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Abstract

This dissertation consists of three chapters based on one pure theory paper and two
applied theory papers. The overarching concept of the thesis is the development of tools and
models to study strategic interactions among agents.

Symmetric Markovian Games of Commons with Potentially Sustainable En-
dogenous Growth. The objective of this study to develop a tool which give an exact
formula for finding an interior symmetric Markovian strategies in differential games with lin-
ear constraints and a general time-separable utility function. Differential games of common
resources that are governed by linear accumulation constraints have several applications. Fx-
amples include political rent-seeking groups expropriating public infrastructure, oligopolies
expropriating common resources, industries using specific common infrastructure or equip-
ment, capital flight problems, pollution, etc. Most of the theoretical literature employs
specific parametric examples of utility functions. For symmetric differential games with lin-
ear constraints and a general time-separable utility function depending only on the player’s
control variable, we provide an exact formula for interior symmetric Markovian strategies.
This exact solution (a) serves as a guide for obtaining some new closed-form solutions and
for characterizing multiple equilibria and (b) implies that if the utility function is an analytic
function, then the Markovian strategies are analytic functions, too. This analyticity property
facilitates the numerical computation of interior solutions of such games using polynomial
projection methods and gives potential for computing modified game versions with corner
solutions by employing a homotopy approach

Populism and Polarization in Social Media Without Fake News: the Vicious
Circle of Biases, Beliefs and Network Homophily. The objective of this study is

jointly explaining the phenomenes of polarization in social networks and downgrading of



expert(unbiased) opinion from a new angle. We build a model of network dynamics with
decision-making under incomplete information in order to understand the determinants of
the observed gradual downgrading of expert opinion on complicated issues and the decreasing
trust in science. We suggest a search and matching mechanism behind network formation of
friends, claiming that internet has made search and matching less costly and more intensive.
According to our simulations, just combining the internet’s ease of forming networks with (a)
individual biases, such as confirmation bias or assimilation bias, and (b) people’s tendency
to align their actions with those of peers, can lead to populist dynamics over time through
a vicious circle. Even without fake news, biases lead to more network homophily and,
over time, more homophily leads to actions that put more weight on biases and less weight
on expert opinion. Networks allow fundamental biases to be enhanced by peer-induced
amplification factors, a finding suggesting that education should perhaps focus on mitigating
fundamental biases by promoting evidence-based attitudes towards complicated social and
scientific issues.

Can a social planner manipulate network dynamics and solve coordination
problems? The objective of this study is to develop the mechanism of welfare-improving
network evolution under incomplete information. This paper aims to build an algorithm of
network dynamics with decision-making under incomplete information. Accordingly, it tries
to identify if a social planner reduces the influence of individual biases, such as confirmation
bias or assimilation bias on agents’ actions, and solve a coordination problem. The research
questions are the following: " Can the social planner increase social welfare, by manipulating
the set of possible invitations and annoyances, without directly changing a network struc-
ture?", " What are the main drivers of increasing social-planner utility functions?" "How

do the results change if the social planner has incomplete information or wrong priors about
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the fundamental state variable?" For this research, a "Liberal Social Planner" was created;
a process through which network members get suggestions depending on its utility function.
The results have potential applications for the management of social media platforms by the
owners of these platforms. Platforms can develop robots that can help their users be more

informed and more satisfied.
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INTRODUCTION

In this dissertation, we focus on developing tools and models for studying strategic interac-
tion among agents in dynamics games. This dissertation consists of one pure theory paper
and two applied theory papers. The first chapter develops a general result in differential
games. This is an area for studying strategic interactions when agents are forward-looking
and calculate their future strategic interactions. The second and third chapters, deal with
the problem of strategic interactions under incomplete information, in the context of net-
works. Analytical tools for linking up strategic actions with the evolution of a network are
developed in the second chapter. The last chapter extends the second chapter by recom-
mending network-manager strategies that can lead to welfare-improving network evolution
under incomplete information.

The first chapter is titled “Symmetric Markovian Games of Commons with Potentially
Sustainable Endogenous Growth.” It is joint work with Christos Koulovatianos. It appeared
as a CFS (Center for Financial Studies) Working paper, No. 638 in 2019 and is forthcoming
in Dynamic Games and Applications, in 2020.! The literature using Markovian differential
games with linear constraints focuses on strategic interactions among agents and the growth
rate of a common property resource. Such games are used for analyzing corruption, capital
flight, pollution, etc. The models developed in the past relevant literature have used specific
functional forms for utility functions and parametric assumptions for finding a closed-form
solution. Going beyond these examples is complicated, as it requires knowledge of dynamic
programming, metric space, and functional-analysis methods for characterizing the Markov-
ian strategies.

In order to extend the analysis of differential games to more general utility functions

1 The paper is available at the following link: https://doi.org/10.1007 /s13235-020-00349-w



without having to resort to very abstract mathematics, the research question addressed in
this paper is: “Can we develop the exact formula that can serve as a guide for developing
well-grounded numerical solutions to Markovian differential games, in order to generalize
these parametric examples so as to take the models closer to the data?”. We answer to
this research question in two steps. First, we develop an exact formula for finding the main
interior solution of symmetric Markovian games with linear accumulation constraints of a
common resource, shedding light on when such a solution exists. Second, we characterize the
general solution, which can be used as a guide for finding corner solutions using numerical
methods and a homotopy approach. For achieving the first step, of finding an exact solution,
we show that the Hamilton-Jacobi-Bellman equation of a player’s dynamic problem can be
transformed into a Lagrange d’Alembert differential equation. We show that this differential
equation has an exact interior solution when the integration constant is equal to zero. In
this case, the Markovian strategy is equal to the indefinite integral of the inverse function of
marginal utility. For achieving the second step, of characterizing the solution, we prove the
analyticity of Markovian strategy in the case that the utility function of players is analytic.
Analyticity is crucial for proving the existence of approximate numerical solutions. We
further demonstrate our findings by characterizing some closed-form interior solutions, which
are well-known in the literature, as well as demonstrating some new examples admitting

closed form solutions that are new to the literature.

The second chapter, titled “Populism and Polarization in Social Media Without Fake
News: the Vicious Circle of Biases, Beliefs and Network Homophily”, is joint work with
Christos Koulovatianos. It appeared as a CFS Working paper, No 629 in 2019, and as

a Higher School of Economics Research Paper No. WP BRP 227/EC/2020. The aim of

this research to provide a partial explanation for the phenomena of polarization, populistic



behavior, and of downgrading expert opinion, observed in opinion polls in the last decades.

The second chapter titled “Populism and Polarization in Social Media Without Fake
News: the Vicious Circle of Biases, Beliefs and Network Homophily”, is also joint work
with Christos Koulovatianos. We develop a model/method using evolutionary games on
networks in order to provide a partial explanation that fake news is not the sole or dominant
explanation to the observed growing polarization and populistic behavior in the past few
decades. We use an extended version of the information-seeking “beauty-contest” game
with higher-order beliefs, which was developed by Morris and Shin (2002) and Golub and
Morris (2017). Compared to the standard beauty-contest model of Morris and Shin (2002),
we introduce “biased assimilation” in agents’ utility functions. Biased assimilation is a
structural (perhaps education-based) inclination to push facts slightly away from reality.
At the same time, agents try to align their actions closer to the actions of their friends
(“belongingness” in agents’ preferences). We introduce a search-and-matching mechanism
for creating and deleting links, and we study the evolutionary dynamics of network structure.
In equilibrium the network structure is characterized by more homophily, and homophily
brings peer-induced amplification to structural biases, contributing to gradually downgrading
expert opinions over time, as observed in the data.

The third chapter, titled “Can a social planner manipulate network dynamics and solve
coordination problems?”, appeared as a Higher School of Economics Research Paper No.
WP BRP 229/EC/2020. The third chapter, titled “Can a social planner manipulate net-
work dynamics and solve coordination problems?”; is a single-authored paper. This paper
recommends a way to solve the polarization problem in social networks arising from the
mechanism explained in the second Chapter. In this chapter we also develop an evolution-

ary dynamic model /method, that introduces a “Liberal Social planner” who has no bias in



his preferences. This social planner manipulates network dynamics in order to make agents’
actions more pragmatist, closer to fundamentals. The research questions in this chapter are:
“Can a social planner increase social welfare, by manipulating the set of possible invitations
sent to network members for making new friends, or by manipulating the set of annoyances
among friends that are exposed, without directly changing the network structure by oblig-
ing people to make friends or cut ties with existing friends?”, “What are the main drivers
behind welfare increases?”, “How do the results change if the social planner has incomplete
information or wrong priors about the fundamentals?”.

Crucially, the third chapter focuses on developing a liberal manipulation strategy by a
social planner, such as a network manager of a social-media platform, who does not directly
affect agents’ signals or actions. The mechanism which we developed in this paper can
be used in the countries, where manipulation is not allowed by law. The concept of the
“Liberal Social Planner” that we suggest, influences the process through which network
members acquaint themselves with other network members for making new friends. Then
the social planner leaves people free to choose whom to make a friend, and this approach
helps people be more pragmatist. But how does this indirect manipulation work? We find
that the key mechanism behind increasing social welfare is to increase the number of indegree
nodes of central agents. This happens because agents can substitute expert information with
private information from central nodes and make more informed decisions. Social planners
who are more confident (or even sure, even if biased) about the fundamentals (e.g., of pricing
houses for buying/selling) achieve better results. These results have potential applications
to the management of social media platforms by the owners of these platforms. Platforms
can develop robots that can help their users in bcoming more informed and more satisfied

about real-life issues, such as housing prices.



Two chapters in this dissertation is based on a joint work with Christos Koulovatianos.
In each project, my co-author and I contributed equaly to each stage of the work: the for-

mulation of the problem, the exploration of potential results, the mathematical derivations.



1. CHAPTER

Symmetric Markovian Games of Commons with
Potentially Sustainable Endogenous Growth

1.1 Introduction

Markovian differential games of common property resources have far-reaching applications.
A substantial literature using such games with linear constraints, focusing on the question
of how strategic interactions affect the growth rate of a common-property resource includes
Tornell and Velasco (1992), Lane and Tornell (1996), Tornell (1997), Tornell and Lane (1999),
Sorger (2005), and Long and Sorger (2006). This literature is surveyed and explained in
Long (2010, pp. 130-136).> The questions examined by these models are corruption, rent
seeking and cross-country capital flight. Similar applications include pollution problems
and oligopolies exploiting a common resource.® The commons problems arising may lead to
slow or negative growth of capital. Instead, resolving such commons problems may guarantee
sustainable growth. While these models are useful, the literature restricts itself to parametric
models with closed-form solutions. There is a need to develop further results that can serve
as guides for developing well-grounded numerical solutions to such models, generalizing

these parametric examples and taking the models to data.* Here, we first contribute to

2 An earlier survey paper in differential games is Clemhout and Wan (1994). A recent paper by Kunieda and
Nishimura (2018), extends the Tornell and Velasco (1992) model by introducing uncertainty and financial
constraints. This study examines how commons problems are affected by imperfect financial markets and
how the possibility for sustainable growth is affected by these commons problems. Although our model is

deterministic, it can contribute to extending such analyses by using more general utility functions.
3 An early application of Markovian differential games to pollution is Dockner and Long (1993).
4 Typically, Markovian differential-game models require metric-space or other functional-analysis methods

in order to prove that solutions exist, that they are well-behaved, or that they possess certain desirable
functional properties. Such approaches are necessitated by the complexity of dynamic programming prob-
lems, especially if their constraints are nonlinear. Regarding the approximation-theory difficulties posed
by dynamic-programming problems and an exposition of metric-space methods see, for example, Chow and
Tsitsiklis (1989). Theoretical foundations of differential games are provided by Basar and Olsder (1999) and
Dockner et al. (2000).



developing such results for the case of interior solutions of symmetric Markovian games
with linear accumulation constraints of a common resource. Second, we further develop a
characterization of the general solution that can serve as a guide for extending numerical
solutions to addressing parameterizations with corner solutions.

We achieve the first goal of the paper, the derivation of an analytical characterization, in
two steps. In a first step, restricting attention to Markovian differential games of common
property resources with linear accumulation constraints and interior solutions, we provide a
full characterization of the interior solution for any time-separable utility function depending
only on the player’s control variable. We show that the Hamilton-Jacobi-Bellman equation
of a player’s dynamic problem can be reduced into a form of the Lagrange-d’Alembert
differential equation. We show that this differential equation has an exact solution that
involves an integration constant. In the case that this constant of integration is equal to
zero, the Markovian strategy equals the indefinite integral of an expression involving the
inverse function of marginal utility. This solution best characterizes an interior solution of
the game, provided that this interior solution exists. For the case where the constant of
integration is different from zero, the possibility of multiple equilibria arises.” We do not
focus on characterizing these multiple equilibria here. Nevertheless, the differential equation
that we provide can serve as a guide for either characterizing these equilibria analytically,
or for obtaining them numerically.

This exact formula that we derive for the case where the integration constant is zero,
allows us to achieve the second goal of this paper. We prove the analyticity of the Markovian
exploitation strategies under the assumption that the utility function of players is an analytic

function, subject to some weak requirements.

5 See, for example, Tsutsui and Mino (1990) and Dockner and Long (1993), who use a similar approach for
characterizing multiple Markovian equilibria, but who are restricted to linear quadratic games.



We demonstrate the usefulness of our exact solution through finding some closed-form

6 In addition, we

interior solutions which, in some cases, are not listed in the literature.
discuss the usefulness of the analyticity result for Markovian strategies. Analyticity can
help in employing polynomial projection methods for computing interior solutions and for
guiding the parameterization of games in order to guarantee interior solutions. Yet, despite
that the scope of our paper is restricted to characterizing games with interior solutions,
our results can be useful for pursuing interesting extensions to commons problems involving
corner solutions, such as resource-depletion, exploitation quota policies, etc. Specifically,
our exact interior solution can provide a starting point for homotopy approaches that lead
to corner solutions after gradually changing the parameterization of the problem.

The homotopy computational approach, explained by Garcia and Zangwill (1981) and
Eaves and Schmedders (1999), further adapted to dynamic games by, e.g., Borkovsky et al.
(2010) and Besanko et al. (2010), starts from a well-behaved and well-characterized solution
to a model for certain parameter values. By changing parameter values gradually, one can
proceed to more complicated versions of the model. For the common-property applications
we have in mind, some parameterizations can imply a well-behaved interior solution and
some other parameterizations of the same model can imply a complicated corner solution
that is difficult to compute recursively. A key contribution of our paper regarding such a
homotopy approach is that it can provide ways to find a well-behaved solution that can serve
as the starting point for this method.

The exact or numerical solutions of our setup can also be extended to studying stochastic
games numerically. An early paper showing that stochastic Markovian games of common-

property resource extraction have tractable continuity properties is Amir (1996).

6 Such solutions can provide insights for other extensions of dynamic games of commons with piece-wise
linear constraints such as Colombo and Labrecciosa (2015) or partly-linear/partly- non-linear constraints,
such as Benchekroun (2008).



1.2 Statement of the problem

There are N identical (symmetric) players consuming a common resource, k. Player i €
{1,..., N} consumes ¢; (t) units of k(¢) at time ¢ > 0, and the evolution of the common

resource, k, is driven by,
, N
k(t) = Ak (t) = e (t) (1.1)
i=1
with A > 0.7 Each player i € {1,..., N} is infinitely-lived and maximizes the same utility

time-separable utility function,

U ((c; (t))tzo) = /000 e Pu(c;(t))dt, forallie{l,...N}, (1.2)

with parameters p > 0 being the rate of time preference.

Assumption 1 Function u: C — R, C C R, is twice continuously differen-

tiable and has u' (¢) > 0 and u" (¢) < 0 for all ¢ € C.

We state further assumptions on the momentary utility function, u, as we proceed with

8 We focus on Markovian (memoryless)

our analysis in order to intuitively justify them.
strategies, ({cl (t)=C; (k (t))}fil) , i.e., on consumption strategies {C; (k)}~, that are
>0

time-invariant.

Definition 1 A Markov perfect Nash equilibrium (MPNE) is a set of strategies

{Cx (k)YY., such that the corresponding consumption paths ({c;* (t) =Cr (k (t»}ﬁl)po

7 Notice that we exclude A = 0, which is games with non-renewable resources. We focus on games with

potentially sustainable resource outcomes.
8 For example, unlike in many papers, such as in Dockner and Sorger (1996, p. 213), an upper bound is

imposed on the consumption level, ¢, and the resource-reproduction function is also bounded in their study.
Here in some cases of sustainable growth, ¢ can grow to infinity. In examples that we present in a later
section we identify the cases where an upper bound must be placed on ¢ and cases in which such a bound
does not apply.



simultaneously solve problems {Pi}fil, with P; being player i’s problem for all

i€{l,.., N}, given by,

i ePly (c; (t))dt
(ci(t),k(t))()tzo f() ( ( ))
subject to,
P; ki (t) = Ak (t) — ;o; (k(8) — i (¢)
JF1
() eCLk(t) e KCRy

given k(0) = ko >0, tlim eI (k@) k(t)=0

\

with J; (k) being the value function of problem P;, and with

K={k>0|C(k)eC,ic{l,...,N}} .

Definition 1 is equivalent to Definition 6.6 in Basar and Olsder (1999, Definition 6.6,
p. 321) for the case of T — oo therein. The Hamilton-Jacobi-Bellman (HJB) equation of

problem P; is,

pJi (k) = max {u (ci) + Ji (k) |Ak = >°C5 (k) — ci] } for all k € K, (1.3)
e J#
with first-order conditions
u (¢;) = J] (k) . (1.4)

The first concept we focus on is this of interiority of MPNE, given by Definition 2.

Definition 2 An interior Markov perfect Nash equilibrium (IMPNE) is a set of
strategies {C (k)}i_, described by Definition 1, with ({c;" (t) = CF (k* (t))}iil)
>0
, N
o (1 (0)z0 = {0 € K | (0 = 4K () = S0 () 1020 K0 =k |,
= i=1

such that for all t > 0, k* (t) € int (K) and ¢} (t) € int (C) for all i € {1,..., N},

where int () denotes the interior of a set.

10



Based on Definition 2, we make Assumption 2 below, which is an existence assumption.

Assumption 2 Function u is such that there is a symmetric IMPNE defined

as in Definition 2 is guaranteed.

We declare that this work does not intend to provide equilibrium results. For example,
two key dynamic-games textbooks, Basar and Olsder (1999) and Dockner et al. (2000), do
not contain general equilibrium-existence (sufficient) conditions. The vast dynamic-games
literature is aware of well-behaved (parametric) dynamic-game setups where existence is
guaranteed (while much of this literature focuses mostly on linear-quadratic games). How-
ever, there are no known general existence results for Markovian dynamic games, as, e.g.,
in optimal-control theory. A main reason for this absence of existence results is the fact
that, as equation (1.3) above shows, the structure of the optimal-control problem of a player
depends on properties of the optimal strategies of other players, {C’]* (k) }j.vzl, a complication
that makes the search for sufficient existence conditions difficult: the functji#c;nal properties of
the optimal strategies of other players, {C’]* (k)}jvz |» are not guaranteed, as these strategies
are implicit functions, characterizing the equilibJ;ﬁiLm path. Therefore, instead of proving
equilibrium existence, we assume equilibrium existence and we characterize the equilibrium
for the specific general class of games that we examine, using existence as a working hypoth-
esis.

The conditions on function v guaranteeing that Assumption 2 holds must be examined
for specific utility functions on a case-by-case basis. Specifically, through Assumption 2, we
first assume interiority and existence. Our main goal is to use Assumption 2 as a working
hypothesis, in order to provide an exact solution that characterizes and identifies parametric

classes of games that have the potential for delivering such interior solutions, either analyt-

ically, or numerically (through, e.g., projection numerical methods, as discussed in Section

11



1.5 below, for the class of analytic utility functions, that can be used for polynomial pro-
jections). Once such classes of games are identified, parametric constraints can be found in
order to restrict the class of games to those that indeed have an interior solution (see Section
1.6 below). For all parametric cases studied in Section 1.6 below, it is crucial to demonstrate
that the transversality condition is met under the identified parametric constraints. In case
there are non-existence problems or genericity problems in the class of candidate games, this
trial- and-error procedure identifies such problems and the class of candidate games can be
discarded.

Finally, the risk of characterizing an equilibrium under the existence Assumption 2 for a
game where an equilibrium turns out to not exist, is not an impediment. Instead, because all
known applied Markovian games are parametric, the equilibrium characterization that we
provide ultimately helps in spotting the cases of gemes where our characterization results are
satisfied, but an equilibrium does not exist. In brief, while there are parametric examples of
Markovian games used in the literature, this paper helps in identifying more such examples.
1.3 Exploiting properties of the Hamilton-Jacobi-Bellman equa-

tion
We focus on characterizing symmetric IMPNESs, as these are given by Definition 2, having
C; (k) = C5 (k) for all 4,5 € {1,..., N}. Since u is strictly concave, u’ is strictly decreasing

and hence invertible. Therefore, (1.4) implies,
ci = ()" (J () (L.5)

is a function of k, after assuming that J’ (k) is a well-defined strictly monotone function.
We discuss conditions guaranteeing that J' (k) is a well-defined strictly monotone function
below. A crucial aspect of Assumption 2, is that interior solutions do not pose problems for

the monotonicity of J' (k).

12



By the symmetry of the problem,
Cr (k) = ()" (J! (k) forallie {1,..N} . (1.6)

Therefore, we drop subscript i, and we use (1.6) in order to substitute C; (k) into (1.3)° .
Moreover, substituting ¢ = («/) " (J' (k)) into (1.3) we obtain a special case of the Lagrange-

d’Alembert first-order nonlinear differential equation (cf. Polyanin and Zaitsev (2003)),

J (k) = %w/ (k) + f (J' (k) - (1.7)

in which,

PO )= o (@) 07 0)) = NI @) ) (k)

Before we proceed, we introduce the problem’s Lagrange multiplier, A, as,
A=J (k)>0, (1.8)

which we will use throughout the next section. Notice that A (¢) = J' (k(¢)) > 0 for all ¢ > 0,
an implication of (1.4) and Assumption 1.

In order to characterize and solve a Lagrange-d’Alembert equation such as this given
by (1.7), we must examine two cases separately, distinguished by the relationship between
parameters A and p: first, the case in which A # p and second the case in which A = p. In
this section we focus on the more general and more interesting case, this of A # p.

Differentiating both sides of (1.7) with respect to k& we obtain,

A\ J' (k) A '
(1—;) T = R I E) (1.9)

9 Assumption 2 and interiority allows decision rules to be monotonic, offering the property of invertibility
to the decision rule, which is used for obtaining our solutions below.
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Let K (-) be the inverse function of J’().!® Then
k=K(J (k) . (1.10)

Notice that by differentiating both sides of (1.10) we obtain K’ (J'(k)) = 1/J" (k). Use
again A = J' (k), the model’s Lagrange multiplier, and substitute these terms into (1.9) in
order to obtain,

KN =g\ -KXN+hQ), (1.11)

a first-order linear differential equation in K () with variable coefficients, in which,

L)

d h()N)=
an (A) - )

SYES

The solution to (1.11) is obtained through an integrating factor and is of the form,
K (\) = wel 9 4 ol g(dx / e~ JIVAR (\)dN (1.12)

in which w € R is an integration constant. The integration constant, w, is very important

for specifying the class of equilibrium solutions we focus on in this paper.

1.3.1 Characterizing the inverse of the value function of a single
player in a symmetric MPNE when A # p

Since K (-) is the inverse function of J' (-), we can set,

KW\ =(J)"0) . (1.13)

10Here, the assumption that the inverse of function J' (-) exists, is related to Assumption 2. In order that
J' (+) be invertible, J’ (-) must be a function (instead, e.g., of a corresponcence), and it must be monotonic.
Typically, these properties are guaranteed when an equilibrium exists. We therefore proceed, without adding
additional assumptions to Assumption 2. In specific cases of parametric examples, the invertibility of J’ (+)
can be examined using a case-by-case analysis and specific parametric constraints. We remind that in the
case of Markovian games, existence results for general utility functions w (-) are not available. For this
reason, we do not attempt even to find cases or properties of functions that lead to non-existence or even to
a generic set of functions that either guarantee or exclude equilibrium existence.
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Therefore, by characterizing K (\), we characterize the inverse of the value function of a
single player in a symmetric MPNE.

The integral [ g (\)dX has an explicit solution, namely,

/g()\) A=l ()) | (1.14)
where & = —Ai_p. Notice also that the expression for f’(\) can be simplified. Specifically,
Fo = 4@ o (@) w -] -y )
and after utilizing the identity v’ ((«/ )_1) (A) = A,
P == [ =A@ W+ v ) (1.15)

Therefore, equation (1.12) can be re-written as,

K () = wXs — %5)\5 / A6 {(N 1)\ ((u’)_1>/ () + N () ()\)] d\.  (L116)

In order calculate the derivative of the value function of player i, J' (k) = A, we can

rewrite equation (1.16) as,

KN =wX 40N, (1.17)

and,

6(\) = AL_IOAE/AU {(N 1A (<u')—1)' )+ N @) V)| dx . (1.18)

Equation (1.18) can be simplified, after making use of the result that

/)\Ch’ (A dX = Xh()) — g/AC—lh(A) dX |

for some ¢ € R, and for a function h (A) that is differentiable and integrable. Specifically,

we set i (A) = («/)"" (\) in (1.18) to simplify ¢ (A) and obtain,
(N = —— {(N — )W)\ + N+ (N - 1) )\f/)\’51 @)™' (V) d)\} . (1.19)
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1.3.2 The role of the integration constant w when A # p: examin-
ing or eliminating multiple MPNEs

Based on equations (1.13) and (1.17),
(I = wXE+ o (N) . (1.20)

The key to proceeding with characterizing the MPNE strategies implied by (1.20), is to
either obtain the inverse of the right-hand side of equation (1.20), or to obtain A = J' (k) as
an implicit function of (1.20). Yet, since parameter w is an integration constant, equation
(1.20) implies that there are potentially infinite MPNE strategies. This is the point made
early on by Tsutsui and Mino (1990) and Dockner and Long (1993), who studied linear-
quadratic games. Up to Tsutsui and Mino (1990), the literature of linear-quadratic games
was focusing only on MPNEs with linear strategies, as the constant w in equation (1.20)
was considered to be only equal to 0. Specifically, if the utility function is quadratic, ¢ ()
is an affine function of A, which implies that after setting w = 0 to equation (1.20), the
MPNE strategies, C (k) are affine functions of k.!! However, when one sets w # 0, non-
linear strategies arise in the linear quadratic game, too, giving rise to multiple equilibria.
These multiple equilibria can exist, for example, because of an “incomplete transversality
condition”, perhaps best explained by Tsutsui and Mino (1990, p. 153), who demonstrate
the indeterminacy of stationary steady states in the linear-quadratic game they examine.
Several papers deal with the characterization of such multiple equilibria in settings with
different resource reproduction functions than ours, such as Rincon-Zapatero et al. (1998),
Dockner and Wagener (2014), and Colombo and Labrecciosa (2015).

