UNIVERSITE DU
LUXEMBOURG

PhD-FSTM-2020-52
The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defence held on 15/09/2020 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITE DU LUXEMBOURG

EN INFORMATIQUE
by
Diego KREUTZ

Born on 29 November 1979 in Santa Rosa (Brazil)

LLOGICALLY CENTRALIZED SECURITY FOR
SoFTWARE-DEFINED NETWORKING

Dissertation defence committee

Dr Paulo Esteves-Verissimo, dissertation supervisor
Professor, Université du Luxembourg

Dr Bjorn Ottersten, Chairman
Professor, Université du Luxembourg

Dr Radu State, Vice Chairman

Associate Professor, Université du Luxembourg

Dr Jennifer Rexford
Professor, Princeton University

Dr Sandra Scott-Hayward,
Lecturer, Queen’s University Belfast

Acknowledgements

I am very proud of and grateful to my supervisors Paulo Esteves-Verissimo and
Fernando M. V. Ramos because I have learned so much with them. One of the
few things I am sure of is my eternal debt with them. I am (arguably) sure I
am a better researcher now because of them. In fact, I am still learning everyday
something new with them.

Paulo was also an awesome sort of coach in my personal life as well. He is an
impressively smart and knowledgeable person. I have to say, in some ways, he is
indeed better than a regular doctor. I know that (probably) just me and him will
truly understand the meaning of this statement.

I had one of the most interesting and productive times after I met Jiangshan
Yu. He is a very smart, easy going and inspiring researcher and person. Because of
him, I started to better understand and to have joy in designing security protocols.
JY inspired me in different ways. I consider myself lucky to have met him.

I cannot forget to mention Natalie Kirf, Jessica Giro and the BED in general.
Jessica Giro was of outstanding administrative support inside the University of
Luxembourg. Jessica managed to figure out and propose simple and straightfor-
ward solutions to every single hurdle during my affiliation with the University. I
must say [am really lucky to have met such sympathetic, positive and professional
people like Jessica, always ready to help us in the best way possible.

I have no words to thank my family, friends and god for the constant support
and comfort. I have to gratefully thank my wife (Rosa Maria) and my mother
(Elizabeta Ilzi). Their unbelievably strong faith (and energy) made me arguably
stronger at the last minute, when I really needed it. Truth to be said, family
and friends are two of the most important things in my life. During the past few
years, both my family and friends were of utter most importance to get through
the different health issues I had. I got through all of it because of them, no doubt.

Finally, I feel the need to mention some friends of mine, that helped me in
different ways through out this journey, namely Vinicius Vielmo Cogo, Laly Ortiz,
Pedro Costa, Wojciech Agzo, Alberto Mengali, Danilo Spano, Grabiela Gregory,
Sina Maleki, Divane Marcon, and Jader Franklin (a.k.a., Deko). Their warmth
friendship made me a better person and provided me joy and comfort in several
moments of my journey.

1

Declaration

[, Diego Kreutz, declare that this thesis “Logically centralized security for Software-
Defined Networking” and the work presented therein are my own. I confirm that:

this work was done wholly or mainly while in candidature for the degree
Docteur de I’Université du Luxembourg;

where any part of this thesis has previously been submitted for a degree or
any other qualification at this university or any other institution, this has
been clearly stated;

where I have consulted the published works of others, these are clearly at-
tributed;

where I have quoted from the works of others, the sources are always given;

where the work presented in this thesis is based on work done by myself
jointly with others, I have clearly outlined what was done by others and
what I contributed;

with the exception of such quotations, this is entirely my own work; and

I have acknowledged all main sources of help.

Signed:

Date:

111

Abstract

Software-Defined Networking (SDN) decouples the control and data planes of tra-
ditional networks, logically centralizing the functional properties of the network in
the SDN controller. While this centralization brought advantages such as a faster
pace of innovation, it also disrupted some of the natural defenses of traditional
architectures against different threats. Until now, SDN research has essentially
been concerned with the functional side, despite some specific works relating to
non-functional properties like ‘security’, ‘dependability’, or ‘quality of service’.

Security is an essential non-functional property of SDN. The lack of reliable
security by-design mechanisms can quickly lead to the compromise of the entire
network. For instance, most of the current security mechanisms in SDN con-
trollers lead to exploitable vulnerabilities that allow adversaries to easily control
or even shut down the entire control plane. The growing concern regarding insider
threats substantially amplifies the problem. The reason lies in the fact that cur-
rent Software-Defined Networks (SDNs) (e.g., OpenFlow-enabled networks) rely
on weak protection mechanisms. To address these crucial security issues in the
SDN control plane, it is necessary, though not sufficient, that we start by securely
identifying, authenticating, and authorizing all devices before allowing them to
become part of the network.

Though SDN security is the central tenet of this thesis, we believe that the
problem is much more generic. In essence, there is still a lack of a systematic
approach to ensuring such relevant non-functional properties as security, depend-
ability, or quality of service. Current approaches are mostly ad-hoc and piecemeal,
which has led to efficiency and effectiveness problems. This reflection led us to
claim that the successful enforcement of non-functional properties as a pillar of
SDN robustness calls for a systematic approach. We further advocate, for its
materialization, the re-iteration of the successful formula behind SDN- ‘logical
centralization’.

In consequence, we propose ANCHOR, a subsystem architecture for SDN that
promotes the logical centralization of non-functional properties. We start by pre-
senting the general concept and architectural principles, suggesting how they can
satisfactorily enhance the current state of the art with regard to any non-functional
property (security, dependability, performance, quality of service, etc.). We claim
and justify that centralizing such mechanisms is vital for their effectiveness, by
allowing us to: define and enforce global policies for those properties; reduce the
complexity of controllers and forwarding devices; ensure higher levels of robustness
for critical services; foster interoperability of the non-functional property enforce-
ment mechanisms; and finally, better foster the resilience of the architecture itself.
We focus on ‘security’ as a use case in the rest of the thesis, discussing the special-
ization of the ANCHOR architecture to logically-centralized enforcement of security

v

properties. However, by presenting a principled solution to the main problem of
the thesis (SDN security), we also show the effectiveness of the general ANCHOR
concept, opening avenues for further research on its extension to other desirable
non-functional properties, such as dependability and Quality of Service (QoS).

We identify the current security gaps in SDNs, and investigate the adequate
security mechanisms that should populate the architecture middleware, globally
and consistently. ANCHOR sets out to provide — in a homogeneous manner to all
controllers and forwarding devices — essential security mechanisms such as strong
entropy, resilient pseudo-random generators, secure device registration, associa-
tion and recommendation, amongst other crucial services. We present the design
of those mechanisms and protocols. With the objective of promoting generalized
use of encryption and authentication in the control plane, we additionally pro-
pose and describe a secure control plane communication infrastructure, Keep It
Simple and Secure (KISS), based on a novel lightweight mechanism for generating
cryptographic secrets — integrated Device Verification Value (iDVV). iDVV can
be used in a number of ways, in a number of protocols, and outperforms widely
used alternatives. In the context of this thesis, the KISS infrastructure is set up
by ANCHOR and used to ensure the security of interactions amongst it, controllers
and forwarding devices.

Being conceptually logically-centralized, ANCHOR presents a single-point-of-
failure (SPoF) challenge, which we address, through incremental measures, some
of which can be selectively present in concrete designs. As a baseline, we harden
the design, by endowing it with robust functions in the different modules. We
increase assurance by discussing and informally proving correctness of all mech-
anisms and algorithms, and we also formally verify the main algorithms through
a proof-assistant. By only using symmetric cryptography, we make the system
Post-Quantum Secure (PQS). We also embed measures to achieve Perfect For-
ward Secrecy (PFS) in all algorithms, protecting pre-compromise communications
in the presence of successful attacks. Finally, for higher criticality systems, we take
additional algorithmic and architectural measures to mitigate the effects of pos-
sible security failures. We provide for Post-Compromise Security (PCS) through
the semi-automatic restart of operation after a full compromise of ANCHOR. We
present as well a design of resilience mechanisms — the continued prevention of
failure /compromise by automatic means — through fail-fast recovery techniques.

The prototypes’ implementation aspects and the evaluation of the two funda-
mental pieces of our work (ANCHOR and KISS) are performed in the respective
chapters. The above-mentioned discussion and informal proof of correctness of
all mechanisms and algorithms is given in appendices. We also formally machine-
verified the main algorithms.

Contents

(1.2 Proposal
L3 Contributionsl

2 Background and Related Work
[2.1 Software-Defined Networking|.

[2.3 Security requirements of control plane communications
[2.4 Securing Control Plane Communications

2.5 Final Remarks

3 Logical Centralization Revisited
[3.1 ANCHOR Blueprint
[3.2 Security Challenges
[3.3 Logically-Centralized Security|

5 ANCHOR: Design and Implementation
[5.1 Enforcing Logically-centralized Security|.
[5.2 Implementation|

b3 Evaluation

vi

[6.2 Baseline measures for hardening ANCHOR/|.
[6.3 R-ANCHOR Resilient Management Architecture
[6.4 Setup and protocols|.
6.5 Final remarks

Correctness of algorithms of KISS

[A.1 Correctness of Algorithm (1.
[A.2 Correctness of Algorithm 2.

B

Operations and security analysis of ANCHOR

[B.1 The three stages of ANCHOR|.
[B.2 Correctness of Algorithm|3/.
[B.3 Correctness of Algorithml|.
[B.4 Correctness of Algorithm[7].
[B.5 Meeting ONF’s security requirements|
[B.6 Security Analysis of ANCHOR|

vii

List of Figures

[3.1 Logically-centralized enforcement of non-functional properties| . . .
[3.2 ANCHOR architecture for logically-centralized security|
[3.3 Vulnerabilities related to threat vectors three, eight and nine.

4.2 TCP and TLS connection setup times (in log scale)|
4.3 FLOW_MOD latency (in log scale)|
[4.4 Hashing primitives| 0L
[4.5 Implementations of hashing primitives
[4.6 MAC primitives
[4.7 Latency to generate keys|

[5.1 ANCHOR: logically-centralized security|
[5.2 Latency of different iDVV generators
[5.3 Control plane communication costs

[6.1 Overview of R-ANCHOR (ANCHOR’s modifications in red color) . . .

[B.1 Setup, normal operation and PCR

viil

List of Tables

[2.1 SDN specific vs. non-specific threats 16
[2.2 Security principles for SDN 20
[2.3 Securing control plane communications| 24
[3.1 Vulnerabilities and main consequences.| 38
[5.1 Summary of notations| 63
[5.2 STS: results of the single tests 81

Traditional solution ANCHOR 84
[6.1 HAAT’s Application Programming Interface (API)|. 99
[6.2 Summary of notations| 102

X

Abbreviations

AAA Authentication, Authorization, and Accounting
A Als Authentication and Authorization Infrastructures
AES Advanced Encryption Standard

API Application Programming Interface

ASIC application-specific integrated circuit

AuS Automatic Security

BFT Byzantine Fault Tolerance

BYOD Bring Your Own Device

CAPEX Capital Expenditure

CIA Confidentiality, Integrity, Availability

CLI command-line interface

COTS commercial off-the-shelf

CPU Central Processing Unit

DDoS Distributed Denial-of-Service

DH Diffie-Hellman

DHE Diffie-Hellman key Exchange

DIMM Dual In-Line Memory Module

DNS Domain Name System

DoS Denial-of-Service

DPID OpenFlow Datapath ID

EAP Extensible Authentication Protocol

ECDHE Elliptic Curve Diffie-Hellman key Exchange

FIFO First In, First Out

ForCES Forwarding and Control Element Separation
HLHA Host Location Hijacking Attack

HMAC Hash-based Message Authentication Code
HSM Hardware Security Module

HTTPS Hypertext Transfer Protocol Secure
iCVYV integrated Card Verification Values

ID IDentification

IDS Intrusion Detection System

iDVV integrated Device Verification Value

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

IS-IS Intermediate System-to-Intermediate System
IT Information Technology

ITM Insider Threat Mitigation

KDC Key Distribution Center

KDF Key Derivation Function

KDS Key Distribution Service

KISS Keep It Simple and Secure

KYE Know Your Enemy

LAN Local Area Network

LANSs Local Area Networks

LOC Lines Of Code

LTS Long Term Support

el

MAC Media Access Control

MEF MEF

MITM Man-in-the-Middle

MAC Message Authentication Code

NaCl Networking and Cryptography library

NIDS Network Intrusion Detection System

NIST National Institute of Standards and Technology
NOS Network Operating System

NS Needham-Schroeder

NSA National Security Agency

NTP Network Time Protocol

ODL OpenDaylight

ODTN Open and Disaggregated Transport Network
ONF Open Networking Foundation

ONL Open Network Linux

ONOS Open Network Operating System

OPEX Operational Expenditure

OSPF Open Shortest Path First

OVS Open vSwitch

PC Personal Computer

PCR Post-Compromise Recovery

PCS Post-Compromise Security

P4 Programming Protocol-independent Packet Processors

PFS Perfect Forward Secrecy

xii

PKI Public Key Infrastructure

POF Protocol Oblivious Forwarding

PRF Pseudo Random Function

PRG Pseudo Random Generator

QoS Quality of Service

RADIUS Remote Authentication Dial-In User Service
ReS Resilient Services

RNG Random Number Generator

SC Secure Component

SDN Software-Defined Networking

SDNs Software-Defined Networks

SNBI Secure Network Bootstrapping Infrastructure
SNMP Simple Network Management Protocol
SPoF single-point-of-failure

SSH Secure Shell

SSL Secure Sockets Layer

STS Statistical Test Suite

TCB Trusted Computing Base

TCP Transport Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

USB Universal Serial Bus

VANETSs Vehicular Ad Hoc Networks

VoIP Voice over Internet Protocol

WAN Wide Area Network

xiil

Xiv

Chapter 1

Introduction

In traditional computer networks, we have issues, such as vendor lock-in and het-
erogeneous devices with low interoperability, which lead to higher costs in terms of
Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). Typically,
network operators try to enforce global policies by configuring networking devices
manually or with the use of device-specific scripts. And it gets challenging to keep
policies in place while networks are semi-autonomously reacting to faults and load
changes. Additionally, current networks are vertically integrated, which means
that both control and data planes are deployed inside the networking devices.
This is one of the hardest obstacles to innovation in networking infrastructures.
SDN is a paradigm that is causing a major change in the networking indus-
try. SDN has set a new pace of innovation by breaking the vertical integration of
traditional networks. Data plane devices (e.g., switches, routers) become simple
forwarding devices while the control logic is implemented outside, in a logically
centralized controller, or Network Operating System (NOS), simplifying policy en-
forcement. Running on top of a NOS, network applications (e.g., routing protocol)
have access to a global network view. From a developer perspective, it becomes
easier to think about network behavior, leading to a new pace of innovation in
networks. An overview of this decoupling of control and data planes is shown in

Figure [L.1]

1.1 Problem statement

SDN research and development has been primarily concerned with functional prop-
erties, such as improved routing and traffic engineering to avoid over-provisioning,
increase the resilience of the network data plane, provide fast recovery in case of
failures, reduce energy consumption, efficient load balancing, and reduce OPEX
and CAPEX costs [Wan+18|; [ZFC17]; [Hel+10]; [JYR11]; [Jai+13]; [RME13];

Network Application(s)

ﬁ Open northbound API

[Controller Platform }

@ Operé southbotjnd API

Network Infrastructure

Figure 1.1: SDN overview.

Wan+15]; [Hua+16]; [Jin+16]; [Chi+16]; [Men+17]; [Alv+17]; [Yan+15]; [NDK16];
[PST18]; [JCL19]; [MR19]; [AMA19).

While gaps in the enforcement of non-functional properties (e.g., security, de-
pendability, QoS) are critical to the deployment and widespread use of SDN in
the enterprise |[Kre415|; [Por+15|; [Arb+16]|; [TZN16]|; [Scol7]; [NK19]; [IK18];
, they have received less attention. For instance: insecure control plane
associations and communications, network information disclosure, spoofing at-
tacks, Denial-of-Service (DoS) attacks on control and data planes, Transport Layer
Security (TLS) Man-in-the-Middle (MITM) attacks on control plane communica-
tions, teleportation attacks, and hijacking of devices, can easily compromise the
network operation; performance crises can escalate to affect QoS globally; unavail-
ability and lack of reliability of controllers, forwarding devices, or clock synchro-
nization parameters, can considerably degrade or even compromise the network
operation [KKS13|; [Akh+15]; [TSS17|; [Yoo+17a|; [SNS16|; [Dac+17|; [Akh+16];
[RR17]; [Jer+17b|; [AvW18]; [IK18|; [Han+19).

One of the most vital components of the SDN architecture is the communi-
cation between forwarding devices and controllers. For instance, fake forwarding
devices can easily connect to the controller and wreak havoc with the network.
A fake forwarding device can use teleportation to exploit key SDN functionalities
such as flow (re-)configuration, switch identification, and out-of-band forward-
ing |T'SS17|. With teleportation, malicious forwarding devices can exploit the
logically centralized control plane to transport information, bypassing data plane
devices (e.g., other forwarding devices, middleboxes, firewalls, Intrusion Preven-

tion System (IPS)). Similarly, fake controllers can also compromise and disrupt
the network operation.

One fundamental reason for these problems is that, in spite of the benefits
of SDN, the decoupling of control and data planes, relying on a de facto stan-
dard southbound API, namely OpenFlow, has removed crucial natural protections
of traditional networks, such as the heterogeneity of management solutions, the
diversity of configuration protocols and operations, and the diversity of security
and fault-tolerance mechanisms. For instance, on a traditional network, an at-
tacker would need to (arguably) compromise multiple protocols and different secu-
rity mechanisms of rather heterogeneous forwarding devices. Likewise, cascading
faults and performance crises would be mitigated by natural fault independence
and diversity across different architectures.

Each specific and proprietary configuration protocol, from traditional manufac-
turers such as Cisco, HP, D-Link, and Huawei, has its own set of operations, i.e.,
instructions to change the configuration of the specific device. Hence from e.g.,
a security perspective, SDN introduces new threat vectors, changing the threat
surface of networks |[BCS13|; [KKS13|; [Kre+15]; [SNS16]|; [Dac+17]; |[Akh-+16];
[AvW18|; |[Han+19].

Not surprisingly, security has been recurrently pointed out as one of the major
open issues in all sorts of SDN deployments, such as Local Area Networks (LANs),
optical networks, Open and Disaggregated Transport Network (ODTN), Internet
of Things (IoT), mobile networks, transport networks, ad-hoc networks, Vehic-
ular Ad Hoc Networks (VANETS), and industrial networks [Bas+13|; [Ku-+14];
[Yan+15]; |[Kre+15]; [Thy+16]; [SNS16]; [Che+17]; [BMV17|; INDK16|; [Han+19|;
|Gio+20|. Whilst some authors consider security and dependability as necessary in-
herent features of the architecture of future networks and systems |[PPJ11]; [Car17];
[Han+19], the fact is that most existing projects still do not consider security by
design, i.e., leave security as an afterthought [Dac-+17]; [Pas14]; [Scol7]; [Dac+17];
[Han+19].

Most of the available SDN controllers, including well-known ones such as Open
Network Operating System (ONOS) and OpenDaylight (ODL), have several vul-
nerabilities such as malformed control messages, handshake without hello message,
packet-in flooding, control message drop, infinite loop, system variable manipula-
tion, system command execution, eavesdrop, application eviction, and state manip-
ulation and man-in-the-middle attacks |[Lee+17]; [Sec+17]; [Noh+16|; [Yoo+1T7al;
[Xu+17]; [Scol7]; |[Guo+16]; [Xu+17|; [Dix+18|; [Han+19]. Some of these vulner-
abilities can severely compromise the network operations, as studied in detail in
Chapter

To address these challenges we need to answer the following questions: How to
securely deploy and install devices (registration, authentication, authorization, and

association) in network infrastructures? How to ensure the dependable and secure
operation of controllers and forwarding devices, in spite of faults and attacks?

1.2 Proposal

Though SDN security is the central tenet of this thesis, we believe the problem
is more generic. In essence, there is still lack of a systematic approach to ensur-
ing such relevant non-functional properties as security, dependability, or quality of
service. Current approaches have been addressing these challenges in an ad-hoc,
piecemeal way, which may work, but will inevitably lead to efficiency and effec-
tiveness problems. Several specific works concerning non-functional properties
have recently seen the light, e.g., in dependability [Son+17]; [Kre+15|; [Ber+14];
[Akh+16]; [Men+18|; [Viz+18]; [Vizl8|; [Can+18|; [NK19] or security |Shi+13al;
[Shi+13c|; [Shi+14]; [Amb+15]; [SNS16]; [Akh+16]; [Cho+17b]; [RR17]; [Sha-+17|;
[Yoo+17b]; [AVW18|; [Han+19]. However, these are point solutions, and a panoply
of different vulnerabilities and attacks (e.g., application eviction, lack of strong and
global authentication and authorization services to access controllers, lack of mech-
anisms for device identification and authentication, complexity, vulnerabilities and
misconfigurations of TLS implementations, Distributed Denial-of-Service (DDoS)
among controllers, TLS MITM attacks on control plane communications), and
Internet-scale attacks (e.g., more stealthy and sophisticated low-bandwidth DDoS
attacks [Hicl7[; [Inf13]), still represent challenges in SDN infrastructures [Che+16];
[SNS16]; [Yan+16|; [MK17]; [Dac+17]; |[PP17|; |Jer+-17b|; |Thi418|; [Dix+18|;
[AvW18|; [Han+19].

This reflection led us to claim that the successful enforcement of non-functional
properties as a pillar of SDN robustness calls for a systematic approach. An opin-
ion seconded by recent research [KSM13|; [MDP15]; [SNS16|; [Han+19]. We fur-
ther advocate, for its materialization, the re-iteration of the successful formula
behind SDN- ‘logical centralization’. It is worth emphasizing that the centraliza-
tion of security services has been proposed a few times to solve different problems
of traditional and SDN networks. For instance, the use of centralized cryptog-
raphy schemes and sources of trust to authenticate and authorize known enti-
ties have been pointed out as a solution for improving the security of Ethernet
networks [KSM13|. Similarly, recent research suggests network security as a ser-
vice to provide the protocols and mechanisms required for enterprise-grade SDN
networks [SNS16|. However, centralization has its drawbacks, not least creating
bottlenecks and single points of failure.

In consequence, to reap the benefits of centralization and avoid its pitfalls,
we propose ANCHOR, a subsystem architecture for SDN that promotes the logical
centralization of non-functional properties, by standing aside the functional SDN

architecture with its payload controllers and forwarding devices, not modifying but
rather adding to it. It ‘anchors’ crucial functionality and properties, and ‘hooks’
to the former components, in order to secure the desired properties. We claim
and justify that centralizing such mechanisms is vital for their effectiveness, by
allowing us (with minimal interference with the payload SDN architecture) to: (1)
define and enforce global policies for those properties; (2) reduce the complexity
of controllers and forwarding devices; (3) ensure higher levels of robustness for
critical services; (4) foster interoperability of the non-functional property enforce-
ment mechanisms; and finally, (5) better foster the resilience of the architecture
itself. We conjecture that the general concept and architectural principles can sat-
isfactorily enhance the current state of the art with regard to any non-functional
property (security, dependability, performance, quality of service, etc.).

Focusing on ‘security’ as a use case, we will thoroughly demonstrate and val-
idate our proposal, discussing the specialization of the ANCHOR architecture to
logically-centralized enforcement of security properties. By presenting a princi-
pled solution to the main problem of the thesis (SDN security), we also show the
effectiveness of the general ANCHOR concept, opening avenues for further research
on its extension to other desirable non-functional properties.

We propose to identify the current security gaps in SDN, and investigate the
adequate security mechanisms that should populate the architecture middleware
with the appropriate security mechanisms, globally and consistently. ANCHOR sets
out to provide these essential security mechanisms, in a homogeneous manner to
all controllers and forwarding devices.

With the objective of promoting generalized use of encryption and authentica-
tion in the control plane, we additionally propose a secure control plane infrastruc-
ture, KISS, which intends to bring simplicity and performance to the provision of
integrity, authenticity, and confidentiality of control plane communications, out-
performing widely used alternatives. The KISS infrastructure, set up by ANCHOR,
is crucial to ensure the security of interactions amongst it, controllers and devices.

ANCHOR being conceptually centralized, even if "logically’ for a start, presents
a SPoF challenge. We propose to address the challenge through incremental mea-
sures, some of which can be selectively present in concrete designs. As a baseline,
we propose to harden the design, by endowing it with robust functions in the
different modules, incorporate the capacity of post-quantum security (PQS) by
only using symmetric cryptography, and also embed measures to achieve perfect
forward secrecy (PFS) in all algorithms. Finally, for higher criticality systems, we
propose to take additional stronger algorithmic and architectural measures to mit-
igate or prevent the effects of possible security failures. We will provide for PCS
through the semi-automatic restart of operation in the event of a full compromise
of ANCHOR. We will investigate as well resilience mechanisms — the continued

prevention of failure/compromise by automatic means — through fail-fast recovery
techniques.

Besides attempting at proving the correctness of mechanisms and algorithms,
we will design all the protocols, and evaluate proof-of-concept prototype imple-
mentations.

1.3 Contributions

In short, the main contributions of our work include the following:

1.

The principle of using logical centralization for the successful enforcement of
generic non-functional properties in SDN, materialized through the blueprint
of the ANCHOR architectural concept.

. The first comprehensive study of the threat plane impending on SDN sys-

tems, identifying and organizing a systematics of threat vectors and agents,
easing the study of solutions improving security.

. The definition and design and implementation of a specialization of the AN-

CHOR architecture to logically-centralized security, providing mechanisms
and protocols for essential security services, such as, but not only, strong
entropy, resilient pseudo-random generators, secure device registration, as-
sociation and controller recommendation.

