

PhD-FTSM-2020-57
The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defence held on 14/10/2020 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Ziya Alper GENÇ
Born on 26 November 1987 in Adana, Turkey

ANALYSIS, DETECTION, AND PREVENTION OF

CRYPTOGRAPHIC RANSOMWARE

Dissertation defence committee
Dr Gabriele LENZINI, dissertation supervisor
A-Professor, Université du Luxembourg

Dr Peter Y. A. RYAN, Chairman
Professor, Université du Luxembourg

Dr Sjouke MAUW, Vice Chairman
Professor, Université du Luxembourg

Dr-Ing Jean-Louis LANET
Professor, INRIA

Dr Gianluca STRINGHINI
A-Professor, Boston University

Analysis, Detection, and Prevention
of Cryptographic Ransomware

Ziya Alper Genç

Faculty of Science, Technology and Medicine, 2 Avenue
de l’Université, L-4365 Esch-sur-Alzette, Luxembourg.

Interdisciplinary Centre for Security, Reliability and
Trust (SnT), 29, Avenue J. F. Kennedy, L-1855 Luxem-
bourg.

The work in this thesis has been carried out under the
auspices of the Interdisciplinary Research Group in
Socio-technical Cybersecurity (IRiSC) of University of
Luxembourg.

This research is partially supported by the Lux-
embourg National Research Fund (FNR), through
the JUMP project grants PF18/12536861/NoCry and
PoC18/13234766/NoCry.

This thesis was typeset with LuaTEX Version 1.12.0 (TEX Live 2020).

Publisher
University of Luxembourg Press, Esch-sur-Alzette, Luxembourg.

© 2020 Ziya Alper Genç, Esch-sur-Alzette, Luxembourg.
All rights reserved. No part of this publication may be reproduced, distributed, or transmit-
ted in any form or by any means, including photocopying, recording, or other electronic
or mechanical methods, without the prior written permission of the publisher, except in
the case of brief quotations embodied in critical reviews and certain other noncommercial
uses permitted by copyright law.

Declaration of Authorship

I, Ziya Alper GENÇ, declare that this thesis titled, “Analysis, Detection and Prevention of
Cryptographic Ransomware” and the work presented in it are my own. I confirm that:

▶ This work was done wholly or mainly while in candidature for a research degree at
University of Luxembourg.

▶ Where any part of this thesis has previously been submitted for a degree or any
other qualification at University of Luxembourg or any other institution, this has
been clearly stated.

▶ Where I have consulted the published work of others, this is always clearly attributed.
▶ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.
▶ I have acknowledged all main sources of help.
▶ Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Luxembourg, October 14, 2020

Ziya Alper GENÇ

Sevgili annem ve babam, Necla ve Ahmet’e,
canım kardeşim İsmail’e.

Babaannem Nuriye’nin aziz hatırasına.

To my beloved parents, Necla and Ahmet,
to my dear brother İsmail.

In memory of my grandmother Nuriye.

Abstract

Cryptographic ransomware encrypts files on a computer system, thereby blocks access
to victim’s data, until a ransom is paid. The quick return in revenue together with the
practical difficulties in accurately tracking cryptocurrencies used by victims to perform the
ransom payment, have made ransomware a preferred tool for cybercriminals. In addition,
exploiting zero-day vulnerabilities found in Windows Operating Systems (OSs), the most
widely used OS on desktop computers, has enabled ransomware to extend its threat and
have detrimental effects at world-wide level. For instance, WannaCry and NotPetya have
affected almost all countries, impacted organizations, and the latter alone caused damage
which costs more than $10 billion.

In this thesis, we conduct a theoretical and experimental study on cryptographic ran-
somware. In the first part, we explore the anatomy of a ransomware, and in particular,
analyze the key management strategies employed by notable families. We verify that for a
long-term success, ransomware authors must acquire good random numbers to seed Key
Derivation Functions (KDFs).

The second part of this thesis analyzes the security of the current anti-ransomware
approaches, both in academic literature and real-world systems, with the aim to anticipate
how such future generations of ransomware will work, and in order to start planning
on how to stop them. We argue that among them, there will be some which will try to
defeat current anti-ransomware; thus, we can speculate over their working principles by
studying the weak points in the strategies that six of the most advanced anti-ransomware
currently implements. We support our speculations with experiments, proving at the same
time that those weak points are in fact vulnerabilities and that the future ransomware that
we have imagined can be effective. Next, we analyze existing decoy strategies and discuss
how they are effective in countering current ransomware by defining a set of metrics
to measure their robustness. To demonstrate how ransomware can identify existing
deception-based detection strategies, we implement a proof-of-concept decoy-aware
ransomware that successfully bypasses decoys by using a decision engine with few rules.
We also discuss existing issues in decoy-based strategies and propose practical solutions
to mitigate them. Finally, we look for vulnerabilities in antivirus (AV) programs which are
the de facto security tool installed at computers against cryptographic ransomware. In our
experiments with 29 consumer-level AVs, we discovered two critilcal vulnerabilities. The
first one consists in simulating mouse events to control AVs, namely to send them mouse
“clicks” to deactivate their protection. We prove that 14 out of 29 AVs can be disabled
in this way, and we call this class of attacks Ghost Control. The second one consists in
controlling whitelisted applications, such as Notepad, by sending them keyboard events
(such as “copy-and-paste”) to perform malicious operations on behalf of the malware.

We prove that the anti-ransomware protection feature of AVs can be bypassed if we use
Notepad as a “puppet” to rewrite the content of protected files as a ransomware would
do. Playing with the words, and recalling the cat-and-mouse game, we call this class of
attacks Cut-and-Mouse.

In the third part of the thesis, we propose a strategy to mitigate cryptographic ransomware
attacks. Based on our insights from the first part of the thesis, we present UShallNotPass
which works by controlling access to secure randomness sources, i.e., Cryptographically
Secure Pseudo-Random Number Generator (CSPRNG) Appliction Programming Interfaces
(APIs). We tested UShallNotPass against 524 real-world ransomware samples, and ob-
serve that UShallNotPass stops 94% of them, including WannaCry, Locky, CryptoLocker
and CryptoWall. Remarkably, it also nullifies NotPetya, the offspring of the family which
so far has eluded all defenses. Next, we present NoCry, which shares the same defense
strategy but implements an improved architecture. We show that NoCry is more secure
(with components that are not vulnerable to known attacks), more effective (with less
false negatives in the class of ransomware addressed) and more efficient (with minimal
false positive rate and negligible overhead). To confirm that the new architecture works
as expected, we tested NoCry against a new set of 747 ransomware samples, of which,
NoCry could stop 97.1%, bringing its security and technological readiness to a higher
level.

Finally, in the fourth part, we present the potential future of the cryptographic ransomware.
We identify new possible ransomware targets inspired by the cybersecurity incidents
occurred in real-world scenarios. In this respect, we described possible threats that ran-
somware may pose by targeting critical domains, such as the Internet of Things and the
Socio-Technical systems, which will worrisomely amplify the effectiveness of ransomware
attacks. Next, we looked into whether ransomware authors re-use the work of others,
available at public platforms and repositories, and produce insecure code (which might
enable to build decryptors). By methodically reverse-engineering malware executables,
we have found that, out of 21 ransomware samples, 9 contain copy-paste code from public
resources. From this fact, we recall critical cases of code disclosure in the recent history
of ransomware and, reflect on the dual-use nature of this research by arguing that ran-
somware are components in cyber-weapons. We conclude by discussing the benefits and
limits of using cyber-intelligence and counter-intelligence strategies that could be used
against this threat.

Acknowledgements

First, I would like to thankmy supervisor Gabriele Lenzini of the Interdisciplinary Research
Group in Socio-technical Cybersecurity (IRiSC) of University of Luxembourg. Without
Gabriele’s constant guidance and encouragement, this thesis would not be possible. In
addition to his scientific capabilities and constructive criticism which have empowered me
to produce high quality works, Gabriele is one of the kindest supervisors one could ever
have. After four years of study, I feel that it is a great honor for me to be a PhD student of
Gabriele. I would also like to thank another scientist who greatly inspired me, Peter Ryan
of Applied Security and Information Assurance Group (APSIA), for providing insightful
feedback and contributing to valuable discussions regarding my research. It has been a
privilege to work in these two vivid research groups, APSIA and IRiSC, where the abstract
thoughts find their true value.

I thank Daniele Sgandurra, who collaborated to my research (three chapters of this thesis);
Sjouke Mauw, who dedicated his time to evaluate my progress over these years; Jean-Louis
Lanet, and Gianluca Stringhini, who were kind enough to accept being members of my
dissertation committee. I appreciate all your efforts.

I also thank our administrative assistants Ida Ienna and Natalie Kirf whose strong or-
ganizational skills have made my (indeed everyone’s) life much easier in our research
group.

A very special thanks goes to Birnur Daultrey for being an invaluable friend. I must note
that, Birnur is an always-positive person and a true master of “energy”. For a long term
project, like this PhD thesis, it is essential to keep up the motivation. Thanks to Birnur, it
has never been a problem. I also like to thank a talented musician, Simon Daultrey: I still
remember the video clips of your guitar solos. Thank you both, it is a great chance for me
to have friends like you.

I also thank İsa Sertkaya for his friendship and for reading a chapter of my thesis. Our
fruitful discussions on various topics have lead to new areas to be explored, but the list is
probably too long for a short life.∗

This research was also made possible with the support received from the Luxembourg
National Research Fund (FNR), through the JUMP project grants PF18/12536861/NoCry and
PoC18/13234766/NoCry. I would also like to acknowledge the support received from the
Doctoral Programme in Computer Science and Computer Engineering (DP-CSCE) and the
Interdisciplinary Centre for Security, Reliability and Trust (SnT) in multiple occasions.

∗ “Life is short, and Art long”, Hippocrates in Aphorismi, 400 B.C.E.

Finally, I would like to thank my family for their constant support. My mother Necla
and my father Ahmet have always encouraged me to follow the light of science which
eventually has brought me to the place where I am now. I am grateful to them so much:
“Sevgili anne ve baba, beni bugünlere getirdiğiniz için size çok, çok teşekkür ederim”. My
brother İsmail took great responsibilities when I had to leave Turkey for this research.
İsmail also achieved so many successes and became a Doctor of Medicine, which gave
us another source of happiness: “Sağol paşa”. A very special thanks goes to my dear
grandmother Nuriye, who is one of the rare humans who understood the real value
of scientific research. This thesis, indeed, is the result of her efforts, starting from my
childhood. Thank you, my dear family, for all your support.

Contents

Declaration of Authorship v

Abstract ix

Acknowledgements xi

Preliminaries 1

1 Introduction 3
1.1 Anatomy of a Cryptographic Ransomware 4
1.2 Recent Literature in Ransomware Defense 6
1.3 Limitations of Current Defense Systems . 8
1.4 Goal and Research Questions . 9
1.5 Thesis Overview . 10
1.6 Scientific Contributions . 12

2 Ethical Considerations 15
2.1 Coordinated and Responsible Disclosure . 15
2.2 Ethical Code of Conduct . 17

Security Analysis of Anti-Ransomware Systems 19

3 Ransomware Evasion Techniques 21
3.1 Anti-Ransomware Approaches . 21
3.2 Vulnerability Analysis of Countermeasures 23

Limits of Key-Oriented Protection . 23
Limits of Behavioural Analysis . 23

3.3 Future Ransomware Strategies . 24
Bypassing Key-Oriented Defenses . 24
Evading Behavioral Analysis . 27

3.4 Implementation . 29
3.5 Experimental Results . 29
3.6 Discussion . 30

4 On Deception-Based Ransomware Defense 33
4.1 Decoy Files: The Theory . 33

Quality Measures for a Decoy Strategy . 34
On the Theoretical Limits of Anti-Ransomware Decoy Strategies 36

4.2 Anti-Ransomware Systems with Decoy Files 37
CryptoStopper . 37
RWGuard . 37
R-Locker . 38
Decoy Generation Strategy of Lee et al. 38
Other Closely Related Works . 38

4.3 Decoy-aware Ransomware . 39
Detecting Static Decoys through Heuristics 39

Distinguishing Decoys Using Statistical Methods 40
Monitoring User to Reveal Non-decoy Files 41

4.4 Experiments and Quality Measures . 42
Revealing Static Decoys . 42
Revealing non-Decoy Files by Monitoring Users 43

4.5 Discussion: The Endless Battle . 46

5 Vulnerability Analysis of Real-World Systems 49
5.1 Background . 50

Ransomware Defense in AVs . 50
Process Protection via Integrity Levels . 51

5.2 Threat Model . 51
5.3 Cut-and-Mouse: Encrypting Protected Folders 52

Disharmony Between UIPI and AVs . 52
Attack Overview . 53
Proposed Mitigation Strategy . 55

5.4 Ghost Control: Disabling Antivirus Software 55
Necessity of the AV Deactivation Function 55
Stopping Real-time Protection . 56
Proposed Mitigations . 57

5.5 Experimental Results . 58
Dataset and Test Environment . 59
Attacks Detected by AVs . 59
Encrypting Files in Protected Folders via Simulated Inputs 59
Destructive Cut-and-Mouse: Wiping Files in Protected Folders 61
Controlling Real-Time Protection of AVs . 62

5.6 Security Analysis of Auxiliary Measures . 64
Insecure Sandboxing Methods . 64
Passing Human Verification . 65

5.7 Related Attacks in the Literature . 66
Attacks Related to Input Simulation . 66
Comparison to Previous Attacks . 67
Previous Research on Security of AVs . 68

5.8 Discussion . 68

6 Sandbox Evasion 71
6.1 Methodology . 72
6.2 Results . 73

Behavioral Analysis Reports . 73
Reconstructing the Attack . 74

6.3 Discussion . 75

Prevention of Cryptographic Ransomware 79

7 Stopping Ransomware by Controlling CSPRNGs 81
7.1 Requirements . 81
7.2 On Ransomware and Randomness . 81
7.3 UShallNotPass’ Rationale . 83
7.4 UShallNotPass’ Design . 84

High Level Description . 85

7.5 Implementation . 86
Intercepting Calls to CSPRNGs . 87
Decision of Authorization . 87
Maintaining the Whitelist . 87

7.6 Experimental Results . 88
Experimental Setup . 88
Robustness . 89
Performance . 91

7.7 Discussion . 92
Alternative Randomness Sources . 93
Implementation Related Issues . 93

8 Efficient End-Point Protection from Ransomware 97
8.1 Security Assumptions . 97
8.2 NoCry: Enhanced Protection . 98

Robust Architecture . 98
Low False Positive Rate and Minimal User Intervention 99
Optimized Decision Procedure . 101

8.3 Methods, Experiments and Results . 101
Performance . 101
Evaluation of False Positives . 102
Evaluation of False Negatives . 103

8.4 Discussion . 105

Future of Ransomware 107

9 Future of Ransomware 109
9.1 Potential New Threats . 109

Rootkit-based Ransomware . 109
Obfuscation . 110
White-Box Cryptography . 111
Ransomware of Things . 111
Socio Technical Attacks . 112

9.2 Dual Use of Ransomware . 113
Findings and Analysis . 114
Dual-Use & Ransomware . 117

9.3 Ransomware Intelligence . 120

Conclusion 123

10 Closing Remarks and Future Work 125
10.1 Future Works and Open Problems . 131

Bibliography 135

List of Figures

1.1 The number of new ransomware families. 3
1.2 Screenshot of the ransom message from WannaCry. 3
1.3 No More Ransom project. 4
1.4 Ransomware Operation Flow . 5
1.5 Multithreaded ransomware attack. 5
1.6 Discrepancy between file access pattern. 6
1.7 Decoy files. 7
1.8 OSI Model. 9

3.1 Change in the entropy of files. 22
3.2 Hexadecimal encoding of leading bytes of a PDF file. 22
3.3 Process & function splitting strategy . 22
3.4 Convergent encryption. 25
3.5 Using a keyed hash function in counter mode for encryption. 25
3.6 Initial state of File-based Pseudo-Random Number Generator (F-PRNG). 26
3.7 Output procedure of F-PRNG. 26
3.8 Format Preserving Encryption . 27
3.9 Average scores of sdhash comparison. 28
3.10 Permuting bytes of a byte array. 28
3.11 Mona Lisa . 30
3.12 Partially encrypted Mona Lisa . 30

4.1 Decoy file and landmine relation. 33
4.2 Console output of the prototype of Algorithm 2. 43
4.3 Console output of Spy on unprotected system. 44
4.4 Console output of DecoyUpdater vs. Spy. 45
4.5 Console output of Spy. 45
4.6 Console output of DecoyUpdater vs. Replace. 45

5.1 Disharmony between UIPI and AV software. 53
5.2 Bypassing anti-ransomware protection of AVs. 54
5.3 Console output of sniffing real user actions. 62
5.4 CAPTCHA code generated by AV10. 65
5.5 CAPTCHA code generated by AV29. 65

6.1 Total number of known malware samples by years. 71
6.2 Reconstructed attack diagram. 75

7.1 Generic Ransomware Functionality. 82
7.2 A comic about RNGs. 82
7.3 Architectural view of UShallNotPass. 85
7.4 Damage of NotPetya . 91

8.1 Architectural view of NoCry. 99

9.1 Interception of read calls by a kernel mode rootkit. 109
9.2 Illustration of a block cipher algorithm. 111

9.3 Illustration of a white-box implementation of a block cipher. 111
9.4 Hacked thermostat. 112
9.5 Popular developer communities. 114

List of Tables

1.1 Limitations of the state of the art anti-ransomware systems. 8
1.2 Chapters and the corresponding research questions that they help answer. . . 11

2.1 The process and results of the responsible disclosure. 16

3.1 Select anti-ransomware systems and their main defense methods. 23

4.1 Selected attributes for NTFS files. 41

5.1 Evaluation of AV products. 63
5.2 Comparison of attacks relevant to Ghost Control and Cut-and-Mouse. 67

6.1 HTTP connections of the analyzed sample. 74

7.1 Measurements of CSPRNG usage . 90
7.2 UShallNotPass’s performance impact on CryptGenRandom 92
7.3 Windows applications that calls CSPRNG APIs. 94

8.1 NoCry Performance benchmarks. 102
8.2 Top 20 installed programs. 103
8.3 List of active ransomware samples tested against NoCry. 104

9.1 SHA256 digests and family names of the samples. 115

List of Listings

1.1 Using Random class in C#. 6
1.2 Using rand function in C. 6

3.1 Fisher-Yates algorithm implemented in Python. 29

7.1 Outputs of two Random objects instantiated with the same seed. 84

9.1 Assembly code of a computer program that multiplies 1 and 2. 110
9.2 Assembly code of the obfuscated version of the program. 110
9.3 Password generation method of HiddenTear. 116
9.4 Password generation method used by Tiggre. 116
9.5 A function to encrypt files with a password. 118
9.6 File encryption function of a Crypren sample. 119

List of Abbreviations

API Appliction Programming Interface
C&C Command-and-Control
CBC Cipher Block Chaining
CNG Cryptography API: Next Generation
CPU Central Processing Unit
CRL Certificate Revocation List
CSPRNG Cryptographically Secure Pseudo-Random Number Generator
DFG Data Flow Graph
DGA Domain Generation Algorithm
DLL Dynamic Link Library
DRBG Deterministic Random Bit Generator
Dual EC DRBG Dual Elliptic Curve Deterministic Random Bit Generator
ECB Electronic Codebook
F-PRNG File-based Pseudo-Random Number Generator
FIFO First-In First-Out
FPE Format Preserving Encryption
GUI Graphical User Interface
IAT Import Address Table
IL Integrity Level
IoT Internet of Things
IPC Inter-Process Communication
IPS Intrusion Prevention System
IV Initialization Vector
KDF Key Derivation Function
KPP Kernel Patch Protection
KVM Kernel-based Virtual Machine
MBR Master Boot Record
MFT Master File Table
MIC Mandatory Integrity Control
MS CAPI Microsoft CryptoAPI
NTFS New Technology File System
OS Operating System
OSI Open Systems Interconnection
OSINT Open Source Intelligence
PDoS Permanent Denial of Service
PRNG Pseudo-Random Number Generator
RNG Random Number Generator
SSDT System Service Dispatch Table
SSH Secure Shell
TLS Transport Layer Security

UAC User Account Control
UIPI User Interface Privilege Isolation
VM Virtual Machine
VPN Virtual Private Network
VSS Volume Shadow Copy Service
XOR exlusive-or

Preliminaries

Introduction 1
1.1 Anatomy of a Cryptographic
Ransomware 4
1.2 Recent Literature in Ran-
somware Defense 6
1.3 Limitations of Current De-
fense Systems 8
1.4 Goal and Research Questions9
1.5 Thesis Overview 10
1.6 Scientific Contributions . . 12

Ransomware is a malware, a malicious software that blocks access to
victim’s data. In contrast to traditional malware, whose break-down is
permanent, ransomware’s damage is reversible: access to files can be
restored after the payment of a ransom, usually a few hundreds US dollars
in cryptocurrencies.

Different flavors of ransomware programs exist, but cryptographic ran-
somware, the threat type studied in this thesis, encrypts a victim’s files
using strong encryption [1]. Proper implementation of this strategy gives
superior advantage to the cybercriminals, since decryption without the
key is infeasible. So the only hope of recovering the files, in the absence
of backups, is to pay the ransom. However, paying to the cybercriminals
does not guarantee the recovery: according to a recent report, 33.1% of
the victims did not get any key in return after the payment, irremediably
losing the data and money [2].

2014 2015 2016 2017 2018

20

40

60

80

100

30 30

98

28

10

Figure 1.1: The number of new ran-
somware families in recent years [3, 4].

While the history of ransomware goes back to earlier, the first strain of
modern cryptographic ransomware, CryptoLocker, appeared in Septem-
ber 2013. It infected about 500 000 machines and is estimated to collect
$3 million from victims [5]. After the proven success of CryptoLocker, its
business model was adopted by subsequent ransomware variants [6]. De-
spite being relatively new, this cybercrime has spread fast and become a
worldwide pandemic rapidly. According to [7], a US Government’s white
paper dated June 2016, on average more than 4000 ransomware attacks
occurred daily in the USA. This is 300-percent increase from the previous
year and such important increment is probably due to the cybercrime’s
solid business model: with a small investment there is a considerable
pecuniary gain which, thanks to the digital currency technology, can be
collected reliably and in a way that is not traceable by the authorities.

Notoriety of ransomware peaked in May 2017 when WannaCry infected
300 000 computers of, among others, hospitals, manufacturers, banks,
and telecommunication companies in about 150 countries. In June 2017,
another catastrophic attack was perpetrated by NotPetya which caused
a global damage that costs approximately $10 billion [8].

Figure 1.2: Partial screenshot of the ran-
som message of WannaCry. Note that, to
increase the pressure on the victims, noti-
fication form includes countdowns to spe-
cific payment deadlines.

Although the volume of infections has dropped after 2017, the attacks got
sophisticated and the target of ransomware has moved from individuals
to businesses [4]. Unsurprisingly, ransom amounts increased, too. For
example, recently, travel management firm CWT paid $4.5 million to
hackers after negotiating in an online chat platform [9]. Furthermore,
offices of local governments in US became a new target of cybercriminals.
Among many others, Atlanta city’s computers were compromised by
SamSam ransomware and the impact was estimated as $17 million [10].
Individuals, businesses, and governments, all combined, cost of global
ransomware damage is predicted to reach $20 billion by 2021 [11].

Evidences demonstrate that encryption is a strong instrument in the hands
of criminals. If properly implemented, its impact is irreversible: without

4 1 Introduction

knowing the decryption key, recovering the contents of an encrypted
file is computationally unfeasible, a very disruptive fact for the victims.
However, implementing cryptography flawlessly is a difficult task, and
coders of ransomware are challenged by the same issues that have been
troubling security engineers in charge of implementing cryptographic
applications. One of the most relevant is to generate cryptographically
secure encryption keys and keep them safe. Failing in this makes the en-
cryption weak in the sense that it becomes likely to reproduce or retrieve
the decryption keys, which would jeopardize the ransomware’s business
model. In this issue, there is hope as some anti-ransomware solutions
(see Section 1.2) indeed offer to recover files counting on cybercriminals’
being naïve in implementing ransomware.

Unfortunately, modern ransomware programs are coded more profession-
ally than those in the past. Such professional variants are quite sophisti-
cated, well designed, and properly implemented. Moreover, attacks relying
on them are increasing and demanding higher ransom [12]. NotPetya,
SamSam, Locky, Cerber, BadRabbit and Ryuk are only a few of the ran-
somware families that pose serious threats. Bajpai et al., who propose
a scale for ransomware similar to the the Saffir-Simpson for hurricanes,
classify them as having severity Category 6 [13].

Figure 1.3: The No More Ransom project
(https://www.nomoreransom.org) aims
to help victims recover their data without
paying to the cybercriminals. It offers a
free service called Crypto Sheriff which
works as follows. The victim uploads two
encrypted files to Crypto Sheriff. Next, the
service tries to identify which ransomware
variant used in the attack, and queries the
database of available decryptors. If there
is a match, the decryptor and recovery in-
structions are shared with the victim. If
there is no recovery tools found, the vic-
tim is advised to check again later, as new
decryptors are added in time.

In the absence of an effective cure for the threat, official recommendations
suggest prevention. The US Government, for instance, recommends to
“regularly back up data and verify its integrity” [14]. Keeping backups
however is a solution that does not scale if the threat becomes world-
wide: it is an expensive practice that not all companies implement whereas
private users are likely not to follow the practice at all. Not surprisingly, a
survey on the practice reports that only 42% of ransomware victims could
fully restore their data [15].

Security experts have looked into the problem. For example the EU-
ROPOL’s European Cybercrime Centre and the Dutch Politie together
with Kaspersky Lab and McAfee have founded an initiative called “No
More Ransom” whose goal is, we quote, “to disrupt cybercriminal busi-
nesses with ransomware connections” and “to help victims of ransomware
retrieve their encrypted data without having to pay the criminals” (see
Figure 1.3). But, in case of infection, the initiative warns that “there is
little you can do unless you have a backup or a security software in place”.
Other professionals are offering applications that are capable of some
protection, but these anti-ransomware systems leverage from existing
antivirus/antimalware strategies rather than re-thinking afresh how to
solve the problem.

1.1 Anatomy of a Cryptographic
Ransomware

Prime target of cryptographic ransomware is the most valuable asset of
individuals and companies, the data, which computers usually store in
files. Of course, a ransomware attack might include further malicious
actions, e.g., spreading over the network and altering Operating System
(OS) configuration. In this thesis, we study the cryptographic aspects of
ransomware, i.e., methods used for key derivation and encryption.

https://www.nomoreransom.org

1.1 Anatomy of a Cryptographic Ransomware 5

Infect
Enumerate
Target Files

Acquire encryption keys:

▶ Download keys from C&C server
▶ Utilize a non-cryptographic PRNG
▶ Deriver keys from CSPRNG outputs
▶ Use hard-coded keys in the binary

Perform
EncryptionDisk Notify Victim

Read plaintext file

Write encrypted file

End of
operation

Figure 1.4: Operation flow diagram of a
ransomware from a cryptographic point
of view.

After infection, a ransomware commences preparation phase, in which it
enumerate the files it intends to target and starts acquiring or building the
encryption keys. Next, the ransomware proceeds to encrypt files. Once
the encryption finishes, it notifies the victim and delivers the ransom
demand. Figure 1.4 depicts this operation flow.

To encrypt victim’s files, ransomware usually employs a hybrid cryp-
tosystem, that is, an encryption scheme consist of a combination both
symmetric and asymmetric algorithms. In order to understand why ran-
somware authors need to use hybrid cryptosystems, one needs to observe
the following facts.

▶ Encrypting files with solely asymmetric algorithms is a resource inten-
sive task1

1: In RSA algorithm, for example, cipher-
text 𝑐 of a message 𝑚 is computed as

𝑐 ≡ 𝑚𝑒 (mod 𝑁)

where 𝑁 is usually selected as a 2048
bit integer (depending on the security
level). Modular exponentiation takes sig-
nificantly more amount of time, especially
with large numbers, compared to exlusive-
or (XOR) or bit shift operations, the main
building blocks of symmetric ciphers.

. This might introduce the risk of being detected as high Cen-
tral Processing Unit (CPU) usage for a long time could trigger anomaly
detection systems. Therefore, ransomware must utilize a symmetric
algorithm to encrypt files.

▶ Ransomware needs to use a unique key for each target to prevent
victims helping each other [16]. In a mass infection, managing the
keys with solely symmetric primitives would not be scalable. Therefore,
use of an asymmetric algorithm is required while maintaining the key
management of a ransomware campaign.

Main Thread

Enumerate Target Files

Create Thread Create Thread

En
cr
yp

tio
n
T
hr

ea
d
2

En
cr
yp

tio
n
T
hr

ea
d
3

⋯

En
cr
yp

tio
n
T
hr

ea
d
𝑛Get File

Encrypt

Last File?En
cr
yp

tio
n
T
hr

ea
d
1

Encryption End

No

Yes

Figure 1.5: To increase the efficiency of
the attack, ransomwaremight utilizemulti-
threading. One remarkable example is the
Conti ransomware which creates 32 sepa-
rate threads to encrypt the files simultane-
ously [17].

Acquiring Encryption Keys

To achieve long term success, ransomware needs to exercise strong encryp-
tion, which requires to use good encryption keys. During the evolution
of ransomware, various techniques have been observed to accomplish
this task.

One strategy of acquiring the public keys is to fetch them from Command-
and-Control (C&C) servers as CryptoLocker does [18]. Ransomware

6 1 Introduction

can also obtain file encryption keys from these C&C servers, however,
usually these keys are derived from the outputs of Cryptographically
Secure Pseudo-Random Number Generator (CSPRNG) functions, e.g.,
WannaCry [19]. Another option is to utilize a non-cryptographic Pseudo-
Random Number Generator (PRNG) to seed key derivation algorithms.
Programming languages in fact provide PRNG functions for developers
to utilize in various domains. For example, a ransomware can call rand
function in C standard library (see Listing 1.2) or use System.Random

class in C# (see Listing 1.1) language to obtain pseudo-random numbers.
This is more frequently observed in samples developed in C# language
such as NegozI [20] and Rush/Sanction families [21]. Lastly, ransomware
authors might embed the encryption keys into the malware body before
spreading it, e.g., Cryzip [22]. These keys can be used directly to encrypt
files and thus removing the need for calling any PRNG.

Listing 1.1: The following example illus-
trates usage of Random class in C#, to gen-
erate integers between 0 and 100.

using System;

var random = new Random();

Console.Write("Outputs: ");

for(int i = 0; i < 5; i++){

int num = random.Next(100);

Console.Write("{0} ", num);

}

// [On Console]

// Outputs: 12 8 9 71 1

Listing 1.2: Using rand function in C to
generate integers between 0 and 100. Note
that we call srand to seed the RNG with a
time-dependent value.

#include <stdlib.h>

#include <time.h>

int i, num;

srand(time(NULL));

printf("Outputs: ");

for(i = 0; i < 5; i++) {

num = rand() % 100;

printf("%d ", num);

}

// [On Console]

// Outputs: 33 12 9 82 72

Using the observations above, we identify the following methods that are
used by the current generation of cryptographic ransomware to obtain
encryption keys:

M1 Derive keys from CSPRNG outputs
M2 Fetch encryption keys from remote servers
M3 Utilize non-cryptographic PRNG to generate secrets
M4 Use secrets embedded into binary executable

1.2 Recent Literature in Ransomware
Defense

There have been several proposals from the community of information
security to mitigate the cryptographic ransomware threat. We can cate-
gorize anti-ransomware systems, based on their main strategies, into four
groups: behavioral analysis, key escrow, decoy files, and binary analysis.

Time
0

2

4

6

8

10

12

14

16

#
of

Fi
le

s
W

ri
tt

en
pe

r
Se

co
nd

Ransomware
Benign Process

Figure 1.6: Behavioral analysis is per-
formed by monitoring a process’s activi-
ties and interactions with its environments.
Typically, ransomware tries to damage as
many files as possible in a short period
of time. Consequently, statistics like the
number of files written per second might
significantly increase when ransomware
becomes active.

Behavioral Analysis

A common anti-malware strategy is to monitor the processes and termi-
nate the ones that exhibit suspicious behavior. The monitored activities
include file system access, network connections and interaction with the
OS. Among these, the fundamental characteristic of the ransomware is its
aggressively encrypting victim’s data, causing an unusual file system ac-
tivity. Using this fact, several defense systems are proposed. One of them,
Scaife et al.’s CryptoDrop [23] monitors file type changes by looking
file headers, compares sdhash [24] outputs and measures the Shannon
Entropy before and after file writes. Another one, ShieldFS [25] by Con-
tinella et al. tracks the low-level file system operations and collects the
following features: folder listing, file read/write/rename operations, file
extension and average entropy of file writes. Comparing these character-
istics with that of benign applications allows the detection of ransomware.
In addition to detection, ShieldFS creates a copy for each file before a
file-write operation, eliminating the potential damage of ransomware.
Moreover, Kharraz et al. proposed Redemption [26] that also uses the

1.2 Recent Literature in Ransomware Defense 7

Key-escrow is the notion of storing
encryption keys in a secure location so
that, if needed, the keys can be retrieved
at a later time.

similar metrics for identifying a ransomware activity. However, in con-
trast to ShieldFS, Redemption redirects file writes to sparse files, rather
than creating a full copy of each written file. Differently, Data Aware
Defense (DaD) by Palisse et al. [27] uses chi-square test to determine if
the written data is close to random distribution which is indicates that the
file is being encrypted. DaD computes the sliding median of this indicator
on the last fifty file writes, and suspends the corresponding process that
exceeds a predetermined threshold.

Key Escrow

Key-escrow based defense allows the ransomware to complete its attack.
This approach is based on the idea that the files encrypted by ransomware
can be recovered if the encryption keys can be retrieved after the attack.
For this aim, logging the keys used by ransomware is first appeared in
the literature by Palisse et al. [28], and independently by Lee et al. [29].
However, PayBreak of Kolondenker et al. [30] was the first to extend
the idea to cover the third party cryptographic libraries. In this system,
all known cryptographic Appliction Programming Interfaces (APIs) are
hooked, cryptographic materials are extracted and securely stored in a key
vault. In the case of a ransomware attack, encrypted files are tried to be
decrypted by brute-force using the keys and other necessary parameters
retrieved from the key vault. A slightly different method, Deterministic
Random Bit Generator (DRBG) is proposed by Kim et al. to retrieve the
random numbers that ransomware used after an attack [31]. DRBG re-
places the CSPRNG of the system with a trapdoored PRNG. The trapdoor
is known only by the user and is preferably stored in the user’s mobile
device. After a ransomware incident, this trapdoor is retrieved and given
to the PRNG to generate the same outputs that ransomware used. Us-
ing these outputs, ransomware’s operations are reverted and files are
recovered.

Decoy Files

Regular Files Decoys

Figure 1.7: Decoy files in the file system
resemble the land mines placed in the
ground. Whenever a process writes to a
decoy file, it is immediately considered as
a suspicious activity.

In this strategy, carefully-crafted files are placed as a decoy in the file
system along with the user’s files (see Figure 1.7). These decoys are not
supposed to be modified/deleted by the user, so any write request to the
decoy files are treated as an indicator of ransomware activity. Monitoring
access to decoy files requires considerably less system resource compared
to behavioral analysis technique. Lee et al. proposed a method to make
decoy files for detecting ransomware efficiently [32]. RWGuard [33], a
hybrid system proposed by Mehnaz et al. also uses decoy files –in addition
to behavioral analysis and key-escrow– to mitigate ransomware threat
in real time. There are also commercial anti-ransomware programs, e.g.,
CryptoStopper [34], that uses decoy files to detect ransomware.

Binary Analysis

In this approach, binary programs are analyzed to identify cryptographic
operations in their executable codes. To this goal, [35] traces the execu-
tion of applications and monitors I/O relationship in the program flow.

8 1 Introduction

2: Alerting employees about new threats,
and enforcing them to follow security poli-
cies and best-practices might lessen the
ransomware incidents due to human error.

3: Obfuscation is the act of transform-
ing a program into an unintelligible pro-
gram but keeping the program behavior
same. We discuss more about obfuscation
in Chapter 9.

Based on the occurrences of bitwise arithmetic instructions and loops,
and relationships between the inputs and outputs of the program routines,
heuristics are applied to recognize the cryptographic algorithms. On the
other hand, [36] uses static analysis and Data Flow Graph (DFG) iso-
morphisms to identify cryptographic algorithms in the binary programs.
Basically, this technique work as follows: First, the DFG of binary program
is built. Next, the DFG in hand is normalized using rewrite rules in order
to remove the variations due to compiler optimizations. Finally, subgraphs
which are isomorphic to graph signatures of cryptographic algorithms
are searched in the DFG. A match directly flags that the corresponding
algorithm exists in the analyzed program.

Beside technical solutions, Lu and Liao suggest improving user awareness
to help mitigate ransomware [37]. Security education for end users would
effectively reduce ransomware attacks originating from phishing or spam
emails2. However, the attack surface that ransomware can exploit is far
more larger. As the WannaCry attack demonstrates, ransomware evolution
has enabled it to spread over the network [38]. Especially, zero-day attacks
can amplify the damage of ransomware and user education cannot help
in this case.

1.3 Limitations of Current Defense Systems

To begin with, none of the current defenses stop NotPetya ransomware.
NotPetya modifies the Master Boot Record (MBR) of the system and
triggers a restart. After the system boots into themalicious kernel installed
by NotPetya, it encrypts the Master File Table (MFT) of the ‘C:\’ drive
to make data inaccessible while imitating a file system repair, thereby
bypasses on-line protections.

Table 1.1: Limitations of the state of the art anti-ransomware systems. Obfuscation Resilient denotes that the defense system can detect even
obfuscated ransomware programs. I/O Agnostic means that the protection does not require to watch the file system activity.

Feature CryptoDrop DaD PayBreak Redemption RWGuard ShieldFS

Mode of Operation Behavioral Behavioral Key-escrow Behavioral Hybrid Behavioral
Obfuscation Resilient 3 3 7 3 7 3
I/O Agnostic 7 7 3 7 7 7
Stops NotPetya 7 7 7 7 7 7

Besides, behavioral analysis recognize and stop the ransomware when it
is too late. In their experiments over 5100 files, CryptoDrop’s authors
report that ransomware could encrypt up to 29 files. The median of this
statistics reported as 10. The cost of behavioral analysis is another issue.
For example, ShieldFS comes with an overhead that has been estimated
to exceed 40% while being 26% in average. Similarly, DaD leads to 82%
performance loss when writing 4-kilobyte blocks to disk.

Security of benign applications is another issue in the ransomware de-
fense. PayBreak, for instance, must recognize correctly the cryptographic
functions employed by the ransomware to log the encryption keys and the
parameters. While this is feasible for built-in cryptographic functions on
the host system, ransomware that utilizes third-party libraries can bypass
detection through obfuscation3. In addition, there are some issues with
the logging of cryptographic APIs. PayBreak logs every key, including

1.4 Goal and Research Questions 9

4: Forward Secrecy (FS) is the concept of
protecting the confidentiality of past com-
munication in the case of exposure of the
long term secrets. In key agreement proto-
cols, FS means that even if the long term
private keys are compromised, previous
sessions keys cannot be obtained by the
attacker.

private keys of Transport Layer Security (TLS) and Secure Shell (SSH)
connections. Both protocols offer forward secrecy4 which is build upon
employing ephemeral keys. All schemes which count on Layer 6 and
above of Open Systems Interconnection (OSI) model (see Figure 1.8) may
become vulnerable in this case. PayBreak is designed in such a way that
all keys are stored in one place. This may bring the risk of single point of
failure, and creates a new target for cybercriminals.

Table 1.1 lists some features of the state of the art ransomware defense
systems. In Chapter 3, we review these systems from security perspec-
tive.

– End User layer
– HTTP, FTP, IRC, SSH, DNS

7. Application

{data}7Layers
of the OSI Model

– Syntax layer
– SSL, SSH, IMAP, FTP

6. Presentation

– Synch & send to port
– API’s, Sockets, WinSock5. Session

– End-to-end connections
– TCP, UDP

4. Transport

– Packets
– IP, ICMP, IPSec, IGMP3. Network

– Frames
– Ethernet, PPP, Switch, Bridge2. Data Link

– Physical structure
– Coax, Fiber, Wireless

1. Physical

Figure 1.8: OSI model separates commu-
nication into 7 layers conceptually. Appli-
cation layer is the target of most cyber at-
tacks, including those due to ransomware.

1.4 Goal and Research Questions

In response to the pandemic of ransomware attacks, security researchers
have worked to slow down the threat. Their efforts, however, concen-
trated into two clusters. The first approach is to adopt the traditional
behavioral analysis techniques to use against ransomware, that is, to
detect ransomware while it is working. The second approach is to recover
the files after they are encrypted by a ransomware, that is, after the at-
tack. Inevitably, both approaches comes with the limitations we stated
in Section 1.3. The situation suggest that the combat with ransomware
requires a special defense technique which is based on the principles of
modern cryptography. This need forms the basis of our research goal:

Research Goal: To study the behavior of ransomware, understand its
weaknesses, and uncover the cryptographic roots of ransomware to design a
defense system which advances the state of the art.

By approaching the problem from a cryptographic perspective, we can
identify the vital requirements for a successful ransomware attack, and
take the necessary measures to prevent the damage. The outcome of this
research can be regarded as an efficient and effective ransomware defense
system that works on end hosts. To achieve this goal, we have structured
our research around the following research questions.

RQ1: How can future generations of ransomware may
work to bypass current anti-ransomware systems?

The history of malware suggests that new generations of ransomware will
be designed to respond to existing protections. We, therefore ask, is there
a way to anticipate how the next generation of ransomware will look
like? What are the weak points in current defense systems that future
ransomware might exploit? How new strains of ransomware might work
to bypass these defenses?

10 1 Introduction

RQ2: How secure are the real-world protection
mechanisms against novel ransomware attacks?

Although there are several anti-ransomware proposals in the academic
literature, most users and companies rely on antivirus (AV) software
to protect their digital assets from ransomware attacks. It is therefore
essential to analyze and evaluate their security against ransomware. So
we ask, can ransomware control whitelisted applications to evade AV
programs? Is there any security issue in the AVs so that a ransomware, or
in general a malware, can take control of the system?

RQ3: Can ransomware be stopped by controlling
secure randomness sources?

To be effective, the ransomware has to implement strong encryption, and
strong encryption in turn requires a good source of random numbers.
With this insight, we propose a strategy, called UShallNotPass, to miti-
gate ransomware attacks that considers CSPRNGs as critical resources,
controls accesses on their APIs and stops unauthorized applications that
call them. Next, we provided an improved version, called NoCry, and
tested it against 747 active samples from 56 cryptographic ransomware
families to answer the following research questions. Does NoCry stop
ransomware before they encrypt any files? Can NoCry protect against
zero-day ransomware? What is the overhead cost of NoCry in terms of
system resources?

RQ4: What are the implications of emerging
technologies on the ransomware phenomenon?

In addition to attacking data by means of cryptography, cybercriminals
are likely to find new targets, and design and deploy new strategies, as
it commonly happens in security, defenders and attackers will embrace
a competition that will never end. In this arm race, anticipating how
current ransomware will be affected by the changes in technology may
help at least being prepared for some future damage. We therefore ask,
what new domains can be appealing for ransomware? Can ransomware
infect or damage Internet of Things ecosystems? What are the socio-
technical attacks that ransomware might perform? Can ransomware
consume online sources for its technological development?

1.5 Thesis Overview

This thesis is structured in ten chapters. Chapter 2 discusses the ethical
choices that we had to take in this research and our motivation, and the
code of conduct that we commit ourselves to follow. Next, in Chapter 3
through Chapter 9, we explore the topics related to the research questions
stated in the previous section. Finally in Chapter 10 we present our closing
remarks, describe some future works on the problems that we left open
in this thesis. Table 1.2 portrays the chapters and research questions they

1.5 Thesis Overview 11

[39]: Genç, Lenzini, and Ryan (2018), ‘Next
Generation Cryptographic Ransomware’

[40]: Genç, Lenzini, and Sgandurra (2019),
‘On Deception-Based Protection Against
Cryptographic Ransomware’

[41]: Genç, Lenzini, and Sgandurra (2019),
‘A Game of “Cut and Mouse”: Bypassing
Antivirus by Simulating User Inputs’

[42]: Genç, Lenzini, and Sgandurra (),
‘Cut-and-Mouse and Ghost Control:
Exploiting Antivirus Software with
Synthesized Inputs’

handle. In the following, we summarize the contents of each chapter and
highlight our contributions therein.

Chapter # RQ1 RQ2 RQ3 RQ4

Chapter 3 3
Chapter 4 3 3
Chapter 5 3
Chapter 6 3
Chapter 7 3
Chapter 8 3
Chapter 9 3

Table 1.2: Chapters and the correspond-
ing research questions that they help an-
swer.

Chapter 3: Ransomware Evasion Techniques anticipates how future
generations of ransomware will work in order to start planning on how
to stop them. This chapter contributes to answering RQ1. To do so, we
study the weak points in the strategies that six of the most advanced
anti-ransomware are currently implementing. We identify possible ways
in which ransomware might use to bypass these defenses. To prove that
our conjecture is in fact more than a thought experiment, we implemented
the ransomware samples we have imagined, and prove that it actually
passes untouched the anti-ransomware applications that are available to
us.

This chapter is based on a conference article [39] which appeared at
NordSec 2018.

Chapter 4: On Deception-Based Ransomware Defense analyzes ex-
isting decoy strategies and discusses how they are effective in countering
current ransomware by defining a set of metrics to measure their robust-
ness. This chapter contributes to answering RQ1 and RQ2. Here, we
adapt an existing threat model of deception to ransomware by defining
the measures of quality and confoundedness, which are particularly ap-
plicable to ransomware. Theoretical bounds of decoy-based ransomware
defenses are also discussed in this chapter.

This chapter is based on a conference article [40] which appeared at
DIMVA 2019.

Chapter 5: Vulnerability Analysis of Real-World Systems demon-
strates two novel attacks that malware can use against AVs. This chapter
contributes to answering RQ2. Our first attack consists in simulating
mouse events to control AVs, namely to send them mouse “clicks” to de-
activate their protection. We prove that many AVs can be disabled in this
way. The second attack consists in controlling white-listed applications,
such as Notepad, by sending them keyboard events (such as “copy-and-
paste”) to perform malicious operations on behalf of the malware. We
prove that the anti-ransomware protection feature of AVs can be bypassed
if we use Notepad as a “puppet” to rewrite the content of protected files
as a ransomware would do.

This chapter is based on two academic contributions: a conference ar-
ticle [41] which appeared in ACSAC’19 and a manuscript [42] which
extends it. The manuscript has been submitted to the journal Digital
Threats: Research and Practice and is in press.

12 1 Introduction

[43]: Genç, Lenzini, and Sgandurra (2019),
‘Case Study: Analysis and Mitigation of a
Novel Sandbox-Evasion Technique’

[44]: Genç, Lenzini, and Ryan (2018),
‘No Random, No Ransom: A Key to Stop
Cryptographic Ransomware’

[45]: Genç, Lenzini, and Ryan (2018),
‘Security Analysis of Key Acquiring
Strategies Used by Cryptographic
Ransomware’

[46]: Genç, Lenzini, and Ryan (2020),
‘NoCry: No More Secure Encryption Keys
for Cryptographic Ransomware’

[47]: Genç, Lenzini, and Ryan (2017),
‘The Cipher, the Random and the
Ransom: A Survey on Current and Future
Ransomware’

[48]: Genç. and Lenzini. (2020), ‘Dual-use
Research in Ransomware Attacks: A
Discussion on Ransomware Defence
Intelligence’

Chapter 6: Sandbox Evasion describes a technique - unprecedented,
we discovered it while analyzing a ransomware sample, used to evade
sandbox detection. This chapter contributes to answering RQ2. Analyzed
in a Cuckoo Sandbox, the sample was able to avoid triggering malware
indicators, thus scoring significantly below the minimum severity level.
Here, we discuss what strategy the sample follows to evade the analysis,
proposing practical defense methods to nullify, in our turn, the sample’s
furtive strategy.

The contents of this chapter is based on a conference article [43].