An important note is that equation (1.20) generalizes and extends the literature on linear-

quadratic games substantially. Specifically, while the resource-reproduction function in our

11See Tsutsui and Mino (1990, p. 144) and Dockner and Long (1993, p. 22). We demonstrate this point in
a later section of this paper, too.

16



paper is linear of the “Ak” type, the objective function u of the players is quite general. The
key to our generalization is the differential equation (1.9) and the proposed transformation
given by (1.10). For example, the key differential equation in Tsutsui and Mino (1990, eq.
4.4, p. 143) that is a transformed analogue of our equation (1.9), is restricted to linear-
quadratic games only, which are just a special case of our analysis in this paper.

Equation (1.20) can help in characterizing multiple equilibria, beyond standard “guess
and verify” approaches. Finding or characterizing the inverse of the right-hand side of
equation (1.20), WA + ¢ (A), can be challenging, as there are two additively-separable terms
involving A. Nevertheless, characterizing the special case with integration constant w = 0
can serve as a starting point. By setting w = 0, one can focus on finding the inverse
function ¢! (), in order to obtain J' (k). Once this mission is accomplished analytically,
then multiple equilibria can be derived analytically or can be numerically computed. In
general, equation (1.20) can serve as a guide for computing all equilibria, including the case
of w # 0, numerically. In the next section we focus on deriving an explicit solution for the

case w = 0. The rest of the paper focuses on characterizing this special case of w = 0.

1.4 An explicit solution for the case with integration constant
w =10

There are two cases, A # p and A = p that we will examine separately. In the case of A # p,

we focus on characterizing interior solutions, i.e., the symmetric IMPNE (see Definition 2),

for the case of setting w = 0, that provides an exact solution to the problem. In the case of

A = p, the solution is implicit but straightforward to characterize.
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1.4.1 Casel: A#p

The Lagrange-d’Alembert first-order nonlinear differential equation given by (1.7) allows us
to arrive at an exact solution for the Markovian strategies {C* (k)}..,. This solution is given
by Proposition 1.
Proposition 1  Under Assumptions 1 and 2, with A # p, the symmetric in-
N

terior Markov perfect Nash equilibrium, IMPNE (see Definition 2), {C;? (k)}.L,,

corresponding to the case of setting w = 0 in equation (1.20), is given by,
Cr(k)=C(k)= )" (¢ (k) , i€{l,.,N}, (1.21)

with ¢ (N\) given by equation (1.19), provided that function u is such that ¢' (\) #

0, ¢ (\) is invertible, and lime "¢~ " (k (t)) k (t) = 0.

t—o0

Proof
Due to Assumption 2 we do not need to worry about corner solutions. Therefore, we can
set w = 0 in equation (1.20) and use the initial condition, k (0) = ko in order to identify
function J’ (k) by solving,
ko = K (Xo)|,—o = ¢ (o) - (1.22)
Since problem P; falls in the class of discounted dynamic-programming problems with interior
solutions, any admissible value k can be treated as initial conditions and (1.22) implies that

the identification of function J’ (k) can be obtained by the rule,
J (k) =97 (k) , (1.23)

provided that ¢ is invertible. Equation (1.23) leads to (1.21). O
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Proposition 1 is one of the key results of this paper, leading to further characterizations
of the solution that we provide below. Nevertheless, we cannot ignore the special case of

A = p that follows.

1.4.2 Case 2: A=p

Setting A = p, makes (1.7) to collapse into Clairaut’s differential equation,?
J(k)y=kJ (k)+ f(J (k)) . (1.24)
After differentiating both sides of (1.24), we arrive at,

0=1[k+f (J)-J". (1.25)

Equation (1.25) leads to an explicit characterization of the Markovian strategies {C (k)}fil

This characterization is given by Proposition 2.

Proposition 2 Under Assumptions 1 and 2, with A = p, the symmetric interior
Markov perfect Nash equilibrium, IMPNE (see Definition 2), {C} (k) = C (k:)}fvzl

with C (k) being an implicit function derived from the expression,

u' (C(F))

W=D @ my)

= pk— NC (k) , (1.26)

provided that lime "' (C (k (t))) k (t) = 0.

t—o0

Proof

Equation (1.25) implies,
k

—f"(J' (k) - (1.27)

12See Clairaut (1734).
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Equation (1.27) holds because J” (k) = 0 is ruled out. To see that J” (k) = 0 cannot
hold, consider the contrary, namely that J' (k) = b for some constant b € R, which can be

substituted into (1.24) to obtain the general solution,
J (k) =bk+ f(b) . (1.28)

However, the solution suggested by (1.28) is not acceptable, because it violates the transver-
sality condition. Specifically, if (1.28) were acceptable, then equation (1.5) implies that
c(t) = ()" (b) = &, a constant, for all ¢+ > 0. But then k (¢) should satisfy the linear
equation k (t) = pk (t) — N& with solution k (t) = N&/p + e (ko — N&/p), which implies
that the transversality condition is violated unless b = 0, since lim; o, e " J' (k (t)) k (t) =
b (ko — N&/p), which would not be equal to 0 for some ko if b # 0. But if b = 0, then
u' (¢) = J' (k) =0, a contradiction since v’ (¢) > 0 for all ¢ > 0.

Equations (1.27) and (1.15) imply,
ok = (N = 1).7' () ()7 (' (B) + N ()™ (7 (k) (1.29)

From equation (1.5),

C (k)= )" (J (k) (1.30)
which implies,
C' (k) = (()™) (7 () " () - (131)
Combining (1.30) and (1.31) with (1.29), we obtain,
pk — NC (k)= (N —1) jl’l((lz)) C' (k) . (1.32)

From equation (1.5), J' (k) = «’' (C (k)), which implies J” (k) = u” (C (k)) C' (k). Substitut-

ing these two last expressions into (1.32) proves equation (1.26). O
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Proposition 2 offers the ability to compute C' (k) using numerical or analytical methods
when applicable. In the next section we combine Propositions 1 and 2 in order to show that
the analyticity of the utility function implies the analyticity of C (k).

However, before we proceed, we can note that, given the requirement of interior solutions
(see Assumption 2), the strategies given by both Proposition 1 and Proposition 2 either are
continuous or they can be constructed so as to be continuous. To see this, consider the
function ¢ (\), given by (1.19). Given Assumption 1, ¢ ()) is derived from derivatives and
integrals of the inverse of the twice continuously differentiable and strictly increasing function
u. Therefore, ¢ ()) is also a continuous function that we assume to be strictly monotonic.
Therefore, ¢~ ()) is also a continuous function and the strategy C (k) = (u/) ™" (07" (V) is
continuous, too.'® In addition, (1.26) yields the strategy, C (k), as an implicit function. If
we assume that u is thrice continuously differentiable, then C' (k) will also be continuously
differentiable and, hence, continuous.'*

Typically, the case of A = p is not particularly interesting, as A = p does not imply
interesting dynamics in most cases. However, for the class of games restricted to obeying
A = p, general sufficient conditions for existence of equilibrium may be easier to find. As
in this paper we focus on characterizing parametric examples of Markovian games, we leave

this extension for future research.'®

13See, for example, Lang (1997, Theorem 4.2, p. 60), proving that the composition of continuous functions

gives a continuous function.
14This property of continuity of strategies differs from Dockner and Sorger (1996, Theorem 1, p. 2015),

where the strategies can be disconinuous functions.
15Notice also that the case of w # 0 (or w = 0) does not apply under A = p, as the integration constant w

does not appear in the Clairaut equation given by (1.24). The integration constant w appears only in the
Lagrange-d’Alembert equation (1.7).
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1.5 Analytic utility functions

Propositions 1 and 2 give the opportunity to characterize the functional properties of Markov-
ian strategies if the utility function of players is a real analytic function. For the definition
of a real analytic function see Krantz and Parks (2002, Definition 1.1.5, p. 3). Specifically,
a function f: D — R with D C R, is real analytic if for all zy € D, the value f (z) can be

written as a power series of the form,

f(x)= Zai (x — :L‘o)i .

Examples of analytic functions include polynomial function, the exponential function, the
logarithmic function, or the power function. Proposition 3 proves that if the utility function

of players is real analytic, then the symmetric Markovian strategies are also real analytic.

Proposition 3  Under Assumptions 1 and 2, if u(c) is a real analytic func-
tion, then the function C (k) characterizing the symmetric Markov perfect Nash

equilibrium {C* (k) = C (k)Y is also a real analytic function.

Proof

The proof is straightforward through the use of known results regarding analytic func-
tions. Specifically, in the case of A # p, the expression of ¢ (\) given by equation (1.19)
involves inverses, derivatives, and integrals of utility functions. In addition, the exponential
function, \* for some «, is also analytic. By the definition of real analytic functions, it is
immediate to prove that the products and sums of real analytic functions are also real ana-
lytic. That the derivative of a real analytic function is also real analytic is proved in Krantz
and Parks (2002, Proposition 1.1.14, p. 9). That the inverse of a real analytic function is
also real analytic, the proof is in Krantz and Parks (2002, Theorem 1.5.3, p. 22). That

the indefinite integral of a real analytic function is also real analytic is proved in Krantz
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and Parks (2002, Proposition 2.2.3, p. 30). These Propositions and Theorems show that
¢~ " () is real analytic. The expression for the Markovian strategies, C (k), is given by (1.6)
which involves the composition of real analytic functions. That compositions of real analytic
functions are also real analytic is proved in Krantz and Parks (2002, Proposition 1.4.2, p.
19). These arguments prove the proposition for the case of A # p.

For the case of A = p, the Markovian strategies, C' (k), are an implicit function of equation
(1.26). The proof of the implicit function theorem for real analytic functions, stating that
the implicit functions of real analytic functions are also real analytic is given by Krantz and

Parks (2002, Theorem 2.3.5, p. 40). O

1.5.1 Usefulness of analyticity for interior solutions

Proposition 3 is an important result for solving the problem numerically. For example, by
using polynomial approximations to value functions and Markovian strategies, Proposition 3
guarantees that the approximated functions may remain in the same space of approximating
polynomials and be convergent. With the approximation error remaining bounded, a well-
behaved computation is guaranteed. For computation one can use either the exact solution
given by (1.19) and (1.6), or recursive methods on the Lagrange-d’Alembert differential
equation given by (1.7).

1.5.2 Analyticity and extensions to corner solutions through ho-

motopy approaches

The central assumption we have made in this paper is Assumption 2, namely that the
utility function allows for an interior solution. In practice, if solving such a game requires a

numerical approach, it is difficult to know in advance which combinations of parameter values
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of the utility function with A and p indeed deliver an interior solution. Yet, a trial-and-error
approach can help in verifying whether the dynamics of k£ implied by the strategies based
on Proposition 1 or Proposition 2 reconfirm that the solution is interior or not. In brief,
the game can be solved using Proposition 1 or Proposition 2 under the working hypothesis
that for some parameter values the problem has an interior solution. If the interiority of the
solution is not reconfirmed, then parameters can be re-calibrated.!®

In the literature of differential games modeling commons problems interesting applica-
tions involve studying the potential depletion of a common-property resource, or placing
quotas on resource exploitation. Such applications involve corner solutions. Analytical re-
sults for differential games with corner solutions are more difficult to obtain. Therefore, using
numerical approximations may be the only resort. Nevertheless, calibrating a Markovian dif-
ferential game with corner solutions so as to achieve convergence using recursive methods
may be challenging. A possibility is to employ a homotopy computational approach as in
Eaves and Schmedders (1999).

The homotopy computational approach is the practice of starting from calibrated para-
meters of a well-behaved solution. Afterwards, changing parameter values in a gradual, step-
by-step fashion, one arrives to the desired parameterization of the computational problem.
This homotopy procedure is explained in detail by Garcia and Zangwill (1981). Examples
of papers such as Borkovsky et al. (2010) and Besanko et al. (2010) adapt the homotopy
approach to some classes of dynamic games.

For following such a homotopy procedure, our results in this paper can be proved very
useful. Propositions 1 or 2 can provide well-behaved interior solutions and can guide through

parameterizations that guarantee the interiority of solutions. In a next step, parameteriza-

16The next section, where we present several closed-form solutions, gives “hands-on” examples of how the
choice of parameters affects whether a Markov-perfect Nash-equilibrium solution is interior or not.
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tions leading to corner solutions of research usefulness can be pursued in a step-by-step

manner.

1.6 Examples with closed-form solutions

Propositions 1 and 2 lead to immediate results in cases where the problem we study admits
closed-form solutions in the special case of setting w = 0 in equation (1.20). We list these
examples below, demonstrating the usefulness of Propositions 1 and 2. First, we list cases
that are more or less known. These known examples use utility functions from the com-
prehensive class of functions guaranteeing linear aggregation in dynamic models, identified
by Koulovatianos et al. (2019).'" The common feature of these examples is that resource
exploitation strategies, C' (k), for the case of setting w = 0 in equation (1.20), are all linear
functions in k. This common feature is essential for aggregation. In addition, it helps in
deriving explicit dynamics for k, which helps in identifying parametric constraints guaran-
teeing that the solution is interior.'® Examining these known cases is useful, as it helps in
demonstrating our solution method.'?

At a second stage, after our method is demonstrated, we present a final example that,
to the best of our knowledge, does not exist in the literature. For this particular new case
the resource exploitation strategies, C' (k), for the case of setting w = 0 in equation (1.20),

are non-linear.?’ Crucially, our suggested method is essential for identifying this closed-form

17By linear aggregation we mean the concept of “exact linear aggregation”, as it is defined, e.g., in Gorman

(1961). In our case, this class of utility functions implies that exploitation strategies are affine functions.
I8Examining also whether steady states are unique, and examining the stability properties of these steady

states, are two tasks that can be pursued within these parametric examples. As these tasks usually require
more parametric constraints and as these tasks are beyond the scope of this paper, that intends to provide

the solution characterization, we leave this steady-state examination for future research.
19Most of our examples, except the sligtly more generalized case with “Gorman preferences” and the case

of constant-absolute-risk-averstion preferences, which we present below, have been thoroughly studied by
Gaudet and Lohoues (2008), who go beyond the use of linear resource-reproduction functions, specifying the
types of resource reproduction functions that allow for linear strategies. We thank Hassan Benchekroun for
pointing this paper to us.

20In Tasneem, Engle-Warnick and Benchekroun (2017) there is experimental evidence that players may
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solution. Therefore, we believe that this new example demonstrates the usefulness of our

approach.
1.6.1 Gorman preferences

Let’s consider preferences as in Gorman (1961), given by,

1-6
w(c) = % , (1.33)
in which # > 0 and x € R. Based on (1.18), the corresponding function ¢ is
1-1-60)N _: X
A)=—— N7 - N= | 1.34
¢ (A) —a-na Vi (1.34)
Therefore, if parameters p, A, #, and N are such that,
1-(1-6)N
IR 1.35
then ¢’ < 0, implying that ¢~ ' exists. In particular equation (1.23) gives,
_ —(1-0)A - X\~
"(k)=¢ (k)= L kE+ N= 1.
J' (k) = 67" (k) L—(l—ew (k+N3) (1.36)
which implies,
1-(1-0)N 1—4
Moreover, (1.6) gives,
—(1-06)A A—N
cocm=lt=l=04, X P (1.37)

T1-(1-0ON A 1-(1-6N°
Substituting (1.37) into the constraint k = Ak — NC (k), and solving the resulting linear

differential equation, we obtain the explicit dynamics of k (t), namely,

N —Np N
k(t) = _TX + eTohnt {k (0) + TX} : (1.38)

choose both linear and nonlinear strategies. The theoretical model employed in Tasneem, Engle-Warnick and
Benchekroun (2017) allows for multiple equilibria, providing a clear distinction between linear and nonlinear
equilibria. The evidence that non-linear strategies may be chosen by players, supports the usefulness of our
new example. We are indebted to Hassan Benchekroun for making this point to us.
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Equation (1.38) implies that once k(0) > —Nx/A, k(t) > —Nyx/A for all t > 0, making
J (k (t)) be well-defined for all ¢ > 0. Therefore,

k(0) > —% , (1.39)

21 Tn order to examine the

is one of the necessary parametric constraints of this problem.
parametric constraints for guaranteeing that the transversality condition is met, we use

(1.38) and (1.36) to obtain,

T (k (1)) = {%] ” [k (0) + Nﬂ g (1.40)

Combining (1.40) and (1.38) shows that tlim e Pt J! (k(t)) k (t) = 0 is equivalent to,

lim {_%e[f}ﬂ“ﬁﬁf&lt + [k (0) + %} e[ﬂ“ﬂ?w’”ﬁ} —0.  (L41)

After some algebra, the requirement implied by (1.41) that p+6 (A — Np) /[1 — (1 —0) N| >

0, is simplified to,
p(1—N)+0A
1-(1-6)N

The condition p — (1 —0) (A — Np)/[1 — (1 —60) N] > 0, which is the other requirement

>0. (1.42)

implied by (1.41), is equivalent to (1.35). This equivalence can be verified after some algebra.
Therefore, conditions (1.35), (1.39) and (1.42) are the three parametric requirements that
guarantee a well-behaved solution.?> An important observation from (1.38) is that these three
conditions do not rule out the possibility of sustainable perpetual growth, i.e. k(t) — oo.
Obviously from (1.38), sustainable growth occurs if (A — Np) /[1 — (1 —6) N] > 0.

A crucial observation is that equation (1.37) holds also for the case where A = p. Specif-

ically, after setting A = p in equation (1.37), the resulting strategy C (k) |a=, satisfies the

21 Apparently, combining (1.39), (1.38), and (1.37) is necessary in order to identify parametric restrictions

guaranteeing that C (k (t)) > 0 for all ¢ > 0, consistently with an interior solution.
22Importantly, these three parametric requirements are related to the invertibility of function J’(-), as

discussed above.
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condition given by (1.26). We are not aware of any paper in the literature solving this
problem for y # 0. Therefore, equation (1.37) is a novelty of this paper.

Finally, notice that by adding the constant —1/ (1 — ) to the utility function given by
(1.33), a modification that does not affect optimization, we can consider the case where

0 = 1, which leads to having logarithmic utility, since, after using L’Hoépital’s rule,

lim (C + X)

oy s hlet )

1.6.1.1.Special case: CRRA preferences (y =0) A familiar example in the literature

(see Lane and Tornell, 1996) is this of CRRA preferences,

which is the case of setting y = 0 in (1.33). Setting y = 0 in (1.37) gives

p—(1-0)A

L T

k
which coincides with the solution in Lane and Tornell (1996, eq. 17, p. 221).
1.6.2 Constant absolute risk aversion (CARA) preferences
Let a utility function representing CARA preferences, namely,
u(c) = —e7F°, (1.43)
in which § > 0. Based on (1.18), the corresponding function ¢ is

BN

6=~ gy ¢ YT

EN

+In(\)]| . (1.44)

Equation (1.44) implies that ¢’ () < 0 for all A > 0. Therefore, ¢~ " exists, with equation
(1.23) implying,

J(k)=¢ (k) = ————¢ A" (1.45)



leading to,

Ap_ N1
J(k?)z—e AA Y vk
In turn, (1.6) gives,
A A— N —1
Ty Py A C el O B . (1.46)

N A N
After inserting (1.46) into the constraint k = Ak — NC (k), we obtain k (t) = 5 (A — pN) /A,

which has the obvious solution,

A—pN
A

k(t) =k (0) + 8 . (1.47)

Equations (1.47) and (1.46) reveal the parametric constraint that guarantee an interior

solution. Specifically, equations (1.47) shows that,
A—pN >0, (1.48)

guarantees k (t) > k(0) > 0 for all ¢ > 0. Equation (1.46) reveals that placing a constraint

on the initial conditions k (0), namely,

B(A-p) N-1

(1.49)

guarantees ¢ (t) > ¢(0) > 0 for all £ > 0 if (1.48) also holds. In summary, inequalities (1.48)
and (1.49) guarantee the interiority of the solution given by (1.46).
Combining (1.47) with (1.45) leads to a tractable expression for the transversality con-

dition. Specifically,

P A—pN t

, _
lime ! (k () k (1) = e i Ol [k (0)e ¥t + g2 LL T 1 (150
t—o00 A t—o0 A €Wt

Equation (1.50) reveals that, in the case of CARA preferences, no parametric restrictions
on A, p, 5, N, and k (0) beyond inequalities (1.48) and (1.49) are needed in order to ensure

that the transversality condition is met. Importantly, equation (1.47) reveals that sustainable
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growth is possible. Finally, exactly as in the case of Gorman preferences, equation (1.46)

holds also for the case where A = p, with the strategy C' (k) |4—, satisfying condition (1.26).

1.6.3 Quadratic preferences

Let the utility function be,
u(e)=—5(x-0o", (1.51)

with 0 < ¢ < x. It is broadly known that linear quadratic differential games have linear

strategies as solutions.? Combining (1.51) with (1.18), the corresponding function ¢ is

2N —1 X
qb()\)——zA_p/\—l—NZ.

Therefore, ¢~ * exists and equation (1.23) implies,

T (k) = ¢ (k) = ;ﬁ:’i (V25 (1.52)

leading to,

10 =g =5 (54

Equation Moreover, (1.6) combined with (1.52) give the formula of the Markovian strategy,

2A—pk+&pN—A

=0l =yt aoN o1

(1.53)

Important in this example is to restrict parameters so that 24 — p > 0, and to use
(1.53) in order to select N, A, p, x, k(0) so that the dynamics of k imply k (t) < Nx/A

for all ¢ > 0, guaranteeing that J’ (k (t)) > 0 for all ¢ > 0, and that the solution is interior.

23A study explaining that non-linear strategies can also exist is Tsutsui and Mino (1990). Nevertheless,
focusing on interior solutions is important on whether such non-linear strategies can exist or not in linear
quadratic games.
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These conditions can be found after we substitute the strategies given by (1.53) into k () =
Ak (t) — NC (k(t)), and after solving for the explicit dynamics of & (t). Specifically, these

dynamics are given by,

k() = N% T [k (0) — Nﬂ . (1.54)

Equation (1.54) tells us that while k(0) < Nx/A, the parametric constraint needed for

guaranteeing that k (t) < Nx/A for all t > 0 is,
A>pN . (1.55)

Notice that (1.55) implies A > p/2, which is a necessary condition guaranteeing J' (k (¢)) > 0
for all ¢ > 0. In addition, using (1.54) and (1.52), we can verify that the transversality

condition holds if (1.55) holds, since lime *J! (k (t)) k (t) = 0 is equivalent to,

t—o0

As we saw above, similar parametric constraints are needed in the case of Gorman pref-
erences in order to guarantee that J'(k(¢)) > 0 for all ¢ > 0 and that the transversality
condition is met.?* Nevertheless, these parametric constraints in the case of Gorman pref-
erences do not rule out the possibility of sustainable growth. On the contrary, in the case
of quadratic preferences, because the utility function has a bliss point, the growth of k (¢)
must be bounded above. This feature of linear quadratic games motivates the main purpose
of this paper, which is to discover further solutions for Markovian games of commons with

linear constraints.

24Specifically, in the case of Gorman preferences, the parametric restrictions on N, A, p, x, 0, k(0), given
by conditions (1.35), (1.39) and (1.42), are needed in order to guarantee that k (¢) > —Nx/A for all ¢ > 0.
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1.6.4 New Example with non-linear exploitation strategy: demon-
strating our method

Here we consider a utility function that does not fall in the class of preferences that lead to
aggregation (see Koulovatianos et al., 2019, p. 172, Theorem 1). Specifically, the resource

exploitation strategies, C (k), are not linear in k. The utility function is,
u(c) =c— Ke? (1.56)

where x > 0. Notice that for v’ (c) = 1 — 3/2kc!/? > 0 we need to place an upper bound on

c. The requirement v’ (¢) > 0 holds if and only if,

4

u(c)

u(c) not defined
in this area

=2 C
Figure 1.1 The utility function u (c) = ¢ — kc*/? is not defined in the shaded area.

Beyond the value of ¢ = 4/ (9x?) for ¢, u (c) becomes downward-sloping, as shown by Figure

1.1. As marginal utility becomes negative for ¢ > ¢, one can view ¢ as the bliss point of this
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utility function. Think, for example, that c¢ is the consumption of a renewable resource such
as fish, and that ¢ is the maximum instantaneous flow of a country’s fish consumption, as
the residents of a country become instantaneously satiated by consuming fish. As for the
linear technology of the fish reproduction stock, k, driven by Ak, think of Ak as a production
function of fish through sustainable fish-farming.?

Within the range of values for ¢ given by (1.57), the inverse function of ' (¢) is given by,

(W) () = % (1- A7 . (1.58)

After introducing (1.58) into (1.18) and after some algebra, the corresponding function ¢

iS,QG
dN)=n(A—=07"+v, (1.59)

where,

2
-3 ()%=
= a6
and

n= %H : (1.62)

Inverting ¢ () seems straightforward, but one must pay attention to one feature. Specifically,
the procedure for inverting ¢ () is setting k£ = ¢ (), and then using equation (1.59) in order

to solve for variable A\. During this function inversion process, a step is given by,

NI

A= 0= — (k—)? . (1.63)

3
|

25Fish reproduction is the application in Sorger (2005), who also uses a linear, constant-reproduction rate,
Ak. Alternative interpretations would include exogenously supplied infrastructure by governments to users,

such as public roads, assuming that users have an upper capacity of usage, ¢.
26For the derivation of ¢ (\) see the Appendix.
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Notice a first parametric constraint implied by (1.63), that
k (t) > max {¢,0}, for all ¢t > 0 . (1.64)

A second parametric constraint implied by (1.63) comes from the requirement that n'/? exists
and that it is different from 0, i.e., that n > 0. Since 3N —2 >0 for all N € {1,2,...}, 7 >0

if and only if,

A> %p . (1.65)
Condition (1.65) implies that,*’
oo 10
which means,
1-6°<1. (1.67)

We will examine conditions that guarantee (1.64) below. There are two possibilities for
the left-hand side of equation (1.63). The first is to have A — # > 0, which leads to, a value
function, J (k) that is strictly convex and which implies dynamics that violate the property
that the solution is interior.?® The second possibility, of A — 6 < 0, is admissible, but it still
remains to identify parameter restrictions guaranteeing that u is such that the solution is
interior.