. The definition and design and implementation of an infrastructure, KISS,

bringing simplicity and performance to the provision of security integrity,
authenticity, and confidentiality of control plane communications, introduc-
ing cryptographic mechanisms outperforming widely used alternatives.

. An approach to the systematic mitigation of the risk of logical centraliza-

tion, from baseline mechanisms — design hardening with robust functions,
symmetric cryptography for post-quantum security, formal verification for
increased assurance, embedding of perfect forward secrecy measures in all al-
gorithms, manual post-compromise security — to additional mechanisms in
the path of resilience, materialized by an extension of the architecture called
R-ANCHOR— mitigation of insider threats, minimization of the syndrome
of SPoF of the management site, by automatic recovery for fast turnaround
and post-compromise security after full compromise or failure.

We show that, compared to the state-of-the-art in SDN security, our solution
preserves at least the same security functionality, but achieves higher levels of

implementation robustness, by vulnerability reduction, while providing high per-
formance. While we attempting to prove our point with security, our contribution
is generic enough to inspire further research concerning other non-functional prop-
erties (such as dependability or quality-of-service). It is also worth emphasizing
that the architectural concept that we propose in this work would require a more
significant deployment effort in traditional networks, due to the heterogeneity of
the infrastructure and its vertical integration.

The work presented in this thesis was independently validated through peer-
reviewed publications in international conferences and journals of this area. The
list of publications related to this research and chapters they refer to is:

e Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. “Towards se-
cure and dependable software-defined networks”. 1In: Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined net-
working. HotSDN ’'13. Hong Kong, China: ACM, 2013, pp. 55-60. doi:
10.1145/2491185.2491199.

Identification of the global threat plane of SDN, showing the pressing security
problems arising (Chapters [I] and [2)).

e Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. “Software-defined
networking: A comprehensive survey”. In: Proceedings of the IEEE 103.1
(2015), pp. 14-76.

Comprehensive survey allowing a deep knowledge of the SDN problem space
and guiding towards the inception of the logical-centralisation idea (Chap-

ter [2| and .

e D. Kreutz, J. Yu, P. Esteves-Verissimo, C. Magalhaes, and F. M. V. Ramos.
“The KISS Principle in Software-Defined Networking: A Framework for Se-
cure Communications”. In: IEEE Security Privacy 16.5 (Sept. 2018), pp.
60-70. doi: 10.1109/MSP.2018.3761717. An extended version available on-
line at http://arxiv.org/abs/1702.04294.

Design, implementation and evaluation of the KISS infrastructure (Chap-
ter [4)).

e Diego Kreutz, Jiangshan Yu, Fernando M. V. Ramos, and Paulo Esteves-
Verissimo. “ANCHOR: Logically Centralized Security for Software- Defined
Networks”. In: ACM Transactions on Privacy and Security 22.2 (Feb. 2019),
8:1-8:36. doi: 10.1145/3301305. An extended version available online at
https://arxiv.org/abs/1711.03636.

Design, implementation and evaluation of the ANCHOR architecture (Chap-

ters and [6]).

http://arxiv.org/abs/1702.04294
https://arxiv.org/abs/1711.03636

1.4 Structure of the Thesis

The thesis is organized as follows.

Chapter [1| — Introduction of the problem and outline of our approach to the
solution, logically-centralization of non-functional properties.

Chapter [2| — Review and analysis of landscape of security in SDN, systematiz-
ing the overall threat plane impending on it. Subsequent analyses of the
state of the art with regard to solutions to security problems in SDN.

Chapter (3| — Delineates our approach in detail. First, we present the merits
of an approach based on a logically centralized root of trust. Second, we
investigate the specialization to security, by identifying the current security
gaps in SDNs. Third, we propose the adequate security mechanisms that
should populate the architecture middleware.

Chapter [4) — Presents the design, implementation and evaluation of mecha-
nisms and protocols for a secure control plane communication infrastructure,
KISS, based on a novel lightweight mechanism for generating cryptographic
secrets (iDVV).

Chapter [5| — Presents the design, implementation and evaluation of mecha-
nisms and protocols for ANCHOR, including essential security mechanisms
such as strong entropy, resilient pseudo-random generators, secure device
registration, association and recommendation.

Chapter [6) — Presents our approach to the systematic mitigation of the risk of
logical centralization. In this chapter, we recapitulate the prevention and
assurance mechanisms promoting robustness, already incorporated in the
baseline designs of ANCHOR and KISS described in the previous chapters.
We complement those by presenting an optional extension of the architec-
ture, R-ANCHOR— for, e.g., more critical applications — with the design of
mechanisms promoting resilience, through mitigation of insider threats, as
well as automatic recovery for fast turnaround and post-compromise security
after full compromise or failure.

Chapter 2
Background and Related Work

In this chapter, we introduce software-defined networking (Section , its threat
plane ((Section [2.2)), security requirements (Section [2.3), and related work on se-
curing control plane communications (Section . The main idea of SDN is the
decoupling of the control and data planes of networking devices, introducing new
levels of flexibility by allowing simpler and more productive network programming
paradigms.

After the initial insights about SDN, we address the central tenet of this thesis,
the security problems of SDN. We present a contribution of this thesis, a compre-
hensive study of the threat plane impending on SDN systems, identifying and
organizing systematics of threat vectors and agents, easing the study of solutions
improving security. We introduce the main threat vectors and specific security
issues of SDN.

2.1 Software-Defined Networking

The term SDN was initially coined to represent the ideas and work around Open-
Flow at Stanford University [Gre09]. As initially defined, SDN refers to a network
architecture where a remote control plane manages the forwarding state of the data
plane. The networking industry has on many occasions shifted from this original
view of SDN, by referring to anything that involves software as being SDN. We,
therefore, attempt to provide a less ambiguous definition of software-defined net-
working.
We define an SDN as a network architecture with four pillars:

1. The control and data planes are decoupled. Control functionality is removed
from network devices that will become simple (packet) forwarding elements.

2. Forwarding decisions are flow-based, instead of destination-based. A flow

is broadly defined by a set of packet field values acting as a match (filter)
criterion and a set of actions (instructions). The flow abstraction allows uni-
fying the behavior of different types of network devices, including routers,
switches, firewalls, and middleboxes. Flow programming enables unprece-
dented flexibility, limited only to the capabilities of the implemented flow
tables [McK+0§].

3. Control logic is moved to an external entity, the so-called SDN controller
or NOS. The NOS is a software platform that runs on commodity server
technology and provides the essential resources and abstractions to facilitate
the programming of forwarding devices based on a logically centralized, ab-
stract network view. Its purpose is therefore similar to that of a traditional
operating system.

4. The network is programmable through software applications running on top
of the NOS that interacts with the underlying data plane devices. This is a
fundamental characteristic of SDN, considered as its main value proposition.

Note that the logical centralization of the control logic, in particular, offers
several additional benefits. First, it is simpler and less error-prone to modify net-
work policies through high-level languages and software components, compared
with low-level device-specific configurations. Second, a control program can au-
tomatically react to spurious changes of the network state and thus maintain the
high-level policies intact. Third, the centralization of the control logic in a con-
troller with a global knowledge of the network state simplifies the development of
more sophisticated networking functions, services, and applications.

Following the SDN concept [Schll], it can be defined by three fundamental
abstractions: (i) forwarding, (ii) distribution, and (4ii) specification. In fact, ab-
stractions are essential tools of research in computer science and information tech-
nology, being already a ubiquitous feature of many computer architectures and
systems |Alk+14].

Ideally, the forwarding abstraction should allow any forwarding behavior de-
sired by the network application (the control program) whilst hiding details of the
underlying hardware. OpenFlow is the first practical realization of one such ab-
straction, which can be seen as the equivalent to a “device driver” in an operating
system.

The distribution abstraction should shield SDN applications from the vagaries
of distributed state, making the distributed control problem a logically centralized
one. Its realization requires a common distribution layer, which in SDN resides
in the NOS. This segment has two essential functions. First, it is responsible for
installing the control commands on the forwarding devices. Second, it collects

10

status information about the forwarding layer (network devices and links), to offer
a global network view to network applications.

The last abstraction is specification, which should allow a network application
to express the desired network behavior without being responsible for implement-
ing that behavior itself. This can be achieved through virtualization solutions,
as well as network programming languages. These approaches map the abstract
configurations that the applications express based on a simplified, abstract model
of the network, into a physical configuration for the global network view exposed
by the SDN controller. Figure depicts the SDN architecture, concepts and
building blocks.

Net App 1 Net App 2 v » Net App n
) ﬁ _) ﬁ Abstract network views ﬁ
2 B N Open northbound APl
<
° Network Abstractions (e.g., topology abstraction)
S @ <. Global network view
= LN
c N
8 Network OS (SDN controllers) }
\}Open southbound API
g Y
ke : __\
o
8
©
o

Network Infrastructure

Figure 2.1: SDN architecture and its fundamental abstractions.

As previously mentioned, the strong coupling amongst control and data planes
has made it difficult to add new functionality to traditional networks. The intro-
duction of new features requires the inclusion of expensive and hard-to-configure
equipment in the network — load balancers and firewalls are common examples.
These middleboxes need to be placed strategically in the network, making it even
harder to change the network topology, configuration, and functionality later. This
can be observed in Figure For instance, a Network Intrusion Detection System
(NIDS) might need to receive a cloned copy of the traffic of all switching devices
of the network through specific physical and or logical links.

In contrast, introducing new functionality in SDN is made simply by adding
a new software application to run on top of the NOS. This approach has several
advantages:

e [t becomes easier to program these applications since the abstractions pro-

11

Conventional Networking

Network applications

Detectin || fouting | [TSWALRE | Load
System Algorithms Filters) balancer
SDN controller J

Software-Defined Networking

Figure 2.2: Traditional networks versus Software-Defined Networks.

vided by the control platform or the network programming languages can be
shared.

All applications can take advantage of the same network information (the
global network view), leading (arguably) to more consistent and effective
policy decisions whilst re-using control plane software modules.

These applications can take actions (i.e., reconfigure forwarding devices) from
any part of the network. There is, therefore, no need to devise a precise
strategy about the location of the new functionality.

The integration of different applications becomes more straightforward. For
instance, load balancing and routing applications can be combined sequen-
tially, with load balancing decisions having precedence over routing policies.

For further details about the SDN deployment scenarios and infrastructures

(e.g., Local Area Network (LAN), Wide Area Network (WAN), optical networks,
wireless networks, mobile networks, transport networks, ODTN, IoT, cloud com-
puting) and SDN layers and components such as southbound APIs, northbound
APIs, west-/eastbound APIs, network operating systems, programming languages,
debugging and troubleshooting, and a vast ecosystem of applications (e.g., rout-
ing, traffic engineering, load balancing, firewalls, anomaly detection, monitoring,

12

and so forth), as well as many open challenges, the reader, can check some of
the most comprehensive surveys available online [Kre+15|; [Tro+16]; [Alv-+17];
[Yan+15|; [NDK16|; [Men+17|; [Thy+16]; [BMV17]; [SNS16]; |[RR17]; [Dac+17];
[Yoo+17al; [ARS1S8|; [BSM18|; |[Far+19|; [Xie+19]; [Sul+19]; [OO18]; [AMA19|;
[IMR19[; [JCL19]; |Isl+19]; [Gio+20].

2.2 The Threat Plane

Security should (arguably) be an inherent feature of future systems and Internet
architectures |Carl7]; |[PPJ11]. However, several projects still do not consider
security by design, i.e., security is usually implemented as an afterthought. Despite
security being of crucial importance for the deployment and widespread adoption
of SDN |Kre+15|; [Por+15|; |[Arb+16]; [TZN16]; [Scol7|; [Han+19|, it has been
a commonly neglected property |Pasl4]; [Kre+15|; [Dac+17|; [Scol7]; |[Dac+17];
|Thi+18]; [Han+19]; [Lee+20].

One of the fundamental aspects of SDN is the logical centralization of the
control plane, placing the controller at the core of these infrastructures. Its secu-
rity is though of uttermost importance to ensure the network’s correct operation.
However, currently available SDN controllers, including production-quality ones
such as ONOS and ODL, have several vulnerabilities, including malformed con-
trol messages, packet-in flooding, control message drops, infinite loops, flow rule
modification, eavesdrop, application eviction, flaws in access control, and authen-
tication components, Host Location Hijacking Attack (HLHA), and state manipu-
lation and man-in-the-middle attacks |[Guo+16|; [Noh+16|; [Yoo+17a|; |[Lee+17|;
[Sec+17]; [Xu+17|; [Scol7|; [TNK1S|; [Sec+19]; [Han+19]; |[Lee+20]. Worse still,
attacks such as Persona Hijacking |Jer+17al, where a malicious host fools forward-
ing devices into believing that it is the legitimate owner of the victim’s identifiers,
affect even SDN security enforcement solutions such as TopoGuard [Hon-+15|,
SPHINX |Dha+15|, and SE-Floodlight [Shi+13b].

Some of the existing vulnerabilities can severely compromise the network oper-
ation. For instance, application eviction allows a malicious application to unload
another application dynamically (e.g., firewall application), leaving the network
defenseless. Another example is handshake without hello messageﬂ which leads
to weak authentication during the handshake setup. This vulnerability allows an
attacker to launch a switch identification spoofing attack |[Dov17|. With such an
attack, a malicious user can either register a fake forwarding device in the network
or launch a man-in-the-middle attack. Furthermore, an attacker can use hand-
shake messages to launch a resource exhaustion attack against the internal storage

LAn issue fixed in the latest versions of controllers such as ONOS and ODL [Lee+20], but
still a good example of what can happen in case of a careless handshake.

13

of the controller, which can result in a controller shutdown [Lee+17].

In the past decade, several threat vectors have been identified in SDN archi-
tectures |Kre+15]; [Yoo+1T7al; |Lee+20|, as well as numerous security and de-
pendability weaknesses in all layers of SDNs (i.e., from forwarding devices up to
applications running on controllers) |[KKS13|; [WH13]; [SG13|; [Por+12]; [BCS13|;
[Yoo+17al; [SNS16[; [Kha+17|; [Akh+16]; [LMK16|; [Dac+17|; [2JZ17|; [Dar+17|;
[AvW18]; |[Par-+18]|; [Mat+19]; [JKK19]; [NK19]; [Sha+20]; [Lee+20]. Whilst some
threat vectors are common to traditional networks, others are more specific to
SDN, namely the attacks on control plane communications and targeting the con-
trollers. Most threats are independent of the technology or the protocol, because
they represent threats on conceptual and architectural layers of SDN itself.

2.2.1 A systematic analysis of the SDN control plane

In this section, we perform a comprehensive analysis of the threat plane of SDN,
attempting at giving a structured view of the threat vectors to SDN |[KRV13];
|[Kre+15]. As shown in Figure and Table we identify nine threats vectors
in SDN architectures. Threat vector number one consists of forged or faked traf-
fic flows in the data plane, which can be used to attack forwarding devices and
controllers. Additionally, it can lead to other specific attacks such as eavesdrop-
ping, flow rule modification, and control message drop |Lee+17]. These attacks
are made easier when control messages are sent through the data plane (using
in-band control plane communication channels), which is usually the case in SDN
deployments.

Threat vector number two allows an attacker to exploit vulnerabilities of for-
warding devices, and consequently wreak havoc with the network or use the de-
vice to outsmart network security, steal sensitive information, and so forth. For
instance, a malicious switch can be used by an adversary to outsmart network secu-
rity, i.e., bypassing middleboxes in the data plane (e.g., firewalls, NIDS) [TSS17].

Threat vectors three, four, and five are arguably the most critical ones. Attacks
on control plane communications, controllers, and applications can readily grant
an attacker control of the network. For instance, a faulty or malicious controller
can be used to reprogram the entire network for data theft purposes.

One specific threat vector we address in this thesis (Chapter [5)) is threat num-
ber three, which is fundamentally related to the lack of reliable security services
and properties, such as device identification, device authentication, device autho-
rization, device association, and confidentiality, integrity, and authenticity of com-
munications. This threat vector opens the doors for different kinds of attacks such
as switch identification spoofing, eavesdropping, man-in-the-middle, DoS, flow rule
modification, and control message drop |Lee+17]; [Lee+20].

14

Admin N

“; ’j(__/) o8l -| Station ~
\s
j@ SDN t\\
fl Controller & Manaquf\gr—l——“
1 control X —=—

Figure 2.3: Threat vectors of SDN architectures

Threat vector number six is linked to attacks on and vulnerabilities in admin-
istrative stations. A compromised critical computer, directly connected to the
control network, will empower the attacker with resources to launch more easily
an attack to the controller, for instance. Threat vector number seven represents
the lack of trusted resources for forensics and remediation, which can compromise
investigations (e.g., forensic analysis) and preclude fast and secure recovery modes
for bringing the network back into a safe operating condition.

Finally, threat vectors numbers eight and nine represent insider threats such as
malicious employees with physical access or special authorizations inside the enter-
prise infrastructure. Whilst the control plane can be physically isolated, making
it harder for most insiders to get access, the data plane is usually accessible to
employees of the company and visitors, even though the latter may have access
restrictions.

In this thesis we also pay special attention to threat vector nine, particularly
the ability to add fake devices (e.g., controllers, switches) in the network. These
devices can be used to cause harm to the network (e.g., launch DoS attacks on the
control plane, create forwarding loops with the goal of flooding specific links in
the network), steal sensitive information, compromise critical systems by evading
security mechanisms, and so forth.

It is worth emphasizing that attacks carried out by malicious insiders are partic-
ularly dangerous because they are typically done by people who have the required
access, knowledge, and know-how for launching effective attacks, leading to severe
implications for data security [Nur+14|; [MHP14]; [Kee+05]; [SD16|; |[Liu+18|;
[Ver19|; |[Hom+19]. A malicious insider who has access to the control and man-

15

agement planes (threat vector eight) can easily compromise the entire network. For
instance, s/he can launch DoS attacks that can shut down the controller, exploit
physical and logical vulnerabilities to get access to the controller to start other
kinds of attacks such as application eviction, system command execution, memory
exhaustion, internal storage misuse, and system variable manipulation |Lee+17|.

Table 2.1: SDN specific vs. non-specific threats

Threat Specific Consequences in software-defined networks

vector to SDN?

Vector 1 no Open door for DDoS attacks, eavesdropping, control message
drop, etc.

Vector 2 no Potential attack inflation.

Vector 3 yes Exploiting logically centralized controllers.

Vector 4 yes Compromised controller may compromise the entire network.

Vector 5 yes Development and deployment of malicious applications on
controllers.

Vector 6 no Potential attack inflation.

Vector 7 no Negative impact on fast recovery and fault diagnosis.

Vector 8 no Exploiting control plane communications channels, protocols

and systems.

Vector 9 no Exploiting data plane resources by compromising or adding
fake forwarding devices.

As can be observed in Table [2.1] threat vectors three to five are specific to
SDN as they stem from the separation of the control and data planes and the
consequent introduction of a new entity in these networks — the logically central-
ized controller. The other vectors were already present in traditional networks.
However, the impact of these threats could be larger than today — or at least it
may be expressed differently — and as a consequence, it may need to be dealt
with differently. For instance, threat vector eight is easier to exploit (e.g., by an
insider) in SDN than in traditional networks. Whilst in the latter the attacker
has to compromise different vertically integrated control planes, from different
manufacturers, in SDN s/he needs to compromise just one single entity, the con-
troller. Other examples of increased impact are threat vectors two and nine. The
consequences of attacks exploiting vulnerable or fake virtual switches, which are

16

common on SDNs, are much higher compared to traditional switches |Thi+18|.

Furthermore, as previously exemplified, OpenFlow-enabled networks are sub-
ject to a variety of security and dependability problems such as spoofing, tam-
pering, repudiation, information disclosure, denial of service, the elevation of
privileges, unauthenticated upload of applications, lack of reliability of control
plane communications, and single points of failure [KKS13|; [Kre+15]; [SNS16];
[Yoo+17a|; [JKK19]; [Sec+19]. For instance, attacks such as Know Your Enemy
(KYE) allow malicious users to gather configuration information of the network
without being detected [CDM17]. KYE exploits the on-demand installation of flow
rules of OpenFlow-enabled networks, allowing the attacker to discover which con-
ditions are triggering the installation of a given flow rule. This type of information
can be afterward used to evade the actions of security systems of the network, such
as IPS, Intrusion Detection System (IDS), and other anomaly detection systems.
For a comprehensive list of attacks and vulnerabilities on OpenFlow networks, we
refer the reader to surveys and papers such as [Kre+15]; [SNS16]; [Yoo+17al;
[TSS17]; [CDM17|; [Kha+17]; [AvW18]; [Sec+19]; [JKK19|; [Lee+20].

2.3 Security requirements of control plane commu-
nications

In this section, we summarize security requirements and principles related to se-
curing control plane communications one of the core target of our thesis. We
start with traditional security properties (Section m, such as confidentiality,
integrity, and authenticity. Then, we discuss stronger and more advanced prop-
erties (Section m, such as post-compromise security, perfect forward secrecy,
and post-quantum security. Finally, in Section [2.3.3 we summarize the security
principles advocated by the Open Networking Foundation (ONF) |[ONF15].

2.3.1 Traditional security properties

Confidentiality, integrity, and authenticity are fundamental security properties of
any system and it is not different with SDN [Mat+19]. The lack of any of these
properties can lead to severe consequences for the communicating parties such
as controllers and forwarding devices. Without confidentiality, an adversary can
gather sensitive information such as the data plane configuration and security
policies being enforced in the network. The malicious user can use this information
to attack specific systems or evade security appliances through techniques such as
teleportation |[I'SS17|, for instance.

The lack of integrity can lead to man-in-the-middle attacks where the adversary
changes the data being sent from C (e.g., controller) to F (e.g., forwarding device).

17

Without integrity checks, the latter will have no way to know if the received data
is indeed the same sent by C. In this case, configurations sent by the controller to
a forwarding device can be changed in real-time by an adversary. Consequently,
the switch might be running the adversary’s network configuration instead of the
one defined by the network operator.

Finally, authenticity allows the receiver F to be sure whether the data was
sent by C or not. In practice, by sharing a session key, C and F can check the
authenticity of messages, using message authentication codes, as long as the ses-
sion key does not leak. No third-party will be able to forge an authentic message
without knowing the shared secret key known only by C and F. In short, confi-
dentiality, integrity, and authenticity are fundamental requirements for enforcing
security on control plane communications. However, these essential properties are
not enough for ensuring the security of present, past, and future communications.
Other properties are required as well.

2.3.2 Advanced security properties

Systems resilient to attacks from quantum computers (i.e. provide post-quantum
security (PQS) can be build using symmetric cryptography (or new quantum-
resistant cryptographic algorithms) |Ber09|. For instance, several of the current
implementations of TLS are not post-quantum secure because they rely on the clas-
sic Public Key Infrastructure (PKI) model and signature algorithms. This requires
traditional asymmetric cryptography to bootstrap the protocol, i.e., generate the
symmetric session keys. Unfortunately, a quantum computer can efficiently com-
promise this first step of the protocol, leading to a complete failure of the system
regarding the security guarantees. However, it is worth noting that organizations
such as the National Institute of Standards and Technology (NIST) are currently
proposing new quantum-resistant cryptographic algorithms. For instance, post-
quantum signature algorithm candidates (e.g., for authentication in TLS 1.3) have
been under evaluation recently [SKD20]; [PST20].

Perfect forward secrecy (PFS) is another security property of communica-
tion protocols. When a protocol P has PFS, past short-term keys (e.g., session
keys or passwords) remain safe even if long-term keys are compromised [MVV96];
[Wu-+98]. It means that recorded encrypted communications of past short-term
keys cannot be decrypted after a future compromise of the long-term keys, even if
the adversary actively interfered in the past communications. Such property is cru-
cial to safeguard the sensitive information of the network, i.e., an adversary should
not be able to decrypt past control plane communications amongst controllers and
forwarding devices. In this way, the attacker will not be able to reconstruct the
configurations of the network that were enforced before the compromise.

18

Post-compromise security (PCS) is used to protect future communications,
i.e., happening after a compromise [CCG16|. Let us assume that C and F are two
communicating parties using a protocol P (e.g., TLS) and the secrets of F have
been compromised. In this case, we can say that P is post-compromise secure only
if C still has a security guarantee about the communication with F, i.e., C needs
a way to know if it is communicating with F or with an attacker in possession of
F’s secrets.

2.3.3 ONEF security principles

Table [2.2{ summarizes the security principles for SDN as defined by ONF [ONF15].
Security principles 2, 4, 6, and 8 are amongst the central pillars for building se-
cure systems. For instance, the properties of principle 8, such as clear security
assumptions, are fundamental when proposing new systems or protocols. The
lack of explicit assumptions can void any conclusion or proof about the security
of the system [Wan-+13|; |[GT16]. Similarly, other properties such as simplicity,
scalability, and automation are crucial for building robust and state of the art
systems |JSV17]; [RWW17|; [RLM19|; [VM15|. Another interesting example is
principle 2. Currently, SDN lacks services and mechanisms for robust identifica-
tion, authentication, authorization, and association of devices in the network, for
instance. This leads to several security issues as previously discussed in Section [2.2]

2.4 Securing Control Plane Communications

There are several projects addressing security issues such as user, application, and

host authentication through common Authentication, Authorization, and Account-

ing (AAA) services. In general, those projects rely essentially on password or PKI

certificate-based user as well as host authentication (e.g., Remote Authentication

Dial-In User Service (RADIUS)/802.1x) |[Engl2|; |[Tos+14]; [CKM16|; [RHE16];

[Kam+16[; [Wan+19al; [MD16]; [ONO16|; [Hua+17]; [Opel8d|; [Fan+19]; [JKK19];
[Han+19]; [Mah+19]; [Mol+19]. Additionally, the 802.1x has some drawbacks,

such as the individual configuration that must be performed on each switch/host,

which can lead to human errors and security policy issues.

