at each iteration of MDF, a multidis-
ciplinary feasible solution is present. The set of design
variables (x) are passed into the MDA modules which
iterate over the discipline analysis models until a consis-
tent set of coupling variables (y) is generated. Then the
design variables and the resultant coupling variables are
used to compute the objective and constraints. Typi-
cal iterative solvers such as block Gauss-Seidel, Newton
solver are used to solve the MDA. The general math-
ematical formulation of MDF architecture21 is shown
below.

min f(x, y(x, y))

w.r.t. x

s.t. gi(x0, xi, yi(x0, xi, yi)) ≥ 0 for i = 1, ..., N
[31]

The XDSM of the DSS problem implementation in
MDF architecture is shown in Fig. 4. Nonlinear Block
Gauss Seidel iterative solver (NLBGS) and Newton
solver is used to solve the MDA of the DSS.

4.3 Individual Discipline Feasible (IDF)

Decoupling the MDF architecture results in IDF ar-
chitecture. To decouple the MDF, copies of coupling
variables (ŷ) are added to the design variable set (x).
This design variable set is then used to compute the
objective and constraints at each iteration. Multidisci-
plinary feasibility is ensured by the usage of consistency
constraints, gc = ŷ − y. The general mathematical for-
mulation of IDF architecture21 is given by:

min f(x, y(x, ŷ))

w.r.t. x, ŷ

s.t. gi(x0, xi, yi(x0, xi, ŷi)) ≥ 0 for i = 1, ..., N

gc = ŷi − yi(x0, xi, ŷi)) = 0 for i = 1, ..., N
[32]

The XDSM of the DSS problem implementation in IDF
architecture is shown in Fig. 5.
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Table 3: Design Variables of Optimization

Variable Symbol Unit Range Initial Guess

Altitude h km [800,1000] 900
Inclination i deg [53, 55] 53.5
Elevation Angle ε deg [15, 25] 15
Length in X & Y direction Lxy m [0.5, 1.2] 1
Length in Z direction Lz m [0.5, 1.2] 1
Thickness of panel tp m [0.001, 0.005] 0.005
L-bar width dst m [0.02, 0.05] 0.03
L-bar Thickness tst m [0.001, 0.005] 0.005
Length Ratio between plate A and B AB - [0.3, 0.5] 0.325
Length Ratio between plate B and C BC - [0.25, 0.375] 0.25
Area of Solar Panel As m2 [1, 5] 2
Area of Radiator Ar m2 [0.1, 2] 1.06
Mass of Structure* mstruc kg [4, 50] 15
Mass of Satellite* msat kg [65, 150] 100
Power required by Satellite* Psat W [300, 750] 400
Power required by Thermal Subsystem* Pthermal W [30, 200] 90
Power required by Payload** Ppayload W [20, 200] 40

* Needed by IDF and SAND
** Needed by SAND

Fig. 3: DSS XDSM diagram for SAND
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Fig. 4: DSS XDSM diagram for MDF

Fig. 5: DSS XDSM diagram for IDF
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5. Results and Discussions

The DSS design problem was solved successfully in
all three architectures. IDF, SAND, and MDF are op-
timized using SLSQP optimizer. For MDF, a solver
is needed to handle the coupling between the disci-
plines. For completeness, the MDF architecture is op-
timized for two cases: (i) using a gradient-free Non-
linear Block Gauss Seidel (NLBGS) solver and (ii) us-
ing a gradient-based Newton solver. Additionally, a
linear Direct solver is needed for the Newton solver to
compute to the derivatives. Comparison between the
solvers demonstrates the differing performance of the
same problem within the architecture. The optimiza-
tion results obtained from each architecture are shown
in Table 4.
There are multiple ways to measure the effectiveness of
an architecture. The most obvious way is to compare
the optimum objective values attained by each archi-
tecture. However, other metrics such as Total Function
Evaluations and Convergence Characteristics are also
important for useful comparison.

5.1 Objective Value

IDF provided the minimum objective value, i.e.
msys. However, there are no significant changes in msat

between the architectures. The nonlinear solvers used
in MDF introduces a noise during convergence which
causes the variations of the results. Since the resultant
mass of DSS is only an estimation, minor variations do
not significantly impact the DSS design. However, the
accumulation of error grows with the addition of sub-
systems. It is possible to minimize the error by using
analytical derivatives instead of numerical approxima-
tion, in the later stages.

5.2 Total Function Calls

The computation power required by the architec-
ture is indicated by the number of functions evalu-
ated/called while optimization. The calls to calculate
the derivatives are also included in the functional call
counts recorded for each subsystem. The number of
function calls to each subsystem for every architecture
is shown in Table 5. IDF supersedes the other archi-
tectures with the lowest function calls. Since MDF
converges to a multidisciplinary feasible design at each
iteration it has the most function calls. Additionally,
the presence of Direct solver induces a spike in function
calls of MDFNewton.