Let,

A—60<0, (1.68)

hold. Combining (1.68) with (1.63) implies,

A=J(k)=¢ (k) =0— — (k—)? , ifA<0. (1.69)

27For a proof of this result, see the Appendix.

28See the Appendix for details on this point.
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Equation (1.69) gives the variable part of the formula for J (k), namely,

2
377%

N W

J (k) = 0k —

(k—1)2 | (1.70)

where a constant of integration can be added, specified by the HJB equation of the problem

of each player. Importantly, this value function is concave, since (1.69) implies,

N

1
J’/l (k) — _
2n

(k—v)72 <0. (1.71)

1
2

Based on (1.21), (1.58) together with (1.69) reveal the formula of the optimal symmetric

strategy, which is given by,

2
+1-06| . (1.72)

N

C (k) = (k ~ )

3
o=

4
QK2

Given (1.57), it should be that 0 < C (k) < 4/ (9x?) = ¢, an inequality that leads to,

_ - 4N
. 2
ke [E,k) , with k=nd “”:9,@214’

and kzmax{O,n(1—9)2+w} . (1.73)
with,

n1—60°+yv=k—-(20-1)n. (1.74)

To ensure that the interval [k, k) is non-empty, the formulas given by (1.73) and (1.74)
indicate that 20—1 > 0, as (1.62) together with condition (1.65) imply that n > 0. After some
algebra we can prove that 20 — 1 > 0 is equivalent to having A > (5N —2)p/[2(3N —1)].

Therefore, a sufficient condition to guarantee that [E, l;:) is non-empty, is given by,

5}

and notice that the parametric constraint given by (1.75), implies the parametric constraint

given by (1.65).%

29To see why (1.75) implies A > (BN —-2)p/[2(BN —1)] for all N > 1, define H(N) =
(6N —2)p/[2(3N —1)]. Notice that H (1) = 3p/4, with H' (N) = p/ [2 (3N — 1)2} > 0, and with
limy o0 H (N) = 5p/6.
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To examine the dynamics of this game, we first examine the monotonicity of the sym-

metric strategy C' (k). Based on the first-order condition given by (1.5),
u' (C (k) =T (k) , (1.76)
differentiating both sides of (1.76) implies,
J" (k) =u"(C (k) C" (k) . (1.77)
Because u” (¢) < 0 for all ¢ complying with (1.57), and because of (1.71),

J" (k) <0 combined with (1.77) imply that C’' (k) >0 . (1.78)

After some algebra, we can verify that C’ (k) > 0 is equivalent to having n='/2 (k — w)l/ 24

1—-6>0.

Introducing strategies C' (k) into (1.1) implies,
k= Ak — NC (k) . (1.79)

Differentiating (1.79) with respect to k we obtain,

Ok )
o =A-NC'(k) . (1.80)

The monotonicity of C (k) given by (1.78), together with (1.80), jointly imply that it is
possible to have stable dynamics toward a 0-growth steady state of k. Such a 0-growth
steady state of k£ can either lie within the domain of admissible interior strategies of the
game, the interval [@, l?;), or it can be the supremum of the interval [@, l%), which is k. We
explore parametric conditions that allow for this possibility.

After expanding the quadratic term in (1.72), the law of motion (1.79) becomes,

AN _8N(1-0)

(k- ) AN(1-0)

k= Ak — (h=)? = —

(1.81)

9H2ﬁ 9/{27]%
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Given the nature of (1.81), it is useful to introduce a function,

N

z (k)= (k—¢)2 . (1.82)

In the Appendix we show that (1.81) can be re-written as,
k(1
n

0)

k:A(l—E>z(k)2—2A z(k)+Alk(2—0)—n0]0 (1.83)

n 3

The right-hand side of (1.83) can be seen as a quadratic polynomial in terms of the function

z (k), with discriminant, A, given by,

2

A:4A2{M

Ui n

E\ -
- (1——) [k (2 —0) — ] 9} : (1.84)
The discriminant given by (1.84) can inform us on whether real roots of the quadratic
polynomial exist. In order to achieve this goal, we use the formulas given by (1.62) and

(1.61). After some algebra, we can show that,*

> > ;> - > 5
AZpN<:>921<:>k:2n<:>k(2—(9)—n920,forallNZQandallA>ép. (1.85)

The equivalence given by (1.85) serves as a guide, indicating that we must focus on the
relationship between A and pN, keeping in mind that condition (1.75) should always hold.

A first implication of (1.85) is that,
E\ - 3 . o
1——)[k(2-6)—nf] <0, forall A> 6 with equality iff A = pN . (1.86)
Ui
Based on (1.66), # > 0, and (1.86) implies that,

)
A>0,forall A> 4 with equality iff A = pV . (1.87)

Therefore, as long as A > 5p/6 and A # pN, there are always two real roots to the quadratic

polynomial in z (k) given by the right-hand side of (1.83). Let’s call these two real roots r;

30See the Appendix for a proof of this statement.
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and r5. The first root, rq, is easy to identify using (1.73) and (1.72) and introducing them

into (1.79), namely,

’%‘H — Ak — NC (k) =0. (1.88)
The result in (1.88) implies that,
ro=z(k) = (k—v)? =n*0>0. (1.89)
The right-hand side of (1.83) implies,
k(2—60)—n0]6 E(1—0
Ty = [ ( >, il ] , and ry 41 = 2—< ,) . (1.90)
1-£ 3 ( _ E)
1 U 1
It is verifiable that all three equations in (1.89) and (1.90) comply with,
k(2—0)—nb
_ k@0 = (1.91)

N

Cy
7 (1-3)
To see why 74 is strictly negative, observe from (1.90) and (1.86) that for all A > 5p/6 with

A # pN, rire < 0. Since r; > 0, it follows that r < 0.

In brief, (1.83) can be re-written as,

= A (1 - %) [z (k) — née] 2 (k) — ng——ﬁ) (1.92)

Since z (k) > 0 and since, according to (1.91), 5 < 0, the last term of (1.92), z (k) —ry > 0.
In addition, since 2’ (k) = 1/2 (k — ) ™/* > 0, and since k < k, z (k) < z (k) = n'/?0, ie.,
the penultimate term of (1.92), z (k) —r; < 0. Given these two observations, (1.92) and
(1.85) imply,

L - 5
kzO(:)Asz,forallNEQandallA>6p. (1.93)
Therefore, (1.93) implies that the parametric constraint

A>pN (1.94)
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guarantees an interior solution where k — k asymptotically, as ¢ — oo, as is depicted by

Figure 1.2.3!

'__%*_____________

Figure 1.2 Dynamics of k toward the supremum of the [E, I_C) interval, k. The resource,

k, converges asymptotically to k from any & (0) € [E, E‘), guaranteeing an interior solution.

This asymptotic-convergence property guarantees that the transversality condition holds

as well. Specifically, from (1.69) we can see that,

[NIES

lime "J" (k(t)) k (t) = [ ! (Iﬁ — ¢)

t—o0

} Elime " =0 .

t—o0

I
ES
=

We conclude proving the uniqueness of the optimal response to symmetric strategies
played by other players for the case of setting w = 0 in equation (1.20) for this novel

example presented in this section, by demonstrating that C' (k) given by (1.72) is the unique

31Trivially, the case where the initial condition is above k does not qualify as an interior solution.
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maximizer of P;, for all ¢ € {1, ..., N} (see Definition 1 and set C' (k) = C* (k)). First, notice

that, under the parametric constraint (1.94),

—2(1-10) 3

C" (k) = (k—v¢)"2>0, (1.95)

95277%
which is an implication of (1.85). For a symmetric equilibrium in C' (k), a player’s Hamil-
tonian is,

H=u(c)+ A N[Ak—(N-1)C (k) — ] .
The Hessian matrix of this Hamiltonian with respect to variables (c, k) is,

u” (c) 0
0 =AWN-=-1)C"(k)

Given that u” (¢) < 0, (1.95) implies that Hj; is negative definite. Therefore, given Man-
gasarian’s theorem (see, for example, Sydsaeter et al., 2008, p. 330, Theorem 9.7.1), the
optimal strategy, C (k), that solves the individual problem of player i € {1,..., N}, is a
unique maximizer in response to the symmetric strategies, C' (k), played by the other N —1
players.

An alternative interpretation and application of this game is the case where N monop-
olists, co-exploit a common-property resource each supplying to a different market at zero
cost, facing a constant interest rate equal to p.>*> The HJB equation of player i € {1,..., N}

in such a setup is,

qiZ

pJi (k) = max {p (¢:) @i + J; (k)
i

=

32Think, for example, of a railroad that is provided exogenously by a government, with railway companies
utilizing this railroad infrastructure in a rivalrous and non-excludable, manner, at no cost. This infrastruc-
ture, k, can depreciate with utilization, i.e., by the number of passengers of each company, ¢;, according to
an endogenous depreciation function that is linear in ¢;, say, d (¢;) = v¥k;, and parameter A in the law of
motion of k& is normalized so as to set ¥ = 1. A discrete-time version of this setup is given, for example, in
Koulovatianos and Mirman (2007, p. 203).
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in which ¢; is the extracted and supplied quantity of the common resource by monopolist ¢
and Q)] (k) is the optimal Markovian strategy of oligopolist j # i. The first-order conditions

of this problem are,
P (@) +p () = J; (k) . (1.96)
Finding the inverse of the derivative of the revenue function in (1.96), where R (¢;) = p (¢;) ¢:

is the revenue function and R’ (¢;) = p' (¢:) ¢; + p (¢;), can be challenging to do analytically,

unless we express the inverse demand function in the form,

pla)=r(g)q " .

In this case, the revenue function, R (¢;) = p(¢;) ¢ = r(¢;), and (1.96) becomes 1’ (¢;) =
J' (k), exactly as in (1.4), making this game identical to the one examined in this paper, after
setting 7 (¢) = u (¢). An advantage of this interpretation is that much of the literature focuses
on linear-demand functions, making the revenue function quadratic, while the method we
propose can lead to other functional forms for the inverse-demand function.?® In the example

examined here, the inverse-demand function would be,

p(g) =1—rg? .
1.7 Conclusion

We have provided a thorough and comprehensive characterization of the interior solution
to the class of symmetric Markovian differential games of commons problems with linear
constraints. For a broad class of time separable utility functions that depend only on the
player’s control variable and that allow for interior solutions, we have provided an exact
interior solution to the problem when the coefficient of the linear resource reproduction

function differs from the rate of time preference (A # p). The solution to the special case

33We thank an anonymous referee for pointing this interpretation to us.
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where the rate of time preference equals the coefficient of the linear resource reproduction
function is given as an implicit function of a simple expression. In the more interesting
and more common case of A # p, our analytical approach involves a differential equation
with an explicit solution involving an integration constant. When we give this constant the
value of zero, we obtain an analytical for the Markovian strategies. This particular case
with the zero-integration constant, quickly leads to the verification of closed-form solutions.
Moreover, our solution gives an immediate result regarding analytic functions. If the util-
ity function is analytic, then the resulting Markovian strategies are also analytic functions.
This analyticity property can facilitate the numerical computation of such games using, e.g.
polynomial approximations for value functions and Markovian strategies. Additionally, the
analyticity property can be useful in numerically approximating commons problems with
corner solutions. For the cases where the integration constant is not equal to zero, multiple
Markovian strategies can arise. This case can be intractable analytically, but it can help in
either characterizing these multiple equilibria, or in numerically computing them. An inter-
esting extension of our findings is to study conditions for the sustainability of cooperation as
Jorgensen, Martin-Herran and Zaccour (2005) have done for linear-quadratic games. Finally,

a future extension could be to characterize this class of games for an infinite horizon.
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1.8 Appendix

Derivation of function ¢ ()\) in equation (1.59)

Substituting (1.58) into (1.19) leads to,

_ 13
¢()\):A1_p{4<];;2 D (1—)\)2+[N+§(N—1)];1—22/)\51 (1—)\)2d)\} . (A1)

To calculate the integral in (A.1.1) we expand the quadratic form, namely,
/A—f—l (1-X)2d\= / (A =227 A A

which leads to,

oo (e 52w

Combining (A.1.2) with (A.1.1) gives,

¢(A):a.(x2—2A+1)+5.(V—Q:gﬁwr_iz) : (A.1.3)
where
_AW-D o AINHE(N 1))
“Soea MM eweE ey S

Collecting terms in (A.1.3) leads to,

2 2
)\2—2W)\+<a+<ﬁ) ] +a+ﬁ_£+2—(&+ﬂ) (OH_CB) ,

o) =(a+p) a+f3 a+f3 —£ a+ 3

or,

B a+(B)? —£+2 a+ B\’
¢(A)—(a+ﬁ)<A_ a+@) totf— —(a+6)(a+5> : (A.1.5)
where,
—£+2
(= e (A.1.6)



Substituting the expressions for «, 5, and ¢ given by (A.1.4) and (A.1.6) into (A.1.5),
gives equation (1.59), together with the expressions given by (1.60), (1.61) and (1.62).
U

Proof of inequality (1.66)

Fix any value of p and observe that

0= F(A)G(N) , (A17)
where,

F(A) = 321?4__2; , (A.1.8)
and,

G (N) = g% —. (A.1.9)

Notice that, according to (1.65), A > 2/3p > 1/2p, and therefore, F'(A) > 0. Moreover,

/ P
Fa=—" _<9o, A1.10
(4) (24 — p)? ( )
and
limF(A) =0, and f}im F(A) = g . (A.1.11)

Al2p

Combining (A.1.11) with (A.1.10) gives,

0<F(A)< g for all A, given any p complying with (1.65) (A.1.12)
Similarly, notice that,
G(N)=—L <o, (A.1.13)
(3N —2)
while,
G(1)=1 and Jim G(N) = g . (A.1.14)
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Therefore, (A.1.7), (A.1.13) and (A.1.14) imply,
2
3 < G(N)<1,foral Ne{1,2,...} . (A.1.15)

Combining, (A.1.7), (A.1.13) and (A.1.15) proves inequality (1.66).

Why the case of A — 6 > 0 in equation (1.63) is not admissible

Substituting A — 6 > 0 into (1.63) gives,

N

A=o¢"(k)=—F(k—v)>+0, ifrx>0. (A.1.16)

3
o]

Recall that A = J' (k). Differentiating the right-hand side of (A.1.16) we can see that
J" (k) =1/ (2n*?) (k — )% > 0 for all k > max {0,1}. Yet, J” (k) > 0 is not a property
of the value function that complies with the transversality condition. To see this, consider

the first-order condition given by (1.5), which implies,
u (C (k) =J (k) . (A.1.17)
Differentiating both sides of (A.1.17) implies,
J" (k) =u"(C(k))C" (k) . (A.1.18)
Because u” (¢) < 0 for all ¢ complying with (1.57),
J" (k) >0 combined with (A.1.18) imply that C’ (k) <0 . (A.1.19)
Yet, remember that the budget constraint given by (1.1) implies,

ki (t) = Ak (t) — NC (k (¢)) . (A.1.20)

45



Combining (A.1.20) with C’ (k) < 0 means that the right-hand side of equation (A.1.20) is
upward-sloping in k (¢). Based on (1.21), we can combine (A.1.16) with (1.58) to obtain the

explicit formula for C' (k), namely,

N|=

c(/f)—i{p

 9K2

(k — ) } . (A.1.21)

|
3
m,_.| —

Using (A.1.21) we derive the first and second derivatives of the strategies C' (k), i.e.,

—4 1 1
C' (k) = ; {(1 —0)(k—1) 2 — —1} : (A.1.22)
9k2n2 n:
Notice that (A.1.22) combined with (A.1.19) implies that
C" (k) <0 holdsif k< +n(l—6)>. (A.1.23)
In addition, (A.1.22) implies,
" 2 _3
C" (k) = (1—=0)(k—v)2>0. (A.1.24)
9k2n2

-

4 w+n(1-0)

Figure A.1.1 Properties of the decision rule if A — 0 > 0
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All properties of C (k) described by (1.57), (A.1.21), (A.1.22), (A.1.23), and (A.1.24) are
depicted by Figure A.1.1, where the shaded areas indicate value regions where the strategies
C' (k) are not defined. Without loss of generality, Figure A.1.1 depicts a case where 1) > 0.
The case of ¢ < 0 would simply depict a picture with C' (k) exhibiting the same properties
for k € [0,4 +n(1—0)%.

Introducing strategies C' (k) into (1.1) we obtain,
k= Ak — NC (k) . (A.1.25)

Differentiating (A.1.25) with respect to k we obtain,

% =A—NC'(k) >0, forall k€ [max{0,¢},¢+n(1l— 0)2} : (A.1.26)

Equation (A.1.26) is a consequence of equation (A.1.23). The key message of (A.1.26) it
implies dynamics of k. These unstable dynamics of k imply a violation of the feature that
the solution is interior. In the absence of an interior solution, Proposition 1 does not apply
and, therefore, the closed form solution of the strategies, C (k), given by (A.1.21), is invalid.

Figures A.1.2 and A.1.3 depict (A.1.25) and the dynamics of k, based on all parametric
cases. Specifically, we distinguish cases of parametric values of A such that » > 0 and
otherwise. Based on equation (1.60), after some algebra, and making use of the parametric

constraint given by (1.65), we can show that,

3N —2 2 3N —2
A— A—pN A - N A1.2
vo0e (A= TET00) (- 00 ae (30, ST 20) UGN ) L (A2
3N -2
=0& A=pN orA—4N_3p, (A.1.28)
and
3N —2
A N| . Al1.2
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A common feature between Figures A.1.2 and A.1.3 is that when k = ¢ + 7 (1 —6),
which is the upper bound of k for which C' (k) is admissible in this case of A — 6 > 0, k> 0.

To see this, insert k = ¢ + 7 (1 — #)” into (A.1.25) to obtain,

k = A 1—-6)%>0. A.1.30
v = AT (A= 0)] (A.1.30)

Inequality (A.1.30) justifies why in both Figures A.1.2 and A.1.3 the curve depicting the law
of motion for £ is above the O-line.
k
k= Ak~ NC (k) '
A> pN

5

k> wﬁﬂﬂl—ﬁy
(unstable)

k = Ak - NC (k)

AE(EP,JN_sz

37 4AN-3

Figure A.1.2 Resource dynamics in the case where A is such that ¢ > 0.

To understand why there are two curves depicting (A.1.25) in Figure A.1.2, which focuses
on parameter values implying ¢ > 0, consider the equivalence given by (A.1.27) and focus
on the specific value of k, k = 1. By inserting k = ¢ into (A.1.25),

i L 0P >0e (N—1)(A—pN)>0. (A.131)

9K?2

k=1
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In the trivial case of N =1, k:) = 0. Yet, this does not correspond to an interior solution
k=
with free initial conditions. We therefore focus on cases with N > 2. When N > 2, the

equivalence given by (A.1.31) implies that,

l’c(w 206 AZpN. (A.1.32)

Given that,

ix :g € G 1) for all N € {2,3,...},
the two curves depicting (A.1.25) in Figure A.1.2 are justified. The equivalence implied by
(A.1.27) implies that, in the case where A € (2/3p, (3N —2) /(4N — 3) p), there is a value
k** for which k“k:k = 0. Yet, this unstable 0-growth value does not correspond to an
interior solution with free initial conditions for the problem.

k

2

k* y+n(1-0)
(unstable)

Figure A.1.3 Resource dynamics in the case where A is such that ¢ < 0.

Figure A.3 focuses on the case implied by (A.1.29). Because of (A.1.32), in Figure A.1.3.
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we have once more a value k* for which = 0. Again, this unstable 0-growth value
k:kss

does not correspond to an interior solution with free initial conditions for the problem. The

same problem arises for the two specific values of A given by (A.1.28), for which ¢ = 0.

In summary, the case of A — 6 > 0 does not correspond to an interior solution and it

should, therefore, be discarded. 0

Proof of equivalence (1.85)
To prove that 6 % 1A % pN, use (1.61) to obtain,

3A—2p2N — 1
24— p 3N —2

>
9214@

AV
—_

(A.1.33)

Based on the parametric constraint given by (1.75) numerators and denominators in the
fractions appearing in (A.1.33) are strictly positive. This feature leads to verifying that

3A—2p2N — 1
2A—p 3N —2

1<:>A§,0N,

AV AV

which confirms the first part of (1.85), that 0 = 1< A % pN.

For proving the second part of (1.85), that & % ne A % pN, observe that (1.62) and

(1.73) imply,
E_ (3A-2p) N

= AN A (A.1.34)

Using the parametric constraint given by (1.75), which also implies > 0, together we can

show that

S |
AV

1A % pN |
which proves the second part of (1.85), that & E n&e A % pN.

Finally, for proving that k (2 — 6) —n0 % 0 A % pN, use (1.61) and (1.62) to see that,

- N 6AN —3A —4pN + 2 2N —1
> <2 P —i—p)z PN

2_0)—nph = (29— =
K2=0)-nZ0e 7 6AN —44 —3pN +2p) < 24—
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A2N —1

6AN —5A —2pN + 2p N
N2A—p

2A —p

AV

©2BA—p)N? = (5A—2p) N Z A(6N? = TN +2) &
& (N-1)(A-pN)Z0,

<

confirming that & (2 — ) — nf % 0= A % pN for all N > 2.
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2. CHAPTER

Populism and Polarization in Social Media Without
Fake News: the Vicious Circle of Biases, Beliefs and
Network Homophily

2.1 Introduction

A crucial feature of populism is a separatist tendency in society, a tendency for having social
groups with strong within-group ties and similar within-group biases. Such groups often
define their identity by strongly differentiating themselves from other groups with different
beliefs and biases.** People within such groups tend to downgrade expert opinion on highly
technical matters even outside politics, e.g., medical facts about immunizations, scientific
findings in physics and biology that may be oppose traditional religious views, etc.®> In
the past two decades, there is evidence that populism rose over time.?® Together with
this rise, there is a growing tendency for downgrading expert opinion, celebrating the term
“post-truth” era in politics and society.?” Social media and internet-based networks are the
focus of recent research on understanding the causes of this uprising downgrading of expert
opinion. Much of research related to networks has focused on measuring the spread of fake

news through social media, studying also the effectiveness of combating fake news through

34 Although there is no generally accepted definition of populism in the academia, a common element among
suggested definitions of populism in politics, is a tendency of citizens to split between groups of “pure
people” versus supporters of the “corrupt elite” (see, for example, Mudde, 2004, and Stanley, 2008). A more
general way of describing both this separatist tendency among different groups and the tendency of persons
to connect with persons of similar features is the concept of homophily, explained in the survey paper by

McPherson et al. (2001).
35Gauchat (2012) provides evidence that measures of trust in science tend to differ among groups with

different political views, reporting a decline in the trust in science by conservatives in the US from 1974 to
2010. Hamilton et al. (2015) provide consistent evidence on lower trust to science by conservatives regarding

vaccine issues and climate change, using a survey in 2014.
36For evidence on the rise in populism in the past decades see Rodrik (2018), and Guiso et al. (2018).
37See the review article of Lewandowsky et al. (2017).
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internet websites that debunk information.®® While we think that this strong focus on fake
news is crucial, in this study we take one step beyond the role of fake news in order to
understand why expert opinion is downgraded over time, why populism and polarization
rise over time, and how these two processes are interrelated.

We build a simulated model of network dynamics and limited information. We remove the
possibility of fake news from the model and demonstrate that, given the search and matching
facility that social media offer for connecting with new online friends, two social elements
alone, are sufficient for producing, (a) networks that gradually exhibit more homophily
and polarization over time, and, (b) a gradual downgrading of expert opinion on issues for
which knowledge is limited. The two social elements that are sufficient for producing these
dynamics are, (i) individual biases, such as biased assimilation and confirmation bias, and
(ii) the tendency that people have for socially aligning their actions with actions of network
friends.”

For distinguishing the two eras of social networks, the pre-social-media era and the post-
social-media era, the key is to introduce a search-and-matching mechanism that can bring
together new friends.*® Compared to traditional social networks without internet, internet-
based social media are distinguished by the speed and intensity of the search-and-matching
possibilities they offer. Due to this difference in speed of search and matching, in traditional

social networks without internet, the evolution of some social processes, such as populism

38See the online platform “Hoaxy” for detecting fake news (Shao et al. 2016 and 2018) and a related
discussion in Ciampaglia et al. (2018) on debunking fake news, reviewing preliminary results on this new

area of research.
39Evidence on the role that biases play in promoting attitude polarization was provided by Lord et al.

(1979), contributing to the literature on biased asssimilation and confirmation bias. Confirmation bias, as is
explained by Nickerson (1998), together with biased assimilation, are the closest concepts of bias we employ
in our model. For the coordination motive among people in a sociaty to align their actions to these of their
friends and peers, see the famous “beauty contest” example proposed by Keynes (1936) and the formulation

in Morris and Shin (2002) and Golub and Morris (2018).
40Search and matching models have been used, for example, in monetary economics (see Kiyotaki and Wright,

1993) and in modeling unemployment (see Mortensen and Pissarides, 1994).
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and polarization, might be too slow, requiring a lifetime to evolve, so the overall process
might be stalled in society. On the contrary, internet-based social media can speed up
search and matching of new internet friends (or can even make matches among distantly
located people possible), speeding up the evolution of some social processes as well. The
search-and-matching framework we suggest, and the uncomplicated simulated evolutionary
dynamics it produces, are two key contributions of this paper.

Our search-and-matching process involves features of coordination games with incomplete
information. In these games, players need to form beliefs about a fundamental value. In
our framework, there is a public noisy signal that captures the role of expert opinion on
this fundamental value. In addition, players have access to private signals and also try to
coordinate with network friends. In order to take actions (e.g., immunizations, political
votes, etc.) related to this fundamental value (e.g., the risk of a disease, the risk of a fiscal
crisis, etc.), players form beliefs on what other players believe, i.e., they form higher-order
beliefs. In this environment, fundamental (structural) biases of players, more related to
their education level or culture, such as confirmation biases, cause a preference for choosing
internet social media friends with similar biases, the network feature known as homophily.