Chapter 7: Stopping Ransomware by Controlling CSPRNGs pro-
vides the design and evaluation of our ransomware defense system,
UShallNotPass, which works by establishing an access control over
CSPRNG of the OS. This chapter contributes to answering RQ3. Here,
we show that acquiring encryption keys securely is a vital task for ran-
somware. We prove that by blocking access to good randomness sources,
ransomware can be stopped efficiently and effectively. Experimental re-
sults which include benchmarks and some usability tests are also provided
in this chapter.

This chapter is based on two conference articles: [44] and [45].

Chapter 8: Efficient End-Host ProtectionAgainstRansomware presents
NoCry, an improved design and implementation of our anti-ransomware
idea. This chapter contributes to answering RQ3. We discuss our new
solution that is more secure (with components that are not vulnerable to
known attacks), more effective (with less false negatives in the class of
ransomware addressed) and more efficient (with minimal false positive
rate and negligible overhead) than the original, bringing its security and
technological readiness to a higher level.

The contents of this chapter is based on a workshop article [46].

Chapter 9: Possible Future of Ransomware points out new possi-
ble ransomware targets and attack types inspired by the cybersecurity
incidents occurred in real-world applications. This chapter contributes
to answering RQ4. In this respect, we described possible threats that
ransomware may pose by relying on novel techniques, like rootkit ac-
cess, obfuscation, and white-box cryptography, not yet adopted in real
attack as well as by targeting critical domains, such as the Internet of
Things and the Socio-Technical systems, which will worrisomely amplify
the effectiveness of ransomware attacks. Finally, we provide evidence
that ransomware authors utilize open source software for their nefarious
goals.

This chapter is based on two conference articles: [47] and [48].

Chapter 10: Closing Remarks and Future Work presents considera-
tions taken in conclusion to this research project. We revisit our goal and
questions, and discuss how this thesis addresses them. We also present
some future works and open problems which remain to be explored.

1.6 Scientific Contributions

Below is the list of scientific papers arose from this thesis.

1.6 Scientific Contributions 13

Publications on ransomware as main author

1. Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘The Ci-
pher, the Random and the Ransom: A Survey on Current and Future
Ransomware’. In: Proceedings of the Central European Cybersecu-
rity Conference 2017. CECC 2017. Ljubljana, Slovenia: University of
Maribor Press, 2017

2. Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘No Ran-
dom, No Ransom: A Key to Stop Cryptographic Ransomware’. In:
Proceedings of the Detection of Intrusions and Malware, and Vulnera-
bility Assessment. DIMVA 2018. Cham: Springer, 2018

3. Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘Next Gen-
eration Cryptographic Ransomware’. In: Proceedings of the Secure
IT Systems - 23rd Nordic Conference. NordSec 2018. Cham: Springer,
2018

4. Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘Secu-
rity Analysis of Key Acquiring Strategies Used by Cryptographic
Ransomware’. In: Proceedings of the Central European Cybersecurity
Conference 2018. CECC 2018. New York: ACM, 2018

5. Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. ‘On
Deception-Based Protection Against Cryptographic Ransomware’.
In: Proceedings of the Detection of Intrusions and Malware, and Vul-
nerability Assessment. DIMVA 2019. Cham: Springer, 2019

6. Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘NoCry:
No More Secure Encryption Keys for Cryptographic Ransomware’.
In: Proceedings of the Emerging Technologies for Authorization and
Authentication. Cham: Springer, 2020

7. Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. ‘Case
Study: Analysis and Mitigation of a Novel Sandbox-Evasion Tech-
nique’. In: Proceedings of the Third Central European Cybersecurity
Conference. CECC 2019. New York: ACM, 2019

8. Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. ‘A Game
of “Cut andMouse”: Bypassing Antivirus by Simulating User Inputs’.
In: Proceedings of the 35th Annual Computer Security Applications
Conference. ACSAC ‘19. New York: ACM, 2019

9. Ziya Alper Genç. and Gabriele Lenzini. ‘Dual-use Research in Ran-
somware Attacks: A Discussion on Ransomware Defence Intelli-
gence’. In: Proceedings of the 6th International Conference on Infor-
mation Systems Security and Privacy. ICISSP 2020. Setúbal, Portugal:
SciTePress, 2020

10. Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. ‘Cut-
and-Mouse and Ghost Control: Exploiting Antivirus Software with
Synthesized Inputs’. In: Digital Threats: Research and Practice (). In
press

Other contributions made in parallel to this thesis

11. Ziya Alper Genç et al. ‘Examination of a New Defense Mechanism:
Honeywords’. In: Information Security Theory and Practice. Cham:
Springer, 2018

12. Ziya Alper Genç et al. ‘A Security Analysis, and a Fix, of a Code-
Corrupted Honeywords System’. In: Proceedings of the 4th Inter-
national Conference on Information Systems Security and Privacy.
ICISSP 2018. Setúbal, Portugal: SciTePress, 2018

14 1 Introduction

13. Ziya Alper Genç et al. ‘A Critical Security Analysis of the Password-
Based Authentication Honeywords System Under Code-Corruption
Attack’. In: Information Systems Security and Privacy. Cham: Springer,
2019

14. Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘Method
for Preventing Ransomware Attacks on Computing Systems’. Pat.
WO2020002203A1. Université du Luxembourg. Jan. 2, 2020

15. Ziya Alper Genç, Vincenzo Iovino, and Alfredo Rial. ‘“The Sim-
plest Protocol for Oblivious Transfer” Revisited’. In: Information
Processing Letters 161 (2020)

Ethical Considerations 2
2.1 Coordinated and Responsible
Disclosure 15
2.2 Ethical Code of Conduct . . 17

Working on the ransomware threat by pointing out the potential limi-
tations in current anti-ransomware defences raises an ethical question:
could these insights be misused?

This ethical issue can be related to dual-use of research, which is men-
tioned in Article 2 of Council Regulation (EC) No 428/2009 [49] and its
amendment Council Regulation (EU) No 388/2012. It defines dual-use
items as “items, including software and technology, which can be used
for both civil and military purposes [...]”. Recently the EC has released a
guidance note [50], where it comments on “Misuse of research”, which
has to be understood as “research that can generate knowledge, materials,
methods or technologies that could also be used for unethical purposes”
and in this phrasing, we recognize the ethical matter of our research. In
adherence to the guidance, we comment on the risks of our research and
we state ourselves that we behave to reduce the risk of misuse. By pointing
out the potential and theoretical weaknesses in current anti-ransomware
strategies, we may give suggestions on how to improve current variants,
but we also warn cyber-security analysts and help them proactively to
improve current anti-ransomware. It must be said that we work not by
discovering bugs in applications—disclosing them will immediately have
negative consequences. We rather discuss what we think are limitations
in specific approaches against ransomware. Thus, using our arguments
to build a fully-fledged malware requires to fill a non trivial knowledge
and technological gap.

Whenever, in support to our research, we implement some piece of soft-
ware to test a specific anti-ransomware application, we do not disclose
any code. This removes the risk that it may be re-used inappropriately.
At the same time, we dutifully inform of our findings the authors of the
application that we have put to a test. We invite them to challenge our
arguments and evidence and we warn them that, were our speculations
true, there could be a way to circumvent what they propose as a defence.
We hope in this way to contribute to improve it too.

2.1 Coordinated and Responsible Disclosure

This research has ethical concerns of dual use research: our findings can
be used to improve the security model of AVs as well as to attack them.
Aware of the risk, we adhere to an ethical code of conduct [51]: we do
not disclose the names of the AV companies, nor publicly share any piece
of software that can be used to exploit the vulnerabilities reported in this
thesis. We also follow a practice of responsible disclosure [52]: we have
dutifully engaged with the affected AV companies to inform them about
our findings, ensuring they know about our research informing. We are
sharing with them whatever they need to replicate our attacks and to gain
insights to fix the vulnerabilities that we think are the root cause of the

16 2 Ethical Considerations

success of the attacks. All the affected AV companies have been dutifully
informed, although some of them haven’t replied to us yet: we do hope
we will be acknowledged by all AV companies in due time. We told them
that, we believe, is their the responsibility to fix whatever needs to be
fixed, but we leave to them to judge the severity and the impact of our
research on their products and clients. We do not force or nudge them to
react by using our research as a leverage. Such a mission is outside to our
ethical stand-point. In any case, we will not reveal the names of AVs as
with some of them.

That said, we think useful to report some data about how many AVs we
have found vulnerable, and how they have responded to our attempts,
to contact them. Table 2.1 summarizes the situation for the companies
that have, at the time of writing, September 2020, answered us. So far, we
identified that AV products of 14 vendors are vulnerable to our attacks.
Ten (10) out of fourteen (14) vendors have engaged in a conversation with
us, or have answered somehow.

Please note that we have only engaged with the vendors of the 14 AVs we
discovered vulnerable. Therefore, we do not know whether these attacks
are successful (or not) on other AVs, but we do hope that the results of
our research motivate other AV vendors to perform a similar security
analysis and, in case, adopt countermeasures.

Table 2.1: The process and results of the responsible disclosure with the affected AV vendors. Vx denotes the vendor of AVx.

Vendor Dedicated
Channel

Encrypted
Email

Disclosure
Platform

Disclosure
Date

Response
Time

Current
Decision

V4 3 3 7 30.10.2019 1 day Released a fix
V5 7 7 7 09.09.2020 Still Waiting
V6 3 7 7 09.09.2020 < 1 day Working on
V7 3 7 7 30.10.2019 1 day Rebutted
V8 3 7 7 09.09.2020 3 days Won’t Fix
V12 7 7 7 09.09.2020 < 1 day
V14 7 7 7 09.09.2020 Still Waiting
V16 3 7 3 30.10.2019 1 day Not Prioritized
V20 3 3 7 09.09.2020 Still Waiting
V24 3 3 3 10.09.2020 4 days
V26 7 7 7 09.09.2020 Still Waiting
V27 3 3 7 30.10.2019 5 days Fixed
V28 7 7 7 30.10.2019 No Response
V29 7 7 7 30.10.2019 1 day Working On

Communication Method We strove to communicate over official
channels to inform the vendors, and share the technical details of the
issues, proof-of-concept materials, as well as potential mitigation tech-
niques. As we can see from Table 2.1, V16 and V24 use independent
platforms for vulnerability disclosure. We filled application forms and
marked the vulnerability type as a critical. Four vendors —V4, V20, V24,
and V27— accept encrypted emails and their PGP keys are available on
the company websites. We used this communication method and sent
encrypted emails to these addresses (except V24, which was reached using
an independent platform). V6 and V8 accepts unencrypted emails (V6
publishes a PGP key, but it does not match the email address dedicated

2.2 Ethical Code of Conduct 17

1: Note that, in this specific case, it is not
possible to anonymize the name of the af-
fected vendor as the root of the vulnera-
bility that enables one of our attacks lies
in the Operating System running the AVs
(Windows) rather than theAVs. At the time
of the writing, not only the responsible
disclosure period, 90-days, has elapsed but
Microsoft is working towards a fix for this,
so we feel compelled to share the details
publicly.

for vulnerability disclosure). V7 provides a dedicated web page for vul-
nerability reports, so we filled the form on the page with a description of
the issue. V5, V12, and V26 do not provide a dedicated channel to report
vulnerability, therefore, we engaged with these companies using their
support mail. Lastly, V14, V28, and V29 do not have any suitable channel
to reach out, thus we filled the contact forms at the company websites as
a last resort.

Reactions Six out of fourteen vendors replied to our disclosure in 1 day
(hereafter day means calendar day). However, no vendor could give us an
exact time for a fixed release. V4 is the only vendor that informed us that
it released the fixed version. V27 worked with us to fix the vulnerability
and implemented the patch, however, did not inform us if it has released
the fixed version. Quite surprisingly, vendor of AV16 acknowledged that
V16 is vulnerable but they considered its severity as low, and did not put
a patch for it their priority list. V8 also informed us that the issue will
not be addressed by V8 as it should be fixed in the OS level. V6 and V29
replied that they acknowledged the vulnerability and are working on the
issue, however, did not inform us about any release plan. V7 rebutted our
initial disclosure; we replied back and wait for their response. We are in
active communication with V12 and V24 about the issue. We attempted to
contact V28 several times for 316 days but it never replied back to us. In
our last attempt, we created a ticket in their support system and described
the vulnerability. V28 closed the ticket but did not reply. We have not
received any reply from V5, V14, V20, and V26.

V4 an V27 offered to publish our names on the company websites. Further-
more, V4 offered us a bounty for our vulnerability disclosure. Microsoft
has been informed about our Cut-and-Mouse attack since the beginning.
They acknowledged the weakness in Windows 10 and informed us that
an investigation is going on to find the root cause of the weakness and to
formulate an efficient fix.1

2.2 Ethical Code of Conduct

We are aware that the research we have ourselves embarked may give
ideas to criminals. But there is no reason to believe that criminals will not
have those ideas by themselves. In the history of malware (see e.g., [53])
criminals have always tried to be one step ahead; besides, our research has
nothing fancy and it does not contain such an inventive step that cannot
be reproduced by others. It more humbly roots into how cryptography
works. However, even with this premise, we questioned ourselves about
how to do this research ethically.

As we anticipated in the introduction, working with malware raises ethi-
cal questions [54], although we have not involved people in our research,
nor we have collected personal or sensitive data or attacked real operat-
ing systems, nor were we involved in any conversations with criminal
associations or victims, actions which would have required us following
specific guidelines as discussed in [55].

Despite having conducted our research in isolation, we agree with Ro-
gaway’s “The Moral Character of Cryptographic Work” [56] when he

18 2 Ethical Considerations

2: For more information, please visit
https://wwwen.uni.lu/research/

chercheurs_recherche/standards_

policies

3: Available at https://www.acm.org/

code-of-ethics

suggest to “be introspective about why you are working on the problems
you are”. We hope to have motivated sufficiently why we started this
research pathway in the first place. At the same time we informed our-
selves about the University of Luxembourg Policy on Ethics in Research2;
it suggests that researching on protection against computer viruses is at
risk of dual use. The guidelines recommend researchers to “report their
findings responsibly”, but there is no indication that may suggest what is
a responsible behavior. As well there are no guidelines in the ACM Code
of Ethics and Professional Conduct3, another manifesto we looked into. It
suggests principles, like “Avoid harm” and “Ensure that the public good is
the central concern during all professional computing work” but how to
comply with those principles is not told. The EU “Regulation No 428/2009”
considers software as a dual use item, so we are certain that there are
ethical consideration to address. Most of the literature on dual-use refers
to life science and cannot be migrated to computer science but the EU’s
“Ethics for researchers” [57] suggests something general that can be useful
in our case: “special measures need to be taken to ensure that the potential
for misuse is adequately addressed and managed”. Thus we decided to
set up our own ethical practise which consist in embrace two important
measures: (i) Responsible Disclosure: before submitting camera ready ver-
sion, we informed all parties affected by the vulnerabilities that we think
we have disclosed in this thesis, giving them all details about the flaws
and the potential attacks. We hope in this way to warn awareness in the
scientific community, and in particular in the researchers that engineered
the defences whole limitations we have discussed; (ii) Safe Handling of
Hazardous Code: we determined ourselves not to share any portion of the
source code with the public, not to send it unsecured in using insecure
channels (e.g., emails) and to keep it stored in an encrypted disk. At the
same time all experiments have been done with a machine whose access
is strictly limited to the researchers involved.

https://wwwen.uni.lu/research/chercheurs_recherche/standards_policies
https://wwwen.uni.lu/research/chercheurs_recherche/standards_policies
https://wwwen.uni.lu/research/chercheurs_recherche/standards_policies
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics

Security Analysis of
Anti-Ransomware Systems

Ransomware Evasion
Techniques 3

3.1 Anti-Ransomware Ap-
proaches 21
3.2 Vulnerability Analysis of
Countermeasures 23
3.3 Future Ransomware Strate-
gies 24
3.4 Implementation 29
3.5 Experimental Results 29
3.6 Discussion 30

Cryptographic ransomware families share a common goal: to encrypt a
victim’s files. They also share a few fundamental tasks that they necessar-
ily have to execute to achieve this goal. For instance, they have to manage
encryption and decryption keys; and they have to read, encrypt (and
if the victim is lucky) decrypt, and write files. However, cryptographic
ransomware comes in different forms. Although constrained to perform
those common steps, they can reach the goal in different ways, so giving
raise to different families of them.

For the same reason there are also many potential, not all necessarily
effective, strategies to counteract ransomware. Current anti-ransomware
approaches implement mainly two strategies: key-oriented protection and
behavioral analysis.

3.1 Anti-Ransomware Approaches

Key-oriented Protection (KP). The rationale of those who follow a
key-oriented protection strategy is that ransomware needs encryption
keys and therefore it is better to keep those keys under control. “Keep keys
under control” is not a simple action; current solutions have interpreted
and implemented it in at least three distinguished methods:

(KP-i) - placing backdoor in CSPRNG. In this strategy, a trapdoor is inserted
to the CSPRNG of the host system. The aim of this trapdoor is to
enable reproducing the previous outputs of CSPRNG for a given
time. Thus, the random numbers used by ransomware as a seed can
be obtained after an attack. Using these seed values, the keys used
by ransomware are re-derived and the files are restored. In [31],
Kim et al. proposed this technique to mitigate ransomware.

(KP-ii) - escrowing encryption keys. In this approach, cryptographic API
are hooked, encryption keys and other parameters are acquired,
and stored in a secure location. After a ransomware incident, these
materials are used to recover the files. The first key-escrow based
ransomware defense systems are proposed independently by Lee
et al. [29] and Palisse et al. [28] and focused on only the built-in
cryptographic API. Later, PayBreak [30] extended this technique
to include the functions in third-party cryptographic libraries.

Behavioural Analysis (BA). Defenses that implement behavior anal-
ysis, monitor the interactions of applications and measure certain factors
that may indicate the presence of a ransomware activity. Solutions di-
versify depending on the indicators used to monitor for the presence of
ransomware. We recognize four major methods:

22 3 Ransomware Evasion Techniques

(BA-i) - measuring entropy inflation. Encryption increases the entropy of
the files (see Figure 3.1). Therefore, encryption can be detected by
measuring the entropy of files, before and after file-write operations.
A rough estimate of the entropy 𝑒, of a byte array (𝑥𝑖)𝑛𝑖=1 that is often
used is Equation 3.1.

𝑒 =
255
∑
𝑘=0

𝑃𝑥𝑘 log2
1
𝑃𝑥𝑘

where 𝑃𝑥𝑘 =
|{𝑖∶ 𝑥𝑖 = 𝑘}|

𝑛
(3.1)

Monitoring entropy changes is a method commonly used by Cryp-
toDrop [23], ShieldFS [25], and Redemption [26].

(BA-ii) - detecting content modification. Modern cryptographic algorithms
produce ciphertext that completely differs from the plaintext data.
Therefore, if the similarity between original file and modified file is
small, the file might have been encrypted. In this respect, Crypto-
Drop utilizes sdhash [24] tool to compute dissimilarity of files to
detect encryption performed by ransomware.

(BA-iii) - identifying file-type changes. File type can be identified by position-
sensitive tests, e.g., reading byte values at specific locations in a
file. In contrary to benign applications, ransomware changes this
information when encrypting a file, transforming the file into an
unknown type. Therefore, changing file types is a strong indicator
of ransomware activity. For example, CryptoDrop uses the same
technique of file [58] utility to detect change of file types.

(BA-iv) - testing goodness-of-fit. Encryption produces data which have a
pseudo-random distribution. Based on this fact, DaD [27] employs
chi-squared goodness-of-fit test to determine if the written data
is close to random distribution and conclude that the file is being
encrypted. To this aim, observed byte array is put into a frequency
histogram with class interval 1 from 0 to 255. Let 𝑁𝑖 denote the
number of variates in bin 𝑖, and 𝑛𝑖 be a known distribution. The
chi-squared test value of this array is computed as in Equation 3.2

𝜒2 = ∑
𝑖

(𝑁𝑖 − 𝑛𝑖)
2

𝑛𝑖
(3.2)

docx jpg pdf txt xlsx
0

2

4

6

8

A
ve

ra
ge

En
tr

op
y

Before Encryption
After Encryption

Figure 3.1: Average entropy of different
file types, before and after being encrypted.
The values are computed using a subset of
author’s files.

Figure 3.2:Hexadecimal encoding of lead-
ing bytes of a PDF file (in fact, a draft of this
thesis). When interpreted as text, the first
5 bytes of PDF files appears as %PDF-, of
which, the hexadecimal equivalent is 0x25
0x50 0x44 0x46 0x2d. This array of hex
values is called Magic Number (or Magic
Bytes) and can be used to identify a file
type.

Indicators do recognize ransomware activities but also benign applica-
tions. For example, file compression utilities might show similar patterns
with ransomware. False positives can be reduced by combining multiple
indicators, e.g., CryptoDrop utilizes (BA-i), (BA-ii) and (BA-iii).

R1 R2 Rn⋯

⋯

⋯

Figure 3.3: Process & function splitting
strategy. Each ransomware process carries
out a small portion of the attack so that
they all stay under the radar while the files
are being encrypted.

In addition to the indicators above, there are other behavioral features
such as file access patterns e.g., read/write/delete operations, and access
frequency that can be used to identify ransomware activity. ShieldFS [25]
and RWGuard [33] employ these type of indicators in their custom detec-
tion logic. While these systems claim to have highly accurate detection
rates, in [59] authors examine them, and show that ransomware can evade
detection by distributing the overall workload of malicious operations
across a small number of processes (see Figure 3.3). Since these systems
are already found vulnerable, we did not include them in our security
analysis.

The analyzed systems in this chapter and their corresponding defense
techniques are given in Table 3.1.

3.2 Vulnerability Analysis of Countermeasures 23

System (KP-i) (KP-ii) (BA-i) (BA-ii) (BA-iii) (BA-iv)

Kim et al. [31] 3

CryptoDrop [23] 3 3 3

Lee et al. [29] 3

Palisse et al. [28] 3

DaD [27] 3

PayBreak [30] 3

Table 3.1: Select anti-ransomware sys-
tems and their main defense methods.

1: In this exercise, we apparently take
the side of ransomware but the goal is
to stimulate the scientific community to
anticipate better defenses that can work
not only against current ransomware but
also against forthcoming generation of
them. This choice is not exempt from con-
sequences. We discuss in Chapter 2 the
ethical aspects in this research and we
comment on the code of conduct we have
committed ourselves to in developing this
work.

3.2 Vulnerability Analysis of
Countermeasures

“Every law has a loophole” says an old proverb, meaning that once a
rule is known, it becomes known also how to evade it. This holds true
also in the ransomware versus anti-ransomware arms race and in both
ways. Knowing how ransomware works, one can design more effective
defenses; knowing how defenses work, one can design more penetrating
ransomware. In this section we discuss potential limitations in current
anti-ransomware, and we imagine and discuss how future generation
ransomware could evolve to overcome those defenses.1

Limits of Key-Oriented Protection

Key-oriented protection defenses aim at to prevent ransomware from
using, undisturbed, cryptographic API.

In this respect, (KP-i) inserts a backdoor into CSPRNGAPI. A ransomware
may evade this defense by using an alternative source of randomness. The
critical question is whether there exist sources of randomness that are
as good as CSPRNG. We will elaborate more on this approach in Section
3.3.

Instead, (KP-ii) logs parameters and outputs of CSPRNG, built-in crypto-
graphic API, and recognized functions in third-party libraries. As stated
in [30], the critical limitation of this approach is that recognizing stati-
cally linked functions from third-party libraries is sensitive to obfuscation.
Obfuscation does not affect recognizing calls to built-in API, so evasion
is possible when ransomware binary is obfuscated and the ransomware
refrain from using built-in API.

Limits of Behavioural Analysis

To detect cryptographic activities, behavioral analysis uses indicators,
which are features revealing the presence of certain suspect behaviours; it
also relies on constantly applying measurements and tests on files, before
and after I/O operations.

In this respect, (BA-i) tests if the entropy of the file increases during a
write operation using Equation 3.1. It assumes that the encryption always
increases the Shannon Entropy of a file. Indeed, this assumption holds
for standard ciphers such as AES [60]. The entropy inflation test can be
bypassed by changing the encryption algorithm with a one that preserves
the entropy of the blocks.

24 3 Ransomware Evasion Techniques

2: Network level defense works best
against hardcoded addresses and effi-
ciently detects the usage of Domain Gen-
eration Algorithm (DGA). To remove this
burden, Cerber ransomware utilizes trans-
action information in the bitcoin network
to locate its C&C server [61].

Likewise, (BA-ii) compares the contents of a file before and after a file
write operation and checks if the similarity score is above a threshold. A
fully encrypted file should look like a random data and the comparison
should yield a score close to 0, indicating a strong dissimilarity. This
is true if the whole file is encrypted. A partially encrypted file, when
compared with the plaintext version, is likely to result in high similarity
scores: (BA-ii) may not be triggered while the file becomes practically
unusable.

(BA-iii) can also be easily bypassed. If ransomware saves the file header,
i.e., does not encrypt the lead bytes of the file, and encrypts the rest, than
the output of probe for file-type remains same. It should be noted that this
information is generic, i.e., publicly available, therefore cannot be con-
sidered as a critical data. Consequently, ransomware would not lose any
profit by omitting the file-type identifying bytes. To nullify this strategy,
anti-ransomware systems may utilize context-sensitive tests which scan
entire file to detect a file’s type, with the expense of degraded performance.
In the experiments (Section 3.5), however, we haven’t encountered such a
detection. We remark that this defense might be bypassed by adding read-
/write routines for specific target file types, which is an implementation
effort.

Finally, (BA-iv) tests if the written data is close to random distribution,
based on the observation that standard ciphers like AES produce randomly
distributed outputs. For this aim,chi-squared test given in Equation 3.2 is
used. However, if the chi-squared values can be kept constant during the
obfuscation of file, this indicator will not trigger the alarm.

3.3 Future Ransomware Strategies

We present the blueprints of two novel ransomware samples that we
claim are able to evade the defense systems listed in Table 3.1. The archi-
tecture of the samples is similar to that of WannaCry from the point of key
management. That is, each file in the victim’s computer is encrypted with
a unique symmetric key. Moreover, these symmetric keys are encrypted
with a public key generated on the victim’s computer. The corresponding
secret key is then encrypted with the master public key embedded in the
binary executable.

While this approach brings the risk of private key’s being captured, it also
removes the necessity of active connection to our hypothetical C&C server
which might be blocked by network firewalls and cause ransomware to
fail2.

Bypassing Key-Oriented Defenses

Our first construction targets key-oriented defense systems. As we point
in Section 1, (KP-i) can be bypassed by utilizing an alternate random-
ness source. However, to defeat (KP-ii) completely, it is also required to
statically link against a third-party library and apply obfuscation.

3.3 Future Ransomware Strategies 25

3: As we mentioned in Chapter 1, modern
ransomware employs battle-tested encryp-
tion algorithms to make it infeasible for
victim to decrypt the files without paying
for the keys. However, the prime goal of a
ransomware attack is not to make decryp-
tion impossible without the keys. Rather,
it is to increase the cost of recovery so that
paying the ransom appears to be a better
option. Actually, an encryption algorithm
that is strong enough to make recovery
efforts cost more than the ransom amount
might be sufficient for the ransomware
business.

Deriving Encryption Keys

A simple technique to generate the file encryption keys that malware
might adopt is what is known in cloud computing circles as Convergent
Encryption [62]. Here, the cryptographic keys are derived from files them-
selves. A simple implementation is as follows. Let 𝐸 be an encryption
algorithm, 𝐻 be a hash function, and 𝐹 be the file. The technique consists
in deriving the encryption key by hashing the file itself, that is 𝐻(𝐹). The
resulting encryption is therefore 𝐸(𝐹 , 𝐻(𝐹)).

𝐹1 = 𝐹

𝐾1 = 𝐻(𝐹1)

𝐶1 = 𝐸(𝐹1, 𝐾1)

=

=

=

Derive Keys

Encrypt

𝐹2 = 𝐹

𝐾2 = 𝐻(𝐹2)

𝐶2 = 𝐸(𝐹2, 𝐾2)

Figure 3.4: Given the same plaintext, con-
vergent encryption schemes produce the
same ciphertext.

The technique is free from the issues thatmay arise in the cloud computing.
While convergent encryption is useful in certain scenarios, in the context
of cloud computing, this technique may leak information as follows. For
publicly-available plaintext files, the adversary can check and learn if the
ciphertext belongs to these files. However, this is not really an issue in
the context of ransomware: if the user still has the plaintext file(s), say in
a backup, then the ransomware will not be effective anyway.

Our hypothetical ransomware thus computes 𝐻(𝐹) and derives the key
by truncating this hash value to the length of 𝐾. This allows to evade
(KP-i). To win against (KP-ii), we need a little more care: 𝐻 and 𝐸must be
statically-linked against a third-party library and obfuscated, otherwise
(KP-ii) can acquire and store the result of 𝐻 where 𝐾 lies therein. The
same requirement also applies to 𝐸. However, having a hash function in
hand, the necessity of a block-cipher can also be fulfilled in the context
of ransomware.3

Symmetric Key Encryption Method

Once the ransomware has got hold of good grade encryption keys then it
can employ various well-established symmetric encryption techniques
to the victim’s files, for example a stream cipher, e.g., based on a hash
function in counter mode, or block cipher in an appropriate mode, e.g.,
chained. The exact choice of algorithm is not so important as long as it
sufficiently cryptographically strong to render cryptanalysis significantly
more expensive than paying the ransom. However the algorithms should
be fairly simple so as to be coded compactly and easy to obfuscate.

To encrypt the files we built a stream cipher using a keyed hash function
build from 𝐻. Our construction utilizes 𝐻 to generate a keystream in a
similar way to the counter-mode of block ciphers. The keystream and the
plaintext are combined using the XOR operation.

Let 𝐹 be a plaintext stream such that 𝐹 = 𝑃1 || 𝑃2 || … || 𝑃𝑛 where each 𝑃𝑖
has equal bit length to output of 𝐻, except possibly 𝑃𝑛, and 𝐾 = 𝐻(𝐹).
Encryption of 𝐹 is done as follows:

𝑆𝑖 = 𝐻(𝐾 || 𝑖)
𝐶𝑖 = 𝑃𝑖 ⊕ 𝐻(𝐾 || 𝑆𝑖)

for 𝑖 = 1, 2, … , 𝑛 − 1. For 𝑖 = 𝑛, 𝐻(𝐾 || 𝑆𝑛) is truncated to the length of 𝑃𝑛.

𝐹

𝑃𝑖𝑃1 𝑃𝑛
⊕ ⊕ ⊕

𝐻(𝐾||𝑆1) 𝐻(𝐾||𝑆𝑖) 𝐻(𝐾||𝑆𝑛)

𝐶1 𝐶𝑖 𝐶𝑛

𝐶

Figure 3.5: Using a keyed hash function
in counter mode for encryption.

In our design, we assume that 𝐻 is (i) one-way: given 𝐾, it should be hard
to find 𝐹 such that 𝐻(𝐹) = 𝐾; and (ii) collision-free: it should be hard
to find 𝑆𝑖 ≠ 𝑆𝑗 such that 𝐻(𝐾 || 𝑆𝑖) = 𝐻(𝐾 || 𝑆𝑗) (iii) pseudo-random: it is

26 3 Ransomware Evasion Techniques

4: Actually, ransomware might try to in-
ject malicious code into other processes. In
this case, memory of the encrypting pro-
cess is dumped.

difficult to guess 𝐻(𝐾 || 𝑖) —in our implementation, 𝑖 has a fixed length of
32 bits— without knowing 𝐾 || 𝑖.

Voiding Memory Dump Analysis

Current software implementations of symmetric cryptographic algo-
rithms require the encryption keys to be retrieved during the execution.
Consequently, when encrypting files, the encryption keys reside in the
memory area of the ransomware4 process. Using this observation, defense
techniques emerged (e.g., [63]) which try to dump the memory of the
encrypting process and extract the keys to roll-back the damage.

Deriving keys from the files’ hashes overcomes this defense, as different
files will result in distinct encryption keys. If a defense system detects
files being encrypted, suspends the process and extracts the keys, it can
only decrypt the file which is currently being accessed. Previous files
cannot be recovered anymore as they are encrypted with different keys
which were already destroyed at the time of detection.

File based PRNG

We have developed a PRNG which inputs files, outputs pseudo-random
bytes and provides the sufficient functionality for the purposes of ran-
somware. The PRNG has a pool, which is implemented as a byte array
and initially filled with the hashes of files that will be encrypted. As the
ransomware needs 𝑛 bytes of pseudo-random number, 𝑛 bytes are copied
from the pool to the output buffer; the remaining bytes are shifted so that
they will be in the next output. The output blocks are hashed and inserted
again into the pool to prevent exhaustion. Initial state of our F-PRNG is
depicted in Figure 3.6 and generation procedure is in Figure 3.7. It should
be noted that as the files on victim’s computer gets more exclusive, i.e.,
different from other people’s data, then the outputs of F-PRNG becomes
harder to guess or reproduce after the attack as the plaintext versions of
the files will be destroyed.

𝐻(𝐹1) || 𝐻 (𝐹2) || … || 𝐻(𝐹𝑛)

Figure 3.6: Initial state of our F-PRNG.
The pool is filled by the concatenating
hashes of a subset of the target file list.

⇒ Remaining Bytes⇒

Output

Feedback
HashExpand

Insert

Figure 3.7: Output procedure of F-PRNG.
As pseudo-random bytes are requested
from the F-PRNG, the output buffer is filled
with the requested amount. The remaining
part of the pool is shifted accordingly. A
copy of output bytes are hashed, expanded
and inserted to the pool.

Expansion Process After providing the output bytes, that part is re-
moved from the pool and the remaining bytes are shifted accordingly.
This process shrinks the pool so that it exhausts in some finite time. To
prevent this, we feed the pool with the pseudo-random numbers pro-
duced from the output that we call expansion. The method we use for
expansion is similar to the approach used by Stark [64] and Eastlake [65],
and described in Algorithm 1.

Asymmetric Key Pair Generation and Encryption

Ransomware needs to store the locally generated file encryption keys
securely. Modern ransomware employs asymmetric algorithms for this
task.

3.3 Future Ransomware Strategies 27

Algorithm 1 Expand a pseudo-random value to given length.
1: function Expand(input , 𝑛)
2: global counter ▷ Pool keeps this counter.
3: ℓ ← Length(input)
4: max ← ⌈ 𝑛ℓ ⌉
5: 𝑖 = 0
6: output = []
7: for 𝑖 < max do
8: counter += 1
9: 𝑟 = Hash(bytes || counter) ▷ Generate pseudo-random chunk

10: output = output || 𝑟 ▷ and add to output.
11: output = Truncate(output , 𝑛) ▷ Output is truncated to n bytes.
12: return output

5: Some real-world ransomware families,
e.g., CryptoLocker, are designed to down-
load asymmetric keys from C&C servers.

6: Evading context-sensitive tests, which
consider the entire file, would require a rel-
atively complex algorithm to skip specific
locations in a file.

Our imaginary ransomware also follows the same strategy. It employs
the above F-PRNG to generate large primes to use in asymmetric algo-
rithms5, and to generate the padding values used for randomization of
ciphertext.

Evading Behavioral Analysis

Our second ransomware targets behavioral based defense systems that
constantly monitor file system activity and look for anomalies. In par-
ticular, its objective is to encrypt files without triggering the indicators
described in Section 3.1.

1234 5678 9012 3456

N#8I_scOt%en!G6sU 2746 1299 1766 5694

Block Cipher FPE

Figure 3.8: Contrary to traditional block
ciphers, Format Preserving Encryption
(FPE) creates a ciphertext that looks in the
same format as the plaintext. For example,
encryption of a 16-digit credit card num-
ber under FPE would be another 16-digit
number.

The presented variant, rather than using standard block ciphers, basically
employs a Format Preserving Encryption (FPE) algorithm (see Figure
3.8). More specifically, the algorithm produces ciphertext which is a pure
pseudo-random permutation of plaintext.

Bypassing File-Type Checks

File-type probing is performed by inspecting the lead bytes of a file. Our
ransomware therefore skips these bytes and starts encryption at a safe
position. We determined this threshold empirically, testing over different
file types including PDF, JPEG and DOCX. Our results shows that skipping
the first 5120 bytes is sufficient for evading (BA-iii)6.

Preventing Dissimilarity

Similarity of files is validated by comparing sdhash digests which pro-
duces a score between 0 and 100. According to the developers of sdhash,
scores from 21 to 100 are considered as a strong indication of similar-
ity [66]. In our experiments, comparing encrypted files with originals
produces scores 0 or 1. However, we observed that partial encryption
allows to obtain scores higher than 21, depending on the encryption
ratio. (BA-ii) might set a lower threshold level, however, that would re-
sult in high false positive rates. Even in this case, tuning the encryption

28 3 Ransomware Evasion Techniques

ratio would allow to keep this indicator silent. Figure 3.9 shows the par-
tially encrypted files of different types and their corresponding similarity
scores.

Figure 3.9:Average scores of sdhash com-
parison of partially encrypted file types.
Scores above 21 (denoted by the dashed
line) is considered as a strong indication
similarity between compared file contents.

10050332520

Encryption Ratio (percent)

0

10

20

30

40

50

s
d
h
a
s
h

S
co

re

PNG

JPEG

PDF

DOCX

XLSX

TXT

Evading Statistical Tests

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6

𝐵2 𝐵3 𝐵1 𝐵4 𝐵6 𝐵5

𝐹 = 6 bytes

𝐶

Figure 3.10: 3-byte permutation of a 6-
byte array. Block size (which is set to 3 in
this illustration) is adapted according to
the buffer size of the target system. For
example, we permute 64-byte of blocks in
our implementation.

(BA-i) measures the Shannon entropy of the files using Equation 3.1,
before and after file-write operations, and monitors the increase. Standard
encryption algorithms usually dramatically increase the file-entropy and
so this is detectable. Instead, one might use a transposition style cipher to
obfuscate files: the ransomware generates a pseudo-random permutation
of the bytes of the plaintext blocks. If, as is commonly the case, the anti-
ransomware tools use the measure Equation 3.1 then clearly permutation
of the bytes leaves this invariant, and so this goes undetected.

There are two obvious drawbacks with this approach: firstly such a trans-
position encryption is cryptographically rather weak, and secondly it
only works for this particular measure of entropy of a string. A weak
encryption may be good enough for the purposes of the ransomware, as
long as the cost of cryptanalysis exceeds the ransom. Given that an easy
counter is to use a different measure of entropy, or better still use more
than one, this would not seem to be a long-term viable solution for the
writers of ransomware.

Lastly, pure permutation technique also works against (BA-iv), the single
indicator that DaD employs to detect encryption. DaD computes the
sliding median of the 𝜒2 values of the last fifty write operations and
compares this result to the threshold level 𝛼𝑅𝑊 = 0.05. However, the
𝜒2 statistics (computed using Equation 3.2) remains constant under any
permutation as the 𝑁𝑖 values are not altered but rearranged. As a result,
the permuted data does not fit the random distribution and (BA-iv) does
not trigger the alarm.

3.4 Implementation 29

7: VirtualBox,
https://www.virtualbox.org/.

3.4 Implementation

We have developed two prototypes in order to demonstrate the feasibility
of the methods described in Section 3.3. Both programs are implemented
in C# language targeting version 3.5 of .NET Framework. In addition, we
ported the second prototype to Python (see Section 3.5).

The prototype which aims to bypass key-oriented defenses first enu-
merates the target files in the victim’s computer. It uses an obfuscated
SHA-256 function to compute hashes and the F-PRNG is initialized with
50 files’ digests. This is the maximum capacity of the F-PRNG’s pool
which is implemented as a byte array. Our novel ransomware uses RSA
algorithm for public key encryption. Once the F-PRNG is ready, two 1024
bit primes are generated, an RSA key pair is computed, and the private
key is encrypted with the embedded master public key. Primality tests
are performed using Miller-Rabin algorithm with the iteration count set
to 3 as indicated in [67]. F-PRNG is also utilized to generate the padding
values used for randomization of ciphertext.

Listing 3.1: Fisher-Yates algorithm imple-
mented in Python.

from random import randint

def fy_shuffle(a) -> None:

n = len(a)

for i in range(n-1, 0, -1):

j = randint(0, i+1)

a[i], a[j] = a[j], a[i]

a = [1, 2, 3, 4, 5, 6, 7, 8]

fy_shuffle(a)

print(a)

[On Console]

[4, 2, 5, 8, 3, 1, 6, 7]

The second prototype targets behavioral based approaches which mon-
itors file system activities. It has two working modes: partial and full
encryption. The former targets CryptoDrop and performs partial en-
cryption and the latter fully obfuscates files. In our design, we set block
size to 𝑛 = 64, i.e., read 64 bytes, permute this block and overwrite the
original data. Fisher-Yates algorithm [68] is utilized to permute the blocks
(see Listing 3.1). We remark that, while executing Fisher-Yates algorithm,
the required randomness is obtained from the CSPRNG API as behavioral
analysis based systems do not control these.

Both of the prototypes contain only encryption routines, file I/O functions,
and codes responsible for the keymanagement tasks. As our main purpose
is to show potential attacks and not to develop a fully functional ran-
somware, we deliberately omitted implementing all non-cryptographic
functions, such as spreading over the network and deleting the Volume
Shadow Copy Service (VSS) backups. Furthermore, our prototypes save a
copy of encryption key in the same directory for each encrypted file to
prevent accidental damages.

3.5 Experimental Results

In order to verify the feasibility of the methods described in Section 3.3,
we tested our prototypes against ransomware defense systems in Table 3.1
that provides an implementation. In this regard, we conducted a series of
experiments on PayBreak, DaD and CryptoDrop.

The test environment is prepared as follows. We created a Virtual Ma-
chine (VM) in VirtualBox7 and performed a clean install of 32 bit version
of Windows 7 OS. Next, we created 5 directories on user desktop and
randomly placed decoy files therein. The decoy set contained 10 files
with each of the extensions .docx, .jpg, .pdf, .png, .txt and .xlsx,
making 60 in total. Before our experiments, we confirmed that the decoy
files could be opened by the associated applications and were free of
any corruption. Finally, we deactivated User Account Control (UAC) and

https://www.virtualbox.org/

30 3 Ransomware Evasion Techniques

8: Compiled from source available at:
https://www.github.com/BUseclab/

paybreak.

9: Downloaded from
http://people.rennes.inria.fr/

Aurelien.Palisse/DaD.html.
10: This thesis analyzes the version of
CryptoDrop described in [23].

11: ENT: A Pseudorandom Number
Sequence Test Program,
http://www.fourmilab.ch/random/.

Figure 3.11: Mona Lisa, the masterpiece
of Leonardo da Vinci.

Figure 3.12: Partially encrypted Mona
Lisa. Applied 20% permutation on the orig-
inal image. The gray area is due to the in-
ability of rendering the corrupted image.

Windows Defender to prevent interference, and took a snapshot of the
test system.

We started experiments by testing the first prototype against PayBreak 8.
After running the executable of our first prototype, we observed that
all decoy files were encrypted while the PayBreak was active. However,
the log file of PayBreak did not contain any cryptographic material.
As a result, we observed that our first prototype bypassed the software
implementation of a key-escrow based defense system.

We continued our experiments with the behavioral analysis systems. We
first tested the 32-bit version of DaD 9 against our second prototype. We
activated DaD, executed the prototype and observed that all the decoy
files were corrupted. Therefore, we conclude that our prototype could
evade DaD.

Finally, we evaluated our prototype against CryptoDrop 10 as follows.
Althoughwe did not have an open source implementation of CryptoDrop,
the mechanisms that [23] uses, i.e., file and sdhash tools are publicly
available and installable on a Linux system. Moreover entropy changes
can also be monitored using ent11 tool. Therefore, we re-implemented
our prototype in Python and run in partial encryption mode on a Linux
system. We observed that file command reported that the original and
encrypted files are of exactly same type. Moreover, all sdhash comparison
scores were above 21 using %30 encryption. Finally, ent tool measured
the partially-encrypted files have the same entropy with the original
ones. Based on these results, we conclude that our prototype can bypass
CryptoDrop.

We remark that partial encryption causes damage sufficient to make the
files unusable (compare Figure 3.11 to Figure 3.12). In our experiments
we observed that images could not be rendered and documents could not
be read even with 20% encrypted files. Only exception is the TXT files
that we could read the non-encrypted contents.

3.6 Discussion

The purpose of this chapter is to warn the scientific community of forth-
coming ransomware threats. By talking about how six cutting-edge anti-
ransomware solutions —at the time of writing this thesis, implement-
ing strategies of key escrow, placing backdoor in CSPRNG, and behav-
ioral analysis are the most advanced strategies known against active
ransomware samples— could be overthrown by smarter and more sophis-
ticatedmalware, we hoped to have revealed what strategies thosemalware
could trying to implement, so indicating where anti-ransomware engi-
neers have to focus their efforts. Since it is believed that the ransomware
threat will increase not in number of attacks but in sophistication, to keep
anti-ransomware ideas ahead of time may be a game-changing factor.

That said, malware mitigation is an arms race and we expect new genera-
tions of ransomware coming soon with renovated energy and virulence,
adapting their attack strategies to challenge current defenses. New vari-
ants of ransomware have been observed constantly during the last years.
Those called scareware prefer to exploit people’s psychology, threatening

https://www.github.com/BUseclab/paybreak
https://www.github.com/BUseclab/paybreak
http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html
http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html
http://www.fourmilab.ch/random/

3.6 Discussion 31

them into pay the ransom without, however, doing any serious encryp-
tion: despite deceitful they are technically benign applications. Others,
however, will be variants of real cryptographic ransomware and able to
overcome control and to encrypt a victim’s files using strong encryption.
A white paper by Symantec [3] reports that ransomware is becoming
instrument for specialists and targeted attack groups, a weapon not only
to extort money but to cover up other attacks and, when using strong
encryption, used in fact as a disk wiper. It is to this second category that
our research is dedicated. As security professionals we feel compelled
to be prepared to face forthcoming threats thus to identify and antici-
pate potentially dangerous ransomware variants, and warn the scientific
community about them.

On Deception-Based
Ransomware Defense 4

4.1 Decoy Files: The Theory . . 33
4.2 Anti-Ransomware Systems
with Decoy Files 37
4.3 Decoy-aware Ransomware 39
4.4 Experiments and Quality Mea-
sures 42
4.5 Discussion: The Endless Bat-
tle 46

In the context of ransomware, deception is primarily achieved by crafting
artificial files, decoys, that the user is not supposed to see or access. In
particular, by placing these files among real files of a user, a minefield-
like area is established on the file-system. Whenever a process writes
to a decoy file, it is immediately considered as a suspicious activity as
any legitimate application would not access any of these files, and a
predetermined response is taken.

One noteworthy aspect of deception-based ransomware detection is the
lack of false positives (e.g., typically decoys are hidden from users to
prevent users’ mistakes). Another outstanding property of this approach
is that it provides real-time detection with minimal overhead as no addi-
tional computation is involved, such as those performed by behavioral
detection. However, the main issue of using decoys for ransomware detec-
tion is that if the strategy used to create them is weak, then ransomware
can detect the presence of decoys and skip them while building the list of
target files to encrypt. Therefore, to be effective, decoy files should mimic
as closely as possible real-user files to deceive ransomware. The problem
of building a robust decoy strategy shares similar properties with that of
creating a realistic sandbox environment to perform dynamic analysis of
malware [69]. In this scenario, the ransomware needs to be deceived that
it is running on a real host while it is actually being run and monitored in
an artificial environment prepared by the malware analyst. In fact, some
ransomware tries to fingerprint the execution environment and look for
traces of typical test systems, e.g., vendor ID of device drivers, and act as
benign programs if they suspect of being monitored.

Figure 4.1: A decoy file should be indis-
tinguishable from the genuine files of the
user, like a land mine placed in the ground.
Would an adversary step on the mine if it
could be detected?

While decoy-aware ransomware is not an emerging threat yet, cybercrim-
inals might turn their experience in fingerprinting sandbox environments
for detecting decoy files. We envision this potential development and ask
the following question to ourselves: how secure are the current deception-
based anti-ransomware systems? (see Figure 4.1) It is crucial to find the
answer of this question before such a development happens, as the dam-
age of ransomware might be irreversible. Therefore, in this chapter, we
take the task of analyzing the security of current decoy file strategies
used to stop ransomware.