The optimizations were run on an intel COREi7 7th
Gen processor. The computational time required for
each architecture is given in Table 4. Due to careful
selection of design variable ranges combined with the

calculation of DSS coverage for a period of 12 days, the
computation time required is significantly lower than
the time generally required to solve a problem of this
size. In the actual scenario, the design variable have
wide ranges and the temporal coverage is calculated for
the entire mission lifetime. This exponentially increases
the computational time. However, the results obtained
are sufficient for the comparison of architectures. The
execution times given in Table 4 are consistent with the
number of function calls. As expected, the MDFNewton
had the highest execution time and IDF had the lowest.

5.3 Convergence Characteristics

The path taken for the optimization problem to ar-
rive at the optimum value is given by the convergence
characteristics of the problem. Due to the complex-
ity, the exact optimal solution for the DSS problem is
not known. Therefore, the lowest objective value cal-
culated is considered as the exact optimal solution for
this comparison. The relative error is calculated using
the following equation.

Relative Error =
|f − fmin|
fmin

[33]

where f is the objective of the targeted architecture
and fmin is the corresponding objective from the ar-
chitecture with the lowest objective value. The con-
vergence rate of optimization for each architecture is
shown in Figure 6. IDF architecture exhibits a clear
convergence trend while MDFNewton required more it-
erations to converge. The convergence behaviour will
be different when analytical derivatives are used instead
of numerical approximation.10
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Table 4: Optimization results

Unit IDF SAND MDFNewton MDFNLBGS

msys kg 2477 2502 2560 2660
msat kg 99.11 100.09 102.4 106.43
h km 917.2 913.3 918.92 964.2
i deg 55 55 53.57 53.5
ε deg 18.64 18.56 17.83 18.88
Lxy m 0.54 0.66 0.55 0.56
Lz m 0.8 0.66 0.8 0.79
tp m 0.001 0.001 0.001 0.001
dst m 0.05 0.05 0.05 0.049
tst m 0.001 0.001 0.001 0.003
AB - 0.25 0.25 0.25 0.366
BC - 0.25 0.25 0.25 0.316
As m 2.38 2.364 2.364 2.38
Ar m 0.876 0.877 0.878 0.887
mstruc kg 9.374 10.59 9.47 11.763
Pthermal W 55.75 55.78 55.89 56.43
Ppayload W 99 98.608 106 109.6
Psat W 566.96 567.25 568.37 565.84
Coverage % 70 70 70.1 0.7
Psrpl W 5.48 1.13 0 6.8
Thot K 340 340 340 340
Tcold K 276.55 276.55 276.56 275
MoS - 1.8 2.17 1.86 3.6
wnlong

Hz 74 73.76 72.8 71
wnlat

Hz 60 72.41 60 62
Execution time h ≤ 1 ∼ 1 ∼ 6 ∼ 2

Table 5: Function evaluation counts

Architecture Constellation Payload Power Thermal Structure Mass Total

IDF 122 82 162 64 122 122 674
SAND 226 198 310 170 254 254 1412

MDFNewton 3020 3020 17362 11072 23813 23813 82100
MDFNLBGS 964 964 2181 2181 2380 2380 11050
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Fig. 6: Objective Convergence

6. Conclusion and Future Work

In this paper, a Distributed Space System was an-
alytically modelled. The three MDO architectures
MDF, IDF and SAND implementation of the DSS prob-
lem was then optimized. The results from the opti-
mization showed that MDF needed the highest com-
putational resources compared to other architectures.
MDF solved using NLBGS introduced noise in the ob-
jective value while MDF solved using Newton solver
had highest function calls. SAND had better results
compared to MDF, in terms of optimality, computa-
tion, and convergence. However, IDF outperformed the
all the architectures in terms of optimality, computa-
tional efficiency, and convergence rate. Based on the
comparison it can be concluded that IDF is preferable
for the conceptual design of DSS followed by SAND.
At later stages of the DSS design, the simple analytical
models are not sufficient. More detailed design has to
be developed considering all the subsystems and using
high fidelity simulation models. This further compli-
cates the optimization and makes it more expensive to
compute. From an engineering design context, it might
be beneficial to get an improved design that need not be
an optimal one in a strict mathematical sense. In such
cases, MDF architecture is advantageous, provided that
the optimization maintains the feasible design path, as
it offers a multidisciplinary feasible solution at each it-
eration.

Extension of this research work shall include ad-
ditional disciplinary models such as ADCS, OBDH,
Propulsion and TT&C to enhance the existing DSS
model. From the experience gained on their behaviour,
the problem shall be translated into a mixed-integer
non-linear problem that also considers the discrete vari-
ables for optimization. Comparison of Distributed ar-
chitectures shall be performed for this problem in the
future. Possible additional research includes the wrap-
ping of gradient-based optimizer under a gradient-free
caller to further explore the design space.
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