Our main result is that, even in the absence of producing and re-producing fake news,
fundamental biases combined with the need for aligning actions to those of friends, lead
to a network evolution characterized by homophily, high network density and closeness
centrality among friends of similar biases. These network features are mapped to actions of
players, strengthening populist characteristics that lead to polarization over time: players
gradually put more weight on their biases and less weight on expert opinions. Networks
make fundamental biases be enhanced by peer-induced amplification factors and these biases

lead to more network features that promote these biases, a vicious circle of populist trends.
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The crucial distinction between fundamental (structural) biases and peer-induced am-
plification of biases in decision making provides three main insights that we demonstrate
through simulation experiments and through some analytical characterizations. First, the
tendency of people to connect with those who have similar fundamental biases is endoge-
nous, depending on the existing network structure. Specifically, as the existing network
exhibits more homophily, and as subnetworks of connected persons with similar bias also
exhibit more density and closeness centrality, the tendency to match with new persons of
similar biases becomes stronger. Second, we analytically show that, in decision-making,
there is a tradeoff between peer-induced amplification of biases and importance of expert
opinion. Whenever the role of biases increases in decision-making, the role of expert opinion
becomes downgraded. This tradeoff is clear in our model because, as our model has no
fake news, the weight that individual decisions place on noisy private signals is constant,
independently of the network structure. Third, the size of fundamental biases, measured in
relation to the standard deviations of private and public signals, affects both the intensity of
the long-term homophily outcome and the speed of transition to this outcome. Specifically,
weak fundamental biases lead to weaker homophily outcomes. These dynamics occur in a
framework where agents have myopia regarding the evolution of the network, despite that
they make sophisticated decisions based on the existing structure of the networks, using
all available information. We conjecture that a more sophisticated model, with foresight
and rational expectations about the network evolution, would strengthen this relationship
between fundamental biases and network dynamics.*!

Our findings give a clear message. Combating fake news through network debunkers is

not a complete treatment against populist trends. For preventing populism, it may also

41Such an extension is beyond the scope of this paper, as it demands the development of new analytical
tools in dynamic games with foresight, where whole networks are the state variables affecting each individual
forward-looking decision.
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be crucial to focus on removing the structural feature of individual biases, e.g., through
providing better education to younger individuals and through promoting an evidence-based

mentality to society.
2.1.1 Related literature

Our paper contributes to two literature strands. The first strand is the growing literature
on the determinants of homophily in networks and on how homophily affects a number of
economic and social decisions, including the speed of learning. Examples of this literature
are Jackson (2008), Currarini et al. (2009), Kossinets and Watts (2009), Golub and Jackson
(2012a,b), Bramoulle et al. (2012), Jackson and Lopez-Pintado (2013), Centola (2013),
Lobel and Sadler (2015), Currarini and Mengel (2016), and Halberstam and Knight (2016).

The second strand is the literature interested in fake news, despite that we do not study
fake-news extensions in this paper. In this paper we model biased assimilation as a structural
feature, showing that, over time, due to the dynamics of network peers and due to interac-
tions with network peers, actions tend to be more and more biased, while expert opinion is
gradually downgraded. Nevertheless, studying the interplay between our suggested mecha-
nism of biases in this paper and fake-news mechanisms suggested in the growing fake-news
literature on networks, should be a topic of future research. We think that establishing our
model’s mechanics is a stepping stone for such a synthesis. Papers in this fake-news strand
of literature include Mullainathan and Shleifer (2005), Baron (2006), Gentzkow and Shapiro
(2006), Besley and Prat (2006), Bernhardt et al. (2008), Gentzkow et al. (2015) and Allcott
and Gentzkow (2017).

Notably, a paper sharing similar concepts to ours is Dandekar et al. (2013), which builds
on the model of DeGroot (1974), exploring how biased assimilation leads to homophily. A

crucial difference from Dandekar et al. (2013), is that we place emphasis on how expert
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signals might be ignored due to biases and progressing homophily. We follow a different
approach. We use a dynamic variant of frameworks suggested by Morris and Shin (2002)
and Golub and Morris (2018), introducing a search-and-matching mechanism. We build a
tractable algorithm suggesting an efficient way for calculating higher-order beliefs, offering
different insights and results.

Acemoglu et al. (2013) develop a political approach to populism, sharing one common
feature with us, the role of biases. Nevertheless, Acemoglu et al. (2013) focus on modeling
the political process in a representative democracy, while we focus on the social dynamics
of how incomplete information and network externalities lead to a gradual downgrading of
expert biases.

A recent paper that offers empirical evidence that friendship networks make political
opinions more tightly related is Algan et al. (2019). Another paper offering theory and
evidence on information transmission through gossips is Banerjee et al. (2019). Other
recent papers of related focus to ours include Candogan (2019), Candogan and Drakopoulos
(2019), Myatt and Wallace (2019), and Egorov and Sonin (2019). These papers focus on
the signaling mechanisms and their relationship to the network structure. A more directly
related paper, focusing on the role that social media play in transmitting biased information
that enhances polarization is Campbell, Leister, and Zenou (2019). The key difference of
our paper is our focus on studying the role that people’s fundamental preference biases play
in the evolution of simulated network dynamics, even when biased or fake news are absent.

Finally, an evolutionary model that has a similar flavor to the network dynamics we
suggest is the Schelling (1969, 1971) model. Two key differences in our framework is that
we focus on network dynamics and that we propose a seach-and-matching mechanism of

network formation.
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2.2 Model

There is a network of N < oo persons. In period ¢ € {0, 1, ...} the network is represented by
an adjacency matrix M;. Matrix M; is a symmetric N x N matrix with entries in {0, 1},
where M;? = M/" = 1 denotes that two individuals (nodes), are connected. The symmetry
of M, implies that we restrict attention to undirected networks, where each node represents
an individual. In addition, we do not consider self-loops, meaning that all diagonal elements
of M, are equal to 0.

Let function d; (M) = Zjvzl M7 calculate the degree of node i, i.e., the sum of other
individuals ¢ is connected to. Given this degree, we define an associated N x N matrix -,

defined by the function,

g M
=I'(M ith ~/ = L
’Yt ( t) Wi /Yt dl (Mt)

(2.1)
Observe that, as in Golub and Morris (2018), matrix -, is a row-stochastic matrix, where
7? is the weight that ¢ assigns to j, with agents putting equal weights to all of their friends.

The objective of each network member involves two tasks in each period. The first task
is to understand the value of a fundamental quantity for which information is limited. This
fundamental quantity can be the outcome of a vote on a political issue, a scientific finding
about, e.g., a medical issue such as a vaccine for an epidemic, a price outcome, e.g. a
house-price index, etc. The second task of each individual is to coordinate actions with
peers, especially with those connected to them. This is the (Keynes, 1936) “beauty contest”
motive, of trying to guess the actions of peers. In our framework, apart from this “beauty-
contest” motive, agents will be trying to be more socially accepted by coordinating actions
with their network peers who are connected with them.

In our model, we divide agents into two types, A and B, distinguished by differences in

fundamental biases. As in Morris and Shin (2002), the action a; of the agent gives higher
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utility if it is, (i) closer to an underlying state, 6;, +/- some bias, which depends on the
agent’s type, and (ii) closer to the “beauty contest” term, which leads to an externality: each
agent tries to second-guess the decisions of their friends. Specifically, the payoff function of

a type-A agent i is given by,

N
u (ar, 00) = = (1= 1) lage — O+ 0" =Y 77 (a0 — ain)” (2.2)
j=1
while the payoff function of a type-B agent i is,
N ..
uf (a, 0) = = (L=r)aig = (0: = )" = r> A (a5, — ai)” (2.3)
j=1

where r € (0,1), b > 0, and a; = [a14,...,any]. According to (2.2) and (2.3), the feature
distinguishing agent types is the bias: type A agents prefer that their action be closer to
(0; + b), while type-B agents prefer being closer to (6, — b). Agents of each type have a
preference to taking actions shifted away from the true value of 6,. Intuitively, this bias in
preferred actions reflects political, religious, and other similar biases, falling in the categories
of biased assimilation and confirmation bias (see Lord et al., 1979, and Nickerson, 1998).42
Assume that there is a total number of N4 type-A players and a total number of Np type-B
players, with Ny + Ng = N.

Parameter r captures the relative importance of the “beauty-contest” externality. In
our setup, there is a key difference in the specification of the “beauty-contest” externality,
compared to the standard “beauty-contest” concept used, e.g. in Morris and Shin (2002).
In our setup the “beauty-contest” concept externality refers only to network “friends”, i.e.,
to people who are connected with player i in period t. Therefore, while r and b are constant
parameters of the utility function over time, the network externality can potentially differ

over time, implicitly affecting the relative importance of the bias parameter, b, as well.

42The assumption of bias symmetry is made for simplicity.
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2.2.1 Signals and Information Structure

The key assumption we make is that, in each period ¢ € {0, 1, ...}, there is a new task carrying
a new fundamental value, 6;, that is unknown and needs to be learned through signals
available in period ¢t. Therefore, the time horizon available for learning about parameter
is one period only. Despite that the fundamental value to be learned is new in every period,
we assume, for simplicity, that the stochastic structure underlying the signals that guide
learning of 6, is the same in every period.

Specifically, in a similar fashion to Morris and Shin (2002), the information set available

to player i € {1, ..., N} in each period is Z;; = (ys, xi+), where y; is a public signal with,
ye=0;+n,, with 9, ~N(0,07) , t=0,.., (2.4)
and x;, is a private signal to agent 7 only, with,
Tig =0+, with g;,~N(0,02) , t=0,.., (2.5)

and the precisions of the public and the private signals are o = 1/ 0727 and 3 = 1/02. ITmpor-
tantly, 7, is independent from ¢;, for all i € {1,..., N}, and ¢;, is independent from ¢, for
all 7 # j.

Since our goal is to produce an algorithm for running network simulations, the data-
generating process of Z;; = (y;, x;+) in every period needs a “true” parameter, 6;, unknown
to players in the model, to be used by a modeler. From a modeler’s perspective, ¢; can vary
(randomly) over time or it can be constant over time. Trying different sequences {6;},_, in
simulated paths does not change the optimal strategic rules of players, since players do not
know 6} in each period and since the learning horizon is only one period for each t. Yet, even
with the same strategic rules, the progression and noisiness of ¢; will affect the samples of

signals {Z;; = (y, x,t)}fvzl and it will affect the simulated paths of actions, as these actions
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depend on (y:, z;;). We return to this point when we discuss the strategies and simulation

results below.

2.2.2 Belief sophistication, evolutionary myopia and taking opti-
mal actions

The evolving state variable of the problem is the network structure, summarized by the
N x N matrix «,. Because the nodes of matrix =, enter the utility functions of individuals
given by (2.2) and (2.3), each individual needs to be aware of the agents with whom they are
connected. However, because of the direct interaction of player ¢ with other players, in order
to make an optimal decision, player ¢ needs to second-guess the beliefs of other agents. In
order to second-guess beliefs of other players, player ¢ needs to be aware of all nodes in matrix
v, We assume this level of sophistication in order to introduce and analyze the element
of higher-order beliefs: each individual ¢ must understand what other individuals believe
about #;, and also ¢ must understand what other individuals believe that i believes about
0;. This belief sophistication, that the structure of «, is understood, and that higher-order
beliefs are calculated, is a reasonable assumption, as each individual develops a sufficient
understanding of the connectedness among players in social media in a given period t, which
influences decisions.

Nevertheless, we assume away that individuals have foresight about the evolution of
v, over time. Every individual only evaluates a myopic, narrow-sighted local evolution of
its peer connections, at the stage of evaluating the random invitations for friendship or
annoyances received in each period, that we explain below in the section explaining the
period-by-period search and matching mechanism. We call this nearsightedness of the local
evolution of 4, for one period only, evolutionary myopia.

Decision-making on taking optimal actions involves maximizing the expected utility
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given by (2.2) and (2.3). Specifically, the objective function is the conditional expectation
E(uf (at,0;) | Z; ;) for type-A players and E(u? (a;,0;) | Z;;) for type-B players. Denoting

optimal actions by a * and a? s first-order conditions give,

aly = (1-r)E0 | Liy) + 1—rb—|—r2% (a; | Ziy), i=1,...,Na, (2.6)
and
N
B*_ ij s
alt =(1-rE@® | Ly)— (1—rb+r> +E(a | L), i=1..,Ns. (2.7)
j=1

Based on the stochastic structure given by (2.4) and (2.5), Bayesian learning implies,*?

ayy + By

E(@t | Ii,t) - o + 5

(2.8)

In addition, since the objective functions of all players are quadratic, it is reasonable to focus

on linear strategies of the form,
aA*—wjy+wb+(1—wi—wg):Uj, j=1,...,Ny4, (2.9)

and

af —w]y+wb( b)—i—(l—wi—wi)&, j=1,..,Np. (2.10)

Notice that the linear-weights normalization, w%—{—wi%—wg =1 and w§+wi+wg = 1, is possible
because the objective functions are ordinal utility functions. Substituting equations (2.8),
(2.9) and (2.10) into (2.6) and (2.7) gives a linear system of 2N equations (the transformed
equations (2.6) and (2.7) and equations (2.9) and (2.10)), in 2N unknowns, the coefficients

({wgdi w8 o {ud} )5

43See Morris and Shin (2002, p. 1526) and the Appendix of this paper.

62



Solving this linear problem through matrix inversion, leads to the fixed-point strategies

of the form,**

(lf: = Cl;l (ytaxi,t | 7t) = w; (7t)y+wz (AYt) b+ [1 - w; (’Yt) - w’ll) (7t>} z;, 1= ]-7 "'aNA )

a* = ap (Yo, wis | ;) = ng (ve) y+wy (v) (_b)+[1 - wgi/ (ve) — w; (7::)] zi, 1=1,..,Np.
(2.12)
Substituting these strategies in the objective function of each player gives the value functions

(indirect utility functions),
‘/;A (715) = E (Uf:l (aft*vet) | Ii,t) 9 1= ]-7 LS NA ) (213)

and

VP (v) =E (u (al.0,) | Tiy) , i=1,..,Ngp. (2.14)

In the Appendix, we explain how the derivation of value functions VA (v,) and V;? (v,) is
achieved through matrix algebra.

Returning to the remark about the “true” parameter, 67, used by a modeler for simu-
lating this model, in each period t, the strategy coefficients, w? (7,), wj, (v,), w; (7;), and
w; (7,) in equations (2.11) and (2.12) are not affected by the pattern of sequences {6} }tT:O in
simulated paths. Yet, since different sequences {6} }tT:o give different average patterns of sig-

Ax

nals (3, z;;), simulated actions, a/y and o given by equations (2.11) and (2.12) will follow

different patterns, depending on each sequences {60 }tho- Accordingly, the value functions,

44We give details on how this problem is solved in Section 3, which focuses on characterizing the equilibrium,
in order to convey the intuition of how the network structure, =,, influences optimal strategies. At this stage,
the statement made by equations (2.11) and (2.12) is that actions do depend on network structure, -,, and
so do indirect utility functions.
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VA (4,) and VP (v,), given by (2.13) and (2.14) will follow different patterns as well. As we
will see below, these value functions drive the dynamics of the network, «,.

2.2.3 Myopic search and matching equilibrium: the evolution of

the network

The evolving state variable of the problem is the network structure v,. We assume that in
each period each player, i, randomly (a) sends one invitation to one non-friend (individuals
in the i-th row of 7, with 7 = 0), and (b) causes one annoyance to one friend (individuals
in the i-th row of ~, with 4/ = 1). After these invitations have been sent and annoyances
have been caused, players who receive these invitations and experience these annoyances are
prompted to make decisions on selecting new friends and on excluding old friends from their
social network. Below we explain the details of the algorithm that governs these decisions,

leading to the evolution of network ~,.

2.2.3.1. Sending invitations The invitation that player © sends to a non-friend in
period t, is drawn from a uniform distribution, by counting the total number of 0’s in the
i-th row of ~,. This random invitation is a spontaneous social attempt to make friends,

reaching out to agents of both types.

2.2.3.2. Causing annoyances Similarly, the annoyance that player i causes to a friend
in period t, is also drawn from a uniform distribution, by counting the total number of 1’s in
the i-th row of v,. Again this random annoyance is a spontaneous social event of hostility,

provoking examination by the friend of ¢ who has experienced the annoyance.

2.2.3.3. First stage of decision-making: examining received invitations and

experienced annoyances Player i’s decision of making new friends and of excluding old
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friends in period ¢, is based on examining only period t’s received invitations or experienced
annoyances. If player ¢ has received no invitations and has experienced no annoyances, then
player i has no decision to make. If player ¢ has received/experienced a total number of m
wnwvitations and annoyances altogether, then i has 2™ cases to examine. These cases consist
of {0,1} choices. Choice “0” stands for either rejecting a received friendship invitation or
excluding an old friend based on a caused annoyance. On the contrary, choice “1” stands
for either accepting a received friendship invitation or keeping an old friend despite a caused
annoyance.

Once all the 2™ potential decision outcomes of i’s received invitations and annoyances
are created, they are introduced in the i-th row of matrix M, which satisfies v, = I" (M).
Therefore, the algorithm creates 2™ versions of the original matrix M;. Specifically, denote
by m;,; the 2™ x m matrix with each row being an 1 X m vector representing each {0, 1}
constellation of alternative friendships acceptances/exclusions of all m invitations of player
i in period ¢. For each k € {1,2,...,2™}, we place the elements of the k-th row of m,,,
in the corresponding ordered positions of invitations/annoyances received by player ¢, in
the i-th row and the i-th column of matrix M,. This leads to the transformed symmetric
matrix M, ;.*> Using the transformation Yiex = (M), we use the mapping VA ('ym,c)
or VB (’yi7t,k), depending on whether player ¢ is type A or type B. We store all values
{VZA ('Yi,t,k) izl or {V;B ('Yz‘,t,k) }izl, in a 2™ x 1 vector v;;. The maximizing element k7,
of vector v;, governs the optimal decision of player ¢ on which invitations to accept/reject,
or on which old friends to exclude, if any, based on caused annoyances. Therefore, the i-th
row of M, is replaced by the i-th row of matrix M, ;. At this stage, when this procedure

is completed for all © € {1,..., N}, matrix M, is transformed into an interim matrix M.

45The symmetry of matrix M, ;  guarantees that each scenario of accepting/rejecting potential or actual
friends based on received invitations/annoyances is respected by both counterparts: player ¢ who received
the invitations/annoyances and any other player who sent the invitations/annoyances.
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Notice that interim matrix M, is not symmetric. Matrix M, is further transformed at the

second stage of decision-making.

2.2.3.4. Second stage of decision-making: treating simultaneous invitations and
simultaneous annoyances At the first stage, each agent i examined all received invita-
tions and annoyances he/she experienced, and made optimal decisions. At the second stage,
outcomes of invitations that player j sent and annoyances that player j caused are aligned
with the decisions of any other agent ¢ who has received these specific invitations/annoyances.
Let’s start with an invitation that player j sent to player i. We use a convention: no
matter if the inclusion of the invited person, 7, increases agent j’s utility or not, in case j’s
invitation is accepted, agent j will add 7 as a friend. Therefore, player j must update his/her
row of matrix M, for this accepted invitation he /she sent to i. In order to achieve this goal,
we isolate such cases where the invitation has not been updated, using the indicator function,
1, if [my —mf = —1] & [y — i # 0]
0o , else
where ml’ and 7}’ are elements of matrices M, and M,. Denote by M, the N x N matrix
comprised solely by the indicator function E] We transform the original matrix, M,, into a

new one, denoted by 1\~/It, with element Th? given by,

y 1, iftmy+m =1
ALY R

my else

where mY is an element of matrix M,.
This transformation of matrix M, into matrix Mt registers any invitation sent from j
to i, that ¢ had accepted, but player j had not registered in the j-th row of matrix M., .

Importantly, the transformation of matrix M, into matrix Mt takes care of cases where
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both 7 had sent an invitation to i, and ¢ had sent an invitation to j, but only one of the
two accepted the invitation, while the other player rejected it. In this case of at least one
acceptance in mutual invitations, matrix Mt sets mij = Thi’ = 1, following the convention
that random invitations sent which are ultimately accepted, must be respected by both
players.

We proceed with an annoyance that player j caused to player i. Again we follow a similar
convention to the case of invitations: no matter if the exclusion of the annoyed person, 7,
increases j’s utility or not, in case ¢ excludes j from his/her network of friends, j must
respect this decision and update his/her row of matrix ﬁt accordingly. In order to isolate
such cases where the outcome of the annoyance has not been updated, we use the indicator
function
L 1, i [mf —mf = 1] & [y —mi’ # 0]

0 else
where mij and frhij are elements of matrices M; and Mt. Denote by M, the N x N matrix
comprised solely by the indicator function I/, We transform matrix Mt, into a new one, the

final update of the network matrix that carries through to period ¢t + 1. Therefore we denote

this matrix by M;,1, with element Thﬁrl given by,

y 1, it mf+mi =1
) _
My, = N
my else

where mij is an element of matrix M,. Notice that the updated matrix, M, ; is symmetric
and that in the case of two mutually caused annoyances between any players ¢ and j where
only one of the two rejected the other, matrix M, sets mi{H = mﬁl =0.

Finally, the updated network, «,,, is obtained via the transformation,

Vi1 =T (Mgq1) -
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Our model resembles the Golub and Morris (2018) general framework, which introduces
limited information and higher-order learning in networks. Yet, there are numerous differ-
ences. First, in our model there are different types of persons, each having their own biases
and prejudices on taking actions shifted away from the true fundamental value 6. Second,
players in the Golub and Morris (2018) framework do not receive public signals, but only
private signals. In our model, the presence of public signals is crucial, as public signals
represent expert opinions about fundamentals. Third our model is dynamic, introducing
a search-and-matching mechanism that influences these dynamics. In the next section we

focus on characterizing these dynamics.

2.3 Equilibrium Characterization

2.3.1 Why the network structure affects strategies: higher order
beliefs

Our analysis in this section focuses on how the dynamics of the network, ~,, affect the

evolution of these optimal weights on biases and expert opinion, and how these biases further

affect the evolution of the network, ~,.

To see why the structure of the network affects the strategy of each player, first con-
sider equations (2.6) and (2.7). Players do not only try to coordinate with others, due
to the “beauty-contest” term, but also try to form the correct beliefs about other player’s
expectations about the state variable 6.

The last term of the optimal action in equations (2.6) and (2.7) is given by (we simplify
the expression of the conditional expectation),

T
1 B T A T P wrB(0) + wib+ (1 —wj —wh)y
S i B(ay) = |} jo : e wWoB(0) +wpbt (1 —wp —wp)y
I R AR A A AR wy B(0) + wy’ (=b) + (1 — wy —wy)y
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Type A’s optimal action is given by,

- T -~
L I e A e
| !

+r
1 ,.)/]/;?Jrll

L R A

while type B’s optimal action is given by,

" = (1=r)(E(0)—b)+
T -~
L I B R A
1
+r
1 ,nyrll
L R A

N wrB(0) + wpb+ (1 — wy — wy)y
ol WiE(0) +wib+ (1 — wh — wi)y
YV [ wE L E(9) + wi T (=b) + (1 — wh T —wi )y
N wY E(0) +w) (=b) + (1 — wl —wl)y
N wiE(0) + wib+ (1 —wl —wp)y
RN WEE(0) +wyib+ (1 —wh — wp)y
YN wEHLE(9) + wi T (=b) + (1 — wht — wi Ty
oAk wl E(0) + wp (=b) + (1 —w) —wl)y

Therefore, we have N equations and N unknowns. Using linear algebra, we find the
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optimal weights using,

1 [ 4 o 0 . . . . 0 J[wt1 [(A-=7)

1 . . ) (1—r)

1 o | |a-n

L e I T

. 1 : (1-r)

—rxyN! 1 . . 0 wV | (=)

0 1 —rylk palkFL . ryiN wp | (=7

1 . . 1-r

. . 1 . . . wk 1-r

o . 1 e _ w;f“ (1—r

) ) ) . 1 ) ) (1-r

| 0 L 0 ryNL . pyNE *T’Yiwﬂhl . I wév J | (I=r
(2.15)

where x = aLiB The matrix of equation (2.15) consists of two blocks. The first block
helps us in finding the weight of the private signal for each agent, while the second block
enables us to find the weights on the bias, b. It is obvious that each agent needs to use
the information of the whole network matrix, «,. Therefore, equation (2.15) demonstrates
the dependence of all strategy coefficients, w!, (,), wj (v,), w}, (7,), and wj (+,) in equations
(2.11) and (2.12) on ~,.

Given any network matrix ,, for calculating the expected utility that gives us the value
functions, VA (v,) and V;Z (v,), we use matrix algebra as well. This calculation is more

involved, so it appears in the Appendix.
2.3.2 The tradeoff between biases and expert opinion

It can be proved that, for all «,, the optimal weight on the private signal is given by,

L) == ()~ () = e = LN, (210
and

j ; ; 1—r

b3 = L= () = wl () = T e i LenNa. (20D

46 A formal proof can be provided by the authors upon request.
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An immediate implication of equations (2.16) and (2.17) is that, for all ~,,

W (1) + Wl (v,) = wl (v,) + wi (7,) = m, i=1,..Ny, j=1..Ng.

(2.18)
Equation (2.18) says that whenever the weight on the bias, w} (v,) increases, the weight
and the attention to the public signal, the expert opinion, wg (7;), has to decrease. This
relationship captures the tradeoff between paying attention to biases versus paying attention

to expert opinion. In our model, this tradeoff is explicitly defined by equation (2.18), which

provides intuition for the main results in the simulations below.

2.4 Simulation Experiments

In our benchmark calibration we use a weight on the “beauty-contest” term of r = 0.65.
The noisiness of private signals, o, is higher than the noisiness of expert signals, o,. We set
0. = 0.32, which implies 8 = 10, and o, = 0.18, which implies av = 30. We set a small bias
value, b = 0.02, which is about 9 times smaller than one standard deviation of the noisiness
of the expert signal. In addition, we split the network into two groups of equal size. We set
N =100 and we let Ny = Np = 50. Finally, we set §; = 0 for all ¢.

To start examining the properties of our benchmark calibration, Figure 2.1 shows a
sample of a totally random initial network in period 0, 7, that we call the “original network”.
In the original network -y, agents of all types are mixed and connected. The probability of
randomly appearing 0’s in the original network matrix 7y, is set to p = 0.7. As time passes,
already 20 periods ahead, one can see that the two group types start becoming split (type-A

agents are numbered from 1 to 50). As time moves even further ahead, homophily increases.
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Figure 2.1 Sample network dynamics for the benchmark calibration.

In order to have a more concrete view of the benchmark model, we calculate 200 Monte-
Carlo simulation trials, with time horizon equal to 100*" . Figure 2.2.a depicts the dynamics
of the network -,. We use three metrics to describe the evolution of «,: (i) the subnetwork
inbreeding homophily index recommended by Currarrini et al. (2009, p. 1008), (ii) the

subnetwork density index and (iii) the subnetwork closeness centrality.