4.1 Decoy Files: The Theory

Decoy documents, sometimes called honey files, are fictitious files first
introduced as a deception mechanism to detect unauthorized accesses
to computer systems (see [70]). Their goal is twofold: (a) to attract the
attention of intruders eager to steal information and lure them to access
the files so revealing their presence ex-ante, and (b) to infiltrate bogus
information that an insider entered in possession of the files may use
eventually and somewhere. This signals an intruder’s presence ex-post.

34 4 On Deception-Based Ransomware Defense

[33]: Mehnaz, Mudgerikar, and Bertino
(2018), ‘RWGuard: A Real-Time Detection
System Against Cryptographic Ran-
somware’

[34]: WatchPoint Data (2018), CryptoStop-
per

[32]: Lee, Lee, and Hong (2017), ‘How
to Make Efficient Decoy Files for Ran-
somware Detection?’

1: Juels and Rivest, who propose honey-
words to detect a password leak, call it flat-
ness [72].

[71]: Bowen et al. (2009), ‘Baiting inside
attackers using decoy documents’

This second function, i.e., serving as a beacon of an intrusion activity
after the intruder has left the system, seems less relevant to ransomware.
Cryptographic ransomware operates without exfiltrating information and
with the goal to block access to files in house. The use of decoy documents
as alluring bait, instead, can be pivotal in revealing a ransomware’s activity
and in enabling strategies to minimize the damage.

Decoy files with this purpose have been proposed in academic literature
(e.g., [33]) and also used in commercial products such as CryptoStop-
per [34], an anti-ransomware. In [32], the authors provide a solution that
is pragmatically tailored to nullify the search and sorting strategies of
eleven pieces of ransomware analyzed.

Beyond the specific decoy strategies implemented by a few pieces of
anti-ransomware, what are the qualities that a decoy file has to enjoy to
be effective? Not being recognized as a decoy is surely one, but others
may be relevant too. Other works have addressed the question in other
domains, mainly in intrusion detection. In particular, in [71], Bowen et al.
identify seven properties that a decoy file in its function of insider-trap
has to enjoy, namely being: believable, that is recognized as if it were an
authentic file1; enticing, that is alluring for the insider; conspicuous, that
is, easily visible so to minimize the effort of the insider; detectable that
is, serving well in detecting a malicious activity; variability, that is, not
easily identifiable as bogus; non-interference, that is, not it making hard
for honest users to recognize the non-decoy files; and differentiable, that
is, easily discernible by honest users.

Such properties, that in [71] come with probabilistic measures to quan-
tify them, need of a little reinterpretation in the context of ransomware
where the adversary is not a human masquerader aiming at finding and
exfiltrating sensitive data. Properties such as “detectability”, that in [71]
is interpreted as hiding beacons (called decoy tokens) inside the files to
trace them outside the system or injecting bogus information in a sort of
counter-intelligence action, do not apply as is. Others, instead, do make
perfect sense, like that of “being believable”.

Quality Measures for a Decoy Strategy

Although understanding which properties a decoy file should have varies
per se, in this chapter we prefer a pragmatic approach. We define two
measures that are directly observable. The first is about the quality level
of “deceptfullness” of a decoy strategy against a chosen ransomware. The
second is a measure of its usability which directly links to the rate of false
positives due to the activities of honest users.

We assume that the set of decoy files, 𝐷, is generated following a strategy
g(¬𝐷, 𝑘) that can, but not necessarily, depend on some non-decoy files ¬𝐷
(those which have to be protected) and some secret parameter 𝑘. We have
no requirements on g but when talking of a “file” we mean content, name,
and meta-data (e.g., be a hidden file, date of creation, last access, and so
on), and also the directory structure that includes them. Function g can
be static, that is defining 𝐷 once and for all, or dynamic, that is changing
𝐷 with time. It can be deterministic or randomized. We do not enter into
the details of this procedure but a “good” g should make it hard for an
adversary, 𝐴, to decide whether a given file 𝑓 does belong to 𝐷.

4.1 Decoy Files: The Theory 35

Similarly, 𝐴’s decision making can be based on a simple or complex
selection strategy (i.e., it can be a deterministic search and sort, or can
be a randomized search), however, what counts is that we can observe
it. In other words, we can design experiments where 𝐴 operates in an
environment where it can access all files and where it is possible to find
out what files 𝐴 selects and encrypts and in which order. So, let 𝑋 g

𝐴(𝑓)
be the random variable that returns the number of files that 𝐴 encrypts
before selecting and encrypting 𝑓, when 𝐴 runs in a file system with files
𝐹 = ¬𝐷 ∪ 𝐷, and where 𝐷, the set of decoy files, is generated using g. For
𝑆 ⊆ 𝐹, we write 𝑋 g

𝐴(𝑆) to refer to the event min∀𝑓 ∈𝑆{𝑋
g
𝐴(𝑓)}.

Definition 1 (Measure of Quality of a Decoy Strategy) Let be𝐴 a ran-
somware, 𝐷 the set of files generated by a decoy strategy g, 𝐹 = 𝐷 ∪ ¬𝐷,
𝑆 ⊆ 𝐹 a set of files, and 𝑛 a natural number. The quality of a decoy strategy
g is defined as follows:

Pr[|𝑋 g
𝐴(𝑆) = 𝑛|] (4.1)

It is the probability that 𝐴 encrypts 𝑛 other files before encrypting one in 𝑆.

When 𝑆 = 𝐷, Equation 4.1 tells us the probability that 𝐴 encrypts exactly
𝑛 non-decoy files before encrypting a decoy file.

We can use Definition 1 in many ways. Intuitively, Pr[|𝑋 g
𝐴(𝐷) = 0|] indi-

cates the quality of a decoy generation strategy in fooling immediately 𝐴.
A good decoy strategy should minimize Pr[|𝑋 g

𝐴(𝐷) > 0|] that is the proba-
bility that a ransomware encrypts some good files before encrypting a
decoy. It can be desirable to have a g that works more steadily against
𝐴: Pr[|𝑋 g

𝐴(¬𝐷) = 𝑛|] tells us the quality of a decoy strategy to keep ran-
somware busy for 𝑛 decoy files before it eventually starts encrypting a
good file. Intuitively, a good decoy strategy should maximize probability
Pr[|𝑋 g

𝐴(¬𝐷) ≥ 𝑛0|], if 𝑛0 is the minimal number of files that a certain anti-
ransomware strategy needs before detecting that there is an illegitimate
encryption in place. Often it can be sufficient to have 𝑛0 = 1, but it may
depend on the false positive rate of the anti-ransomware.

A strategy g that is also usable should non-interfere with the ability of a
user 𝑈 to recognize a non-decoy file. The experimental setting we propose
to measure this quality assumes a random variable 𝑌 g𝑈 (𝑆) that returns 1
when user 𝑈 accesses to one of the files in a set 𝑆 over a period of time in
a working session (e.g., the time in-between two lock-screens); it returns
0 if 𝑈 does not access to any file in 𝑆. We are interested in the following
measure, that we call confoundedness, in which it indicates whether the
user can get confused about his/her accessing non-decoy files.

Definition 2 (Measure of Confoundedness) Let be 𝑈 a user and 𝐷 the
set of decoy file generated according to a strategy g, 𝐹 = 𝐷 ∪ ¬𝐷, and 𝑆 ⊆ 𝐹
a set of files. Confoundedness is defined as follows:

Pr[|𝑌 g𝑈 (𝑆) = 1|] (4.2)

It is the probability that 𝑈 accesses a file in 𝑆 within a working session.

36 4 On Deception-Based Ransomware Defense

[73]: Balfanz et al. (2004), ‘In search of
usable security: five lessons from the field’

[71]: Bowen et al. (2009), ‘Baiting inside
attackers using decoy documents’

Definition 2 is useful when we instantiate 𝑆 = 𝐷. Intuitively, Pr[|𝑌 g𝑈 (𝐷) =
1|] = 0 means that 𝑈 never gets confused. Therefore, a usable decoy
strategy should be able to keep Pr[|𝑌 g𝑈 (𝐷) = 1|] small, where small should
be set according to empirical measure of the user experience, a value
beyond which there is evidence that the user may switch off the decoy
defence [73].

On the Theoretical Limits of Anti-Ransomware Decoy
Strategies

The two measures we have defined in the previous section can be effec-
tively computed once a decoy strategy has been defined and when either
a threat model for 𝐴 is set or when we have the possibility to observe 𝐴
in execution.

We discuss here those measures in respect of a particular threat model
for 𝐴. Bowen et al. [71] consider an adversary that is an insider, and
define a “highly privileged” adversary as one having almost full control
of the system, including knowing of the existence of a decoy strategy
but without knowing it (i.e., 𝐴 ignores g). We assume at least the same
“highly privileged” adversary. Under this condition, the adversary follows
its own strategy to come out with a list of target files 𝑇 from which to
pick.

Even this “highly privileged” adversary may be however not as powerful
as a ransomware can. In fact, due to its being able to run in a victim
machine, ransomware may have a further weapon that instead is not
available to a human insider: observing what files 𝑈 accesses during a
working session. Let us call this set of files [𝐹]𝑈 and let us assume here
that this is the set of files which 𝑈 cares about: s/he would be willing to
pay a ransom to have them back. Under this threat model we encounter
a serious limitation of using decoy files as a general protection against
ransomware. If g is perfectly usable, then its confoundedness is null, that
is Pr[|𝑌 g𝑈 (𝐷) = 1|] = 0. If 𝐴 observed [𝐹]𝑈, then 𝐴 could simply choose
among the files in [𝐹]𝑈 to have a perfect strategy to avoid picking decoy
files even without knowing how g works.

In general, however, Pr[|𝑌 g𝑈 (𝐷) = 1|] = 𝑝 > 0, which means that [𝐹]𝑈 ∩
𝐷 ≠ ∅. Assuming that 𝐴 picks a target file in [𝐹]𝑈 at random, it still
has |[𝐹]𝑈∩¬𝐷|

|[𝐹]𝑈|
⋅ 𝑝 + (1 − 𝑝) chances to pick up a good file. Although a

precise statistics can be computed only if all the parameters are set, if
𝑝 is negligible it still gives a good chance of success to 𝐴. Instead if 𝑝 is
significant, that is, there is a high probability that 𝑈 accesses a decoy file,
it seems that it is better that 𝑈 accesses as many decoy files as possible,
which seems going against usability. Besides, we have to consider that 𝐴
can also couple its random picking in [𝐹]𝑈 with its own strategy to select
files that are not decoy. This strategy is based on some intrinsic quality of
the files, such as their names, extension, location, and this combination
of strategies leads to an interesting theoretical question about what is the
best game for 𝐴 and for g.

As far as we know such an 𝐴 does not exists, and other strategies can
be put in place to detect the presence of such an intrusive and curious

4.2 Anti-Ransomware Systems with Decoy Files 37

[34]: WatchPoint Data (2018), CryptoStop-
per

[33]: Mehnaz, Mudgerikar, and Bertino
(2018), ‘RWGuard: A Real-Time Detection
System Against Cryptographic Ran-
somware’

ransomware, but our argument should be considered to raise awareness
of what limits do exist when designing any g.

4.2 Anti-Ransomware Systems with Decoy
Files

In this section, we give a brief description of some current anti-ransomware
systems that uses deception-based strategy by implementing decoy files.

CryptoStopper

CryptoStopper is a commercial anti-ransomware solution developed by
WatchPoint Data [34] and is advertised as “software to detect and stop
ransomware”. It places “randomly generated watcher files” in file system
to detect ransomware. According to WatchPoint Data, the average time
for CryptoStopper to detect a ransomware is 9 seconds.

In the case that malicious activity is detected, i.e., a process tries to write
to a decoy file, CryptoStopper alerts the system administrator and the
infected host is shut down. Furthermore, other computers at the network
are notified so that (if they are running CryptoStopper) they drop packages
coming from the infected host, isolating thatmachine from the network. In
this regard, CryptoStopper can also be viewed as a local threat intelligence
system that can protect the network from a zero-day ransomware with
minimal loss.

RWGuard

RWGuard [33] unifies techniques from previous proposals in a single
tool to mitigate cryptographic ransomware. To detect ransomware, RW-
Guard comprises dedicated modules to (i) check if a decoy file is modi-
fied; (ii) monitor process behaviours; (iii) identify abnormal file changes;
(iv) classify user’s cryptographic activity; and (v) control built-in crypto-
graphic API.

Decoy generator tool in RWGuard uses the original files of the user.
The authors state that the names of decoy files are generated similar to
the genuine user files and in a way that decoys can be clearly identified,
though, the exact procedure is not described. The number of decoy files
is determined by the user for each directory. The extension list of decoy
files are static (.txt, .doc, .pdf, .ppt, and .xls) and their contents are
created by copying from user’s genuine files. The sizes of decoy files are
randomly chosen from a range based on the sizes of user’s genuine files
while the total size of decoy files is limited to 5% of user’s genuine files.

38 4 On Deception-Based Ransomware Defense

[74]: Gómez-Hernández, Álvarez-
González, and García-Teodoro (2018),
‘R-Locker: Thwarting ransomware action
through a honeyfile-based approach’

[32]: Lee, Lee, and Hong (2017), ‘How
to Make Efficient Decoy Files for Ran-
somware Detection?’

[75]: Moore (2016), ‘Detecting Ran-
somware with Honeypot Techniques’

[76]: Moussaileb et al. (2018), ‘Ran-
somware’s Early Mitigation Mechanisms’

R-Locker

To detect ransomware, R-Locker [74] employs decoy files but in a slightly
different manner. The proposed approach is to create a central decoy file in
user’s home directory, which is actually a First-In First-Out (FIFO) special
file, i.e., a named pipe. Next, R-Locker writes a few bytes to this FIFO file,
which will not be read until a process accesses to the pipe. Consequently,
any process trying to read this pipe will trigger the protection module
and will be detected. Authors suggest to place multiple symbolic links
pointing to the central decoy file in various locations on the file system
to decrease the time to detect ransomware.

In contrast to the other anti-ransomware systems, R-Locker interprets
any read access to decoy files as ransomware activity. The false-positive
rate of this approach, i.e., the frequency of occurrences of read operations
initiated by a legitimate process like background service or a system
daemon, is not evaluated, though.

Decoy Generation Strategy of Lee et al.

In [32], Lee et al. reverse engineered 11 cryptographic ransomware sam-
ples from different families and analyzed their file system traverse patterns.
Based on this analysis, the authors developed a method which generates
decoy files in directories that the samples they analyze starts to traverse
from. The authors also found that these samples sort files alphabetically.
Based on this observation, the proposed method creates two decoys: one
with a file name which comes first in normal ordering, and another decoy
that comes first in the reverse order, to nullify both ordering strategies.

In addition to the current ransomware, Lee et al. also attempt to antic-
ipate the possible evasion methods that may come up in the future. In
this regard, the authors extend their algorithm by taking into account the
alternative orderings based on file size and access time. Furthermore, the
authors mention the case that ransomware orders files randomly and pro-
pose “monitoring random function calls to detect the ransomware which
traverse in random order”. However, we were not able to understand how
exactly the proposed algorithm works.

Other Closely Related Works

In the previous subsections, we have investigated the related work in-
volved with the findings of this research. In this subsection, we summarize
other works related to the use of decoys in ransomware mitigation.

One of the first honeypot systems against ransomware is proposed by
Moore in [75], which tracks the number of files accessed on specified
directories. The system implements a hierarchical multi-tier response
model. Depending on the number of files accessed, the level of severity is
determined and the corresponding countermeasure is applied.

Moussaileb et al. in [76] developed a post-mortem analysis system that
detects ransomware activity using machine learning techniques. In their
analysis, authors investigated the directory traverse patterns of processes

4.3 Decoy-aware Ransomware 39

[77]: Feng, Liu, and Liu (2017), ‘Poster: A
New Approach to Detecting Ransomware
with Deception’

and classified ransomware based on traversal traces in decoy directo-
ries.

Feng et al. in [77] intercepts FindFirstFile and FindNextFile API to
manipulate file system traverse of processes so that whenever a process
looks for a file, it is first served with a decoy file. Once the process finishes
its task on the decoy file, the monitoring module of the system perform
checks employed in behavioral analysis systems. After the checks, a
process that shows malicious traits is terminated.

4.3 Decoy-aware Ransomware

In the previous section we discussed some key elements of the strategies
of a few anti-ransomware systems. They can be considered instances
of what we called g. We now imagine a few anti-decoy strategies for
a ransomware, which then becomes a decoy-aware ransomware. Such
strategies can be either to black-list files that the ransomware considers
decoy, thus not to be encrypted, or to list files that it labels as user files,
thus to be encrypted. In particular, we describe how ransomware can
detect decoys by relying on heuristics, for instance the presence of zero-
filled files (Section 4.3) and on statistical methods (Section 2). Then we
describe how ransomware can find out the files accessed by users which
are quite likely non-decoy files (Section 2).

Detecting Static Decoys through Heuristics

A ransomware can look for patterns that are indicative of decoy files
generated by some (weak) strategy, such as files that are hidden or filled
with empty values, or where the creation date and content include a static
pattern which can be discovered by the attackers.

Similarly to the case of anti-analysis techniques (e.g., anti-sandbox/anti-
debugging), ransomware authors can first create a database of fingerprint-
based decoy checks to be included in future versions of ransomware. This
set of fingerprinting checks can be then performed at run-time when
scanning the victim computer to create the list of target files to encrypt.
Note that, differently from the case of anti-analysis, in which a malware
typically stops performing any malicious actions if it detects signs of an
analysis environment, ransomware does not stop performing its malicious
operations when decoys files are detected but simply excludes them from
the target files.

One fact must be observed. A false positive is less troublesome in the
case of a ransomware’s anti-decoy detection with respect to anti-analysis.
If the ransomware skips a user file mistakenly believed to be a decoy,
this has a little impact on the overall strategy of the ransomware. The
ransomware still encrypts several other files, and the request for ransom
still holds.

In the following, we describe two heuristics for decoys files. For the first
(see Algorithm 2) decoys are files that are hidden and empty. For the
second (see Algorithm 3) decoys are non-regular files, such as symbolic
links or named-pipes.

40 4 On Deception-Based Ransomware Defense

[74]: Gómez-Hernández, Álvarez-
González, and García-Teodoro (2018),
‘R-Locker: Thwarting ransomware action
through a honeyfile-based approach’

2: For more details, see the documentation
at http://man7.org/linux/man-pages/

man3/readdir.3.html.

Algorithm 2 Collect files that are not hidden or filled with zero value.
1: function Collect(path) ▷ Directory of files to scan.
2: FileList ← EnumerateFiles(path)
3: GenuineList ← ∅
4: for all 𝑓 ∈ FileList do
5: if IsHidden(𝑓) then
6: allNull ← True

7: while not EOF do
8: 𝑏 ← f.ReadByte()
9: if 𝑏 ≠ 0 then

10: allNull ← False

11: break ▷ 𝑓 might not be decoy, try next file.
12: if allNull = True then
13: GenuineList ← GenuineList ∪ {𝑓 }
14: else
15: GenuineList ← GenuineList ∪ {𝑓 }
16: return GenuineList

Algorithm 3 Collect files on Ext4 FS that are not a FIFO or a symbolic
link.
1: function Collect(path) ▷ Directory of files to scan.
2: FileList ← EnumerateFiles(path)
3: GenuineList ← ∅
4: for all 𝑓 ∈ FileList do
5: if IsPipe(𝑓) then
6: continue ▷ Skip pipes,
7: else if IsSymbolicLink(𝑓) then
8: continue ▷ and symbolic links.
9: else

10: GenuineList ← GenuineList ∪ {𝑓 }
11: return GenuineList

With the exception of [74], all deception-based anti-ransomware systems
that we know trigger protection when a decoy file is modified or deleted
but not when the file is only read. Thus Algorithm 2 and Algorithm 3
can work mostly undetected. And, since modern file systems store a file’s
contents and metadata separately (see Section 2), Algorithm 3 might even
be able to work without reading the actual files but only their metadata,
reaching full stealthiness. For example, on Linux OS, Algorithm 3 can
obtain all the required information by calling readdir()2 function.

Distinguishing Decoys Using Statistical Methods

Let us first briefly recall some technical details of the file storage on
Windows OS to understand file attributes and metadata.

On modern versions of Windows platform, New Technology File System
(NTFS) is the default file system for controlling the storage and retrieve of
data on the disk. In NTFS, all data are stored in files. In addition to the data
stored as regular files, the internal data for structuring the file system are
also stored as files. These auxiliary files are called metadata files. Among

http://man7.org/linux/man-pages/man3/readdir.3.html
http://man7.org/linux/man-pages/man3/readdir.3.html

4.3 Decoy-aware Ransomware 41

[79]: Rowe (2006), ‘Measuring the
Effectiveness of Honeypot Counter-
Counterdeception’

the metadata files in NTFS, the most important is the MFT, which contains
the description of all files on a disk volume. This information includes the
file name, time stamps, e.g., date created and date last accessed, security
identifiers and file attributes, e.g., hidden and read-only. Table 4.1 shows
a list of selected attributes for files on NTFS volumes.

Attribute Name Description

$STANDARD_INFORMATION File attributes such as read-only, archive, and
so on; time stamps, including when the file
was created or last modified.

$FILE_NAME File name in Unicode 1.0 characters.
$DATA The contents of the file.
$ATTRIBUTE_LIST A list of the attributes that make up the file

and the file record number of the MFT entry
where each attribute is located.

Table 4.1: Selected attributes for NTFS
files. The complete list is available at [78].

Therefore, since the decoy files are not supposed to be accessed by users,
its reasonable to expect that their access pattern shows difference from
genuine files. Under NTFS, it is possible to obtain certain parts of in-
formation about access patterns, for example, $STANDARD_INFORMATION
attribute stores last modification time. Furthermore, one can access file
creation time along with other file attributes. This basic information, sta-
tistically analyzed, can be used to distinguish decoy and genuine files.

In fact, this observation was made by Rowe [79] in 2006. Rowe developed
a tool which computes statistics on a file system and compares this data
to that of a typical real system. If there exist a significant discrepancy
in the two statistics, this suggests the existence of a deception-based
defense. The proposed tool computed 36 metrics for each directory using
features based on file attributes, including (i) file name; (ii) file size; (iii) file
type; and (iv) last modification time. Furthermore, these 36 metrics are
augmented with their standard deviations, resulting in a feature vector of
72 metrics. For a file system 𝑖, let 𝜇𝑖𝑘 and 𝜎𝑖𝑘 denote the mean and standard
error of metric 𝑘. Rowe assumed that all metrics have equal weights and
used the following formula to compute the difference between systems 𝑖
and 𝑗:

𝑠𝑖𝑗 = (1
72

)
35
∑
𝑘=0

[
|𝜇𝑖𝑘 − 𝜇𝑗𝑘|

√𝜎
2
𝑖𝑘 + 𝜎2𝑗𝑘

+
|𝜎𝑖𝑘 − 𝜎𝑗𝑘|

2𝜎𝑘
] (4.3)

According to results of Rowe’s experiments, Equation 4.3 excels in finding
discrepancies based on time & date information.

The feasibility of this technique, among with its efficiency makes it a
valuable tool for a decoy-aware ransomware. Unless the anti-ransomware
system updates the decoy files in such a way to mimic the user behaviour,
Rowe’s results shows that statistical techniques increase the chances of
attackers against decoy-based defenses. We elaborate on this issue more
in Section 4.5.

Monitoring User to Reveal Non-decoy Files

An anti-ransomware system that uses decoy files is supposed to be de-
signed in such a way to let legitimate users either be able to differentiate

42 4 On Deception-Based Ransomware Defense

Algorithm 4 Monitor User.
1: function Monitor
2: Exp ← FindProc(Explorer)
3: InjectProc(Exp, SpyModule)
4: GenList ← ∅
5: while true do
6: 𝑓 ← Listen(SpyModule)
7: GenList ← GenList ∪ {𝑓 }
8: return GenList

Algorithm 5 Replace WriteFile.
1: function Replace
2: 𝑃𝐿𝑖𝑠𝑡 ← EnumAllProc()

3: for all 𝑝 ∈ 𝑝𝐿𝑖𝑠𝑡 do
4: InjectProc(p, InterceptMod)
5: wf ←GetFnAddr(WriteFile)

6: if wf ≠ NULL then
7: Replace(wf , encFile)
8: return Success

between genuine and decoy files, or not to be able access decoy files for
instance by hiding them. Either way, the goal is to prevent the user from
accessing a decoy file.

Relying on this consideration, a decoy-aware ransomware can obtain a
list of genuine files by monitoring the user activity. In a metaphor, by
following the user’s steps, the ransomware can pass unharmed through
theminefield of decoys.We imagine two of such decoy-aware ransomware
strategies:

▶ (see Algorithm 4): inject a spy module into Explorer.exe to moni-
tor which files are accessed by user applications Ransomware can
further compute the hash of the file at first access time and check it
later for changes to detect modifications – this might be a sign of a
“valuable” file (though, not always this property holds: e.g. pictures
are rarely changed, and they are very valuable for ransomware).

▶ (see Algorithm 5): Enumerate all processes and inject an interceptor
module which hooks WriteFile API Replace the WriteFile API
with the encryption routines (however, this strategy also requires
the ransomware to keep information about which parts of the files
have been overwritten to be able to properly decrypt it later).

Decoy-aware ransomware implementing Algorithm 4 and Algorithm 5
can run in user-space, i.e., no kernel-mode component is required; so, the
ransomware would typically have the sufficient privileges to run.

4.4 Experiments and Quality Measures

Wedemonstrate the feasibility of our speculated decoy-aware ransomware,
and we measure against it, the quality of decoy of CryptoStopper, the
only anti-ransomware we could have access among the ones we de-
scribed in Section 4.2, and of DecoyUpdater, a proof-of-concept of an
anti-ransomware that implements the mitigation strategy that we de-
scribed in Section 4.5.

Revealing Static Decoys

To demonstrate the feasibility of the avoiding static decoys, we have
developed a prototype implementing Algorithm 2. We conducted the ex-
periments on a clean install of Windows 10 (version 1809) virtual machine
(VM) running atop VMware Fusion. In the experiments, we populate the
VM with 30 files, namely 5 from each of the following file types that
are typically selected by ransomware: .txt, .jpg, .png, .docx, .xlsx
and .pdf. These 30 files are placed in user’s directories targeted by ran-
somware, including Desktop and Documents. Once the artificial environ-
ment is ready, we have tested it on the latest version CryptoStopper at
the time of writing.

We implemented Algorithm 2 in C# language and run it on the test system.
As shown in Figure 4.2, our prototype successfully identified all the 25

4.4 Experiments and Quality Measures 43

[33]: Mehnaz, Mudgerikar, and Bertino
(2018), ‘RWGuard: A Real-Time Detection
System Against Cryptographic Ran-
somware’

[74]: Gómez-Hernández, Álvarez-
González, and García-Teodoro (2018),
‘R-Locker: Thwarting ransomware action
through a honeyfile-based approach’

[32]: Lee, Lee, and Hong (2017), ‘How
to Make Efficient Decoy Files for Ran-
somware Detection?’

decoy files generated by CryptoStopper and skipped them while building
the list of targeted files to encrypt.

AntiStaticDecoy Console

AntiStaticDecoy Prototype

Target directory: C:\Users\RWTest\Desktop

[GENUINE] C:\Users\RWTest\Desktop\accesscontrol.jpg

[GENUINE] C:\Users\RWTest\Desktop\AccountSummary.xlsx

...

[GENUINE] C:\Users\RWTest\Desktop\weakprng.png

[GENUINE] C:\Users\RWTest\Desktop\WeeklySchedule.txt

Total number of genuine files: 30

[DECOY] C:\Users\RWTest\Desktop\Parlay Permit\Add Resolve.docx

[DECOY] C:\Users\RWTest\Desktop\Parlay Permit\Backup Convert.docx

...

[DECOY] C:\Users\RWTest\Desktop\Parlay Permit\Unregister Test.avi

[DECOY] C:\Users\RWTest\Desktop\Parlay Permit\Use Initialize.pptx

Total number of decoy files: 25

Proceed with encryption? y/n

Figure 4.2: Console output of the proto-
type of Algorithm 2.

The fact that CryptoStopper (𝐶𝑆) relies on a static strategy means that
the set of decoy files has features that do not change in time. Thus,
we can safely infer from our experimental result that an estimation for
our measure of quality of decoy strategy is Pr[|𝑋𝐶𝑆

Alg1
(¬𝐷) > 0|] = 0 and

Pr[|𝑋𝐶𝑆
Alg1

(𝐷) > 0|] = 1. Actually, we estimate, Pr[|𝑋𝐶𝑆
Alg1

(𝐷) > 𝑛|] = 1 for all
0 ≤ 𝑛 ≤ |𝐹 |. Thus our version of a hypothetical ransomware outsmarts
CryptoStopper. In defence of CryptoStopper we have to say that we tested
it against a potential but a non-existing ransomware variant. So the lesson
we can learn from this experiment is not precisely on CryptoStopper, but
rather on a strategy that generates decoy files with fixed and communal
properties. Knowing it, a ransomware designer can easily implement a
counter-measure that sieves those files from the rest.

Decoy-aware ransomware implementing Algorithm 3 were supposed to
be tested against the other anti-ransomware systems in Section 4.2; we
requested the prototypes of [33] and of [74] to conduct experiments but
not received any response from the authors yet. The method proposed
in [32] is not published, so it is unavailable.

Revealing non-Decoy Files by Monitoring Users

To demonstrate the feasibility of our hypothetical ransomware monitors
users, we implemented Spy and Replace. They realize Algorithm 4 and
Algorithm 5, respectively.

Spy is written in C# and uses FileSystemWatcher. The target directory
to watch for events is set to %USERPROFILE%\Desktop. Spy implements
OnChanged and OnRenamed event handlers to receive file change notifica-
tions, and OnCreate for watching new files.

44 4 On Deception-Based Ransomware Defense

[80]: Hunt and Brubacher (1999), ‘Detours:
Binary Interception of Win32 Functions’

3: For the sake of proof-of-concept: a
real ransomware would use a strong key-
management strategy.

4: Available under GPLv3 at https://

github.com/ziyagenc/decoy-updater.

Replace is implemented as a Dynamic Link Library (DLL) module using
C++ language, and injected into the target process by calling CreateRemoteThread.
Once the DLL is loaded into the target application’s memory area, all hook-
ing operations are performed using Detours library [80] from Microsoft
Research. After loading the malicious DLL, Replace hooks WriteFile API
and whenever WriteFile is called, it invokes Fake_WriteFile that en-
crypts the whole content of the file using CryptEncryptwith a hardcoded
key3.

The experiments were conducted on a similar setup environment as the
previous one, namely a Windows 10 VM running atop VMware Fusion
with 30 user files created and placed similarly as before. In addition to
these user files, we have also added two decoy files from each file type.

Figure 4.3: Console output of Spy on un-
protected system.

Spy Console

Target Directory: C:\Users\RWTest\Desktop

20:58:07.814 CHANGED C:\Users\RWTest\Desktop\MyPasswords.txt

20:58:13.814 CHANGED C:\Users\RWTest\Desktop\TermProject.doc

20:58:21.002 CHANGED C:\Users\RWTest\Desktop\Essay.doc

20:58:30.439 CHANGED C:\Users\RWTest\Desktop\MyNotes.txt

20:58:42.626 CHANGED C:\Users\RWTest\Desktop\AccountSummary.xls

20:58:46.955 CHANGED C:\Users\RWTest\Desktop\Costs.xls

During the experiments, we first run Spy, and then use various applica-
tions to open and read the content of all of the 30 user files, by writing at
various time intervals to the .txt, .doc and .xls files only. As shown in
Figure 4.3, Spy is able to successfully observe all the user files that have
been modified.

Thus, speculatively Spy (as well as Replace) is able to nullify existing
decoy methods, be this one CryptoStopper or one of the solutions we
described in Section 4.2.

The only significant comparison is against the anti-ransomware that
employs (F1) and (F2) (see Section 4.5) in a decoy-file based defense
system. This is the prototype we called DecoyUpdater4 (DU). It should
be noted that our aim is not to provide a full-fledged deception system.
Rather, we attempt to evaluate our technique and prove the validity and
efficiency of the underlying idea (see Chapter 2).We have developed De-
coyUpdater in C# language. For ease of implementation, we have used
the System.IO.FileSystemWatcher class, as it is very useful for moni-
toring file system events, such as for opening/deleting/renaming files and
directories or detecting changes in file contents.

We have started DecoyUpdater and have repeated the same previous
actions on files (namely, reading and writing), seen in Figure 4.4. This
time, however, event logs in the Spy also show the file activities performed
on the decoys, as in Figure 4.5. Since the logic behind Spy is bound to the
OS and does not depend on other factors, from the only experiment we
have run, we obtain Pr[|𝑋𝐷𝑈

Spy(𝐷) > 0|] < 1 and Pr[|𝑋𝐷𝑈
Spy(¬𝐷) > 0|] > 0. A

more precise estimate requires to equip Spy with a decisional strategy

https://github.com/ziyagenc/decoy-updater
https://github.com/ziyagenc/decoy-updater

4.4 Experiments and Quality Measures 45

5: Due to the limited capability of
System.IO.FileSystemWatcher class,
we could observe the malicious activity,
yet we were not able to identify the
process ID of Replace and terminate it.
That would be possible with developing
a file system mini-filter, which is an
implementation effort.

over the collected files, and we leave this a future work.

DecoyUpdater Console

Target Directory: C:\RWTest\RWTest\Desktop

07:15:31.608 CHANGED C:\RWTest\RWTest\Desktop\ToDoList.txt

07:15:33.616 UPDATED Decoy file: Addresses.txt

07:15:50.790 CHANGED C:\RWTest\RWTest\Desktop\MyPasswords.txt

07:15:51.792 UPDATED Decoy file: PhoneNumbers.txt

07:15:58.641 CHANGED C:\RWTest\RWTest\Desktop\MyNotes.txt

07:15:58.643 UPDATED Decoy file: Addresses.txt

Figure 4.4: Console output of DecoyUp-
dater while Spy is active. The decoy files
Addresses.txt and PhoneNumbers.txt

are randomly picked and updated after a
random delay of 5 seconds maximum.

Spy Console

Target Directory: C:\Users\RWTest\Desktop

07:15:31.608 CHANGED C:\Users\RWTest\Desktop\ToDoList.txt

07:15:33.616 CHANGED C:\Users\RWTest\Desktop\Addresses.txt

07:15:50.790 CHANGED C:\Users\RWTest\Desktop\MyPasswords.txt

07:15:51.792 CHANGED C:\Users\RWTest\Desktop\PhoneNumbers.txt

07:15:58.641 CHANGED C:\Users\RWTest\Desktop\MyNotes.txt

07:15:58.643 CHANGED C:\Users\RWTest\Desktop\Addresses.txt
Figure 4.5: Console output of Spy while
DecoyUpdater is active. Note that the list
contains the decoy files Addresses.txt

and PhoneNumbers.txt.

As the final set of experiments, first we have executed a helper program to
inject the Replace module into a target application, namely Notepad.exe.
Using this target application, we have opened all the .txt files and added
some random text into all of them, and saved them. After this operation,
the .txt files were encrypted by Replace crypto-module. Second, we
have activated DecoyUpdater and repeated the same steps in the previous
experiment. In this scenario, at each try, DecoyUpdater’s operations were
intercepted by the Replacemodule. However, Replace’s activities has been
successfully reported5 by DecoyUpdater in the logs, which is shown in
Figure 4.6. Again, since the strategy’s logic depends only on the OS, we
can, from only one experiment, estimate that Pr[|𝑋𝐷𝑈

Replace(𝐷) > 0|] < 1 and

Pr[|𝑋𝐷𝑈
Replace(¬𝐷) > 0|] > 0. DecoyUpdater strategy has the potential to be-

come robust deception-based anti-ransomware system, but demonstrating
this claim is left for the future.

DecoyUpdater Console

Decoy Updater v1.0

Status: ACTIVE

Target Directory: C:\Users\RWTest\Desktop

22:00:27.553 CHANGED C:\Users\RWTest\Desktop\MyPasswords.txt

22:00:30.585 UPDATED Decoy file: PhoneNumbers.txt

22:00:30.585 WARNING Unexpected Write: PhoneNumbers.txt

Figure 4.6: Console output of DecoyUp-
dater while Replace is injected into
Notepad.exe and active. The logs shows
that malicious activity on the decoy file
PhoneNumbers.txt is detected.

46 4 On Deception-Based Ransomware Defense

4.5 Discussion: The Endless Battle

History suggests that the malware mitigation is a multifaceted combat
where the cyber-criminals constantly searches for a hole in the battle-
fronts. It is not a secret that, to achieve their nefarious aims, ransomware
authors also acquire new techniques to exploit the limitations of de-
fense systems. A good deception-based anti-ransomware strategy, say
g, we argued in Section 4.1, should be, at least, such that to maximize
the probability for a ransomware 𝐴 to encrypt first any decoy files (i.e.,
Pr[|𝑋 g

𝐴(¬𝐷) > 0|]); similarly, it should also minimize the probability it
starts encrypting some genuine files first (i.e., Pr[|𝑋 g

𝐴(𝐷) > 0|]). Such prob-
abilities can be enriched to consider for how long (i.e., for how many
encrypted files) 𝑔 is capable of keeping the ransomware in check.

In Section 4.4 we give an experimental estimation of those measures of
quality for some of the deception-based anti-ransomware strategies—
those we could get access to plus two we designed ourselves and that we
describe in this section—against the ransomware strategies that we have
imagined to exist and that we implemented and run. Here, we discuss
how they can minimize the damage of a ransomware attack.

To begin with, as we argued in Section 4.3, the static decoy files can be
practically discovered by a decoy-aware ransomware and therefore should
be avoided. In order to prevent fingerprinting of the decoys employed,
the defense system should include randomness in the decoy generation
procedure. Note that this property should not be understood as filling the
decoy file with CSPRNG outputs as the ransomware can also detect the
unusually high entropy in the file content. Though, we cannot reach an
ultimate decision in such case; ransomware may interpret the file as a
trap and skip or a valuable data, e.g., encrypted key vault, and attack.

As we argued in Section 2, ransomware can obtain crucial information
from the metadata in a file system and use statistical techniques which
might enable to unveil decoy files. RWGuard updates the decoy files
periodically to mitigate this potential attack, however, we believe any
update pattern would result in a discrepancy. Reasonably, the best protec-
tion level looks like reflecting user behaviour on decoys. We left such a
decoy system to be realized in a future work. Randomness is also vital
when updating the decoy files (see later). That said, an under-studied
aspect of decoy files is the header-extension relation. An inconsistency in
header bytes and file extension might make a decoy-aware ransomware
suspicious, therefore, these two should be coherent. Moreover, the decoy
updater process should be careful if a new content is added to a file ran-
domly, and target the body of the decoy file. This can be usually achieved
by skipping the first few bytes of the decoy file.

Decoy-aware ransomware that observes user-behaviour, whose existence
we speculate in Section 4.3, could be quite hard to beat. As a mitigation
strategy, an anti-ransomware could add the following functionalities to
current decoy systems:

(F1) Add noise to user activity by emulating user’s opening a decoy
file so that the spy module adds a decoy file to GenList. If the file
accessed by the user is modified, update a decoy file to mimic the
user.

4.5 Discussion: The Endless Battle 47

(F2) Verify the data written to decoy file to check if the decoy up-
dater is compromised.

To bypass these strategies, a ransomware may ignore a series of user
activities happening in a short time-frame. Therefore, to obfuscate the
functionality of item (F1), a decoy updater may choose to delay the update
process for a random time period or – ideally – according to user’s access
pattern. Predetermined update patternsmay also be identified by attackers.
Therefore, item (F2) must use randomized data while updating decoy
files. On the other hand, item (F2) should also avoid writing to the file
headers so that file’s magic value does not conflict with its extension.
Although it might be unfeasible to locate the process that initiated the
attack, a protection system might suspend all file system activity when
an inconsistency is reported by item (F2). In Section 4.4 we build such a
anti-ransomware based on these ideas, called DecoyUpdater, and estimate
its quality.

Another under-studied aspect of anti-ransomware solutions employing
decoy files is the usability. This topic deserves an independent research,
but we would like point out two issues. The placement of decoys are
studied fairly well in the past; however, the effects to user’s daily workflow
needs more research. For example, if the decoy files are generated with
the hidden attribute, it would be safe for ransomware to attack only visible
files. This may suggest to generate the decoys as visible files, and therefore
at least an estimation of our measure of confoundedness, Pr[|𝑌 g𝑈 (𝐷) = 1|]
is required.

The number of decoys has also another significance: to evade ordering
strategies described in Section 4.2, decoy-aware ransomware might utilize
a random ordering. In this case, obviously, the more decoy files, the faster
detection speed. It should be noted that, the number of decoys may not
be useful against selective attacks, though.

Lastly, deception-based defense systems are highly linked to the security
of the host OS. If for example, ransomware can write to MBR and reboots
the target machine, it might be able to load a malicious kernel and encrypt
the files, as NotPetya does. However, this is rather a generic issue about
runtime protection systems and applies to the most of the other anti-
ransomware solutions.

Vulnerability Analysis of
Real-World Systems 5

5.1 Background 50
5.2 Threat Model 51
5.3 Cut-and-Mouse: Encrypting
Protected Folders 52
5.4 Ghost Control: Disabling An-
tivirus Software 55
5.5 Experimental Results 58
5.6 Security Analysis of Auxiliary
Measures 64
5.7 Related Attacks in the Litera-
ture 66
5.8 Discussion 68

To protect IT assets, distinct classes of basic security practices are often
provided to the end users depending on their usage scenario. For instance,
home users are instructed to always update their OS and applications;
corporate administrators are required to employ some form of user train-
ing to teach users, e.g., how not to click on e-mails that look suspicious;
organizations are recommended to use firewalls to protect their networks
from remote attackers. However, it is often the case that the first security
recommendation given to all classes of users is to install an antivirus (AV)
on their devices. In fact, AVs are believed to be one of the best protection
solutions, specifically against malware. They are installed in most user
computers and companies, and are implicitly trusted by most users, and
are part of the trusted computing base1

1: Most AVs require kernel-level privi-
leges to perform some of their operations.

.

It goes without saying that, while AVs do offer protection, they cannot
catch all malware. Not only there might be missing signatures in their
database [81], but over the years malware authors have spent great effort
in trying to evade AVs detection, e.g., through obfuscation and polymor-
phism [82] or evasion [83], or by disabling or crashing the AV [84, 85].
AVs and malware are engaged in a cat-and-mouse game: attacks based
on polymorphism are typically mitigated by some form of anomaly or
behavioral detection [86, 87] while evasion attacks are mitigated by mak-
ing the AV more difficult to exploit, such as through OS protection and
standard binary integrity protection techniques [88]. The battle continues
on, as now malware can try and bypass AV behavioral detection using,
for instance, adversarial inputs [89], and AVs will incorporate robust
mechanisms to mitigate the effects of these inputs [90, 91].

In this cat-and-mouse game, one party tries to anticipate the move of
the other. We believe AVs should be the party more involved in this
thinking-ahead, for instance by questioning whether certain principles,
or certain best practices on which their defences rely upon, are valid, and
under which assumptions and limitations they are so. Taking this stand,
let us consider the best practice of using a white-list instead of a black-
list. The advantage of white-lists has been largely discussed elsewhere,
but what we question here is whether AVs, and OS, make their security
dependent too much on them by assuming that white-listed built-in
applications of OS, like Notepad and Paint, can never do any harm. To
test this hypothesis, we create a malware that can control those white-
listed applications like puppets by instructing them to perform malicious
operations. Then we verify whether, dressed this way, our malware can
bypass all the defences that AVs and OS put in place to protect files, e.g.,
have them in the so called Protected Folders. It turns out that we can, and
we named this attack Cut-and-Mouse.

In our second hypothesis, we question whether AVs go one step further,
and assume that users have the choice to decide whether to set the offered
protections off and on, without considering whether it is really the user
doing so, or someone (or something) just simulating the user’s behaviour.

50 5 Vulnerability Analysis of Real-World Systems

Thus we tested whether off-the-shelf AVs can be disabled (i.e., turned
off or freeze) by a malware that mimics user inputs (through synthe-
sized keyboard and mouse events). We expected that AVs would have
enforced some forms of integrity and authentication checks on inter-
process communications, and user access control to verify the legitimacy
of the received inputs. It turns out that a great deal of them do not. Our
attack, named Ghost Control, managed to disable several AVs by spoofing
requests to their main graphical interface.

Problem Statement: We claim that the following problems exist in cur-
rent malware mitigation:

(P-i) Several AV programs contain a critical flaw that allows unauthorized
agents to turn off their protection features. In detail, the real-time
scanning service of some AVs can be disabled by malware. This will
make victims exposed to several kinds of cyber-threats, especially
those originated from malware.

(P-ii) Protected Folders solution provided by AV vendors suffers from de-
sign weaknesses. In fact, a small set of whitelisted applications is
granted privileges towrite to protected folders. However, whitelisted
applications themselves are not protected from being misused by
other applications. This trust is therefore unjustified, since a mal-
ware can perform operations on protected folders by usingwhitelisted
applications as intermediaries. In particular, ransomware might be
able to exploit some of the whitelisted applications to change the
contents of files on their behalf, thus to encrypt user data. Simi-
larly, personal files of users might be irrevocably destroyed by a
wipeware.

In this chapter we play one move more of the game. We suggest a new
principle that, if followed and properly implemented, render AVs’ and
OSs’ resilient to the attacks (Cut-and-Mouse and Ghost Control) that we
have found.

5.1 Background

In this section, we recap the essential background information to under-
stand our attacks. We begin with explaining the ransomware mitigation
in current antivirus solutions. Next, we summarize existing measures
provided by Windows OS to protect processes from unauthorized modifi-
cations.

Ransomware Defense in AVs

In response to the rise of ransomware threat, AV vendors have developed
dedicated ransomware detection modules that are either integrated into
their products or as standalone tools. While internal mechanisms of
AVs are not publicly documented, the available options in most of AV
configuration interfaces suggest that these anti-ransomware components
are primarily based on whitelists. Similar to the virus signature databases,
these lists are maintained by AV vendors by default, though, users can
also add additional applications that they trust.

5.2 Threat Model 51

The vendor of Windows OS, Microsoft, has also developed a specific
anti-ransomware solution, called Controlled Folder Access, which has been
included inWindows 10 Fall Creators Update (Version 1709) andWindows
Server 2019. Ransomware Protection, integrated into Windows Defender
antivirus, controls which applications have access to protected folders,
a list of directories that includes system folders and default directories
such as Documents and Pictures. Users can also add further directories
to the protected folder list in order to extend the coverage of protection.
By default, the decision of granting applications access to protected folder
is made by Windows, hence Microsoft, but users can also allow specific
applications to access the protected folders.

Throughout this chapter, we use the term trusted applications when refer-
ring to the applications that has write access to protected folders, either
granted by AV vendor or added by the user.

Process Protection via Integrity Levels

Computer architecture we use today is designed to run multiple processes
concurrently, that is, all running processes share the same execution
environment. To protect processes from malicious alterations by other
processes, Windows OS employs access control mechanisms. Mandatory
Integrity Control (MIC) is one of these security features, which enables
the OS to assign an Integrity Level (IL) to a process: this value indicates
the privilege level of that process. MIC defines four values for IL, with the
increasing privileges: Low, Medium, High, and System. When a process
attempts to interact with another process, MIC checks IL of the initiator
and prevents if the target has higher IL. For example, injecting code to
another process using CreateRemoteThread or write data to the memory
of another process via WriteProcessMemory will fail if the caller does
not possess at least the same IL as the target.

Closely related to MIC, User Interface Privilege Isolation (UIPI) is another
security feature of Windows, which complements MIC to prevent unau-
thorized process interactions. UIPI also utilizes IL and blocks window
messages flowing from a process with lower IL. For example, calls to
SendMessage API would fail if the caller has a lower IL than the target.
Specifically, UIPI prevents the Shatter attack that we review in §5.7.