To avoid the drawbacks of the 802.1x, people are trying different approaches
for IoT and networks that promote the Bring Your Own Device (BYOD) concept.
For instance, SAFE proposes a new set of services for SDN, allowing a greater di-
versity of authentication mechanisms [Kam+16]. SAFE is a controller for isolating
unauthenticated hosts that connect to the network. Each non-authenticated host
is mapped to a specific network slice, using as reference the host’s Media Access
Control (MAC) address and the port on which it is connected to the SDN switch.

19

Table 2.2: Security principles for SDN

Principle

Goal

1 Clearly define security depen- Simplify risk analysis and security control evalu-
dencies and trust boundaries. ation.

2 Assure robust identity. Provide a strong identity for authentication, au-

thorization, and accounting.

3 Build security based on open Promote portability and interoperability of sys-
standards. tems.

4 Protect the information secu- Ensure confidentiality, integrity, and availability
rity triad. (CIA) on the entire ecosystem.

5 Protect operational reference Ensure the integrity of the reference data (e.g.,
data. credentials and sequence numbers, nonces).

6 Make systems secure by de- Provide multiple security levels to meet the needs
fault. of the different system use cases.

7 Provide accountability and Ensure comprehensive logging data for auditing/-
traceability. forensic purposes.

8 Properties of manageable se- Provide a set of properties for new security con-

curity controls.

trols for SDN (e.g., clear assumptions, simplicity,

scalability, automation).

Once the host has been authenticated, it can be moved to a different network slice.
However, whilst those projects are an important step to improve the security of the
network, one of the essential requirements of SDNs is secure and trustworthy au-
thentication and authorization services for the network infrastructure itself. Only
then it will be possible to ensure the security of control plane communications
amongst controllers and forwarding devices.

Recently, some works have been trying to address security issues related to
control plane communications, such as the lack of strong identification and au-
thentication amongst control plane devices [ACW16|; [LP17]; [BF18]; [Mah+19];
[Wan+19a|; |[Lam+18|. For instance, lightweight authentication mechanisms, such
as HiAuth [AW19|, have been proposed for protecting SDN controllers from DoS
attacks. HiAuth uses an information hiding technique to verify the legitimacy of
forwarding devices through bitwise operations on OpenFlow’s XID header filed (or
transaction identifier). At the same time that such lightweight technique can be
used to mitigate DoS attacks, it does not address other security issues of control

20

plane communications — such as authenticity, integrity, confidentiality, and data
freshness.

Furthermore, a considerable number of proposals rely on PKI and TLS to
provide essential security properties and security services for control plane com-
munications |[CPP15|; |[Lam+16]; [Opel8c|; |[ONO16|; [AS17]; |[LP17]; [MT19];
[Cao+19]; [Yig+19]. Whilst they can provide security properties such as authen-
ticity, integrity, and confidentiality for messages in transit amongst forwarding
devices and controllers, it does not (by itself) solve issues such as switch iden-
tification spoofing (e.g., OpenFlow Datapath ID (DPID) overwrite), eavesdrop,
and man-in-the-middle [KPY15]; [Dov17]; [Lee+17]; [Sec+17]; [Sonl8|; [Lee+20].
Indeed, several open-source controllers (e.g., ODL, OpenIRIS) are prone to these
vulnerabilities. One of the problems related to DPID is that some controllers sim-
ply overwrite existing switch connections with new ones. In other cases, controllers
just send packets to all switches with the same DPID. Even though OpenFlow uses
a DPID to identify the data planes, the protocol does not provide means to au-
thenticate the switch’s DPID.

It is also worth noting that the setup process of TLS connections amongst
forwarding devices and several controllers is typically manua]ﬂ This makes them
more prone to attacks. For instance, the setup of an Open vSwitch is done by
typing a command on the command-line interface (CLI). Firstly, it means that
you can connect the forwarding device to any (fake or not) available controller.
Secondly, if an attacker spoofs the controller’s Internet Protocol (IP), then all for-
warding devices will be connecting to a fake controller instead of the real one. From
a security perspective, we might need more than the controller’s IP address, port
number, and a certificate to ensure the security of control plane communications.
In Chapters [4] and [5, we provide further information on different issues of PKI-
/TLS-based solutions, such as the complexity of the code base, that recurrently
leads to vulnerabilities being discovered and new attacks.

There are several related works in the literature, however, in what follows we
choose the ones that had a better correlation with our proposal, as summarized at
the end of this section. To do that, we analyzed HiAuth (a lightweight authentica-
tion mechanism, which was already discussed), ODL (representing controllers that
support TLS, such as ONOS, ODL, and Floodlight), R-AAA (Resilient RADIUS
for 802.1x authentication using Extensible Authentication Protocol (EAP)-TLS),
PKI (needed for issuing certificates for TLS-based solutions), DECIM (detecting
the compromise of long term secret keys), PQDSS (post-quantum digital signature
schemes), Fleet (SDN controller to mitigate insider threats), as well as ANCHOR

2There are some exceptions though. For instance, the Secure Network Bootstrapping Infras-
tructure (SNBI) of the ODL controller is used to bootstrap devices through IPv6 addressing,
neighbor discovery, and 802.1AR credentials [Opel8c|; [Scol7|; [IEE1S].

21

and R-ANCHOR mechanisms.

Differently from most SDN controllers, ODL has a bootstrap service named
SNBI [Opel8¢|. This service takes advantage of manufacturer-installed IEEE
802.1AR certificates [IEE18| to secure communications and bootstrap forward-
ing devices. In short, if the device has a valid IEEE 802.1AR certificate, it will be
identified, registered, and authorized within the controller’s domain. However, we
have to rely on PKI as well as TLS and trust the secrets and certificates issued
by the manufacturer of the forwarding devices. This might be a problem in a
post-Snowden era and because of the issues related to PKI and TLS, as we fur-
ther elaborate on the following chapters. To give an example, the IEEE 802.1AR
standard [IEE18]| itself warns users about the quality of the device identification
(DevID) secret, which can impair the quality of the generated certificates. Both
poor randomness and unfitting management of the secret generation process can
compromise security. In Chapter [5| we introduce the design and implementation
of high-quality secret generators, such as strong sources of entropy and resilient
pseudorandom generators.

PKI [Mau96|; [Her+00|; [Hou+02] is required, by controllers that support TLS,
to generate and manage the certificates that can be used for device registration,
authentication, and association. However, the controller can only verify if the
certificate is valid or not, which means that we do not have fine-grained (or reliable)
control of services such as device registration (i.e., with an explicit acknowledgment
of network managers). The track record of the managers responsible for each
device added to the network can be used for accounting and auditing purposes, for
instance. One could also argue that certificate attributes can be used to identify
which controllers a forwarding device can associate with. However, this could
increase the complexity and OPEX of the network.

Perfect forward secrecy (,) of traditional solutions, such as those provided
by the different implementations of TLS, is not easy or simple to enforce. Firstly,
despite TLS providing ciphers that offer PF'S, in practice, different cipher suites do
not feature it [SHS15|. This means that not all implementations and deployments
of TLS offer PF'S or provide it with very low encryption grade [Hua+14|; [Nam19];
[Digl7]. To give an example, widely deployed web servers, such as Apache and
Nginx, may suffer from weak PFS configuration |[Digl7|. Research findings also
show that most Diffie-Hellman key Exchange (DHE)- and Elliptic Curve Diffie-
Hellman key Exchange (ECDHE)-enabled servers use weak Diffie-Hellman (DH)
parameters or practices that greatly reduce the protection afforded by PFS, such as
private value reuse, TLS session resumption, and TLS session tickets, i.e., provide
a false sense of security [Hua+14]; [Adr+15al; [SDHI16].

Some SDN controllers, such as ONOS and ODL, offer resilience (;) in the sense
that they provide a distributed control plane. Therefore, if one controller instance

22

goes down, there are still other instances capable of taking over. Nevertheless, in
practice, they are neither designed to overcome benign faults (e.g., software bugs
affecting all replicas at the same time) nor malicious faults (e.g., DoS attacks,
compromise of controller instances) yet.

R-AAA [Kre+14], or resilient RADIUS, is a new fault- and intrusion-tolerant
architecture for Authentication and Authorization Infrastructures (AATs). It uses
trusted components and state machine replication to tolerate both crash and
Byzantine faults, such as resource exhaustion attacks |[Kre416]. RADIUS is a
traditional AAA service using third-party backend services such as OpenLDAP to
provide user registration, identification, and authentication (.). With RADIUS in
place, authenticated users are authorized () by the forwarding devices to establish
an association (e.g., user/supplication <=> switch) and use networking resources
(e.g., access the intranet or Internet). In the case of R-ANCHOR (,), our initial
goal is to provide fail-fast mechanisms, i.e., a way of automatically recovering after
a failure or compromise. A full fault- and intrusion-tolerant version of ANCHOR is
an interesting future work to pursue.

Differently from the previous systems, PQDSS [Cha+17] solves rather particu-
lar issues. PQDSS is one example of a new class of post-quantum digital signature
schemes that use only symmetric-key primitives. A system based on such prim-
itives is believed to be quantum-secure. Similarly, we use only symmetric-key
primitives in ANCHOR and R-ANCHOR.

DCIM [YRCI18]| is a new approach for detecting the compromise of a partic-
ipant in an end-to-end communication (e.g., instant messaging applications such
as Signal |Opel9al). It provides means for the automatic detection of compro-
mised long-term keys through a public append-only Merkle tree log. Once the
compromise is detected, users are notified and can take measures to ensure post-
compromise security, such as getting a new key/certificate from the underlying
PKI. While it does not provide automatic security to the post-compromise recov-
ery process, which is one of our goals, it does automatically detect compromises

(a)-

Fleet [MHP14] proposes a new SDN controller to mitigate insider threats
(ITM), i.e., to reduce the privilege of network administrators. It uses threshold
cryptography and assumes that up to k£ out of n network managers can be mali-
cious without compromising data plane configuration updates on a multi-controller
scenario (e.g., one network manager per controller). In R-ANCHOR, to mitigate in-
sider threats, we require the explicit acknowledgment of f+ 1 managers to register
a new forwarding device in the network, for instance.

Table summarizes the related work regarding essential security properties,
functions, and services that provide (or can be used to) secure control plane com-
munications amongst controllers and forwarding devices.

23

Table 2.3: Securing control plane communications

Functionality HiAuth Fleet ODL PKI DECIM PQDSS R-AAA ANCHOR R-ANCHOR
Reference |[ACW16| [MHP14] |Opel8a] [Mau96] |YRC18| [Cha+17||Kre+14] [Kre+19]
Registration X R X - v - X - X - X) v (e) - v 4
Identification v X v v X X v (e) v v
Authentication v X v v X X v (e) v v
Authorization X X v v (c) X X v (e) v v
Association X X X v X X v(¢) v v
CIA X X v X X X v v v
Properties PFS X X v (a) X 4 X v (a) v v
PCS X X X X v X X 4 v
PQS X X X X X v X v v
IT™ X 4 X X X X X X v
Robustness ReS X X V() X X X v/ X v (g)
AuS X x X X) X X X v (n)
Encryption X X v X v X v v v

Confidentiality, Integrity, Availability (CIA);

Insider Threat Mitigation (ITM);

Resilient Services (ReS);

Automatic Security (AuS) (e.g., automatic PCS/Post-Compromise Recovery (PCR)).

Finally, it is worth noting that works such as FortNOX [Por-+12|, AVANT-
GUARD [Shi+13c|, LineSwitch [Amb-+15|, TopoGuard [Hon+15|, CPMF [Son+17],
SDNsec [Sas+16|, SE-Floodlight [Shi+13b|, SPHINX |[Dha+15|, SFaaS |[Kuo+1§|,
SODA |Kim+19|, Defense4All |[Opel9b|, amongst others [SNS16]; [RR17]; [LMK16];
[IK18]; [Han+19]|, provide different security and resilience features, as well as ser-
vices, to SDN, such as protection mechanisms against DoS attacks on control and
data planes, innovative algorithms for detecting malicious switches, efficient control
path recovery, application isolation, automatic conflict resolution for concurrent
flow rules and incremental validation of network configuration updates. Others,
such as FRESCO [Shi+13a], introduce frameworks for simplifying and accelerating
the composition of new security services (e.g., firewalls) using OpenFlow. How-
ever, all these proposals are complementary to ours. In fact, there is (arguably)
an open avenue for integrating solutions such as AVANT-GUARD, LineSwitch,
FRESCO, SODA, Defense4All, and ANCHOR/R-ANCHOR, for instance.

24

2.5 Final Remarks

Several attacks against the SDN infrastructure exploit different vulnerabilities of
the control plane, such as the lack of authentication, authorization, and other
security properties, namely integrity, confidentiality, and data freshness [AAS14|;
[Kre-+15]; [SNS16]; [Han+19|. However, despite the growing number of works ad-
dressing security issues of SDN [Por+-12|; [SG13]; [SOS13|; [Shi+13a]; [Shi+14];
[WAv17|; [ANH17|; [Han-+19|; [NK19|; [AAP19]|, not much attention has been
given to device identification, authentication, and authorization, as well as con-
trol plane associations and communication amongst devices, the major aspect we
address in this thesis.

Implementing trust amongst controllers and forwarding devices is one of the
main requirements for ensuring that malicious elements cannot harm the network
without being detected. For instance, an attacker can spoof the IP address of the
controller and make switches connect to its fake controller. This is currently the
case since most controllers and switches establish insecure Transport Control Pro-
tocol (TCP) connections or lack trust management solutions [Sam15|; |Azi-+18];
[Han+19]; [Mat+19]. Moreover, even the controllers that support TLS have vul-
nerabilities that allows an adversary to launch attacks such as switch identification
spoofing |Lee+17]. One way of mitigating this lack of trust amongst controllers
and forwarding devices is by using a secure logically centralized root-of-trust, as
we propose.

Furthermore, to the best of our knowledge, none of the related works provides
a comprehensive and by design approach for solving security issues of SDN effec-
tively. Our solution, ANCHOR, is designed to provide all properties and function-
alities as aforementioned. Furthermore, an architectural approach such as the one
we propose here (which ultimately led to following the SDN philosophy of “logical
centralization”) is lacking. Importantly, this approach allowed us to gain a global
perspective of the relevant gaps in SDN and the limitations of existing solutions
to the problem. This first step gave insight into one of the most relevant prob-
lems of SDN (as noted as well by ONF and MEF (MEF) security groups [ONF19];
[IMEF20)|): the security of the associations and communications amongst devices.

Finally, taking into account the current status-quo, it is worth emphasizing a
few recommendations and open challenges:

1. Security should be baked in from the start (i.e., security by design, as ex-
amples in the literature show [Cas+18|; [LS17]; [CHH16|; [Pasl4]; [Carl7|;
[Dac+17]; [Han-+19]; [FM19]).

2. We must make sure that the security amongst forwarding devices and con-
trollers is configured properly |[Pas14).

25

3. The SDN ecosystem is becoming too complex, which means that it is time
to re-think the design and modularization of the SDN architecture [TZN16;
|Guo+16|; [Dac+17]; [Lee+17]; [Sec+17]; [Scol7|; [AvW1S].

4. Several OpenFlow controllers supporting TLS are vulnerable to several at-
tacks on applications and control plane communications [Noh+16|; |[Lee+17];
[Sec+17]; [Yoo+17al; [Xu+17|; [MT19].

5. Proper dynamic device registration and association, as well as trust manage-
ment amongst controllers and forwarding devices, are essential requirements
to SDN |ONF15]; [Kre+15]; [Yoo+17al; [Par+-17]; [Han+19].

6. Current OpenFlow controllers implement only a fraction of the security
mechanisms required to address the security issues introduced in previous
sections. IP check, user authentication, anti-DoS from computing capac-
ity exhaustion, closing unnecessary ports/services, authorization for access
to sensitive data, and privileged control of applications are examples of
security checks and mechanisms currently implemented in OpenFlow con-
trollers |[Guo+16|; [McB+13|; [Han+19].

Our main goal is to work towards a holistic (and by design) solution for ad-
dressing recommendations and open challenges from 1 to 5. To achieve our goal,
we propose the logical centralization of non-functional properties, taking security
as our use case.

26

Chapter 3

Logical Centralization Revisited

In this chapter, we start by reviewing and elaborating on the principle of using
logical centralization for the successful enforcement of generic non-functional prop-
erties in SDN, showing its advantages and presenting the generic blueprint of the
ANCHOR architectural concept (Section . Then, we apply the roadmap to spe-
cializing the architecture to a given non-functional property class. In our case,
we identify the broad security challenges of SDN and extract requirements to be
fulfilled by the architecture (Section . We conclude the chapter by present-
ing the outline of a logically-centralized security architecture based on ANCHOR
(Section 3.3)), whose building blocks will be detailed in the next chapters.

3.1 ANCHOR Blueprint

As explained in the introduction, the logical centralization of the provision of non-
functional properties allows us to: (1) define and enforce global policies for those
properties; (2) reduce the complexity of controllers and forwarding devices; (3)
ensure higher levels of robustness for critical services; (4) foster interoperability
of the non-functional property enforcement mechanisms; and finally (5) better
promote the resilience of the architecture itself. Let us explain the rationale for
these claims.

Define and enforce global policies for non-functional properties. One can en-
force non-functional properties through piecewise, partial policies. But it is easier
and less error-prone, as attested by SDN architectures with respect to the func-
tional properties, to enforce e.g., security or dependability policies, from a central
trust point, in a globally consistent way. Especially when one considers changing
policies during system lifetime.

Reduce the complexity of controllers and forwarding devices. One of the most
powerful ideas of SDN was exactly to simplify the construction of devices, by

27

stripping them of functionality, centralized on controllers. We are extending the
scope of the concept, by relieving both controllers and devices from ad-hoc and
redundant implementations of sophisticated mechanisms that are bound to have
a critical impact on the entire network.

Ensure higher levels of robustness for critical services. Enforcing non-functional
properties like dependability or security has a critical scope, as it potentially affects
the entire network. Unfortunately, the robustness of devices and controllers is still
a concern, as they are becoming rather complex, which leads to several critical
vulnerabilities, as amply exemplified in [SNS16|; [Dac+17]; [Akh+16]; [Ahm+15];
[IK18]; [AAP19]; [Viz+19|. For these reasons, a single device or controller may
become a single point of failure for the network. A centralized concept as we advo-
cate might considerably improve on the situation, exactly because the enforcement
of non-functional properties would be achieved through a specialized subsystem,
minimally interfering with the SDN payload architecture. A dedicated implemen-
tation, carefully designed, would be re-usable, not re-implemented, by the payload
components.

Foster interoperability of the non-functional property enforcement mechanisms.
Different controllers require different configurations today, and a potential lack of
interoperability in terms of non-functional properties arises. Global policies and
mechanisms for non-functional property enforcement would also mean an easy path
to foster controller and device interoperability (e.g., East and Westbound APIs)
in what concerns the former. This way, mechanisms can be modified or added,
and have a global repercussion, without the challenge of having to implement
such services in each component. As another example, it is easier to ensure the
security and dependability of a modularized and small code base than a huge
controller. Differently from a controller, the “logically-centralized” non-functional
properties do not have stringent performance requirements, such as latency. This
allows us to add advanced protocols and mechanisms to ensure the resiliency of
the architecture. Moreover, similarly to control applications, new functionalities
can be added to the “logically-centralized” architecture by adding new modules. In
most cases, this could be simpler than to change an SDN controller. For instance,
ODL has already more than 3.7M lines of code [TFS19].

Better promote the resilience of the architecture itself. Having a specialized
subsystem architecture already helps for a start, since for example, its operation
is not affected by latency and throughput fluctuations of the (payload) control
platforms themselves. However, the considerable advantage of both the decoupling
and the centralization, is that it becomes straightforward to design in security and
dependability measures for the architecture itself, such as advanced techniques and
mechanisms to tolerate faults and intrusions (and in essence overcome the main
disadvantage of centralization, the potential single-point-of-failure risk).

28

The means to fulfill the “logically-centralized” perspective of non-functional
property enforcement and achieve the above-mentioned objectives, is the ANCHOR
subsystem architecture, whose blueprint and general outline is depicted in Fig-
ure ANCHOR does not modify the essence of the current SDN architecture
with its payload controllers and forwarding devices, but rather stands aside, ‘an-
chors’ (logically-centralizes) crucial functionality and properties and ‘hooks’ to the
latter components, in order to enforce the desired properties.

SDN Controller ANCHOR

[Net App lﬂ [Net App lﬂ / \
Y Zun e \I
1 .
Network _ | Security ;I
Operating z D e
System 1 ; I ; (T \|

3
-) | R -
S~

(e 0

SDN Device /gg\ ! _(Eu_ahtz gf_SEr_/IEe_ j
FLOW TABLES (- ------ ~
% % % z 1 Performance |

Figure 3.1: Logically-centralized enforcement of non-functional properties

Thus, it acts as a centralized anchor of trust, a specific middleware whose main
aim is to ensure that certain properties — for example, the security of control plane
associations and of communication amongst controllers and forwarding devices, or
the dependability of controller operations — are met throughout the architecture.
So, on commercial off-the-shelf (COTS) forwarding devices and controllers, we just
need to add the local counterparts to the ANCHOR middleware mechanisms and
protocols, or HOOKs, to interpret and follow the ANCHOR’s instructions.

The question is now how to specialize ANCHOR for a given purpose. We iden-
tified at least four steps to achieve such goal: (a) select the class(es) of properties
to enforce (security, dependability, quality-of-service, etc.); (b) identify the cur-
rent gaps that stand in the way of achieving such properties in SDNs; (c¢) design
a logically-centralized subsystem architecture and middleware, with hooks to the
main SDN architectural components, in a way that they can inherit the desired
specific properties; (d) populate the middleware with the appropriate mechanisms
and protocols to enforce the desired properties/predicates, across controllers and
forwarding devices, in a global and consistent manner.

We conjecture that the general concept and architectural principles can satis-
factorily enhance the current state of the art with regard to non-functional prop-
erties (e.g., security, dependability, performance, quality of service). We are going

29

to validate our proposal with logically-centralized security, and we leave it to be
validated in the future for other property classes.

3.2 Security Challenges

Our approach of using an architecture enforcing logically-centralized security, for
solving the main security problems for SDN and meets some challenges, inspired by
the comprehensive state-of-the-art review performed in Chapter [2l We organized
them around a few gaps that have to be bridged in designing the architecture.

In the following subsections, we discuss the main challenges posed by these
gaps — (i) security-performance; (ii) complexity-robustness; (iii) global security
policies; (iv) resilient roots-of-trust; (v) simplicity, automation and security by
default; and (vi) insider threats — as well as the requirements they put on such a
logically-centralized architecture for enforcing security as a non-functional system

property.

3.2.1 Security vs performance

The security-performance gap comes from the conflict between ensuring high per-
formance and using secure primitives. This gap affects directly the control plane
communication, which is the crucial link between controllers and forwarding de-
vices, allowing remote configuration of the data plane at runtime. Control channels
need to provide high performance (high throughput and low latency) while keeping
the communication secure.

The latency experienced by control plane communication is particularly critical
for SDN operation. The increased latency is a problem per se, in terms of reduced
responsiveness, but may also limit control plane scalability, which can be partic-
ularly problematic in large datacenters [BAM10]; [KDH18|. Most of the existing
commercial switches already have low control plane performance on TCP (e.g., a
few hundred flows/s [Kre+15], see Section V.A.). Adding crypto worsens the prob-
lem: previous works have demonstrated that the use of cryptographic primitives
has a perceivable impact on the latency of sensitive communication, such as Voice
over Internet Protocol (VoIP) [She+12]| (e.g., TLS incurs 166% additional Central
Processing Unit (CPU) cycles compared to TCP), network operations protocols
such as Simple Network Management Protocol (SNMP) [SM11|, Network Time
Protocol (NTP) |DSZ16], OpenFlow-enabled networks |[Kre+417], and Hypertext
Transfer Protocol Secure (HTTPS) connections |[Nay+14|. Perhaps not surpris-
ingly, the number of SDN controllers and switching hardware supporting TLS (the
protocol recommended by ONF to address security of control plane communica-
tion |ONF14]; [ONF15]) is still low [Sam15|; [ACW16]; |[SNS16]; [LMK16|; [BEI19].

30

Recent research has indeed suggested that one of the reasons for the slow adoption
is related to the security-performance trade-off [Kre+18].

Recent research confirms that other essential security mechanisms introduce
additional overhead on the control plane. For instance, security extensions such
as topology permission and header space permission impose an overhead of 5% to
20% on state of the art controllers such as ONOS and ODL [Yoo-+17b].

Ideally, we would have both security robustness and performance on control
plane channels. Considering the current scenario of SDN; it therefore seems clear
the need to investigate lightweight alternatives for securing control plane commu-
nication. In the context of the security-performance gap, some directions that we
point to in our architectural proposal ahead are, for instance, the careful selection
of cryptographic primitives [Kre+18|, and the adoption of cryptographic libraries
exhibiting a good performance-security trade-off, such as NaCl [BLS12|, or of
mechanisms allowing per-message one-time-key distribution (e.g., iDVV |[Kre+18]).
We return to these mechanisms later.

3.2.2 Complexity vs robustness

The complexity-robustness gap represents the conflict between the current com-
plexity of security and crypto implementations, and the negative impact this has
on robustness and hence correctness, hindering the ultimate goal.

In the past few years, studies have recurrently shown several critical misuse is-
sues of cryptographic APIs of different TLS implementations [Ege+13|; [Buh+15];
|[Raz+17]; [FWC16]; |Grel7|; |Cho+17al; [Aca+17]; |[GPM15]; |AY18]; [LW18|;
[Wan+19c|. One of the main root causes of these misuse issues is the inherent
complexity of traditional cryptographic APIs and the knowledge required to use
them without compromising security. For instance, more than 80% of the Android
mobile applications make at least one mistake related to cryptographic APIs.