47In Appendix 2.6.C we demonstrate the stability of results for 600 periods.
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Figure 2.2.a Evolution of network -, with sensitivity analysis on the bias parameter, b.
Benchmark calibration (b = 2%) is compared to alternative cases with high and low b

values.

The inbreeding homophily index depicted in the two panels on the left of Figure 2.2.a,

is given by the formula,
Hy, — Wy

IH, = — ke {A B
k ]-_Wk, {7 },

where,

Sk

H,= ——
g Sk—l-dk’

with s; being the average number of friendships that agents of type k£ have with other type-k
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agents, while dj, is the average number of friendships that type-k agents have with non-type-
k agents. In addition Wy = N, /N. Density is defined as D; = s;/Ny, and the closeness

centrality index is calculated in the standard way (see Jackson, 2008, Ch. 2).

Optimal strategy, a/\(y, . X,, | 7, ) Private signal weight, o/ (,)  Expert opinion weight, o' (-, ) Bias weight, w! (7, )
: ! 03 = X 0.6 y 09

0.025
s banchmark b = 2%
0.25 -|==highb = 2.5%
0.02f low b= 1.5% 0.5
02+ very low b =0.5%
0.015 0.4
015
0.01 01 0.3r
0.005 0.05 0.2
0 L
0 0.1
-0.05
-0.008 0 03
0 50 100 0 50 100 0 50 100 0 50 100
ime time tme time

Optimal strategy, aIBt(y‘ X, |n,) Private signal weight, w! (v,)  Expert opinion weight, W (7)) Bias weight, WL(’T: )
: ! x 0.6 Y 09
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' v w J \Jhl l i 0.5
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Figure 2.2.b Optimal actions and weights over time with sensitivity analysis on the bias
parameter, b. Benchmark calibration (b = 2%) is compared to alternative cases with high

and low b values. The strategies of type A (top panels) and type B (bottom panels) are,
a;y = aiA (Ye, iz | ve) = W (v4) i + wz (ve) y + Wé (7¢) b, and

al* = af (yo, wir | v,) = wh () i + w:f/ (Vo) y + wy (7e) (D).

As we can see in Figure 2.2.a, as time passes, homophily increases and the within-group

ties become stronger, because the density index, Dy, and the closeness centrality index,

74



CC Ay, of the subnetwork of friends of each of the two groups (k € {A, B}) increase over
time. Notably, for higher values of b, these dynamics of ~, are accelerated, leading to a more
segregated network faster, with more intense homophily, subnetwork density, and closeness
centrality than the network depicted by the bottom right panel of Figure 1. Lower values
of b seem to decelerate this segregation process. When the value of b is sufficiently low
(b = 0.5%, one fourth of the benchmark value b = 2%), the homophily and density dynamics
seem to slow down substantially.

The network dynamics of matrix «,, depicted by Figure 2.2.a, are reflected in the optimal
actions of players. Figure 2.2.b plots the optimal actions and action weights. Consistently
with equations (2.11) and (2.12), and consistently with the characterization provided by
equations (2.16), (2.17) and (2.18), over time the weight on the private signals remains
constant, while the weights on bias increase and the weights on expert opinion decrease.
Thus, the model provides not only homophily dynamics, but also a gradual downgrading
of the expert opinion and an increase in biases. Notice that, despite the 200 Monte-Carlo
simulation trials, there is still some unsuppressed noise of actions in the left top and left
bottom panels of Figure 2.2.b. This unsuppressed noise is due to the fact that the noise
levels of expert opinions and private signals are substantially high (o, = 18% and o. = 32%).
Having in mind expert opinions about complicated public-policy issues (strategies to reduce
unemployment, to increase growth, to strengthen international trade, to reduce fiscal debt,
etc.), we assume that experts might disagree. Other sources of signals (internet bloggers,
peers, etc.), exhibit even more disagreement. That agents in the model are aware of the

values of o, and 0., means that agents are aware of these kinds of disagreement.
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2.4.1 The role of fundamental biases

To understand the role of fundamental biases captured by parameter b in the model, we must
focus on the bias factors wj (v,) and w} (v,) in strategies (2.11) and (2.12). Parameter b is
the fundamental bias parameter, while the optimal-strategy factors w (v,) and w} (v,) are

the peer-induced bias amplification factors. These peer-induced bias amplification factors

Ax

enhance biases in actions, a/'* = af! (y;, zis | 7v,) and a?* = aP (y;, 24 | 7v,). In turn, the
high peer-induced bias in these actions changes the value functions, V.4 (v,) and V;Z (v,),
that players use in order to decide who to make friend and who to kick out of their personal
network of peers. Therefore, given a level of fundamental biases captured by parameter
b, the model produces additional peer-induced bias, captured by optimal strategy factors
w! (v,) and w} (v,), which further enhances the homophily /segregation dynamics of network
v,. These segregation dynamics of v, lead to more peer-induced bias that accelerates the
future segregation dynamics of «, even more. This acceleration is the the vicious circle of
biases, beliefs and network homophily.

Since the model has no fake news, it emphasizes the role of the parameter, b. Specifically,
in Figure 2.b we can see that a very small value of b = 0.5%, gives agent actions that
are not particularly polarized and without strong polarization dynamics. This finding is
a theoretical argument indicating that one strategy for coping with populism might be to
develop strategies for reducing b through educational reforms that may focus on mitigating

fundamental biases by promoting evidence-based attitudes towards complicated social and

scientific issues.
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2.4.2 The role of asymmetry in the size of different groups

Here we study how different subgroup sizes influence the dynamics of the network, the
actions, the dynamics of peer-induced biases and the dynamics of the downgrading of expert
opinion. Using the same calibrating parameters as in the benchmark case, we make type-A

agents a larger group with N4 = 65, and type-B agents a smaller group with Ng = 35.

20 40
original network periods ahead periods ahead

60 80 100
periods ahead periods ahead periods ahead

Figure 2.3 Sample network dynamics for the calibration with N4 = 65 and Ng = 35.

Figure 2.3 presents the sample dynamics of such a network. Just 20 periods ahead, the

homophily dynamics are at work. Yet, the density of the small, type-B subnetwork seems
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to be increasing at a lower pace compared to the density of the larger, type-A subnetwork.
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Figure 2.4.a Evolution of network -, varying the sizes of subgroups A and B.

Benchmark calibration (N4 = N = 50) is compared to a case of asymmetric groups with

N4 =65 and Ng = 35.

To see if the sample dynamics depicted by Figure 2.3 are robust, we run a Monte-Carlo

simulation of 200 Monte-Carlo trials.

In Figure 2.4.a we compare the dynamics of this

asymmetric network with N4 = 65 and N = 35 to the dynamics of the benchmark network
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with groups of the same size (N4 = Np = 50). The intuition visually conveyed by Figure

2.3 concerning the evolution of the density between the two groups is confirmed by the

Monte-Carlo averaging: the larger group, type A, exhibits higher subnetwork density and

more homophily, too. Yet, the closeness centrality measure evolves in the opposite way: the

smaller group, type B, exhibits higher closeness centrality than the larger group.
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Figure 2.4.b Optimal actions and weights over time varying the size of subgroups A and

B. Benchmark calibration (N4 = Np = 50) is compared to a case of asymmetric groups
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Figure 2.4.b investigates the effects of the network dynamics depicted by Figure 2.4.a on
actions and peer-induced biases. Small groups need a bigger fundamental bias, b, in order
to exhibit higher peer-induced bias. Otherwise, if the fundamental bias of a small group is
the same as the fundamental bias of a large group, the interactions of the small group with
the larger group lead to smaller peer-induced biases w} (7,), and a more moderate decline in
the downgrading of expert opinion. In brief, we find a moderate tendency of smaller groups
to assimilate with the larger network and a moderate tendency of larger groups to exhibit
higher homophily, subnetwork density, peer-induced bias and peer-induced neglect for expert
opinion. Future work trying to understand the fanaticism of small groups might focus on
studying the role that fundamental biases and fake news play within the subnetwork of such

smaller groups.

2.4.3 Stability of results and different speed of meeting agents

In this subsection we present the stability of results using more periods. In addition we
show that stability depends on different group sizes and on how it connects to the speed of
meeting new people.

The analysis of stability of results uses more periods. Therefore, Figure 2.5.a presents the
network dynamics after 1000 periods using the same calibration parameters as the bench-
mark. As we can see, the results are stable, there is polarization in network structure and

increasing subnetwork closeness centrality.
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Figure 2.5.a Sample network dynamics for the benchmark calibration 1000 periods.

After 1000 periods there are still connections between two groups. There are three
different components that lead to completely disjoint subnetworks: (1) the original network
structure, which is randomly generated in period 1, (2) group size, (3) the Search and
Matching process. The first and the third components are random processes and we cannot
distinguish them in any formal way. In Figure 2.5.b we will demonstrate that the completely
disjoint subnetworks depends on group size. In Figure 2.5.b we can see that all members of
group B, except agent 96, break all their connections. As the time passes, there are no more
B type agents with whom they can create a new link. Furthermore, as they experience the
annoyances from their friends’ side, they decide to break connections after computing their
value function. In Figure 2.5.c we demonstrate that A-type agents can come up without

any connection. In this case the first and third components play a very important role. But
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as we mention in the beginning, they are random processes, so we cannot distinguish which

component will produce larger effect using formal methods.
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Figure 2.5.b  Sample network dynamics for the calibration with N4 = 95 and Ng = 5.
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Figure 2.5.c Sample network dynamics for the calibration with N4 = 95 and N = 5.

Stability of results depends on group size: In this subsection we estimate the monotonic-
ity of network characteristics with respect to network asymmetry. We produce the following
group asymmetry, so (Na; Ng) = (50; 50), (55;45), ..., (90; 10), (95; 5). Figure 2.6.a and Fig-
ure 2.6.b show, that compare with main results, monotonicity of increasing dynamics does
not increase, when the size of group B is not small enough. The original matrix in the first
period, together with random search and matching process influences the monotonicity of

the following groups (85;15), (90;10), (95; 5).
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Figure 2.6.a Monotonicity of homophily, subnetwork density and subnetwork closeness

centrality measures with respect to network asymmetry. Evolution of network ~y, varying

the sizes of subgroups A and B.
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Figure 2.6.b Monotonicity on actions with respect to network asymmetry. Evolution of

network ~y, varying the sizes of subgroups A and B.

If B-type agents get disconnected from all other A-type agents(either by random matching
or by choice), then , as in Figure 2.6.a, we would never see increasing dynamics on subnetwork
density and closeness centrality equal to 0.

In Figure 2.6.b we can see that the weight for the bias parameter b is negative, which
means that B-type agents are mimicing themselves as A-type agents. As time passes, they
meet more B-type agents, so the weight on bias b increases. As a consequence, they do not
have incentives to demonstrate themselves as A-type agents any more.

Figure 2.7.a presents Homophily, Subnetwork density and Subnetwork closeness centrality
dynamics, for 600 periods. In this figure, we also plot the speed of meeting new friends and,

consequently, get the chance to break the old links. As it can be seen, for the benchmark
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case the homophily increases during the first 150 periods. After 150 periods, it slightly
decreases and stays stable. The main explanation of this non-linear dynamics of homophily
is the group size: the bigger the group, the higher the chances that all agents with the same
type meet each other and create a link. However, as time passes, there are no other agents
of the same type that are not already connected. On the other hand, friends can make an
annoyance, driving agents of the same type to break the link. This mechanism produces the
decreasing in homophily that can be seen on the graphs. Besides the benchmark case, we
add to the plots cases where probability of meeting new people or breaking links with old

friends are set to 1/2 or 1/5.
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Figure 2.7.a Evolution of network with sensitivity analysis on bias parameter b; , 600

periods, with the speed of meeting new people using the same benchmark calibration

In the main body of paper, we show the vicious cycle between homophily and biases. The
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decrease in the homophily after 150-200 periods lowers the weight on bias (Figure 2.7.b).
Note that the decrease in weight begins on period 150 and lasts till period 300 for benchmark
case, after which it gets stable.

Figure 2.7.b shows another important result. When the probability of meeting new
friends is 1/5, we need more periods to get the same level of bias weight. This dynamics is
an explanation to the phenomena described on Zeynep Tufekci’s talk "How the Internet has
made social change easy to organize, hard to win", where she compares the protest using
new social media platforms (Facebook, Twitter) versus Montgomery bus boycott in 1955
in Alabama. Despite it usually takes 5 minutes to organize protest in the former cases,
whereas for the latest it takes more than one year to gather strangers, protest duration and

rent achievements are larger in the second case.
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Figure 2.7.b Optimal actions and weights over 600 periods with sensitivity analysis on the

speed of meeting new friends and breaking the links with old friends.The strategy of type

A is demonstrated in the top panel and type B in the bottom panels.

The fact that the frequency of invitation/annoyances does not seem to change the simulated

steady stated of action, homophily, network density and centrality, points at one new direc-

tion for future extensions. This new direction is to introduce a random birth/death process

of internet users, that can capture the concept of average time horizons that network users

have to meet new people and to revise their friends. Again, this is a direction for future

research.
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2.5 Conclusion

Populism has risen substantially in the past few decades. Among other factors explaining
this rise, much research has focused on internet social media as one of the core culprits. In-
ternet and social media have decreased the cost of forming new networks and of exchanging
information. Populists tend to spend much energy on networking and on spreading infor-
mation that is not fact-based or expert-reviewed. Naturally, much of current research has
focused on fake news.

There is an obvious implicit and legitimate motivation behind the development of this
fake-news literature: it is hoped that by understanding the determinants of fake news and by
developing ways of combating fake news, problems of populism, of neglecting expert opinion,
of fanaticism, etc. may be mitigated. While we do not object this view, we have argued
that combating fake news may not be sufficient for combating the rising populist tendency
of neglecting expert opinion. Just combining the internet’s ease of forming networks with
two fundamental features of most people, fundamental biases in attitudes towards a number
of life aspects, and people’s fundamental preference for being liked by their peers, can lead
to populist dynamics over time through a vicious circle. Even without fake news, biases lead
to more homophily and, over time, more homophily leads to actions that put more weight
on biases and less weight on expert opinion.

Certainly, it is impossible to reverse the technological improvements behind the devel-
opment of the internet and online social media. Yet, a message of our findings is that, in
addition to the fake-news research initiative, societies might need to invest more intensely in
ways of mitigating fundamental biases from people. This might be possible to be achieved
through educational reforms and educational approaches that train citizens in developing a

fact-based attitude towards knowledge and new information, trust for science and respect for
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expert views. Understanding the determinants of biases and ways of making people aware
of biases may be a new focus of future research that aims at mitigating populism in society.

To the best of our knowledge, our paper is the first study to propose a search and matching
mechanism of network friends in an environment of incomplete information, higher order
beliefs and evolutionary dynamics. An appealing feature of our model is that it rationalizes
decisions under incomplete information. We have tackled a demanding fixed-point problem
of calculating higher-order beliefs, and have simplified the computation of value functions
that are crucial for the search-and-matching decisions, using linear algebra. Yet, our model is
still demanding in terms of the required computational power, even in cases with N = 1000.
Future research might focus on simulating networks with millions of network members and
many different groups, distinguished by identifiable biases. For this research agenda, the
search-and-matching mechanism may be simplified, perhaps by finding some quasi-solutions
to the calculation of value functions, in order to avoid sacrificing the key mechanism of
rationalizing friendship choices.

Finally, future work can focus on evolving networks where the number of network par-
ticipants, N, changes over time. This extension can be rather straightforward, provided
that the “birth-and-death” process of internet and social media users relies on empirical
observations. Such extensions are among the numerous directions one can take in future

research.

2.6 Appendix

2.6.A Calculating key expectations

Agent ¢’s information set consists of her private signal x;, and public signal y. Since all signals
are random variables, centered around 6, to predict the state of the world conditional on its

information set, agent ¢ should consider the following probability density function:
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in the case of the flat (absolutely non-informative: p(f) o 1 ) prior of #. The expression in

the exponential function can be transformed in the following way:

L = a(0—y)*+B(0—x)* =a[0®—20y] + B(0* — 20,) + C =

= 0*(a+ ) —20(ay + fa;) + C

where C' is a constant. Such transformations are frequently used in the Bayesian statistics

literature (see, for instance, Koop et.al., 2007). Therefore, we find that,

ay + 131‘1’ 1
N~ N Al
9|(y,ml) ( /8 Y 6) Y ( )

which implies,

B0 T) = B0 () = L2

Next step is to calculate F(6* | Z;). Observe that any normally distributed variable,

x ~ N (p1,0?), can be written as a linear transformation of a standard normal, i.e., z = u+oz,

with z ~ N (0,1). Therefore, equation (A.1) implies,

_ay + B 1 s
a+j (a+p8)
where z ~ N (0,1). Let,
1
o= —
(a+ )
and
_ay+ P
a+pB
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implying that § = oz + u. Therefore, 8% = 0222 + ;? + 202, implying,

E(? | 1) =®E(Z* | T) + i + 20uE(2 | T;) . (A.2)

Since 2 ~ N (0,1), 2%~ x2(1), and E(2% | Z;) = 1. Therefore, equation (A.2) implies,

2
E(92yzi):<—o‘y+ﬁx") ;—

a+ 0 a+p’

2.6.B Calculating the value functions

The value functions are equal to E(u;(a*,0)). Using (2.11) and (2.12), we find the optimal
action a; of each agent, and then we put the optimal action a into the expected utility

function and find the expected utility from everyone’s side. The calculations are summarized

by,
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where the operation “.x” denotes element-by-element multiplication.
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3. CHAPTER

Can a social planner manipulate network dynamics
and solve coordination problems?

3.1 Introduction

Coordination problems in case of uncertainty about some fundamental parameter are every-

where.*8

Examples of such fundamental parameters include the outcome of a vote on a
political issue, scientific findings of, e.g., a medical issue such as a vaccine for an epidemic,
a price outcome, e.g. a stock-price in financial markets, etc. Decision-makers, solving co-
ordination problems with others, try to take into account other agents’ beliefs about some
parameter.The main focus is on a network model where everyone has a fundamental pa-
rameter governing assimilation or confirmation bias in their preferences (for example, left
or right-wing political views, religious view vs scientific findings). To simplify the analy-
sis, these fundamental biases are considered as constant, and that all network agents know
these constant parameters of biased assimilation. However,the main focus is on developing a
mechanism that endogenizes the weight people put on these biases while making decisions,
and how this weight is affected by efforts of people to align their actions with the actions
of others. More importantly, the question of whether a social planner can influence this
endogenous coordination, leading to better social outcomes is studied.

Much of the literature on network theory develops coordination games where agents try
to align their actions with these of their neighbors.

Therefore, the network structure is crucial for their action-alignment efforts and for

9

their ability to elicit information about unknown parameters.?” In this paper, we use a

48Such a coordination motive is well known as convention in economics literature developed by Shin and
Williamson (1996), and Young (1996).
49
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utility function similar to this in Morris and Shin (2002), where agents care not only for
their friends’ actions but also take into account other agents’ actions. Key feature of the
Morris and Shin (2002) model is that it can offer an analysis of the relationship between
public/private information on unknown parameters and social welfare.?

In order to capture the alignment mechanism, in this model, the “beauty-contest” struc-
ture of Morris and Shin (2002) is kept. The model is developed not only for understanding
the dynamics of endogenous biased assimilation regarding political issues, such as putting
efforts into organizing protests and voting behavior, but also for understanding herd be-
havior in financial markets that appears during speculative attacks. For understanding the
dynamics of such political and market phenomena, agents need not only second-guess the
actions of their network friends, but also the actions of network non-friends too. Hakobyan
and Koulovatianos (2020) develop a search-and-matching algorithm of network dynamics,
focusing on an explanation of how expert opinions have been downgraded over time, and
how network agents have been taking more polarized actions while forming more polarized
subnetworks. In this paper, we address how a social planner can solve such polarized and
populistic behavior in order to bring agents’ actions closer to the true values of unknown
parameters.

A simulation model of network dynamics with incomplete information is built, where
the social planner tries to manipulate the sample of possible invitations and annoyances in
order bring agent actions closer to the model’s fundamentals. For example, if we consider
herd behavior in financial markets, we can notice that agents trying to follow other agents’

actions, can play another equilibrium strategy, where they just move away from market

See, for example Golub and Morris (2017), Myatt and Wallace (2019), Ballester et al. (2006) and Denti

(2017), among others.
50The idea of Morris and Shin (2002) has been applied to models studying how political issues influence

social welfare, and to the study of financial markets and business cycles. See, for example Angeletos and
Pavan (2007), Myatt and Wallace (2012, 2015, 2019).
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fundamentals, leading the market to exhibiting price bubbles. In financial markets, bubbles
occur during times of aggressive speculative attacks. Morris and Shin (2002) show that
increasing the precision of public signal can harm social welfare if agents have private signals.
In this paper, as it was demonstrated, such results can vanish if agents are connected in a
particular network structure. If the social planner manipulates the network dynamics in a

particular way, then social welfare can increase.

In the model of this paper, two types of social planners are analyzed: (i) a social planner
with perfect information, and (ii) a social planner with incomplete information. The two
different scenarios are considered: (a) the case where, similarly to network agents, the social
planner receives private and public signals, and calculates expectations, and (b) the case
where the social planner has wrong expectations. In the latter scenario, the social planner’s
expectations about the state variable are equal to a constant, which is different from the
optimal state variable.

It is demonstrated that social planners can improve welfare, not by directly influenc-
ing/changing the network structure, or by providing to agents fake news in order to manip-
ulate the agents’ actions. In my model social planners give opportunities to non-connected
agents, to be introduced to each other and to meet. The decision of the evolution of the
network structure rests entirely upon the agents. Therefore, in this paper, the focus is to
understand how different “agent sampling” in a search-and-matching environment influences
social welfare. One of the key and novel features in this paper is that agents are heteroge-
neous, making the setup more realistic.

The remainder of the paper is organized as follows. Section 2 presents the setup of the
model, the utility function of agents, the network structure, the signals and the information

structure. Section 3 focuses on presenting the linear equilibrium and the fixed-point strate-
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gies under evolutionary myopia. Section 4 demonstrates the network formation process ,

while Section 5 shows some simulation experiments. Section 6 concludes.

3.1.1 Related Literature

This paper links four strands of literature. (1)The first strand uses quadratic-utility functions
trying to understand how agents play coordination games under information asymmetry. The
closest paper in the literature using such a benchmark without network structure is Morris
and Shin (2002). Compared to Morris and Shin (2002), this paper has three differences:
we introduce (i) a network structure, (ii) assimilation and confirmation bias in the utility
functions, and (iii) evolutionary dynamics of network structure with endogenous weights on
signals. The literature combining global and coordination games in the fashion of Morris
and Shin (2002), with network structure are Golub and Morris (2017), Dewan and Myatt
(2012), Myatt and Wallace (2012), Bonfiglioli and Gancia (2013), Llosa and Venkateswaran
(2012) and Pavan (2014). Almost all papers with quadratic utility use symmetric agents
in their model. The closest paper using asymmetric agents is Myatt and Wallace (2019),
which uses two types of asymmetry: (a) asymmetry in conformity (coordination motive),
and (b) different weights for friends (with whom agents coordinate). Myatt and Wallace
(2018) use only coordination asymmetry. Compared to Myatt and Wallace (2018, 2019),
in this paper, agents have these two types of asymmetry. However, in this paper agents
try to coordinate their actions with people they are not connected too, and agents have
asymmetry in assimilation bias. The difference between this paper and Myatt and Wallace
(2018, 2019) is also that this paper has an evolutionary dynamic of network structure. In
addition, there is a difference in the information structure. In this paper, agents share

information using their network connections, while Myatt and Wallace (2018, 2019) do not
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consider such types of information transmission. They describe “accuracy” of the information
source, and agents decide how much attention be put in which signal, paying the cost for
a signal. In Leister (2017), agents are asymmetric in general, but they get one private
signal. In this paper, we develop mostly the idea which was used in social media platforms
in the sense that information is cheap, and agents share information more cheaply. The
only requirement in my model for cheap information transmission is being friends with those
transmitting information in the network. This paper is also an extended version of Hakobyan
and Koulovatianos (2020), trying to give an answer which arose in their model, which is how
to deal with the reinforcement of populism due to the evolving and gradually strengthened
polarization and homophily.

(2) The literature focusing on understanding games on networks, coordination on net-
works, key players, homophily and degree centrality. Examples of this literature are Jackson
(2008), Currarini et al. (2009), Kossinets and Watts (2009), Golub and Jackson(2012a,b),
Bramoulle et al. (2012), Jackson and Lopez-Pintado (2013), Centola (2013), Lobel and
Sadler (2015), Currarini and Mengel (2016), and Halberstam and Knight (2016). In this
model, we show that the network structure, specifically indegree and outdegree centrality,
are tightly linked with social welfare. We demonstrate that a social planner can manipulate
indegree and outdegree links indirectly, and thus increase social welfare.

(3) The literature on strategic disclosure or information manipulation and fake news. My
model is different from standard sender/receiver games such as Crawford and Sobel (1982),
Kartik(2009), and Edmond (2013). In this paper, we demonstrate the advantages that new
social media platforms give to agents. Crawford and Sobel (1982) characterize two types of
equilibrium in sender/receiver games with conflict of interest: (i) Separating, which is not a

part of a Nash equilibrium and, (ii) Babbling equilibrium, which is a part of an equilibrium,
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but in this case, there is no information transmission. In my paper, agents have a conflict
of interest, so directly sending them perfect information would not give any results. For
this reason, we develop a mechanism that tries to solve the coordination problem without
directly sending information. The literature developed on information manipulation, such as
Edmond (2013), Edmond and Lu (2017) use biased signals, trying to manipulate the agents’
behavior. In our model, the social planner does not use any biased or unbiased signals.
Therefore, differently from the literature on information manipulation, our manipulation
of network dynamic is not direct. In many countries, there is a law against information
manipulation.’® In this case, even if a social planner has good intentions, whishing to bring
agents’ actions closer to fundamentals, this is infeasible, according to the law. Our model
gives a solution for such problems by creating wrong priors, because it influences agents’
decisions indirectly. While there is no direct link to the fake news literature, this paper can
solve the consequences of polarization in networks, bringing the agents’ actions closer to the
model’s fundamentals. Therefore, researchers who are interested in hte fake news literature
can find our framework useful for developing further research.