5.2 Threat Model

In the description of our attacks, we assume the system is protected using
the latest generation of AVs with specific modules against ransomware,
and with built-in anti-ransomware feature of the OS. We assume the at-
tacker is able to get access to a Windows system with user privilege levels
by either tricking the user into clicking on a file (e.g., attached or linked
in an email) or by exploiting a vulnerability in the victim’s system. Once
the attacker has established a foothold into the system, it will typically
drop/download a malware to perform malicious operations, however, the
malware will be blocked by an AV, or in the case of ransomware, en-
cryption of files in protected folders will be blocked by anti-ransomware
protected folder feature offered by Windows or some AVs. Henceforth,

52 5 Vulnerability Analysis of Real-World Systems

the focus of this chapter is on how attackers can bypass AVs and anti-
ransomware protection modules, and in providing practical mitigation
solutions, rather than in the problem of detecting and protecting the
system from remote attacks. This threat model is sometimes referred as a
2nd stage attack, meaning an attacker would need to have remote access
to a victim’s computer, or have installed a malicious application using one
of the two previously outlined alternatives (or through other means).

In this threat model, we will perform two attacks, which are described
in the next two sections: the first attack (Cut-and-Mouse) is aimed at
bypassing the protected folder feature to encrypt files in protected folder,
while the second one (Ghost Control) is aimed at disabling AVs’ real time
protection.

5.3 Cut-and-Mouse: Encrypting Protected
Folders

In this section, we describe our attack, Cut-and-Mouse, which allows
ransomware to evade detection by anti-ransomware solutions, which are
based on protected folders, and to encrypt the victim’s files. First, we
investigate the root causes that leads to this attack. Next, we give the
attack details, and finally propose a practical solution.

Disharmony Between UIPI and AVs

As explained in §5.1, anti-ransomware modules of commercial AV soft-
ware grant write access to trusted applications only. To ensure this defense
strategy cannot be easily bypassed, the trusted applications should be
protected from any malicious modifications which would be seen in a
typical malware attack. For instance, as we report the details in §5.5, cur-
rent AVs detect when a malicious DLL module is injected into a trusted
application, and suspend or kill its process. Similarly, UIPI, another pro-
tection described in §5.1, protects processes that run with administrative
privileges from malware.

Nonetheless, we have discovered two entry points for an attack which
enables malware to bypass these defense systems, namely:

(E-i) UIPI is Unaware of Trusted Applications: UIPI filters simulated inputs
based on integrity levels, however, UIPI is agnostic of the trust level
assigned to applications, so it does not enforce any policy in these
cases: as shown in Fig. 5.1a, that means that an attacker can send
messages to trusted applications, in particular to those that are
allowed to read and write to protected folders;

(E-ii) AVs Do Not Monitor Some Process Messages: AVs do not monitor
synthesized clicks or key press events flowing into the trusted appli-
cations: as depicted in Fig. 5.1b, this means that a ransomware can
bypass protected folder enforcement by sending control messages
to a trusted application.

These two entry points form a vulnerability that can enable malware to
perform practical attacks, such as that shown in Fig. 5.1c where a ran-
somware can control a trusted application to perform controlled write

5.3 Cut-and-Mouse: Encrypting Protected Folders 53

2: Some AVs also provide an optional,
more strict access setting that, if activated,
makes AVs block the read requests from
non-trusted applications.

operations as to encrypt inaccessible protected files. The attack is de-
scribed in more detail in the next section.

(a) Ransomware’s messages to high IL ap-
plications are blocked by UIPI (top); but ran-
somware can send messages to trusted ap-
plications (bottom).

(b) Ransomware’s write attempts to pro-
tected files are blocked by AVs (top); how-
ever, sending messages to trusted applica-
tions is allowed (bottom).

(c) Ransomware can control a trusted application to perform write operations to protected
files.

Figure 5.1: The disharmony between UIPI
and AV software’s protected folders mech-
anism, as described in (a) and (b), is the
root cause of the vulnerability which leads
to the attack depicted in (c).

Attack Overview

Using the vulnerability described in the previous section, ransomware can
bypass anti-ransomware protection via controlling a trusted application
and encrypt the files of the victim, including those stored in protected
folders. To this end, for each file 𝐹target , the ransomware performs the fol-
lowing tasks as depicted in Fig. 5.2. Firstly, ransomware reads the contents
of 𝐹target , which is in a protected folder (1). This is perfectly legal: in fact,
reading a protected file is permitted by default2. The plaintext retrieved
from 𝐹target is encrypted in ransomware’s own memory. The resulting
ciphertext is then encoded in a suitable encoding format, e.g., Base64 [92],
and copied into the system clipboard (2). Next, the ransomware launches
the Run window (3) to start a trusted application 𝐴𝑝𝑝trusted , with the
goal of controlling it. In this example, 𝐴𝑝𝑝trusted is Notepad as it is typi-
cally trusted inWindows environments. In addition, Notepad understands
shortcuts for file and edit commands that ransomware will send. Using the
Run window, ransomware executes 𝐴𝑝𝑝trusted with the argument 𝐹target ,
so that the contents of 𝐹target is loaded into 𝐴𝑝𝑝trusted ’s window (4). Next,
the data in 𝐴𝑝𝑝trusted ’s window are selected, and overwritten with the
clipboard data (the encrypted data) with a paste command (5). Finally,
𝐴𝑝𝑝trusted is instructed by the ransomware to save the modifications, and
close the handle to 𝐹target (6). All interactions in Steps 3-6 are carried out
by sending keyboard inputs which are synthesized programmatically by
the ransomware to control 𝐴𝑝𝑝trusted .

54 5 Vulnerability Analysis of Real-World Systems

Figure 5.2: Bypassing anti-ransomware
protection of AVs by using inputs program-
matically synthesized by ransomware to
control a trusted application.

Ransomware

Windows Clipboard

Run Window

Trusted Application
e.g., Notepad

Protected Files

1 Read File
Contents

3 Open Run Window

4
Launch
Notepad2

Copy to
Clipboard

5 Paste to Notepad

6 Save &
Close File

Algorithm 6 Cut-and-Mouse Attack: Exploit Trusted Apps with Simu-
lated Keyboard and Mouse Inputs to Write to Protected Folders.
1: procedure Cut-and-Mouse(𝐴𝑝𝑝trusted)
2: FileList ← EnumerateTargetFiles()
3: for all 𝑓 ∈ FileList do
4: 𝑝𝑙𝑎𝑖𝑛𝐵𝑦𝑡𝑒𝑠 ← 𝑓.ReadAllBytes()
5: 𝑒𝑛𝑐𝐵𝑦𝑡𝑒𝑠 ← Encrypt(𝑝𝑙𝑎𝑖𝑛𝐵𝑦𝑡𝑒𝑠)
6: 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑇 𝑒𝑥𝑡 ← Base64(𝑒𝑛𝑐𝐵𝑦𝑡𝑒𝑠)
7: CopyToClipboard(𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑇 𝑒𝑥𝑡)
8: Simulate(Run, 𝐴𝑝𝑝trusted <𝑓>) ▷ Win+R

9: Simulate(SelectAll) ▷ Ctrl+A

10: Simulate(Paste) ▷ Ctrl+V

11: Simulate(Save) ▷ Ctrl+S

12: Simulate(Close) ▷ Alt+F4

The combination of these actions effectively allows ransomware to bypass
the current protectionmethods of AVs that are aimed explicitly at blocking
ransomware. Therefore, by referring to the never-ending ‘cat-and-mouse’
game of detection/anti-detection and anti-evasion/evasion among AVs
and malware, and the usage of simulated keyboard and mouse inputs,
we have named this attack Cut-and-Mouse. Algorithm 6 details the main
steps of the Cut-and-Mouse attack.

In more detail, there are two steps that are required for the Cut-and-Mouse
attack to be successful. First, the step Open Run Window (3) in Fig. 5.2
is needed to disguise the operation of starting a trusted application as
if it was executed on behalf of the user. If, instead, Notepad is directly
executed by the ransomware, AVs would block write requests even if the
rest of the attack is performed as described previously. In fact, in this
example, even if Notepad is a trusted application (therefore allowed to
write on protected folders), its parent process would be the ransomware,
which is not trusted by the AVs, hence, write operations would be blocked.
Secondly, as noted in Sidenote 2, the step Read File Contents depicted
in (1) in Fig. 5.2 can be blocked by AVs in some circumstances. For this
reason, this limitation (that of not being able to read file contents) can

5.4 Ghost Control: Disabling Antivirus Software 55

be circumvented if ransomware exploits a trusted application to access
the content on behalf of the ransomware. For example, ransomware
could instruct Notepad to open the target file, and then synthesize two
keyboard press events for Ctrl+A (Select All) and Ctrl+C (Copy), which
would allow the ransomware to select all the content of the file and copy it
to the system clipboard. Since the clipboard is shared between all running
processes, ransomware can easily obtain the clipboard contents. It should
be noted that, though, this technique might result in unrecoverable data
loss with binary encoded files, due to the the presence of non-printable
characters displayed by Notepad. However, ransomware can detect the
content of the file before deciding which file to encrypt.

Proposed Mitigation Strategy

As a simple yet effective countermeasure to protect AVs modules against
our Cut-and-Mouse attack, we suggest that trusted applications should
not receive messages from non-trusted applications. That is, AVs must
intercept all messages flowing to a trusted process and block (or discard)
the messages sent by non-trusted processes. This countermeasure is anal-
ogous to what UIPI already implements to guarantee process privileges.
It should be noted that, however, UIPI is not provided with a whitelist
of AVs: therefore, it cannot enforce such a filtering in practice and this
defense task should be fulfilled by the AV programs.

We elaborate more on this strategy in Section 5.8, where we define a
requirement that a secure message filtering system should at least have.

5.4 Ghost Control: Disabling Antivirus
Software

In this section, we describe how the simulation attack Cut-and-Mouse
described in §5.3 can also be effectively applied in other scenarios, and
we also attempt to hypothesize how it can be used in future attacks.

In the course of our analysis, we have found a surprisingly simple uti-
lization of synthesized mouse events technique, which would allow an
attacker to deactivate nearly half of the consumer AV programs, including
some popular products. We start by explaining the reasons for the pres-
ence of deactivation functionalities in AVs. Next, we describe the steps
to perform the attack (Ghost Control), investigate the weakness in detail,
and propose a practical solution to fix it.

Necessity of the AV Deactivation Function

Signature-based detection has been the primary defense method of AVs,
and naturally, this technique is efficient only against known malware as
it can be bypassed easily, e.g. by obfuscation/packing and polymorphic
malware. To minimize this limitation, nearly all current AVs employ some
heuristics to detect malware by monitoring behaviors of processes and
looking for anomalies. However, this functionality comes with a price:
occurrences of false positives. In the context of malware defense, false

56 5 Vulnerability Analysis of Real-World Systems

positive is the situation where an AV software flags a benign executable
as malware, and it usually proceeds with termination of the associated
process, hence interrupting the user. For example, when a user installs
a new software package, the installer may write to system directories,
modify the Windows Registry and configure itself to run when the user
logs in. The behavioral decision engine of an AV may be confused by
these activities, which indeed might look suspicious as they are largely
used by malware. Therefore, an AV may prevent the software from being
installed correctly. Consequently, some vendors recommend the users
to turn off their AV temporarily for a successful installation of their
benign application, for instance [93]. Moreover, some special software
may require AV to be disabled while running, for instance [94]. As a result,
AV companies provide users with a switch that can be used to deactivate
the real-time protection for different periods of time, ranging from a short
period, such as 2 minutes, to longer periods, such as 2 hours, or until
the computer reboots. Of course, the ability to “freeze” an AV might lure
attackers to abuse this functionality to bypass malware detection, hence,
AVs should offer ways to ensure that this functionality can be disabled
only by authorized users.

Stopping Real-time Protection

In our second attack, Ghost Control , we show how an attacker can disable
the AV protection by simulating legitimate user actions to activate the
Graphical User Interface (GUI) of the AV program, and then to “click”
the turn-off button. The proposed attack comprises two phases. The
first phase is performed off-line by the malware author. In this phase, the
developer collects the required pieces of information about the user events
to be simulated to successfully disable the AV. This set of information
consists of (i) 𝑥 and 𝑦 coordinates on the screen; (ii) which mouse button
to be simulated; and (iii) duration to wait until the next menu is available.
Please note that the mouse coordinates should lie in the correct area on
the screen for this attack to work. In addition, these values would change
from victim to victim, or even in the same host, as the screen dimensions
vary or would differ under various resolutions. Therefore, the malware
author needs to collect the correct locations of the menus of all the major
AVs under different display settings to increase the effectiveness. For
example, this would require the attacker to install the target AVs in virtual
environments with different screen dimensions to collect the necessary
data. Once data collection is completed, malware author embeds that
information into the malware executable to be used during the attack
(alternatively, malware can download the required information from a
remote server at the time of attack).

The second phase of the attack is the actual malicious step which starts
immediately after the infection. On the victimmachine, malware performs
a reconnaissance work to determine the installed AV product(s) and obtain
the screen dimensions. Next, malware prepares the event sequence to be
simulated to turn off the AVs, and synthesizes the keyboard and mouse
events accordingly. Algorithm 7 illustrates the part of Ghost Control that
is responsible for the turning off of the installed AV program.

5.4 Ghost Control: Disabling Antivirus Software 57

3: We note that CAPTCHA can actu-
ally be bypassed using other means, e.g.
with CAPTCHA solving services, but they
might not always be applicable.

Algorithm 7 Ghost Control Attack: Disable Real-Time Protection of AV
with Simulated Events.
1: global EventSequenceDatabase as EvSecDB
2: function TurnOffProtection
3: antivirus ← GetInstalledAV() ▷ AV to deactivate.
4: events ← EvSecDB.GetEventSequenceFor(antivirus)
5: for all 𝑒 ∈ events do
6: Simulate(𝑒)
7: return Success

As a consequence, the range of functionalities that Ghost Control enables
to malware authors is very large, some having a high impact: for instance,
once the real-time scanning is stopped, malware can be instructed to use
Ghost Control to drop and execute any malicious program from its C&C
server.

Proposed Mitigations

In order to develop a robust defense against this vulnerability, we need to
understand the root causes behind this vulnerability. Our analysis shows
that there are two reasons why Ghost Control is able to deactivate the
shields of several AV programs:

(W-i) AV Interface with Medium IL. Processes related to the AV main inter-
faces that manage these defense systems run in such a way that they
are accessible from processes that run without administrative privi-
leges. It is therefore possible to send “messages” from any process
to these process, e.g., mouse click events, without any restriction.

(W-ii) Unrestricted Access to Scan Component. The scanning components
of vulnerable AVs do not require the user to have administrative
rights to communicate to them, e.g., they can receive a TURN_OFF
message from any process. Consequently, Ghost Control can initi-
ate and control the reaction which involves accessing this critical
component of AVs.

(W-ii) is actually a more critical vulnerability than (W-i). In fact, if an
AV software has (W-ii), then malware can skip interacting with the GUI
of AVs through (W-i) to directly communicate with the AV’s scanner
component and send a TURN_OFF message. This is in fact only a practical
limitation: for instance, in our experiments (see Section 5.5), we have
noticed that AV12 employs CAPTCHAmechanisms to verify that the user
really wants to turn-off the protection. Even if we assume the CAPTCHA
is a solid measure against automated attacks3, however, malware can
still bypass the CAPTCHA verification by directly accessing the scanner
component due to (W-ii).

To mitigate the root causes of the failure of the affected AVs, we propose
a solution based on the following principles:

(F-i) Elevated AV Interface. AVs should run the main GUI interface with
administrative privileges. By doing so, AV processes will have high
IL, and AVs would not receive the messages of Ghost Control or any
other malware since UIPI would drop the unauthorized messages.

58 5 Vulnerability Analysis of Real-World Systems

(F-ii) Restricted Access to Scan Component. AVs should design and develop
their scan components in such a way that accessing it would require
the user to have administrative rights.

Mitigation at OS Level Windows platform provides a tool to monitor
critical components and applications, including virus protection, firewall,
and OS updates. This tool, calledWindows Security Center (WSC), reports
the security status of the system to Action Center. For example, WSC
detects if an AV program is installed, and continuously checks if the AV
is turned on and up-to-date. If, for some reason, real-time protection of
the AV stops, WSC informs Action Center, which notifies the user and
provides an interface to take a remediation action.

We propose to adapt this architecture to detect and prevent (W-i) and
(W-ii) as follows. AV programs can already be integrated to Action Center
by registering themselves with WSC. During registration, the path of the
main executable of the AV program is supplied to WSC along with the
product name and other pieces of information. WSC can use these data to
perform security checks on the AV executable, in particular, WSC can

1. prevent the registration of the AV if the AV’s interface is configured
to run with medium IL;

2. auto-escalate the integrity of the AV process to high; or
3. set the security descriptors of a AV components to default value so

that accessing them requires system or administrator privileges.

The first option, preventing installation of the AV, can be viewed as
undesirable, especially considering the availability of the second and
third options. However, it should be noted that a mitigation that include
raising an error would ultimately allow the developers to be aware of the
vulnerability, and might lead them to discovering other issues that would
remain hidden otherwise.

In the next section, we discuss and share the results of our experiments,
which show that (i) some AVs are vulnerable to Ghost Control (ii) the
proposed measures are actually employed by some AVs that, therefore,
are not vulnerable to the Ghost Control attack. From that evidence, we
conclude that these attacks are able to circumvent several off-the-shelf
AVs; and the proposed mitigation is both effective and practical to use in
real-world systems.

5.5 Experimental Results

To demonstrate the impact of the exploitation of the vulnerabilities de-
scribed in Section 5.3 and Section 5.4, we developed three proof-of-concept
prototypes for the attacks, and tested them against consumer products of
29 AV companies. In this section, we detail the dataset and test environ-
ment of our experiments, and report our findings.

5.5 Experimental Results 59

Dataset and Test Environment

The list of the AV programs that we would test in our experiments was
determined from the reports of independent organizations that test AV
products. We populated our initial list with the AVs from the recently
published reports of AV-TEST [95] and AV-Comparatives [96]. The initial
list had AVs from 35 vendors, however, some vendors discontinued their
consumer AV product, or were not available for download. In the end,
our dataset contained 29 AV programs from world wide vendors.

We conducted all experiments on a VM running Windows 10 Pro x64
Version 1903 (OS Build 18362.30) OS. After a fresh installation ofWindows
10, we updated the system and created a snapshot of a template VM. Next,
in each run of the experiment, we restored the VM to the snapshot and
installed the latest version of the AV software to be tested (available at
the time of this writing), which was usually determined by the installer
application downloaded from the vendor’s website. Finally, we updated
the database of the AV software to obtain the latest signature definitions
and heuristics.

Attacks Detected by AVs

We first verified whether AVs are able to detect and block known attacks
aimed at bypassing the anti-ransomware module. In the first experiment,
we injected a malicious DLL into a trusted application, where the DLL
would start encrypting the default files protected by AVs. As expected,
all of the 29 AVs in our dataset detected this technique, and suspended
(or sometimes killed, e.g., AV17) the injected trusted application before
the first write operation, as DLL injection is one of the oldest attack
techniques.

The next experiment was aimed at maliciously controlling a trusted ap-
plication to save encrypted content to protected files. In this attack, we
instructed a ransomware program implemented in C# language to launch
the trusted application using Process.Start method. As expected, this
attack is also not effective as the trusted application is created as a child
process of the ransomware, which is not trusted, and therefore blocked
by AVs.

Lastly, we executed a ransomwarewith elevated privilegeswhile protected
folders feature of AVs were active. The sample, instead of using our Cut-
and-Mouse technique, is designed to directly encrypt and overwrite the
files in Documents and Pictures folders. Again, all AVs in our dataset
detected the attack and blocked the malicious operations, which shows
that protected folders feature of AVs is immune to ransomware having
admin privileges.

Encrypting Files in Protected Folders via Simulated
Inputs

In this section, we report the test results where attack is run against AVs.
First, we describe the technical requirements for the successful exploita-
tion of attack, and our implementation.

60 5 Vulnerability Analysis of Real-World Systems

4: The digital signature of Notepad, as is
the case for many built-in Windows appli-
cations, is not embedded in the binary but
can be found in the appropriate catalog
file.

Technical Requirements

Successfully performing attack requires a trusted application that should
be available on the victim’s machine. Furthermore, this specific trusted
application should possess the capabilities to: (i) be started from com-
mand line; (ii) accept file paths as argument; (iii) edit/manipulate files;
and (iv) receive inputs from clipboard. We have discovered that the best
candidate that fulfills all these requirements is the Notepad application,
since it is one of the most commonly-used built-in Windows application,
and it is digitally signed4, therefore, whitelisted by AV programs. In addi-
tion, file size limit of Notepad is 56 MB on Windows 7, while it can open
documents with size more than 512 MB on Windows 8.1. To send data to
from a ransomware sample to Notepad application, we exploit Windows
Clipboard, which stores objects that can be shared between all running
applications. The memory area to store these objects are allocated using
GlobalAlloc function. On 32-bit systems, virtual memory of a process
is limited with 2GB, which also determines the maximum capacity of
the clipboard. This gives us a sufficiently large memory space to store
encrypted and encoded data, so makes the clipboard suitable to use as a
swap area in our attack.

Implementation

We implemented a prototype of in C# language, using .NET Framework
version 4.6.1. The prototype synthesizes only keystrokes as input simula-
tion, for which, SendInput is employed.

Our prototype implements Algorithm 6 and works as follows. First, all of
the files in the target directory are enumerated using Directory.GetFiles,
and the files with the target extensions are filtered. Namely, in the ex-
periments, we targeted the following file extensions: .docx, .xlsx and
.png. Next, using Clipboard.SetText, ransomware copies the command
attrib.exe -r targetPath*.* to the clipboard, where targetPath is
replaced with the absolute path of the target directory. We instructed
the ransomware program to simulate keystrokes Win+R to open the Run
window, and Ctrl+V and ENTER to run the copied command. This step
ensures that the read-only attribute was removed from the target files.

Next, for each file, our prototype proceeds as follows. Firstly, the file is read
as binary using File.ReadAllBytes and then, using AesCryptoServiceProvider,
the content of the file is encrypted in memory. After this, the byte stream
is converted into printable text using Base64 encoding, and copied to the
system clipboard. As previously discussed, our prototype uses Notepad as
𝐴𝑝𝑝trusted , so it executes Win+R command, sleeps 500ms while waiting for
the Runwindow to open, and then pastes the command notepad.exe targetFile

into the Run window, where targetFile is replaced with the absolute
path of 𝐹target . At this step, the prototype sleeps for an additional 500ms
to ensure that Notepadwindow is opened – this window displays the con-
tents of the file. Next, the prototype sends the keystrokes Ctrl+A to select
all the text in the Notepadwindow and Ctrl+V to paste the clipboard data
into it, which replaces the selected content with the ciphertext. Here, the
prototype performs one final sleep of 500ms to ensure that all the data
are correctly pasted into Notepad. To save the file, Ctrl+S command is

5.5 Experimental Results 61

sent to Notepad, which effectively overwrites the file with the encrypted
data. Finally, Alt+F4 command is sent to close Notepad.

Test Results of Cut-and-Mouse Attack

After installing the AV software on the VM snapshot, we placed decoy
files in the Documents and Pictures folders of the user – these are both
protected folders, hence protected from ransomware attacks. Next, we
run our Cut-and-Mouse prototype and checked the effect of the attack on
the files.

At the end of each run, the decoy files were overwritten with the pasted
data successfully. The results demonstrate the effectiveness of the Cut-
and-Mouse attack, which was able to bypass all 29 AV programs in our
test set and encrypt the files in the protected folders. To the best of our
belief, Cut-and-Mouse is a new attack that controls legitimate applications
for malicious purposes via simulated user inputs. The evidence that even
the latest AV products cannot detect this attack suggests that this new
attack type can cause more damages if used by real-world attackers with
different –and possibly creative– ideas to perform powerful exploitation
of systems.

Destructive Cut-and-Mouse: Wiping Files in Protected
Folders

Although Cut-and-Mouse attack is effective on AVs, the limitations of
using Notepad forms a performance barrier when the file size notice-
ably increases. To remove this bottleneck, we will use another built-in
Windows application, Paint, as intermediary.

Paint also satisfies all the technical requirements in Section 5.5 with
a couple of exceptions. First, only some image files are accepted as a
file argument. Paint raises an error when the user tries to open a .PDF
document, for example. Secondly, Paint only accepts a valid image from
clipboard. If the image in clipboard is corrupted, it cannot be pasted to
Paint.

The first limitation can be overridden easily by adding a file extension
explicitly, which would allow Paint to write to any files. The second
limitation, however, makes it difficult to build an “honest” (i.e., fully
working) ransomware, as it requires the implementation of a reversible
encoding technique to transform arbitrary data to a valid image format.
Instead, for the scope of this research, we demonstrate another type
of malware, known as wipeware, able to overwrite user’s files with a
randomly generated image to destroy them permanently.

As in Section 5.5, Cut-and-Mouse wipeware also starts with collecting
target files and removing their read-only attributes. Next, the wipeware
prototype creates a random bitmap image which has the same size of
the largest file. The random image is copied to clipboard by calling
Clipboard.SetImage. Then, for each target file, the wipeware performs
the following tasks in order: (i) synthesize Win+R, programmatically type
mspaint.exe in the Run window, and synthesize ENTER to open Paint;
(ii) synthesize Ctrl+V to paste the random image from clipboard after

62 5 Vulnerability Analysis of Real-World Systems

5: For the sake of proof-of-concept, we did
not implement a function to detect AV’s
icon among the tray icons. Actual malware
would need to do that, for example, by
checking window titles to find AV’s icon,
but this is not a difficult routine.

Paint windows appears; (iii) synthesize Ctrl+S to save the file, which
would open up the File Save dialog; (iv) programmatically type the full
path of the file and synthesize ENTER; (v) synthesize ENTER to confirm
the overwrite message box; (vi) synthesize Alt+F4 to close Paint. By
sleeping 500ms between each step to ensure all operations are carried out
correctly, our Cut-and-Mouse wipeware could destroy each decoy file in a
few seconds.

Controlling Real-Time Protection of AVs

In order to demonstrate the feasibility of our attack in Section 5.4, we
implemented the prototype of Ghost Control in C# language, using .NET
Framework version 4.6.1. To collect the coordinates of the mouse on
the screen, the prototype uses GetCursorPos() API. For synthesizing
keystrokes, mouse motions, and button clicks, SendInput() API is used.
Between each simulated mouse clicks, the prototype sleeps for 500ms to
ensure that the next menu on the GUI is available to be selected.

Collecting Coordinates to Disable AVs

After installing the target AV, we performed cursor movements towards
the tray icon area as to select and click the AV icon5 and used AV’s GUI
to disable the real-time scanning using the provided menus. During this
procedure, we recorded the (𝑥, 𝑦) coordinates of the cursor and the types
of clicks that we had performed until the protection was disabled, i.e., AV’s
security notification appeared. For instance, Figure 5.3 shows the console
output of the application we used to collect mouse coordinates while a
real user disables AV27 on a VM with screen resolution set to 1920x1080.
For the duration of the deactivation, we used the default values suggested

Figure 5.3: Console output of the appli-
cation which sniffed the real user actions
while disabling AV27.

Left Click x=1868, y=992 // Show Tray Icons

Right Click x=1866, y=952 // Open AV's Menu

Move Cursor x=1860, y=873 // Change Settings Submenu

Left Click x=1700, y=877 // Real-Time Scan Settings

Left Click x=1315, y=430 // Turn-off Button

Left Click x=1280, y=555 // Verify Turn-off

by AVs to freeze their functions. The minimum length is usually set to be
15 minutes, which is a sufficient time frame to successfully conduct an
effective attack. Here, the attackers could also select an option that gives
them a longer time-period.

Stopping Real-Time Protection

Using the collected coordinates of the AV’s menus and buttons, we in-
strumented the recorded actions and parameters into our Ghost Control
prototype, which is used to exploit the specific AV that we tested in each
experiment. Next, we run the Ghost Control prototype and waited until
all the events are simulated.

IfGhost Control attack succeeds, a warningwindow appears which notifies
the user that the computer is not protected. In some experiments, we

5.5 Experimental Results 63

6: We were not able to calculate the exact
statistics as the shares of the 10AVs that we
could stop are consolidated into “Other”.

even went further and simulated mouse clicks to remove this notification
window, which would be expected from a real-world malware. This shows
how this class of attacks can be further extended to perform potentially
more powerful malicious actions.

Product IL of GUI Utilizes UAC Vulnerable to Ghost Control

AV1 Medium 3
AV2 Medium 3
AV3 Medium 3
AV4 Medium 3
AV5 Medium 3
AV6 Medium 3
AV7 Medium 3
AV8 Medium 3
AV9 Medium 3
AV10 Medium 3
AV11 Medium Plus
AV12 Medium 3
AV13 Medium 3
AV14 Medium 3
AV15 Medium 3
AV16 Medium 3
AV17 Medium 3
AV18 High
AV19 Medium 3
AV20 Medium 3
AV21 Medium 3
AV22 High
AV23 High
AV24 Medium 3
AV25 High
AV26 Medium 3
AV27 Medium 3
AV28 Medium 3
AV29 Medium 3

Tested: 29 Vulnerable: 14

Table 5.1: Evaluation of AV products.
Check marks under Vulnerable to Ghost
Control denotes that the AV product was
successfully disabled by Ghost Control.

As shown in Table 5.1, during our experiments on 29 AV products, we
detected that 14 AVs could be efficiently deactivated byGhost Control using
our attack in Section 5.4. According to a recent report by OPSWAT [97],
the market share of AVs that are vulnerable to Ghost Control is more than
29%6. Furthermore, 6 of these AVs have been frequently rated as “TOP
PRODUCT” in the reports of AV-TEST, and 3 of them received 3-stars
(best rating) from AV-Comparatives. It is surprising for us that such a
critical vulnerability, arguably one of the worst that an AV might have, is
found in such a large share of AVs.

In the experiments in which Ghost Control was not able to successfully
disable the AV, we noticed that this was due to two factors. First and
foremost, User Account Control (UAC) prompt which uses MIC stopped
Ghost Control attack. In these cases, after Ghost Control generated a click
event to turn-off protection, UAC notification appeared, which always
runs with high IL. However, since Ghost Control is a medium IL process,
it was not be able to bypass UAC verification successfully. Secondly, as
shown in Table 5.1, 5 AVs always run with medium plus IL or high IL.
Consequently, UIPI filters and drops the events that our Ghost Control
prototype synthesize and sends to these AVs.

64 5 Vulnerability Analysis of Real-World Systems

5.6 Security Analysis of Auxiliary Measures

During the experiments, we were confronted with two additional secu-
rity measures, namely sandboxing and CAPTCHA verification, which
protected AVs from Ghost Control, even if the GUI of the tested AV was
vulnerable. In this section, we will look at these measures and we explain
how we were able to bypass them.

Insecure Sandboxing Methods

In the security context, sandboxing is a mechanism to run an unknown
application in a controlled environment, isolated from the host. The main
purpose of employing sandbox in AVs is to prevent previously unseen
malware from damaging the system which would evade the signature-
based detection otherwise. Although the high level understanding of
sandboxing is common to all AVs, the implementation details might vary
between different vendors. In addition, AVs do not publicly share the
inner workings of their sandboxes, so we can only guess the capabilities
of sandboxes from their whitepapers and AV settings.

Most vendors in the AV industry supply sandbox products for their
business-level customers, usually as a gateway device to be integrated
into the network. Some AVs provide cloud-based sandboxes for home
users where unknown files are submitted for analysis. For example, AV6
offers its users a cloud service to analyze files with certain extensions.
With that said, we could identify that only AV1, AV2, and AV7 let users
run programs in a virtual, isolated environment on their computers. Other
AVs might also have a built-in sandbox technology, but according to our
observations, they do not expose any settings, show any notifications
indicating a sandbox, nor advertise any information among the products’
features.

According to our experiments, both AV1 and AV2 execute each unknown
program in a sandbox at the first run. This automatic execution seems to
be time limited, and takes around 30 seconds. After that, the programs
are automatically started in the host environment without the sandbox
restrictions. Users can also run programs in the sandbox without a time
limit using the context menu. From program outputs and error messages,
we infer that both AVs create a virtual file system where the programs be-
ing tested cannot access the files on host, even for reading. The programs
can access to the Internet though, and the trusted files they download
can be saved outside the sandbox. Furthermore, programmatically syn-
thesized events, such as simulated mouse clicks and key strokes cannot
reach outside the sandbox. By sleeping for 30 seconds in total and mean-
while performing a benign task like printing to console, our Ghost Control
prototype was found harmless by the sandbox of AV1 and AV2, however,
it was stopped by UIPI.

Differently, AV7 does not apply a time limit for the automatic sandboxing
at the first run. Moreover, it allows the programs being tested to read the
actual files on the host. From the company website and program interface,
we infer that the sandbox of AV7 prevents any running application from
writing to any file or registry by placing function hooks, sending inter-
process messages and windowmessages, or synthesizing keyboard events.

5.6 Security Analysis of Auxiliary Measures 65

The enforcement is applied even to the processes that run with admin
privileges, therefore, an unknown process’ device driver installation is
also denied by the sandbox.

However, we noticed that the sandbox of AV7 is developed in such a
way that mouse clicks are not filtered, and therefore a malware can easily
escape the sandbox. In other words, it could synthesize mouse clicks using
SendInput. During our experiments, even if all unknown applications
were automatically run in the sandbox, mouse events synthesized by our
prototype were not filtered by the sandbox. Combined with the vulnerable
GUI of AV7, our commands received by AV7 and we could stop the real-
time protection. Our conclusion from this observation is to add a fix to
the weak sandbox by including mouse events to the filtered operations,
in addition to the fixing the vulnerable GUI of AV7.

Passing Human Verification

CAPTCHA (Completely Automated Public Turing Test To Tell Computers
and Humans Apart) is a challenge-response test to determine if the user
is a human or not [98]. CAPTCHA is a widely adopted technology on
the Internet to distinguish humans from computers. In our experiments
with 29 AVs, we identified that two AV programs, AV10 and AV29, utilized
CAPTCHA images in their program flow, as illustrated in Figure 5.4 and
Figure 5.5.

Figure 5.4: AV10 generates CAPTCHA
codes that contain only numeric charac-
ters.

AV10 shows a CAPTCHA image and asks the code therein when Shut
down protection (which terminates the main AV process and stops pro-
tection) is clicked to ensure that the GUI interaction is engaged by a
human, not a malware. The vendor of AV10 indicates that this measure
is employed to prevent automated shutdown by malware. However, no
verification is performed when Disable protection is clicked—in which
case, the AV program continues to run, but protection service is stopped.
As a result, Ghost Control could easily disable AV10.

Figure 5.5: AV29 generates CAPTCHA
codes that consist of lowercase and upper-
case letters, and numbers.

When testing our attack to disable AV29, during the final step of the
turn-off sequence, this AV generates a CAPTCHA image and displays on
the screen to verify that the request comes from a genuine user. The user
must enter the code correctly for AV protection to be turned off. In our
first try, our Ghost Control prototype failed to turn off AV29 as it could not
enter the CAPTCHA code. To overcome this limitation, we enhanced the
prototype with the ability to partially capture the screen which contains
the CAPTCHA code. Next, the prototype sends the captured image to
an external user, who can solve the CAPTCHA and sends the correct
CAPTCHA code back to our prototype, which synthesizes the code to
AV29, and completes the turn off sequence.

Although our method for solving CAPTCHA codes might look like a naïve
and impractical solution that doesn’t scale, please note that cybercriminals
have at least two alternatives, as follows.

▶ Capture the CAPTCHA image and dispatch to C&C server where a
CAPTCHA-solver program is running, and return the code to the
malware. The latest advancements in Machine Learning techniques
allow to develop highly accurate text-CAPTCHA solvers [99]. The

66 5 Vulnerability Analysis of Real-World Systems

CAPTCHA images shown in Figure 5.4 and Figure 5.5 might be
solved by an automated software.

▶ Use CAPTCHA-solver services available to solve CAPTCHAs for
affordable prices with high success rates to make the attack scalable
and profitable [100].

5.7 Related Attacks in the Literature

In this section, first we review existing attacks involving simulated inputs
to perform malicious actions. Next, we outline previous research on the
security of antivirus software.

Attacks Related to Input Simulation

Input simulation is the practice of programmatically synthesizing input
events, such as mouse clicks or key strokes, which are typically performed
by the user. This section describes some the most powerful existing attack
techniques that make use of input simulation.

Ghost Clicks

In [101], Springall et al. developed a proof-of-concept malware to manip-
ulate votes in Estonian Internet Voting system. On infected clients, the
malware simulates keyboard inputs to activate the electronic identifier
(e-ID) of voters and submit a vote in a hidden session that is invisible to
the voters.

Recently, under a different threat model, in [102] Maruyama et al. demon-
strate a method to generate tap events on touch screens of smart phones
using electromagnetic waves. In this scenario, the victim’s device can be
forced to pair with a malicious Bluetooth device once it gets in the range
of the attackers. Even if the victim denies the pairing by choosing CANCEL
in the security prompt, the attacker can alter this selection and make the
OS to recognize user input as CONNECT.

Pay-per-click advertising systems are also vulnerable to fake clicks, which
is known as Click Fraud [103]. In these systems, the advertisers get paid
according to the number of clicks on advertisements. By generating fraud-
ulent clicks on the ads, a malicious advertiser can increase its payment.

Perhaps the attack closest to the one described in this chapter is Synthetic
Clicks [104], credited to Patric Wardle [105]. Exploiting a bug in macOS
OS, the attacker could send programmatically-created mouse clicks events
to security prompts that would result in vertical privilege escalation. This
way the attacker could cause any damage, including retrieving all of the
user’s passwords stored in the keychain. Our attacks, Cut-and-Mouse and
Ghost Control, target AVs, not OS, do not rely upon a bug in the OS, and
can be used to instruct a trusted application to perform different malicious
operations.

5.7 Related Attacks in the Literature 67

Reprogramming USB Firmware

In [106], Nohl et al. demonstrated that it is feasible to modify the firmware
of a USB device, for instance a USB stick, to behave like a keyboard. Known
as BadUSB, this technique works by reprogramming the device’s firmware
in order to type commands on the victim’s computer. When plugged into
a computer, the malicious USB device can simulate the key strokes of the
user, for example, type and execute a script which downloads and runs a
malware.

Shatter Attack

In [107], Paget describes a weakness in Windows OS that allow a process
to inject arbitrary code into another process and execute. The “shatter
attack”, a term coined by Paget, works as follows: first, the malware copies
the code-to-be-injected to the clipboard. Next, it sends WM_PASTEmessage
to target process to paste the clipboard contents into a text field on the
GUI of the target process. At this point, the malicious code has been
moved onto the memory space of the target process. To execute this
code, the malware process sends another window message, a carefully
crafted WM_TIMER message, which causes a jump to the address of the
malicious code. The main difference with our attacks is the presence of
the malicious code during the injection, while with Cut-and-Mouse we
use and control a privileged application as a ”puppet” to perform various
operations without injecting new code into the target process memory.

Comparison to Previous Attacks

Cut-and-Mouse and Ghost Control are two novel attacks on AVs, of which
the main principle is to simulate user commands by programmatically
synthesizing mouse and keyboard events. As we reviewed above, there
are other techniques in the literature which shares similar behaviour.
Table 5.2 illustrates the characteristics of these attacks and compares to
that of Cut-and-Mouse and Ghost Control.

Table 5.2: Comparison of Cut-and-Mouse and Ghost Control to Relevant Attacks that Synthesize Window Messages.

Characteristics Ghost Control Cut-and-Mouse Synthetic Clicks [104] Shatter Attack [107]

Exploits a Bug in OS No No Yes No
Modifies Target Process No No No Yes
Utilizes Clipboard No Yes No Yes
Requires a Text Edit Field No Yes No Yes

First of all, Ghost Control attack does not require a bug to exist in the OS,
instead, it targets the applications that do not use the privileges provided
by the OS, similar to Shatter Attack. In contrast, Synthetic Clicks [104]
depends on a bug in the OS. Second, differently from Shatter Attack,
which performs arbitrary code execution, Ghost Control only uses the
functions exposed within the GUI of the target application. Therefore,
Ghost Control leaves no trace in memory, while Shatter Attack modifies
the target process and leaves artifacts that can be detected in the memory
dumps. In a sense, Ghost Control attack can be considered as puppeteering

68 5 Vulnerability Analysis of Real-World Systems

the target application while Shatter attack is more close to poisoning the
target. That said, Ghost Control needs exact coordinates of the screen
to successfully work, while Shatter Attack is independent of the target
system’s display.

Similar to Shatter Attack, Cut-and-Mouse utilizes system clipboard and
needs the target application to have a text field. However, similar to
Ghost Control, the impact of Cut-and-Mouse attack is also limited to the
functionality of the target applications, i.e., Notepad and Paint. Conse-
quently, Cut-and-Mouse technique is naturally suited to damage files and,
therefore, can be exploited to perform ransomware, wipeware or similar
destructive attacks.

Previous Research on Security of AVs

Traditionally, AVs have been in the target of security researchers due to
their incomparable importance. Since AV vendors mostly utilize black-
listing as the main defense technique, many researchers investigated this
area. For instance, [108] and [109] analyzed the feasibility of evade de-
tection via obfuscation. Another significant research topic about AVs is
the implementation related vulnerabilities. To name a few examples: [84,
110–113]. That said, the discoveries in this field mostly involve the bugs
in the AV software, rather than a flaw in their design or threat model.
Finally, in [81], Al-Saleh and Crandall developed a technique to determine
if the target AV is up-to-date using side channel analysis, allowing the
attacker to learn which signatures exists in virus database of the victim.

5.8 Discussion

Secure composability is a well known problem in security engineering.
It challenges developers to ensure that security properties enjoyed by
individual software components are preserved when the components are
put together. It also challenges them to demonstrate that the components
together give stronger security assurances than just the mere sum of
their original properties. This rarely happens in practice, and the opposite
is quite often true. Components that, when taken in isolation, offer a
certain known attack surface do generate a wider surface when integrated
into a system. Intuitively this seems obvious. Components interact one
another and with other parts of the system create a dynamic with which
an attacker can interact too and in ways that were not foreseen by the
designer. An attacker can, for example, uses a component as an oracle or
replay its output to impersonate it while interacting with another.

This is exactly what we have found happening to mechanisms like UIPI
and AV software. They provide a robust defense when tested individually
against a certain target, but the attacks that we demonstrate in this chapter
show that their combination reveals new vulnerabilities. We draw two
considerations from it.

First, in complex systems it is essential to control the message-flow be-
tween security critical components. This is actually enabled by Microsoft
via UIPI. It allows messages flowing from sender applications to receiver
applications only when the integrity level of the first is not less than the

5.8 Discussion 69

integrity level of the second. In principle, UIPI enables a good defence
mechanism, but the problem is that integrity levels do not reflect trust:
they merely indicate when an application runs with administrative right
(high), in standard mode (medium), or in a sandbox (low). The authority
who decides which level an application takes is generally the operating
system, and sometimes the user, after a request from the application.
It may be, like in the scenario that we illustrated in Section 5.4, that
developers do not implement that request.

This is against what Microsoft Driver Security Guidance suggests [114]:
“It is important to understand that if lower privilege callers are allowed
to access the kernel, code risk is increased. [..] Following the general least
privilege security principle, configure only the minimum level of access that
is required for your driver to function.”. We think that the process which
controls the status of the anti-malware and AV’s kernel module should be
designed to require ‘high’ IL. Our findings show that several anti-malware
companies either failed to follow this guidance or have misjudged the
minimum level requested for their security, or did not diversify enough
between kernel and non-kernel modules.

Secondly, and this is linked to our finding in Section 5.3, relying only on
integrity levels is not sufficient to ensure system security. This does not
surprise, since UIPI has been designed to protect processes, and in fact anti-
malware applications top-up their defence strategy relying on whether
an application is whitelisted, that is, trusted. Only trusted applications can
e.g., access protected files. But, our findings have revealed a dissonance
here: medium integrity level applications, like Notepad, are considered
trusted and thus allowed to e.g., access protected files. But an application
with medium integrity level, that is running with standard user rights,
does not necessarily behave in a benign manner. As we showed for the
case of Notepad, medium but untrusted applications, such as malware,
can have their actions looking like be trusted by using the application as
a puppet; in so doing, they can bypass the anti-malware guard.

We think that a better defence is to combine the integrity levels and the
trust label used by anti-malware. We state it as the following principle:

Security Principle 1 Messages between applications should be allowed
only when the sender has at least the same integrity level as the receiver
and and the sender is at least as trusted as the receiver.

Principle 1 reminds the renowned Bell and La Padula Model on messages-
flow between different security “clearence” levels [115] (see also [116]).
But it is not exactly the same, since we cope with “security” instead of
confidentiality. Attempting a formalization of Principle 1, components
should be classified by “security levels”, made of two elements: the UIPI
“integrity levels”, (𝐼 = [admin , user, or sandbox], ordered) and the anti-
virus software’s “trust levels” (𝑇 = [digitally signed / whitelisted, not
digitally signed / not whitelisted], also ordered). Principle 1 suggests a
policy saying that an application of security level (𝐼 , 𝑇) should not accept
messages coming from applications of security level (𝐼 ′, 𝑇 ′)when (𝐼 ′ < 𝐼),
or when (𝐼 ′ ≥ 𝐼) but (𝑇 ′ < 𝑇 ′).

In conclusion, we believe that applying Principle 1 would have prevented
receiving SendInput from effecting whitelisted applications that has a

70 5 Vulnerability Analysis of Real-World Systems

potential to be exploited, e.g., Notepad. One should, however, evaluate
whether this may also broke some of the existing automation software
solutions. A conclusive statement about this would require to perform
a wide spread test on automation applications. It also had fostered AV
vendors take measures not only to protect the system, but also to protect
their AV programs against other supposedly trusted applications, in addi-
tion to conventional malware attacks against AV products. A practical fix
is to configure AV kernel module to require admin rights to be accessed.
In this regard, it might be helpful to monitor SendInput API and block
all simulated keyboard and mouse events dispatched to AV program al-
though the problem of understanding whether a low-level event, such as
an interrupt, has been generated by a human or not might be difficult to
solve in general.

Sandbox Evasion 6
6.1 Methodology 72
6.2 Results 73
6.3 Discussion 75

More than ever there is a need of automated systems to perform malware
analysis as new malware samples are created at such a pace that security
analysts are unable to manually analyze them. For instance, in the first
9 months of 2020, more than 1 billion samples were found on-the-wild,
with an average of 350,000 new malicious program released each day in
the latest months of the year [117].

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

200

400

600

800

1000

Figure 6.1: Total number of known mal-
ware samples by years. As of September 5,
more than 1 billion samples registered in
2020 [117].

Analysing new samples of malware is a complex task. In fact, on one
hand, security researchers are aimed at developing malware analysis sys-
tems, such as ”sandboxes”, i.e. confined and protected systems (typically
based on virtualisation) which are used to execute suspected untrusted
programs to analyse their behaviours. On the other hand, cyber-criminals
creating malware and associated infrastructure want a return on their
investments in their effort, and therefore are becoming more adept at
developing threats that can evade increasingly sophisticated sandboxing
environments [118]. In particular, in recent years, several ransomware
families have started incorporating advanced evasion techniques [119].
For example, the first version of the WannaCry ransomware included a
basic anti-sandboxing mechanism, based on DNS query, to bypass analy-
sis [120]. Evasive techniques employed by malware are based upon the
fact that the execution environment of a process may change slightly
depending on whether it is run inside a native or a virtualised/sandboxed
environment, e.g. due to the presence of memory and execution artifacts
introduced by the sandboxing environment (environment-based evasion)
or due to the different execution time of the process inside a sandbox
(behavioural-based evasion) [121]. Malware may also specifically look for
signs of emulation or virtualisation, e.g. specific drivers created inside a
virtual machine, or the presence of specific applications, such as standard
add-ons used by sandboxing solutions, or the lack of standard application
and files (e.g., an empty virtual machine) to detect sandboxes. Finally,
certain malware will check for user input before performing any action,
and the lack of user interaction will sometime cause the malware to infer
it is being run in a sandboxed environment. In all these cases, the goal
of any evasive malware is to detect whether it is being run in a sandbox
and, in such a case, stop performing any malicious action to avoid being
analyzed further by sandboxing systems – therefore making it hard for
analysts to extract the features and describe the behaviour of malware
for future detection.

Other works have addressed the problem of the detection of evasive
malware. For instance, [122] proposes a reliable and efficient approach to
detect malware with split personality – behaving differently according to
the running environment, in an attempt to evade analysis. Similarly, [123]
describes BareCloud, an automated evasive malware detection system
which is based on bare-metal dynamic malware analysis to compare the
traces of analysis on different environments and compare them with the
bare-metal one – a discrepancymeaning themalware is employing evasive

72 6 Sandbox Evasion

1: Kernel-based Virtual Machine, https:
//www.linux-kvm.org.