Recent studies have also found different vulnerabilities in TLS implementa-
tions and have shown that longstanding implementations, such as OpenSS in-
cluding its extensive cryptography, is unlikely to be completely verified in the
near future |Beu+15]; [FWC16|. To address this issue, a few projects, such as
miTLS [Bha+ 13| and Everest [Bha+ 17|, propose new and verified implementa-
tions of TLS. Other initiatives, such as TLSAssistant [MRS19], take a different
approach. TLSAssistant tries to analyze TLS configurations and recommend ap-
propriate mitigations for viable attacks. However, different challenges remain to
be addressed before having a solution ready for wide use, such as empirically prove

1OpenSSL suffers from different fundamental issues such as too many legacy features accumu-
lated over time, too many alternative modes as result of trade-offs made in the standardization,
and too much focus on the web and Domain Name System (DNS) names.

31

that verified software is better, deploy small-Trusted Computing Base (TCB) ver-
sions to demonstrate resistance to practical attacks, reconcile low level structured
memory model with “big array of bytes” view of memory, and time of (eventual)
widespread adoption (e.g., it might take one decade) [Bha+17].

While the problem persists, the number of dangerous occurrences proliferates.
Recent examples include vulnerabilities that allow recovering the secret key of
OpenSSL at a low cost [YB14], timing attacks that explore vulnerabilities in both
PolarSSL and OpenSSL |AF13|; [BT11], several fault attacks on OpenSSL’s im-
plementation of elliptic curve cryptography [TT19], secret security patches on
OpenSSL, LibreSSL, and BoringSSL with several lagging days, allowing attack-
ers to exploit “0-day” vulnerabilities for long periods of time [Wan-+19b|, MITM
attacks on the control plane of SDN [Jer+17b]. On the other hand, failures in
classical PKI-based authentication and authorization subsystems have been per-
sistently happening [Crol7]; [PwC14]; [Hil13|; [Meul3|; [Hil13|; [MB16]; [Hep+19];
[SHC19|, with the sheer complexity of those systems being considered one of the
root causes behind these problems. Some renowned cryptographers are even argu-
ing that (in a post-Snowden era) “PKI is too flawed and dangerous. We need to
come up with something new.” [Shalj].

Considering the widely acknowledged principle that simplicity is key to ro-
bustness, especially for secure systems, we advocate and try to demonstrate that
the complexity-robustness gap can be significantly closed through a methodical ap-
proach toward less complex but equally secure alternative solutions. NaCl [BLS12],
which we mentioned in the previous section, can be rightly called again in this con-
text: it is one of the first attempts to provide a less complex, efficient, yet secure
alternative to OpenSSL-like implementations. Mechanisms simplifying key dis-
tribution, authentication and authorization, such as iDVVs [Kre+18|, could help
mitigate PKI’s problems. By following this direction, we are applying the same
principle of vulnerability reduction used in other systems, such as unikernels, where
the idea is to reduce the attack surface by generating a smaller overall footprint
of the operating system and applications [WK16|.

In summary, we can argue that the complexity of the most common TLS imple-
mentations (e.g., OpenSSL) and the required PKI, leads to somewhat unbalanced
complexity-robustness tradeoffs. On the other hand, less complex and equally
secure libraries, such as NaCl |[BLS12|, can provide the same levels of security
with high performance. Indeed, NaCl (or libsodium in Linux systems) is being
widely used in research, applications, projects, programming languages, and com-
panies |[Pet-+13]; [NM16]; [Akh17]; [YB14]; [Thel9c|; [Parl9]; [VEV15]|; [SDW17];
[Lua+19|; [Fre+19]; [TB19]. The community around this crypto library is pro-
liferating. The following excerpt from “the anatomy of a bad idea” |Grel2|, by
cryptographer Matthew Green, defines and compares NaCl to OpenSSL in simple

32

words.

“OpenSSL is the space shuttle of crypto libraries. It will get you to
space, provided you have a team of people to push the ten thousand
buttons required to do so. NaCl is more like an elevator — you just
press a button and it takes you there. No frills or options.

I like elevators”

Recent search confirms this excerpt by concluding that APIs (e.g., NaCl) de-
signed for simplicity can provide security benefits — reducing the decision space, i.e.,
preventing the choice of insecure parameters — through convenient and straightfor-
ward interfaces |[Aca+17|. But, this by itself is not enough. Proper documentation
with secure and easy-to-use code examples is also a requirement.

3.2.3 Global security policies

The impact of the lack of global security policies can be illustrated with different
examples. Although ONF describes data authenticity, confidentiality, integrity,
and freshness as fundamental requirements to ensure the security of control plane
communication, it does so in an abstract way, and these measures are often ignored,
or implemented in an ad-hoc manner [SNS16|; [Han+19|. Another example is the
lack of strong authentication and authorization in the control plane. Recent reports
show that widely used controllers, such as Floodlight and OpenDaylight, employ
weak network authentication and other security mechanisms [WAv17|; [SNS16];
[Hon+15]; [Dovl13]; [WW18|; |Viz+19]|; [Dix+18|. This leads to any forwarding
device being able to connect to any controller. However, fake or hostile controllers
or forwarding devices should not be allowed to become part of the network, in
order to keep the network in healthy operation.

From a security perspective, it is non-controversial that device identification,
authentication and authorization should be among the forefront requirements of
any network. All data plane devices should be appropriately registered and au-
thenticated within the network domain, with each association request between any
two devices (e.g., between a switch and a controller) being strictly authorized by
a security policy enforcement point. In addition, control traffic should be secured,
since it is the fundamental vehicle for network control programmability. This begs
the question: why aren’t these mechanisms employed in most deployments?

A strong reason for the current state of affairs is the lack of global guiding and
enforcement policies. It is necessary to define and establish global policies, and
design, or adopt, the necessary mechanisms to enforce them and meet the essential
requirements in order to fill the policy gap. With policies put in place, it becomes
easier to manage all network elements, with respect to registration, authentication,
authorization, and secure communication.

33

3.2.4 Resilient roots-of-trust

A globally recognized, resilient root-of-trust, could improve the global security of
SDN, since current approaches to achieve trust are ad-hoc and partial [ACW16];
[Han+19]. Solving that gap would assist in fostering global mechanisms to ensure
trustworthy registration and association between devices, as discussed previously,
but the benefits would be greater. For instance, a root-of-trust can be used to
provide fundamental mechanisms (e.g., sources of strong entropy or pseudo-random
generators), which would serve as building blocks for specific security functions.

As a first example, modern cryptography relies heavily on strong keys and
the ability to keep them secret. The core feature that defines a strong key is
its randomness. However, the randomness of keys is still a widely neglected is-
sue [VH14|; [DK16]|; [Str16]; [AM18]; [MGM19|; [Wan+20|, and not surprisingly,
weak entropy, and weak random number generation have been the cause of several
significant vulnerabilities in software and devices [HFH16|; |Alb+15]; |[KHL13];
[Hen+12]; [Str16]; [Wan+20|. For instance, findings show that even longstanding
cryptographic libraries, such as OpenSSL, have critical security weaknesses on the
Random Number Generator (RNG) due to the lack of strong entropy [Str16]. Re-
search has also shown that there are still non-negligible problems for hosts and
networking devices [Hen+12|; |Alb+15|; [HFH16|. For instance, a common pat-
tern found in low-resource devices, such as switches, is that the random number
generator of the operating system may lack the input of external sources of en-
tropy to generate reliable cryptographic keys. Even long-standing cryptographic
libraries such as OpenSSL have been recurrently affected by this problem |[KHL13];
[Opel6]. As weak seeds can compromise the output of a Pseudo Random Generator
(PRG) [VH14], it is essential to have sufficient entropy in the system. Otherwise,
weak seeds can lead to crypto systems as strong as a “wall of cards”.

Similarly, as a second example, sources of accurate time, such as the local
clock and the network time protocol, have to be secured to avoid attacks that
can compromise network operation, since time manipulation attacks (e.g., NTP
attack [Mal+16]; [Stel5|) can affect the operation of controllers and applications.
For instance, a controller can be led to deliberately disconnect forwarding devices
if it wrongly perceives the expiration of heartbeat message timeouts.

It is worth emphasizing that the resilient roots-of-trust gap lies exactly in the
relative trust that can be put in partial, local, ad-hoc implementations of criti-
cal functions by controller developers and manufacturers of forwarding devices, in
contrast to a careful, once-and-for-all architectural approach that can be reinstan-
tiated in different SDN deployments. The list not being exhaustive, we claim that
strong sources of entropy, resilient, indistinguishable-from-random number gen-
erators, and accurate, non-forgeable global time services, are fitting examples of
such critical functions to be provided by logically-centralized roots-of-trust, helping

34

close the former gap.

3.2.5 Automation, simplicity, and security by default

Recurrently, reports suggest that human error is one of the main causes of network
downtime [Jun08|; [Bed16|; |Gov+16|; [Sah+17]; |[Ace+18]|; |Pat19]; [Niz19]. Au-
tomation and simplicity are among the core ‘tools’ to address this problem. For
instance, network operators are starting to replace higher layer devices (e.g., IP
routers) with Ethernet switches [Sof09]; [KSM13|; [Maa-+18|; [Mor+18|; [Kou+19];
IMBM17]. Another example is a recent joint research between academia and in-
dustry for developing simplified methods for configuring security services in SDN-
based networks [Par-+19).

The main reason for the widespread adoption of Ethernet networks is its simple
and straightforward configuration. However, Ethernet does not provide the neces-
sary mechanisms to enforce strong security in the network. To address this issue,
the use of centralized cryptography schemes and centralized sources of trust to
authenticate and authorize known entities has been pointed out as a direction for
improving the security of Ethernet networks [KSM13|. Similarly, network security
as a service as been suggested to provide the required security for enterprise SDN
networks [SNS16|; [Han+19].

As recommended by organizations such as ONF |ONF19|, security should be
enforced by default in SDN. It becomes clear that networks must have and en-
force crucial services such as device registration, authentication, and authoriza-
tion. Additionally, in a post-Snowden era, it is utterly important to ensure se-
curity properties such as confidentiality, integrity, authenticity, perfect forward
secrecy, post-compromise security, and post-quantum security for control plane
communications.

Finally, the automation of security services is also fundamental. For instance,
installing a new device in the network should be as simple as to physically (or
logically) connect it to the network and provide a bootstrap authentication code,
meaning that we should have a minimal manual intervention. Other security ser-
vices, such as device association and system recovery after a compromise, should
be automated as well, avoiding error-prone manual configuration.

3.2.6 Insider threats

Insider threats (e.g., physical attacks carried out by internal employees) are al-
ready one of the top security threats [Gogl7|; [Verl9|; [Ekr19]; [Bet19]; [Thel9al;
|[Liu+18|; [Hom+19]; [Cob20]; [Pon20]. Indeed, statistics show that insider at-
tacks happen in practice more often than thought. In 2019, we saw a rise of

35

31% in the cost of insider threats and an average of seventy-seven days to contain
them [Cob20]; [Pon20|, for instance.

Insider attacks are particularly dangerous because they are typically done by
insiders who have the required knowledge and know-how for launching highly ef-
fective attacks, leading to severe implications for data security [Kee+05]; [SD16];
[Nur+-14]; [MHP14|. Indeed, reports show that leaks of sensitive data and theft of
intellectual proprietary have become a concern for organizations of all sizes ;
[SD16]; [Cob20]; [Pon20|. Surprisingly, more than 40% of Information Technology
(IT) professionals, with high privileges in the network and systems, see themselves
as the most significant threat to the enterprise . One of the main reasons
is that they usually hold the ‘keys to the kingdom’.

As a result of this scenario, security threats in SDN infrastructures are even
more concerning when taking into account malicious insiders (e.g., malicious net-
work administrators) [MHP14|; |Gar+19]; |[Cho+19]. Indeed, SDN opens new
doors for malicious insiders. For instance, a malicious administrator, using a sin-
gle fake software-based forwarding device, can easily mirror internal network traffic
or attack the control plane. Therefore, it is vital to mitigate the threats posed by
malicious insiders.

3.3 Logically-Centralized Security

SDN Controller

Net A lﬂ Net A lﬂ
(PP (Ry ANCHOR
Network Secure z \
Operating Control Plane
System Communications _‘ Secure Control Plane
AN Communications

- Z. N\

_
= Y
SDN Device]
Security Services
N/ z | -
FLOW TABLES Secure /

Control Plane
Communications

Figure 3.2: ANCHOR architecture for logically-centralized security

We now approach the last steps of specializing ANCHOR for a given purpose
— security in this case: (d) populate the middleware with the appropriate mecha-
nisms and protocols to enforce the desired properties/predicates, across controllers

36

and devices, in a global and consistent manner.

Figure gives a snapshot of the proposed logically-centralized security archi-
tecture. From the analysis made, we consider two major challenges to be met at
architectural level:

e The design and implementation of a root of trust to enforce logically-central-
ized security, providing mechanisms and protocols for essential security ser-
vices.

e The design and implementation of an infrastructure bringing simplicity and
performance to the provision of secure control plane communications.

These form the main concrete blocks of the architecture, to be discussed in
detail in Chapters (4| (KISS) and [5| (ANCHOR).

We refer to our comprehensive analysis of the threat plane of SDN presented in
Section 2.2} in order to get insight about concrete threats that have to be addressed
when responding to the general requirements reviewed in this section. Since we
assume security as our non-functional property use case, that leaves us with nine
threat vectors to attend to of which, as our initial goal, we choose threat vectors
three, eight and nine, as shown in Figure [3.3] and Table 3.1} We describe at least
nine vulnerabilities associated with these threat vectors.

device

N ——

Figure 3.3: Vulnerabilities related to threat vectors three, eight and nine.

37

Table 3.1: Vulnerabilities and main consequences.

Vul. Description

Main consequence

3a Weak identification, authentication, It becomes easy to add fake forwarding
and authorization mechanisms. devices and controllers.
3b Fake forwarding device. High impact attacks on control and
data planes.
3c Fake controller. Easy take over of the network’s control.
3d Lack of confidentiality, integrity, and Leak sensitive information about the
authenticity. network configuration.
3e Lack of perfect forward secrecy. Leak pre-compromise sensitive infor-
mation.
3f Lack of post-compromise security. Leak sensitive information after a com-
promise.
3g Lack of post-quantum security. Security properties become useless
against attacks using quantum com-
puters.
8a Malicious control plane insiders. The security of control plane services
and applications gets jeopardized.
9a Malicious data plane insiders. Fake and malicious forwarding devices

in the network.

Vulnerabilities 3d, 3e, 3f, and 3g are related to security properties such as
confidentiality, integrity, perfect forward secrecy, and post-compromise security.
The lack (or weak enforcement) of such properties can lead to security issues such
as the leak of sensitive information about the network configuration (see Table|3.1)).
Such information can be used by adversaries to launch targeted attacks or to evade
security enforcement middleboxes. For instance, by knowing the configuration of
the network, an attacker can evade the NIDS.

In summary, we can list a few questions to be answered when designing the
concrete blocks of the architecture in Chapters [4] and [5}

1.
2.

How to provide essential security by design (and by default)?

How to securely add and remove devices to/from the network?

of a compromise?

38

. How to ensure the security of past communications between devices in case

. After a post-compromise recovery, how to ensure the security of future com-
munications between devices?

. How to mitigate insider threats?

. How to add security to control plane communications without heavily impair-
ing performance (e.g., the throughput of 20M flows/s [Voe+13| and latency
of 10pus [BAM10]) and without increasing CAPEX/OPEX?

39

40

Chapter 4

Secure Control Plane
Communications

In this chapter, we introduce the KISS infrastructure, a secure SDN control plane
communications architecture, which aims to increase the robustness of control
communications whilst enhancing their performance, by decreasing the complexity
of the support infrastructure, as an alternative to current approaches based on
classic configurations of TLS and PKI. We compare our solution with traditional
ones and show how it can improve the performance without impairing security.

We have organized the chapter as follows. In Sections[4.1]and [4.2] we introduce
the KISS architecture and its core novel component, the iDVV, a deterministic but
indistinguishable-from-random secret code generation protocol. The concept was
inspired by the integrated Card Verification Values (iCVV) used in credit cards
to authenticate and authorize transactions in a secure and inexpensive way. We
develop and extend the idea for SDN, proposing a flexible method of generating
iDVVs by adapting proven one-time password-like techniques. iDVV codes allow
the safe decentralized generation/verification of keys at both ends of the channel,
at will, even on a per-message basis.

To understand and minimize the cost of security, we quantify (Section[4.3.1) the
impact of secure primitives on the performance and scalability of control plane com-
munications, through a comparison study of different implementations of TCP vs.
TLS, complemented by a deeper study of underlying hashing and Message Authen-
tication Code (MAC) primitives. This in-depth study lead to the selection of the
Networking and Cryptography library (NaCl) cryptographic library [BLS12|, and
the best performing MAC and hash primitives — Poly1305 and SHA512 OpenSSL
— as the baseline secure channel technologies for KISS.

Furthermore, in Section we evaluate the iDVV design in terms of per-
formance, security and randomness. Key generation latency of iDVV compares
favorably with common implementations of key derivation functions. On the se-

41

curity side, we prove the indistinguishability-from-random and determinism of the
iDVV generator. Finally, the iDVV successfully passed several empirical random-
ness tests, further confirming its indistinguishability-from-random, and showing
its suitability for highly-robust key generation. We end the chapter with a short
discussion.

4.1 KISS architecture

In this section we present our proposal for KISS, a secure control plane communi-
cations architecture for SDN offering alternatives to classic configurations of secure
channel and authentication protocols and subsystems followed in TLS and PKI.

Figure details the integration of the KISS infrastructure in the architec-
ture for logically-centralized security that had been suggested earlier in Chapter
(Figure. In the following explanations, we assume a typical SDN architecture,
composed of off-the shelf controllers and forwarding devices, and we further as-
sume that device registration and association services are in place (see Chapter
for further details).

SDN Controller

{[f[

[Net App l]] [Net App ﬂ]
Network

Operating -
System

SDN Device

ssi)l (-|o

=

FLOW TABLES

ks

Figure 4.1: KISS framework overview

The two components encapsulated by the KISS boxes are the crucial compo-
nents of the architecture, and the main subject of our study: a secure channel
protocol suite, composed of a judicious choice of state-of-the-art mechanisms and
protocols, which we dub Secure Component (SC) for convenience of description,
and a novel deterministic but indistinguishable-from-random secret code genera-
tion protocol, which we call iDVV (integrated device verification value).

42

We have considered using TLS implementations (e.g., OpenSSL) as the baseline
protocol for SC. However, the experiments in Section [4.3.1 have alerted us to: the
sheer performance cost of cryptographic communication; and the further impact
of sub-optimal choices of cryptographic primitives. This motivated us to adopt
NaCl |[BLS12|, a high performance yet secure cryptographic library, as the crypto
library substrate of SC, complemented by the MAC and hash primitives with best
performance — Poly1305 and SHA512 OpenSSL.

The iDVV, a novel component we propose, helps to further enhance the security
of SC, through strong crypto material generated at a low cost (e.g., one-time
keys, per-message authentication and authorization codes) to be used by NaCl
ciphers. The indistinguishability-from-random allied to the determinism allow the
safe decentralized generation/verification of per-message keys at both ends of the
channel.

4.1.1 System and threat model

For simplicity and without loss of generality, we assume that the controllers and
forwarding devices are registered and associated through a secure and robust key
distribution service provided by a Key Distribution Center (KDC) or Key Distribu-
tion Service (KDS), such as KDCs like Kerberos Key Distribution Center |[NT94|
and KDSs like ANCHOR registration, association and recovery protocols (see Chap-
ter [5).

The device registration process is by default invoked by network administrators
to the KDS, to register new devices. As a result of device registration, the device
and the KDS securely share a symmetric key. We denote K. the shared key
between the KDS authority and a registered controller, and Kjy the shared key
between the KDS authority and a registered forwarding device.

Registered controllers and forwarding devices must be securely associated, also
through the KDS authority, as a precondition to communicate securely. The most
common case is a forwarding device f; requesting an association to a controller
c;, through the KDS. After associating, a controller and a forwarding device share
two symmetric secrets (of size 256 bits), namely a seed;; and a key;;. The key is
generated by the KDS and the seed is generated by the KDS in cooperation with
the controller. These secrets will be used to bootstrap the iDVV module, as we
discuss ahead.

As a threat model, we consider a Dolev-Yao style attacker [DY83|; [Cer01],
who has a complete control of the network, namely the attacker logs all messages,
and can arbitrarily delay, drop, reorder, insert, or modify messages. We assume
the security of the used cryptographic primitives, including MAC (i.e. Poly1305),
hash function (i.e. SHA-512), and symmetric encryption algorithm (e.g., Advanced
Encryption Standard (AES)). We will prove the security of the iDVV codes in

43

Section 4.3} We also assume that the device registration and association services
can rely on robust pseudo-random number generators.

4.1.2 Security goals

The main goal of KISS is to provide security properties including authenticity,
integrity, and confidentiality for control plane communications, while minimizing
cost and complexity.

The secure communication between participants can be easily guaranteed when
a secure encryption algorithm is used, as long as the shared secret key is kept
secure. A shared key can be leaked by compromise of any of KDS, controller, or
forwarding device. Should that happen, it is our goal that a robust SDN system
must provide PFS of communications when shared long-term secrets are exposed
to an attacker. That is, secrecy of past communications from the time the key
became active, to the time it became known to the attacker.

On the devices side, we make no claim about their sheer resilience, since this
is largely dependent on vendors. More precisely, when a controller and/or a for-
warding device is compromised, we consider that the attacker is able to obtain
all knowledge of the victim device(s), including all stored secrets and the ses-
sion status. However, it is our goal to guarantee the confidentiality of all past
communications. We discuss the measures to achieve perfect forward secrecy in

Section [4.3.3.

4.2 1iDVYV: Keep It Simple and Secure

Integrated device verification values are sequentially generated to protect and au-
thenticate requests between two networking devices. The generator is conceived
so that its output sequence has the indistinguishability-from-random and deter-
minism properties. In consequence, the same sequence of random-looking secret
values is generated on both ends of the channel, allowing the safe decentralized
generation /verification of per-message keys at both ends. However, if the seed and
key initial values and the state of the generator are kept secret, there is no way an
adversary can know, predict or generate an iDVV. In other words, an iDVV is a
unique secret value generated by a device F (e.g., a forwarding device), which can
be locally verified by another device C (e.g., a controller). The iDVV generation
is made flexible to serve the needs of SDN. iDVVs can therefore be generated: (a)
on a per message basis; (b) for a sequence of messages; (c) for a specific interval of
time; and (d) for one communication session. The main advantages of iDVVs are
their low cost and the fact that they can be generated locally, i.e., without having
to establish any previous agreement.

44

4.2.1 iDVYV bootstrap

As discussed before, the association between two SDN devices, e.g., forwarding
device f; and controller ¢;, happens through the help of KDS, under the protection
of the long-term secret keys obtained from registration (K, resp. Kj.). The
outcome of the association protocol is the distribution of two random secrets to
both devices: a seed seed,;, and an association key key,;;. The iDVV mechanism is
bootstrapped by installing these two secret values in both the controller and the
switch, to animate the iDVV generation algorithms, which we describe next.

Note that the set-up and generation of the iDVV values are performed in a
deterministic way, so that they can be done locally at both ends. However, as
iDVVs will be used as keys by cryptographic primitives such as MAC or encryption
functions, they have to be indistinguishable from random. Hashing primitives
are natural choices for our algorithms, since they provide indistinguishable-from-
random values if one or more of the input values are known only by the sender
and the receiver. This explains why it is crucial that seed and association key are
sent encrypted and therefore known only to the communicating devices. Moreover,
in order to prevent information leakage, all variables seed, key, and idvv in the
following algorithms should have the same length, which we chose to be 256 bits
in our design. This length is commonly considered robust, and the evaluation in
Section [4.3.4 confirms that. From our experiments reported in Section [4.3.1, the
hashing primitive to be used is SHA512, which yields 512 bits, of which we will
use the most-significant ¢ bits if we need to reduce the output length to ¢ (as
recommended by |Cal+-07|). For example, we use the most-significant 256 bits of
the SHA512 output as the key for symmetric ciphers.

The initial iDVV value is deterministically created at both ends of the associa-
tion between two devicesﬂ by calling function idvv_init, which performs hashing
on the concatenation of the initial seed and key, as illustrated by Algorithm [I}
After set-up, the generator is ready for first use, as described in the following
section.

Algorithm 1: iDVV set-up
1: idvv_init ()
2: idvv < H(seed || key)

4.2.2 iDVYV generation

After the bootstrap with the initial idvv value, the idvv_next function is invoked
on-demand (again, synchronously at both ends of the channel) to autonomously

'For readability, we omit the device-identifying subscripts in the variables.

45

generate authentication or encryption keys that will be used for securing the com-
munications, as illustrated by Algorithm

The key remains the only constant shared secret between the devices. The
seed evolves to a new indistinguishable-from-random value each time idvv_next
is invoked to generate a new iDVV. The new seed is the outcome of a hashing
primitive H over the current seed and current idvv (line 2). The new idvv, output of
function idvv_next, is the outcome of a hashing primitive H over the concatenation
of the new seed and association key key.

Algorithm 2: iDVV generation
1: idvv_next ()
2: seed < H(seed || idvv)
3: idvv < H(seed || key)

4.2.3 iDVYV synchronization

The iDVV mechanism is agnostic w.r.t. secure communication protocols, and can
be used in a number of ways, in a number of protocols, as a key-per-message or
key-per-session, etc. The only key issue about iDVV generation, is to keep it
synchronized in both extremes of the channel. So, we discuss recommendations in
this regard.