(4) The literature on social policy. Researchers who are interested in social-planner and
social-welfare maximization can find this framework useful for developing further work. The
most relevant reference in this literature is Dyckman (1966), Cavallo (2008), and Bernheim

(1989).
3.2 Model

There is a directed network of N < oo agents. We denote this network by G := {V| E'},
where V' is the set of agents/nodes, and F is the set of edges in this network. In period ¢

the network is represented by an adjacency matrix M; with entries in {0,1}. The graph to

510mne country with such a law is France https://www.gouvernement.fr/en/against-information-manipulation
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be used is directed and unweighted, i.e., M,;? # M]’. Edges between agent i and j represent
the private information transmission,where the link between 7 to j means that agent i gets
agent j private signal.’> The diagonal elements of matrix M, are 0, which means that there
is no self-loops in this model.

In each period, agents make two decisions, (i) to guess a fundamental variable 6, € R by
using all available information (the state variable 0, is unknown regarding to political issues,
or to a scientific finding, such as a vaccine or global warming), and (i7) to align their actions
closer to other agents’ actions (the known “beauty contest” motive, defined by Keynes,
1936). The fundamental varible 6, is i.i.d., so agents need to guess new fundamentals in

each period ¢ € {0, 1, ...}, and there is no learning in the model.

We divide agents into two groups: (a) agent i’s neighbors/friends (j € {1, 2, ..., N;}), and
(b) non-neighbors (k € {1,2,..., N_;}). In addition, there are two types of agents denoted by
“+” and “—”, depending on the direction of their structural biases b;, i.e., whether the bias
is above or below the value of 0.>* Specifically, the payoff function for agent i with positive

bias “+” is given by,

ul (ay,0:) = — (1 =r3) (@i — (00 + b)) —ri ;Z_NZ (aj0 — aip)” + U-g) > (ake—ai)?|

JEN; N keN_;
(3.1)

while the payoft function of a agent ¢ with negative bias “—” looks like

52For example, social network structure as a Twitter. Agent i can follow agent j, gets his private signal, but

if agent j is not following back to agent 4, he cann’t get agent i’s private signal.
53Intuitively, this structural bias in preferred actions reflects political, religious, and other similar biases,

falling in the categories of biased assimilation and confirmation bias (see Lord et al., 1979, and Nickerson,
1998).
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JEN; kEN_;
(3.2)
where a;; = [a14,...,an.). In equation (3.1) and (3.2) parameter r; € (0,1)captures the
second-guessing motive. Each agent tries to have their action closer to 0;+b;, where b; € (0, 1)
is the individual bias.
The second part of the utility function is normalized for controlling network effects on
calculations. Parameter ¢; € (0,1) differentiates the weight that agent i puts on friends

versus non-friends. Parameters, r;, ¢; and b; are iid across individuals, generalized in period

0, and are common knowledge to all agents.
3.2.1 Signals and Information Structure

Agents face uncertainty about state variable, ,, in each period ¢t € {0,1,...}. Every period

generates a new task, which agents try to best-guess. Agents get public and private signals

in each period, with the learning duration being confined to one period. The information

set available to player i € {1,..., N} in each period is Z;; = (yt, Tit, ij,t), where y; is a
j

public signal with,
yr=0;+mn,, with n,~N(0,07) , t=0,1., (3.3)
and z;; is a private signal to agent ¢ only with,
Tig =0, +¢e, with g, ~N(0,02) , t=0,1,, (3.4)

and the precision of the public and the private signals are o = 1/02 and 8 = 1/02. Impor-
tantly, ,, €;; are i.i.d. over time. 7, is independent from ¢;; for all i € {1,..., N}, and ¢;;

is independent from ¢, for all ¢ # j. Contrary to the Morris and Shin (2002), we assume
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that if agents are connected in network then they can see the private information of their
neighbors.

The main goal is to understand network evolution. For this reason, we develop an
algorithm and run simulations for understanding network evolution. The algorithm needs
that a modeler generate the information set Z;; = (yi, %it, {%;+}jen,) for every period and
the modeler needs a “true” parameter, ¢;, unknown to agents in the model. Using different
values for {6} }tT:o does not change the optimal strategy chosen by agents, as learning is only

one period, and the modeler can choose the same 6} for every period.

3.3 Linear Equilibrium, fixed-point strategies and evolutionary
myopia.
The model focuses on an incomplete-information benchmark, where the evolving state vari-
able is the network structure, M;. Each agent ¢ needs to second-guess the actions of all other
agents, which means that each player needs to second-guess the beliefs of other players. The
information asymmetry among agents is low compared with Golub and Morris(2017) and
Hakobyan and Koulovatianos (2020). If agent i is connected with agent j, this means that
the information set which is available to agent ¢ intersects with the information set of agent ;:
TiyNTjy = {xis, T, {51 }ieqij }, where {s; }ieqijTepresents agents i’s and agent j’s common-
friend signals. At the same time, agent i tries to second-guess non-friend (k € N_;) beliefs
about the state variable 6;,. Agent i understands that the intersection of her information set

with non-friends can be non-empty, because of common friends Z;; N Zy ¢ = {s.} where

e€Q;?
s. represents agents ¢’s and agent k’s common-friend signals.
The structure of M; is common knowledge for all agents. This common knowledge is one

of the key assumptions in this paper.

Nevertheless, there is limited foresight about the network structure’s evolution. In period
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t, agents only perceive a myopic, narrow-sighted local evolution of their peer connections.
This happens at the stage of evaluating the modeler’s sampling of invitations for friendship or
annoyances received in each period, that we explain below in the section Network Formation
Process. We call this nearsightedness of the local evolution of M, for one period only, i.e
evolutionary myopia®*

At first, let’s find the fixed-point strategies(the myopic best reply function) for every
period, which depend on higher-order belief. The myopic best-reply function is similar to
Myatt and Wallace (2019) and Golub and Morris (2017)°° the only exception is that in our
model agents also care about their assimilation bias, and non-friends’ action . We denote
the optimal action taken by players by a;* and a; *. Each agent makes their decision based
on the information set Z;, available to her. We will skip the notation of the information set
and denote agent i’s mathematical expectation by E;(e) instead of E(e|l;).

Agent i maximizes the expected utility function (3.1)/(3.2) by her own action. First-order

conditions imply the following solution for agent i’s action:

(1—aq )
(aj.4) v 2 Ela)|. (35

jeN # ' keN_;

CL:—t* (1_TZ)E(9t+bz)+Tz

ai_,t* = (1—7“7,>E(0t—b7,)—|—7“2

aj) Z E (ary) | - (3.6)

]GN N keN_;

54The evolutionary myopia is a reasonable assumption in directed networks.For example, Twitter is one of the
directed network structure, and each agent made a decision which links to create not taking account of other
agents action. At the end of the period, where all agents made their decision. The network structure M,
becomes common knowledge for everyone. If we consider undirected network structure, such as Facebook,
creating a link needs to be accepted from both sides, so agent i need to understand if creating a link is

valuable for agent k, or not.
55For more reference about myopic best-response functions and average based updating of information, see

Calvé-Armengol et. al (2009), Bramoullé et al., DeGroot (1974) , Young (1996), Fudenberg et al. (1998)
and others. For referense best-response function and bayesian learning, see Acemoglu et al. (2011), Mueller-
Frank, M. (2013).
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Therefore, an agent’s optimal decision depends on the expectation of the state variable,

JEN; keN_;
Moreover, based on both private and public information, the expectation of 6, is given by

E; (6;), the expectation of the actions of friends, E; ( > aj7t> , and of non-friends, E; ( > akﬂf) )

(probability density function is defined for the case of the flat (absolutely non-informative:

p(f) o< 1) prior of #, see Appendix for proof),

oy Bt X, B,
AT SN

The linear equilibrium for each agent’s action in period t is defined as a weighted sum of

(3.7)

all signals in agent ¢’s information set and of the weight on the structural bias, b;. We call
each weight associated with the j-th signal in this sum a ‘j-th signal weight’. The presence
of network signal transmission results in non-equal weights between private signals. Our
educated guess is that the weight of signal j in agent ¢’s action w;; depends on agent i’s and
agent j’s network degrees and on the precisions of signals 5.

Given a network structure, We group agents into clusters depending on their closeness
centrality measure and precision. Normalized closeness centrality C'C; for the node i is
defined as the inverse of the average of the lengths of the shortest paths between the node ¢

and all other nodes in the graph G:

—1
. o dist(i,
CCyy = (z]evw} ( J)) ’ (3.8)

N -1

where dist(i, j) is the number of the edges in the shortest path between nodes i and j in the

network G.

Definition 1 (Clusters) We shall say that there exists cluster Cy; of agents i € V, q €
{1,2,...,Qi}(q is the number of clusters in the network) if and only if these conditions are
satisfied: (i) all members of cluster C,; are characterized by the same closeness centrality; (ii)
all members of cluster Cy; are characterized by the same private signal precision; (iii) any
agent who does not belong to cluster Cy; has closeness centrality different from the closeness
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centrality of this cluster’s members, or different precision of private signal:

Cqﬂg = {Z € Cq,t . \V/j € Cq,t . Cci,t = CCj’t; Vk g Cq,t . CCi,t ?é CCk’t} (39)

An agent who has different closeness centrality and different precision from others will
belong to their own cluster. In this case, we simply separate this agent from the set of agents
with different centrality measures.

The following proposition defines the linear equilibrium characteristics.

Proposition 2 (Linear equilibrium characteristics) Given a network G, there erists a
linear equilibrium in period t, in which agent i’s action can be represented in the following
way:

&Zt = Z Witg (M) Ty g + wie (My) b +

q

1- Z Witg (My) — wiy (Mt>] Yt (3.10)

q

Q;p = Z Witg (My) Tig g +wie (My) (—b;) +

q

1= wing (M) = wiy (Mt)] g (3.11)

where 0 < quNCi wig < 1 andw;; > 0 Vi = 1.N, where ¢ = 1..Q;, all clusters which appear
wm agent 1’s networks. Formulation of the weight for private signals is depicted in the figure
below.

Esechi’q,t Ts
|[INCy|
NC@ = {INCi}q,t}q:Sje{Cq}m{Ni}

[NCi,q,t = {S 1T € {Nl} N {Cq}}

Ei,q,t

Here INC;,; — individual neighbour cluster, or the set of agents that are simultaneously
in cluster ¢ and in agent i’s neighbors set. The notation s € INC;,, stands for the index
number of agent s from this set. NC;;— netghbour cluster, or the set of individual neighbour

clusters that are not empty for agent i. The notation ¢ € NC;; stands for cluster q from the
set INCj .

For demonstrating how the definition and proposition of fixed-point strategies works let
us look at the following example.

Example 3 Let us consider a simple example with 6 agents, who are connected in the net-
work, depicted in Figure 2 .
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Figure 3.2 FExample with 6 agents

In this network there are two different clusters. The first one consists of agents C| =
{3,4} who are characterized by closeness centrality CC3 = CCy = 5/7. The second cluster
consists of agents Cy = {1,2,5,6} with closeness centrality CC; = CCy = CCs = CCq =
1/2. We demonstrate the difference between clusters using different weight simbols on private
signals v for cluster Cy and w for cluster C\.

a1 = W1M + waxs + wiby + (1 — wy —we — w1y
az) = Wlw + wams 4 wabsy 4 (1 — w1 — wy — wa)y
as; = U1M + UQM + wsbs + (1 — vg — v — w3)y
a4 = Ulw + UQM + wibs + (1 — vg — V1 — Wa)y
as1 = WIM + wamy + wsbs 4 (1 — w1 — wy — ws)y
a1 = WIM + wazy + webs + (1 — wy — wa — we)y

Hence, in this example, the weights are the same within each cluster and differ between
clusters. In this example, we consider that B, = B3 = By = 8, and by = by = b = by. This
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exzample demonstrates what happens in the first period® . In Appendiz, we generalize the
solution of finding linear equilibrium weights for Q; = N different clusters.

The linear equilibrium action should be optimal for all agents in the network. It means
that the action, characterized by (3.10) and agent i’s optimal actions (2.2) should be the
same. This gives us a system of linear equations. This system provides us with a solution for
equilibrium weights as a function of the parameters. Once the weights are found, optimal

actions should be calculated using the following algorithm.

Algorithm 4 (Finding optimal actions) (i)Substitute all other agents’ actions (3.10)

into the term . E;(aj.), >, Ei(ags). If the agent has no information about the sig-
JEN; keN_;

nal j, then Eix; = E,0;

(ii) Rearrange the terms to get a coefficient preceding the E; (0;) term. Then substitute
the mathematical expectation as a function of agent i’s signals (3.7).

(iii) Rearrange the terms to get a coefficient preceding each agent i’s signal. These coef-
ficients should be equal to the corresponding weights in the linear equilibrium (8.10). The
solution to the resulting system of linear equations is the vector of equilibrium weights.

(iv) Find the optimal action.

Substituting the optimal action strategies in the objective function of each player gives

the value functions (indirect utility functions),
ViH(My) = E (uf (o). 0:) | Tiy) , i=1,...,Ny, (3.12)

and

Voo (My) = E (u; (a;/,0:) | Ziy) , i=1,..,N_. (3.13)

The value function will influence the evolution of the network structure. We demonstrate

this influence in the next section.

56 Notice that we mormalize the weights. Normalizing is possible because the objective functions are ordinal
utility functions.
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3.4 Network formation process

The state variable in each period is the network structure. The network dynamics are
governed by two main processes: (1) The Social Planner uses different sampling processes
in order to create possible invitations(a link which can be created) to non-friends for each
agent and annoyances(a link which can be broken) from friends of each agent. (2) Subject to
the sampling process of possible invitations/annoyances chosen by the social planner, agent
1 uses his own value-function criterion in order to decide upon whom to add from the sample
of non-friends (k € N_;) and whom to exclude among friends j € N;.>7

In process (1) above, the Social Planner selects different processes in order to manipulate
network dynamics. Given, however, that process (2) gives freedom to people to choose their

network friends, it is a liberal social-planner manipulation®® .

3.4.1 First stage of decision making: Sampling process

Our main goal is to examine how a social planner who cares only about bringing optimal
actions of agents closer to fundamentals, can solve coordination problems among agents by
varying the sampling process of invitations and annoyances sent to non-friends and friends
of each agent. We will call this selection of sampling processes by the Social Planner “Social
planner manipulation of network dynamics”. We will compare this sampling process to two
other sampling algorithms, the uniformly random sampling and the biased sampling. The

next subsections will provide a more detailed explanation of these algorithms.

3.4.1.1. Soctal planner manipulation of network dynamics In the role of a

modeler, we introduce a social planner, who doesn’t care about individuals’ biases. The

57We describe this process below in subsection “second stage decision making process: creating/deleting a
link”.
58In the role of a social-planner can be social-media platforms owners/government.
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social planner cares how to bring agents’ actions closer to the state variable #,. The utility

function of a social planner is given by,

> (ai,t - 9t)2

W = __ieN
N

foralli=1,2,...,.N (3.14)

The utility function of social planner looks like as Morris and Shin (2002) utility, but
contrary to their case, in my model agents optimal actions contain bias. The social plan-
ner understands that optimal actions of agents are influenced by their biases, and he tries
to minimize the effect of these biases by manipulating the set of possible invitations and
annoyances® . In Hakobyan and Koulovatianos (2020) authors show that biases, such as
assimilation bias or confirmation bias, can increase polarization and populistic behavior, as
time passes. In this paper, we show that the social planner can solve the problem of polar-
ization in network dynamics, using his power to manipulate the sampling process of possible
invitations and annoyances. We consider two social-planner types: (a) a social planner with
perfect information about the state variable 0, in each period, and (b) a social planner with
incomplete information about ;. For the second case, we will assume that, like common
agents, the social planner gets public and private information or has some prior about 6,
which is constant, but generally 0;” # 6;.

The social planner directly manipulates network dynamics. In the first period, he takes
the adjacency matrix M, and calculates the social welfare W. After fixing the welfare
level, he calculates all possible changes in the network structure that are driven by agents’

decisions, and suggests a vector of possible invitations together with a vector of possible

annoyances, which increase his utility function.

59As a future extension, we will employ a utilitarian social welfare function and compare it to the welfare
functions appearing here. Such a comparison can shed more light on which bias/externality parameters are
crucial for increasing social welfare.
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Algorithm 5 (Social-planner manipulation of network dynamics) (1) The social plan-

ner takes the adjancency matriz My, calculates social welfare W and fixes it. (2) The social
planner takes each row of the adjancency matriz, My, and calculates social welfare taking
into account all possible changes of the adjancency matrixz driven by potential agent link con-
nections. (3) The social planner chooses one agent from a sample of k with whom agent i
could create a link, making social welfare to increase as a result of establishing this link. (4)
The social planner chooses some agent j with whom agent i can delete a link, making social
welfare to increase as a result of deleting this link.

A matrix of possible invitations and annoyances (Pl A matrix) is created. The size of the
PIAmatrix is N x2, where the first column shows possible invitations and the second column
shows the possible annoyances. After the creation the PIA matrix, the game proceeds to
the second stage of decision making, where agents decide which link to create and which link

to delete, depending on their value functions.

3.4.1.2. Uniformly Random Sampling In each period the social planner randomly

creates a vector of possible invitations and annoyances, using the following algorithm.

Algorithm 6 (1) The social planner takes the adjancency matrix M, and randomly chooses

one agent from a set of k (individuals in the i-th row of M; = 0) with whom agent i can
create a link, and saves the index of agent k in the sample of possible invitations. (2) The
social planner randomly takes, from a set of j (individuals in the i-th row of M, = 1), one
agent with whom agent © can delete a link.

3.4.1.3. Biased Sampling There is a vast literature examining whether the network
structure is random or not. Here the social planner uses a biased sampling algorithm.

In this model agents get invitations from friends of friends. Such algorithms are used in

real-world social-network platforms.%!

60See, for example, Jackson et al. (2007), Snijders, et al. (2010), Bhattacharya et al. (2017), Golub and

Livne (2011), among others.
61This biased sample is very common in such networks like Facebook or Vkontakte. For example Facebook

suggests a potential friends list (from a group of non-friends who have common characteristics to these of
agent 7). These characteristics can include friends of friends, or sometimes people who belong to the same
groups of interests (in my model this corresponds to agents with the same fundamental bias, £b).
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Algorithm 7 (1) The social planner calculates the number of common links agent i has with

each of his non-friends, suggesting the agent k, with whom agent i has the most common
friends (e.g., meeting friends of friends). (2) For determining the set of annoyances, the
social planner uses the opposite. He calculates, among friends, the agents with whom agent

1 has the fewest common friends, creating a set of agents who cause an annoyance to agent

i.62

3.4.2 Second stage of decision making: creating/deleting the links

Agent i makes the decision of creating a new link or of deleting an old friend, conditional on
the set of invitations and annoyances that has been created by the social planner. Player i
receives one invitation and experiences one annoyance, i.e., he examines 22 cases. These cases
consist of {0, 1} choices. Choice “0” stands for either not creating a new link or excluding
an old friend based on a caused annoyance. On the contrary, choice “1” stands for either
creating a new link or keeping an old friend, despite a caused annoyance. The algorithm
creates a 22 versions of the original matrix M, with each agent calculating his value function
for all possible cases, choosing the M, version that gives him the maximum value-function
level. The generalized version of calculating the value function for N different clusters is
introduced in the Appendix (7.4). This paper is focused on directed graphs, so the game
evolves as M, = I\E, where l\A/I/t is the updated version of the adjancency matrix. Notice

that M, is not symmetric.6®

3.5 Simulation experiments

62 Suggestions of breaking links is not crucial in this model. In social media platforms as Facebook, Vkontakte
agents can ignore friends messages, or unfollow friends news, but platform will continue show them as
friends. In our model we consider such behavior as breaking a link, because the link between agents show the

information transmission process.
63An interesting extension is to add one more step for capturing a feedback effect, where agents ¢ and j can

update information only if both of them decide to add each other to their subnetwork of friends.
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Due to the complexity of equilibrium conditions, and the network formation process, we
perform 100 Monte-Carlo simulation experiments in order to analyze the network dynamics,

provide answers to the following questions:

- Is the manipulating power of the social planner, capable of solving the co-
ordination problem among agents, bringing their actions closer to fundamental

variables, and thus increasing social welfare?

- Can the social planner increase social welfare, just by manipulating the set of
possible invitations and annoyances, without directly changing a network struc-

ture?
- What are the main drivers of increasing social-planner utility functions?

- How do the results change if the social planner has incomplete information or

wrong priors about the fundamental variable?

For simulation experiments we use the following parameters: the “beauty-contest” para-
meter r = 0.7 (the results are similiar with r ~ U [0, 1]) for all agents, the weight on the
action of friends is set to ¢ ~ U[0,1].9 The precision of the public signal is o = 1/0,, = 30,
while the precision of the private signals is randomly distributed following a uniform distrib-
ution, parametrized as, 3; ~ U [10,45]. We differentiate agents into two groups: agents with
positive biases and agents with negative biases, b; ~ U[0, 1] . There are N = 20 agents, and
we split them into two groups N;” = 10 and N, = 10.

For performing comparative dynamics among different algorithms and for studyung their

influence on social welfare, we fix the adjancency matrix in period 0. We randomly generate

64Svensson, (2006) argues that the main Morris and Shin (2002) result is present only if the second-guessing
motive is relatively high r € (0.5, 1).

113



a non-symmetric original matrix M; in period ¢ = 0 and fix it in order to understand how
different sampling processes implemented by the social planner influence network dynamics.

We perform comparative dynamics in two main cases: (1) A social planner with perfect
knowledge of the true state variable 0;, and (2) a social planner with incomplete informa-

tion/knowledge about state variable 6.

3.5.1 Social planner with perfect knowledge about state variable
0
In this subsection we assume that the social planner has perfect knowledge about the fun-
damental variable {0;}/_, in every period. As mentioned in Section 3, there is no learning
between periods. In my simulations, we choose the same fundamental variable, §; = 0, in
every period, and, in this Section, we assume that the social planner knows that 6; = 0, in
every period. The welfare function of the social planner, given by (3.14) can be transformed
into a matrix form, after doing some algebra. The social planner’s welfare function in a

matrix form is,

_ . . 1, w2
W=-1" <@§Oob§+a)§ooE(92)—2*@§OoboE(0)+W2 (:)Jr—y) (3.15)

privateo /6 o
where 1 is a vector of ones, the size of this vector is N x 1.9 @, is the weight for bias
which was describe by equation (A.1.3)% .B is a vector of private signal precision (size of this
vector is N x 1). E"(6?) is described in Appendix. Symbol o represents element-by-element
multiplication.
In the case of perfect knowledge of the state variable (0; = 0), following equation (3.15),

one can see, that the social planner’s welfare depends on the weight that every agent puts

65Notice that the expression in the brackets is an N x 1 matrix, and multiplying it with the transponse of

vector ones (17) will give us a scalar.
66Please notice, that the optimal-action weight on the bias depends on network structure.
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to the bias, and on weights in the Kronecker products of private and public signals with the
precision of signals. Therefore, the social planner manipulates network dynamics in order to

decrease these components in his utility function.

For understanding the network evolution of well-known social platforms, and compare
them with social planner manipulation, we run simulation experiments. We begin with our
comparative dynamics, with a benchmark parameters, and examine how network evolution
depends on social-planner’s manipulation. Figure 3.3a depicts these network dynamics. As
it can be seen in Figure 3.3a, in the last periods the key agents share their information with
others more actively, and the numbers of indegree links increase. We prove analyticaly and

by using simulation example the importance of indegree and outdegree links below.
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Figure 3.3a Social planner manipulation of network dynamics

The number of nodes directed towards agent i (indegree nodes) shows the number of

agents who receive agent i ’s signal. As we can see in the last periods, the graph looks like
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a combination of a star network and a ring network. Comparing the three cases of network
evolution that we can see, there are similarities in the node degrees between the network
dynamics also in the cases of social planner manipulation (Figure 3.3a) and the biased
sampling by the social planner (Figure 3.3b). On the contrary, social planner manipulation
(Figure 3.3a) and random sampling (Figure 3.3c) there are no similarities: as time passes the
outdegree links of key players increase, instead of the indegree links increasing. Therefore, a

t.67

combination of indegree and outdegree links seem influence social welfare the mos Below

we take a closer look on how social welfare depends on the evolution of networks in these

cases.
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Figure 3.3b Evolution of network dynamics—bias sampling

67For these particular network dynamics look at the social welfare dynamics in the Appendix. In main body
we present results of 100 Monte-Carlo simulations.
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Figure 3.3c Network evolution with randomly invitations and annoyances

3.5.1.1Comparative dynamics and social welfare As mentioned above, the original
adjancency matrix My is the same for all sampling algorithms. But from ¢ = 1 the set of
possible invitations and annoyances differ, depending on the different algorithms. Figure 3.4
illustrates how welfare dynamics differ across cases. The time horizon is set to T = 50. As
we can see in the benchmark case, where r = 0.7, ¢ = UJ0, 1] for all agents the difference
in friends of friends between the social planner manipulation case and that case of biased
sampling is not big. Yet, the difference between random sampling and the two other sampling

process is substantially big.
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Figure 3.4 Comperative statics: Social Welfare: 100 Monte-Carlo Simulations.

The key explanation of this distance lies on how many indegree and outdegree links
agents have. As we can see from Figure 4 in some periods there is a sudden drop in social
welfare. There can be several reason of such drop, (1) “tragedy of the commons” problem.
The algorithm of social planner maximize changes in adjancency matrix by row, which
influence on the second stage decision making process. One of the solutions of such drops
can be changing the social planner manipulation strategy, by adding a step in the algorithm,
where the social planner tries to compare pairwise stability of changing rows, and decide
which row to change and which row to keep as it is in period ¢.% (2) “Not enough Monte-
Carlo simulations.” One of the solution of such drops increase the numbers of Monte-Carlo

simulations. In 100 Monte-Carlo simulations only one simulation demonstrate such drop in

68We will add this step in a future version of the draft.
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social welfare, and effect of this simulations influence on other 99 Monte-Carlo simulations.
Increasing the number of Monte-Carlo simulations can smooth such drops.%’

The key result of Figure 4 is increasing curve for social planner manipulation strategy,
and one of explanation is connection between node degree and social welfare. We analyze

the connection between node degree and social welfare looking at a one-period (static) game.

3.5.1.2. Analyzing the connection between node degree and social welfare In

order to keep the analysis simple, we examine the static game, with the following network

topology: We consider a central agent with a ring network, demonstrated in Figure 3.5.

0% 0% 0%
CERe ke,

Figure 3.5 Star network with combination of ring network.