2: SeaBIOS,
https://seabios.org/SeaBIOS.

techniques. Finally, [124] presents MalGene, an automated technique
for extracting analysis evasion signature by leverages bioinformatics
algorithms to locate evasive behavior in system call sequences.

In this chapter, we describe a technique to bypass sandboxes that we have
found being used by an active ransomware that we inspected. We also
describe the process that has allowed us to observe the malicious activity
in this specific sample. To the best of our knowledge, this malicious
technique has never been described before: it is stateless, i.e., the attack
comprises multiple phases but the malware does not store any data on
the target machine, and does not depend on any logical condition on the
victim system to be triggered. The technique enables the ransomware
to employ a stealthy attack strategy which would evade detection by
sandboxes. After presenting our findings, we discuss the feasibility and
impact of cyber attacks that use this technique, and propose possible
mitigation strategies.

6.1 Methodology

The detection methodology we follow in this chapter is composed of
the following steps: firstly, we run a malware sample multiple times in
a sandbox and collect the traces. Afterwards, we check if the sample
has performed no suspicious activity in the first run, but has acted mali-
ciously in the subsequent runs. If this is the case, it means the malware
is empowered with some evasive functionalities. In the following, we
explain the details of (i) the steps we have followed when building the
test environment, (ii) how we have gathered the data set and (iii) how we
have conducted the experiments.

The analyses are performed using Cuckoo Sandbox, an open source auto-
mated malware analysis system [125]. Our test environment consists of
20 VMs running atop Kernel-based Virtual Machine (KVM)1, each has 2
CPU cores clocked at 2.60 GHz and 2GB RAM. On each VM, we performed
a clean installation of Windows 7 32-bit OS with SP1. No guest agent is
installed on VMs. Moreover, we performed additional steps to ensure the
virtualization artifacts are removed to make the detection of the sand-
box harder [126]. For instance, default BIOS2 of VMs is replaced with a
customized version which contains a real-world vendor name. Likewise,
the hypervisor flag of the virtual CPUs is disabled to prevent guest OS
from being aware of the virtualization. Next, we created user profiles
on VMs and installed popular applications such as web browser (along
with top-rated extensions), multimedia player, archive utility and office
software. Furthermore, we artificially populated usage history in these
profiles to reflect an authentic user. Finally, we took the snapshot of VMs
and configured the Cuckoo accordingly.

Ransomware samples are obtained from the malware corpus provided by
VirusTotal [127]. To filter cryptographic ransomware, i.e., the programs
that encrypts victim’s data, we performed a query using ransomware-
related keywords in the anti-virus scan results, such as ransom, crypt,
and lock. After the search is complete, we had a set of 112 potential
ransomware samples.

https://www.linux-kvm.org
https://www.linux-kvm.org
https://seabios.org/SeaBIOS

6.2 Results 73

3: HKML\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\InstallDate

4: HKML\SOFTWARE\Microsoft\

Cryptography\MachineGuid

Once the data set is ready, we submitted the ransomware samples to
Cuckoo Sandbox to study their behaviours. The label of VM used for
each analysis task is noted to use in the second run. After all samples
are analyzed, the samples that did not show any malicious activity are
re-submitted selecting the same VM. Finally, we compared the reports
generated by Cuckoo Sandbox to determine the samples that did not
perform encryption in the first execution, but encrypted the victim’s files
in the second run.

6.2 Results

Out of 112 malicious samples, one ransomware sample showed no mali-
cious activity in the first execution, but encrypted user’s files in the second
run. SHA256 digest of the sample is bcbc1aee86f5e1fdc2ba6fcb2e2993
3933b132a4c3d0f2eb0f73061702041243. As of August 2019, 58 out of
66 anti-virus engines at VirusTotal identified this sample as a malicious
program. Malware labeling tool AVclass [128] identified the sample as a
TeslaCrypt variant.

Behavioral Analysis Reports

Now, we compare the behavioral analysis reports of two executions of
the ransomware sample, generated by Cuckoo Sandbox.

First Execution

In the first execution of the sample, we observed no write operation on
user files. Although no persistent change were made to the files, the
sample

▶ called GetComputerName API to retrieve the NetBIOS name of host;
▶ called GetVolumeInformation API to collect various information

about the virtual volumes and the hard disk;
▶ read the InstallDate key3 in the registry which stores the instal-

lation date of the OS; and
▶ read MachineGuid key4 from the registry, which is created during

the installation of Windows OS.

Up to this point, the collected pieces of information would give the at-
tacker the ability to identify the victim’s computer with a high accuracy,
i.e., generate the fingerprint of the machine.

Immediately after taking the fingerprint of the environment, the ran-
somware sample established several network connections. Table 6.1 rep-
resents the IP addresses and the domain names that the sample connected
using the HTTP protocol only. Using the threat intelligence services, we
were able to confirm that the URL of each connection is related to a well-
known, malicious activity pattern previously reported by anti-malware
community.

Despite the suspicious activity summarized above, the sample did not
perform any encryption, and shortly after the execution, it terminated

74 6 Sandbox Evasion

Table 6.1: HTTP connections of the ana-
lyzed sample. IP Address Domain Name

204.11.56.48 imagescroll.com

85.128.188.138 stacon.eu

109.73.238.245 surrogacyandadoption.com

69.89.31.77 biocarbon.com.ec

itself, leaving no artifacts on the analysis environment. As a result, the
malice score assigned to this sample by Cuckoo Sandbox is 2.4.

Second Execution

In the second run, the sample conducted the same reconnaissance steps
taken in the first run. However, this time, after fingerprinting and con-
necting to remote addresses, and instead of ceasing, the sample

▶ silently deleted VSS copies (backup copies or snapshots of files
or volumes, created by Windows OS) – this operation is typically
encountered in ransomware attacks to prevent recovery of files;

▶ dropped an executable file – this is another typical malware action
to bypass signature based detection;

▶ configured registry in order to automatically run itself at each login;
and

▶ created encrypted files, rename them by appending the extension
.mp3, and deleted the original files.

Cuckoo developers state that there is no upper limit for malice score,
but currently the security threshold is set to 10. After the second run,
the analyzed sample scored 25, and hence labeled by Cuckoo as “very
suspicious”.

Reconstructing the Attack Scheme

The second behavioral analysis report displays a detailed picture of the
attack. However, one piece of the puzzle is still missing: how does the
ransomware sample decides to commence the attack?

Since the analyses are performed on freshly restored snapshot of VMs,
the sample cannot store any state on the VM. Namely, all data generated
during an analysis will be lost once the analysis ends. Furthermore, the
ransomware is analysis-aware and collects various information that can
be used to fingerprint the environment. Moreover, the sample connects
to several remote machines before starting the attack, if it attacks.

Algorithm 8 Server-Cooperated Attack Strategy.
1: function ATTACK
2: machineID ← GenerateFingerprint()
3: SendToServer(machineID)
4: response ← GetResponseFromCC()
5: if response == CEASE then ExitProcess()

6: else EncryptFiles() ▷ response is ATTACK.
7: return Success

6.3 Discussion 75

A full disclosure of the sample’s logic is possible only if we reverse-
engineered the sample’s executable. We did not, but we can formulate
an hypothesis on the sample’s possible functionality from its behavioral
analysis. For the sake of the goal of our discussion, this suffices. Surely,
once infected the victim machine, the sample collects information likely
to identify the running environment and generate a fingerprint of the
machine. And it is almost certain that the information is sent to a C&C
server. Here, we speculate. The C&C may use the fingerprint to identify
the victim machine and to decide whether the sample is executed for
the first time on it. In this case, we keep on speculating, the C&C server
returns a CEASE message to tell the ransomware to stop all operations
and remain silent. On the contrary, when the victim machine is known,
the C&C server sends an ATTACK message to trigger the ransomware. If
we are right, the attack occurs like as in Algorithm 8 and its information
flow as in Figure 6.2.

Ransomware

Victim

C&C Server

0 Infect 1 Get fingerprint
of the machine

2 Send fingerprint
of the environment

3 Command received
from C&C server

4b

Attack, if
C&C server
orders to
attack

4a

Cease, if
C&C server
orders to
cease Figure 6.2: Reconstructed attack diagram.

6.3 Discussion

In this section, we discuss the security impact of the described evasion
technique and propose potential mitigation strategies.

Evading Sandbox Detection. The evasion technique analyzed in this
chapter allows the malware to stay under the radar, at least in the first run.
This might allow the malware to bypass a defense system, for example, a
system that whitelists applications that do not show malicious activities
when run in sandbox environment. It should be noted that, though, the
ability to evade sandbox detection comes with a price: malicious func-
tionality of the malware gets activated on if the user runs the malware
executable as many times as configured by the malware authors, i.e.,
typically more than once, which is not guaranteed to happen.

Bypassing Malware Appliances. In [129], authors report that three
popular malware appliances from well-known vendors analyze the bi-

76 6 Sandbox Evasion

naries in an isolated environment, i.e., run the executables in a machine
disconnected from the network. In this setting, the malware would not
be able to connect the C&C server and therefore would not receive an
ATTACK command. Consequently, the binary would not exhibit any ma-
licious behaviour. In this case, it is likely that the appliance is left with
only signature based detection and the static analysis options which both
can be evaded via obfuscation. In the end, the malicious binary would be
not detected by these malware appliances. We note that, this result is not
exclusive to the attack technique described here, rather, it is the limitation
of the isolated analysis strategy followed by these appliances.

Mitigation Strategy. As a countermeasure to this attack, we propose
the following strategy: to reveal the malicious behaviours, the analyzed
samples should be executed multiple times in each analysis session. This
way, the malware will run at the same environment for more than once,
which will increase the chance of showing its real behaviour. Of course,
the malware authors may set a higher threshold to prevent detection,
but this would also delay the attack which is against the goals of cyber-
criminals. Still, a high threshold would prevent detection by the sandbox.
However, even if the detection fails after 𝑁 execution, i.e., the malware
do not show a malicious activity, and the malware passes sandbox and
reaches the actual user environment, the user –at least– would be secure
for the first 𝑁 execution. That said, our analysis assumes that the C&C
uses a basic counter and a threshold to decide attack, but it may also utilize
a smarter decision algorithm. For example, C&C might ignore subsequent
fingerprint messages if the time frame between two executions are too
narrow. Finding the best move of C&C in this game is therefore an open
problem.

Defense in Depth. Alternatively, we propose a defense-in-depth strat-
egy to be used in user environment as an auxiliary mitigation for this
attack. To recall, the analyzed technique aims to bypass sandbox detection
by acting benign in the first run. That is, if the each run of the malware
executable occurs on an environment different from previous ones, the
executable would not cause any damage. Using this idea, one canmake the
actual user environment look unique to unknown/untrusted executables
for each run. This way, the executable –assuming that it is a malware–
would report to its C&C server a unique fingerprint at each execution.
Once received a previously unseen fingerprint, C&C server would not
find any match in its database, and send a CEASE message to the malware.
It should be noted that realization of this defense method is feasible. For
instance, it can be achieved by hooking certain API that can potentially
be used to fingerprint the environment and randomize their return values.
However, fingerprinting is a practice also used by software companies,
e.g., for activating proprietary programs. Therefore, benign applications
should be whitelisted when applying this defense method to prevent
undesired interference.

Network Dependency. The investigated technique involves commu-
nication between a C&C server, to receive ultimate decision to attack. This
obviously requires the remote server to be available when the malware
program is executed each time. If the C&C server becomes unreachable,

6.3 Discussion 77

there would be no location to keep the state of the attack, and the strategy
cannot work: the malware would not perform its nefarious actions. At
first, this might look like a shortcoming of the technique, as blocking
malicious IP addresses is an efficient and effective practice to distort mal-
ware communications. However, malware authors has been encountering
this limitation for a long time, and they already employ workarounds.
For example, as analyzed in [61], authors of Cerber ransomware uses
messages encoded in Bitcoin transactions to coordinate the C&C servers.
Being decentralized, impeding communication with blockchain network
is considered difficult. Malware authors can enhance the examined eva-
sion technique by integrating the blockchain-based coordination of C&C
servers. We therefore argue that the said limitation do not decrease the
significance of the threat.

Prevention of Cryptographic
Ransomware

Stopping Ransomware by
Controlling CSPRNGs 7

7.1 Requirements 81
7.2 On Ransomware and Random-
ness 81
7.3 UShallNotPass’ Rationale 83
7.4 UShallNotPass’ Design . 84
7.5 Implementation 86
7.6 Experimental Results 88
7.7 Discussion 92

In this chapter, we present our anti-ransomware system UShallNotPass.
Our solution has an ex ante nature, that is, it attempts to prevent a ran-
somware from encrypting files in the first place. UShallNotPass is the
first cryptographic ex-ante defense against ransomware to the best of our
knowledge.

To achieve our research goal, we approach the problem from a cryp-
tographic perspective and propose a strategy which relies on two fun-
damental observations. First, the keys-for-money exchange on which
ransomware based the success of their business works only if the victim
has no other ways to recover the files but paying for the release of the
key. To achieve this goal, a ransomware must properly implement strong
cryptography, which means:

▶ robust encryption, that is, well-established encryption algorithms;
▶ strong encryption keys, that is, long and randomly generated strings.

Second, if these are the tools that ransomware necessarily need, one can
try to prevent any unauthorized use of them. Nothing can be done to
prevent ransomware from using robust encryption: these algorithms are
public and ransomware can implement them directly. Thus, we have to
focus on denying access to a source of strong encryption keys.

7.1 Requirements

The requirements that inspired and, a posteriori, characterize the security
quality UShallNotPass (we use here the terminology as suggested by
the RFC 2119 [130]):

(R1) it MUST stop all currently known ransomware;
(R2) it SHOULD be able stop zero-day ransomware;
(R3) it MUST NOT log cryptographic keys and thus:

– it should not introduce the risk of single point of failure that
smarter ransomware can try to break;

– it should not endanger the level security of benign applications
(e.g., TLS session keys);

(R4) it SHOULD be easily integrated in existing anti-virus software, OSs,
and access control tools;

(R5) it MAY be implemented directly in an OS’s kernel or in hardware.

7.2 On Ransomware and Randomness

We answer a fundamental question: why does ransomware need random
numbers and from which sources it must necessarily obtain them? The

82 7 Stopping Ransomware by Controlling CSPRNGs

answer will help to understand the rationale of UShallNotPass’s modus
operandi.

As any other software virus, a ransomware, say 𝑅, runs in the victim’s
computer. On that machine, 𝑅 finds the files, 𝐹, that it will attempt to en-
crypt. To work properly 𝑅 needs two tools: a robust encryption algorithm
and a means to create strong key, 𝑘. With those tools, 𝑅 has all it needs to
encrypt 𝐹. The encrypted files will replace 𝐹 irreversibly and irremediably
until the ransom is paid, triggering the release of the decryption key. The
diagram in Figure 7.1 shows this simple work-flow in picture with some
detail that we are going to discuss.

Figure 7.1: Generic Ransomware Func-
tionality.

Download keys
from C&C server

Generate keys on
victim’s system

Use hard-coded
keys in the binary

Prepare for encryption

Read file
contents

Use third party
crypto libraries

Use system’s
crypto APIs

Use homemade
implementation

Perform encryption

Move out the file, en-
crypt, and move back

Overwrite the original
file in-place

Create a new file with
encrypted content

Destroy
victim’s data

Find next file

First let us see how 𝑅 typically acquires the tools it needs. Strong encryp-
tion algorithms are publicly available. Current ransomware just makes use
of those robust encryption algorithms, either by statically linking third
party networking and cryptographic libraries, for example the NaCl or
the OpenSSL or by accessing them via the host platform’s native APIs.

However, to obtain strong keys, 𝑅 has to access secure randomness sources.
𝑅 has a few alternatives for doing so, but only one is secure. In fact:

(1) 𝑅 can have a strong 𝑘 hard-coded, precisely in a section of its binary
code, but this solution leaves 𝑘 exposed. 𝑅 can be probed and have 𝑘 can
be extracted from it e.g., by Binary Analysis.

(2) 𝑅 can download a strong 𝑘 from the Internet. Occasionally ransomware
samples employ this technique and download encryption keys from their
C&C servers, but also this option exposes the key. It can be eavesdropped
e.g., by an Intrusion Prevention System (IPS). Note that although ran-
somwarewill likely use secure communication (i.e., an encrypted channel),
the problem of establishing the session key remains, looping the argument
(e.g., if the key is hard-coded in 𝑅, there is a way to reverse engineer it,
etc).

Figure 7.2: Incidents related to random
numbers are famous in information secu-
rity chambers. Courtesy of xkcd.com.

The remaining alternative is to let 𝑅 generate its own 𝑘. But for 𝑘 to be
strong, 𝑘 must be randomly chosen from a data set with sufficient en-
tropy to make brute-force attacks infeasible and be kept safe. Where, in a
computer, 𝑅 can find that randomness it requires to build strong keys?
True randomness is generally unavailable and thus ransomware must
resort to those few deterministic processes that return numbers which
exhibit statistical randomness. These processes are known as Random
Number Generator (RNG) functions. 𝑅 can implement them. But, being
deterministic algorithms, RNGs are always at risk to be error-prone. If
they produce predictable outputs the cryptographic operations build on
them cannot be considered secure [131], because with a predictable “ran-
domness” all hybrid encryption schemes would be vulnerable to plain-text
recovery [132]. History proves that this concern is legitimate. To give a

xkcd.com

7.3 UShallNotPass’ Rationale 83

1: For the complete list of entropy sources,
please refer to [136, p. 262].

few examples, in the Debian–OpenSSL incident, RNG was seeded with an
insufficient entropy which resulted generation of easily guessable keys
for SSH and TLS protocols [133]. Moreover, Dual Elliptic Curve Determin-
istic Random Bit Generator (Dual EC DRBG) of Juniper Networks found
to be vulnerable, allowing an adversary to decrypt the Virtual Private
Network (VPN) traffic [134]. These incidents shows that extreme care
should be taken when dealing with randomness. Non-cryptographic ran-
dom number sources have weaknesses [135], and they should be avoided
in cryptography.

The safest way (i.e., the way to avoid that risk of being error-prone in
generating pseudo random numbers) is to use well tested and robust func-
tions called Cryptographically Secure Pseudo-Random Number Generator
(CSPRNG).

In the OSs of the Microsoft (MS) Windows family, CSPRNG functions
are available through dedicated APIs (analogous solutions do exist in
other OS families, although the name of the functions will change). User
mode applications call cryptographic APIs to get secure random values of
desired length. Historically, Windows platform has provided the following
APIs:

▶ CryptGenRandom: Appeared first inWindows 95 via Microsoft Cryp-
toAPI (MS CAPI), now deprecated.

▶ RtlGenRandom: Beginning with Windows XP, available under the
name SystemFunction036.

▶ BCryptGenRandom: Starting withWindows Vista, provided by Cryp-
tography API: Next Generation (CNG).

Legacy applications call the function CryptGenRandom to obtain a random
value or, as modern applications do, call BCryptGenRandom. When devel-
opers do not need a context, they can also directly call RtlGenRandom to
generate pseudo-random numbers. Moreover, CryptGenRandom internally
calls into RtlGenRandom. While the implementation of RtlGenRandom is
not open-sourced, a relevant documentation [136] states that various
entropy sources are mixed, including: (i) the current process ID; (ii) the
current thread ID; (iii) the ticks since boot; (iv) the current time; (v) vari-
ous high-precision performance counters; (vi) an MD4 hash of the user’s
environment block, which includes username, computer name, and search
path; (vii) high-precision internal CPU counters, such as RDTSC, RDMSR,
RDPMC; and (viii) other low-level system information1.

To ensure the strength of the encryption key, modern ransomware takes
advantage of the CSPRNG functions that the host OS provides.

Note that, for the same reason, those functions are also used in: (i) Ini-
tialization Vectors (IVs): used by both stream and block ciphers; (ii) salts:
used in Key Derivation Functions (KDFs); and (iii) paddings: block ciphers
(in Electronic Codebook (ECB) or Cipher Block Chaining (CBC) modes of
operation) and public key encryption algorithms.

7.3 UShallNotPass’ Rationale

From these considerations it should be clear why the central idea of this
research is guarding access (i.e., of intercepting incoming calls) to (the

84 7 Stopping Ransomware by Controlling CSPRNGs

APIs of) CSPRNG functions and why it works: any strong ransomware
must employ a CSPRNG to create secure keys. Keys generated by alterna-
tive methods may not be so strong and files encrypted with them could
be decrypted, e.g., by using a decryptor from No More Ransom project
(see Chapter 1).

Thus it should be clear that CSPRNG functions are security-critical re-
sources, and hence only authorized processes should have access to them.
This means that deciding which processes should be authorized is criti-
cal, but is not within the scope of this thesis and it will be addressed in
future work. Generically speaking, we suggest that authorized applica-
tions are those which have been whitelisted or certified. The process of
authorizing an application can be as simple as let the user (or the system
administrator) decide about whether s/he trusts the application (e.g., as
done by [23]), or it can result from an agreement protocol between the
OS vendors (e.g., Microsoft, Apple) and the developers of cryptographic
applications. Whatever the strategy, similarly to what happens in Europe
about applications that process personal data, application developers have
to gain their authorization/certification. Ransomware, developed for the
illegal software market, should therefore be excluded. The third and last
consideration is that we suggest that unauthorized requesters of CSPRNG
functions are terminated.

Thus UShallNotPass prevents ransomware damaging files in the system
and no recovery is necessary. In Section 7.6 we will see how this strategy
is essential for stopping NotPetya.

Listing 7.1: Outputs of non-cryptographic
PRNGs can be reproduced, therefore the
keys derived using them be obtained later.
The following example illustrates usage
of two Random objects instantiated with
the same seed value in C#. Both objects
generate integers between 0 and 100. N.B.,
they produce the exact same outputs.

int seed = 352;

var rnd1 = new Random(seed);

var rnd2 = new Random(seed);

Console.Write("First: ");

for(int i = 0; i < 5; i++){

int num = rnd1.Next(100);

Console.Write("{0} ", num);

}

Console.WriteLine();

Console.Write("Second: ");

for(int i = 0; i < 5; i++){

int num = rnd2.Next(100);

Console.Write("{0} ", num);

}

// [On Console]

// First: 61 10 81 69 12

// Second: 61 10 81 69 12

Assumptions UShallNotPass targets ransomware families that fol-
low secure development strategies and utilize strong cryptography. We
will deal only with the strongest amongst current ransomware, that is, we
ignore insecurely designed and badly implemented ransomware families,
for instance those which call non-cryptographic PRNGs to generate keys
(see Listing 7.1) or those which encrypt files with home-brew algorithms.
For these ransomware we already have solutions able to mitigate their
effects.

Currently, UShallNotPass runs as a software component of the host and
relies on the security guarantees of the host OS. Therefore we assume
that the OS on which our system runs is up-to-date. In particular, we
require that ransomware does not exploit any zero-day vulnerabilities
to escalate privilege. It should be noted that this requirement is inher-
ent to every protection software running on any OS. Furthermore, an
outstanding feature of our strategy is its being obfuscation agnostic, i.e.,
UShallNotPass targets all ransomware samples from non-obfuscated to
highly-obfuscated ones.

7.4 UShallNotPass’ Design

We now describe the inner mechanism of our system in more detail. The
architecture of UShallNotPass and the workflow is depicted in Figure 7.3.
It has two separate components: Interceptor, and Controller. Interceptor
captures the calls made to CryptGenRandom API (a CSPRNG offered by

7.4 UShallNotPass’ Design 85

Windows OS) and dispatches the process ID to the Controller, which
searches the Whitelist DB to decide whether to allow or deny access. No
parameters or outputs are logged.

Process

UShallNotPass
Interceptor

CryptGenRandom

UShallNotPass
Controller

Whitelist DB

Process calls
CryptGenRandom

1

2 Process ID

Search Whitelist
DB for a match

3 4 Search
result

5 Allow/Deny

Perform call,
if allowed

6a 7 Output

8
Return
output

6b TERMINATE,
if denied

Figure 7.3:Architectural view of UShall-
NotPass [44].When CryptGenRandomAPI
is called, Interceptor identifies the caller
and dispatches the process ID to Controller.
If the application is authorized, the call is
executed and the result is returned to the
caller. Otherwise, the call is blocked and
the caller process is terminated.

High Level Description

Essentially, UShallNotPass is an access control mechanism over the
CSPRNGs of the host system: it intercepts calls to CSPRNG functions and
queries the process ID of the caller. Once the caller process is determined,
UShallNotPass reaches a decision according to a system policy. For
example, the system policy might enforce the following configuration. If
the caller process is authorized, that access is granted and it obtains the
secure pseudo-random number. Otherwise, UShallNotPass blocks the
call and terminates the caller process. In our prototype implementation,
we used this system policy.

Intercepting Requests to CSPRNG

As we argued in Section 7.2, ransomware requires to use CSPRNG of the
host system. In the current architecture of modern OSs, there are limited
number of resources which provide cryptographically secure pseudo-
random numbers. It is feasible to intercept the calls made to CSPRNG
functions of the host system and redirect the control to the decision
making component of UShallNotPass.

System Policy & Managing Access Control

When a request is made to access the CSPRNG of the system, to reach a
decision to grant or deny access UShallNotPass follows a system policy,
a set of rules, for instance, determined by the system administrator. The

86 7 Stopping Ransomware by Controlling CSPRNGs

system policy can be specified in various ways, depending on the needs
and the nature of the host system. Our current design implements it as
a whitelist, i.e., list of applications allowed to access CSPRNG which a
system administrator determines immediately after UShallNotPass is
installed. It can be more complex thought, such as determined by the OS
vendors in agreement with developers of cryptographic applications and
based on accreditation, granted after established security checks.

Further security measures can be necessary. Here we mention two in
particular:

▶ Digital signatures: Code signing is a technique to verify the in-
tegrity of the executable and the origin of the source. Digitally
signed software has therefore higher trust score when evaluated
by anti-malware products and OSs. For example, Microsoft uses
Authenticode [137] to verify the signature of the executables and
kernel drivers. Following the same approach, we design UShall-
NotPass so that it can be configured to allow applications with
digital signatures to access to CSPRNG functions of the host system.

▶ Dynamic Decision: It may be desired to have aminimal whitelist, and
extend it when necessary. So that when an application requests a
cryptographically secure pseudo-random number for the first time,
it is put on hold and the decision will be made on that time. A similar
measure has been described in [23, 26], but it involves the user.
Considering this choice unsafe, UShallNotPass instead interacts
exclusively with the administrator. UShallNotPass’s system policy
can be set to force to ask the exclusive permission of the system
administrator when an application calls a CSPRNG function for the
first time.

Once the whitelist is created, UShallNotPass will start intercepting the
access requests to CSPRNG of the host system. For each request, identity
of the caller will be determined and UShallNotPass will decide whether
to grant access. If the result is positive, the process is allowed to obtain
the pseudo-random number. Otherwise, the request is blocked and the
process is terminated.

Needless to say, it is therefore of uttermost importance to secure the
system policy itself from unauthorized modifications (e.g., store it in
the form of a file under a directory accessible only with administrator
privileges).

7.5 Implementation

We implemented a prototype of UShallNotPass which targets Win-
dows 7OS. OnWindows 7, user-mode processesmostly invoke CryptGenRandom
API to get cryptographically secure pseudo-random numbers. Therefore,
our implementation intercepts each invocation of CryptGenRandom API
and determines the identity of caller process. To this end, UShallNotPass
consists of two components:

▶ Interceptor which intercepts calls made to CryptGenRandom API,
collects and transmits the identity of the caller process to Controller,
and takes the appropriate action that Controller commands.

7.5 Implementation 87

2: Calling ExitProcess can as well cause
process to crash, which, eventually ends
it.

▶ Controller which gets information from the Interceptor and returns
grant/deny commands according to the system policy.

Intercepting Calls to CSPRNGs

There are various ways of intercepting calls onWindows platform, includ-
ing patching System Service Dispatch Table (SSDT), modifying Import
Address Table (IAT) and injecting a DLL to target process. We followed
the DLL injection technique and used Detours library of Microsoft Re-
search for this purpose. The Interceptor of UShallNotPass is hence a
DLL module which is loaded into target process on the system. For ease
of prototyping, we load the Interceptor into processes using AppInit DLLs
technique [138]. Once loaded, it hooks CryptGenRandom function, that is,
whenever CryptGenRandom is called by a process, program flow is routed
to the Interceptor.

Decision of Authorization

The Interceptor calls GetModuleFileName to obtain the full path to the
module of the caller process, which can point to a DLL or an executable.
The file path information is passed to the Controller, whose response is
forwarded to the Interceptor. Controller computes the SHA256 digest of
the binary file of the module and checks whether it is in the whitelist.

If the result is positive, a GRANT command is returned to the Intercep-
tor, or a DENY command otherwise. Once the decision is received from
Controller, Interceptor executes it. If the decision was to grant access to se-
cure random API, Interceptor calls CryptGenRandom with the intercepted
parameters and returns the result and control to the caller process. If
the decision of Controller was to deny the request, then Interceptor calls
ExitProcess function, which causes the caller process to end2.

Maintaining the Whitelist

Whitelist is implemented as a file which contains the list of SHA256
digests of the binary executables. The integrity of the whitelist is pro-
tected by a keyed-hash value, appended to the end of the list. As another
security precaution, the whitelist is located in a directory which only
administrators has write permission.

Controller component of UShallNotPass has a GUI which provides the
basic functionality to the user, such as adding an entry to the whitelist or
removing one from it. Controller also logs relevant information about the
call events to CryptGenRandom API, including time, SHA256 digest of the
caller and the action taken.

88 7 Stopping Ransomware by Controlling CSPRNGs

3: VirusTotal,
https://www.virustotal.com

4: ViruSign,
https://www.virusign.com

5: Malc0de, http://malc0de.com

6: Cuckoo Sandbox,
https://cuckoosandbox.org

7: Kernel-based Virtual Machine, https:
//www.linux-kvm.org/page/Main_Page

7.6 Experimental Results

We tested our UShallNotPass with the aim to verify whether it complied
with the requirements we stated in Section 7.1. Compliance with R3 does
not need to be tested. It follows from the design: UShallNotPass does not
store cryptographic keys (R3). Instead we test compliance with R1 and R2
indirectly by answering the following questions about UShallNotPass:

▶ Q1 Does it stop ransomware before they encrypt any files?
▶ Q2 Can it protect against zero-day ransomware?

Furthermore we are interested in knowing what is UShallNotPass’s
performance in time and space resources. A defense system that is not
practical to deploy is considered useless.

▶ Q3 What is the overhead of UShallNotPass in terms of resources?

The answer this third question gives evidence for compliance to R4 and
R5: if UShallNotPass proves be efficient, it can be easily integrated with
existing anti-virus software as an additional run-time control (R4). Its
simplicity also suggests that controlling the access to critical functions
can be implemented at least at level of OS kernel (R5).

We have not yet thought about the possibility to implement this mecha-
nism at hardware level.

Experimental Setup

We conducted a series of experiments to test the robustness of UShall-
NotPass against cryptographic ransomware. We obtained real world
cryptographic ransomware samples from well known sources including
VirusTotal3 and ViruSign4. In order to collect executables, we performed a
search on these sources with the keywords ransom, crypt and lock which
generally appear in the tags determined by submitters and antivirus ven-
dors. Furthermore, we populated our collection by downloading samples
from the links provided by Malc0de5.

Our initial test set had 2263malware samples, each labeled as ransomware
by anti-virus engines.

Collecting a malware sample is one thing, determining its type is another.
A malware sample tagged “ransomware” may not necessarily be an active
cryptographic ransomware. Therefore, we needed to check the obtained
malware samples one by one and select the active cryptographic ran-
somware in order to build a valid sample set. For this aim, we utilized
Cuckoo Sandbox,6 open source automated malware analysis system. We
created a VM atop KVM7 and performed a clean install of Windows 7 OS.
Next, we created a user environment on the VM and performed actions
which reflects the existence of a real user, e.g., we installed various popu-
lar applications such as third party web browsers (and select plug-ins),
office and document software, utilities etc. Moreover, we placed a number
of files on the VM that typical ransomware families targets, such as office
documents, images and source codes. When possible, we also removed
traces of the virtualization, e.g., changed default device names of VM,

https://www.virustotal.com
https://www.virusign.com
http://malc0de.com
https://cuckoosandbox.org
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page

7.6 Experimental Results 89

tuning RDTSC, etc. Finally, we took the snapshot of the VM and finalized
the configuration of Cuckoo for managing the VM.

After the test environment was set, we submitted the malware samples
to Cuckoo which executed them one-by-one, on the clean snapshot of
the VM. Although majority of ransomware samples attack the system
immediately after infection, i.e., encrypts the victim’s files, we allowed
them to run 20 minutes unless the execution ends earlier. After each
analysis, we inspected if any alteration/deletion of the decoy files observed
on the test machine. We call a malware sample as an active ransomware
if any of the decoy files is moved/renamed or has a new SHA256 hash
after the analysis is completed. If Cuckoo does not detect any activity or
hashes of decoy files are same until the timeout happens, we exclude the
sample from our list of active ransomware.

To compare our results to the previous research, and to reason on the
techniques used by malware authors, we identified the family of each
ransomware sample. For this purpose, we employed AVclass [128], an
automatic malware labeling tool which performs plurality vote on the
labels assigned by AV engines.

We excluded the vast majority of the samples from our test set as they did
not show up any malicious activity during the analysis. There might be
several reasons behind this outcome. Firstly, it is a well known fact that
malware authors try to avoid being analyzed and thus malware samples
behave benign if they detect that they are run in a virtual environment.
Ransomware authors also follow this strategy. Another reason of inactiv-
ity might be that the malware design may involve a C&C server which
may be down for some reason. Finally, ransomware may require certain
conditions met before start attacking, e.g., regional settings, wait for a
specific date.

To sum up, we built a test set which contains 524 active samples from 31
cryptographic ransomware families to test against UShallNotPass.

Robustness

In this section, we will analyze the outcome of the experiments to find
the answer of Q1 and Q2.

To begin with, UShallNotPass stopped ransomware samples from all
families in our data set, which includes famous and powerful ransomware
families The details are reported in Table 7.1, where we also report for
each family the average number of bytes per calls and the numbers of
call, figures that support our argument that employing cryptographi-
cally secure pseudo-random numbers is a common property of all the
ransomware.

Table 7.1 shows that UShallNotPass successfully stopped 94% of cryp-
tographic ransomware in our test set, including WannaCry, Locky and
TeslaCrypt and remarkably the unmitigated NotPetya. The remaining 6%
of missed elements are false negative which may be of a few reasons.
Firstly, our implementation of the Interceptor is not perfect. Therefore, our
implementation might have missed to intercept those calls for some not
obviously apparent technical reason. In fact, a dynamic analysis we per-
formed on each representative for all the missed family (i.e., Cryptolocker,

90 7 Stopping Ransomware by Controlling CSPRNGs

Filecryptor, SageCrypt and Yakes) has revealed that the ransomware actu-
ally invokes CryptGenRandom. Thus, in principle, they should have been
stopped. Secondly, the samples might not be using CSPRNG and instead
rely on the non-cryptographic PRNG functions that are not secure, and
therefore not monitored by UShallNotPass.

Table 7.1: Measurements of CSPRNG us-
age. Next to Family, recalling the ran-
somware’s family name, column Sample
reports the number of elements in the
family and the number of samples that
UShallNotPass stopped. CSPRNG Usage
column shows the need of using CSPRNG
among ransomware and contains two sub-
columns: Bytes, the average number of
bytes that a sample of ransomware obtains
from calling CryptGenRandom, and #Calls,
the number of calls to the function.

Family Samples (%) CSPRNG Usage

Bytes # Calls

Androm 7/7 (100%) 4125257 178
Bad Rabbit 1/1 (100%) 52 2
Cayu 1/1 (100%) 4216212 20261
Cerber 149/149 (100%) 22393 2786
Crilock 1/1 (100%) 3456637 15
Critroni 1/1 (100%) 4755304 392
Crowti 3/3 (100%) 5231466 14
Crypmod 1/1 (100%) 2167813 20118
Crypshed 1/1 (100%) 5137296 13
Cryptesla 8/8 (100%) 5125627 14
Cryptolocker 8/17 (47%) 2805603 10
Cryptowall 1/1 (100%) 2242370 10
Dynamer 2/2 (100%) 3954293 20118
Enestaller 3/3 (100%) 2127036 82
Enestedel 5/5 (100%) 3871449 61
Filecryptor 3/4 (75%) 64 1
Genkryptik 3/3 (100%) 2506214 11
Kovter 1/1 (100%) 160 3
Locky 55/55 (100%) 5672894 23940
NotPetya 1/1 (100%) 92 2
Ransomlock 1/1 (100%) 2312373 12
Razy 2/2 (100%) 3955 2851
SageCrypt 4/7 (57%) 3417095 9
Scatter 6/6 (100%) 5626959 560
Shade 2/2 (100%) 2900347 12613
Teslacrypt 82/82 (100%) 4351264 14
Torrentlocker 1/1 (100%) 2642555 388
Troldesh 2/2 (100%) 3500127 11
WannaCry 2/ 2 (100%) 5615288 162
Yakes 23/39 (59%) 2450372 9
Zerber 115/115 (100%) 5542697 70

Total: 495/524 (94%)

That said, we need to comment that UShallNotPass was implemented
before the Bad Rabbit and NotPetya ransomware families emerged. There-
fore, until proven otherwise, we have at least one evidence that supports
R2 that UShallNotPass can be effective on zero-day ransomware.

Case Study: NotPetya

Wefind it remarkable that UShallNotPasswas effective against NotPetya,
a particular debilitating ransomware that in 2017 was used for a global
cyberattack primarily targeting Ukraine [8]. NotPetya is a ransomware
which encrypts victim’s disk at boot time (NotPetya has other malware

7.6 Experimental Results 91

$870,000,000
Pharmaceutical company Merck
$400,000,000
Delivery company FedEx
$384,000,000
Construction company Saint-Gobain
$300,000,000
Shipping company Maersk
$188,000,000
Snack company Mondelēz
$129,000,000
Manufacturer Reckitt Benckiser

$10 billion
Total damages from NotPetya, as esti-
mated by the U.S. White House.

Figure 7.4: Approximate damages re-
ported by some of the NotPetya’s biggest
victims [8].

8: We have chosen to set the limit of tri-
als to 100 000 as with the current imple-
mentation of Inter-Process Communica-
tion (IPC), our setup becomes instable be-
yond this limit.

characteristics such as the propagation, exploitation and network be-
haviors, but those are out of the scope of this thesis). Upon execution,
NotPetya generates secure random numbers to use in the encryption,
modifies the MBR of the system disk which enables it to load its own
kernel in the next reboot. Next, it forces to restart the system and shows a
fake chkdsk screen to the user. Meanwhile, the malicious kernel encrypts
the MFT section of the disk which renders the data on that disk unusable.
Since NotPetya loads its own kernel, the solutions proposed by [23, 25,
26] are bypassed and therefore cannot protect the victim. Moreover, [30]
logs the random numbers that NotPetya uses to derive the encryption
keys. Nonetheless, the key vault becomes inaccessible as well as other
data after the reboot as the MFT is encrypted. On the other hand, UShall-
NotPass stops NotPetya once it calls CryptGenRandom and terminates it
before any cryptographic damage occurs.

Performance

We measured the overhead of UShallNotPass on computing and storage
resources to answer Q3. Our assessment focuses two points: (i) API level
overhead, i.e., the extra time to access secure randomness, (ii) application
level overhead, namely, the latency perceived by the users. We conducted
the assessments on a Windows 7 OS running on a VM with 2 CPU cores
clocked at 2.7 GHz.

Benchmarks in API Level

We measured the time cost of invoking the CryptGenRandom API on the
clean machine. For this aim, we wrote a benchmark program that invokes
CryptGenRandom to generate 128 bits of random number, repetitively
for 100 0008 times and outputs the total time spent for this action. We
observed that it took 0.12 seconds to complete this task. Then we run the
benchmark program on the system that UShallNotPass runs. This time
it took 15.59 seconds to complete the same task. The results states that
UShallNotPass introduces an overhead with a factor of 125. According
to our analysis, the main reason behind this impact is the significantly
slow communication between Interceptor and Controller components of
UShallNotPass.We also observed that, if the overhead of communication
is discarded, the performance impact happens to be a factor of 5.52. We
remark that the observations are made on an unoptimized prototype of
UShallNotPass. More efficient techniques of IPC and dynamic decision
making for access control would result in better performance figures.

Our measurements on API level overhead and detailed results are il-
lustrated in Table 7.2. It should be also noted that as the length of the
pseudo-random number increases, the cost ratio of access control gets
lower.

Impact in Application Level

Another important performance criterion is the slowdown in functionality
of the software due to UShallNotPass. On our test system, we installed
latest versions of select applications which are common in home and office

92 7 Stopping Ransomware by Controlling CSPRNGs

Table 7.2: UShallNotPass’s perfor-
mance impact on 100 000 iterative calls to
CryptGenRandom.

Measurement Mode Random Number Length (bits)

128 256 1024 2048

UShallNotPass Off (seconds) 0.12 0.15 0.20 0.27
UShallNotPass On (seconds) 15.59 15.80 15.84 16.91
Time spent in IPC (seconds) 14.90 15.05 15.05 16.00
IPC Discarded (seconds) 0.69 0.75 0.79 0.91

Total Overhead (factor) 125.42 105.68 77.69 61.77

IPC Discarded Overhead (factor) 5.52 5.00 3.89 3.32

users. Next, we whitelisted and run the applications while UShallNot-
Pass is active. We inspected whether any slowdown occurred during the
use of each application and logged the CSPRNG consumption, if any. The
test set contains the following applications: 7zip, Acrobat Reader, Chrome,
Dropbox, Firefox, Foxit Reader, Google Drive, Internet Explorer, LibreOf-
fice, Microsoft Office, Putty, PyCharm, Skype, Slack, Spotify, Teamviewer,
Telegram Desktop, TeXstudio, Visual Studio, VLC, WinRar and WinZip.
Among those that called CryptGenRandom, we present our observations
on the following five:

▶ Acrobat Reader. We created a new digital signature and signed a
PDF document. During this period, Acrobat Reader called CryptGenRandom
13 times and obtained 64 bytes of random value in total.

▶ Chrome. We observed Chrome’s CSPRNG usage by connecting a
website over HTTPS. For this purpose, we connected https://www.

iacr.org/. Once the TLS connection is established, we stopped
monitoring. We recorded 2 calls to CryptGenRandom and 32 bytes
of usage in total.

▶ Dropbox. After creating a new account, we put 5 files with various
sizes, 20 MB in total. During the synchronization of these files,
Dropbox invoked CryptGenRandom 61 times, obtaining 16 bytes of
data in each.

▶ Skype. We monitored Skype when making a video call for 60 sec-
onds. During this period, Skype performed 13 calls to CryptGenRandom
and obtained 16 bytes in each call.

▶ Teamviewer. Among the tested applications, Teamviewer was the
clear winner in pseudo-random number consumption. In our test,
we connected to a remote computer and keep the connection open
for 60 seconds. We observed 128 calls to CryptGenRandom which
yield 2596 bytes in total.

In our tests, we did not notice any slowdown or loss in the functionality
of any applications nor a program instability.

7.7 Discussion

History suggests that malware mitigation is a never ending race: a new
defense system is responded with new attacks. We are no exception;
cyber-criminals will attempt to develop new techniques to bypass our
system. In this section, we first discuss how they could achieve this goal
due to the limitations of our approach. Next, we review the issues may
arise during the use of UShallNotPass.

https://www.iacr.org/
https://www.iacr.org/

7.7 Discussion 93

9: The value is stored under the key
HKLM\SOFTWARE\Microsoft\Windows NT\

CurrentVersion\Windows in registry.

Alternative Randomness Sources

The results of our experiments suggests that cryptographic ransomware
can be efficiently mitigated by preventing access to CSPRNG APIs of the
host system. Ransomware authors will try to find alternative sources for
randomness. We anticipate that the first place to look for would be the
files of victims. Generating encryption keys from files is known as conver-
gent encryption [62] and already a common practice in cloud computing.
That said, the feasibility and security of maintaining a ransomware cam-
paign (from point of cybercriminals) based on this approach needs to be
studied.

Alternatively, ransomware authors may try to fetch cryptographically
secure random numbers (or encryption keys) from C&C servers instead
of requesting access to CSPRNG APIs. As we discussed in Section 7.2 ran-
somware cannot establish a secure channel with the remote server in this
scenario. Such a ransomware may still communicate with a randomness
source on the Internet, over an insecure channel. In this case, however,
the random numbers would be exposed to the risk of being obtained by
IPSs. This would make it difficult for a ransomware to be successful in
the long term. Having said that, more feasible defense strategies should
be developed for home users who will likely not be in the possession of
advanced network devices like an IPS.

Lastly, ransomware may statically link a random number generator and
use a seed gathered from user space. However, this approach would
require higher implementation effort and be error-prone. Furthermore, at-
tempting to monitor events, e.g., keystrokes, would trigger the traditional
antivirus software. Again, feasibility and security of this risky approach
should be studied.

Implementation Related Issues

DLL Injection Method AppInit DLLs mechanism loads the DLL mod-
ules specified by the value AppInit_DLLs 9 in the Windows Registry. For
ease of development, we utilized AppInit DLLs technique to load Inter-
ceptor component of UShallNotPass into target processes. However,
in this methods, the payload DLL is injected by using the LoadLibrary
function during the DLL_PROCESS_ATTACH phase of User32.dll. There-
fore, executables that do not link with User32.dll do not load the Ap-
pInit DLLs [138]. Concordantly, UShallNotPass cannot intercept and
control any calls made from these executables. We highlight that this
limitation only concerns our current prototype, i.e., it is not inherent to
the approach.

Whitelisting Built-in Applications Modern OSes are installed with
components including administrative tools and system utilities. Depend-
ing on the nature of the tasks, certain built-in applications may utilize
the CSPRNG APIs. To keep the OS stable and secure, and maintain its
functionality, these applications should be whitelisted before UShall-
NotPass launched. To determine which built-in Windows applications
call CSPRNG APIs, we performed a clean install of Windows 7 32-bit
on a VM, monitored the calls to CSPRNG APIs and identified the caller

94 7 Stopping Ransomware by Controlling CSPRNGs

10: The list of applications may vary on
different versions of Windows OS.

processes. During this experiment, we executed typical maintenance op-
erations on the clean system, such as defragging hard disks, managing
backups, installing drivers and updating the OS.

We detected invocation of CSPRNG APIs by Explorer (explorer.exe)
and Control Panel (control.exe) which are two of the most frequently
used Windows applications. Moreover, Windows Update (wuauclt.exe)
and Windows Update Setup (WuSetupV.exe) are the only signed applica-
tions that consumed secure randomness. Therefore, if UShallNotPass is
configured to allow the signed applications to access CSPRNG APIs, these
two applications do not need to be whitelisted. Furthermore, Local Secu-
rity Authority Process (lsass.exe) was the only application which calls
BCryptGenRandom, while others called CryptGenRandom. The complete
list of applications10 that called CSPRNG APIs during the experiment is
given in Table 7.3.

Table 7.3: Windows applications that
calls CSPRNG APIs. Most of the ap-
plications listed below are located at
%WINDIR%\System32. We remark that,
only the executable files wuauclt.exe and
WuSetupV.exe are digitally signed.

Executable Name File Description

explorer.exe Windows Explorer
lsass.exe Local Security Authority Process
SearchIndexer.exe Microsoft Windows Search Indexer
svchost.exe Host Process for Windows Services
dllhost.exe COM Surrogate
wmiprvse.exe WMI Provider Host
SearchFilterHost.exe Microsoft Windows Search Filter Host
SearchProtocolHost.exe Microsoft Windows Search Protocol Host
control.exe Windows Control Panel
TrustedInstaller.exe Windows Modules Installer
VSSVC.exe Microsoft Volume Shadow Copy Service
WMIADAP.EXE WMI Reverse Performance Adapter Maintenance Utility
wuauclt.exe Windows Update
WuSetupV.exe Windows Update Setup
mmc.exe Microsoft Management Console
MpCmdRun.exe Microsoft Malware Protection Command Line Utility
dfrgui.exe Microsoft Disk Defragmenter

Handling Sofware Updates Components of OS or user software may
be updated for various reasons, including patching security vulnerabilities,
fixing bugs and adding new functionalities. The update process may also
involve replacing the existing executables with newer ones and thus
altering their hash values. Therefore, if an OS component or an installed
application which has access rights to CSPRNG APIs is updated, Whitelist
of UShallNotPass must also be updated accordingly to prevent false
positives. More precisely, the old hash value should be removed from the
Whitelist and the new hash value should be added.