As a generic baseline robustness technique, communication should be authen-
ticated (encrypt-then-MAC recommended), such that any messages failing crypto
(decryption or MAC verification), can be simply discarded and that fact han-
dled by existing recovery mechanisms. This brings in robustness against de-
synchronization, or malicious attacks, as we show in what follows.

iDVVs can get out of sync for a number of reasons, like speed differences,
omission errors, or even DoS attacks. When de-synchronization happens, a baseline
technique consists of advancing the iDVV of the “slower” end, to catch up. This lets
us introduce another baseline robustness technique: when say, idvv” is advanced
to idvv' (k < 1) to re-synchronize, and the operation is not successful (crypto fails),
the old idvv” is restored, and the message motivating the recovery, is discarded.

Suppose an attacker can forge a re-synchronization request to claim that it is in
a future state (i.e. with a more advanced iDVV), and fool the recipient to advance
its iDVV to catch up: then the attacker is able to play DoS attacks by repeatedly
asking all devices to synchronize to an advanced iDVV. This is foiled by the first
robustness technique, since the attacker cannot mimic valid crypto, so the message
is discarded, and the second robustness technique ensures that the node gets back
to the original iDVV state.

46

Now we discuss some styles of using iDVVs, and possible protocol classes they
serve:

Simple 1DV'V- used as is, works for lock-step, or producer-consumer commu-
nication, where the advance is, respectively, either round based, alternatively dic-
tated by each end, or dictated by the producer.

If the channel is unreliable, packet losses may occur, and then the receiver
(R) gets out of sync and is not able to verify the next received message from
sender S. If the network has a bounded omission degree (maximum number of
consecutive omissions), say Od, R can perform a simple recovery process: its
iDVV is successively advanced up to Od + 1 times, until it is able to verify the
incoming message. If the process fails, the message is discarded and the iDVV
goes back to the original value (as per the techniques discussed above).

If packet losses can be unexpectedly high, or both ends send competitively
and/or in a non-synchronized way, this algorithm is not suitable.

Indezed 1DVV-iDVVs are indexed by the generation number. Also, they are
operated in “one key per direction” mode, i.e., at each end, one iDVV is gener-
ated for each communication direction. This way, they support competitive, non-
synchronized correspondents. This mode also supports unreliable, connectionless
protocols like User Datagram Protocol (UDP).

Each iDVV generated is indexed by a sequence number (the initial iDVV being
idvv?) and the sequence number is included in the message where the respective
idvv is used. This way, each receiving end (this works in either direction, as we
have two pairs of iDVVs) can know the exact idvv number that should be used
and, for example, detect and recover from omissions, by generating idvv’s the
necessary number of times to resynchronize. Again, the process is robust: if it
fails, the message is discarded and the iDVV goes back to the original value.

Session 1DVV- iDVVs now mark sessions, inside which sets of messages are
sent that use crypto related to the current session iDVV. It is quite suitable for
example, for connection-oriented protocols.

Each idvv? is valid for the entire session j. A session may be a standard,
long-duration session a la Secure Sockets Layer (SSL), or artificially short, rolling
session, for higher security, e.g., in a timed (e.g., l-minute) way. Anyway, at the
end of the session and start of the next one, the idvv? is updated to idvv’*!.

Messages pertaining to a session j, labelled (j), may all use the same idvv?
key. However, this can be improved: inside a session, rolling per-message keys
may be created, based on idvv?, for example, ky = H (idvv’||N), used for message
labelled (j, N), the N-th message in the j-th session. Whenever a message with
label (j, N) is received, if j is the current session, then the device calculates the
key H(idvv’||N) and decrypts or verifies this message. Again, if the process fails,
or j does not match, the message is discarded and the iDVV goes back to the

47

original value.

4.2.4 iDVYV implementation and application

iDVVs require minimal resources, which means that they can be implemented on
any device, from a simple and very limited smart card to most existing devices. In
other words, they are a simple and viable solution that can be embedded in any
networking device. Just three values per association have to be securely stored
— the seed, the association key and the iDVV itself — in order to use iDVV
continuously. Furthermore, only hash functions, simple to implement and with
a very small code base, are required to generate iDVVs. Such kind of resource
is already available on all networking devices that support traditional network
protocols and basic security mechanisms.

Finally, we advocate (and demonstrate in Section that iDVVs are in-
expensive and, as a result, can be used on a per-message basis to secure com-
munication. It is worth emphasizing that, from a security perspective, one fresh
iDVV per message makes it much harder for attacks such as key recovery [HP0S],
advanced side channel attacks [BP10|, among other general Hash-based Message
Authentication Code (HMAC) attacks [Kim+06|, to succeed. In fact, the one-time
key approach was initially used for generating MACs. Yet, it was let aside (i.e.
replaced by keys with a longer lifetime) due to performance reasons. However, as
the iDVV generation has a low cost (see Section , we incur a lower penalty.

4.3 1DVYV Evaluation

In this section, we provide performance and complexity evaluation of the KISS-
iDVV infrastructure. Informal proofs of security and correctness proofs of Algo-

rithms [I] and [2] can be found in Appendix

4.3.1 On the cost of security

In this section we provide a quantitative analysis of the impact of cryptographic
primitives on control plane communication. Although the number of use cases
is expanding, SDN has been mainly targeting data centers. As such, SDN con-
trollers have to be capable of dealing with the challenging workloads of these
large-scale infrastructures. In these environments new ﬂowsE] can arrive at a given
forwarding device every 10ps, with a great majority of mice traffic lasting less
than 100ms [BAMI10]. This means that current data centers need to handle peak

2In spite of the fact that there are several definitions of flow in SDN |Kre+15|, we equate
SDN flow with TCP flow for the sake of simplicity.

48

loads of tens of millions of new flows/s. The control plane has to meet both the
network latencies and throughputs required to sustain these high rates. Existing
controllers are capable of achieving a throughput of several million flows/s using
TCP [Voe+13|; [Kre+15]; [Sal+16].

So any effort to systematically secure control plane communications has to
meet these challenges. In the following we try to put the problem in perspective,
by analysing the effect of including even the most basic security primitives to
ensure authenticity, confidentiality and integrity when considering peak loads of
this magnitude.

We start by analyzing the latency impact of TLS, relative to TCP, and then
we focus on hashes and MACs as they are the essential primitives for authen-
ticity and integrity of communication. To measure the latency of control plane
communicatio we used Linux’s resource usage system call (getrusage()) to get
the user CPU execution time. This function is commonly used to measure the
performance of cryptographic primitives [VAM15]|. Then, we compare the perfor-
mance of 50+ hashing and MAC primitives, including different implementations
such as those provided by OpenSSL (version 1.0.0) and PolarSSL (version 1.3.9),
two of the most widely used SSL libraries. We evaluate these primitives using a
hardware platform that includes two quad-core Intel Xeon E5620 2.4GHz, with
2x4x256KB L2 / 2x12MB L3 cache, 32GB Dual In-Line Memory Module (DIMM)
at 1066MHz, with hyper-threading enabled and overclocking and dynamic CPU
frequency scaling disabled. These machines run Ubuntu Server 14.04 Long Term
Support (LTS) and were connected via Gigabit Ethernet.

The cost of secure channels

Our first experiments assess the compared average latency of TCP and TLS on
control plane communication. We analyse the latency of connection setup and
of OpenFlow PACKET_IN/FLOW_MOD messages. The OpenFlow PACKET_IN message
is used by switches to send packets to the controller (e.g., when there is no rule
matching the packet received in the switch). FLOW_MOD messages allow the con-
troller to modify the state of an OpenFlow switch. One of the two nodes of the
evaluation platform emulates the controller, whereas the other assumes the role
of the forwarding devices. The emulation removes the overhead specific to the
controller’s implementation, for instance. In practice, there is a huge performance
gap among different controllers, most of which is due to the chosen technologies
and implementation details. Similarly, the performance of switching devices varies
also a lot due to implementation details. To eliminate the implementation-specific
performance penalty, we wrote a multi-threaded controller and forwarding devices

3Time required to send a PACKET_IN message and receive a FLOW_MOD message without taking
into account any further processing time of the controller.

49

that just send and receive PACKET_IN and FLOW_MOD messages. This also means
that the controller sends FLOW_MOD messages in parallel to the forwarding devices.

The emulated controllers and forwarding devices are implemented in C, using
the OpenSSL and PolarSSL TLS implementations in their standard configuration
(i.e. no library-specific optimizations were applied). Figures and show the
median of the measured latency over 40k executions. The standard deviation is
below 3% so we do not include it in the figures.

10000 ¢

I
TCP ==

OpenSsSL €&
PolarSSL

(ms)

Setup time

O N O l 1 1 1 1 1 1 J
2 4 38 16 32 64 128 256
Number of forwarding devices

Figure 4.2: TCP and TLS connection setup times (in log scale)

Figure shows the connection setup time (per forwarding device). The higher
costs of the two TLS implementations are due to the execution of a more elaborate
handshake protocol between the devices. While TCP uses a simple three-way
handshake, TLS requires a nine message handshake for mutual authentication of
the communicating entities. As expected, the overhead increases with the number
of forwarding devices. Interestingly, our results also suggest that the choice of
implementation has a non-negligible performance impact. For connection setup,
PolarSSL induces nearly twice the overhead of OpenSSL.

Although important, a high connection cost can be amortized by maintaining
persistent connections. As such, the communications cost is usually considered
more relevant. Figure shows the latency of FLOW_MOD messages (56 bytes, as
specified in OpenFlow 1.4 |[ONF13|), averaged over 10k messages. The results
with PACKET_IN messages (32 bytes) were similar so we omit them for clarity.

20

—~ 1000

I I
FLOW-MOD.TCP ==
FLOW-MOD.OpenSSL
FLOW-MOD.PolarSSL ¥

(s

100

10 ¢

Latency of control communications

2 4 8 16 32 64 128 256
Number of forwarding devices

Figure 4.3: FLOW_MOD latency (in log scale)

The costs of TCP, OpenSSL and PolarSSL grow nearly linearly with the number
of forwarding devices. OpenSSL latency is approximately 3x higher than TCP.
This is explained by the high overhead of cryptographic primitives, as we further
analyse in the next section. PolarSSL is significantly worse, increasing the latency
by up to 7x when compared with TCP.

Conclusions: The main findings of this analysis can be summarised in two
points. First, different implementations of TLS present very different performance
penalties. Second, the additional computation required by the cryptographic prim-
itives used in TLS leads anyway to a non-negligible performance penalty in the
control plane. In consequence, we turn to lightweight cryptographic libraries, such
as NaCl [BLS12| and TweetNaCl [Ber+15|, which are starting to be used in dif-
ferent applications. NaCl has been designed to be secure and to be embedded
in any system [Alm-+13|, taking a clean slate approach and avoiding most of the
pitfalls of other libraries (e.g., OpenSSL — misuse issues). First, it exposes a simple
and high-level API, with a reduced set of functions for each operation. Second,
it uses high-speed and highly-secure primitives, carefully implemented to avoid
side-channel attacks. Third, NaCl is deprived of low-security options and makes
conservative choices of cryptographic primitives. One of the most important take-
aways of NaCl is its reduced size and its minimal complexity in terms of interface
(less error prone) and sub-protocols (if any). Likewise, TweetNaCl (a part of NaCl)

ol

was announced as the smallest implementation of a high-security cryptographic li-
brary, which makes it a good candidate for inclusion into trusted code bases of
computer systems.

A closer look at the cost of cryptography

To understand in more detail the cause of the previous findings we now perform
a fine-grained analysis of two main classes of security primitives used in secure
channel protocols: hashing and MAC.

To measure the overhead of these primitives we disabled hyper-threading, in
order to remove noise and randomness due to the implied resource sharing. As
commodity switching devices do not implement direct cache access, we have en-
sured that the data to be hashed resides in main memory. This avoids artificial
performance boosts when operating on cached dataﬁ. To mimic the behaviour of
a switch, we circulated over an input buffer that is twice as large as the last-level
cache (L3) to ensure that every read resulted in a cache miss. The numbers in the
following graphs represent the median of 1M executions, with a standard deviation
below 3%.

Latency for messages of 56 bytes
0.005 | 1 T T l 1 T I l
Blue bars: standard implementation
Red bars: OpenSSL implementation

Figure 4.4: Hashing primitives

4With cached data, we observed artificial gains of up to 20% for hashing and of 12% for MAC
primitives.

52

We analyze the performance of nine hashing primitives. The results are pre-
sented in Figure The red bars represent primitives that are provided by
OpenSSL, while white bars (BLAKE and KECCAK) indicate the original imple-
mentation of primitives that are not part of OpenSSL. From Figure 4.4}, we observe
that the primitives with smaller digest sizes (SHA-1 and MD5) achieve better per-
formance, as expected. The stronger versions of the SHA and BLAKE families
achieve comparable performance (slightly slower), with higher security guaran-
tees. Interestingly, SHA-512 outperforms SHA-256. This behavior is explained by
the fact that the former performs 80 rounds of its compression function, over 1024
bits of data at a time, while the latter, though doing only 64 rounds, does them
over just 512 bits of data. In the case of KECCAK the difference in performance
is due to the additional computational complexity of the mechanisms employed.
For instance, this solution requires 24 rounds of permutation on each compression
step, while BLAKE requires up to 16 rounds.

Latency for messages of 56 bytes

0.02
PolarSSL KK
0.018 -
EVP []
0.016 OpenSSL [/] ~
0.014
20.012
a
2 0.01
g
Eo.008
=
0.006
0.004 -
0
SHA256 RIPEMD160 SHAS512 SHA1 MD5

Figure 4.5: Implementations of hashing primitives

To understand the variance between different implementations, we present in
Figure the costs of the five hashing primitives for which different implemen-
tations were available. OpenSSL implementations are the ones showing the best
performance for hashing primitives. The PolarSSL implementation always pre-
sented higher message latencies. In addition to OpenSSL and PolarSSL, we in-
cluded EVP (https://wiki.openssl.org/index.php/EVP), a library that pro-

23

https://wiki.openssl.org/index.php/EVP

vides a high-level interface to cryptographic functions. Its main purpose is the
ability to replace cryptographic algorithms without having to modify applications.
The added flexibility comes at a cost, as we can observe in the results. The same
OpenSSL primitives used through an EVP interface experience a penalty between
3% and 15%.

Finally, Figure 4.6 shows the results of the latency analysis of six MAC prim-
itives. It is clear that Poly1305 outperformed all other primitives, being approx-
imately two times faster than OpenSSL’s HMAC-SHA1, and close to four times
faster than HMAC-SHAb512, for instance. For MAC primitives, the choice of spe-
cific implementations remains relevant. Curiously, in this case the PolarSSL im-
plementation always outperformed the equivalent OpenSSL implementation. The
reason may lie in the fact that OpenSSL does not provide native HMAC imple-
mentations, but rather highly configurable HMACs through EVP interfaces. These
primitives thus carry the overhead of EVP and the extra costs of configurability.

Latency for messages of 56 bytes

0.0035
44, PolarSSL XX
0.003 77 OpenSSL 7 _
R AES]
0.0025
@
£
o 0.002
-\':' V777 R
00.0015
=
-
e
0.001 e - - : S,
0.0005 R - - . o
0 %, %, %, <, % o
N N N N S <
d‘& && «?\/\ d‘& 2 \PO
RN © % EF S8 S
o e @,
%o

Figure 4.6: MAC primitives

Conclusions: From the results of Figure 4.6] considering the MAC primi-
tive with best performance in the analysis (Poly1305 with 0.001ms per message),
around 20 dedicated cores are needed to compute a MAC in order to maintain
a rate of 20M flows/s. To understand the importance of judiciously selecting
the security primitives implementation, the HMAC-SHA512 OpenSSL (worst case
performance in the analysis) would require over three times more cores (up to 65)

54

to compute MACs at these rates. From the hashing primitives analysis, we con-
clude that SHA-512 performs best, even better than SHA-256. Concerning MAC
primitives, the performance of HMAC-SHAb512 disappoints, and it is clear that
Poly1305 outperformed all other primitives, providing security with high speed
and low per-message overhead.

In summary, our findings in this section indicate that (i) the inclusion of cryp-
tographic primitives results in a non-negligible performance impact on the latency
and throughput of the control plane; and that (ii) a careful choice of the prim-
itives used and their respective implementations can significantly contribute to
reduce this performance penalty and enable feasible solutions in certain scenarios.
Taking the outcome of our analysis into consideration, we have selected the NaCl
lightweight cryptographic library, and the MAC and hash primitives with best per-
formance — Poly1305 and SHA512 OpenSSL — as the baseline SC secure channel
component technologies. Taken together they provide, as per our evaluation, the
best trade-off between security and performance for control plane communications
in SDN. NaCl is complemented in our architecture with the iDVV mechanism, as
we show ahead, to generate crypto material (e.g., keys) used by NaCl ciphers. We
evaluate the overall result in the next section.

4.3.2 iDVYV Performance Evaluation

Figure shows the performance of different primitives for generating crypto-
graphic material. We compare the iDVV generator using SHA512 (iDVV-S5),
with an implementation of a common Key Derivation Function (KDF') with differ-
ent values for the exponent ¢ (128, 64, 32, and 16, respectively), the Diffie-Hellman
implementation used by OpenSSL (DH-OSSL), and the randombytes() function
(NaCl-R) provided by NaCl. The latency of a KDF is very high, increasing lin-
early with the number of iterations. Our results for DH are compatible with other
publicly available performance measurements done on service providers such as
Amazon |[Mavll|, showing a latency several times higher than the iDVV gener-
ator. The randombytes() primitive of NaCl, used to generate random keys, is
the second fastest after iDVV, but still results in a latency at least 2.6x higher.
NaCl-R’s main latency lies in I/O operations required to read the special random
number generator device of the Linux kernel, the /dev/urandom. Last, but not
least, it is worth emphasizing that NaCl-R cannot be used for the same purposes
of iDVVs, since it only generates non-sequential random values, i.e., the values
would be different on both ends of the communication channel, defeating our ini-
tial purpose.

25

Latency to generate one 1DVV

0.25
168 []
0.2
»
£0.15
a
-—
g 0.1
-
fa
0.05
0
R
\ Q) AN
o % 2 % 0 i A
& n% P &&

Figure 4.7: Latency to generate keys

4.3.3 Perfect forward secrecy

In this section, we provide a discussion about the perfect forward secrecy properties
of our protocols, in face of compromise of any of KDS, controller, forwarding device.
We re-state our goal in that case: safeguard secrecy of past communications from
the time the key became active, to the time it became known to the attacker.

Note that when the assumed key distribution authority is compromised, then
the attacker is able to obtain all the shared secrets Kj. (resp. Kjy) between
the authority and every controller (resp. every forwarding device). In this case,
the attacker would be able to decrypt the past communication that delivered the
initial seed and key to the associated devices, and in consequence, decrypt past
conversations, since the generation of iDVVs is deterministic from the initial state
(see idvv_init in Section [4.2.1).

Although providing secure and robust key distribution services is an open chal-
lenge and orthogonal to KISS, we provide a simple mechanism for providing PFS
even when the authority is compromised. We achieve it by updating the shared
key (between the authority and registered devices) each time a forwarding device
is associated with a controller. The key is updated as follows: K. < H(Kj.)
and Kjy < H(Kys). This way, a shared key captured cannot decrypt any past
messages, since they have been encrypted with previous generations of that key,
which have been “forgotten” in the system, given the irreversible nature of hashes.

o6

As far as devices are concerned, when they are compromised, the current values
of seed, key and idvv are captured. However, note that seed is rolled forward
everytime a new iDVV is generated. Only key stays as the original secret, but short
of having as well the initial seed as sent at the end of the association procedure,
the attacker will also not be able to synthesize any past iDV Vs since day one and
so, cannot also decrypt past conversations, achieving PFS, as we sought.

4.3.4 Randomness

We empirically assessed the quality and confidence of the iDVV generator using
two techniques. First, we generated more than 200 billion iDVVs to verify if there
was any repetition, i.e., the same iDVV generated more than once. There was not
a single repeated iDVV. This indicates that our solution is (indeed) suitable for
short term iDVVs (e.g., one per message).

Second, pseudorandom generators should be always empirically tested [Bas+10].
Again, we used NIST’s test suite [NIS18| to statistically assess the confidence of
the iDVV generator. For the sake of our tests, we generated 1M iDV Vs of 64 bytes.
The file, containing 1M iDVVs, was used as input for the test suite. The streams
of bits corresponding to the iDVVs passed all tests, i.e., there was no single failure.
This gives us a good level of confidence on the robustness of the iDVV generator.

We also used ent |[WalO8|, which is a pseudorandom number sequence test
program, to evaluate the serial correlation coefficient of our implementation. While
non-random and predictable sequences of bytes have a serial correlation coefficient
of approximately 0.5 and 1.0, respectively, a random byte stream should have
a coefficient near to zero. Our implementation, featuring SHA512, had a serial
correlation coefficient of 0.0004. Alternative implementations, using MD5 and
SHAT1, presented the worst case coefficients, as high as 0.035. Typical pseudo-
random functions or methods provided by a programming language, such as rand()
from C and SecureRandom from Java, have a serial correlation of approximately
0.0148 and 0.0127, respectively. This shows us that SHA512 is indeed a strong
candidate to securely generate iDVVs.

4.4 Discussion

4.4.1 On the cost of the infrastructure

Our proposal compares well with traditional solutions such as EJBCA (http:
//www.ejbca.org/) and OpenSSL, two popular implementations of PKI and TLS,
respectively.

The first interesting take away is that our solution has nearly one order of

57

http://www.ejbca.org/
http://www.ejbca.org/

magnitude fewer Lines Of Code (LOC) (85k) and uses four times fewer external
libraries and only four programming languages. This makes a huge difference from
a security and dependability perspective. For instance, to formally prove more
than 717k LOC (OpenSSL + EJBCA) is by itself a tremendous challenge. And it
gets considerably worse if we take into account eighty external libraries and eleven
programming languages. Moreover, it is worth emphasizing that libraries such as
OpenSSL suffer from different fundamental issues such as too many legacy features
accumulated over time, too many alternative modes as result of trade-offs made
in the standardization, and too much focus on the web and DNS names.

Second, OpenSSL is complex and highly configurable. This leads not only
to performance penalties as shown in Section [1.3.1 (e.g., HMAC primitives imple-
mented using EVP), but it has been also the source of many security incidents, i.e.,
developers and users frequently use the library in an inappropriate way |[Ege+13];
[Fah+12|. It has also been shown that the majority of the security incidents are
still caused by errors and misconfiguration of systems [Zha-+14|; [Raw15]; [Sym16];
[Sch19]; [Hell9]; [SOP20|. Lastly, recent research has uncovered new vulnerabili-
ties in TLS implementations [Beu+15].

In contrast, our proposed architecture exhibits gains in both performance and
robustness, contributing to solving the dilemma we outlined in the introduction.
By having fewer LOC, we significantly reduce the threat surface — by one order
of magnitude — and by combining NaCl and the iDVV mechanism, we provide a
potentially equivalent level of security, but quite increased performance/robustness
product, as keys can be rolled even on a per message basis.

4.4.2 Size and complexity matter

The more complex the system, the higher the probability of having vulnerabili-
ties and hence a broader attack surface. Nowadays, this is still one of the major
problems faced by the technology industry. Specialized security reports have recur-
rently highlighted the complexity and size of systems as one of the most important
security challenges |[Cis14|. The time for re-thinking the security of communication
channels may have come, and that is also the position we take in proposing the
KISS framework.

Renowned cryptographers and security experts have been claiming that sim-
plicity is one of the keys in securing computer systems [BLS12|; |[Grel2]; [Stal5];
[Prel5|. In fact, the trusted computing community has been advocating simple
interfaces and concerned with the size and complexity of components for a long
time [HMK12|; [Raj+11].

These positions have in essence been echoed in our KISS work (starting with
the name metaphor, Keep it simple, stupid). We methodically selected high per-
formance MAC and hashing primitives for KISS— Poly1305 and SHA512 OpenSSL

o8

— and actually showed the penalty to be paid by less attentive choices. We also
turned to lightweight but comparatively secure cryptographic libraries for secure
channel support, like NaCl. NaCl was complemented in our architecture with the
iDVV mechanism, to generate secrets to be used for example by NaCl ciphers,
again in a fast, very simple and decentralized way.

4.4.3 On the cost of iDVV

Similarly to iCVVs, iDVVs are a low overhead solution that requires minimal re-
sources. This solution is thus feasible to be integrated into compute-constrained
devices as commodity switches. Our preliminary evaluation has revealed that the
iDVV mechanism is faster than traditional solutions, namely, the key-exchange
algorithms embedded in the OpenSSL implementation. Considering a setup with
128 switching devices, our results show our proposed solution (iDVV + NaCl’s
ciphers) to be more than 30% faster than an OpenSSIL-based implementation us-
ing AES256-SHA (the most common high performance cipher suite, used by IT
companies such as Google, Facebook, Microsoft, and Amazon). Importantly, we
were able to outperform OpenSSL-based deployments while still providing the
same security properties: authenticity, integrity, and confidentiality. In addition,
we achieved this result not only while offering the same properties, but also with
stronger security guarantees: the tests were made by generating one iDVVper
packet, while the OpenSSL-based implementation uses a single key (for symmetric
ciphering) for the entire communication session.

4.5 Final remarks

In this chapter, we set out to explore and confirm our intuition for the possible
reasons behind a slower than expected adoption of security mechanisms in SDN,
and based on those findings, we proposed KISS, a modular secure SDN control
plane communications architecture.

We started by investigating the impact of essential cryptographic primitives
and TLS implementations on the control plane performance. We showed that
whilst even the most basic security primitives add a non-negligible degradation of
performance, a judicious choice of these primitives and their specific implementa-
tions can mitigate the penalty significantly. This is particularly important for the
typical SDN scenario that resorts to commodity hardware, sometimes with modest
computing capabilities.