The first graph shows the undirected graphs, so everyone can see the signal of each other.
The second graph, shows that the central agent receives signals frm other agents, not sharing
his information (Coutdegree > Clndegree)- Lhe third graphs shows that the central agent shares
his private signal, but doesn’t get signals from others (Coutdegree < C’Indegree).70 For the sake
of simplification, we consider a graph with two clusters only (see the definition of clusters
in Section 3). Let’s assume that the precision of the private signal is the same for all agents

B; = [, and in this static game there is no bias b; = 0. This simplification will give us the

69In future work we will further extend the results for 500-1000 Monte-Carlo simulations and robustness

checks of results.
70 An analytical solution can be found in Appendix .
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opportunity to demonstrate that the Morris and Shin (2002) results do not go through in

particular network structures.

Lemma 8 Let G is described as in Figure 5. Suppose ; = 3, r € (0.65,1),b; = 0. The
optimal weights wk,wk,w¥ is described by formula (A.1.5) ,(A.1.8) and (A.1.6) . Using
this optimal weights, the social welfare is described by the equation (A.1.9) ,(A.1.10) and
(A.1.11). And the following holds:

1. For every B =3 and o < 3, the 2= > 0 if agent i put weight to central agents signal

o A [ole"
and B = and o > 3, the aavzc > 0 if agent i put weight to public signal.
2. For every 3 = and o < 3, the %VZS > 0 if agent © put weight to central agents signal

and B = and o > 3, the %<> 0 if agent v put weight to public signal.
N =7 oW,
3. For every f = anda;ﬁ, the = < 0 .
In Figure 6a. we will illustrate the effect of the public and private signals precision on
the welfare. More formal proof is available on online Appendizx.

We call these networks “central agent”, “central receiver” and “central sender” respec-
tively. The effect of the public and private signals precision on the welfare in these network

structures is illustrated in Figure 3.6a.

Welfare (W)

Ring Network
Morris and Shin case

Ring Network with one central agent
—-—-—Ring Network with one central receiver| —|
Ring Network with one central sender
— — —Privale Signal Precision (v)
| 1 | [
0 0.5 1 15 2 25 3 35 4 45 5
Public Signal Precision (h)
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Figure 3.6a Social Welfare, comparing information sharing in central agent contest.

It can be seen that in the case of one central receiver the behavior of welfare is similar
to this in the ring network. However, for each value of «, the welfare for the former network
is higher than the welfare for the latter one. It can be caused by the presence of the agent,
who is better informed compared to other agents. Since this central agent does not send
any signal, her effect on the other agents’ actions is minor (only through the presence of the
unobserved signal in the transparency term (E (> ax)).

However, in the case of the central-sender type of network, the Morris and Shin (2002)
result vanishes. Even for high values of r, the welfare function is monotonically increasing
with respect to a. Therefore, crucial result in this paper is that each agent’s private signal
sent in network can be viewed as a substitute to the public signal sent by the authority.
Here we considered the extreme case: each agent in the network receives the same signal
from the central agent. It means that agents are able to choose between two signals, that
has the same characteristics as long as their precision parameters are the same. The effect

of switching between signals is illustrated by Figure 3.6b.
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Figure 3.6b Share of signals in non-central agents actions.

Figure 6b shows that, the higher the public signal precision, the higher its share in the
non-central agent’s action. Moreover, share of all other signals is approximately equal to
zero. This means that non-central agents simple switch between two signals: the public one
and the central agent’s one.

Since they have freedom of choice, agents can choose the most precise signal available.
This fact leads to the absence of the Morris and Shin (2002) result (the noisy signal is simply
ignored). Therefore, the central agent’s and central sender’s strategy can solve the problem
raised in the paper by Morris and Shin (2002).

Therefore, coming back to our social-planner manipulation of networks dynamics agents
with high precision of private signals end up with high indegree links, and agents which have
low precision of private signal end up with high outdegree centrality and this effect increases

social welfare.
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Figure 3.7 Social welfare dynamics for the case described in Figure 3a,3b,3c

The connections between node-degree, private and public signal precision can be demon-

strated in the Table 3.1. Please note that the weight of signal j in agent i’s action w;;

depends on agent ¢’s and agent j’s the precisions of signals and degrees in the network. So

the Table 1 answer partially to the question.
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Agent N Beta Gam_indegree Gam_outdegree SPindegree SPoutdegree bindegree boutdegree r_indegree r_outdegree

1 28 11 8 19 18 2 2 4 1
2 21 10 =] 17 16 Q 7 5 1
3 35 12 0 15 16 4 5 3 16
35 12 3 15 10 5] 5] 4 1
- 30 13 5 20 17 i =] 3 1
& 15 & 8 20 18 1 =] 4 &
7 34 o i 20 15 ) 5 ) 1
8 18 11 ) 17 13 8 8 ) 1
=] 24 o 5 4 16 4 5 5 1
Q 23 =] 7 16 7 5] 5 5
1 ] 10 ) 7 18 a 7 3 1
2 45 11 12 7 16 =] =] 3 1
3 37 =) 10 [ 18 =] =] 3 8
45 7 =] 3 17 4 5 2 1
- 18 8 10 17 7 ] 2 7
o 25 o 8 7 18 5 4 1
T 1 o 18 8 8 3 6
a 37 a 18 & 7 4 ]
=] 1 o =] 2 18 =] g 5
2( ( 3 5 16 6 T 2

Table 3.1. Node degree data, precision of private signal. The precision of public signal is

a = 30.

In Table 1. Gam_indegree and Gam outdegree describe the original matrix M. SPin-
degree and SPoutdegree colums describe the node degree after 50 periods in the case of
social planner manipulation of network dynamics (Figure 3.3a). bindegree and bourdegree
columns show the results in Fugure 3.3b, and r indegree and r outdegree columns are the

illustration of Figure 3.3c.

3.5.2 Social planner with incomplete information about state vari-
able ‘9t

In the real world it is diffucult to find a social planner who exactly knows all fundamental
variables, in every period. Therefore, we examine the case of an imperfectly informed social
planner. In this section we examine two social-planner types: (1) A social planner with
incomplete information, and (2) a social planner with wrong expectations E (8,) = 0, # 0.

The second case can be useful if we consider public policy issues in the autocratic regimes.
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Where agents/citizens have precise signals about the fundamental variables, but the regime

has wrong expectations and tries to manipulate agents actions closer to their expectation.

3.5.2.1. Social planner with incomplete information In this case the social planner
has incomplete information about the state variable 6;, and receives private and public signals
like all other agents in the model. Therefore the social planner calculates E (0;|Z,), with
7, denoting the information set of the social planner, consisting of a private and a public
signal. The social planner’s public signal is the same public signal as that of all other
agents. For the benchmark case we consider that the social planner’s private signal has
higher precision, than the precision of the public signal and precision of the privete signals
of all other agents. Under imperfect information, E (0;|Zs,) # 0, and social welfare also

depends on the expectations of the social planner.

— A 10 W2
W = — 1T (wlgo O bg + (Dio ok (9§|ISP) - ajgo obokE (9t|Isp) + Wzrivateo (_) * _y>

p
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Figure 3.8a Social welfare: Incomplete information benchmark

As we can see from Figure 3.8a, this setting of imperfect information leads to worse

results than in the case of biased sampling. This happens because the social planner cannot

make the indegree links of key players to increase.

A

demonstration through simulated

evolution dynamics that the indegree links are higher in the biased sampling setting than in

the examined case here, can be found in Appendix . The key conclusion that can be reached

in the incomplete information benchmark is that following any social planner manipulation

of network dynamics can be useful only in short horizons. Therefore, we decrease the time

periods and we examine the short-horizon case.
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Figure 3.8b Social welfare: short-time periods

As it can be seen, in the incomplete information case, social-planner manipulation works

better for short horizons. This means that the social planner does not need to manipulate

the sampling process in all periods.

3.5.2.2. Social planner with wrong expectations

In this case of imperfect knowledge

on the side of the social planner, I examine that the planner has wrong expectations about

the state variable, i.e., E (6;) = 0, # ;. Under wrong expectations, the social planner has

some prior beliefs about the state variable of the type 6; = 5,5 = const. For example, if the

true value is 67, the social planner believes that 6, = 6, + ;. Can we see increasing social

welfare in this setup in every period?
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Figure 3.9 Social welfare. Wrong expectations of social planner.

As we can see, under the incomplete-information benchmark, it is better if the social
planner has wrong constant expectations compared to receiving private and public signals.
This happens because the noise term and the precision of signals that influence expectations
about the state variable, F (6,), change every period. Therefore, it is better if £ (6;) is equal
to wrong constant in social-planner’s mind, compared to the case that the social planner

gets more precise signals then all other agents.
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3.6 Conclusion

Polarization has increased during the last decades. There is a large literature in political
economics, trying to understand how to mitigate the problems caused by polarization in
networks, by spotting the key players who distort information, trying to bring agents’ action
closer to fundamental variables.

We examined whether a social planner, such as the manager of a social-media internet
platform, can manipulate network dynamics so as to bring agents’ actions closer to pragmatic
viewpoints, thus increasing social welfare. Specifically, we examined if social planners can
influence network dynamics by recommending people as network friends to online-platform
users, and by pointing annoying behaviors by existing social-media friends. Importanty,
we let network users to decide alone whom to make a new friend and whom to abolish as
network friend. We also examined how my analysis changes if the social planner also has
incomplete information or wrong priors concerning fundamental variables.

We built a dynamic network formation model, where each agent has strong incentives to
coordinate their action with the actions of other agents and also to align their actions with
payoft-relevant fundamentals. Using simulations, we demonstrated that if the social planner
is perfectly informed about fundamentals, then his policy will be to suggest agents create
more indegree links, if their private signal precision is high compare with public signal, and
agents, who have low private signal precision, create more outdegree links. This strategy
is crucial for increasing social welfare. Using a static game example, we provided a formal
proof of why social welfare goes up when nodes with indegree centrality increase.

One of the main explanations of this result is the following: if central agents share their
information with others, their signals have the same characteristics as public information,

and agents can decide on switching from one signal to another if the precision of the public
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signal increases. This characteristic of my analysis improves a feature of the standard Morris
and Shin (2002) model who find that increasing the precision of public information can
decrease social welfare. Specifically, in our model, we demonstrated that social planners try
to organize the network structure as a combination of star networks. It is this structure that
can increase social welfare.

Interesting is also the case where the social planner has imperfect imperfect knowledge
about fundamentals. We demonstrated, that in both cases, where the social planner has
noisy information, and where the social planner is sure about the wrong fundamental value,
social-planner manipulation can increase social welfare. But the most interesting result is
that with a social planner being sure about the wrong expectation, welfare improvement is
higher than having noisy information about fundamentals, even if the public and private
signals the social planner receives have lower noise than those of the agents. One of the key
explanations can be that if the social planner fixes an expectation of the fundamental value,
then it can be easier for him to organize the network dynamics. In the case of noisy signals,
the changing signals of agents combined with the noisy signals of the social planner, bring
some mess to the social planner’s strategy.

To the best of my knowledge, this is the first paper where social planner tries to ma-
nipulate network in a dynamic setting, not by directly influencing agents’ action, but by
just trying to introduce agents to each other in a way that social welfare will increase. An
appealing feature of the examined model is that it rationalizes decisions under incomplete
information. Agents in the model make decisions to create new links or to delete some of
the old links, depending on their value functions. The calculation of value functions is chal-
lenging, because of the complexity of the model. Our model can be still demanding even

with a case of N = 50, but it can offer new venues for improvement.
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Finally, future work can focus on extending the biased-sampling setup, focusing on some
real-world challenges that social-network platforms suggest. We can use this method of
creating and deleting links using the biases b;, and endogenizing the strength of peer-induced
assimilation bias. Future works also need to be focused on whether social media platforms
need to be regulated or not. Recently social media platforms owners such as Facebook and
Twitter blocked president Trump’s video. They claim the following: "This video includes
false claims that a group of people is immune from COVID-19 which is a violation of our
policies around harmful COVID misinformation." After this incident, Twitter announced
that they plan to share the state for top profiles. Twitter shares the following information in
its blog: "We believe that people have a right to know when a media account is directly or
indirectly affiliated with a state actor". Therefore, social platform owners care about agents’
decisions, and future extensions are needed in order to understand which mechanism is more

efficient.

3.7 Appendix
3.7.A  Expectation of the state of the world

Agent ¢’s information set consists of her own private signal z;;, the set of her neighbors’
private signals {:L’j-’t}j ¢, and public signal y,. Since all signals are random variables, centered

at the 6, to predict the state of the world conditional on it’s information set, agent ¢ should
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consider the following probability density function™

p(0Ziy) = p (Qt’%‘,t, {$j,t}je]vi ;yt> o< p(@s, {Ij,t}je]vi yl0)p(0) o

X exp [—% (@(et - $z’,t)2 + Z /8j7t(9t - xj,t)Q + a(f; — yt)2>]

JEN;

Using standard derivations frequently used in the Bayesian statistics literature (see, for

instance, Koop (2007)). So we get the following result:

ay + Bixi + 325 B 1
‘gl(a:'t{x-t}- Yt) ~N ’
LUt jeN; a_’_/B’L—'—ZJﬂ] a+ﬁl+2jﬁj

For calculating value functions, we need to calculate E(6*|Z;). Following the Hakobyan

and Koulovatianos (2020) we will find the following:

(A.1.1)

ay + B+ Y, Biw;\ 1
a+ B+, 8; a+ B+ 2,8,

E(*|T;) = (

3.7.B More detail examples: 6 Agents case

Let’s consider the network structure which include 6 agents. The graph G is unweighted and

undirected, so M,fj = Mt]Z as demonstrated in the Figure 3.2.

Figure 3.2 Example with 6 agents

7TI'With absolutely non-informative prior where p(6) o 1.
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In the Section 3.1 we define the information set as Z;; = | y¢, Ti 4, ij,t . Let’s begin
from the first period ¢t = 1, the information set will be the following 7 ; Zj(yl, T11, T21, T31);
12,1 = (yl, T1,1, 2,1, 333,1); Z3,1 = (1/1, T1,1, T21, T31, $4,1); I4,1 = (Zh, T31, Ta,1, T51, 556,1)5
Ts1 = (Y1, a1, T51, Te1) and Zgy = (Y1, Ta1, Ts1, Te1). In Section 4 I introduce the al-
gorithm of finding the equilibrium. The linear strategy which I define in equation (3.10)

looks like the follows:

1 1 1 1 1 1 1 1

ar1 = wip®1,1 HwiaTe +wisTan + wy, by + (1 - (Wu +twip +wiz + wbl)) Y1
1 1 1 1 1 1 1 1

a1 = w11+ Wyla 1 + wWasls 1 + wy,be + (1 - (W21 + Wy +wi3 + wb2)) Y1

51 = WHT11 4 WhpTa1 + wis®s1 + wiga + whbs + (1 — (W) + w3y + wis + why + wp, )

az;1 = W3z1T1,1 T W3ad2,1 T W33T3,1 T W34Tq,1 T Wp, 03 W31 T W3g T W33 T W3q T Wy, ) ) Y1
1 1 1 1 1 1 1 1 1 1

ag1 = WiaTs) +wiTan +wisTs1 + wisTe1 + wy,bs + (1 — (wiz +wiy + wis + wie +wy,)) 11

_ 1 1 1 1 1 1 1 1

as) = Wit +wssTs1 + wieTe1 + wy,bs + (1 — (wWisT + wis + wie + wp,)) 11
1 1 1 1 1 1 1 1

a6 = WeaTa +Wests1 + weeTe1 + whbe + (1 — (wWea + wes + wis + Wy, )) Y1

We normalized the weights, so wi1 + w12 + w1z + wp, +w,, = 1 and we will solve system
of linear equations for wiy;wie;wis; wy,. Weight which agent 1 put on public signal we will

find in the following way w,, = 1 — (w11 + w1z + w13 + wy, ). If the agent has no information

about the signal j, then E;z; = E;0. Let’s consider the optimal action from 1st agent side,

which looks like the following equation:

ar = (1=r)Ei(01)+ (1 —r)bi+m #qll\fl [war1 + waas + wass + W, by + (1 — war — way — waz — wy,) Y
+r #q_fl\fl (w3121 + waaw2 + wasTs + wsa B (01) + weybs + (1 — ws1 — w32 — wag — wWaa — wey) Y] +
o (;Z_Vili) [wazws + waa By (01) + was B (01) + wag By (01) + wp, b + (1 — wa3 — wWag — was — wae — wp,) Y] +
o (;Z_Vili) [wsaEr (1) +wss En (01) + wse En (1) + wpbs + (1 — wsa — wss — wse — wpy) y] +
n (;Z_Vili) [wea B (1) +wes B (01) + wee B (01) + wigbe + (1 — wea — wes — wes — Wig) Y]
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In the second step, we need to rearrange the terms, and get the coefficient preceding the
Ey (0y).

1 —
ar = Ei(61) {(1 —r)+r [ N w34 + ( @) [Wag + was + wap + wsa + wss + Wse + Wea + Wes +w66]” +
#N1 #N_1
1 —
I=r)b +rm— #N [wa1 +ws1] z1 + 7“1% [waz +wsa] 2 + 71 [#le [was + wss] + (#Nizi)wm} T3 +

q 1—q
+T1#7]i[1 (wpy b + wpybs) + 11 (#N,i) (wp,ba + wpy bs + wpbe) +
q 1—q
+71 <#J1\71 (w2, + w3,y] + (#N_l) [Wa,y +ws,y + wﬁ,y]) Y

Let’s use the algebra from Appendix Al to calculate the E; (6;).

B1x1 + Boa + Baxs + ay
B1+ By + B3 +
B3x3 + Byry + 525 + BeTe + ayr

E. (61) = ot it ot fota ; Ey(01) =FE5(01) =

B1x1 + Boza + Baxs + Byza + ayr
B+ B+ B3+ B4+ ’
By + Bsxs5 + BT + y1
64 + 55 + 66 + « '

Ev(01) = Ex(0h)= ;o Bz(0h) =

Now we can find the weights which agent 1 put in y, z1, x2, x3 and b;.

Weight for x;

B1 [ [ q1 (1—-aq)
w = 1—ry)+m | wss + W44 + wWas + Wae + Wsa + wss + Wse + Wea + Wes + W +
11 51+52+53+a ( 1)+ 71 N, 34 N, [was 45 46 54 55 56 64 65 66)
+r1 = #N [wa1 + w31]
Weight for x4
B q 1—gq
Wiz = 3, +52 j‘ﬁ:s o (I—=r)+m #7]1\[16034 + (#Nll) [waa + was + wae + wWsa + w5 + Wse + Wea + Wes + wWes) | | +
+r1 #N [was + w32)
Weight for x3
wiz = By |:(1 —7r)+7r1 |: w3 + (1= ) [Wag + was + Wae + W54 + w5 + Wi + Wea + wWes + wee] | | +
By + By + B3+« # Ny #N_,
q 1
+ry {#]1\71 [weos + wss] + (#qu)ww}
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Weight for b,

1 _
wp, b1 = (I=r)br+7r1 #N (W, b2 + wp;b3) + 11 (#Nqi) (wp, by + Wy, bs + weybg) <>
ry (1 —
= wp, =(1-7r)+ é#q—;\f (wp, b2 + wp,b3) + é (#Nqi) (wp, ba + Wy, bs + wp,bg)

We can do the same Algebra from 2nd agent side.

1 _
“r = g ﬁfi e | [ SR s b+ o+
+re—T—— #N [wi1 + ws1]
1 _
wWoy = 61 n 525—&2- 53 o |:(1 — 7"2) + 7o |:#Q2‘N2w34 + (#qu) [C«J44 + wys + wye + wss + wss + wse + wea + wes + weﬁ]” +
+r9—0 #N [wlz +W32]
1 —
Woz = 5T ﬁfj— 5t a {(1 —72) + 72 [#QNQWM + (#qu) [Wag 4 was + wae + Wsa + Wss + Wse + Wea + Wes + W66]” +
1 —
s [#(1]2\72 (i o was] & (#Nih) 43}
Wy, = (1—7‘2)+ qu(wb by + wy b3)+*(1—q2) (wb by + wp. by + wy, be)
2 b2 #NQ 1 3 b2 #N_ 4 5 6

Using the same strategy we will find the optimal action for 3rd agent.

(1—g3)
#N_,

[wi2 + waz] 2 + 73

a3 = E(0) [(1 —7r3)+73 {(B [was + wae) + [wss + wse + wes + w66]” +(1—r3)bs +

#N3

q
[wi1 +war]z1 + 73 #Jifg

[wsa + W64]:| T4+ T35

+r3 o5 [wis + wag + was] x5 +

#N3

qs (1—q3)
+r3 [#N3w44 + AN,

(1-g3) q3
b b —
N, (wb5 5 + Whg 6) + 73 N,

q3
#N3
(wbl b1 + wb2b2 + wb4b4) +

#N

1—
[W1,y + w2,y + way] + &

#N_3

+73 [w5,y + w6,y]> Yy
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B4 q3 (1—g3)
- 1—
w31 B, +52 st Bt a (1—r3)+r3 N, [was + wag] + N [wss + ws6 + wes + wee] | | +
+r3s o~ #N (w11 + wa1]
. Ba q3 (1- CI3)
“e o =g Pyt Bt (L= ra) s | gy [was ool T = leoss s+ wos ol | +
+r3——F #N [wig + was]
B3 q3 (1—g3)
- 1—
T B Hh4 BBt (L) o | gy [was ool S s s+ wos el | +
+73 #N (w13 + wa3 + was]
. B4 q3 (1- CI3)
W= A Byt B ta | T | Gy (s el g T wss s s ool ||
q3 (1-gs3)
+r3 2N, Waq + N . [ws4 +w64]]
S+ 2 by by +wnb) + B b )
by #N3z = : * bs #N_3 ° °

Consider the optimal strategy from agent 4 side.

(1—q4)
#N_4

q
[wse + wes] T6 + T4 #;[4

(wbg bs + Wy bs + ’LUbiG) +

ag = FE(0) {(1 —7T4) 14 {(]4 (w31 + wsa] + (w11 + w12 + wa1 + wm]” + (1 —74)by +

# Ny

q
+ryg—— #N4 [OJ55 + w65] x5 + 1’4#7;[4
1—
w33 + ( a1)

+7ry [#N4 AN, [W13 + w23]:| T3+ 14—

(1—qa) 44
b b —
#N_4 (wbl 1 + wbg 2) + T4 #N4

[ws4 + wsa + wea] T4 +

#N

1—q4
[W37y + W5,y + wG,y] ( )

#N_,

+7ry [w1,y + w2y]> )
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B3 q4 (1—qu)
pu— 1_
w43 Bt Byt Bs+ Byt a ( T4) + Ty %N, [wa1 + w32] + AN, [wi1 + w12 + wa1 +waa]| | +
1_
+7ry #q;[ w33 + (#N4) [wis +W23]]
_ By qa (1—qq)
WS BB T Byt Byt [T T g, e sl ¥ g P len e dwa bl 4
+74 #q;ﬂ; (w34 + w54 + we4
Bs Q4 (1—qa)
= 1
W45 5, +54 A Bt (I1—rg)+ryg 2N, [ws1 + w3s2] + N, (w11 + w12 + w1 + waa] | | +
+ra——F #N [wss + wes)
_ Be q4 (1—q4)
wye = 3, +54 B+ B+ a (I—ra)+rs %N, [ws1 + w3 + ZN_, (w11 + w12 +wa1 +waal | | +
+ra #N [ws6 + wee]
=(1—-74)+ 7Ai&(wb bs + wyp. bs + wy, b6)+E(1_Q4) (wp, by + wp, ba)
b4 #N 3 5 6 b4 #N,4 1 2

as

The strategy from the 5th agent side

1 —
= E(H) {(1 —7r5) 415 {#q;% wqs + (#qu) [w11 + w12 + wig + wa1 + wae + wag + w31 + w3z + w33]” +
q 1—gq
(1—rs5)bs + Tsﬁ [was + wes] 5 + 7"5& [was + wee] 6 + 75 {#]5\,5 [Wag + wea] + (#N_Z)M?A} T4+
1
+7s5 #CIN5 (wp,ba + wpgbs) + 15 (#N_ a) (wp, b1 + wp, by + wp, b3) +
+rs [wy,y + we ] + u _%)[w1 +woy +wsyl |y
#N Y Y #N_ Y Y Y
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B4 { { (1-g5) ”
= 1—7r5)+r wye3 + —— w11 + w12 + wiz + wa1 + was + waz + w31 + w32 +w +
Ws4 Bit Bst Bt a ( 5) 5 N, 43 N (w11 12 13 21 22 23 31 32 33]
q 1-g¢q
+75 l:#;vg, [w44 + w64] + (#NZ) UJ34:|
55 |: |: qs (1 - QS) ”
wss = 1—7r5)+7s w43 + w1 +wiz + wig + war + war + waz + w31 + w32 +wss]| | +
° Bt Byt Bova 0 BNt g, W
+7rs #q]5\75 [was + wes)
Ws6 = B {(1—7"5)"‘7”5 { o wys + (1=g) (W11 + w12 + w13 + wa1 + wag + wag + wai —|—w32—|—w33]” +
By + B+ Be + # N5 #N_5
+7r5 #q]i% [was + wee)
Wy, = (1 — 7’5) + Ts 35 (U}b by + wy bg) (1 _ qs) (U}b b1 + wyp, by + wy bg)
5 b5 #N5 4 6 b5 #N_ 1 2 3
From the 6th agent side
ag = E@)|(1—16)+rg 16 wy3 + (1= 4) [w11 + w12 + wig + wa1 + woe + wag + w31 —|—w32—|—w33]” +
#No #N_¢
6 6 q (1 — ge)
(1 —r6)bs + 16 N [was + wss] T5 + 76 %N, [wae + wse] 6 + 76 |:#N6 [waa + wsa] + N 6 w34} T4+
+re—— 1 (U)b b4 + wp, b5 )+7“6(1_QG) (wb b1 + wp, by + wy b3)+
#NG 4 5 #N_ﬁ 1 2 3

(1—ge)
+7rg <#N [w4,y + w5,y] N [wl’y + way + U}g,y] Y

2 { { (1—gs) ”
w = 1—1rg)+r wy3 + w11 + w1z + wig + war + war + waz + w31 +ws2 +wss] | | +
64 BatBs + s +a ( 6) 6 N, 43 N ¢ (w11 12 13 21
6 _
+76 L@Z]N(ﬁ [was + wsa] + (#N%)WM}
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g q
wes = 54‘*‘5 —iﬁﬁ.—&—a (1 —7g) +76 #J(if wy3 + (#N o) [wi1 + w12 + Wiz + wa1 + waz + wWaz + w31 + w32 +wss]| | +
+rg— #N [was + wss)
wes = B {(1 —16) + 76 [ £ wag + (L~ g6) [wi1 4+ w12 + w1z + war + waz + wo3 + w31 + wa + WBS]” +
54“‘55“‘56“‘“ #Ne #N-¢
+r6 #N [wae + wse)
Wpg = (1—7“6)-1—7;6&(1017 bs + wy bs)‘f‘E(l_qG) (W, b1 + Wy, ba + we, bs)
¢ be #Ns = * ° be #N_¢ ! : :
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3.7.C Generalizing The Solution in Matrix Form

The matrix A represents the adjacency matrix plus identity matrix (shows all connections
including self-loops) A = M; + eye (V). Let’s demonstrate the matrix A for the example
which I introduce in Figure 2. Matrix A looks like,

O OO ===
OO O R K
OO R R KR
e =)
—_ -0 o O
=l e

The expression which is multiplied by F; (6;) includes the following 2 parts: (1 — ;) and

the weights of the signals, which agent i doesn’t observe.”