Abuse of Digital Signatures While Code Signing aims to help verify-
ing the software origin, cyber criminals frequently used stolen certificates
to sign malware in order to penetrate this defense [139, 140]. Further-
more, there is an incidence i.e., a ransomware sample with a valid digital
signature [141], which proves that ransomware authors also have this ca-
pability. Such a clandestine ransomware sample may evade access control
feature promised by our system. Namely, if UShallNotPass is config-
ured to allow digitally signed applications to access CSPRNG of the host
system, and the ransomware binary has a valid signature (e.g., the stolen
certificate is not revoked yet or Certificate Revocation List (CRL) is not up
to date), then the victim’s files would be encrypted. Note that utilization

7.7 Discussion 95

of digital signatures is optional and meant to improve practicality and
applicability of our system. System administrators should decide enabling
this feature according to their systems’ needs and capabilities. When
ultimate security is desired, this option should be left as disabled so that
even digitally signed ransomware would not cause harm on data.

Dynamic Decision As we discussed above, software applications on
host system may be updated or replaced with another one. To prevent
interruption of the work flow, UShallNotPass may be configured to ask
administrator’s permission in case a previously unseen process requests
access to CSPRNG of the host system. This brings the risk of infection, as
the administrator may not concentrate well each time. We remark that
Dynamic Decision is an optional feature of UShallNotPass and is an
example of security/usability trade off. If disabled, it would not pose any
risk against security.

Efficient End-Point Protection
from Ransomware 8

8.1 Security Assumptions . . . 97
8.2 NoCry: Enhanced Protec-
tion 98
8.3 Methods, Experiments and Re-
sults 101
8.4 Discussion 105

The core idea of UShallNotPass is to prevent ransomware from accessing
to CSPRNG APIs. These functions offered by the OS return the essential
ingredients required to build cryptographically secure encryption keys:
“good” pseudo-random numbers. The solution described in Chapter 7 has
a sufficiently accurate detection rate (i.e., 94%), but it is not yet an effective
and efficient solution. What it needs is an access control system that guar-
antees at least three important requirements: (1) to rely on architectural
components that are not vulnerable against known or arguable targeted
attacks; (2) to have lower false positive rate; (3) to impose a negligible
performance overhead.

In this chapter, we discuss improvements to the solution proposed in
Chapter 7 that satisfies requirements (1)–(3). It meets (1) by avoiding
IPC, a choice that is potentially vulnerable to named pipes hijacking (see
Section 8.2). It meets (2) by bootstrapping and maintaining a Whitelist DB
of honest applications that also call CSPRNG (see refsecbootstrapping).
It meets (3) by showing that, when run in respect to vanilla system, our
implementation has a negligible overhead (Section 8.3) over applications
that use CSPRNGs, with a relative improvement of roughly two orders of
magnitude with respect the prototype presented in Chapter 7. We also
test the new implementation against a new set of 747 active real-world
ransomware samples, and measure the false negative rate to confirm our
strategy. we call our new prototype NoCry, in antithesis to the infamous
WannaCry.

8.1 Security Assumptions

NoCry works under two assumptions, which is inherited from its pre-
decessor UShallNotPass (Chapter 7): (i) at the moment in which the
anti-ransomware is installed on a target system and before it becomes
active and operational, the system is non-compromised; (ii) the host ma-
chine can run anti-virus software to detect, stop and neutralize common
malicious actions such as keystroke logging, process injection, etc.

We also stress one key point once more. The original concept, and thus
NoCry, has been conceived to work against cryptographically strong
ransomware only. At least in the ransomware samples that we have
analyzed, those are the ransomware programs that access secure random
number sources. NoCry does not stop ransomware that does not follow
secure development standards and, for instance, derives keys from a
non-cryptographic PRNGs, like rand function in C runtime library or
System.Random class provided by .NET framework. In §8.3, we argue
that such ransomware variants are weak, cannot achieve success in the
long term, or can be stopped otherwise. Therefore, NoCry is not all-in-
one defense but meant to work side-by-side with (or even, integrated

98 8 Efficient End-Point Protection from Ransomware

into) traditional anti-malware solutions or in combination with other
anti-ransomware systems.

8.2 NoCry: Enhanced Protection

We believe that an anti-ransomware application should be effective and
non-invasive in at least the following meanings:

1. Robust Architecture. Execution and operation of a defense sys-
tem should rely on architectural choices that minimize the attack
surface and have no vulnerabilities against known and arguable
targeted attacks. In our case, the authorization mechanism need be
robust against targeted attacks.

2. Low False Positive Rate and Minimal User Intervention. A
defense system must provide security, and at the same time, must
ensure (arguably and measurably) a low rate of false positive. The
challenge regards our Whitelist DB. The list needs to be safely boot-
strapped, and software updates should be reflected in the Whitelist
DB with no interruption, inconsistency, or possibility of intrusions.

3. Optimized Decision Procedure. Performance impact of running
an anti-ransomware should be negligible and must be imperceptible
by the user. In NoCry, the overhead is due to the interception of
calls to CSPRNG APIs and the time required by the access control
decision procedure.

We discuss NoCry in the reminder of the section. We refer to Windows
systems, as they have been the target of most of the ransomware attacks
known at today. While we may refer to terms available particularly on
Windows OS, what we discuss applies to other modern platforms as
well.

Robust Architecture

As described in Chapter 7, UShallNotPass consists of two components:
Interceptor detects the calls made to CSPRNG APIs, and Controller makes
authorization decisions for the caller processes. This architecture needs
an active communication channel between Interceptor and Controller
components. In order to fulfill this need, UShallNotPass employs named
pipes.

A named pipe is an IPC mechanism which enables processes to communi-
cate to each other using a client-server architecture [142]. In this model,
the pipe server is the application which creates the named pipe. Once the
pipe is created, pipe clients – the applications that connects to the pipe
server – can start sending/receiving messages to/from the pipe server.
In the access control system of UShallNotPass, Interceptor creates two
simplex named pipes, one for dispatching the process ID to Controller
and another for getting the authorization result.

That said, named pipes in Windows platform are infamous with their
security issues [143]. Among them, one particular issue constitutes a
critical vulnerability for UShallNotPass. Namely, a malicious application
can attempt to create a named pipe before the legitimate application does,

8.2 NoCry: Enhanced Protection 99

and act like the pipe server. The pipe name of UShallNotPass is static and
therefore a ransomware can hijack the pipe by creating the pipe instance
more quickly than Controller of UShallNotPass. This would make the
attacker owner of the named pipe object, allowing the ransomware to
impersonate the Controller and authorize itself.

Observing this vulnerability, NoCry is designed to be IPC-free. In this
new architecture, Interceptor and Controller are moved into Unified Agent,
a single module which intercepts and controls CSPRNG calls. The ar-
chitectural view of NoCry is illustrated in Figure 8.1. The capability of
direct data exchange between Interceptor and Controller renders NoCry
immune to the potential targeted attacks. Consequently, we conclude that
NoCry is a more robust protection system.

Interceptor Controller

NoCry
Unified Agent

Process

Whitelist DBCryptGenRandom

Process calls
CryptGenRandom

1

2 Search Whitelist
DB for a match

3 Query result

4a Perform call,
if allowed

5 Result

6 Result

4b TERMINATE,
if denied

Figure 8.1: Architectural view of NoCry.
Interceptor and Controller reside in the
same module, Unified Agent. This new con-
struction enables robust and efficient infor-
mation exchange between Interceptor and
Controller for making an authorization de-
cision.

Low False Positive Rate and Minimal User
Intervention

We introduce two methods that NoCry offers in order to increase the
usability.

Bootstrapping Whitelist DB

UShallNotPass does not come with a pre-determined whitelist of benign
applications. The list, presumably, is initially empty and if access control
over CSPRNG APIs were applied immediately after UShallNotPass is
installed, every cryptographic application invoking these functions would
be stopped: this is surely not what the we mean to happen. Thus, benign
cryptographic applications should be whitelisted before UShallNotPass
is launched. To make this task as much automatic as possible we suggest
in NoCry a Training Mode. It starts immediately after installation: the
Interceptor listens the calls made to CSPRNG APIs without blocking any.

100 8 Efficient End-Point Protection from Ransomware

Under our assumptions (Section 8.1), all access requests to CSPRNG APIs
should come from honest processes. The hash of the binary executables
are added to Whitelist DB. Training Mode can only be activated once and
just after the setup.

What if, against our assumption, Training Mode is run on a system that is
infected by some strains of silent ransomware [144]? Such strains in fact
infect computers but stay inactive until being activated by C&C servers
or simply await until a certain time has passed. This way, ransomware
attempts to look like a benign application and evade behavioral analysis-
based detection systems. It is unlikely that such ransomware bypass
NoCry: the ransomware executable would not call CSPRNG APIs in the
sleeping phase and therefore they will not be whitelisted, unless the
training phase coincides with the awakening of ransomware. This may
be a remote possibility, but raises our assumption of making mandatory
running our Training Mode in a clean system a must, as it is usually the
case for any anti-malware.

Handling Software Updates

Whitelist DB can change. Programs that access CSPRNG APIs but are in-
stalled after the TrainingMode has ended, must have their hashes be added
to it. OS components are updated for various reasons, including patch-
ing security vulnerabilities, fixing bugs and adding new functionalities
and since the update process involves replacing the existing executables
with new ones, their hash values in Whitelist DB have to be updated
consequently. User applications also regularly check for new updates and
install them in the background. The hashes of these updated executables
should also be reflected to Whitelist DB.

In environments where this could potentially lead to delays, e.g., due to
slow human reaction, we suggest that NoCry can be configured to defer
access control to keep the system stable and workflow uninterrupted. We
call this Deferred Mode.

When working in Deferred Mode, NoCry does not immediately block
calls to CSPRNG APIs coming from unknown processes. Instead, the
parameters and outputs of these calls are securely logged in a protected
location until administrator takes an action. Here, administrator can find
the software benign, thus add the hash of the executable to Whitelist
DB and dispose the logs associated with that process. Otherwise, the
process is suspended and, if necessary, recovery procedure is initiated.
The logging, and when necessary, recovery procedures are similar to the
approach of PayBreak [30] which we discuss in Section 1.2. However,
there are two notable differences in NoCry:

(i) logging is applied per unidentified process, not system-wide; and
(ii) once the administrator makes a positive decision, the logs are dis-

posed.

The rationale of the variations above is to reduce the potential impact
of logging the outputs of CSPRNGs. In our approach, random numbers
obtained by whitelisted processes are not logged. This eliminates the secu-
rity risks which could arise due to the persistence of the generated random
numbers which are potentially used for cryptographic purposes.

8.3 Methods, Experiments and Results 101

Optimized Decision Procedure

In UShallNotPass, the access control over CSPRNG APIs requires to
make an authorization decision which cause a significant delay. Mainly,
the delay is due to two factors: (i) time spent for establishing IPC; and
(ii) time spent by Controller for authorization.

As discussed in Section 7, the IPC is the main bottleneck of the autho-
rization procedure and causes an overhead on CSPRNG APIs calls with a
factor ranging from 62 to 125. In addition to the improved the security,
eliminating the IPC from access control system is another motive which
led us to unify Controller and Interceptor in a new module Unified Agent
in NoCry. This way, both interception and authorization tasks are carried
out in one place, without needing to consume time for IPC which enables
to decide and act faster.

Furthermore, in UShallNotPass, the subsequent calls from the same
process are authorized independently. While this approach would provide
the highest level of time-granularity in access control, it might be an
overkill for the security goals and a waste of resources for many systems.
As we report in Section 7, the security checks performed in Controller
causes an overhead up to a factor of 5.52. NoCry, therefore, holds an
authorization to be valid for the lifetime of a process.

It is reasonable to expect that the two optimizations above would bring
a significant performance improvement, which we assess in the next
section.

8.3 Methods, Experiments and Results

On NoCry, we have run a series of experiments aiming at to measure the
performance overhead, and false positive & false negative rates. For each
experiment we describe the methodology, then we report and discuss the
result.

Performance

Methodology. Wemeasure the time that a benchmark program spends
invoking CryptGenRandom API repetitively for 100 000 times. We run the
benchmark program first on a clean system, then on a systemwith NoCry.
We made this experiment on Windows 7 32-bit OS, running on a VM with
2 CPU cores clocked at 2.7 GHz. Overall, this is the same setting used in
Section 7.6.

Results and Discussion. Table 7.2 shows the results of our measure-
ments. It also reports the result from subsection 7, obtained using the
exact same methodology.

Our analysis shows that NoCry brings drastically lower overhead in terms
of time for getting the output of CryptGenRandom API. This improvement
is due to the unification of Interceptor and Controller components of
UShallNotPass which enables interception and control actions to be

102 8 Efficient End-Point Protection from Ransomware

Table 8.1: Time benchmarks of 100 000 it-
erative calls to CryptGenRandom API. Per-
formance gain is calculated as (old−new)⧵
old × 100. Measurements of UShallNot-
Pass are recalculated.

Measurement Mode Random Number Length (bits)

128 256 1024 2048

Clean System (sec) 0.13 0.14 0.18 0.24

UShallNotPass (sec) 15.59 15.80 15.84 16.91
UShallNotPass Overhead 11992% 11285% 8800% 7024%

NoCry (sec) 0.17 0.18 0.22 0.29
NoCry Overhead 30% 22% 18% 20%

Performance Gain 98.9× 98.9× 98.6× 98.3×

managed by a single component, Unified Agent, and thereby removing
IPC. This result is not surprising after our improvements in Section 8.2
and confirms our hypothesis.

Another cause of the performance increase is the use of cache mechanism
during authorization. In UShallNotPass, iterative calls from the same
process are authorized individually, causing a significant overhead, as
much as a factor of 5.52 (see Section 7.6). With NoCry, process authoriza-
tion is valid for the lifetime of a process. That is, accessing to Whitelist
DB is performed once after the first invocation of a CSPRNG API. This
allows eliminating the need for accessing Whitelist DB for authorizing
subsequent calls.

Lastly, the architecture of UShallNotPass limited the maximum number
of iterative calls to CryptGenRandom API to the order of 100 000 as the
system becomes unstable beyond this point (see Section 7.6). Since NoCry
is IPC-free, it was able to handle a significantly larger number of requests.
This makes it a better candidate for a protection system where CSPRNGs
are heavily consumed.

Evaluation of False Positives

In the domain of NoCry, false positive describes the condition that a
legitimate process calls a CSPRNG API and is stopped by NoCry.

Methodology. We have collected the Top 20 Installed Programs ac-
cording to Avast PC Trends Report 2019 [145], and we look at whether
they utilize CSPRNG functions and have digital signatures, the criterion
which NoCry can use for authorization.

Results and Discussion. Table 8.2 presents the results of our findings.
All of the applications in the Top 20 list calls CSPRNG APIs when running.
Among the Top 20, the only unsigned application is 7-Zip. Being 7-Zip

is an open source software, system administrators can study the code and
add it to the NoCry whitelist if they find it safe.

It is reasonable to expect that digital signatures of applications and source
code availability of open source software together help system adminis-
trators maintain Whitelist DB and therefore lower the number of false
positives. In the lights of these circumstances, we perceive that the false
positive rate of NoCry will be at a non-invasive level.

8.3 Methods, Experiments and Results 103

Rank Program Calls
CSPRNG APIs

Digitally
Signed

Open
Source

1 Google Chrome 3 3
2 Acrobat Reader 3 3
3 WinRAR 3 3
4 MS Office 3 3
5 Mozilla Firefox 3 3 3
6 VLC Media Player 3 3 3
7 Skype 3 3
8 CCleaner 3 3
9 iTunes 3 3

10 TeamViewer 3 3
11 Windows Live Essentials 3 3
12 7-Zip 3 3
13 Stream 3 3
14 Dropbox 3 3
15 Opera 3 3
16 CyberLink PowerDVD 3 3
17 CyberLink PowerDirector 3 3
18 HP Photo Creations 3 3
19 CyberLink YouCam 3 3
20 CyberLink Power2Go 3 3

Table 8.2: Top 20 Installed Programs ac-
cording to [145]. All applications in the
table calls one or more CSPRNG APIs.
NoCry will allow these calls automatically
since the applications are digitally signed,
except for 7-Zip, which is an open source
software.

1: VirusTotal Threat Intelligence,
https://virustotal.com

2: Cuckoo Sandbox,
https://cuckoosandbox.org/

Evaluation of False Negatives

The analyses in previous works [13, 45] recognizes the following three
strategies to obtain the encryption keys: (i) using embedded keys in the
binary file; (ii) generating keys on the victim’s machine; and (iii) down-
loading keys from a certain network location. The security analyses of
key generation in ransomware are found in [13, 45]. Here, we resume it.
If a ransomware follows (i), keys can be extracted from the ransomware
binary, and the encrypted files can be recovered. Most of the ransomware
prefer to generate the keys on victim’s machine. In this case, there are
two options: to use the CSPRNG, which produces high entropy random
values; or to use a non-cryptographic PRNG. The first has been largely
discussed already. The second is a weak choice: PRNGs are designed to
be reproducible thus their outputs are guessable. If the ransomware uses
a non-cryptographic PRNG, like rand function in C runtime library or
System.Random class provided by .NET framework, decryption is feasible.
If ransomware fetches keys from a remote server (iii) then blocking the
malicious IPs inhibits the ransomware, which forces ransomware devel-
opers to fallback to (i) or (ii). The only option for current ransomware to
get good encryption keys is therefore to use a CSPRNG.

In order to support our argument that NoCry can stop ransomware from
accessing CSPRNG, and thereby prevent its damages, we designed an
experiment. The outcome also measures the false negative rate of NoCry.
Next, we check if there exists a publicly available decryptor for those
samples that did not call any CSPRNG APIs.

Methodology. Following the same methodology in Section 7.6, we
(1) obtain a fresh malware corpus from VirusTotal1; (2) pick potential
ransomware among them; (3) rebuilt the same test environment, using
Cuckoo Sandbox2 to identify the active ransomware samples; and, (4)
classify the families using AVclass [128] tool; (5) run NoCry against
them; and (6) (if exists) discover the reason for a false negative.

https://virustotal.com
https://cuckoosandbox.org/

104 8 Efficient End-Point Protection from Ransomware

Table 8.3: List of active ransomware sam-
ples tested against NoCry. The notation
x/y means that x samples out of y could be
successfully stopped.

Family Samples (%)

Barys 1/1 (100%)
Birele 1/1 (100%)
Bitman 152/152 (100%)
Browserio 2/2 (100%)
Bzub 1/1 (100%)
Carberp 0/1 (0%)
Cerber 60/60 (100%)
Cryakl 0/1 (0%)
Cryptxxx 0/2 (0%)
Crysis 2/3 (66%)
Dalexis 1/3 (33%)
Daws 5/5 (100%)
Delete 1/1 (100%)
Deshacop 1/1 (100%)
Dlhelper 1/1 (100%)
Enestaller 1/1 (100%)
Enestedel 1/1 (100%)
Expiro 1/1 (100%)
Gamarue 2/2 (100%)
GandCrab 1/1 (100%)
Gator 1/2 (50%)
GlobeImposter 1/1 (100%)
Godzilla 1/1 (100%)
Jaff 1/1 (100%)
Lethic 4/4 (100%)
Locky 47/47 (100%)
Midie 1/1 (100%)
Neoreklami 0/1 (0%)

Family Samples (%)

Occamy 4/4 (100%)
OpenCandy 2/2 (100%)
Petya 2/2 (100%)
QQPass 1/1 (100%)
Razy 6/6 (100%)
SageCrypt 1/1 (100%)
Saturn 1/1 (100%)
Scar 3/3 (100%)
Scatter 2/2 (100%)
Shade 2/2 (100%)
ShadowBrokers 1/1 (100%)
Shiz 17/17 (100%)
Sigma 0/1 (0%)
Sivis 3/7 (42%)
Spigot 2/2 (100%)
Spora 2/2 (100%)
Striked 0/1 (0%)
Swisyn 0/1 (0%)
Tescrypt 5/5 (100%)
TeslaCrypt 316/316 (100%)
Tpyn 1/1 (100%)
Upatre 2/7 (28%)
Ursnif 1/1 (100%)
Vobfus 1/1 (100%)
Wowlik 1/1 (100%)
Wyhymyz 1/1 (100%)
Zerber 52/52 (100%)
Zusy 7/7 (100%)

Total: 726/747 (97.1%)

3: ID Ransomware,
https://id-ransomware.

malwarehunterteam.com/.

Results and Discussion. We identified a new set of 747 active samples
from 56 cryptographic ransomware families. Next, we installed NoCry on
the test machines and run the executables against NoCry. Table 8.3 shows
the results: 97.1% of the samples have been stopped by NoCry before any
user file is damaged, i.e., encrypted by the ransomware program. They
were the samples that attempted to call CSPRNG during the attacks, and
were terminated by NoCry as they were not present in Whitelist DB.

Among the 2.9% of samples that cause false negative, there may be ran-
somware executables that either circumvented NoCry’s access control,
or ransomware process did not call CSPRNG APIs. To discover the exact
reason behind the false negatives, we picked random samples from the
families we missed, and manually analyzed the API call tree. The miss-
ing samples from Cryptxxx and Dalexis did call CryptGenRandom API,
however, said API could not be hooked by NoCry. We believe this is due
to a problem of our implementation. The missing samples from Carberp,
Cryakl, Crysis, Gator, Neoreklami and Sigma families did not call any
CSPRNG APIs. Among them, we found decryptors for Cryakl, Crysis
and Sigma on ID Ransomware3 platform.

https://id-ransomware.malwarehunterteam.com/
https://id-ransomware.malwarehunterteam.com/

8.4 Discussion 105

8.4 Discussion

The solution we proposed to address the second issue, i.e., how to man-
age the Whitelist DB, needs further discussion. In a system assumed
uncorrupted, we bootstrap the list in Training mode by feeding in honest
applications that call CSPRNG. In Deferred mode we update the list when
a new version of a whitelisted application is available; we temporarily
grant it the right to call CSPRNG but retaining critical data that can help
recovering files in rare case where the upgrade hides a ransomware. De-
spite looking reasonable to us, one can still challenge our choices. For
instance, one can ask why managing a Whitelist DB of applications that
call CSPRNGs in the first place? In fact Windows OS already offers a
protection, AppLocker, that enables to deny non-whitelisted apps (e.g.,
malware) from running. Cannot be ransomware dismissed as any other
malware? First, we observe, this practice seems not have slowed down
ransomware so we conclude that it needs more time and maturity to
be widely accepted. Second, the problem with the whitelists is that they
may not be complete, generating fastidious false positives. This issue, of
course, affects also NoCry, but differently from a system which offers
protection against generic harmful apps (a term that may have differ-
ent interpretation). NoCry targets and operate against a very specific
situation. If we imagine to defer to the user the decision about whether
a potential false positive is indeed so, NoCry can precisely state that a
certain application is trying to call critical functions, potentially to create
strong encryption keys and unless the application is meant to encrypt
data, it is better to let NoCry kill it. We fail to imagine instead stating a
similar precise claim to warn about a generic harmful application. The
best could be a warning message sounding like “something insecure may
happen”, alert that users have learned to ignore [146]. A precise claim like
that, enabled by NoCry, will help users take more informed decisions,
arguably reducing the number of false positives, and we intend to test
this hypothesis in a future work.

Another critic can be that by only guarding access to CSPRNG, we miss to
stop ransomware that generate encryption keys using different strategies.
If this critics were well founded, this would count as a serious deficiency
for NoCry because would lead to false negatives. To this critic we an-
swer first by observing that NoCry was neither designed to stop other
ransomware than those calling CSPRNG APIs nor conceived to work
in isolation from other anti-ransomware. Indeed, we think, the full po-
tential of NoCry will emerge only in integration with an anti-malware
that provably can reverse the damage done by ransomware that make
use of the encryption keys obtained not by calling CSPRNG. Theoreti-
cal solutions exist that have the potential ability to reduce the cost of
reversing encryption to a feasible time complexity and a few solutions
are actually implemented [147]. These seems, indirectly, to support the
argument that by not calling CSPRNG APIs, ransomware can realize only
cryptographically-weak encryption. It is then by uniting different meth-
ods that we imagine a good anti-ransomware can reliably combat this
crypto-crime. How to do it properly is an open problem but considering
the improvements that we have herein discussed, we believe this union is
possible and practical.

Future of Ransomware

Future of Ransomware 9
9.1 Potential New Threats . . 109
9.2 Dual Use of Ransomware 113
9.3 Ransomware Intelligence 120

In this chapter we discuss what potential strategies could ransomware
authors might develop to continue causing damage for an extended pe-
riod: we introduce original ransomware variants that employ rootkit
techniques and white-box cryptography, and, inspired by the cyberse-
curity incidents occurred in real-world applications, we point out new
possible ransomware targets and attack types.

9.1 Potential New Threats

We start by giving high-level descriptions of advanced techniques that
ransomware may utilize to defeat the defense systems analyzed in the
previous chapters. Next, we point out new areas that ransomware may
exploit and extend the attack surface that next generation ransomware
may target. In each discussion, our observations are supported by the real
world incidents.

Rootkit-based Ransomware

Rootkit is a type of malware that has the ability to conceal its activities
on the target computer system, e.g., code executions, file I/O, network
and connections [148]. The capability of hiding malicious operations is
achieved by hooking operating system’s APIs in order to filter and remove
the rootkit’s traces, as depicted in Figure 9.1. Since a rootkit clears its
footprints from APIs that inspect file and memory access, the rootkits are
harder to detect than other types of malware.

ReadFile() Application

NtReadFile() kernel32.dll

SYSENTER (x86)
or SYSCALL (x64) ntdll.dll

NtReadFile() ntoskrnl.exe

I/O Manager Rootkit

File System Driver Stack

User mode

Kernel mode

Figure 9.1: Interception of read calls by a
rootkit in order to hide its trace.

Hooking system APIs can be accomplished in several ways, including
changing the function addresses in IAT, patching SSDT in kernel level,
and injecting code into applications (DLL injection) [149]. Starting from
Windows Server 2003, x64-based versions of Windows platform intro-
duced Kernel Patch Protection (KPP) which forces kernel mode drivers
to be digitally signed, hence prevents unknown modification of code or
critical structures in Windows kernel [150]. Nevertheless, cybercriminals
frequently used stolen certificates to sign malware in order to penetrate
this defense [139, 140]. Ransomware authors also seems to have this ca-
pability. A VirusTotal report shows that a sample of Razy ransomware
has a valid digital signature [141].

Implementations of current ransomware defense approaches deeply rely
on the security guarantees of the host OSs. While increasing the bar for
cybercriminals, state-of-the-art ransomware defense systems utilizes user
mode hooks or kernel mode drivers to monitor behavior of applications
and stop ransomware [23, 25, 26, 30]. Although there is currently no

110 9 Future of Ransomware

1: Ultimate Packer for eXecutables,
https://upx.github.io/

2: ASPack,
http://www.aspack.com/aspack.html

3: PEtite,
http://www.un4seen.com/petite/

known ransomware which utilizes the advanced techniques of rootk-
its, the aforementioned defense systems may not detect a rootkit-based
ransomware.

Obfuscation

Obfuscation is the practice of making a software implementation incom-
prehensible through a sequence of transformations while preserving the
program semantics [151]. Originally, legitimate vendors utilized obfusca-
tion to protect intellectual property in software implementation. However,
malware authors also take advantage of obfuscation to conceal malicious
executable code in the binary programs. Concordantly, obfuscated mal-
ware can evade from signature based detection techniques which is one of
the oldest approaches in the battle with malware.

Listing 9.1: Assembly code of a computer
program that multiplies 1 and 2.

push rbp

mov rbp, rsp

mov WORD PTR [rbp-2], 1

mov WORD PTR [rbp-4], 2

movzx eax, WORD PTR [rbp-2]

movzx edx, WORD PTR [rbp-4]

imul eax, edx

mov WORD PTR [rbp-6], ax

movsx eax, WORD PTR [rbp-6]

pop rbp

ret

Listing 9.2: Obfuscated version of the
original program in Listing 9.1. Seman-
tic equivalence is preserved — this pro-
gram also multiplies the integers 1 and 2.
The transformed function is obtained by
adding ineffective instructions shown in-
side red boxes. Note that the code’s appear-
ance is changed while keeping its behavior
same.

push rbp

mov rbp, rsp

mov WORD PTR [rbp-2], 1

mov WORD PTR [rbp-4], 2

movzx eax, WORD PTR [rbp-2]

add eax, 1

mov WORD PTR [rbp-2], ax

and WORD PTR [rbp-2], 32767

movzx eax, WORD PTR [rbp-2]

sub eax, 1

mov WORD PTR [rbp-2], ax

and WORD PTR [rbp-4], 32767

movzx edx, WORD PTR [rbp-4]

movzx eax, WORD PTR [rbp-2]

imul eax, edx

mov WORD PTR [rbp-6], ax

movsx eax, WORD PTR [rbp-6]

pop rbp

ret

Obfuscating malware can be categorized into four types: encrypting, oligo-
morphic, polymorphic and metamorphic malware [152]. The members of
the first type encrypts malicious code segment in the binary program and
decrypt it in the runtime. This involves a decryptor function embedded
in the malware body to decrypt and execute the malicious code. Anti-
malware systems, though, would still recognize the decryptor function
and identify malicious software. Thus, the second type, oligomorphic
malware, carries a set of encrypted decryptors in data segment of binary
and changes the decryptor in each generation. However, the number of
decryptors is limited and therefore all of them eventually gets identi-
fied by anti-malware systems. On the other hand, polymorphic malware
mutates its decryption engine randomly, hence evades signature based
detection. The means of mutation include dead code insertion, register
reassignment, subroutine reordering, instructor substitution, code trans-
position & integration. For instance, dead code insertion is the practice
of adding code that has no effect on the functionality of the software and
is shown in Listing 9.2. For the details of other techniques, we refer the
reader to [153]. Anti-malware vendors developed sandboxing approach
to help detection, which works by observing the program’s behavior in a
safe environment. Once the polymorphic malware is executed in sandbox
and the constant malicious part is decrypted in the memory, signature
based detection can be applied. The race between cybercriminals and
anti-malware vendors resulted the appearance of metamorphic malware
which actively recognizes, parses and mutates its whole body. As it does
not contain a constant body, and thus cannot be detected via signature
analysis [154], metamorphic malware has been considered to be the most
dangerous type.

In the ransomware side, the situation seems to be safe for now. As of today,
there is no known instance of obfuscated ransomware through aforemen-
tioned techniques. Contemporary ransomware utilizes binary packers,
e.g., UPX1, ASPack2 or PEtite3, which are used to compress the compiled
code in order to make the size of executable even smaller. However, mal-
ware authors do not confine themselves to well-known packers, often
write their own obfuscator routines and utilize combined packers [155].
This multi-layer protection may hinder defense systems based on API
monitoring (if third party crypto libraries statically linked) and sandbox-
ing. In the case of an unlucky event of infection, such a ransomware can
be devastating.

https://upx.github.io/
http://www.aspack.com/aspack.html
http://www.un4seen.com/petite/

9.1 Potential New Threats 111

White-Box Cryptography

White-box cryptography is the concept of protecting the sensitive data
hard-coded in a software implementation [156, 157]. In particular, main
focus of this domain is to embed secret keys into the source code in such
a way that it is hard to extract them from compiled binary. An exam-
ple of a Feistel network based block cipher and its fixed-key white-box
implementation are illustrated in Figure 9.2 and Figure 9.3, respectively.
Although white-box cryptography is not a new idea (it is first introduced
in 2002), no secure white-box implementation of the block cipher AES
exists yet, for instance, previous proposals are found to be open to key ex-
traction and table-decomposition attacks [158]. Nevertheless, white-box
cryptography still continues to be an active field of research [159–161].

𝐿0 𝑅0

𝐹𝐾1

𝐹𝐾2

𝐹𝐾3

𝐿3 𝑅3

𝐾𝑚

𝑐

Figure 9.2: Illustration of a block cipher
algorithm based on a 3-round Feistel net-
work structure.

𝑚

𝑐
Figure 9.3: Illustration of a white-box im-
plementation of that block cipher where
the key 𝐾 is hardcoded into the algorithm
in a way that it is not possible to extract
𝐾.

Currently, ransomware implementations cannot protect the secret keys in
the memory during the encryption process. Using this weakness, defense
systems can extract these keys using various techniques. For instance, a
key escrow like approach monitors calls to known cryptographic APIs (ei-
ther built in or third party) and stores parameters of encryption functions
in a vault [30]. In virtual environments, point-in-time snapshot of memory
would also reveal those keys and recovery could be possible. Furthermore,
some ransomware families encrypt victim’s files using a key which is
hard-coded in the ransomware body [162]. In this case, binary analysis
can be utilized to search for static encryption keys in the compiled code. In
other words, one can interact with the ransomware and propose solutions
if the encryption keys resides unprotected in the memory. That being said,
key extraction from securely implemented white-box algorithms is meant
to be hard. Therefore, introducing of secure white-box implementations
of block ciphers can tip the balance in favor of ransomware authors.

Ransomware of Things

Internet of Things (IoT) refers to the interconnected network of physical
devices that can communicate over the Internet [163]. An IoT device
can be equipped with electronic components, firmware, software, various
types of sensors to collect information and actuators that allows to interact
with the physical environment. Besides electronic devices like televisions,
mobile phones and surveillance systems, in today’s world, cars, planes,
buildings, kitchen gadgets and even toys are also connected to the web.

IoT devices has been a part of our daily lives for a long time and can be
seen virtually everywhere. However, IoT devices are inherently resource-
constrained (CPU with low clock rate, small memory size). As such, the
available options for cryptographic algorithms to use is limited when
designing a secure communication protocol [164]. The security issues
with IoT have always been a concern in information community [165],
most importantly access control problems.

Given that the vulnerabilities in IoT devices and the high motivation of
cyber criminals, there have already occurred several alarming and threat-
ening ransomware incidents as follows. Hackers took control of ticket
machines of San Fransisco’s public transportation network and claimed
ransom [166]. Furthermore in Austria, a hotel had to pay ransom after
a ransomware infected its management system and blocked generating

112 9 Future of Ransomware

new cards [167]. Researchers demonstrated a proof-of-concept that the
control of an Internet-enabled thermostat can be taken by a ransomware,
allowing them to change the heating settings [168]. The screen of the
hacked device is shown in Figure 9.4. Similarly, a security report states
that cybercriminals launched a Permanent Denial of Service (PDoS) attack
on IoT devices which wipes all data on the device and destroy its firmware
and/or basic functions, causing a permanent corruption [169].

Figure 9.4: Vulnerable IoT devices, like
this thermostat, constitute an easy target
for ransomware. Courtesy of Ken Munro.

By extending the attack surface and lack of adequate security, IoT has
a potential of opening doors to novel ransomware attacks. For example,
researchers demonstrated that it is possible to take control of a car and
remotely stop it [170]. Also, another group of researchers showed that
75% of bluetooth smart door locks can be wirelessly hacked [171]. Given
these facts, it is reasonable to ask the following questions: Consider that
your car was remotely stopped in a rural area. Would you pay the ransom
to re-activate the car’s engine? Likewise, when you return your home in
the middle of the night and see that your door is locked. Would you pay
the ransom to go in your home? The picture may become worse for the
enterprises, as the ransom amounts can be set higher and this makes the
enterprises a more plausible target for cyber criminals. But the negative
effects of a ransomware attack is beyond the money: the damage in the
reputation and work loss should also be counted. Taking into the account
that the security flaws in IoT devices do not seem to be fixed soon, or
even fixable [172], ransomware attacks may gravitate towards IoT in the
near future.

Socio Technical Attacks

The ultimate goal of cyber-criminals is to obtain money as much as
possible. To achieve this, they can become very creative and employ
novel marketing strategies. In one of these, a ransomware variant called
Popcorn Time offers an option to victims who want to get decryption keys
without paying. The condition is first victim infects other two ones and
these two victims pay the ransom. Then, the first victim obtains the keys.
The initial samples of Popcorn Time ransomware have an encryption key
embedded in the malware body [173]. Although the key can be extracted
from the current sample of Popcorn Time and files can be recovered for
now, previous evolution of ransomware suggests that future samples of
Popcorn Time may become more effective.

To this day, the vast majority of famous ransomware families share the
same principle. Extortion by holding decryption keys can be expected to
succeed when its vital for victims to regain access to their data. However,
on the other side of medallion, there is another fact. Some data may need
to be kept private such that when leaked, data owner may lose advantage
and/or have economical damage. Thus, another way to extort victims
can be to exfiltrate sensitive data and ask for a ransom to not make it
public. These data types may include trading secrets, financial records,
medical history, government documents, details of high-tech projects,
blue-prints of critical infrastructures, and internal/private communica-
tions. For example, the disclosure of data breaches reduced the purchase
price of Yahoo by $350 million when it is acquired by Verizon [174]. It
comes to mind that, instead of selling the leaked data in the underground

9.2 Dual Use of Ransomware 113

market, hackers can try to claim a ransom to get a higher revenue. An-
other attack hit Sony Pictures, hackers compromised the computers and
released sensitive data including company’s financial records and e-mail
messages of executives [175]. The contents of the breach put the com-
pany in a difficult situation so that one may ask the question: Would Sony
Pictures pay a ransom if attackers demand it?

Lastly, we would like to point an important difference between extortion
via encryption and data exfiltration. In the former case, the instance of
threat comes to an end when the victims regain access to their files. In
contrast, no one can guarantee that could retain cyber-criminals from ask-
ing for ransom again in the latter case. In this situation, it would be safe
to expect that extortion via stealing sensitive information may be an in-
creasing trend in the near future and prepare the network infrastructures
against this threat.

9.2 Dual Use of Ransomware

In anti-ransomware research, ransomware samples are routinely analyzed.
The goal is to understand how they generate or retrieve the encryption
keys; how they search, sort and prioritize which files to target first; and
which files they encrypt first and by using which encryption algorithm. In
this quite methodical work, it is routine to reverse engineer ransomware
samples and analyze their source codes. While performing this task, we
found that some piece of code was not original but copy-and-pasted from
well-known public repositories or developpers communities. From this
discovery, with some additional work, we managed to build a decryptor
for those ransomware samples.

Although our discovery is not surprising—researchers have already com-
mented on how codes from public repositories is re-used and how this
impacts security (e.g., see [176])—realizing that also ransomware’s se-
curity depends on public code has captured our attention. We started
wondering whether there were other cases of copy-and-pasted code in
ransomware. And we started reflecting on which consequences such re-
use of code may bring into the fight against ransomware attacks. This
articles report on our insights on the subject.

Although motivated by some experimental findings, our contribution is
purely argumentative. But, by developing our argument rigorously, we
hope to contribute to a scientific discussions on “the matter”. And being
“the matter” related to dual-use of concern in ransomware research, we
intend to embark on other questions as well: What famous precedents
exist in the recent history of ransomware that could enlighten us on the
pros and cons of dual-use research? Should ransomware be considered
components of a cyber-weapon? And, as such, are there reasons to classify
ransomware as having military use? Thus, would it be reasonable to
resort to intelligence and counter-intelligence strategies, such as those
suggesting to contain information spreading in case of an attack or to
control public information, to mitigate the threat?

We restrict our argument to cryptographic ransomware, those which rely
on cryptography. Other kind of ransomware, e.g., those which aim to

114 9 Future of Ransomware

distress victims to pay up but, like the scareware, only pretend to use
encryption but do not, are excluded from the discussion.

Findings and Analysis

Is copy-and-paste from public repositories a practice in ransomware
engineering? To investigate the question we have first to collect and
obtain the code of real-world ransomware samples and reverse engineer
it.

The most accurate way to accomplish this latter is to decompile the mali-
cious binaries. The task becomes quite practical if the malware is imple-
mented using the .NET framework. Looking into malicious .NET assem-
blies downloaded from “Hybrid Analysis”, an automated malware analysis
platform [177]. Hybrid Analysis utilize sandboxing technique to deter-
mine if an executable exhibits malicious behaviour or poses no specific
threat. From it, we collected ransomware samples by searching on re-
port database with the following settings: (i) Exact Filetype Description as
Mono/.Net assembly, for MS Windows; (ii) Verdict field as Malicious;
and (iii) Hashtag field as #ransomware.

On a initial set of 128 executable, we applied dnSpy [178], a tool to obtain
source codes. 39 samples, obfuscated, precluded any analysis. Of the
remaining 89, we manually perused the source code, searching for key
generation and encryption routines. 68 samples turned out to be non-
cryptographic ransomware, with no such routines in their program body.
The remaining 21 cryptographic ransomware samples were our final data
set.

Figure 9.5: In our research, we inves-
tigated popular platforms among soft-
ware developers: GitHub (https://www.
github.com), StackOverflow (https://
www.stackoverflow.com) and CodePro-
ject (https://www.codeproject.com).

Using the found crypto-related code lines (e.g., key derivation, encryption)
as keywords, we searched for those lines in source code repositories,
question&answer platforms and developer communities (see Figure 9.5).
When analyzing the hits, we compared the semantics of code snippets,
naming of constants and variables, function signatures, strings, and error
messages. From this searching and matching we discovered that some
code was a verbatim copy-paste. Other code resulted, at least apparently,
a plagiarism of some public available code.

Were we witnessing code-reuse (i.e., dual-use) in ransomware? Before
claiming code-reuse, we had to verify whether the code had been pub-
lished before the first appearance of it in the malware. There should also
be a reasonable time frame between the two events. The date of the first
appearance of a ransomware, checked by using VirusTotal [127], has been
compared with the date on which the knowledge was first shared on
online. A double-check on the integrity of the pieces of information avail-
able on the executable was also performed. According to our findings, at
least 9 out of 21 ransomware samples resulted to contain snippets bearing
a marked resemblance to codes at online resources, this leading us to
conclude that they are in fact a copy-paste.

In the following, we can comment on an excerpt from the ransomware
samples (see Table 9.1) that we have found being a copy-paste from (i) a
public repository of fully functional ransomware prototypes; (ii) tutorials
and posts at developer communities. We also elaborate, where possible,

https://www.github.com
https://www.github.com
https://www.stackoverflow.com
https://www.stackoverflow.com
https://www.codeproject.com

9.2 Dual Use of Ransomware 115

Table 9.1: SHA256 digests and family names of the samples. To determine the family name, we applied AVclass tool on the labels provided
by AV vendors which we obtained from VirusTotal. SINGLETON denotes that the tool could not find any plurality among the labels for that
sample, i.e., no vendor agreed on the family name.

SHA256 Digest Family Reuse From

1 0e5a696773b0c9ac48310f2cda53b1742a121948df5bcb822f841d387f0f5f68 Jigsaw

2 1d57564398057df99d73cca27015af24142c25828287837c73d2daf0b3c3af5b Mimikatz

3 1ebdbfea6ab13f258a7d00dea47de48261cfb84d52ebbb6f282498c3ab1b1b39 Occamy

4 3b4aaf37510c0f255e238c81b7e1a446bfa925bd54f93969c3155d988fbb6501 HiddenTear [179]
5 41ee4623d60544dd0ca16f6177565d99825afb38b932ccecc305ef2fc20e03f4 HiddenTear [179]
6 58d11ef74b062e9996e75d238501a3f4d23691b101997d898d478696795ae3ff CloudSword [180]
7 662d0f034f2852e4e43d22a3625c1c8600c3d36660b596db1d6bad5c4980d9df Ryzerlo [179]
8 66a3172e0f46d4139cc554c5e2a3a5b6e2179c4a14aff7e788bb9cc98a2219d5 Tiggre

9 7cdd7e30c7091fd2fa3e879dd70087517412a165bf14c4ea4fd354337f22c415 HiddenTear [179]
10 87ce0b2e22b02572146676277cd6e9d89225e75361d1b696555cfe695c2e1f45 SINGLETON

11 894aa842c129b39c0b9a7d575133d68b25de2ecd4e777f29e58481d30dfb6f4e Omegax

12 950be5b5501ee84b1641c3a9a780242a57cdd412892c781eac8781498bf11f3e Bobik

13 951d78dd92eba7daa3ef009ce08bba91a308e13bdeb8325af35bc8202bd76e9b Tiggre

14 b5f3a090556ea30210a23fc90b69c85c68e8e08c89fbe58eb6a829e356dcc42e Occamy

15 ce53233a435923a68a9ca6987f0d6333bb97d5a435b942d20944356ac29df598 Crypren [181] & [182]
16 d36e6282363c0f9c05b7b04412d10249323d8b0000f2c25f96c6f9de207eedf8 HiddenTear [179]
17 def09368d22c7b3f6a046ef206a57987095b2f4ddae1d26c6ef2594d6be09bfc Diztakun

18 e2ac9692c0816ccd59d1844048c6238dc5d105b0477620eeb1cdb0909804a787 WhiteRose [179]
19 f37080ee4cc445919cae0b1eb40eff46571f7ce0d85b189321d80a41c8752212 SINGLETON

20 f535879cf05a099bf0f6d2a7fa182d399ec9568f131abb23d9fb98418f45789d Perseus [180]
21 fd99bfeac78c087a9dc9d4c0c1d26a7ea9780a330f88ba0d803f3464221b4723 SINGLETON

about where the original code comes from, and about its cryptographic
qualities.

Ransomware fromrepositories of fully functional prototypes. Tiggre,
see Table 9.1, is a sample of cryptographic ransomware that uses a key
generation function that is copy of a piece of public code known as
HiddenTear [179] (see Listing 9.3 and Listing 9.4). From it, Tiggre inher-
its a weakness: the password is generated using the outputs of a cryp-
tographically weak algorithm. In fact, the same author of HiddenTear
had developed a decryptor by using this weakness [183]. We tell the
full story later, but what counts for now is that the open-source ran-
somware HiddenTear is a very famous ransomware code, which was
posted publicly in 2015 allegedly for educational purpose. Since then,
cyber-criminals have been using it as a source of inspiration for their
ransomware variants [184]. This was also the case for Tiggre.

The original HiddenTear works as follows: it generates a password by
calling CreatePassword which is shown in Listing 9.3. The password,
from which the encryption keys are derived, is sent to C&C server. Next,
before notifying the user, the ransomware attempts to encrypt all the files
in test folder under the user’s Desktop directory.

Ransomware authors that copy from HiddenTear had to implement their
own back-ends before having a working ransomware, but HiddenTear
remains their point of reference. We have found that basic function-
alities such as password generation and encryption blocks have been
replicated from HiddenTear: for each file, the encryption key is derived
from the same master secret, the password; this latter is generated using
System.Random, a class that provides (cryptographically weak) pseudo
random numbers.

116 9 Future of Ransomware

From a cryptographic point of view, the outputs of System.Random is
reproducible when using the same seed and its secrets are vulnerable
to a forensics analysis. But other variants of HiddenTear eliminate this
weakness: the weak key generation method is not seen in those samples.

Listing 9.3: Password generation method
of HiddenTear. This password will later
be used as the master secret to derive en-
cryption keys.

public string CreatePassword(int length) {

const string valid = "a..zA..Z1234567890*!=&?&/";

StringBuilder res = new StringBuilder();

Random rnd = new Random();

while (0 < length--)

res.Append(valid[rnd.Next(valid.Length)]);

return res.ToString();

}

Listing 9.4: Password generation method
used by Tiggre. The set of valid characters
is shortened, most probably, to ease the
typing of the password when asked for
recovery.

private static string RandomString(int length) {

string chars = "a..zA..Z0123456789";

StringBuilder sb = new StringBuilder();

Random random = new Random();

while (0 < length--)

sb.Append(chars[random.Next(chars.Length)]);

return sb.ToString();

}

Ransomware from community platform. Confidentiality of data is a
highly demanded and legitimate need in the digital world. While crypto-
graphic techniques can be used to protect the secrecy of data, developing a
security application is an error-prone process. Therefore, developers who
recently entered in the field of cybersecurity might need to use the help
of online tutorials. For example, Listing 9.5 shows a post on CodeProject
website [181] which explains a simple way to encrypt a file using a key
derived from a password in C# language. The function, EncryptFile, is
poorly written from a cryptographic point of view. There are weaknesses,
such as (i) presence of a hard-coded secret in the code; and (ii) improper
key derivation, to name a few. That said, we found a Crypren ransomware
variant (see Table 9.1) which copies the file encryption and decryption
functions from [181]. Listing 9.6 shows the function modified by the ran-
somware author, who disdained to write a password generation method
and even used almost the same hard-coded secret.