The second problem we explored was the complexity of the centralized sup-
port infrastructure for authentication and key distribution. We proposed iDVV,
a simple and robust decentralized mechanism for generating and verifying the

29

secrets necessary for secure communications between network devices. iDVVs
team-up with NaCl, in order to safely replace the cryptographic primitives and
key-exchange protocols and key derivation functions commonly used in TLS. As a
result, the NaCl-iDVV compound, while achieving the same functional level of se-
curity, is simpler, potentially leading to a higher level of implementation robustness
by vulnerability reduction. In fact, we estimate the proposed security architecture
footprint to be smaller than TLS-PKI alternatives with traditional protocols, by
an order of magnitude, in terms of the number of lines of code (LOC). Such a
differential also points to reducing the cyclomatic complexity |[GK91|; [TK14][;
[EC16]. These metrics are used to assess the robustness and estimate verifiability
of software systems.

Our results are encouraging in terms of an increase of performance — 30%
improvement over OpenSSL — and robustness — an order of magnitude reduction
in the number of LOC, and implied cyclomatic complexity. This also means that
formal verification is more tractable.

We believe that this is one first step towards lightweight but effective security
for control plane communication, and potentially for SDN in general. We make
a “call to arms” to foster developments on securing SDN communications without
impairing performance, a fundamental precondition for widespread adoption by
future SDN deployments.

60

Chapter 5

ANCHOR: Design and
Implementation

In this Chapter we introduce the design, implementation and evaluation of mech-
anisms and protocols for ANCHOR, including essential security mechanisms such
as strong entropy, resilient pseudo-random generators, secure device registration,
association and recommendation. We show that compared to the state-of-the-art
in SDN security, our solution preserves at least the same security functionality,
but achieves higher levels of implementation robustness, by vulnerability reduc-
tion, while providing high performance. Whilst we try to prove our point with
security, our contribution is generic enough to inspire further research concerning
other non-functional properties (such as dependability or quality-of-service).

We have structured the chapter as follows. Section describes the enforce-
ment of the logically-centralized security approach that we propose, by populating
the ANCHOR architecture with the adequate functionality, and describing the de-
sign of its mechanisms and algorithms. Then, in Sections [5.2] and we discuss
implementation aspects of the architecture, and present evaluation results. In
Section [5.4] we do a critique of our choices, discuss some design options of the
architecture, and make some final remarks about ANCHOR.

5.1 Enforcing Logically-centralized Security

In this section we present our proposal for the specialization of the ANCHOR ar-
chitecture for logically-centralized security. Figure details the integration of
the ANCHOR blocks in the global architecture for logically-centralized security that
had been suggested earlier in Chapter (3| (Figure . In the following explana-
tions, we assume a typical SDN architecture, composed of off-the shelf controllers
and forwarding devices, and we further assume that KISS mechanisms are in place

61

(see Chapter {4 for further details).

Our main goal is to provide security properties such as authenticity, integrity,
and confidentiality for control plane communication. To achieve this goal, the
ANCHOR provides mechanisms and services (e.g., registration, authentication, rec-
ommendation, a source of strong entropy, a resilient pseudo-random number gen-
erator) required to fulfill some of the major security requirements of SDNs.

As illustrated in Figure [5.1] we “anchor” the enforcement of security properties
on ANCHOR. That is, it is a central point for enforcing security policies, which are
materialized by means of the above-mentioned mechanisms and services, thereby
reducing the burden on controllers and forwarding devices, which just need the
local HOOKs, protocol elements that interpret and follow the ANCHOR’s instruc-
tions. Furthermore, this centralized implementation of crucial mechanisms and
protocols, reduces the probability of vulnerabilities in ad-hoc, vendor-specific im-
plementations.

SDN Controller

[[[{
[Net App]ﬂ [Net App]ﬂ

Network z

Operating

System

ANCHOR

Device registration]\

&

P U e U e U e U s U

Device association

deJsisioog

Controller selection

N
Seee——

SDN Device —

Pool of strong entro
FLOW TABLES g Py

% % z \ Other security services]/

Figure 5.1: ANCHOR: logically-centralized security

]
]
]

L

Next, we review the components and essential security services provided by
ANCHOR.

We propose a source of strong entropy and a resilient pseudo random generator
for generating security-sensitive materials. These are crucial components, as at-
tested by the impact of vulnerabilities discovered in the recent past, in sub-optimal
implementations of the former in several software packages |[BLN16|; [Mim16];
|[ZET15]; [Sch12]. We implement and evaluate the robustness of these mecha-
nisms.

After defining system roles and their setup, we present two essential services
for secure network operation — device registration and device association. We

62

describe how the above mechanisms interplay with our secure device-to-device
communication approach (Section , leveraging the integrated device verifica-
tion value (iDVV) infrastructure. We implement and evaluate iDVV generators
for OpenFlow-enabled control plane communication.

The roster of services of ANCHOR is not closed, and one can think of other
functionalities, not described here, including keeping track of forwarding devices
association, generating alerts in case of strange behaviors (e.g., recurrent recon-
nections, connections with multiple controllers), and so forth. These ancillary
management tasks are important to keep track of the network operation status.

In what follows, we describe the main ANCHOR services in detail. To help
the reader following our descriptions, we summarize the most important notations

used in Table [5.1]

Table 5.1: Summary of notations

Notation Description Example

H Cryptographic hash function SHA512

MAC Message Authentication Code algorithm Poly1305

XY One entity belonging to {A, D;, M, C, F} Device (e.g., switch) ¢
Kexy Encryption secret key. XY denotes: referring 256 bits random key

to X and Y entities sharing; or the usage the
key refers to

Khxy MAC/HMAC secret key. XY denotes: refer- 256 bits random key
ring to X and Y entities sharing; or the usage
the key refers to

Exy Encryption primitive using secret key Kexy AES

[[LHMACxy keyed-Hash MAC of message || using secret HMAC-SHA512
key Khxy

KDF Key Derivation Function OpenSSL PBKDF2

5.1.1 A source of strong entropy

Entropy still represents a challenge for modern computers because they have been
designed to behave deterministically [VH14|. Sources of true randomness (e.g.,

63

physical phenomena such as atmospheric noise) can be difficult to use because
they work differently from a typical computer.

To avoid the pitfalls of weak sources of entropy, in particular in networking
devices, ANCHOR provides a source of strong entropy to ensure the randomness re-
quired to generate seeds, pseudorandom values, secrets, among other cryptographic
material. The strong source of entropy has the following property:

Strong Entropy - Every value entropy returned by entropy get is indistinguish-
able from random.

Algorithm (3| shows how the external (from other devices) and internal (from
the local operating system) sources of entropy are kept updated and used to gener-
ate random bytes per function call (entropy get()). The state of the internal and
external entropy is initially set by calling the entropy setup(data). This function
requires an input data, which can be a combination of current system time, pro-
cess number, bytes from special devices, among other things, and random bytes
(rand_ bytes()) from a local (deterministic) source of entropy (e.g., /dev/urandom)
to initialize the state of the entropy generator. As we cannot assume anything
regarding the predictability of the input data, we use it in conjunction with a
rand_ bytes() function call (line 2). A call to rand_ bytes() is assumed to return
(by default) 64 bytes of random data.

Algorithm 3: Source of strong entropy

1: entropy_setup(data)
2: e_entropy ¢ rand_bytes() & H(data)
3: i_entropy < rand_bytes() @ e_entropy

4: entropy_update()
5: e_entropy < H(F;||P;) @ i_entropy
6: e_counter < O

7: entropy_get ()

8: if e_counter >= MAX_LONG call entropy_update()
9: i_entropy ¢« H(rand_bytes() || e_counter)

10: entropy < e_entropy ¢ i_entropy

Function entropy update() uses as input the statistics of external sources and
the ANCHOR’s own packet arrival rate to update the external entropy. The noise
(events) of the external sources of entropy is stored in 32 pools (Fy, Py, P, P,
..., P31), as suggested by previous work |[FSK11|. Each pool has an event counter,
which is reset to zero once the pool is used to update the external entropy. At
every update, two different pools of noise (P, and P;) are used as input of a hashing
function H. The two pools of noise can be randomly selected, for instance. The
output of this function is XORed with the internal entropy to generate the new

64

state of the external entropy. It is worth emphasizing that entropy update() is
automatically called when e counter (the global event counter) reaches its maxi-
mum value and whenever needed, i.e., the user can define when to do the function
call.

The resulting 64 bytes of entropy, indistinguishable-from-random bytes (en-
tropy _get()), are the outcome of an XOR operation between the external and in-
ternal entropy. While the external entropy provides the unpredictability required
by strong entropy, the internal source provides a good, yet predictable [VH14],
continuous source of entropy. At each time the entropy get() function is called,
the internal entropy is updated by using a local source of random data, which is
typically provided by a library or by the operating system itself, and the global
number of events currently in the 32 pools of noise (e_counter). These two values
are used as input of a hashing function H.

Such sources of strong entropy can be achieved in practice by combining dif-
ferent sources of noise, such as the unpredictability of network traffic |Gre+09],
the unpredictability of idleness of links |[Ben+10|, packet arrival rate of network
controllers, and sources of entropy provided by operating systems. We provide im-
plementation details in §[5.2.1. A discussion about the correctness of Algorithm
can be found in of Appendix [B.

5.1.2 Pseudorandom generator

A source of entropy is necessary but not sufficient. Most cryptographic algorithms
are highly vulnerable to weaknesses of random generators [Dod+13|. For instance,
nonces generated with weak pseudo-random generators can lead to attacks capable
of recovering secret keys. Different security properties need to be ensured when
building strong pseudo-random generators, such as resilience, forward security,
backward security and recovering security. In particular, the latter was proposed
as a measure to recover the internal state of a PRG |Dod+13|. We propose a
PRG that uses our source of strong entropy and implements a refresh function to
increase its resilience and recovery capability. The pseudo-random generator has
the following property:

Robust PRG- Every value nprd returned by the function PRG next is indis-
tinguishable from random.

A robust PRG needs three well-defined constructions, namely setup(), refresh()
(or re-seed), and next(), as described in Algorithm 4| The internal state of our
PRG is represented by three variables, the SEED, the counter and the next pseudo-
random data nprd. The setup process generates a new seed, by using our strong
source of entropy, which is used to update the internal state (line 2). In line
3, we initialize the counter by calling the long_uint() function, which returns
a long unsigned int value that will be used to re-seed and to generate the next

65

pseudorandom value. In line 4, we call entropy_update() to make sure that the
external entropy gets updated before calling one more time the entropy_get()
function. The first nprd is the outcome of an XOR operation between the newly
generated seed and a second call to our source of entropy. It is worth emphasizing
that the set up of the initial state of the PRG does not require any intervention
or interaction with the end user. We provide strong and reliable entropy to set
up the initial values of all three variables. This ensures that our PRG is non-
sensitive to the initial state. For instance, in a traditional PRG the user could
provide an initial seed, or other setup values, that could compromise the quality of
the generator’s output. The counter, which is concatenated with the nprd (lines
9 and 13), gives the idea of an unbounded state space |[Stal7]. This is possible
because we are using cryptographically strong primitives such as a hash function H
and the MAC function HMAC. Thus, in theory, we have unbounded state spaces,
i.e., we can keep concatenating values to the input of these primitives.

Algorithm 4: Pseudo-random generator
1: PRG_setup()
2: seed < entropy_get()
counter < long_uint(entropy_get())
call entropy_update()
nprd < seed @ entropy_get()

PRG_refresh()
seed < entropy_get()
counter < long_uint(entropy_get())
nprd < H(seed || nprd | counter)

© XIS T w

10: PRG_next ()

11: counter < counter - 1

12: if counter <= 0 call PRG_refresh()
13: nprd < HMAC(seed, nprd | counter)

The PRG refresh() function updates the internal state, i.e., the SEED, the
counter and the nprd. It uses H to update the state of the nprd. Finally, the
PRG next() function outputs a new, indistinguishable-from-random stream of
bytes, applying HMAC on the internal state. In this function, the counter is
decremented by one. The idea is for it to start with a very large unsigned 8-
bytes value, which is used until it reaches zero. At this point, the PRG_ refresh()
function will be called to update the internal state of the generator. The newly
generated nprd is the outcome of an HMAC function with a dimension of 128 bits.

The main motivation for having a PRG along with a strong source of entropy is
speed. Studies have shown that entropy generation can be rather slow, such as 1.5s

66

to 2min for generating 128 bits of entropy [MDP15|. Our source of entropy uses
external entropy and random bytes from special devices, whereas the PRG uses an
HMAC function, in order to have a fast and reliable generation of pseudo-random
values.

In spite of the fact that we could use any good PRG to generate cryptographic
material (e.g., keys, nonce), it is worth emphasizing that we introduce a PRG that
works in a seamless way with our strong source of entropy, improving its quality. In
Section [5.2.2] we discuss the specifics of the implementation. We also evaluate the
robustness and level of confidence of our algorithms in Section [5.3.1. A discussion
about the correctness of Algorithm [4 can be found in of Appendix

5.1.3 System deployment

Currently, ANCHOR is designed to work in a single domain, with single ownership,
such as a data center, enterprise, or university campus network. ANCHOR sup-
ports deployments with multiple controller instances [Kop+10], for scalability and
availability of network control, as is required in production systems [Jai+13|. It is
worth emphasizing it is part of our plan to extend ANCHOR’s features and services
to multiple domains with multiple ownership.

ANCHOR is designed to logically centralize non-functional properties of generic
SDN deployments. As such, it is not restricted to OpenFlow. Other south-
bound APIs can be used, such as Protocol Oblivious Forwarding (POF), For-
warding and Control Element Separation (ForCES), or Programming Protocol-
independent Packet Processors (P4). The ANCHOR connectivity infrastructure,
used for communication between SDN devices (controllers and networking gear)
and ANCHOR, can use traditional in-band or out-of-band mechanisms (for instance,
traditional routing protocols such as Open Shortest Path First (OSPF) or Inter-
mediate System-to-Intermediate System (IS-IS), as is common for control plane
channels [Kop+10]).

In our system we assume the existence of management personnel with two
different roles: the system Administrator, who controls the operation of central
services such as ANCHOR, and the network Manager (a.k.a. network administra-
tor), responsible for the operation of network devices. Every time a new network
device (a forwarding device or a controller) is initialized and added to the network,
it must first be registered, before being able to operate.

In the current practice, the device registration is a manual process triggered by
a network administrator through an out-of-band channel or initiated by a neighbor
proxy device using SNBI and 802.1AR credentials, as is the case of ODL |Ope];
[Scol7]. Given the potentially large number of network devices in SDN, such
a manual process is unsatisfactory: slow and labour-intensive, and error-prone.
Thus, we propose a suite of protocols, described ahead, to fulfill the desire for a

67

robust semi-automated setup of the system.

The ANCHOR server is first set up by the system administrator. Then, a
batch setup protocol initiated by ANCHOR ensues, to initialize the managers (Sec-
tion [.1.4). Before proceeding, encryption and MAC keys are installed into the
new network devices each manager subtends, through some out-of-band channel
under its control. Then the procedure is automatically concluded, with a device
registration protocol, described in Section [5.1.5, whereby devices can be registered
automatically. The network is now about ready for operation.

As a first move to bring security and dependability into control plane operation,
we foresee that no two devices are allowed to communicate without being associ-
ated. This can be done at any time (through the mediation of ANCHOR) while
the system is in service, and it is implemented by a device association protocol,
described in Section [5.1.6.

For simplicity and without loss of generality, in what follows we denote the
[Dentification (ID)s of ANCHOR server, Device, network Manager, Controller,
and Forwarding device, as respectively {A, D, M, C, F'}. We denote as well Exy ()
an encryption using encryption key Kexy, and we omit decryption operations
not to clutter the algorithm descriptions: whenever an entity in possession of
key Kexy receives Exy (payload), we assume the cleartext "payload’ elements are
readily available in the next algorithm lines. Likewise, we denote [|[JHMACyy,
respectively, a message field inside [|, followed by an HMAC over the whole material
within ||, using MAC key Khyy, where X,Y € {A,D;, M,C F}. We rely on
ANCHOR to generate strong keys for the system participants — and eventually
distribute them to managers and devices — using a suitable KDF based on the
high entropy random material described in the previous sections.

We now define some functions used in the algorithms:

e generates(data) - generates the cryptographic material specified in 'data’,
using the strong crypto tooling provided in ANCHOR;

e destroys(data) - deletes the items specified in ’data’ from the server;

e offline(data) - safeguards (copies, i.e., these items stay online) the items
specified in ’data’ to some out-of-band storage medium (e.g., a Universal
Serial Bus (USB) stick, smart card, etc.);

e installs(data) - brings the items specified in ’data’ back online to the
concerned machine, from some out-of-band storage medium where they had
been safeguarded.

68

5.1.4 Batch setup

Algorithm [5| describes the initial batch setup of ANCHOR, network managers and
associated devices.

ANCHOR setup. In preparation for the optional provision of PCS, which will
be discussed in Chapter [0, two master recovery keys are created for ANCHOR,
namely the master recovery encryption key Ke, . and master recovery MAC key
Khy, ... As we will present later, the master recovery keys are only used in three
cases, namely (a) upon the initial setup, described below; (b) when a new net-
work administrator is registered with ANCHOR; and (c¢) when ANCHOR was com-
promised and is reinstated into a trustworthy state (i.e., the semi-automated or
fully-automatic post-compromise recovery processes presented in Chapter @ In
consequence, these two master recovery keys should not be stored regularly in AN-
CHOR, if they are to recover from a possible full server compromise. We refer the
reader to of Appendix E for more information (including a visual represen-
tation) regarding the three phases of ANCHOR, namely setup, normal operation,
and recovery.

So the first steps in Algorithm 5| (lines s, and s;) are a prefix of the main
protocol execution. The system administrador S (controlling ANCHOR) initiates
it. Then, in an offline operation, generates Key, . and Khy, .. These keys will then
come online in the ANCHOR server, but will only be present for short moments,
for the actions defined above, (a),(b),(c)[!]

Lines 1-5 illustrate the first actions of A (ANCHOR), to run the batch setup
protocol (initiating all managers). These steps are also the ones used to later
introduce a new manager. All steps are recursed for each M. Line 1, as we had
suggested, copies Key,.. and Khy, to the server, from offline (either in the sequel
of offline boot, or later from secure storage). Then (1.2) the manager recovery
key pair (encryption and MAC) are computed, and (1.3) the respective shared
secret key pair for secure communication between A and M is generated (Keayy,
Khaps). All this material is safeguarded offline (1.4), and made available to the
entity managing M, for later use online, as we explain ahead. In line 5, all recovery
keys are destroyed in the server.

Manager setup. Each network manager (its ID denoted M in the protocols) is
registered with ANCHOR manually, by installing the shared encryption key Ke,,
and MAC key Kh 4y, from offline (1.6). This is the only manual process to initialize
a new M. Initialization proceeds with line 7, where M seeks to batch initialize all

rec

rec

LJust to give a real feel, one possible implementation of this principle is: a pristine ANCHOR
server image is created; it boots offline in single user mode; it generates Key, , and Khy,
through a strong KDF as discussed above; keys are written into a USB device, and then deleted
from the server; first online boot proceeds; keys are imported from the USB whenever needed,
and then deleted again.

69

Algorithm 5: Batch setup of ANCHOR, M, and initial Dy to D,,.

Sq. S (offline) initiates ANCHOR
rec? KhArec)
{For each manager with ID M and its associated devices with ID {D;} ,}}

sp- S (offline) generates(Kega

1. A installs(Key,.., Kha,)
2. Keanr,..=H(Key,.. || M); Khan,, =H(Khy, .. || M);
3. generates(Keans, Khapr)
4. offline(Keans, Khans, Keans,.., Khan,.,)
5. destroys(Keanr,.., Khan,.., Kea,.., Kha,)
6. M installs(Ke s, Khaar)
7. Mo A [InitD, M, Eqp ({Ds,a%, 3)], HMAC Az
8. A for each D;, generates(Keyp,, Khyrp,, %)
9. A—=M [InitD, M, Eqp ({Ds.a, 2% Kensp,, Kharp,)], HMAC Aps
10. M Vi € [1,n] offline(Kearp,, Khyp,)
{For each device {D;} ;}
11. D, installs(Keysp,, Khyp,)

devices it subtends, by sending an 'InitD’ message to A.

Device setup. A device with identity D; is either a forwarding device (F) or a
controller (C), but we do not differentiate them during the set up and registration
processes. The first operation to be made after a device is first brought to the sys-
tem is the initialization or setup, which concerns the establishment of credentials,
for secure management access by the network administrator.

M sends an initialize device(s) (InitD) message to A, with the list of identifiers
(D;) of those devices. ANCHOR replies to the (InitD) message, by generating and
sending back to M (lines 8-9) pairs of keys Kepsp, and Khysp, for M to communi-
cate with each device. This message exchange is protected against confidentiality,
authentication and replay attacks, by encryption, MACs and nonces (z!,,z"). M
safeguards this key pair offline (1.10), and the keys are installed through out-of-
band methods in each D; subtended by this M (1.11). This is the only manual
process to initialize a new device D. Afterwards, all devices managed by each M
can be registered with ANCHOR through our device registration protocol, described
next.

70

5.1.5 Device registration

The device registration protocol is presented in Algorithm [6] We assume that
Kepp, and Khy,p,, described above, are already in place.

Algorithm 6: Device registration

{Bootstrap for devices D; — D,, }

1. M—A [Reg, M, Ean({Ds,zi, 17,)|, HMAC 45
2. A Vi € [1,n] generates(Keap,, Khap,, %)
3. A—-M [Reg, M, Eanr({D;,2%,,28, Keap,, Khap, }* 1),HMAC 45/
4. M installs(Keans,.., Khan,,.)-
{For each device D;}
5. M Keap,,,.~H(Kean,.. [|Di); Khap,, . =H(Khax,..|/D:)
6. M —D; [Reg, Exrp, (¢, Keap,, Khap,, Keap,., Khap,)JHMAC p,
7. Di— A IM, Dy, Earp, ()], HMAC sp,
8. A M IM, D, Eanr(a)],HMAC ps
9. A tag(D;) = registered;
10. for t € {C, F}, if Type(D;) == t, then tList = tList U {D;}
11. Vi € [1,n], if tag(D;) == registered is True
12. Kean = H(Keans); Khan = H(Khan).
13. M — D; ID;, Earp, ()], HMACy/p,
14. D, Kenrp, — H(Keyp,); Kharp, — H(Khyrp,).
15. M tag(D;) = registered;
16. destroys(Keanr,.., Khan,.., Keap,, Khap,, Keap,,.., Khap, _);
17. Kenp, = HXenp,); Khpyrp, = HXhpp,);
18. Vi € [1,n], if tag(D;) == registered is True
19. Kean = H(Keans); Khans = H(Khan).

The first part concerns the bootstrap of the registration of a batch of devices
with ANCHOR (A), by a network administrator M. Let {D;}! ; be the set of n
device identities that the administrator wants to register. M requests (line 1) the
registration to A, by sending it a 'Reg’ message, accompanying each D; ID with a
nonce . A generates random nonce !, and keys Keap,, Khap,, for each D; to
communicate with A, and returns them encrypted to M (lines 2,3). This message
exchange is protected against confidentiality, authentication and replay attacks,
by encryption, MACs and nonces.

71

The process then follows for each device D;. In preparation, M starts by in-
stalling its recovery key pair (line 4), Keans,., and Khayy,... Those keys are used
to compute the device recovery key pair (1.5). Then M sends D; the relevant cryp-
tographic keys (1.6). Device D; follows-up confirmation to A, which closes the loop
with M, using the original nonce from A (lines 7,8).

A then performs a set of operations (lines 9-12) to commit the registration of
D;, namely by inserting it into the controller or forwarding device list, respectively
CList or FList, and updating (rolling) the A-M communication keys. Continuing,
in line 13, M closes the loop with D;, using the original nonce from A, finally
confirming D;’s registration. In response, D; rolls the M-D communication keys
(1.14). It is now time for M to execute the final commit operations with regard to
the registration of D; (1.15). In line 16, all recovery keys are destroyed, as well as
the A-D communication keys Kesp,, Khap, — for which M was a mere mediator.
M synchronizes with A and with D;, by updating (rolling) the respective shared
communication keys as well (lines 17-19).

The reader will note that in Algorithm@ the update of several shared keys (i.e.,
lines 12, 14, 17 and 19) concerns the achievement of PFS. When a key is updated,
the old one is destroyed. Likewise, the process of generation of the recovery keys
hierarchy from the earliest setup stages is conducent to achieving PCS, discussed
in detail in Chapter [6]

rec”

5.1.6 Device association

The association service is required for authorizing control plane channels between
any two devices, such as a forwarding device and a controller. A forwarding device
has to request an association with a controller it wishes to communicate with.
This association is mediated by the ANCHOR. The association process between
two devices is performed by the sequence of steps detailed in Algorithm [7| Reg-
istered controllers and forwarding devices have been inserted in CList and FList,
respectively.
Notation: As previously explained, the registration process has set in place shared
secret key pairs between ANCHOR A and all registered devices, generically denoted
Keap,, Khap,. For simplicity, and without loss of generality, in the following algo-
rithm, Ep() or ||, HMACp, with D standing for 'C’ or ’F’, denote crypto operations
using those A-D shared keys, identifying one of the registered controllers C or for-
warding devices F.

The device association implemented by Algorithm [7| has the following proper-
ties:

Controller Authorization - Any device F can only associate to a controller C
authorized by the ANCHOR.

72

Algorithm 7: Device association

{Of forwarding device F with controller C}

1. F— A [z F, GetCList|, HMACp

2. A—=F |24, F, Ep(CList(F), z¢,),HMACp

3. F —=C x4 GetAiD, F, C, Ep(GetAiD, F, C, ¢, Tyq4)]

4. C—= A |[zfq, GetAiD, F, C, Ep(GetAiD, F, C, z¢., z¢4),
Ec(GetAiD, F, C, z¢q, z5q)],HMAC

5. A —=C |zfq, Ep(zyc, AID), Ec(2¢q, AiD)|,HMACc

6. A destroys (AiD)

7. C—F |[zfq, Ep(xfc, AID), E4ip(SEED, z¢,)]

8. F—-C |[zf4, EAip(SEED & zy,)]

9. A F Kear = HKear); Khar = HKhar)

10. A, C KeAC — H(KeAc); KhAC = H(KhAc)

Device Authorization - Any device F can associate to some controller, only if
F is authorized by the ANCHOR.