The weight of this signals can be not only the signals of agents who are not in agent i’s
network, but the same time the weight which agent i’s neighbors put to their friends, which

are not in agent i’s friends.™

For finding the weight before E; (0;) we will introduce the matrix B;. As we need to find
the signals which are not in agent ’s network, we need to exclude the agent i’s friends from
the adjacency matrix.I take the row of matrix A, build a new matrix (N x N) and repeated
that row N times, for all agents N = {1,2...6}. For example for 6 agents case, the matrix
B looks like the following.

B = B

; By =

0
0
0
0
0
0
} o

e e
I N S Sy
e S gy Sery Y
OO OO OO
OO OO oo

By =

— R R PR R R RPRBRFRRFR P
i e e e R e B s i en B s B e B an)
= = == O O OO OO

SO OD OO0 K==
OO OO OO
O OO DODO O ==

OO OO oo
DO OO OO
e T e S =S =Y
— e e e e
e e
el e e

The next step will be introducing the matrix C;, which will show all connections exclud-
ing agent i’s connections.. So C; = A — B;. If there is negative elements in the matrix
C; (Cy; < 0), we will replace to 0. For algoritm we will use C; (C; < 0) = 0. Which will find

72As we show in example (?7?), from the first agent side its look like the following Fj (61)[(1 —r1) +

1z was + (#N 1) [was + was + wae + wsa + W55 + Wse + wea + Wes + Wee)-

73For example, if we look from the first agent side the weight w3y is the weight which agent 3 puts to his
friend 4, which is not in agent’s i’s network.
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all negative elements and change it to 0.

00 0O OO0 O 0 00 0O 00O
00 O 0 0 O 0O 0 0 0 0 O
00 0 1 00 . . 0 001 00
Ci = 00 -1 1 1 1 so after replacing negative values Ci=Cy = 000 1 11
00 0 1 11 0 00 111
000 0 1 1 1 0 00 111
[0 0 00 0O 110 0 00 1110 0 0
0 00 O0O0TUO 110 0 00 1110 0 0
0 00 O0O0TUO 110 0 00 1110 0 0
G =1oooo11 |'““loooooo |%=%={0g01000 ]|
00 0 0 1 1 00 0 0 0 O 0O 0 0 0 0 O
|00 0 0 1 1 0 00O 0O 00 0 0 O0O0

Agent i differ friends from non-friends by putting different weights to them. As you can see

in the equation (2.2) the weight which agent ¢ put to his friend is %

7N non-friends weight

is equal to (#lj_v—q) We will take every row from matrix A. Let’s call it as £; = A(:, 1)

T and

"to % and "0’s" to Y52, So in this way we will find the matrix which

replace the "1’s ZN, #N_,

shows the weights from each agent side, we will call it as D; = £; o A.™

r _4q q q T r _4q2 q2 q2
#qfiV 1 #qjif 1 #qé/ 1 0 0 0 #qJ;f 2 #q];] 2 #qI;/ 2 0 0 0
1
#N1 #N1 #N1 0 0 0 #N2  #N2 #N2 0 0 0
g1 g1 g1 g1 0 0 g2 q2 q2 q2 0 0
#N1 #N1 Ny #N1 #N2  #N2 N2 N2
Dy = 0 0 (I-q) (I-gi) (A-q) (A=q1) i Do = 0 0 (I-g2) (I—g2) (1—ga) (1—go)
#N_1 #N_1 #N_1 #N_1 #N_» #N_o N_, #N_,
0 0 0 (I-g1) (A-g1) (A-q1) 0 0 0 (I1—=g2) (1-g2) (1—¢q2)
o) Goa) Gog) e e oo
—q —q —q —q —q —q
L 0 0 0 #N. 711 #N 711 #N 711 J L 0 0 0 #N 722 #N 722 #N 722
~ 7 r (1— 1— 1—
#ZJZ\” 3 #ZJET 3 #Zfif 3 0 0 0 ( (1744) (# N ‘1744) : (]—44) 0 0 0
ZN; EN; EN 0 0 0 (1;14) OE(M) (1;14) 0 0 0
G Ca 0 0 L S
Dy = #03 #03 #(133 #(133 q3 q3 ; Dy = #Na #Na #Na #Ns 0 y
#N3 N. N3 #N3 0 0 g4 g4 q4 q4
(1—gs) (1—q3) (1—qs) #Ny #Ns  #Ng  #Ny
0 0 0 g3 ds g3 94 q4 q4
#N_-, #N_; #N_g 0 0 0 Zm 7MW
0 0 0 (1—gs3) (1—g3) (1—%) 0 0 0 g4 q4 q4
i #N_3 #N_5 #N_; | L #N.  #Ni #Ny
[ (A—-g5) (1—g5) (1—gs5) ) (1—ge) (1—qs) (1—gs)
P B B 0 o P B B 0 o o
1—gq 1—gq 1—gq 1—gq 1—gq 1—gq
#N —55 #N —55 #N —55 0 0 0 #N —66 #N —66 #N —56 0 0 0
(I—gs) (1—gs (1—g5) (1—gs) 0 0 (1—gs) (1—gs) (1—qs) (1—gs) 0 0
Dy = #N_5 #N_5 #N_5 #N_5 ;D6: #N_¢ #N_¢ #N_¢ N_g
0 0 45 g5 qs qs 0 0 de g6 gde gde
#Ns #Ns5 #N5  #N5s #Ns #Ne #Ne  #Ns
0 O 0 gs g5 4ds 0 O 0 96 gde de
HE H e L
L 0 0 0 #Ns #Ns5  #Ns | L 0 0 0 #Ne #Ne  #Ns

74Please note that when we will consider network formation process, the only matrix which which will change
and influence to decision send an invitation or cause an annoyances, is matrix D;.
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After describing matrix C; and D;, in our paper we need a Hadamard product

two matrices & = D, o C;.

[0 0 0 0 0 0 ]
000 0 0 0
£ v fq]l“) (10) (10>
= —q1 —q1 —q1
1 v Gt 0t G55
—q —q —q
v <1N’11> ﬁN’ll) ﬁle)
—q1 —q1 —q1
_0 00 #N_1 #N_1 #N_1 |
"0 0 0 0 0 0
0000 0 0
0000 O 0
& = 00 00 (;—&3) (fgfvg) RIS
—dqs3 —4s
0000 ba L
—4qs3 —4qs
L 00 0 0 3R, #r. |
[ (1—gs) (1-gs) (1—as) 1
#N—55 # 755 5 000
S S Gw 0.0 0
& = | Y WS w000
0 0 0 00
0 0 0 00 0
0 0 0 00 0 |

[0 0 0 0 0 0
000 0 0 0
& v (iﬁvﬂ <10> (10)
= —q2 —qz2 —q2
S R S L e
—q —q: —q
R A A
—q2 —Qq2 —q2
_0 0 0 #N_2 #N_2 #N_2
[ (1—gs) (1—q4)
Z?Ni) (ﬁéN% 000 0
—4q4 —4q4
#N_u H#Na 0000
4 4
S Fn 0000 |
0 0 000 0
0 0 000 0
0 0 000 0
[ G G G 0 0 0
};ﬁﬁi %t;&) E#Nz 000
1— 1— 1—
& = #N(iﬁs #Nq_ﬁs #Nq_66 000
46
0 0 #5000
0 0 0 00 0
|0 0 0 00 0

of this

So we solve the first part of optimal action, now we need to get how agent i’s signal
depends on signals which he gets. Let’s introduce the matrix Fj, For every agent ¢ I take
the i-th row from the matrix A and build a new matrix F; where other rows are 0s.

11100 0
000000
000000

Bo= 000000
000000
000000
[0 0 0 0 0 0
000000
000000

Fao= 00 1 11 1
000000
000000

For finding the last part

0

el eoNeoNel "
S o oo

; Fs

SO OO OO
SO OO OO

OO OO OO

0

OO OO

O OO OO

0

OO O OO

O OO OO

0

oo o oo

O OO OO

OO OO oo

0

0

1

7F3— 0
0

0

0

0

0

Fs = 0
0

0

SO~ OO

OO OO OO

0

oo o~ O

OO OO OO

[=NeNel ol

_— o0 O o oo

OO OO OO

_ o O o oo

(v el e Jen M e M e}

_ o0 O o oo

of optimal action™ , we will Introduce the matrix G; = A —

C; — F;. The matrix GG; shows the signals which agent ¢ knows which other people gets.

75For example, if we look from the first agent side we need to find the following part. ry ﬁ [wo1 + ws1] 21 +

r1gan wae + waz] 2o+

q1 (A—q1)

d

ZN, [was + w3s] + FN_, W43
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000000 1 11000 1 11000
1 11000 000000 1 11000
1 1100 0 111000 000000
= 1oo01000] “=loo1000|'%=|001100 |
000000 000000 000100
100000 0 | 000000 000100
[0 01 0 0 0 ] 000000 000000
001000 000000 000000
001100 000100 000100
Gi = 000000 "%=|loo0oo0o111 | “=|000111]
000111 00 0O0O0O0 000111
(0000 1 1 1 | 000111 00000 0

The private information which agent ¢ gets, can be part of linear strategy not only his
friends, but from neighbors of his friends, so we need to multiply by elements the matrix G;

and D;. The matrix H; = D, o G;.

o 0 0 000 Hn #n A 000
P T T SR
H = #N1 #N1 #Nl Hy, = #N2  #N» #Nz
0 0o LS o000 | 0o 0o 2 000 |
0 0 0 0 0 0 0 0 0 00 0
0 0 0 00 0 | L0 0 0 00 0 |
[ FN @ FN, 00 0007 00 G5 0 0 0 ]
o gz _d3 0 0 0 (1-ga)
#N3  #Ns  #Ns3 0 0 #1\[74 0 0 0
0o 0 0 0 00 0 0 e a9
H; = 0 0 qs q3 0 0 ; Hy = #Ny # Ny ;
#N3 (Iﬁﬁ]\és) 0 0 0 0 0 0
0 0 0 ~8) 0 0 00 0 G @
#N_
o0 o0 o {m g g 00 o0 w lal T
L #N_3 J L #Ns  #Ns  #Ng A
[0 0 0 0 0 0 ] [0 0 0 0 0 0
000 0 0 0 000 0 0 0
(1—gs) (1—q¢)
H5 _ 0 0 0 Z ]{1\/,5755 qOS (?5 7 H6 _ 0 0 0 #](1\16766 (?6 (?G ’
8 8 8 #(J)Vo #6\70 #(Z)Vs 8 8 8 #q](YG #qf(\sfs #qlf\sfe
0O 0 0 g5 qs qs 00 0 #éVG #(J)VG #(])VG
L #Ns #Ns  #Ns | L J

Before getting the weights, lets analyze the expectation side. As we explain in the
previous section the F; (6;) depends on the private and public signals which every agents
have.

B1w1 + Boxa + Baxs + ayr

B B+ By + B3+ a B

Bsxs + Byxa + Bsxs + BeTs + ayn
Bs+ Bs+ 85+ B +

_ Bix1 + Bowa + B33 + Baxa + ayr
B B1+ By + B3+ Byt ’
_ Baxa + Byws + Bere + ayr
B By+Bs+ B +a ’

Eq (61) Es (641)

E4(604)

O (91) = Ej (91)
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I will write the algorithm for finding the optimal weights before private signals and biases.
The optimal weight of public signal can be find using the optimal weight of private signals
and biases. Now let consider the precision side. Let introduce 8 which is a vector of all
private signal precision. We will use command repmat which will repeat this vector. For
example in our example N = 6; we will 5 = repmat(3, N, 1), which repeat the row [ six

time.

Bi By By By Bs Be
Br By By By Bs Be
3 Pr By By By Bs Be
Bi Ba By By Bs Be
51 ﬂQ 63 54 65 66
Bi By Bz Ba Bs B

For getting the precision which is known from all agents side, let’s multiply every element

of the matrix § with matrix A. 3., = 5o A.

Br B2 B3 O 0 0
Bi By By O 0 0

B _ 61 62 ﬂ?) B4 0 0 .

new 0 0 B3 By Bs Bs |’
0 0 0 By Bs Bs
0 0 0 By Bs Ps

Now we need to sum the row of (3 and plus «, which is precision of public signal.

The precision of public signal is common knowledge.

B1+ B2+ B3+

B1+ By + B3 +
Br+By+B3+Bs+a ||
Bs+Bs+B5+Bs+a |’

Bs+Bs+ Bt

Byt Bs+ Bt

norm = sum (8,,.,, ,2) +ao < norm =

e e

Using the command repmat(norm,1, N) gives us the matrix R,,., which repeat the

column of the matrix norm N times.
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B1+ B2+ B;+a
B1+ By + B3 +
By + B+ B3+ B4+
B3+ Byt B5+ B+
Bs+Bs+ B ta
Bs+Bs+ Bt

Rnorm -

B1+ B2+ 83 +a
B1+ By + B3 +
Br+ B+ B3+ B+ ||
Bs+Bs+ P85+ 08+ |’
Ba+ 85+ B+
B+ 85+ B +a

After defining the R, , we can find a new precision matrix P = 3,,.,, © =+ Rnorm-
[ 5 = P 0 0 0 |
51+52ﬁ+53+a ,31+,32ﬁ+,33+04 ,31+,32B+183+04
1 2 3
B1+By+B3+a B1t+Ba+B3ta B1+Bo+Bs+a 0 0 0
B Ba B3 B4 0 0
P = B1+Ba+B3+Bs+a B1+Ba+B3+B8s+a 51"!‘52"!‘653"!‘54""@ 51+62+ﬁﬂ3+64+a 3 8 .
3 4 5 6 ?
0 0 63+64+65+66+O¢ 63""64“!‘55""66“!‘@ 53+B4+ﬁﬁ5+56+a 53+54+ﬁ55+56+a
4 5 6
0 0 0 BiTPotPeta BT PotPeta BiTPstBsta
0 0 0 X By B
L B4+B5+Bﬁ+a 54+55+56+a 64+65+66+a

So after defining all matrices which we need to find the optimal weights, we will describe
a large matrix Z which will combine Z1,Z5,25. At first, Let rearrange and put together the
expression before F;(6).So let’s introduce each elements of Z.

For introducing Z; at first i will introduce N blocks of matrices.

zZl repmat (reshape (ElT, 1, N x N) Y 1)
Z2 repmat (reshape (E3 ,1,N « N) , N, 1)
z _ Zj | repmat (reshape (ET, I,NxN),N,1
L= Zi | repmat (reshape (ET, 1I,N+*N),N,1
va_l repmat (reshape (E?\}_h 1, N x N) , N, )
zZN repmat (reshape (EZI\}, 1, N % N) , N, 1)

1
So in matrix Z the Z; represent a block of constant multiply to F; (6;). We need to multiply
by elements this matrix with precision matrix. So we need to rearrange the precision matrix
and the matrix which represent the the weight on conformity(r;). The new precision matrix
looks like P,,.,, = reshape (PT, N x N, 1). The matrix R, = reshape <7’epmat (RT, 1, N)T N x N, 1),
where R = |r; ry

T3 T4 Ts5 Te|-*

Now we will introduce the block Z,, which consists of N blocks matrices.
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Z;
z3
Z5
Z5
zZN-1
Zy

Zy =

repmat (reshape (HlT, 1, N % N) , N, 1)
repmat (Teshape HI 1,NxN),N,1
repmat (reshape HT 1,N Ng ,N,1
repmat (reshape HT 1,N * N) ,N, 1

repmat (Teshape (HJT\;_17 1, N % N) ,N, 1)
repmat (reshape (qu\;, 1, N = N) , N, 1)

The third block Zj is the identity matrix Z3 = repmat(eye(N), N, N), which represent the
private signal set, the first row represent x, the second row represent the x5 and so on.

Z3 = repmat(eye(N), N, N), where eye(N) =

1 0 0 0 0 0]
1

R
0000 0 1

So let introduce Matrix X' ,which is in (N % N) % (N * N) matrix.

X=eye(N « N) — R*P,c,.*Z1 — R*Z5.*Z;3

So the matrix of weights looks like the following

Wwi,1

W1,N
w21

W2 N
WN-1,1

WN—-1,N—-1
WN,1

WN,N

Therefore, the optimal weights matrix will be,

W*

(Xx)il (1 - R) Pnew (A12)

Now let’s find the optimal weight for bias. At first I will introduce the row-vector of
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b= b, by . . . by|- Wewill use a command by, = repmat (3, N, 1).

0 1 1 0 b02 bs 0 0 0
1 0 . . . 1 ’
brLew = bnew oAo |. ... | =
0 0 0 by 0 by
' PO o 0 0 bys byer 0
-1 . 1IN, lngk o AN
b = 71Nm=1 ! 71Nm7m 1Nm,k : ]‘Nm,end
A 1Nk,1 : lNk,m _1Nk,lc : _1Nk,end
1NN,1 : 1NN,7n _lNN,k . _1NN,N
- @ - B ry (1=q1) T
Lo 0 e o (o)
oo g Ehian
r._49g. r. 1—q.
Xb = + 'Zﬁ © (brww © b+—) =+ ? (#{qu,) o (b:Lew o] b+_)
b, #N. b #N_.
1 0 ZN—l #qzzvv—l vt (man 1)
0 1 N@ ‘INNi1 by -1 #11\1—(N—1)
by #Nn TN (#NKIN)
L N -~

The optimal weights W,

(A.1.3)

The expressions (A.1.2) and (A.1.3) will give us the optimal weights for private signal

and bias, and we can find the optimal weight for public signal.

W,=1-W, - W, (A.1.4)
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3.7.D Calculating the value functions

The value functions are equal to E(u;(a*,6)). Using equation (3.10), we find the optimal
action a; of each agent, and then we put the optimal action a into the expected utility

function and find the expected utility from everyone’s side.
We introduce some matrices that can in decreasing the size of equations.

1 by 1 Wi,y -Wl,b 51
flj2 B . 1 (,L}2’y W2,b _ 62
| . |;b= o Im sy =1 . |[so=| . |B=]-|;
1
TN by | —Lena WN,y [ WN b Bn
[ X1 B1 1
Ao . x| Flaxy)o |. o=
B (0) , | Tlerwe )
Ex(9) L XN BN |1
j 8, i
En(0 ‘ ‘
~(0) Ao | . | +ao
By 1
2
X1 B4 1 1
E1(02 Ao * + (axy)o o= o=
9 . )
E*(6%) = B = all Py ! + !
, 8, 1 B, 1
E 2 . . . .
N (0%) Ao | . | +ao|. Ao | . | +ao
Bn 1 Bn 1

where matrix A represents the adjacency matrix plus identity matrix A = M, + eye(N).
The operation "o" denotes element-by-element multiplication, o+ denotes element-by-element
division, and 2 each element in the matrix are squared.

The calculations are summarized by,
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B(ui(a,0)) af (1—r1) F1(6%) (1—r) Ey(0)
: B, (6%) ) : 1230,
= — — o . —2o0bo . o .
. - ~ @ 1)) |[ExO)
E(uy (a.0)) a2, (1—rw) En(07) ( N) N
(1—.7“1) b% (1—.7“1) aq g;gg; (1 —.7“1) ) a1
— o . +2 o o . +2 . obo
(1 —.TN) b%v (1 - rN) a;v EN(Q) (1 _'TN)_ an
[7‘1 [ (diag(D1))T  ((G1 o W) * 2):
rv)  (diag(Dx))" + (610 W)+ 2)?
r1] diag(Dy)T] o1 . . .1
. 1 0 . . . 1 _ )
_ o o . *[@b0b+y0@17y]o_
TN | diagtDN)_ 1 1 0
[y diag(D1)T « (((G1oW) xZ) o [@p0b+yowiy])
_9 o . —
v Ldiag(Dn)T « ((Gn o W) £ 3) 0 [@y0 b+ y o))
_ 2\ T
. diag(Dq)T ((([1 o = (Cow)T) )) B\ (6%)
' By(6?)
T\ 2 -02
TN diag(Dy)T * ((([1 1] * (Cx o W)T) ) En(67)

T1

N
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" [ diag@)T (G oW k) e (oW 1) T | B
—2o0 o ’ o . —
| Ldiea@)T (@ oWy o exomysan] |7 |
1| diag(D1)T « ((wp 0 b+ @y xy) o (C1 0 W % 1)) [E1(0) ]
. E(0)
—2o0 ) ) . —
r;v_ diag(Dn)T * ((@p 0 b —&—.(Dy xy) o (Cy oW 1)) _EN.(G)_

1 a diag(D1)" + ((G1 o W) * T + (C1 o W) * E(0) + (@ 0 b+ @y 0 7))
+200| " |o| |0 : -
r}v dz diag(Dy)T * ((gNOW)*i’ﬁ’(CJ\.]OW)*E(Q)ﬁ’ (@pob+wy o))
r] [diag(D)T « 3, (M(:,i) 0 M 1)
20| "o ' o E(0)?
rn diag(Dy)T % zjV:'l (M(:,i) o M 1)

where M = Ci pew © Wirivate and M = Mg (ar, (i—1,i—2,...i— N)=0}-50 When we take the first row
from the matrix M, we replace 0’s in their place. The next step, when we take the second
row, we will keep the matrix which we get before(with the first row equal to 0’s) and we

change and put the second row = 0.

3.7.E Proof of the static-game result

As we can see in Figures 3a, 3b, and 3c, the final period graphs looks like combination of
star networks with ring networks. Therefore, for simplification, we compare “central agent”,
“central sender” and “central receiver” cases. Below we describe the optimal private signal

weight.

Star network joint with ring network. The central agent sends and gets the
private signals of others

ZT; + T;— + Z;
a; = w 31 1 waZe + (1 —wy — we)y
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N -1
i=1

- _ o -1 -

wy 1 0 0 —r (1—7)%

e || 0 = — 0 (1—7)%
‘ 6, (1=r)(N—4) r 1 _¢r(N-4) 2 6,
w1 0 =31 ~ =12 3 1 (N-D) 3N 0 (1—r)F

r ¢; T(N—4) @ T(N—4) r(N-2) ?;
| W2 | | N1 T 1 (N-1)2 Ta (N 1= | _(1 - 7“>I_

(A.1.5)

One centralized agent who gets signals from others without showing his own
signal We consider network structure where central agents gets signals from other agents
in the networks, but didn’t share his own signal.

Linear Strategy for central agents will look like the following way.

> Ti

N_1—|—(1—w1—w2)y

A = W1Te + Wo

Linear strategy for other agents will look like the following way.

Ti + Tiy1 + Ti—1

a; = w, 3 +(1=9&)y
1
w1 1 0 0 (1—7)%
i _r &y r(N—4) r 1 é; T(N—4) 2_r ®;
w1 T3NI T 3(WN-12 (N-1? 3 3 (N-1) 3N_1 (1—r)%
(A.1.6)
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Optimal weights can be provide by request. We use this matrices to analyze the social

welfare.

Central agent sends information without getting any signal Let’s look at the linear
strategy of agents.

T+ Tip1 + X
+31 ! + woxe + (1 — wy — wo)y

a; = Wy

a. = were + (1 = &)y

(Y

W= v+h((1—r)+rw1)+er (A.1.7)
So we can find the optimal weights wy, w; and ws.
-1
Wi ! —T i —r (1-7)2
wy = | w 0 -4 -3 0 1-r% (A.1.8)
W2 ~ N1 _%r(%v—_f)) 1 r((zifv—_f)) (1- T)%

The optimal weights are available in online Appendix, using these optimal weights we

can calculate the welfare W W* and W

The optimal welfare for central agent case is described by the following equations. Please

notice, that in this example precision is equal for every agents and agents doesn’t distinguish

152



weights between friends and non-friends.

* * * * * * * %\ 2
W 1 <W% i w3 +(1—w1—w2)2>+N—1<wf w; +(1—w1—w2)>

5 T IN=1) B o N \35 "3 a

The welfare W from central reciever side describes by the following equations.

1 [w w3 (1 —wh —w3)’ N—1{[w* @1—uw)?
== — A1l
Wi=< ( - + Ll 7 A (A.1.10)

1 (w2 (1—w)? N-1[w>* w¥ (1-—w—uw)’
Wi=— 1 — —_— : 2 L 2 A1.11
S =N ( + + 35T T - ( )
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4. Conclusion

In the first chapter, “Symmetric Markovian Games of Commons with Potentially Sustainable
Endogenous Growth”, we develop an exact formula for finding the exact interior solution for
Markovian differential games with linear accumulation constraints of a common resource.
Second, we characterize the general solution, which can be used as a guide for finding corner
solutions numerically, using a homotopy approach.

In the second chapter, “Populism and Polarization in Social Media Without Fake News:
the Vicious Circle of Biases, Beliefs and Network Homophily”, the cheap way of making
internet friends increases the speed of finding friends with similar biases, which increases
homophily. In turn, homophily affects the weight that each agent places on their bias,
while taking action, and this leads to more homophily. This vicious circle of biases, beliefs,
and homophily, increases the peer-induced weight of their pre-existing structural biases that
agents put on their actions. Crucailly, , agents gradually ignore expert opinions (unbiased
signal) more and more, which matches the trend measured by opinion polls in the past few
decades.

In the third chapter, “Can a social planner manipulate network dynamics and solve
coordination problems?”, I introduce a “Liberal Social Planner” and find that, indeed, the
social planner can indirectly manipulate network dynamics in order to bring agents’ actions
closer to fundamentals. I find that the key mechanism behind increasing social welfare is to
increase the number of indegree nodes of central agents. This happens because agents can
substitute expert information with private information from central nodes and make more
informed decisions. Social planners who are more confident (or even sure, even if biased)
about the fundamentals (e.g., of pricing houses for buying/selling) achieve better results.

These results have potential applications to the management of social media platforms by
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the owners of these platforms. Platforms can develop robots that can help their users in

bcoming more informed and more satisfied about real-life issues, such as housing prices, etc.
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