Furthermore, the same Crypren sample contains the exact code snippet
shared at another developer community [182]. That piece of code, is
meant to impersonate another user, i.e., to launch a process under that
user’s account. However, the said code portion is not used/referenced by
the program.

In another case, we observed that an online tutorial published in 2005 in-
spired two ransomware samples: Perseus and CloudSword (see Table 9.1).
The post, available at [180], explains how to encrypt files with a user-
supplied password in VB.NET programming language. Many portions of

9.2 Dual Use of Ransomware 117

the code is reused by the ransomware samples, bar the part which takes
input (i.e., the password) from the user. Alternatively, the Perseus variant
uses an embedded password to derive key, while the CloudSword variant
uses the System.Random to generate a password from which the key is
derived. The CloudSword sample even contains the exact error messages
as in the full project at [180]; the Perseus sample uses the same code
portions as in the tutorial, that without error messages.

Discussion. From our findings, we can conclude that certain ransomware
engineers do copy-and-paste code frompublic sites. Surely, this conclusion
cannot be representative of how all ransomware variants are coded. We
do not even know whether who took advantage the public resources are
professionals or amateurs, and it may be inherently hard to investigate
for an answer on this matter due to the difficulty to reach out ransomware
developers. However, we speculate, ransomware engineers are likely not
in a different position than security developers. In [185], it is reported
that in a population of three hundreds developers among which also
professionals, only a quarter relied on the official documentation, while
the rest consulted “the Internet”, inevitably relaying in their code errors
naïvities “out there”, cause them to introduce security vulnerabilities in
their code.

This seems to remain valid in our case: the security of some ransomware
depends, at least in part, on the security reliability of the unofficial sources.
A question remains open. Has the code-use helped ransomware criminals?
The question is intertwined with the practice of dual-use of research in the
field and, for this reason, we looked into the recent history of ransomware
attacks in search for episodes of code re-use.

Dual-Use & Ransomware

Article 2 of Council Regulation (EC) No 428/2009 defines ‘dual-use items’
as items which can be used for both civil and military purposes. The
article includes “Computers” and “Telecommunications and Information
security” as categories to be screened for potential dual-use.

When it comes to cryptography, dual-use is a seriousmatter. In response to
the USMunitions List, Category XIII, Materials andMiscellaneous Articles,
which mentions “cryptographic devices, software and components”, in a
T-shirt shown at a DEFCON conference it was reported provocatively a
piece of (encryption) code with the comment “this [code] can also be a
munition” [187].

Within the cryptography community there is awareness that dual-use
comes with a moral burden. Rogaway wrote that “cryptography is an
inherently political tool, and it confers on the field an intrinsically moral
dimension” [188]. Rogaway’s argument is scoped in the contention be-
tween privacy on one side and mass surveillance on the other, but the
message on that DEFCON T-shirt extends, even reverses, the matter. It
raises the stake by pointing out that cryptographic code can be misused
as a weapon. This is still the vision in certain countries, for instance the
US, where non-military cryptography exports are if not forbidden at least
controlled.

118 9 Future of Ransomware

Listing 9.5: A simple function to encrypt
files with a password, published at Code-
Project. Contrary to the common practices,
e.g., PBKDF2 [186], encryption key is de-
rived directly using UTF-16 character en-
coding. In addition, instead of generating
a unique value, encryption key is used as
IV.

private void EncryptFile(string inputFile, string outputFile) {

try {

// Your Key Here

string password = @"myKey123";

UnicodeEncoding UE = new UnicodeEncoding();

byte[] key = UE.GetBytes(password);

string cryptFile = outputFile;

FileStream fsCrypt = new FileStream(cryptFile, FileMode.

Create);

RijndaelManaged RMCrypto = new RijndaelManaged();

CryptoStream cs = new CryptoStream(fsCrypt, RMCrypto.

CreateEncryptor(key, key), CryptoStreamMode.Write);

FileStream fsIn = new FileStream(inputFile, FileMode.Open)

;

int data;

while ((data = fsIn.ReadByte()) != -1)

cs.WriteByte((byte)data);

fsIn.Close();

cs.Close();

fsCrypt.Close();

}

catch {

MessageBox.Show("Encryption failed!", "Error");

}

}

Being the subject of this chapter ‘ransomware’, the matter must be con-
textualized: what about dual-use for cryptographic ransomware? And are
ransomware and their cryptographic components weapons? To answer
this question we look into cases of dual-use in ransomware. The most
controversial is that of HiddenTear and its clones.

HiddenTear and its Clones. In 2015, a programmer Utku Şen published
the first fully-fledged, open-source ransomware HiddenTear. This is the
sample we commented in the previous section and whose code to generate
a password is shown in Listing 9.3.

From the early days, the release of HiddenTear prototype received crit-
icisms from the security community [189]. The main concern of the
researchers is that even novice programmers can also make use of the
published ransomware code while developing new variants. Time showed
that they were right. A McAfee researcher stated that “in June (2017)
almost 30% of the ‘new’ ransomware species we discovered was based on
the HiddenTear code” [190].

Three months after the first release, Şen claimed that he wished (i) to pro-
vide an example of ransomware for beginners (ii) to build a honeypot for
script kiddies [183]. It was partly true that the first variants of HiddenTear
contained the same critical bugs that enabled the recovery of files [184].
However, one real thing in the malware history is evolution. The bugs in
the original HiddenTear was fixed, and HiddenTear variant replaced the
cryptographically insecure key generation method with a new one [191]

9.2 Dual Use of Ransomware 119

Listing 9.6: File encryption function of
the Crypren sample. If C&C server is
not reachable, the embedded password is
used to derive keys. The resemblances be-
tween hard-coded passwords, key deriva-
tion methods and error messages are re-
markable.

private static string GetEncKey() {

try {

using (WebClient webClient = new WebClient())

return webClient.DownloadString(@"http://ohad.000

webhostapp.com/cnc.php?txt=saveme").Trim();

}

catch {

return "myke123!";

}

}

private static void EncryptFile(string inputFile, string

outputFile, string password) {

try {

byte[] bytes = new UnicodeEncoding().GetBytes(password);

FileStream fileStream1 = new FileStream(outputFile,

FileMode.Create);

RijndaelManaged rijndaelManaged = new RijndaelManaged();

// [...]

fileStream1.Close();

System.IO.File.Delete(inputFile);

}

catch {

Console.WriteLine("Error: Encryption failed!");

}

}

which evades the state-of-the-art key-oriented anti-ransomware defenses.
Later, Şen admitted that his experiment was a total failure.

Another criticism to publishing the full source codes of a ransomware
regards the principle of responsible disclosure. Prior to sharing the sources,
Şen did not informed the anti-virus vendors. It should be noted that, when
HiddenTear was released, on August 2015, only a few anti-ransomware
systems existed: signature-based detection was the main technique to
stop ransomware, just as the other malware types. Since HiddenTear and
its variants were previously unseen, they were not recognized by AVs
and therefore could run undetected for a while. The only precaution Şen
took was putting a warning message in HiddenTear source code, which
cyber-criminals could easily ignore.

Further Public Prototypes. Şen is not the only person that published
a full ransomware prototype. There are several ransomware projects in
different programming languages, publicly available on the Internet. For
instance, Arescrypt is another open source ransomware implemented in
C# [192]. GonnaCry is a Linux ransomware, implemented in both C and
Python [193]. Aiming at web servers, a ransomware script written in PHP
is also available at [194]. There is even an “academic” ransomware proto-
type implemented in Go language [195]. All these projects are publicly
available at GitHub, a well-known platform among software developers.
Moreover, although Şen abandoned the HiddenTear project, there are
still several clones of the original repository and even some improved
versions of HiddenTear on GitHub website, for example [196].

120 9 Future of Ransomware

Zaitsev followed a different strategywhen publishing CryptoTrooper [197].
He shared the core part of the prototype as a closed source binary. The
encryption algorithm, whose code was not shared, contained a crypto-
graphic flaw which enabled the recovery. Being closed source, the flaw
in the encryption module of CryptoTrooper could not be fixed by the
script-kiddies. Still, the community was divided: some found the idea
useful, others did not [198]. In the end, Zaitsev removed the project from
GitHub but, as in the case of HiddenTear, CryptoTrooper was forked by
other developers. It is still accessible via various repositories.

All the developers of the publicly available ransomware prototypes states
that their main motivation was educational. However, a well documented
ransomware code would also help to-be-cyber-criminals to enter the
ransomware business. Since ransomware prototypes remain available on
the Internet, the ethical question here is whether security researchers need
to publish and share full ransomware codes without feeling accountable
of the consequences, a recognized ethical issue.

9.3 Ransomware Intelligence

Herr and Rosenzweig suggest that a piece of code is cyber-weapon when
it combines “propagation, exploitation, and payload [i.e., damaging] capa-
bilities” [187]. Each components, despite innocuous in separation, carry
the potentiality to be combined with the missing others into a weapon.
However, to have a military use, a software ‘ must create or tangibly
support the deployment of destructive effects. These could be short term,
where deleted data is restored from backup, or near permanent, where a
payload is designed to damage a device’s firmware” [187].

Ransomware may have such a destructive effect. For sake of an example,
at the time of the writing, June 2019, the major electricity supplier in
South Africa’s city of Johannesburg was attacked, leaving more than a
quarter of a million people in the dark. Another attack forced a shutdown
of its websites and billing systems as a precautionary measure.

Ransomware variants, called wipeware, can wipe data clean. Allegedly
deployed to attack Saudi energy companies and Iranian oil companies,
they had destructive consequences. One variant of it, Shamoon wiper, has
been released to attack Sony Pictures Entertainment, succeeding to avoid
the outing of ‘The Interview’, a documentary mocking the North Korean
dictator, Kim Jong-un. If we adhere to Schmid’s claims that “terrorist
violence is predominantly political” [199], such events can be considered
also “terrorist attack” .

If ransomware are to be regarded as cyber-weapons, as we claim, could it
be conceivable to apply intelligence and counter-intelligence strategies
to mitigate the threats and control the consequences of an attack? And, if
yes, how?

Cyber-Intelligence has been defined as “the process by which specific
types of information important to national security are requested, col-
lected, analyzed, and provided to policymakers, the products of that

9.3 Ransomware Intelligence 121

4: https://www.nomoreransom.org

5: https://www.misp-project.org/.

process”[200]. Duvenage et al. [201], call this positive intelligence, to dis-
tinguish it from counter-intelligence, which is the countering of an hostile
intelligence activity.

Ransomware Positive Intelligence. For ransomware threat, positive
intelligence could consist in gathering information about modalities of
working. It should be about how the ransomware propagates, exploits
vulnerabilities, and executes its payload. In the Open Source Intelligence
(OSINT), several initiatives exist aiming to collect and analyze informa-
tion gathered from public or open sources. An example is the No More
Ransom project4 (see also Chapter 1). It aims to inform the public and to
collect incidents reports, including to gather the information from public
platforms that can be potentially utilized by ransomware authors. Other
platforms, although not specifically dedicated to ransomware, such as the
Malware Information Sharing Platform (MISP)5—a free and open source
software helping information sharing of threat intelligence, including
cyber-security indicators—can offer tools that enable intelligence analysis.
Such platforms can be employed to control the information flow during
an attack, spreading alerts following a Warning and Coordination action,
and to help potential victims “raise their shields” as soon as possible.

Ransomware Counter-Intelligence. According to [202], Counter Cy-
ber Intelligence (CCI) is the ensemble of “all efforts made by one intelli-
gence organization to prevent adversaries, enemy intelligence organiza-
tions or criminal organizations from gathering and collecting sensitive
digital information or intelligence about them via computers, networks
and associated equipment”. It can be implemented using strategies that,
according to Panda Security, a cyber-security company, either consists
of “leaving doors open” (i.e., left access points unprotected on purpose),
“inject fake information” (i.e., fake confidential information), and “keeping
them busy while stealing” (i.e., watching and obtaining information about
the attacker).

Looking into the internet and searching for “counter-intelligence for ran-
somware”, we have found that the majority of the initiatives to protect
from ransomware attacks focuses on raising awareness. For instance,
the US National Counter-intelligence and Security Center (NCSC) has
launched in January 2019 a campaign “Know the Risk, Raise Your Shield”.
The Cybersecurity and Infrastructure Security Agency (CISA) addresses
ransomware specifically, but it is all about knowing the threat and ap-
ply general security best practices such as backing-up data. We have
found, within the scope of cryptographic ransomware and limited to
this on-going work, nothing about “leaving the door open”, “inject fake
information”, or ‘’keep them busy”.

The second measure (i.e., “inject fake information”) may not be fully
applicable at least if that means to avoid to spread knowledge about how
to build the ransomware weapon: the instruments of cryptography are
nowadays already known and public. However, at the light of what we
have discussed in the previous sections, it may be a strategy to post the
code of variants whose decryptors already exist.

For what concerns the “keep them busy” paradigm, as discussed in [40],
it may be possible the use decoy files to deflect a ransomware attack
against irrelevant (for the victim) files, so gaining that amount of time
required to stop the attack’s development. Using decoy files could be

https://www.nomoreransom.org
https://www.misp-project.org/

122 9 Future of Ransomware

paired with strategies that downgrade the efficiency of encryption for
applications that are not trustworthy or whitelisted. We have not investi-
gated in this direction, but this option seems preferable to that of running
untrusted application in sandbox. This can be less effective, since certain
ransomware sample recognize the presence of a virtual environment and
remain dormant. A few articles suggest the use of Artificial Intelligence
(e.g., [203]), but we did not look into this direction.

Conclusion

1: Paying the ransom does not ensure get-
ting the files back. Some statistics show
that 67% of the companies who paid the
ransom could recover their data. In 2018,
it was even worse, only the half could. For
more details, see [2].

2: According to StatCounter, Windows us-
age is 77.21% as of August 2020 [205].

Closing Remarks and Future
Work 10

10.1 Future Works and Open Prob-
lems 131

In the last few years cryptographic ransomware attacks have dominated
the cyberthreats landscape [204]. They target the most valuable asset of
today’s computer users and companies — the data. Cryptographic ran-
somware encrypts the data which become inaccessible to their owners. If,
during this task, the ransomware uses strong cryptography, it is unfeasi-
ble for the legitimate file-owner to recover the files’ contents without the
decryption key. Victims, users and companies alike, are then forced to
pay a ransom if they want to regain access to their data1.

The quick return in revenue together with the practical difficulties in the
accurate tracking of cryptocurrencies, used to perform the ransomware
payment by victims, have made ransomware a preferred tool for cy-
bercriminals. In particular, exploiting zero-day vulnerabilities found in
Windows OS, the most-widely used OS on desktop computers2, has en-
abled ransomware to extend its threat and damage at world-wide level.
For instance, WannaCry and NotPetya have affected almost all countries,
impacted organizations, and the latter alone caused damage which costs
more than $10 billion [8].

Security researchers have worked to slow down the threat. While these
systems —without any doubt— increased the bar for cybercriminals, most
of them are designed by adopting the existing behavioral analysis meth-
ods for ransomware, rather than approaching the problem from a crypto-
graphic perspective. Attackers use the power of cryptography, we believe
the defenders must, too. Therefore, we defined the goal of our research
to fill this gap:

Research Goal: To study the behavior of ransomware, understand its weak-
nesses, and uncover the cryptographic roots of it to design a defense system
which advances the state of the art.

Our research contributes to the defense against cryptographic ransomware.
It sheds light on the state-of-the-art of both sides in the ransomware
ecosystem —attackers and defenders. Investigating the phenomenon from
these two point of views provides a comprehensive understanding of
the ransomware, and unveils its strengths and weaknesses. The result
of this thesis establishes an enhanced protection from cryptographic
ransomware. It does so by: (1) analyzing the inner mechanisms, opera-
tion flow and other cryptographic aspects of a ransomware attack, in
particular, key management; (2) unveiling the issues and challenges in
current defense proposals, i.e., the flaws and vulnerabilities therein; (3)
designing a defense system that is based on the principles of the modern
cryptography. In the following, we review our research questions and
explain how we answered them.

How can future generations of ransomware may work to bypass
current anti-ransomware systems? The purpose of this part is to warn
the scientific community of forthcoming ransomware threats. By talk-
ing about how six cutting-edge anti-ransomware solutions —at the time

126 10 Closing Remarks and Future Work

of this thesis research, implementing strategies of key escrow, and be-
havioral analysis are the most advanced strategies known against active
ransomware samples— could be overthrown by smarter andmore sophisti-
cated malware, we hoped to have revealed what strategies those malware
could trying to implement, so indicating where anti-ransomware engi-
neers have to focus their efforts. Since it is believed that the ransomware
threat will increase not in number of attacks but in sophistication, to keep
anti-ransomware ideas ahead of time may be a game-changing factor.

That said, malware mitigation is an arms race and we expect new genera-
tions of ransomware coming soon with renovated energy and virulence,
adapting their attack strategies to challenge current defenses. New vari-
ants of ransomware have been observed constantly during the last years.
Those called scareware prefer to exploit people’s psychology, threatening
them into pay the ransom without, however, doing any serious encryp-
tion: despite deceitful they are technically benign applications. Others,
however, will be variants of real cryptographic ransomware and able to
overcome control and to encrypt a victim’s files using strong encryption.
A white paper by Symantec [3] reports that ransomware is becoming
instrument for specialists and targeted attack groups, a weapon not only
to extort money but to cover up other attacks and, when using strong
encryption, used in fact as a disk wiper. It is to this latter category that
our research is dedicated. As security professionals we feel compelled
to be prepared to face forthcoming threats thus to identify and antici-
pate potentially dangerous ransomware variants, and warn the scientific
community about them.

Another defense approach, decoy-based strategies have been successfully
used in providing evidence of an intrusion into a computer system. They
have been called in different ways, the most common ones using the
prefix ‘honey-’ as in honey pot, honey words, honey files, and honey
token. Their use against malware, such as ransomware, is however still in
its infancy, and there is little evidence that mitigating strategies that have
worked against human intruders might work against ransomware. From
one side, some applications may lack certain specific features that are
usually exploitable to lure a human adversary into committing false steps
– this makes malware immune to certain decision bias and vulnerabilities;
from the other side, as the ransomware is running in the host system
it might have access to additional capabilities, e.g. that of spying file
activities, that are not available to a system intruder.

In this thesis we have looked into what limits decoy strategies may en-
counter when applied against ransomware. We first address the issue
from a theoretical point of view, and then we have described a practical
proof-of-concept that shows how some existing decoy-based solutions
can be easily defeated. The results of our experiments show that we need
to re-design the generation of honey documents so that their use against
future ransomware will be as effective as their use against human intrud-
ers is. Our findings also provide the opportunity of investigation for two
future directions. In the first one, an hypothetical strong adversary may
be recognized and stopped by using other complementary strategies than
those based on decoy files, and the research question is how to effectively
combine different anti-ransomware strategies. In the second one, any
anti-ransomware that relies on decoy files has to consider its usability,

127

a quality that we have proposed be measured in terms of confounded-
ness, that is, how probably is that decoy files confuse a honest user into
accessing them.

We are aware that the research we have ourselves embarked may give
ideas to criminals. But there is no reason to believe that criminals will not
have those ideas by themselves. In the history of malware (see e.g., [53])
criminals have always tried to be one step ahead; besides, our research has
nothing fancy and it does not contain such an inventive step that cannot
be reproduced by others. It more humbly roots into how cryptography
works. However, even with this premise, we questioned ourselves about
how to answer this research question and the following one ethically, in
Chapter 2.

Howsecure are the realworld protectionmechanisms against novel
ransomware attacks? AV programs have become one of the de facto
computer security standards. Several companies trust AVs to protect their
assets without questioning how AVs do their job. In their turn, AVs have
their assumptions, we presume, and trust their security mechanisms be
solid. Sometimes, we learned, also that trust is not questioned further.
This is probably necessary in the fast-paced cat-and-mouse game in which
AVs and malware are engaged, always running one after the other; but
we, as researchers, can question the robustness of certain assumptions. In
particular, we questioned whether built-in white-listed applications can
be undetectably be manipulated and instructed as well as undetectably
to do harm to user files. For instance, we tried to see whether they can
be used to encrypt a file’s content or to wipe it out. We also questioned
whether AV’s real-time scanning protection feature can be turned-off
by a malware that simulates mouse and keyboard events without being
caught while doing so. Surprised ourselves, we succeeded in proving that
these vulnerabilities exist for quite a number of AVs. What we found is
indeed surprising in general, considering that almost all AVs have today
ransomware detection modules.

The security issues we discovered reveal vulnerabilities both in the exten-
sion in which certain security mechanisms are supposed to operate, and
in the they way in which the interaction between the OS and the AV de-
fenses is believe to work. The vulnerabilities we discuss in this thesis are
therefore not implementation flaws. To give substance to our findings, we
have designed and implemented two proof-of-concept programs, Ghost
Control and Cut-and-Mouse, which are able to fully disable the run-time
protection of several consumer AVs, and/or to bypass their defenses in
protection of user files against threats like ransomware. We tested them
against the current most comprehensive list of consumer AV products.
Not all of them are vulnerable but for those which are we also speculated
about possible fixes. These require software developers to have a general
understanding of what caused them. We stated that understanding in a
potentially new, or at least renewed, security principle.

One could question whether such Cut-and-Mouse and Ghost Control at-
tacks can, after all, be detected by the human user’s who sees e.g., the
mouse pointer moving and clicking here and there. Perhaps, users can be
puzzled. Still they are like not be able to react promptly to stop the attack:
users are notoriously bad on implementing security measures because
security is not their primary goal. Thus making security dependent on

128 10 Closing Remarks and Future Work

the user’s reaction to something strange on his screen is fundamentally
not a solution and it does not give more security guarantees.

We have also found that Cut-and-Mouse’s and Ghost Control’s working
principle, that of using mouse and keyboard events, works even when
AVs run them in a sandbox, revealing that the sheer use of a sandbox is
not suffice to protect a system from certain malware: mouse clicks are
not filtered and therefore can escape the sandbox.

In addition, malware can perform these attacks when the user is not using
the computer, e.g., through some heuristic based on user’s activities. Thus
a better mitigation solution would be aimed at understanding whether
keyboard and mouse events come from a legitimate user or whether in-
stead they are synthesized by a (malicious) program. In a sense, discerning
such situation is what malware is already trying to achieve, namely un-
derstanding if it is running in a sandbox, e.g., using reverse Turing tests
to detect the presence (or absence) of a human, – this further reinforces
the analogy of attackers and defenders are each learning from others.

Before that discernment becomes possible, OS and AV defences have
to cooperate better. At the root of our findings there is a misalignment
between two different concepts: that of integrity levels used by the OS,
and that of trusted applications on which instead AV defences rely upon.
They have not been conceived to work together and, at a higher level,
they have to be harmonized. This is indeed what our Principle 1 means
to achieve.

The arms-race between malware authors and anti-malware developers
has been occurring in the digital world since its early days. In the last
two decades, however, malware developers are living their golden age.
Powerful techniques such as metamorphic obfuscation have largely lim-
ited the effectiveness of signature-based defense systems. Consequently,
protection systems started to move toward dynamic analysis to detect
freshly generated malware. Sandboxes, isolated execution and monitoring
environments, have been widely used for this purpose. Consequently, the
sandbox environments have been among the top items of the target list
of cybercriminals, and numerous advanced evasion techniques have been
seen in real-world malware attacks.

Finally, we described a not-yet-discussed evasion technique that we found
being followed by a still active TeslaCrypt ransomware sample. Using
it, the sample manages to look benign and therefore is capable to avoid
being classified as a malware, when analyzed in Cuckoo sandbox. We
suggested two improvements, one tightening current behavioral analysis
methods, the other working to mitigate the severity of an attack by that
sample. Namely, we discussed (i) a smart execution strategy to increase
the detection chance of the malware in the sandbox; and (ii) a comple-
mentary defense method to be employed in the actual user environment,
preferably integrated into already existing protection systems. We have
also compared pros and cons of the two defense approaches and their
potential side effects to the user.

Can ransomware be stopped by controlling secure randomness
sources? Cryptographic ransomware is a modern global crime and
a large amount of public and private institutions have been attacked

129

already. The problem is that encryption is a powerful tool in the hands
of criminals, hard to fight. By encrypting critical files on the victim’s
machine, ransomware blocks access to information and compromises
critical services, wreaking an economical and social havoc because, un-
less victims pay the demanded ransom to receive the correct decryption
key, they might not be able to recover their files if no backup is available.
Computational complexity results ensure that a properly implemented
encryption is irreversible, but to realize this theoretical result in prac-
tice, ransomware has to use cryptographically secure encryption keys.
Many variants choose weaker alternatives: although there could be a
theoretical solution to reverse their encryption at affordable costs, such
scareware succeed in persuading victims to pay. Other variants, implement
a theoretically weak but good-enough encryption to make decryption-
without-the-key sufficiently painful to convince that paying the ransom
is the lesser of two evils.

But in the restricted niche of ransomware that want their damage to
be computationally irreversible, one finds the most disruptive variants,
for instance, WannaCry, Petya, GoldenEye, CryptoLocker, Locky, Ryuk,
Samsam, and NotPetya. These ransomware families need a good source
of random numbers and all of them find it in the CSPRNG available on
a victim’s system. Today, such functions are indeed reliable and de facto
source of cryptographic randomness available on a computer.

To contain the threat coming from ransomware in this cryptographically
strong niche, we proposed to control access to CSPRNG APIs. We proved
the concept by stopping a very large class of real active ransomware from
doing any damage to any file —remarkably including NotPetya, which
was till that moment believed unstoppable. But a concept, as much as
promising can be, is not yet a fully-fledged application. Discussing how
to implement it into an effective anti-ransomware defense, called NoCry,
is what we have done next. We solved several critical security and design
issues: how to ensure that the attack surface of the architecture is reduced;
how to bootstrap the Whitelist DB, honest cryptographic applications
calling CSPRNG APIs and maintain it with a minimal user intervention,
arguably resulting in a very low false positive rate; how to reduce the
overhead that the access control imposes on the systems performance to
a negligible amount. By not relying on any IPC, we removed any known-
to-be-vulnerable elements from the architecture, so addressing the first
issue; we addressed the last, by a better decision making that drastically
improves the overhead. With respect to the previous proof-of-concept,
reducing it from several thousands percent down to about 20%: quantified,
the overhead is now a few hundredth of a second.

We are aware that there is no silver bullet for ransomware mitigation.
Each defense system has pros and cons, and NoCry may well find its
beater in some next generation ransomware. As discussed in Chapter
3, ransomware applications can find other ways than calling CSPRNG
to get random numbers e.g., by relying on non-cryptographic sources
of randomness, but we believe that the alternative choices have weak
points. The fact is that all the samples and variants of ransomware in
the cryptographically-hard niche that we have analyzed so far, do call
CSPRNG APIs. Thus, today, these functions are the most reliable source
of randomness for application in search to build cryptographically strong
encryption keys. And if in the future other functions will available for

130 10 Closing Remarks and Future Work

the same task, the fundamental question that remains to be solved is how
many of these functions are, and whether by controlling access to these
APIs, we can still implement a targeted strategy as the one in NoCry that
enables a decision making with an arguably low false positive rate.

The approach described to answer the research question has been shown
to be highly effective against the current generation of ransomware, but
doubtless, (having read this thesis), the authors of ransomware will devise
new strategies to evade our approach. The race between ransomware and
anti-ransomware will continue.

What are the implications of emerging technologies on the ran-
somware phenomenon? Ransomware is a class of malware whose
goal is to extort money, a goal that is facilitated by current anonymous
currencies which enables cybercriminals to be paid without being traced.
Then we need solid defense systems against what can easily degenerate in
a pandemic of digital crimes. However, unlike conventional anti-malware
systems, ransomware mitigation does not tolerate mistake. If the ran-
somware is implemented properly and the attack succeeds, then the
damage taken may be irreversible.

Existing ransomware mitigation systems are build upon the analysis of
collected samples but a better strategy is to anticipate the future, and be
prepared for the ransomware that will come. In this respect, we described
possible threats that ransomware may pose by relying on novel strategies,
like acquiring rootkit capabilities, utilizing obfuscation and whitebox
cryptography, not yet adopted in real attacks as well as by targeting
critical domains, such as the Internet of Things and the Socio-Technical
systems, which will worrisomely amplify the effectiveness of ransomware
attacks. Our research is timely, since it is known that we must design
products keeping security in mind, not integrating after whereas network
infrastructures must be carefully configured and fully patched in order to
prevent ransomware attacks through data exfiltration. We hope that our
observations help developing and building more robust defense systems
against ransomware threat.

Ransomware are emerging as cyber-weapons. They have been used in
attacks that resemble actions of cyber-war, and are far more dangerous
and disruptive than traditional malware. Consequently, the research com-
munity should reflect on coordinated actions to address the threat under
an appropriate code of ethical conduct.

Having discovered that a few ransomware contain a copy-paste from
cryptographic code available in public sources, we debated the matter of
dual-use in cryptographic research and recalled (in)famous antecedents
in the recent ransomware history. Since we managed to build decryptors
for those ransomware, the dual use turned out to be a double-edge for the
criminals, but generally it is not. After having build a case for ransomware
as cyber-weapon, we briefly reviewed intelligence and counter-intelligent
strategies that could be used in the fight against ransomware.

We did not backed our speculations with field studies or interviews.
Ours is an educated argumentation, but its purpose is to invite the anti-
ransomware community to be more proactive in the cyber-war against

10.1 Future Works and Open Problems 131

3: Decryptors are available for GandCrab
versions 1, 4, 5.01, and 5.2. For more
details, see https://www.malwarebytes.

com/gandcrab/.

ransomware. Even the excellent NoMoreRansom project, which offers de-
cryptors when they are available (as did in June 2019, with the then-latest
version of GandCrab3), at the end of the day praises for keeping back-up,
within a “Better Safe Than Sorry” advice.

10.1 Future Works and Open Problems

Throughout the development of this thesis research, we identified some
future works and open problems that remain to be explored. We classified
them in four main categories, as follows:

New Attack Techniques Modern ransomware uses well-known cryp-
tographic algorithms, e.g., AES, ChaCha, for encrypting files. Data en-
crypted with these algorithms contain high entropy in average, causing
a stark difference with that of the original file. Taking advantage of this
disparity, current behavioral analysis systems use statistical tests to detect
if a file is being encrypted by comparing the buffers before and after a file
write request. We could evade this protection by using a pure permutation
of byte arrays to obfuscate files, and this is definitely not as secure as
those of standard ciphers. The weaknesses of pure permutation has been
known by the cryptographic community but, to the best of our knowledge,
has never been explored from ransomware evasion perspective.

Ransomware authors might have to remain limited to permutation, even if
it is a quite weak way of encryption, to have at least a chance of extortion
rather than being caught immediately by behavioral analysis systems
which would identify the robust algorithms like AES. On the other hand,
if the permutation can be discovered practically, the ransomware can-
not force the victims to pay. However, the question is still open: does
it provide the minimal security level in the context of ransomware, i.e.,
decryption might be possible but paying the ransom is more economic
than decrypting the files? Continuing on this line of thought, one might
ask the question if there would be a way to encrypt files securely while
keeping the entropy of the file at the same level? Ransomware equipped
with that technology might be able to evade existing behavioral anal-
ysis based anti-ransomware systems. Developing such an encryption
algorithm, however, is far from a trivial task.

Key Generation Modern ransomware employs hybrid cryptosystems
for scalability and efficiency reasons. Consequently, managing the en-
cryption keys, especially the symmetric keys used to encrypt bulk data,
in a secure manner is critical for a successful ransomware campaign, as a
flaw in the transport, usage or storage of the keys might allow security
professionals to build a decryptor. In particular, if the victims can obtain
the keys used to encrypt files, decrypting the files without paying a ran-
som would be feasible. This is obviously against the goals of ransomware
authors so they try to obtain encryption keys securely.

The security analyses of key generation methods of ransomware, both
in this thesis and other works, show that the only option for current
ransomware to get good encryption keys is to use a CSPRNG. However,
thanks to UShallNotPass and its successor NoCry, ransomware can

https://www.malwarebytes.com/gandcrab/
https://www.malwarebytes.com/gandcrab/

132 10 Closing Remarks and Future Work

be prevented from accessing this critical resource effectively and effi-
ciently.

In response to our defense systems, cybercriminals may develop new
methods to generate strong encryption keys. To anticipate this evolution,
we are also studying alternative ways to derive encryption keys, for
instance from files as it is done in convergent encryption, a technique
applied in cloud computing to build keys for symmetric algorithms. That
said, the security of generating asymmetric keys from files is not studied
yet, and we think it is an interesting research topic to investigate further.
Furthermore, preventing other ways that ransomware could (i) use to
generate encryption keys; and (ii) circumvent calls to CSPRNG in order
to evade our controls is a research direction that must be explored.

Other future work still needs to be done. To build a practical and auto-
matic whitelisting strategy with low false positive rates would increase
the usability of NoCry, and we are investigating the potential ways for
achieving for this goal. The argument that we have a reduced false positive
rate in NoCry also has to be supported by experimental evidence. This
means to run stress tests while running a generous number of various
benign cryptographic applications under different conditions. Beyond
having measured the overhead in terms of loss of performance, we still
need to assess the user experience (UX) of NoCry running on different
kinds of computers, included on battery powered mobile devices, to verify
whether the overhead is imperceptible, as we claim, by users in their daily
activities.

Better Decoys Deception-based anti-ransomware systems create de-
coy files among the genuine files of the user. This practice works un-
der the assumption that current ransomware is decoy-blind so that in a
ransomware attack, decoy files would be accessed which would lead to
detection. Today this approach might seem secure, however, the actual al-
gorithm to prepare decoy files is of uttermost importance as ransomware
might develop decoy-aware features. Furthermore, algorithms to place de-
coy files must ensure that the number of files encrypted by a ransomware
before a decoy gets accessed is minimum, of if possible, zero. Design and
analysis of such algorithms must be studied to guarantee the security of
the decoy-based defense systems.

Another gap in the decoy-files domain is the lack of research in their
usability. Even though there exists several anti-ransomware systems using
decoy files, both in academic literature and commercial market, none of
them provides a usability report nor a field test. In other words, there
is no scientific evidence about how much interruption decoy files cause.
Finding the right balance for a decoy between being effective without
confusing the user (who might then decide to switch off the defense,
or change it for another) is a research challenge by itself that has to be
addressed.

Secure Inter-Operation The security industry has a large number
of vendors so that the consumers —including home users, businesses,
governments— have a wide variety of options. That said, there is not a sil-
ver bullet to satisfy all kinds of protection against cyberthreats. Therefore,
users might need to install and run security products of different vendors

10.1 Future Works and Open Problems 133

simultaneously on the same system. While each of these defense software
might work against the targeted threat with a high success ratio, when
considered individually, they might not cover the entire threat landscape.
This is not a fault of the vendors; no tool alone can provide every security
feature. However, tools should be capable of being orchestrated by the OS
to fill all the gaps in the security surface. Otherwise, by passing through
the non-controlled zones, malware could reach its target. In this thesis, we
have demonstrated an evidence of this risk, and show how devastating the
results could be in the absence of the cooperation between components
of a system. Design, implementation, and evaluation of such a secure
inter-operation infrastructure in the modern OS are important research
tasks that have be performed.

Bibliography

[1] Symantec. Internet Security Threat Report. Ransomware 2017. White Paper. 2017.
url: https://docs.broadcom.com/doc/istr-ransomware-2017-en (visited on
08/18/2020) (cited on page 3).

[2] CyberEdge. Cyberthreat Defense Report. White Paper. 2020. url: https://cyber-
edge . com / wp - content / uploads / 2020 / 03 / CyberEdge - 2020 - CDR - Report -

v1.0.pdf (visited on 08/18/2020) (cited on pages 3, 125).

[3] Symantec. Internet Security Threat Report. White Paper. 2018. url: https://docs.
broadcom.com/doc/istr-23-2018-en (visited on 08/18/2020) (cited on pages 3, 31,
126).

[4] Symantec. Internet Security Threat Report. White Paper. 2019. url: https://docs.
broadcom.com/doc/istr-24-2019-en (visited on 08/18/2020) (cited on page 3).

[5] Mark Ward. ‘Cryptolocker victims to get files back for free’. In: BBC News (Aug. 6,
2014). url: https://www.bbc.co.uk/news/technology-28661463 (visited on
08/18/2020) (cited on page 3).

[6] F-Secure. The State of Cyber Security. White Paper. 2017. url: https : / / blog -
assets . f - secure . com / wp - content / uploads / 2019 / 10 / 18165954 / Cyber _

Security_Report_2017.pdf (visited on 08/18/2020) (cited on page 3).

[7] US Department of Justice. How to Protect your Networks from Ransomware. June 2016.
url: https://www.justice.gov/criminal-ccips/file/872771/download (cited
on page 3).

[8] Andy Greenberg. The Untold Story of NotPetya, the Most Devastating Cyberattack
in History. https://www.wired.com/story/notpetya-cyberattack-ukraine-
russia-code-crashed-the-world/, Last accessed on February 22, 2019. Aug. 2018
(cited on pages 3, 90, 91, 125).

[9] Jack Stubbs. ’Payment sent’ - travel giant CWT pays $4.5 million ransom to cyber
criminals. July 31, 2020. url: https://www.reuters.com/article/us-cyber-
cwt-ransom/payment-sent-travel-giant-cwt-pays-4-5-million-ransom-to-

cyber-criminals-idUSKCN24W25W (visited on 08/18/2020) (cited on page 3).

[10] David E. Sanger Manny Fernandez and Marina Trahan Martinez. ‘Ransomware
Attacks Are Testing Resolve of Cities Across America’. In: The New York Times
(Aug. 22, 2019). url: https://www.nytimes.com/2019/08/22/us/ransomware-
attacks-hacking.html (visited on 08/18/2020) (cited on page 3).

[11] Steve Morgan. Global Ransomware Damage Costs Predicted To Reach $20 Billion
(USD) By 2021. Oct. 21, 2019. url: https://cybersecurityventures.com/global-
ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/

(visited on 08/18/2020) (cited on page 3).

[12] McAfee. McAfee Labs Threats Report. White Paper. Aug. 2019. url: https://www.
mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-

2019.pdf (visited on 08/18/2020) (cited on page 4).

[13] P. Bajpai, A. K. Sood, and R. Enbody. ‘A key-management-based taxonomy for
ransomware’. In: 2018 APWG Symposium on Electronic Crime Research (eCrime). May
2018, pp. 1–12 (cited on pages 4, 103).

[14] U.S. Federal Bureau of Investigation. High-Impact Ransomware Attacks Threaten U.S.
Businesses And Organizations. Oct. 2, 2019. url: https://www.ic3.gov/media/
2019/191002.aspx (visited on 08/18/2020) (cited on page 4).

https://docs.broadcom.com/doc/istr-ransomware-2017-en
https://cyber-edge.com/wp-content/uploads/2020/03/CyberEdge-2020-CDR-Report-v1.0.pdf
https://cyber-edge.com/wp-content/uploads/2020/03/CyberEdge-2020-CDR-Report-v1.0.pdf
https://cyber-edge.com/wp-content/uploads/2020/03/CyberEdge-2020-CDR-Report-v1.0.pdf
https://docs.broadcom.com/doc/istr-23-2018-en
https://docs.broadcom.com/doc/istr-23-2018-en
https://docs.broadcom.com/doc/istr-24-2019-en
https://docs.broadcom.com/doc/istr-24-2019-en
https://www.bbc.co.uk/news/technology-28661463
https://blog-assets.f-secure.com/wp-content/uploads/2019/10/18165954/Cyber_Security_Report_2017.pdf
https://blog-assets.f-secure.com/wp-content/uploads/2019/10/18165954/Cyber_Security_Report_2017.pdf
https://blog-assets.f-secure.com/wp-content/uploads/2019/10/18165954/Cyber_Security_Report_2017.pdf
https://www.justice.gov/criminal-ccips/file/872771/download
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.reuters.com/article/us-cyber-cwt-ransom/payment-sent-travel-giant-cwt-pays-4-5-million-ransom-to-cyber-criminals-idUSKCN24W25W
https://www.reuters.com/article/us-cyber-cwt-ransom/payment-sent-travel-giant-cwt-pays-4-5-million-ransom-to-cyber-criminals-idUSKCN24W25W
https://www.reuters.com/article/us-cyber-cwt-ransom/payment-sent-travel-giant-cwt-pays-4-5-million-ransom-to-cyber-criminals-idUSKCN24W25W
https://www.nytimes.com/2019/08/22/us/ransomware-attacks-hacking.html
https://www.nytimes.com/2019/08/22/us/ransomware-attacks-hacking.html
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.ic3.gov/media/2019/191002.aspx
https://www.ic3.gov/media/2019/191002.aspx

[15] Brianna Gammons. 4 Surprising Backup Failure Statistics that Justify Additional
Protection. Jan. 2017. url: https://web.archive.org/web/20180825141202/
https://blog.barkly.com/backup-failure-statistics (visited on 08/18/2020)
(cited on page 4).

[16] Alexandre Gazet. ‘Comparative analysis of various ransomware virii’. In: Journal in
Computer Virology 6.1 (Feb. 2010), pp. 77–90 (cited on page 5).

[17] Brian Baskin. TAU Threat Discovery: Conti Ransomware. July 8, 2020. url: https:
//www.carbonblack.com/blog/tau-threat-discovery-conti-ransomware/

(visited on 08/18/2020) (cited on page 5).

[18] Sara Tilly. Cryptolocker Prevention – How to secure your server environment. Mar. 2017.
url: https://blog.syskit.com/cryptolocker-prevention (cited on page 5).

[19] Carl Woodward and Raj Samani. Is WannaCry Really Ransomware? June 2017. url:
https://securingtomorrow.mcafee.com/executive-perspectives/wannacry-

really-ransomware/ (cited on page 6).

[20] Michael Young and Ryan Zisk. Decrypting the NegozI Ransomware. Sept. 2017. url:
https://yrz.io/decrypting-the-negozi-ransomware (cited on page 6).

[21] MalwrPost. Technical Analysis of Rush/Sanction Ransomware. Apr. 2016. url: https:
//malwrpost.wordpress.com/2016/04/06/technical-analysis-of-rush-

sanction-ransomware/ (cited on page 6).

[22] Kevin Savage, Peter Coogan, and Hon Lau. The evolution of ransomware. Tech.
rep. Symantec, Aug. 2015. url: http://www.symantec.com/content/en/us/
enterprise / media / security _ response / whitepapers / the - evolution - of -

ransomware.pdf (cited on page 6).

[23] N. Scaife et al. ‘CryptoLock (and Drop It): Stopping Ransomware Attacks on User
Data’. In: 2016 IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). June 2016, pp. 303–312 (cited on pages 6, 22, 23, 30, 84, 86, 91, 109).

[24] Vassil Roussev. ‘Data Fingerprinting with Similarity Digests’. In: Advances in Digital
Forensics VI. Ed. by Kam-Pui Chow and Sujeet Shenoi. Berlin: Springer, 2010, pp. 207–
226 (cited on pages 6, 22).

[25] Andrea Continella et al. ‘ShieldFS: A Self-healing, Ransomware-aware Filesystem’.
In: Proceedings of the 32nd Annual Conference on Computer Security Applications.
ACSAC ’16. New York, NY, USA: ACM, 2016, pp. 336–347 (cited on pages 6, 22, 91,
109).

[26] Amin Kharraz and Engin Kirda. ‘Redemption: Real-Time Protection Against Ran-
somware at End-Hosts’. In: Research in Attacks, Intrusions, and Defenses. Ed. by Marc
Dacier et al. 2017, pp. 98–119 (cited on pages 6, 22, 86, 91, 109).

[27] Aurélien Palisse et al. ‘Data Aware Defense (DaD): Towards a Generic and Practical
Ransomware Countermeasure’. In: Secure IT Systems. Cham: Springer, 2017, pp. 192–
208 (cited on pages 7, 22, 23).

[28] Aurélien Palisse et al. ‘Ransomware and the Legacy Crypto API’. In: The 11th In-
ternational Conference on Risks and Security of Internet and Systems - CRiSIS 2016.
Ed. by Frédéric Cuppens et al. Risks and Security of Internet and Systems. Springer,
Sept. 2016, pp. 11–28 (cited on pages 7, 21, 23).

[29] Kyungroul Lee, Insu Oh, and Kangbin Yim. ‘Ransomware-Prevention Technique
Using Key Backup’. In: Big Data Technologies and Applications. Springer International
Publishing, 2017, pp. 105–114 (cited on pages 7, 21, 23).

[30] Eugene Kolodenker et al. ‘PayBreak: Defense Against Cryptographic Ransomware’.
In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. ASIA CCS ’17. New York, NY, USA: ACM, 2017, pp. 599–611 (cited on
pages 7, 21, 23, 91, 100, 109, 111).

https://web.archive.org/web/20180825141202/https://blog.barkly.com/backup-failure-statistics
https://web.archive.org/web/20180825141202/https://blog.barkly.com/backup-failure-statistics
https://www.carbonblack.com/blog/tau-threat-discovery-conti-ransomware/
https://www.carbonblack.com/blog/tau-threat-discovery-conti-ransomware/
https://blog.syskit.com/cryptolocker-prevention
https://securingtomorrow.mcafee.com/executive-perspectives/wannacry-really-ransomware/
https://securingtomorrow.mcafee.com/executive-perspectives/wannacry-really-ransomware/
https://yrz.io/decrypting-the-negozi-ransomware
https://malwrpost.wordpress.com/2016/04/06/technical-analysis-of-rush-sanction-ransomware/
https://malwrpost.wordpress.com/2016/04/06/technical-analysis-of-rush-sanction-ransomware/
https://malwrpost.wordpress.com/2016/04/06/technical-analysis-of-rush-sanction-ransomware/
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf

[31] H. Kim et al. ‘Dynamic ransomware protection using deterministic random bit
generator’. In: 2017 IEEE Conference on Application, Information and Network Security
(AINS). Nov. 2017, pp. 64–68 (cited on pages 7, 21, 23).

[32] Jeonghwan Lee, Jinwoo Lee, and Jiman Hong. ‘How to Make Efficient Decoy Files for
Ransomware Detection?’ In: Proc. of Int. Conf. on Research in Adaptive and Convergent
Systems. RACS ’17. Krakow, Poland: ACM, 2017, pp. 208–212 (cited on pages 7, 34,
38, 43).

[33] Shagufta Mehnaz, Anand Mudgerikar, and Elisa Bertino. ‘RWGuard: A Real-Time
Detection System Against Cryptographic Ransomware’. In: Research in Attacks,
Intrusions, and Defenses. Cham: Springer International Publishing, 2018, pp. 114–136
(cited on pages 7, 22, 34, 37, 43).

[34] WatchPoint Data. CryptoStopper. 2018. url: https://www.watchpointdata.com/
cryptostopper (cited on pages 7, 34, 37).

[35] Felix Gröbert, Carsten Willems, and Thorsten Holz. ‘Automated Identification of
Cryptographic Primitives in Binary Programs’. In: Proceedings of the 14th Interna-
tional Conference on Recent Advances in Intrusion Detection. RAID’11. Menlo Park,
CA: Springer-Verlag, 2011, pp. 41–60 (cited on page 7).

[36] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. ‘Automated Identifi-
cation of Cryptographic Primitives in Binary Code with Data Flow Graph Isomor-
phism’. In: Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security. ASIA CCS ’15. ACM, 2015, pp. 203–214 (cited on page 8).

[37] Xin Luo and Qinyu Liao. ‘Awareness Education as the Key to Ransomware Preven-
tion’. In: Information Systems Security 16.4 (2007), pp. 195–202 (cited on page 8).

[38] Raj Samani and Christiaan Beek. An Analysis of the WannaCry Ransomware Outbreak.
May 12, 2017. url: https://www.mcafee.com/blogs/enterprise/analysis-
wannacry-ransomware-outbreak/ (visited on 08/18/2020) (cited on page 8).

[39] Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘Next Generation Crypto-
graphic Ransomware’. In: Secure IT Systems - 23rd Nordic Conference, NordSec 2018,
Oslo, Norway, November 28-30, 2018, Proceedings. Vol. 11252. LNCS. Springer, Nov.
2018, pp. 385–401 (cited on page 11).