Association ID Secrecy - After termination of the algorithm, the association
ID (AiD) is only known to F and C.

Seed Secrecy - After termination of the algorithm, the seed (SEED) is only
known to F and C.

The algorithm coarse structure follows the line of the Needham-Schroeder (NS)
original authentication and key distribution algorithm |[NS78|, but contemplates
anti-replay measures such as including participant IDs, and a global initial nonce
as suggested in |[OR87]. Unlike NS, it uses encrypt-then-mac to further prevent
impersonation. Furthermore, it is specialized for device association, managing
authorization lists, and distributing a double secret in the end (association ID and
seed). Secure communication protocols running after association can, as explained
in Section [5.1.8, use iDVVs on a key-per-message or key-per-session basis, rolling
from the initial seed and secret association ID.

The association process starts with a forwarding device sending an association
request to the ANCHOR (line 1 in Algorithm . This request contains a nonce g,
the identification of the device F and the operation request GetCList (get list of
controllers). The request also contains an HMAC to avoid device impersonation
attacks. The ANCHOR checks if F is in FList (registered devices), and if so, it replies
(line 2) with a list of controllers (CList(F)) which F is authorized to associate with.
The list of controllers (and the nonce z¢,) is encrypted using a key (set up during
registration) shared between A and F. This protects the confidentiality of the list of

73

controllers, and ¢, ensures that the message is fresh, providing protection against
replay attacks. A message authentication code also protects the integrity of the
ANCHOR’s reply, avoiding impersonation attacks. Next, F sends an association
request to the chosen controller C (line 3). The request contains a message that
is encrypted using a key shared between F and A. This message contains the get
association id (GetAiD) request, the identity of the principals involved (F,C), a
nonce ., and binds to the nonce xf,. The controller forwards this message to
A (line 4), adding its own encrypted association request field, similar to F’s, but
containing C’s own nonce z., instead. This prevents the impersonation of the
controller since only it would be able to encrypt the freshly generated z,. In line
5, C trusts that A’s reply is fresh because it contains ¢,. The controller also trusts
that it is genuine (from A) because it contains z.,. As such, C endorses F as an
authorized device and AiD as the association key for F. Future compromise of A
should not represent any threat to established communication between C and F.
To achieve this goal, A immediately destroys the AiD (line 6) and C and F further
share a seed not known by A (line 7).

C forwards both the encrypted AiD message and its seed to F (line 7). The
forwarding device trusts that this message is fresh and correct because it contains
Zfq, and x . under encryption, together with the AiD, only known to F and C,
which it endorses then as the association key. F trusts that C is the correct
correspondent, otherwise A would not have advanced to step 5. That being true,
future interactions will use AiD. F believes that the SEED is genuine, as random
entropy for future interactions, because it is encapsulated by AiD, known only to
C and F. The forwarding device also trusts that the message is fresh because it
contains zs,. Finally (line 8), C trusts it is associated with F (as identified in step
3 and confirmed by A in step 5), when F replies showing it knows both the AiD
and the SEED, by encrypting the SEED XOR’ed with the current nonce x,, with
AiD.

Seeking PFS, replay and impersonation attacks are avoided because all en-
crypted interactions are dependent on nonces, so will become void in the future.
Likewise, at the end of each device association protocol, all keys shared between a
device (F or C) and ANCHOR will be updated (rolled) to the hash value of this key
(lines 9, 10). All nonces are indistinguishable from random, i.e., not predictable.

A discussion of the correctness of Algorithm [7] can be found in §B.4 of Ap-

pendix

5.1.7 Controller recommendation

Similarly to moving target defense strategies [Wan-+14|, devices (e.g., controllers)
are hidden by default, i.e., only registered and authenticated devices can get in-
formation about other devices. Even if a forwarding device finds out the IP of a

74

controller, it will not be able to establish a connection with the controller unless
it is registered and authorized by the ANCHOR beforehand.

Controllers can be recommended to forwarding devices using different parame-
ters, such as latency, load, or trustworthiness. When a forwarding device requests
an association with one or more controllers, the ANCHOR sends back a list of au-
thorized controllers to connect with. The forwarding device will be restricted to
associate itself with any of the controllers on the list. As a result, forwarding de-
vices will not be allowed to establish connections with other (e.g., hostile or fake)
controllers, and fake forwarding devices will be, by default, forbidden to set up
communication channels with non-compromised controllers.

5.1.8 Device-to-device communication

Communication between devices is supported by the iDVV protocol. As explained
in Chapter , an iDVV is a unique value generated by device F (e.g., forwarding
device) which can be verified by device C (e.g., controller). AniDVV generator has
essentially two interfaces. First, idvv_setup (seed, secret), which is used to set up
the generator. It receives as input two secret, random and unique values, the seed
and the (higher-level protocol dependent) secret. The source of strong entropy
and the robust PRG are, amongst other things, used to bootstrap and keep the
iDVV generators fresh. Second, the idvv_next() interface returns the next iDVV.
This interface can be called as many times as needed. Starting with the same
seed and secret, the iDVV generator will generate, for example, at both ends of a
controller-device association, the exact same sequence of values. In other words, it
is a deterministic generator of authentication or authorization codes, or one-time
keys, which are, however, indistinguishable from random. The importance of this
property is explained below.

Communication between any two devices happens only after a successful asso-
ciation. Consider the end of an association establishment, as per Algorithm|[7] e.g.,
between a controller C and a forwarding device F: at this point, both sides, and
only them, have the secret and unique material (SEFED, AiD). Using them, they
can bootstrap the iDVV protocol, which from now on can be used at will by any
secure communication primitives. As explained earlier, and detailed in [Kre+17],
iDVV generation is flexible and low cost, to allow the use: (a) on a per message
basis; (b) for a sequence of messages; (c¢) for a specific interval of time; or (d) for
one communication session.

NaCl [BLS12|, as mentioned in previous sections, is a simple, efficient, and
secure alternative to OpenSSL-like implementations, and is thus our choice for
secure communication amongst devices. Indeed, researchers have shown that it
is resistant to side channel attacks [Alm-+13] and that its implementation is ro-
bust |[BLS12]. Different from other cryptographic libraries, NaCL’s API and im-

75

plementation is kept very simple, justifying its robustness. Through ANCHOR, the
SDN communication channels are securely encrypted using symmetric key ciphers
provided by NaCl, with the strong cryptographic material required by the ciphers
generated by our logically centralized security mechanisms, allowing secret codes
per packet, session, time interval, or pre-defined ranges of packets.

5.2 Implementation

A prototype of ANCHOR has been implemented as envisioned in Figure To
strengthen our confidence in the effectiveness of deployment of ANCHOR in a pro-
duction environment, we have implemented two versions of the system. The first
uses the POX controller and CBenc (OpenFlow switches emulator). This ver-
sion has approximately 2k lines of Python code and 700 lines of C code (inte-
gration with CBench). It uses Google’s protobuf (https://developers.google.
com/protocol-buffers/) for defining the protocols and efficiently serializing the
data. The second is a slightly modified version using the Ryu controller and Open
vSwitch. In this section, we give an overview of the most relevant implementation
details. The evaluation of the different components of the architecture is presented

in Section [5.3

5.2.1 Source of strong entropy

We have 32 pools of events fed by four different sources, (1) incoming packet rate
sent by controllers; (2) incoming packet rate of ANCHOR; (3) network statistics of
forwarding devices; and (4) random bytes from local systems. Each of the sources
feeds the pools in its own way. Sources (1) and (3) use a round-robin approach,
whereas sources (2) and (4) randomly select the next pool to put the new event
in. In this way, we have a diversity of approaches for feeding the pools of noise,
making the “guessing task” of an attacker harder. Each pool needs to store only
the digest of the SHA512 hashing function. The current digest and the newly
arrived events are used as input of the hashing function. Lastly, once the pool has
been used by the source of strong entropy, it is reset to a new initial state, which
consists of the digest of a hash function using as input random bytes of a local
entropy source such as /dev/urandom.

To implement the entropy update() function (see Algorithm , we can use the
pools of noise circularly (e.g., Py and P;, P, and P3, and so forth), in a combined
circular and random way (P, and P;, P, and P31, and so forth), or in a completely
random fashion. The number of pools (32) and this diversity of approaches for

2CBench is the default and most widely used tool for benchmarking control plane perfor-
mance [KAI14]; [ZIR15].

76

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

using the pools make it very hard for an attacker to enumerate the possible values
for the events used to update the generator’s internal state [FSK11].

Even if an attacker is controlling two or more external sources in a timely
manner, it will be hard to guess the new state of the external entropy. First, the
attacker needs to enumerate the events of the pools being used on each update.
This, by itself, is something hard to achieve since the attacker does not know
the update sequence of these pools, i.e., which external sources are being used,
in which sequence, to update each pool. In other words, he/she would have to
know all sources of noise, and the sequence in which they are being used to update
the pools. It is also worth emphasizing that the external sources need to have a
predefined maximum rate for sending the heartbeats, i.e., compromised sources
cannot send data at a higher frequency to influence subsequent updates of the
external entropy. Second, the attacker would need to have additional knowledge
regarding the internal entropy.

5.2.2 Pseudorandom generator

Our pseudorandom generator combines the implementation strengths of different
solutions such as the Pseudo Random Function (PRF) of SPINS [Per+02| (which
is based on an HMAC function), provably secure constructions for building robust
PRGs |[Dod+13|; [FSK11|, and unbounded state spaces through cryptographic
primitives [Stal7].

As HASH function we have chosen SHA512. As HMAC function, we have cho-
sen the one time authentication function crypto_ onetimeauth() from NaCl [BLS12).
This function ensures security and performance while generating outputs of 16
bytes that are indistinguishable from random.

PRG at the devices. As the controllers and forwarding devices do not have
a source of strong entropy, we implemented a slightly modified version of the
algorithm for these components to use this logically-centralized security service
provided by the ANCHOR. Essentially, we replace the entropy get() function by
entropy_remote(). Instead of using local data, this function makes an entropy
request to the ANCHOR to obtain a source of strong entropy. This function is
essential to provide recovering security by refreshing, improving the resilience of

the PRG.

5.2.3 Secure cryptographic key generators

Based on the algorithm proposed in [Kre+17|, we have implemented an iDVV-
based secure cryptographic keys generator that supports seven different crypto-
graphic primitives. Specifically, we use each of these primitives as input to the

7

idvo_next(primitive_id) function that is used to generate the next key. In our im-
plementation, we used the following primitives: MDJ5, SHA1, SHA512, SHA256,
poly1305aes _ authenticate, crypto_onetimeauth, and crypto hash. While the first
four functions are provided by OpenSSL, the last three are provided by an inde-
pendent implementation of Poly1305-AES and NaCl. As MD5 and SHA1 are
deprecated, we use them only for performance comparison purposes.

To understand the rationale for our implementation, we give a bit of context to
clarify the difference between our solution and traditional KDFs. Both solutions
are used to generate secure cryptographic keys that can resist different types of
attacks, such as exhaustive key search attacks [YY05|. KDFs have common design
characteristics, such as strong hash functions to compute digests for the raw key
material. A secure KDF can be defined as H®) (p||s||c) [YY05]. H is a strong hash
function such as SHA256 or SHA512. The exponent C represents the number of
iterations used to make the task of the attackers harder. A common value for
C is 2'6. This exponent is particularly necessary if the entropy of the input p
(e.g., password, seed, key) is unknown. In practice, the input of the KDF is likely
to be of low-entropy |[YY05]. While in some use cases a high exponent C might
be necessary to increase the cost of an attack trying to recover the key, it also
significantly increases the cost of the key derivation function for high performance
latency-sensitive applications.

Differently from a traditional key derivation scheme, our implementation using
the iDVV generator in the context of ANCHOR uses high-entropy values. In other
words, we do not need to recur to the exponent C as a means to compensate a
potentially low-entropy p. By using by default two 32 bytes indistinguishable from
random values in our generator, we make the task of an attacker very hard. It is
also worth mentioning that iDVVs are essentially used in an association basis, i.e.,
they have a relatively short lifetime.

5.2.4 Implementation using Ryu and Open vSwitch

We have implemented a second, simplified version of the system, focused on the
essential registration and authorization functions of ANCHOR. We have used the
Ryu controller [Ryul9| for the control plane, and Open vSwitch (OVS) (https:
//www.openvswitch.org/) for the data plane. Ryu fully supports all versions
of OpenFlow, including Nicira Extensions, and is officially integrated into Open-
Stack Networking (Neutron). OVS is the main software switch used in virtu-
alized data centers (e.g., VMWare NSX [VMw20|, OpenStack |Thel9b|, Open-
Shift [Red18|). In addition, physical switches such as the Pica8 family [Pic19| rely
on PicOS [Pic18|, a user-space application running on top of an unmodified Linux
kernel, providing OpenFlow support (version 1.0 to 1.4) through integration with
standard OVS. This second implementation further strengthens our case for the

78

https://www.openvswitch.org/
https://www.openvswitch.org/

effectiveness of deployment of ANCHOR in production SDN systems that include
both software and hardware data planes.

Some key building components have made Pica8 attractive for both industry
and academia. For example, the unmodified Debian Linux distribution in Pica8
enables faster updates, keeps up with the latest kernel innovations, and allows
users to use standard Linux. Virtual application-specific integrated circuit (ASIC)
technology is another example, which is a hardware abstraction layer to support
multiple hardware and ASICs without modifying any of the PicOS tools. Other
examples include the support to traditional switching and routing protocols, and
hardware-accelerated Open vSwitch. Some of the key building components, that
have made Pica8 attractive for both the industry and academy, are the unmodi-
fied Debian Linux distribution (enabling faster updates, keeping up with the latest
kernel innovations, and allowing users to use standard Linux), virtual ASIC tech-
nology (vASIC®), which is a hardware abstraction layer to support multiple hard-
ware and ASICs without modifying any of the PicOS tools, support to traditional
switching and routing protocols, and hardware-accelerated Open vSwitch. The
later is achieved by modifying the OVS Userland implementation to interact with
the PicOS vASIC to download OpenFlow states to ASICs. The same approach can
be used by switching devices relying on the Open Network Linux (ONL) [Big20].
ONL is a specific Linux distribution designed for open hardware switches, i.e.,
forwarding devices built from commodity components. ONL supports a variety of
switching devices such as Mellanox Switches (SN2700, SN2100 and SN2410), Ac-
cton AS5512 (Nephos/MediaTek switch), Dell Z9100-ON, Quanta LY6 and LYS,
and Wedge 100.

Additionally, as shown by previous research [LHM10]; [YJ15]; [De +14]; [Wanl14];
[KSG14]; [Fon+15|; [Bar+17]; [Lan19|, emulated OpenFlow-based networks, using
Mininet [Lan19| and OVS, provide the requirements and the quality needed to re-
alistically emulate and, afterward, deploy the exact same solutions in production
environments.

We modified Open vSwitch (v2.10.0) and Ryu (v4.28) to support the registra-
tion and association functions provided by ANCHOR. To evaluate our solution on
a realistic scenario, using the Mininet emulator (https://github.com/mininet/
mininet) [LHM10]; [YJ15]; [De +14]; [Wanl4]; [KSG14]; [Fon-+15]; [Bar+17| (fur-
ther details in Section [5.3.4), we modified the behavior of the core hub module
(ryu/lib/hub.py) of Ryu. Similarly, we changed the behavior of the communica-
tion stack (ovs/lib/stream) of OVS. Specifically, instead of just opening a new
communication channel with the controller, our modified OVS registers itself with
ANCHOR (having obtained the network administrator’s authorization), and sends
an association request to the controller. In Section [5.3.4 we present the results of
ANCHOR providing network protection against a rogue switch that is added to the

79

https://github.com/mininet/mininet
https://github.com/mininet/mininet

network by an attacker, as an example use case.

5.3 Evaluation

In this section we evaluate the essential security mechanisms and services of our
architecture.

For the performance measurements, we used machines with two quad-core Intel
Xeon E5620 2.4GHz, with 2x4x256KB L2 / 2x12MB L3 cache, 32GB DIMM at
1066MHz, with hyper-threading enabled. These machines were interconnected by
a Gigabit Ethernet switch and ran Ubuntu Server 14.04 LTS.

5.3.1 Source of entropy and PRGs

We empirically evaluate both the source of strong entropy and PRGs through
statistical methods and tools, following state of the art recommendations |[Bas-+10].
To achieve our goal, we used NIST’s test suite [NIS18]. We generated one file
containing 50MB of random bits per generator. These files were used as input for
the test suite tool Statistical Test Suite (STS) [NIS18|. In the end, our generators
passed the absolute majority of tests and subtests: they failed only 2 sub-tests out
of 188 (passed 146 out of 148 non-overlapping template matching), as summarized
in Table This gives a high level of confidence in our generators.

5.3.2 On the performance of key generation

In this section, we analyse the performance of our key generator, which is essential
to provide low latency and high throughput control plane communication at a low
cost.

Figure[5.2|shows the latency of the seven cryptographic primitives we used with
our generator. We tested each primitive by generating keys of different sizes (16,
32, 64, and 128 bytes). The best performance is achieved by the implementations
based on SHA1 and MD5, as expected. However, these two implementations have
also the worst serial correlation coefficient, as shown in [Kre+17|. The generators
that use SHA512 or Poly-OTP have good performance, achieving a good security-
performance tradeoff.

5.3.3 Device-to-device communication performance

Connection establishment. While a TLS connection takes around 19ms to be
established, a device association using the ANCHOR takes less than 0.06 ms. This
means that ANCHOR can easily support large-scale data centers (e.g., 1k switches

80

Test Result

Frequency v

Block Frequency

Cumulative Sums (forward)

Cumulative Sums (backward)

Runs

Longest Run of Ones

NIENIENIENENIEN

Binary Matrix Rank

Discrete Fourier Transform v

Non-overlapping Template Matching | 146/148

Approximate Entropy v
Random Excursions 8/8
Random Excursions Variant 18/18
Serial (first) v
Serial (second) v
Linear Complexity v

Table 5.2: STS: results of the single tests

and 100k hosts |Gre+08|; |[ALVO0S|; [BAM10]) while being orders of magnitude
more efficient than traditional solutions for this particular metric. The scale of
the improvement of our connection setup process when compared to the TLS
handshake is due to three main factors. First, our algorithm has half the number
of steps. Second, we use symmetric cryptography only. Third, we use the fast
ciphering provided by NaCl.

Communications overhead. Figure shows the results of control plane com-
munications using OpenSSL, TCP, and two versions of ANCHOR. For communi-
cation of up to 128 forwarding devices, sending 10k control messages each, our
solution requires (while offering stronger security guarantees - see below) only half
of the resources and time of an OpenSSL-based implementation using AES256-
SHA, the most widely available cipher suite.

We can also observe the overhead of confidentiality (TCP-ANCHOR-EMAC)
in Figure In contrast to providing only authenticity and integrity (TCP-
ANCHOR-MAC), confidentiality incurs an overhead of around 15%.

It is worth emphasizing that we achieved these results by ensuring also much
stronger security, as we generated one secret key per packet. On the other hand, the
OpenSSL-based implementation used a single key (for the symmetric ciphering)

81

Latency to generate one key

0.0035
128B XXX
0.003 64B LN -
32B
0.0025 16B [0 —
N N
¥ 0.002
s N
-
- N
£0.0015 N
- 7777 =
o
0.001
0.0005 W
0
CRYPTO-H SHA512 SHA256 POLY-OTP SHA1 MD5

Figure 5.2: Latency of different iDVV generators

for the entire communication session.

5.3.4 Attack prevention

A type of attack that is recurrently presented as an important security threat in the
context of SDN is the introduction, by an attacker, of rogue switches in the network
(see [KRV13|; [AAS14]; |Chi+15]; |[KF15]; [CL17|; [LMK16]). A set of switches
under control of an attacker can be used for a DDoS attack, for instance, negatively
affecting SDN control. We use this type of attack as an example use case that
shows the logical centralization of security services in ANCHOR to enable attack
prevention. The defence against this type of attack consists of a switch having
to register itself to ANCHOR before being able to associate with the controller. If
either the registration or association process fails, the switch connection with the
controller is automatically dropped.

To demonstrate this functionality, we set up an experiment using the sec-
ond version of our system (the one with OVS and Ryu as the data and control
planes, respectively). We emulated a small network with Mininet, comprised of
five switches (sO to s4) and five hosts (hO to h4), following a tree topology with
s0 at the root. Each network host is connected to one switch (e.g., host h4 is
connected to switch s4). To emulate the attack, we assumed s2 to be a rogue
device introduced to the network by an attacker. As the network manager has not
registered s2 into the system, this switch should not be able to associate itself with

82

100 3

’w\ ; '/
>
o 10
a
0]
Fu)
@
it
°
0]
i)
(0]
—
3 1F -
g TCP-ONLY — °
5 :
o TCP-ANCHOR-MAC ¢ -
1 TCP-ANCHOR-EMAC
OpenSSL-AES256
O.l L L L J

2 4 8 16 32 64 128
Number of forwarding devices

Figure 5.3: Control plane communication costs

the controller. As a result, host h2 should not be reachable by any other host, and
vice-versa.

The outcome of the experiment was as follows. Once the mininet network was
up and running, we have run the pingall command to verify the reachability of
all hosts. We observed an overall packet loss of 40% — the result of 1 out of 5
unreachable hosts (h2, in this case). Each host executes a reachability test for
all other four hosts. However, the reachability test for host h2 fails. In case of
h2, all reachability tests fail. In a closer inspection, we verified that while the
simulation was running, switch s2 periodically tried to associate itself with Ryu,
without success, as expected.

5.3.5 Traditional solutions versus ANCHOR

In Table [5.3] we provide a summarised comparison between a traditional solution
and our ANCHOR. As traditional solutions we considered the EJBCA (http:
//www.ejbca.org/) and OpenSSL, two popular implementations of PKI and TLS,
respectively. As we have shown before, our bootstrap process (device registration
and association) is much faster and our connection latency is also significantly
lower. In addition, our solution has nearly one order of magnitude less LOC and
uses four times fewer external libraries. This makes a difference from a resilience
perspective. For instance, to formally prove more than 717k LOC (EJBCA +
OpenSSL) is by itself a tremendous challenge. Moreover, it gets considerably

83

http://www.ejbca.org/
http://www.ejbca.org/

worse if we take into account eighty external libraries and eleven programming

languages.

Table 5.3: Traditional solutions versus ANCHOR
Functionality Traditional solutions ANCHOR
Typical EJBCA (PKI) + OpenSSL ANCHOR + iDVV -+ NaCl
Software (TLS)
Device based on certificates; costs = based on unique IDs con-
Identifica- issue a certificate trolled by the ANCHOR; costs
tion = register the device (assign

a unique ID)

Device Reg- based on certificates; costs = registration protocol; costs =
istration certificate installation + se- register the device + iDVV

curity control policy /service

bootstrap

Device As-
sociation &

12 step mutual handshake +
DH for session keys (incl.

6 step trust establishment
with ANCHOR + iDVVs per

KeyGen certificate validation - any message, session, interval of
two device can establish an time, ... (ANCHOR has to au-
association) thorize association)

Authenticity v v
Integrity v v
Security Confidentiality v v
Properties PFS v (%) v/
PCS X v
PQS X v

Communications symmetric cryptography (ci- symmetric cryptography (ci-
pher: AES256-SHA) pher: Salsa20)

TLS stack highly configurable and com- easy to use, simple (85k

plex (717k LOC)

LOC), and efficient

Our proposed architecture offers a functionally equivalent level of security with
respect to properties such as authenticity, integrity and confidentiality, when com-
pared to traditional alternatives. Additionally, ANCHOR offers a higher level of
security by providing post-compromise security and post-quantum security. While
the former is ensured through post-compromise recovery, the latter is a conse-
quence of using only symmetric cryptography. Further, the lightweight nature
of our mechanisms, such as the iDVV, make them amenable to be used on a

84

per message basis to secure communication, increasing cryptographic robustness.
Moreover, by having fewer LOC, we significantly reduce the threat surface.
Finally, it is worth emphasizing that the PFS (*) of traditional solutions, such
as those provided by the different implementations of TLS, is not easy or sim-
ple to enforce. First, in spite of TLS providing ciphers that offer PFS, in practice,
different cipher suites do not feature it [SHS15]. This means that not all implemen-
tations and deployments of TLS offer PF'S, or provide it with very low encryption
grade [Hua+14]; [Digl7]; |[Naml19|. To give an example, widely deployed web
servers, such as Apache and Nginx |Digl7] and most DHE- and ECDHE-enabled
servers suffer from weak PFS configurations [Hua+14]; |[Adr+15b]; [SDH16].

5.4 Discussion

We briefly discuss the identified gaps discussed in §3.2] We also show, in §B.5 and
of Appendix B to which extent these solutions cover eleven of ONF’s security
requirements and provide a thorough security analysis of ANCHOR’s algorithms.
We conclude the section with a critique of our choices and results.

5.4.1 Meeting the challenges

Security vs performance? Control channels need to provide high performance (high
throughput and low latency) while keeping the communication secure. However,
as it has been shown, security primitives have a non-negligible impact on perfor-
mance. To mitigate this problem, we selected appropriate cryptographic primitives
(SHA512), libraries (NaCl), and key generation mechanisms (iDVV) to ensure the
security of control plane communications maintaining high performance. By logi-
cally centralizing the fundamental aspects of these mechanisms in the ANCHOR, the
performance overhead introduced in forwarding devices and controllers is limited,
as they require only minimal functionality to ‘hook’ to the ANCHOR instructions.