[40] Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. ‘On Deception-Based
Protection Against Cryptographic Ransomware’. In: Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2019, pp. 219–239 (cited on pages 11,
121).

[41] Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. ‘A Game of “Cut and
Mouse”: Bypassing Antivirus by Simulating User Inputs’. In: Proceedings of the 35th
Annual Computer Security Applications Conference. ACSAC ’19. San Juan, Puerto
Rico: Association for Computing Machinery, 2019, pp. 456–465 (cited on page 11).

[42] Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. ‘Cut-and-Mouse and
Ghost Control: Exploiting Antivirus Software with Synthesized Inputs’. In: Digital
Threats: Research and Practice (). In press (cited on page 11).

[43] Ziya Alper Genç, Gabriele Lenzini, and Daniele Sgandurra. ‘Case Study: Analysis and
Mitigation of a Novel Sandbox-Evasion Technique’. In: Proceedings of the Third Cen-
tral European Cybersecurity Conference. CECC 2019. Munich, Germany: Association
for Computing Machinery, 2019 (cited on page 12).

[44] Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘No Random, No Ransom: A
Key to Stop Cryptographic Ransomware’. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. Cham: Springer International Publishing, 2018, pp. 234–255
(cited on pages 12, 85).

https://www.watchpointdata.com/cryptostopper
https://www.watchpointdata.com/cryptostopper
https://www.mcafee.com/blogs/enterprise/analysis-wannacry-ransomware-outbreak/
https://www.mcafee.com/blogs/enterprise/analysis-wannacry-ransomware-outbreak/

[45] Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘Security Analysis of Key
Acquiring Strategies Used by Cryptographic Ransomware’. In: Proceedings of the
Central European Cybersecurity Conference 2018. CECC 2018. Ljubljana, Slovenia:
ACM, 2018, 7:1–7:6 (cited on pages 12, 103).

[46] Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘NoCry: No More Secure
Encryption Keys for Cryptographic Ransomware’. In: Emerging Technologies for
Authorization and Authentication. Cham: Springer International Publishing, 2020,
pp. 69–85 (cited on page 12).

[47] Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan. ‘The Cipher, the Random
and the Ransom: A Survey on Current and Future Ransomware’. In: Proceedings of
the Central European Cybersecurity Conference 2017. CECC 2017. Ljubljana, Slovenia:
University of Maribor Press, 2017, pp. 89–102 (cited on page 12).

[48] Ziya Alper Genç. and Gabriele Lenzini. ‘Dual-use Research in Ransomware Attacks:
A Discussion on Ransomware Defence Intelligence’. In: Proceedings of the 6th Inter-
national Conference on Information Systems Security and Privacy - Volume 1: ICISSP,
INSTICC. SciTePress, 2020, pp. 585–592 (cited on page 12).

[49] Council of European Union. Council regulation (EU) no 428/2009. https://eur-
lex.europa.eu/legal-content/EN/ALL/?uri=celex:32009R0428, Last accessed
on February 22, 2019. 2009 (cited on page 15).

[50] European Commission. Guidance note – Research involving dual-use items. http:
//ec.europa.eu/research/participants/data/ref/h2020/other/hi/guide_

research-dual-use_en.pdf, Last accessed on February 22, 2019 (cited on page 15).

[51] Working Group Dual Use of the Flemish Interuniversity Council. Guidelines for
researchers on dual use and misuse of research. 2017 (cited on page 15).

[52] Alana Maurushat. Disclosure of Security Vulnerabilities: Legal and Ethical Issues.
London: Springer-Verlag London, 2013 (cited on page 15).

[53] Jessica R. Herrera-Flanigan and Sumit Ghosh. ‘Criminal Regulations’. In: Cyber-
crimes: A Multidisciplinary Analysis. Ed. by Sumit Ghosh and Elliot Turrini. Berlin,
Heidelberg: Springer, 2011. Chap. 16, pp. 265–308 (cited on pages 17, 127).

[54] J. P. Sullins. ‘A Case Study in Malware Research Ethics Education: When Teaching
Bad is Good’. In: 2014 IEEE Security and Privacy Workshops. May 2014, pp. 1–4 (cited
on page 17).

[55] Ronald Deibert and Masashi Crete-Nishihata. ‘Blurred Boundaries: Probing the
Ethics of Cyberspace Research’. In: Review of Policy Research 28.5 (2011), pp. 531–537
(cited on page 17).

[56] Phillip Rogaway. The Moral Character of Cryptographic Work. Cryptology ePrint
Archive, Report 2015/1162. https://eprint.iacr.org/2015/1162. 2015 (cited on
page 17).

[57] Directorate-General for Research and Innovation. Ethics for researchers. Tech. rep.
KI-32-13-114-EN-N. European Commission, July 2015 (cited on page 18).

[58] Ian Darwin. Fine Free File Command. http://www.darwinsys.com/file/ (cited on
page 22).

[59] Fabio De Gaspari et al. The Naked Sun: Malicious Cooperation Between Benign-Looking
Processes. 2019. arXiv: 1911.02423 [cs.CR] (cited on page 22).

[60] JoanDaemen andVincent Rijmen. The Design of Rijndael. Berlin, Heidelberg: Springer-
Verlag, 2002 (cited on page 23).

[61] Stijn Pletinckx, Cyril Trap, and Christian Doerr. ‘Malware Coordination using the
Blockchain: An Analysis of the Cerber Ransomware’. In: IEEE Conference on Com-
munications and Network Security, CNS 2018. Piscataway, New Jersey, US: IEEE, 2018,
pp. 1–9 (cited on pages 24, 77).

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32009R0428
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32009R0428
http://ec.europa.eu/research/participants/data/ref/h2020/other/hi/guide_research-dual-use_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/hi/guide_research-dual-use_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/hi/guide_research-dual-use_en.pdf
https://eprint.iacr.org/2015/1162
http://www.darwinsys.com/file/
https://arxiv.org/abs/1911.02423

[62] John R. Douceur et al. ‘Reclaiming Space from Duplicate Files in a Serverless Dis-
tributed File System’. In: Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems (ICDCS’02). ICDCS ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 617–624 (cited on pages 25, 93).

[63] Benyamin Hirschberg et al. Ransomware Key Extractor and Recovery System. https:
//patentscope.wipo.int/search/en/detail.jsf?docId=US215058675. Apr.
2016 (cited on page 26).

[64] Philip B. Stark. Pseudo-Random Number Generator using SHA-256. https://www.
stat.berkeley.edu/~stark/Java/Html/sha256Rand.htm. Jan. 2017 (cited on
page 26).

[65] Donald E. Eastlake 3rd. Publicly Verifiable Nominations Committee (NomCom) Random
Selection. RFC 3797. June 2004 (cited on page 26).

[66] Vassil Roussev and Candice Quates. the sdhash tutorial. http://roussev.net/
sdhash/tutorial/03-quick.html. Aug. 2013 (cited on page 27).

[67] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. 1st. Boca Raton, FL, USA: CRC Press, Inc., 1996 (cited on page 29).

[68] Ronald A Fisher and Frank Yates. Statistical Tables for Biological, Agricultural and
Medical Research. London: Oliver and Boyd, 1943 (cited on page 29).

[69] Alexei Bulazel and Bülent Yener. ‘A Survey On Automated Dynamic Malware Anal-
ysis Evasion and Counter-Evasion: PC, Mobile, and Web’. In: Proceedings of the 1st
Reversing and Offensive-oriented Trends Symposium. Vienna, Austria: ACM, 2017,
2:1–2:21 (cited on page 33).

[70] Jim Yuill et al. ‘Honeyfiles: Deceptive Files for Intrusion Detection’. In: Proc. of the
IEEE Work. on Information Assurance, United States Military Academy, West Point,
NY. 2004 (cited on page 33).

[71] Brian M Bowen et al. ‘Baiting inside attackers using decoy documents’. In: Interna-
tional Conference on Security and Privacy in Communication Systems. Springer. 2009,
pp. 51–70 (cited on pages 34, 36).

[72] Ari Juels and Ronald L. Rivest. ‘Honeywords: Making Password-cracking Detectable’.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Commu-
nications Security. CCS ’13. Berlin, Germany: ACM, 2013, pp. 145–160 (cited on
page 34).

[73] D. Balfanz et al. ‘In search of usable security: five lessons from the field’. In: IEEE
Security Privacy 2.5 (Sept. 2004), pp. 19–24 (cited on page 36).

[74] J.A. Gómez-Hernández, L. Álvarez-González, and P. García-Teodoro. ‘R-Locker:
Thwarting ransomware action through a honeyfile-based approach’. In: Computers
& Security 73 (2018), pp. 389–398 (cited on pages 38, 40, 43).

[75] C. Moore. ‘Detecting Ransomware with Honeypot Techniques’. In: 2016 Cybersecurity
and Cyberforensics Conference (CCC). Aug. 2016, pp. 77–81 (cited on page 38).

[76] RoutaMoussaileb et al. ‘Ransomware’s Early MitigationMechanisms’. In: Proceedings
of the 13th International Conference on Availability, Reliability and Security. ARES
2018. Hamburg, Germany: ACM, 2018, 2:1–2:10. isbn: 978-1-4503-6448-5 (cited on
page 38).

[77] Yun Feng, Chaoge Liu, and Baoxu Liu. ‘Poster: A New Approach to Detecting
Ransomware with Deception’. In: 38th IEEE Symposium on Security and Privacy
Workshops. 2017 (cited on page 39).

[78] Mark E Russinovich, David A Solomon, and Alex Ionescu.Windows internals. Pearson
Education, 2012 (cited on page 41).

https://patentscope.wipo.int/search/en/detail.jsf?docId=US215058675
https://patentscope.wipo.int/search/en/detail.jsf?docId=US215058675
https://www.stat.berkeley.edu/~stark/Java/Html/sha256Rand.htm
https://www.stat.berkeley.edu/~stark/Java/Html/sha256Rand.htm
http://roussev.net/sdhash/tutorial/03-quick.html
http://roussev.net/sdhash/tutorial/03-quick.html

[79] N. C. Rowe. ‘Measuring the Effectiveness of Honeypot Counter-Counterdeception’.
In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06). Vol. 6. Jan. 2006, pp. 129c–129c (cited on page 41).

[80] Galen Hunt and Doug Brubacher. ‘Detours: Binary Interception of Win32 Functions’.
In: Proceedings of the 3rd Conference on USENIX Windows NT Symposium - Volume 3.
WINSYM’99. Seattle, Washington: USENIX Association, 1999, pp. 14–14 (cited on
page 44).

[81] Mohammed I. Al-Saleh and Jedidiah R. Crandall. ‘Application-level Reconnaissance:
Timing Channel Attacks Against Antivirus Software’. In: Proceedings of the 4th
USENIX Conference on Large-scale Exploits and Emergent Threats. LEET’11. Boston,
MA: USENIX Association, 2011 (cited on pages 49, 68).

[82] Ilsun You and Kangbin Yim. ‘Malware Obfuscation Techniques: A Brief Survey’. In:
International Conference on Broadband, Wireless Computing, Communication and
Applications. BWCCA ’10. Fukuoka, Japan: IEEE, 2010 (cited on page 49).

[83] Hyrum S. Anderson et al. Learning to Evade Static PE Machine Learning Malware
Models via Reinforcement Learning. 2018. arXiv: 1801.08917 [cs.CR] (cited on
page 49).

[84] Feng Xue. Attacking Antivirus. 2008. url: https://blackhat.com/presentations/
bh-europe-08/Feng-Xue/Presentation/bh-eu-08-xue.pdf (cited on pages 49,
68).

[85] Joxean Koret and Elias Bachaalany. The Antivirus Hacker’s Handbook. Indianapolis,
IN, USA: John Wiley & Sons, 2015 (cited on page 49).

[86] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. ‘Crowdroid: Behavior-
based Malware Detection System for Android’. In: Proceedings of the 1st ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices. SPSM ’11. Chicago,
Illinois, USA: ACM, 2011, pp. 15–26. isbn: 978-1-4503-1000-0. doi: 10.1145/2046614.
2046619. url: http://doi.acm.org/10.1145/2046614.2046619 (cited on page 49).

[87] Heng Yin et al. ‘Panorama: Capturing System-wide Information Flow for Malware
Detection and Analysis’. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security. CCS ’07. Alexandria, Virginia, USA: ACM, 2007, pp. 116–
127. isbn: 978-1-59593-703-2. doi: 10.1145/1315245.1315261. url: http://doi.
acm.org/10.1145/1315245.1315261 (cited on page 49).

[88] Mohsen Ahmadvand, Alexander Pretschner, and Florian Kelbert. ‘A taxonomy of
software integrity protection techniques’. In: Advances in Computers. Vol. 112. Cam-
bridge, MA, USA: Elsevier, 2019, pp. 413–486 (cited on page 49).

[89] Battista Biggio and Fabio Roli. ‘Wild Patterns: Ten Years After the Rise of Adversarial
Machine Learning’. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’18. Toronto, Canada: ACM, 2018, pp. 2154–2156.
isbn: 978-1-4503-5693-0. doi: 10.1145/3243734.3264418. url: http://doi.acm.
org/10.1145/3243734.3264418 (cited on page 49).

[90] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. ‘Making Machine Learning
Robust Against Adversarial Inputs’. In: Commun. ACM 61.7 (June 2018), pp. 56–66.
issn: 0001-0782. doi: 10.1145/3134599. url: http://doi.acm.org/10.1145/
3134599 (cited on page 49).

[91] Dhilung Kirat and Giovanni Vigna. ‘MalGene: Automatic Extraction of Malware
Analysis Evasion Signature’. In: Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security. CCS ’15. Denver, Colorado, USA: ACM,
2015, pp. 769–780 (cited on page 49).

https://arxiv.org/abs/1801.08917
https://blackhat.com/presentations/bh-europe-08/Feng-Xue/Presentation/bh-eu-08-xue.pdf
https://blackhat.com/presentations/bh-europe-08/Feng-Xue/Presentation/bh-eu-08-xue.pdf
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1145/2046614.2046619
http://doi.acm.org/10.1145/2046614.2046619
https://doi.org/10.1145/1315245.1315261
http://doi.acm.org/10.1145/1315245.1315261
http://doi.acm.org/10.1145/1315245.1315261
https://doi.org/10.1145/3243734.3264418
http://doi.acm.org/10.1145/3243734.3264418
http://doi.acm.org/10.1145/3243734.3264418
https://doi.org/10.1145/3134599
http://doi.acm.org/10.1145/3134599
http://doi.acm.org/10.1145/3134599

[92] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648. http://www.
rfc-editor.org/rfc/rfc4648.txt. RFC Editor, Oct. 2006. url: http://www.rfc-
editor.org/rfc/rfc4648.txt (cited on page 53).

[93] TaxSlayer Pro. Quick Start Manual. 2017. url: http://downloads.taxslayer.com/
online/2017-Quick-Start-Manual.pdf (cited on page 56).

[94] IT Services of Mitchell Hamline School of Law. Technology Notice – Disable An-
tivirus before using Examplify. Dec. 2017. url: https://mitchellhamline.edu/
technology/2017/12/03/technology-notice-disable-antivirus-before-

using-examplify/ (cited on page 56).

[95] AV-TEST. The best antivirus software for Windows Home User. 2020. url: https:
//www.av-test.org/en/antivirus/home-windows/windows-10/february-

2020/ (cited on page 59).

[96] AV-Comparatives. Malware Protection Test March 2020. 2020. url: https://www.av-
comparatives.org/tests/malware-protection-test-march-2020/ (cited on
page 59).

[97] OPSWAT. Windows Anti-Malware Market Share Report. 2020. url: https://www.
opswat.com/blog/windows-anti-malware-market-share-report-april-2020

(cited on page 63).

[98] Luis von Ahn et al. ‘CAPTCHA: Using Hard AI Problems for Security’. In: Advances
in Cryptology — EUROCRYPT 2003. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 294–311 (cited on page 65).

[99] Guixin Ye et al. ‘Using Generative Adversarial Networks to Break and Protect Text
Captchas’. In: ACM Trans. Priv. Secur. 23.2 (Apr. 2020) (cited on page 65).

[100] Marti Motoyama et al. ‘Re: CAPTCHAs: Understanding CAPTCHA-Solving Services
in an Economic Context’. In: Proceedings of the 19th USENIX Conference on Security.
USENIX Security’10. Washington, DC: USENIX Association, 2010, p. 28 (cited on
page 66).

[101] Drew Springall et al. ‘Security Analysis of the Estonian Internet Voting System’. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’14. Scottsdale, Arizona, USA: ACM, 2014, pp. 703–715. isbn: 978-1-
4503-2957-6 (cited on page 66).

[102] S. Maruyama, S. Wakabayashi, and T. Mori. ‘Tap ’n Ghost: A Compilation of Novel
Attack Techniques against Smartphone Touchscreens’. In: 2019 2019 IEEE Symposium
on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society, May
2019, pp. 628–645 (cited on page 66).

[103] Kenneth C. Wilbur and Yi Zhu. ‘Click Fraud’. In: Marketing Science 28.2 (2009),
pp. 293–308 (cited on page 66).

[104] NIST. NVD – CVE-2017-7150. Oct. 2017. url: https://nvd.nist.gov/vuln/detail/
CVE-2017-7150 (cited on pages 66, 67).

[105] Andy Greenberg. Another Mac Bug Lets Hackers Invisibly Click Security Prompts. 2019.
url: https://www.wired.com/story/apple-macos-bug-synthetic-clicks/
(cited on page 66).

[106] Karsten Nohl, Sascha Krißler, and Jakob Lell. BadUSB—On accessories that turn evil.
July 2014. url: https://srlabs.de/wp-content/uploads/2014/07/SRLabs-
BadUSB-BlackHat-v1.pdf (cited on page 67).

[107] Chris Paget (alias Foon). Exploiting design flaws in the Win32 API for privilege esca-
lation. Aug. 2002. url: https://web.archive.org/web/20060904080018/http:
//security.tombom.co.uk/shatter.html (cited on page 67).

http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://downloads.taxslayer.com/online/2017-Quick-Start-Manual.pdf
http://downloads.taxslayer.com/online/2017-Quick-Start-Manual.pdf
https://mitchellhamline.edu/technology/2017/12/03/technology-notice-disable-antivirus-before-using-examplify/
https://mitchellhamline.edu/technology/2017/12/03/technology-notice-disable-antivirus-before-using-examplify/
https://mitchellhamline.edu/technology/2017/12/03/technology-notice-disable-antivirus-before-using-examplify/
https://www.av-test.org/en/antivirus/home-windows/windows-10/february-2020/
https://www.av-test.org/en/antivirus/home-windows/windows-10/february-2020/
https://www.av-test.org/en/antivirus/home-windows/windows-10/february-2020/
https://www.av-comparatives.org/tests/malware-protection-test-march-2020/
https://www.av-comparatives.org/tests/malware-protection-test-march-2020/
https://www.opswat.com/blog/windows-anti-malware-market-share-report-april-2020
https://www.opswat.com/blog/windows-anti-malware-market-share-report-april-2020
https://nvd.nist.gov/vuln/detail/CVE-2017-7150
https://nvd.nist.gov/vuln/detail/CVE-2017-7150
https://www.wired.com/story/apple-macos-bug-synthetic-clicks/
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://web.archive.org/web/20060904080018/http://security.tombom.co.uk/shatter.html
https://web.archive.org/web/20060904080018/http://security.tombom.co.uk/shatter.html

[108] Mihai Christodorescu and Somesh Jha. ‘Testing malware detectors’. In:ACM SIGSOFT
Software Engineering Notes 29.4 (2004), pp. 34–44 (cited on page 68).

[109] Monirul I. Sharif et al. ImpedingMalware Analysis Using Conditional Code Obfuscation.
San Diego, CA, USA, Feb. 2008 (cited on page 68).

[110] Joxean Koret. Breaking Antivirus Software. 2014. url: http://joxeankoret.com/
download/breaking_av_software_44con.pdf (cited on page 68).

[111] Joxean Koret. AV: Additional Vulnerabilities. 2016. url: https://www.hoystreaming.
com/wp-content/uploads/2016/03/hb_bilbo.pdf (cited on page 68).

[112] Tavis Ormandy. How to Compromise the Enterprise Endpoint. 2016. url: https://
googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-

endpoint.html (cited on page 68).

[113] Tavis Ormandy. Analysis and Exploitation of an ESET Vulnerability. 2015. url: https:
//googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-

of-eset.html (cited on page 68).

[114] Microsoft. Driver security checklist. 2019. url: https://docs.microsoft.com/en-
us/windows-hardware/drivers/driversecurity/driver-security-checklist

(cited on page 69).

[115] D. E. Bell and L. J. La Padula. Secure computer system: Unified exposition and Multics
interpretation. Technical Report ESD-TR-75-306. Mitre Corporation, Mar. 1976 (cited
on page 69).

[116] John Rushby. The Bell and La Padula Security Model. Draft Technical Note. Computer
Science Laboratory, SRI International. Menlo Park, CA, June 1986 (cited on page 69).

[117] AV-TEST. Malware Statistics & Trends Report. https://www.av-test.org/en/
statistics/malware/. 2019 (cited on page 71).

[118] Cisco. Cisco 2018 Annual Cybersecurity Report. https://www.cisco.com/c/dam/m/
hu_hu/campaigns/security-hub/pdf/acr-2018.pdf. Feb. 2018 (cited on page 71).

[119] Minerva Labs. 2017 – The Year Malware Went More Evasive. https://l.minerva-
labs.com/hubfs/Minerva%20Infographic_Final.pdf. 2017 (cited on page 71).

[120] MalwareTech. How to Accidentally Stop a Global Cyber Attacks. https://www.
malwaretech.com/2017/05/how-to-accidentally-stop-a-global-cyber-

attacks.html. 2017 (cited on page 71).

[121] Jonathan A. P. Marpaung, Mangal Sain, and Hoon-Jae Lee. ‘Survey on malware
evasion techniques: State of the art and challenges’. In: 14th International Conference
on Advanced Communication Technology (ICACT). Piscataway, New Jersey, US: IEEE,
Feb. 2012, pp. 744–749 (cited on page 71).

[122] Davide Balzarotti et al. ‘Efficient detection of split personalities in malware’. In: 17th
Annual Network and Distributed System Security Symposium (NDSS 2010). San Diego,
US: The Internet Society, Feb. 2010 (cited on page 71).

[123] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. ‘BareCloud: Bare-metal
Analysis-based Evasive Malware Detection’. In: 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association, 2014, pp. 287–301. url:
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/

presentation/kirat (cited on page 71).

[124] Dhilung Kirat and Giovanni Vigna. ‘MalGene: Automatic Extraction of Malware
Analysis Evasion Signature’. In: Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security. CCS ’15. Denver, Colorado, USA: ACM,
2015, pp. 769–780 (cited on page 72).

[125] Cuckoo Sandbox. Cuckoo Sandbox – Automated Malware Analysis. https://cuck-
oosandbox.org/. 2019 (cited on page 72).

http://joxeankoret.com/download/breaking_av_software_44con.pdf
http://joxeankoret.com/download/breaking_av_software_44con.pdf
https://www.hoystreaming.com/wp-content/uploads/2016/03/hb_bilbo.pdf
https://www.hoystreaming.com/wp-content/uploads/2016/03/hb_bilbo.pdf
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-of-eset.html
https://googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-of-eset.html
https://googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-of-eset.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/driver-security-checklist
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/driver-security-checklist
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf
https://l.minerva-labs.com/hubfs/Minerva%20Infographic_Final.pdf
https://l.minerva-labs.com/hubfs/Minerva%20Infographic_Final.pdf
https://www.malwaretech.com/2017/05/how-to-accidentally-stop-a-global-cyber-attacks.html
https://www.malwaretech.com/2017/05/how-to-accidentally-stop-a-global-cyber-attacks.html
https://www.malwaretech.com/2017/05/how-to-accidentally-stop-a-global-cyber-attacks.html
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat

[126] Olivier Ferrand. ‘How to detect the cuckoo sandbox and to strengthen it?’ In: Journal
of Computer Virology and Hacking Techniques 11.1 (2015), pp. 51–58 (cited on page 72).

[127] VirusTotal. VirusTotal Threat Intelligence. https://www.virustotal.com/. 2019 (cited
on pages 72, 114).

[128] Marcos Sebastián et al. ‘Avclass: A tool for massive malware labeling’. In: Interna-
tional Symposium on Research in Attacks, Intrusions, and Defenses. Cham: Springer
International Publishing, 2016, pp. 230–253 (cited on pages 73, 89, 103).

[129] Akira Yokoyama et al. ‘SandPrint: Fingerprinting Malware Sandboxes to Provide
Intelligence for Sandbox Evasion’. In: Research in Attacks, Intrusions, and Defenses.
Cham: Springer International Publishing, 2016, pp. 165–187 (cited on page 75).

[130] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. BCP 14.
http://www.rfc-editor.org/rfc/rfc2119.txt. RFC Editor, Mar. 1997. url:
http://www.rfc-editor.org/rfc/rfc2119.txt (cited on page 81).

[131] Y. Dodis et al. ‘On the (im)possibility of cryptography with imperfect randomness’.
In: 45th Annual IEEE Symposium on Foundations of Computer Science. Oct. 2004,
pp. 196–205 (cited on page 82).

[132] Mihir Bellare et al. ‘Hedged Public-Key Encryption: How to Protect against Bad
Randomness.’ In: Asiacrypt. Vol. 5912. Springer, pp. 232–249 (cited on page 82).

[133] Luciano Bello. Debian Security Advisory: DSA-1571-1 openssl – predictable random
number generator. May 2008. url: http://www.debian.org/security/2008/dsa-
1571 (cited on page 83).

[134] Juniper Networks: Out of Cycle Security Bulletin. retrieved July 17, 2017 from https:

//kb.juniper.net/InfoCenter/index?page=content&id=JSA10713. Dec. 2015
(cited on page 83).

[135] Derek Soeder, Christopher Abad, and Gabriel Acevedo. Black-Box Assessment of
Pseudorandom Algorithms. Black Hat USA, https://media.blackhat.com/us-
13/US-13-Soeder-Black-Box-Assessment-of-Pseudorandom-Algorithms-

WP.pdf. 2013 (cited on page 83).

[136] Michael Howard and David Le Blanc. Writing Secure Code. 2nd ed. Developer Best
Practices. Microsoft Press, Dec. 2004 (cited on page 83).

[137] Microsoft Corporation. Windows Authenticode Portable Executable Signature Format.
Tech. rep. http://download.microsoft.com/download/9/c/5/9c5b2167-
8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx. Mar. 2008. url: http:
//download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-

d599bac8184a/Authenticode_PE.docx (cited on page 86).

[138] Microsoft. Working with the AppInit_DLLs registry value. Nov. 2006. url: https:
//support.microsoft.com/en-us/help/197571/working-with-the-appinit-

dlls-registry-value (cited on pages 87, 93).

[139] Thomas M. Chen and Saeed Abu-Nimeh. ‘Lessons from stuxnet’. In: Computer 44.4
(2011), pp. 91–93 (cited on pages 94, 109).

[140] Peter Szor.Duqu–Threat Research andAnalysis. Nov. 2011. url: https://securingtomorrow.
mcafee.com/wp-content/uploads/2011/10/Duqu.pdf (cited on pages 94, 109).

[141] VirusTotal. Scan report. June 2017. url: https://virustotal.com/en/file/
81fdbf04f3d0d9a85e0fbb092e257a2dda14c5d783f1c8bf3bc41038e0a78688/analysis/

(cited on pages 94, 109).

[142] Microsoft. Named Pipes. Retrieved June 3, 2019 from https://docs.microsoft.

com/en-us/windows/desktop/ipc/named-pipes. May 2018 (cited on page 98).

http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713
https://media.blackhat.com/us-13/US-13-Soeder-Black-Box-Assessment-of-Pseudorandom-Algorithms-WP.pdf
https://media.blackhat.com/us-13/US-13-Soeder-Black-Box-Assessment-of-Pseudorandom-Algorithms-WP.pdf
https://media.blackhat.com/us-13/US-13-Soeder-Black-Box-Assessment-of-Pseudorandom-Algorithms-WP.pdf
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
https://support.microsoft.com/en-us/help/197571/working-with-the-appinit-dlls-registry-value
https://support.microsoft.com/en-us/help/197571/working-with-the-appinit-dlls-registry-value
https://support.microsoft.com/en-us/help/197571/working-with-the-appinit-dlls-registry-value
https://securingtomorrow.mcafee.com/wp-content/uploads/2011/10/Duqu.pdf
https://securingtomorrow.mcafee.com/wp-content/uploads/2011/10/Duqu.pdf
https://virustotal.com/en/file/81fdbf04f3d0d9a85e0fbb092e257a2dda14c5d783f1c8bf3bc41038e0a78688/analysis/
https://virustotal.com/en/file/81fdbf04f3d0d9a85e0fbb092e257a2dda14c5d783f1c8bf3bc41038e0a78688/analysis/
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes

[143] Thanh Bui et al. ‘Man-in-the-Machine: Exploiting Ill-Secured Communication In-
side the Computer’. In: 27th USENIX Security Symposium. Baltimore, MD: USENIX
Association, 2018, pp. 1511–1525 (cited on page 98).

[144] KnowBe4. KnowBe4 Alert: New Strain Of Sleeper Ransomware. Retrieved June 1,
2019 from https://www.knowbe4.com/press/knowbe4-alert-new-strain-of-

sleeper-ransomware. May 2015 (cited on page 100).

[145] Avast. PC Trends Report 2019. Retrieved June 1, 2019 from https://blog.avast.

com/pc-trends-reports. Apr. 2019 (cited on pages 102, 103).

[146] H. Cormac. ‘So long, and no thanks for the externalities: the rational rejection of
security advice by users’. In: Proc. of the 2009 New Security Paradigm Workshop
(NSPW), September 8–11, 2009, Oxford, United Kingdom. ACM, 2009, pp. 133–144
(cited on page 105).

[147] Michael Young and Ryan Zisk. Decrypting the NegozI Ransomware. Retrieved June 1,
2019 from https://yrz.io/decrypting-the-negozi-ransomware. 2017 (cited on
page 105).

[148] Greg Hoglund and James Butler. Rootkits: subverting the Windows kernel. Addison-
Wesley Professional, 2006 (cited on page 109).

[149] Spencer Smith and John Harrison. Rootkits. 2012. url: http://www.symantec.
com/content/en/us/enterprise/media/security_response/whitepapers/

rootkits.pdf (cited on page 109).

[150] Microsoft. Kernel patch protection: frequently asked questions. Jan. 2007. url: https:
//msdn.microsoft.com/en-us/library/windows/hardware/Dn613955(v=vs.

85).aspx (cited on page 109).

[151] Christian Collberg, Clark Thomborson, and Douglas Low. ‘Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs’. In: Proc. 25th ACM Symp. Principles of
Programming Languages. POPL ’98. California, USA, 1998 (cited on page 110).

[152] Ilsun You and Kangbin Yim. ‘Malware Obfuscation Techniques: A Brief Survey’. In:
Proc. 5th Int. Conf. Broadband, Wireless Computing, Commun. and Applicat. BWCCA
’10. Fukuoka, Japan, 2010 (cited on page 110).

[153] Arini Balakrishnan and Chloe Schulze. Code obfuscation literature survey. 2005 (cited
on page 110).

[154] Jean-Marie Borello and Ludovic Mé. ‘Code obfuscation techniques for metamorphic
viruses’. In: Journal in Computer Virology 4.3 (2008), pp. 211–220 (cited on page 110).

[155] Xabier Ugarte-Pedrero et al. ‘SoK: deep packer inspection: a longitudinal study of the
complexity of run-time packers’. In: Proc. 36th IEEE Symp. on Security and Privacy.
S&P ’15. California, USA, 2015 (cited on page 110).

[156] Stanley Chow et al. ‘White-Box Cryptography and an AES Implementation’. In: Se-
lected Areas in Cryptography. SAC ’02. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 250–270 (cited on page 111).

[157] Stanley Chow et al. ‘A White-Box DES Implementation for DRM Applications’. In:
Proc. ACM Workshop on Digital Rights Manage. DRM ’02. Washington, USA, 2003
(cited on page 111).

[158] Andrey Bogdanov and Takanori Isobe. ‘White-Box Cryptography Revisited: Space-
Hard Ciphers’. In: Proc. 22nd ACM Conf. Comput. and Commun. Security. CCS ’15.
Denver, USA, 2015 (cited on page 111).

[159] Marc Beunardeau et al. ‘White-box cryptography: Security in an insecure environ-
ment’. In: IEEE Security & Privacy 14.5 (2016), pp. 88–92 (cited on page 111).

https://www.knowbe4.com/press/knowbe4-alert-new-strain-of-sleeper-ransomware
https://www.knowbe4.com/press/knowbe4-alert-new-strain-of-sleeper-ransomware
https://blog.avast.com/pc-trends-reports
https://blog.avast.com/pc-trends-reports
https://yrz.io/decrypting-the-negozi-ransomware
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/rootkits.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/rootkits.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/rootkits.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/Dn613955(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/Dn613955(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/Dn613955(v=vs.85).aspx

[160] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. ‘Towards Practical White-
box Cryptography: Optimizing Efficiency and Space Hardness’. In: Proc. 22nd Int.
Conf. Theory and Application of Cryptology and Inform. Security. ASIACRYPT ’16.
Hanoi, Vietnam, 2016 (cited on page 111).

[161] Yin Jia, TingTing Lin, and Xuejia Lai. ‘A generic attack against white box imple-
mentation of block ciphers’. In: Proc. Int. Conf. Comput. Inform. and Telecommun.
Systems. CITS ’16. Kunming, China, 2016 (cited on page 111).

[162] Ondrej Kubovič. Ransomware is everywhere, but even black hats make mistakes. Apr.
2016. url: https://www.welivesecurity.com/2016/04/28/ransomware-is-
everywhere-but-even-black-hats-make-mistakes/ (cited on page 111).

[163] Jayavardhana Gubbi et al. ‘Internet of Things (IoT): A vision, architectural elements,
and future directions’. In: Future generation computer systems 29.7 (2013), pp. 1645–
1660 (cited on page 111).

[164] Kai Zhao and Lina Ge. ‘A Survey on the Internet of Things Security’. In: Proc. 9th Int.
Conf. Computational Intelligence and Security. CIS ’13. Leshan, China, 2013 (cited on
page 111).

[165] Luigi Atzori, Antonio Iera, and GiacomoMorabito. ‘The Internet of Things: A survey’.
In: Computer Networks 54.15 (2010), pp. 2787–2805 (cited on page 111).

[166] Elizabeth Weise. Ransomware attack hit San Francisco train system. Nov. 2016. url:
https://www.usatoday.com/story/tech/news/2016/11/28/san-francisco-

metro-hack-meant-free-rides-saturday/94545998/ (cited on page 111).

[167] Dan Bilefsky. Hackers Use New Tactic at Austrian Hotel: Locking the Doors. Jan. 2017.
url: https://www.nytimes.com/2017/01/30/world/europe/hotel-austria-
bitcoin-ransom.html (cited on page 112).

[168] Andrew Tierney. Thermostat Ransomware: a lesson in IoT security. Aug. 2016. url:
https://www.pentestpartners.com/security-blog/thermostat-ransomware-

a-lesson-in-iot-security/ (cited on page 112).

[169] Radwire. “BrickerBot” Results In PDoS Attack. May 2017. url: https://security.
radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-

of-service/ (cited on page 112).

[170] Andy Greenberg. Hackers Remotely Kill a Jeep on the Highway—With Me in It. July
2015. url: https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/ (cited on page 112).

[171] Paul Wagenseil. 75 Percent of Bluetooth Smart Locks Can Be Hacked. Aug. 2016. url:
http://www.tomsguide.com/us/bluetooth-lock-hacks-defcon2016,news-

23129.html (cited on page 112).

[172] Bruce Schneier. The Internet of Things Is Wildly Insecure – And Often Unpatchable. Jan.
2014. url: https://www.wired.com/2014/01/theres-no-good-way-to-patch-
the-internet-of-things-and-thats-a-huge-problem/ (cited on page 112).

[173] Paul Ducklin. Popcorn Time ransomware lets you off if you infect two other people.
Dec. 2016. url: https://nakedsecurity.sophos.com/2016/12/15/popcorn-
time-ransomware-lets-you-off-if-you-infect-two-other-people/ (cited on
page 112).

[174] Vindu Goel. Verizon Will Pay $350 Million Less for Yahoo. Feb. 2017. url: https://
www.nytimes.com/2017/02/21/technology/verizon-will-pay-350-million-

less-for-yahoo.html (cited on page 112).

[175] Amanda Holpuch. Sony email hack: what we’ve learned about greed, racism and sexism.
Dec. 2014. url: https://www.theguardian.com/technology/2014/dec/14/sony-
pictures-email-hack-greed-racism-sexism (cited on page 113).

https://www.welivesecurity.com/2016/04/28/ransomware-is-everywhere-but-even-black-hats-make-mistakes/
https://www.welivesecurity.com/2016/04/28/ransomware-is-everywhere-but-even-black-hats-make-mistakes/
https://www.usatoday.com/story/tech/news/2016/11/28/san-francisco-metro-hack-meant-free-rides-saturday/94545998/
https://www.usatoday.com/story/tech/news/2016/11/28/san-francisco-metro-hack-meant-free-rides-saturday/94545998/
https://www.nytimes.com/2017/01/30/world/europe/hotel-austria-bitcoin-ransom.html
https://www.nytimes.com/2017/01/30/world/europe/hotel-austria-bitcoin-ransom.html
https://www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-in-iot-security/
https://www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-in-iot-security/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.tomsguide.com/us/bluetooth-lock-hacks-defcon2016,news-23129.html
http://www.tomsguide.com/us/bluetooth-lock-hacks-defcon2016,news-23129.html
https://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/
https://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/
https://nakedsecurity.sophos.com/2016/12/15/popcorn-time-ransomware-lets-you-off-if-you-infect-two-other-people/
https://nakedsecurity.sophos.com/2016/12/15/popcorn-time-ransomware-lets-you-off-if-you-infect-two-other-people/
https://www.nytimes.com/2017/02/21/technology/verizon-will-pay-350-million-less-for-yahoo.html
https://www.nytimes.com/2017/02/21/technology/verizon-will-pay-350-million-less-for-yahoo.html
https://www.nytimes.com/2017/02/21/technology/verizon-will-pay-350-million-less-for-yahoo.html
https://www.theguardian.com/technology/2014/dec/14/sony-pictures-email-hack-greed-racism-sexism
https://www.theguardian.com/technology/2014/dec/14/sony-pictures-email-hack-greed-racism-sexism

[176] F. Fischer et al. ‘Stack Overflow Considered Harmful? The Impact of Copy Paste
on Android Application Security’. In: 2017 IEEE SP. May 2017, pp. 121–136 (cited on
page 113).

[177] Free Automated Malware Analysis Service. https://www.hybrid-analysis.com/.
2019 (cited on page 114).

[178] .NET debugger and assembly editor. https://github.com/0xd4d/dnSpy. 2019 (cited
on page 114).

[179] Utku Şen. HiddenTear: an open source ransomware-like file crypter kit. https://
github.com/utkusen/hidden-tear. 2015 (cited on page 115).

[180] Thad Van den Bosch. Encrypt/Decrypt Files in VB.NET (Using Rijndael). https://
www.codeproject.com/Articles/12092/Encrypt-Decrypt-Files-in-VB\-NET-

Using-Rijndael. Nov. 2005 (cited on pages 115–117).

[181] Steve Lydford. File Encryption and Decryption in C#. https://www.codeproject.
com/Articles/26085/File-Encryption-and-Decryption-in-C. May 2008 (cited
on pages 115, 116).

[182] Matt Johnson.How do you do Impersonation in .NET? (rev. 2). https://stackoverflow.
com/revisions/7250145/2. Sept. 2008 (cited on pages 115, 116).

[183] Utku Şen. Destroying The Encryption of Hidden Tear Ransomware. https://utkusen.
com/blog/destroying\-the-encryption-of-hidden-tear-ransomware.html.
Nov. 2015 (cited on pages 115, 118).

[184] Jornt van der Wiel. Hidden tear and its spin offs. Kaspersky Lab. Feb. 2016 (cited on
pages 115, 118).

[185] Y. Acar et al. ‘How Internet Resources Might Be Helping You Develop Faster but Less
Securely’. In: IEEE Security and Privacy 15.2 (2017), pp. 50–60 (cited on page 117).

[186] Burt Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC
2898. RFC Editor, Sept. 2000, pp. 1–12. url: https://www.rfc-editor.org/rfc/
rfc2898.txt (cited on page 118).

[187] Trey Herr and Paul Rosenzweig. ‘Cyber Weapons & Export Control: Incorporating
Dual Use with the PrEP Model’. In: J. National Security Law and Policy 8.2 (2015)
(cited on pages 117, 120).

[188] Phillip Rogaway. ‘The Moral Character of Cryptographic Work’. In: Austin, TX:
USENIX Association, 2016 (cited on page 117).

[189] Eduard Kovacs. Educational Ransomware Abused by Cybercriminals. https://www.
securityweek.com\/educational\-ransomware-abused-cybercriminals. Jan.
2016 (cited on page 118).

[190] Christiaan Beek. In June, almost 30 percent of the ’new’ ransomware species we discov-
ered was based on the HiddenTear code. https://twitter.com/ChristiaanBeek/
status/899557658071633920. Aug. 2017 (cited on page 118).

[191] Ransomware Recap: The Ongoing Development of Hidden Tear Variants. Trend Micro
Inc. June 2017 (cited on page 118).

[192] Willy Fox. Arescrypt: Experimental ransomware for Windows 7+ with AES-256 support.
https://github.com/BlackVikingPro/arescrypt. [20-Jul-2019]. 2017 (cited on
page 119).

[193] TarcísioMarinho.GonnaCry: A Linux Ransomware. https://github.com/tarcisio-
marinho/GonnaCry. [20-Jul-2019]. 2017 (cited on page 119).

[194] Ivan Šincek. Ransomware: PHP ransomware that encrypts your files as well as file and
directory names. https://github.com/ivan-sincek/ransomware. [20-Jul-2019].
2019 (cited on page 119).

https://www.hybrid-analysis.com/
https://github.com/0xd4d/dnSpy
https://github.com/utkusen/hidden-tear
https://github.com/utkusen/hidden-tear
https://www.codeproject.com/Articles/12092/Encrypt-Decrypt-Files-in-VB\-NET-Using-Rijndael
https://www.codeproject.com/Articles/12092/Encrypt-Decrypt-Files-in-VB\-NET-Using-Rijndael
https://www.codeproject.com/Articles/12092/Encrypt-Decrypt-Files-in-VB\-NET-Using-Rijndael
https://www.codeproject.com/Articles/26085/File-Encryption-and-Decryption-in-C
https://www.codeproject.com/Articles/26085/File-Encryption-and-Decryption-in-C
https://stackoverflow.com/revisions/7250145/2
https://stackoverflow.com/revisions/7250145/2
https://utkusen.com/blog/destroying\-the-encryption-of-hidden- tear-ransomware.html
https://utkusen.com/blog/destroying\-the-encryption-of-hidden- tear-ransomware.html
https://www.rfc-editor.org/rfc/rfc2898.txt
https://www.rfc-editor.org/rfc/rfc2898.txt
https://www.securityweek.com\/educational\-ransomware-abused-cybercriminals
https://www.securityweek.com\/educational\-ransomware-abused-cybercriminals
https://twitter.com/ChristiaanBeek/status/899557658071633920
https://twitter.com/ChristiaanBeek/status/899557658071633920
https://github.com/BlackVikingPro/arescrypt
https://github.com/tarcisio-marinho/GonnaCry
https://github.com/tarcisio-marinho/GonnaCry
https://github.com/ivan-sincek/ransomware

[195] Mauri de Souza Nunes. Ransomware: A POC Windows crypto-ransomware (Aca-
demic). https://github.com/mauri870/ransomware. [20-Jul-2019]. 2016 (cited on
page 119).

[196] Angelo Rosa. HiddenTear (forked). https://github.com/Virgula0/hidden-tear.
[20-Jul-2019]. 2017 (cited on page 119).

[197] Maksym Zaitsev. CryptoTrooper: The world’s first Linux white-box ransomware. https:
//github.com/cryptolok/CryptoTrooper. [20-Jul-2019]. 2016 (cited on page 120).

[198] Catalin Cimpanu. New Open Source Linux Ransomware Shows Infosec Community
Divide. Softpedia. Sept. 2016 (cited on page 120).

[199] Alex P. Schmid. ‘TheDefinition of Terrorism’. In: The Routledge Handbook of Terrorism
Research. Oxon, UK: Routledge, 2011. Chap. 2, pp. 39–157 (cited on page 120).

[200] Mark M. Lowenthal. Intelligence: From Secrets to Policy. 7th ed. Los Angeles: CQ
Press, 2016 (cited on page 121).

[201] Petrus Duvenage, Sebastian von Solms, and Manuel Corregedor. ‘The Cyber Coun-
terintelligence Process: A Conceptual Overview and Theoretical Proposition’. In:
Proc. of the 14th ECCWS. ACPI, 2015, pp. 42–52 (cited on page 121).

[202] Kevin Coleman.Counter Cyber Intelligence. https://www.military.com/defensetech/
2009/03/09/counter-cyber-intelligence. Mar. 2009 (cited on page 121).

[203] Danny Yuxing Huang et al. ‘Tracking ransomware end-to-end’. In: IEEE Security and
Privacy. IEEE. 2018, pp. 618–631 (cited on page 122).

[204] Webroot. 2018 Webroot Threat Report Mid-Year Update. Tech. rep. Webroot Inc., Sept.
2018. url: https://www.webroot.com/download_file/2780 (cited on page 125).

[205] Statcounter GlobalStats. Desktop Operating System Market Share Worldwide. 2020.
url: https://gs.statcounter.com/os-market-share/desktop/worldwide
(visited on 09/04/2020) (cited on page 125).

https://github.com/mauri870/ransomware
https://github.com/Virgula0/hidden-tear
https://github.com/cryptolok/CryptoTrooper
https://github.com/cryptolok/CryptoTrooper
https://www.military.com/defensetech/2009/03/09/counter-cyber-intelligence
https://www.military.com/defensetech/2009/03/09/counter-cyber-intelligence
https://www.webroot.com/download_file/2780
https://gs.statcounter.com/os-market-share/desktop/worldwide

	Analysis, Detection, and Prevention of Cryptographic Ransomware
	Declaration of Authorship
	Abstract
	Acknowledgements
	Preliminaries
	Introduction
	Anatomy of a Cryptographic Ransomware
	Recent Literature in Ransomware Defense
	Limitations of Current Defense Systems
	Goal and Research Questions
	Thesis Overview
	Scientific Contributions
	Scientific Contributions

	Ethical Considerations
	Coordinated and Responsible Disclosure
	Ethical Code of Conduct

	Security Analysis of Anti-Ransomware Systems
	Ransomware Evasion Techniques
	Anti-Ransomware Approaches
	Vulnerability Analysis of Countermeasures
	Future Ransomware Strategies
	Implementation
	Experimental Results
	Discussion

	On Deception-Based Ransomware Defense
	Decoy Files: The Theory
	Anti-Ransomware Systems with Decoy Files
	Decoy-aware Ransomware
	Experiments and Quality Measures
	Discussion: The Endless Battle

	Vulnerability Analysis of Real-World Systems
	Background
	Threat Model
	Cut-and-Mouse: Encrypting Protected Folders
	Ghost Control: Disabling Antivirus Software
	Experimental Results
	Security Analysis of Auxiliary Measures
	Related Attacks in the Literature
	Discussion

	Sandbox Evasion
	Methodology
	Results
	Discussion

	Prevention of Cryptographic Ransomware
	Stopping Ransomware by Controlling CSPRNGs
	Requirements
	On Ransomware and Randomness
	UShallNotPass' Rationale
	UShallNotPass' Design
	Implementation
	Experimental Results
	Discussion

	Efficient End-Point Protection from Ransomware
	Security Assumptions
	NoCry: Enhanced Protection
	Methods, Experiments and Results
	Discussion

	Future of Ransomware
	Future of Ransomware
	Potential New Threats
	Dual Use of Ransomware
	Ransomware Intelligence

	Conclusion
	Closing Remarks and Future Work
	Future Works and Open Problems

	Bibliography