Complezity vs robustness? Traditional implementations of SSL/TLS, such as
OpenSSL, have a large, complex code base, that recurrently leads to vulnerabilities
being discovered. Similar problems are observed in PKI subsystems. It is known
that an effective means to achieve robustness is by reducing complexity. Hence
our choice for the NaCl and iDVV mechanisms to help fill the gap, since they
are respectively lightweight (small code base), efficient, yet secure alternatives
to OpenSSL-like implementations. As such, they are a robust solution to provide
authentication and authorization material for the secure communications protocols
we propose. They are also amenable to verification mechanisms aimed to assure
correctness, which are much harder to employ in very large code bases. Again, the

85

centralization of the non-functional mechanisms introduced in our solution is the
key to reduce complexity of networking devices, improving their robustness.

Global security policies? We have argued that controllers and network devices
often employ suboptimal network authentication and secure communication mech-
anisms, despite recommendations from ONF and other such organizations for the
opposite. This problem is very similar in nature to the state of affairs in net-
working before SDN. In traditional networks, enforcing relatively “simple” policies
such as access control rules |Cas+07] or traffic engineering mechanisms |Jai+13|
was either very hard or even impossible in practice. Given the current undesirable
state of affairs, we believe the same to be true for non-functional properties, with
security as a prominent example. Our logically centralized ANCHOR architecture
addresses this gap by providing a means for making centralized policy rules and
the necessary mechanisms to enforce them, permeating the SDN architecture in a
global and coherent way.

Resilient roots-of-trust? We debated that there is a (probably reduced) number
of functions which should not be left to ad-hoc implementations, due to their criti-
cality on system correctness. The list is not closed, but we hope to have shown that
strong sources of entropy and resilient indistinguishable from random number gen-
erators are clear examples of difficult-to-get-right mechanisms that benefit from
such logically centralized approach. ANCHOR addresses this issue, by providing
the motivation to design and verify careful and resilient once-and-for-all imple-
mentations of such root-of-trust mechanisms, which can then be reinstantiated in
different SDN deployments.

5.4.2 Devil’s advocate analysis

Doesn’t the logical centralization of non-functional properties create a single point
of failure? The results of this thesis already go a long way to improving robustness
of a single root-of-trust, compared to the state of the art: lowering failure proba-
bility; mitigating and recovering from the consequences of failure. The logical next
step would be to try and prevent failures in the first place. However, the failure
of a simplex system of reasonable complexity cannot be prevented.

Nevertheless, note that logical centralization is not necessarily physical cen-
tralization. And indeed, our plan for future work (and the way we drafted our
architecture paved the way) is to leverage state-of-the-art security and dependabil-
ity mechanisms using replication. For instance, to achieve tolerance of Byzantine
faults, we can readily enhance ANCHOR by replication, taking advantage of state
machine replication libraries such as BET-SMaRt [BSA14|, replicating and diversi-
fying components to prevent failure of this logically central point, with the desired
confidence. These concepts have been applied to root-of-trust like configurations
similar to ANCHOR [ZSV02]; |[CS04]; [Kre+14]. Furthermore, systems designed

86

with state machine replication in mind can also handle different types of threats,
such as DoS, without compromising the operation of the service [Kre+16|.

Won’t the natural hardware evolution be by itself enough to reduce the penalty
imposed by cryptographic primitives? The recent reality seems to contradict this
assertion — hardware evolution does not seem enough, for several reasons. First,
new hardware architectures can benefit from different existing software-based so-
lutions. For instance, both NaCl and OpenSSL take advantage of hardware-based
AES accelerators. Second, and as is well known, the fixed price of advancements
in hardware seems to be coming to an end [[EE15|. This is made clear by most
of the major I'T companies, such as Google and Microsoft, redesigning existing
software as a response to cope with this problem |Liv+15].

Aren’t traditional PKI and TLS implementations enough? Following what is
becoming recurrently advocated by many in the industry and in the security com-
munity, we have tried to argue that the simplicity and size of software and IT
infrastructure matters [Cisl4|; |[Verl5|. Higher complexity has been shown to
lead inevitably to an increased likelihood of bugs and security incidents in soft-
ware. Indeed, different implementations of PKI and TLS have been recently used
as powerful “weapons” for cyber-attacks and cyber-espionage [PwC14|; [BOC15]|,
leading to concerns about their robustness. Contrary to what this argument may
suggest, that does not mean PKI and TLS are “broken”. We believe they remain
fundamental to various IT infrastructures. However, as the main challenges of se-
curing SDN are usually relatively constrained to within a network domain, we have
come to understand that simpler, domain-specific solutions seem to be preferable
in this environment when compared to complex infrastructures such as the PKI,
and large code bases such as OpenSSL.

Wouldn’t the use of out-of-band control channels solve most problems? Out-
of-band channels may be useful in some contexts, but they are not “intrinsically”
secure. It is a recurrent mistake to consider physical isolation, per se, as a form
of security. Several studies have indeed argued the opposite: that out-of-band
channels worsen the problem, by making control plane management more complex
and less flexible, endangering control plane communications [Edw14|; [ME15]. We
do not take a stance in this discussion, but the fact is that real incidents, such
as National Security Agency (NSA) sniffing of Google’s cables between data cen-
ters |Sch15], seem clear examples that out-of-band channels are not, per se, enough.

5.4.3 Other use cases of ANCHOR

Using ANCHOR beyond control plane communications. As already alluded to in
Section [3.1, ANCHOR can be extended to support other use cases. For instance,
one application running on top of the SDN controller could be required to provide
proper credentials to identify itself. Once successfully authenticated, it should have

87

access to a specific set of system attributes defined by the operator during reg-
istration (e.g., read, write, notify, among other system calls [Fer+13|; [ABA17]).
Towards this goal, different controllers could rely on authentication and autho-
rization attributes globally enforced by ANCHOR. Another interesting use case for
ANCHOR would be to offer security support for controller clustering. This is a
timely problem. To give an example, previous and current releases of OpenDay-
light do not provide encryption or authentication of control messages exchanged
among controller instances |[Opel8b|; [Ope20|. Since each controller instance would
need to be registered with ANCHOR, it would be possible to provide the same se-
curity mechanisms and services we grant to the southbound connection, to ensure
security in east-west communication between controllers.

Addressing other non-functional properties of SDN. The design of ANCHOR is
generic enough to accommodate non-functional properties beyond security, such
as dependability or quality of service. With respect to the former, ANCHOR could
help in modularizing the problem of replicated control. Specifically, ANCHOR could
be responsible for coordination between controller replicas, for instance by guar-
anteeing a strongly consistent view of the network across all instances. Similar to
our security use case, the additional modularity of such design would allow a clean
separation of concerns that could simplify the design of the various components.
Recent proposals |Bot-+16| have indeed started following a similar design choice.
ANCHOR could also provide trusted measurement services for ensuring a certain
level of service even in the presence of malicious forwarding devices. For instance,
once a malicious forwarding device were detected [MTG18|; [KF15], ANCHOR could
automatically remove it from the list of legitimate devices, forcing the disconnec-
tion of those devices by the controllers of the network, which would be registered
to receive such events. The subsequent topology updates on the controllers would
trigger automatic traffic re-routing to ensure the quality of service of applications.

Final remarks

ANCHOR is the blueprint of an architectural framework addressing the problem of
enforcing non-functional properties in SDN, such as security or dependability. Re-
iterating the successful philosophy behind the inception of SDN itself, we advocate
the concept of logical centralization of SDN non-functional properties provision.

Taking ‘security’ as a proof-of-concept use case, we have shown the effectiveness
of our proposal. We made a gap analysis of security in SDN, and populated the
ANCHOR middleware with crucial mechanisms and services to fill those gaps and
enhance the security of SDN.

We evaluated the architecture, especially focusing on the security-performance
analysis tradeoff, giving proofs of the algorithms, cryptographic robustness analy-

88

ses, and experimental performance evaluations. By resorting to recent primitives,
lightweight albeit secure, like NaCl and iDVV, we outperform the most widely
used encryption of OpenSSL by 50%, with a higher level of security. Our solution
also fulfills eleven of the security requirements recommended by ONF.

The mechanisms we propose are certainly not the final answer to SDN security
problems. That is not our claim. However, we believe that an architecture that
logically centralizes the non-functional properties of an SDN, has the potential to
address some of the most prominent unsolved problems regarding the robustness
of the infrastructure.

89

90

Chapter 6

R-ANCHOR: Robust and Resilient
ANCHOR

In this chapter, we review our approach to the systematic mitigation of the risk
of logical centralization. As we show, from the initial ANCHOR design present-
ing a high level of robustness, we evolve to R-ANCHOR, providing resilience in
several steps, towards a more effective solution against the single-point-of-failure
syndrome of ANCHOR. Whilst the resilience approach of this thesis concerns the
management aspects, further research avenues towards a fully resilient architecture
beyond this thesis — management, control and date planes — are suggested in
Chapter[7} First, we shortly review the status quo before and after ANCHOR in Sec-
tion[6.1] Then, in Section we review baseline robustness mechanisms included
in the design of ANCHOR. The remainder of the chapter focuses on additional,
more effective measures, complementing the baseline ones. In §6.2.1, we present a
semi-automated approach to achieve post-compromise security, which can readily
be applied to instantiations of the baseline architecture discussed in Chapter [5]
Then, we evolve to a more ambitious design, based on some architectural evolutions
materialized by the R-ANCHOR resilient management architecture, introduced in
Section In Section [6.4 we present the system setup and protocols. The
reader will observe that the level of automation is dramatically increased, includ-
ing the algorithmic steps to achieve fully automatic restart for PCS after a full
compromise; and mitigation of insider threats. With regard to the latter, reports
have recurrently shown that insiders are responsible for approximately 50% of all
reported security incidents [IBM18]; |[Obsl8|; [LBL16]; [Secl9]. Recent findings
unveil that nearly 90% of organizations feel vulnerable to insider threats [Cyb18];
[Sec19]. The system can be configured optionally with or without these additional
measures, since they obviously incur a cost in complexity that must be justified
by the criticality of the application.

91

6.1 Before and after ANCHOR

Before ANCHOR, as we have shown, adversaries could deploy their attacks through
the multiplicity of threat vectors specific to SDN security, which we recapitulated
in Section and hit on the multiple vulnerable points in order to progressively
compromise and control the system. ANCHOR modifies the scenario, as we have
shown and evaluated in Chapters |4/ and |5, by shrinking the threat plane. ANCHOR
becomes then the target to attack par excellence, and indeed a SPoF: the failure
or compromise of ANCHOR would not bring the whole system down at once, but
would compromise the availability of the security services it provides to the net-
working devices. While the temporary unavailability of such services might not
be a problem for smaller or non-critical networks, it might have a non-negligible
impact on the operations of mission critical or large-scale networks. This calls
for a range of mechanisms of incremental strength to handle possible failures of
ANCHOR.

6.2 Baseline measures for hardening ANCHOR

The compromise of a root-of-trust is of great concern, since crucial services nor-
mally depend on it being secure and dependable. As we stated before, we have a
long-term strategy towards the resilience of ANCHOR. It starts by improving the
inherent reliability of its simplex (non-replicated) version, by hardening it in the
face of failures. For instance, different from existing traditional security services
such as Kerberos and RADIUS, we still provide some security guarantees even
when ANCHOR has been compromised.

This section recapitulates the prevention and assurance mechanisms promoting
robustness, already incorporated in the baseline designs of ANCHOR and KISS, as
described in the previous chapters. Firstly, the design was hardened by several
measures: incorporating robustness into all basic functions (e.g., sources of entropy,
random number generators); using symmetric cryptography for performance and
post-quantum security, systematic informal proof of correctness of all algorithms
and services, and machine-assisted formal verification of the more critical ones, for
increased assurance.

Second, we propose protocols to achieve two security properties guaranteeing
respectively, the security of past (pre-compromise) communications, and of future
(post-recovery) communications. This provides a significant improvement over
existing root-of-trust infrastructures.

The first property is perfect forward secrecy, namely, the assurance that the
compromise of all secrets in a current session does not compromise the confiden-
tiality of the communications of the past sessions. The enforcement of PFS is

92

systematically approached and discussed in the algorithms we presented in Chap-
ters 4] and [5l

The second property is post-compromise security. While PFS considers how to
protect past communications, PCS considers how to reinstate and re-establish the
secure communication channels, for future communications. This security prop-
erty had so far been considered only in specific scenarios such as secure messaging
[YR15]; [YRC18|. The algorithms of the baseline architecture presented in Chap-
ter blalready include the necessary variables to prepare for and enable a form PCS,
with manual recovery (initiated by system administrators), which we explain next.

6.2.1 Post-compromise recovery

As previously explained, when ANCHOR is reinstated after a compromise, it would
be extremely useful to have a way to re-establish the secure communication chan-
nels between ANCHOR and all participants in the simplest and fastest way possible,
thus reducing the time the system is in a compromised state and /or unavailable for
correct service. In what follows, we propose a semi-automated way of reinstating
the system after a compromise.

We recall that the algorithms of the baseline architecture already left in place
the necessary 'recovery keys’:

e ANCHOR master recovery keys Ke,, and Khy

rec rec

e Manager recovery keys Keyyy,.. and Khayy,..

e Device recovery keys Keap, . and Khap

irec

The ANCHOR master recovery keys are strong random keys, the Manager and
Device recovery keys are deterministically generated from the former — although
indistinguishable from random — in a logical sequence Kxgu, . — Kxap,., —
Kxap,,,.,- This reduces the number of uses of the master recovery keys. All of
them live essentially off-line, and exist on-line for the short periods of setup, reg-
istration, or recovery. The threat model is thus that these keys are trusted not to
be compromised, unlike all the other keys in the system.

Algorithm [§| presents our solution to re-establish the secure communication
channels when ANCHOR is compromised. Intuitively, since ANCHOR’s master re-
covery keys Key,,,, and Khy, . are stored securely offline, they are unknown to an
attacker who has stolen all secrets from the ANCHOR server. To initiate recovery,
the entity managing the ANCHOR server A (the system administrator) manually
intervenes and gets it reinstated, installs these recovery keys from offline (line 1),
with which it computes the Kx 45, recovery key pair for each manager M (1.2). To

rec

93

Algorithm 8: ANCHOR basic post-compromise recovery

{For each manager M and its associated devices {D;} ;}

1. A installs(Keya,. , Kha, .);
2. Kean,..~H(Kea,., [| M); Khan,, . ~H(Khy,,, || M);
3. generates(Ke’ anr, Kb anr, {Ke’ap,, Khap, }1);
4. M=(Xe’ an, Kb an, {Ke’ap,, Khap, }).
5. A —=M [Recovery, A, M, Eaps,.. (My)], HMACap,.,
6. A destroys(Kea,.., Kha, ., Kean,.., Khan,..)
7. M installs(Keans,.., Khan,..);
8. Kean = Ke'an; Khay = Kh'ang;
{For each device D;}
9. M Keap,, . ~H(Keanr,.. |IDi); Khap, . —H(Khaa,.. ||ID:).
10. M=(Ke ap,, Kb’ ap,).
11. M — D; [Recovery, A, M, D;, Eap, . (M;)|,HMAC4p,,...
12. M destroys(Keans, .., Khanr,.., Keap,,. ., Khap,, ., Ke'ap,, Khiap,);
13. Keyp, = H(Kenrp,): Khiasp, = H(Khyrp).
14. D; Keap, = Ke’ap,; Khap, = Kh'ap,;
15. Keyp, = H(Kenrp,): Khiasp, = H(Kharp,).

continue the recovery process, ANCHOR generates new random keys to be shared
with all Ms, and all D; (1.3).

Then, ANCHOR sends to each M (line 5) a 'Recovery’ message to re-share the
just-generated keys (contained in M} created in 1.4) with the devices under the
network administrator’s control. The messages are encrypted and MAC protected
with the corresponding recovery keys of each M. The new shared keys will be
used to protect future communications. The recovery keys in A are immediately
destroyed (1.6), i.e., as soon as they are not needed anymore.

Each M implements the recovery operation with each of the devices it manages.
In preparation, M starts by installing its recovery key pair (1.7), Keays,., and
Khayy,,,. Those keys will be used to decrypt the 'Recovery’ message from A, as
well as to compute the recovery key pair for each device (1.9). The new shared
secret key pair for secure communication between A and M (sent by A) replaces
the possibly compromised keys at M (L.8).

The process continues with the recovery of devices subtended by this M. Using
the key material recovered from the 'Recovery’ message sent by A, M sends in turn
to each D (line 11) a 'Recovery’ message to re-share those keys (Ke’ap,, Kh’4p,),

94

encapsulated in M, created in line 10. These keys, for A-D communication, will
be installed by each D; (1.14), replacing the old keys. M destroys, in line 12, all
the recovery keys, as well as the new A-D communication keys Ke'ap,, Kh'4p,
— for which M was a mere mediator. Finally, all keys shared between M and its
subtended devices will be updated (rolled) to their hash value, on both extremities
of the M-D; channel (lines 13 and 15). As mentioned previously, this key update
is used to provide perfect forward secrecy.

If one or more network administrators M get compromised, they can be re-
covered using a slightly modified run of Algorithm [8| For simplicity, and without
loss of generality, we give just the modified lines in the algorithm below, for the
Manager post-compromise recovery protocol. First, M is reinstated, and gets the
recovery keys through an out-of-band channel (Keayy,.., Khapy,..), so that it can
get the new keys sent by A under the latter. Essentially, M will re-establish and
re-share its secrets with the help of ANCHOR, in a similar way as described in
Algorithm 8l Now, only new M-D keys are involved, Ke’yp,, Kh'yp,, for all D;
subtended by M (generated by A in line 3). The algorithm proceeds as the original,
until it is time for M to share keys with each D,;. However, now Ke’y/p,, Kh'y/p,
are shared, instead of Ke'ap,, Kh’4p, (line 10). The algorithm finalizes, with the
update of shared M-D communication keys, this time not a key roll-up, but the
installation of new keys Ke’y/p., Kh’y/p, on both sides of the M-D channel (lines
13 and 15). The operation in line 14 is no longer needed, for obvious reasons. All
the lines of the original Algorithm [8| not mentioned in the paragraph above remain
the same for the modified Manager post-compromise recovery protocol.

Algorithm: Network manager M post-compromise recovery - modified steps

{For each manager M and its associated devices {D;} ,}

3. A generates({Ke'np,, Kharp, }11);

{For each device D;}

10. M Ml:(Ke’MDl, Kh’MDJ

13. M KeMDi — Ke’MDi; KhMDI — Kh’]WDi-

14. D; no operation;

15. Ke]y[Di = Ke’MDi; KhMDI = Kh’MDi-

In the following sections, we elaborate on more sophisticated mechanisms, in

95

the way of promoting resilient management of ANCHOR, achieving fully-automatic
PCS recovery and insider threat mitigation (an important threat vector as we have
explained earlier [Hom-+19]).

6.3 R-ANCHOR Resilient Management Architecture

R-ANCHOR builds on ANCHOR, retaining all its properties and aiming at addressing
some of its limitations, namely in the management scope: the syndrome of SPoF
of the management site, manual PCS recovery, vulnerability to malicious insiders
(managers).

The incremental architecture shown in Figure[6.1], shows one of the fundamental
changes. We re-factor ANCHOR’s architecture using architectural hybridization. As
we will detail later, this means that ANCHOR has now two parts, a major one,
the 'payload’ (i.e., where the main services of ANCHOR reside) and a trusted-
trustworthy subsystem (the ’hybrid’, a.k.a. 'wormhole’ [Ver06|). The "wormhole’,
and its interface to the payload, the wormhole gateway (WG), are designed and
verified so as to provide very high assurance about the capacity of unconditional
provision of correct albeit simple functions/services, whilst being tamperproof.
These services should be provided to payload components through the wormhole
gateway, even in face of the total failure of the system by accidental faults or
malicious compromises [Ver06.

As we explain ahead, this architectural enhancement allows evolving the man-
ual recovery, as previously discussed, to fully-automated post-compromise recov-
ery, alleviating the syndrome of SPoF. It also opens avenues for more ambitious
resilience mechanisms to be discussed as future work, such as fault and intrusion
tolerant replicated ANCHOR server sets powered by efficient hybrid BFT proto-
cols [Ver+13].

The other fundamental change is discussed ahead, and is concerned with modi-
fied protocols following a new trust/threat model, in order to address the problem
of insider threats: malicious network managers (M).

6.3.1 System model

The system model of R-ANCHOR follows that of the baseline ANCHOR, with ex-
tensions that we describe below. Recapitulating: we are concerned with software-
defined networking fabrics, where a main characteristic is the segregation of system
activity between what are called the data and the control planes.

Baseline components. As explained earlier, in the context and focus of this
thesis, the 'system’ is the control plane part. Thus, the basic system components
are: devices (D), i.e., forwarding devices (F) or controllers (C), and the ANCHOR

96

SDN Controller

~ ANCHOR
[Net App ﬂj [Net App]]JTI f [Device registration]\ HAAT

Network z i [
Operating ANCHOR’s Oracle
System -
x j Automatic PCR of
ANCHOR
[Manager registration]
SDN Device ~—)

e J

A
FLOW TABLES W
Control Channel
/NG 9“sz

Figure 6.1: Overview of R-ANCHOR (ANCHOR’s modifications in red color)

server (A), interconnected by a network that channels the control-plane activity
(Figure [6.1)).

Network. We assume fair First In, First Out (FIFO) reliable channels (e.g.,
TCP/IP) between devices, network managers and ANCHOR. Forwarding devices
and controllers can communicate with all controllers and ANCHOR. The commu-
nication between any two elements can happen through different paths (or out-of-
band channels) depending on the network topology, built-in redundancy, and so
forth.

Architectural Hybridization. In R-ANCHOR, one additional albeit important
modification in the system model is introduced: architectural hybridization |[Ver06|.
So the components just listed now form the 'payload’ part, following a system
model consistent with the expected characteristics of the environment where the
system is deployed. This payload coexists with ’hybrids’, or 'wormholes’, which
in hybridization lingo mean well-defined and self-contained subsystems following,
by construction, system model and fault assumptions differentiated from the rest
of the architecture, i.e., the normal’ or "payload’ part (fault assumptions are dis-
cussed just ahead). For example, it is typical in secure and/or dependable hybrid
system designs that whilst the normal part is asynchronous and subject to arbitrary
faults, the "hybrids’” are trusted to be synchronous and not to fail, behaviors en-
forced by construction. Under such favorable conditions, these trusted-trustworthy
components can reliably provide simple but effective services such as failure de-
tection, counters, ordering, keys and signatures, random numbers, or reliable and
timely execution of simple pre-defined functions. That is, they offer, for a very re-
stricted set of services, stronger properties than would be possible in the payload
part (normally subject to the security, dependability and performance impair-
ments of systems of reasonable dimension and/or openness). The paradigm has
been gaining increasing acceptance and traction in the design of secure/dependable

97

systems [Ver06|; [Chu+07|; [Lev+09|; [Kap+12|; [Ver+13]; [BDK17].

Hardware-Assisted Anchor of Trust. Figure depicts the specific wormhole
used in R-ANCHOR, the HAAT, denoted T in what follows, which holds critical data
(e.g., master and recovery keys), and executes simple functions (e.g., error, intru-
sion or failure detection, forced reset, recovery and rejuvenation), crucial to our
objective of management resilience. The data and function results are made avail-
able to payload subsystems through the wormhole gateway (WG in the figure),
as described next. In R-ANCHOR, using a hybrid model enables, amongst other
things, a simple and effective solution to achieve automated post-compromise re-
covery. The detection functions it can host also contribute to improve error and
failure recovery, alleviating the syndrome of SPoF. Recapitulating the baseline AN-
CHOR PCS process, described in §6.2.1, the recovery keys are computed through
master recovery keys. However, in R-ANCHOR, instead of being stored offline and
manually processed upon failure, those keys are stored in HAAT. In case of a dis-
aster, the master recovery keys are readily used to compute the recovery keys and
install them in ANCHOR, by means of a protocol executed through the wormhole
gateway. The protocol provides a way to recursively share new keys between AN-
CHOR, network managers and devices. After the recovery, the recovery keys are
“forgotten” by the payload system.

Wormhole Gateway (WG). The payload ANCHOR server and the HAAT are
connected by a special link, the WG. The link and the endpoints of the worm-
hole gateway interfacing between ANCHOR and HAAT are designed so as to provide
very high assurance about: (i) the tamper-proofness of HAAT to ilegal accesses
through ANCHOR and/or the link; (ii) the unconditional provision of the pre-
defined HAAT services (such as forced reset), in face of faults and attacks. These
include the general failure of the payload system by accidental faults or malicious
compromises [Ver06|. The simplest implementation is that both ANCHOR and the
HAAT should be inclosed in an isolated vault or room with strong physical access
control (e.g., as recommended by Hardware Security Module (HSM) manufactur-
ers, specialized security companies, and security experts |[Safl12]; [Vaul§|; [Bar19];
[ASG19]). The HAAT is only accessible by a local interface when the vault is open;
the ANCHOR is accessible both locally, and remotely through secure session proto-
cols (e.g., Secure Shell (SSH)) by authorized users[[] Table[6.1]summarizes HAAT’s
API. The function GetRecKeys() returns the recovery keys of ANCHOR. It must
be used by ANCHOR when it rejuvenates after a compromise. It is worth empha-

1Just to give a real feel, here is one possible implementation of this principle. The ANCHOR
server is closely connected to the HAAT through a bus-level interface, allowing HAAT to follow
and check ANCHOR’s activity, and/or perform unconditional actions on the ANCHOR machinery,
such as forced reset. The HAAT can be implemented through available COTS small computer
technology (e.g., Raspberry Pi or other), capable of tight interface to the Personal Computer
(PC)-level technology in the ANCHOR server implementation.

98

sizing that GetRecKeys() will only work right after a hard reset command, as
described in Section [6.4.2. Failure detectors can send error, failure or compromise
messages to HAAT using the SendWarning(E|C|F). Assuming that HAAT receives
one or more compromise (C) messages from reliable failure detectors, it sends a
HardReset message to ANCHOR. As soon as ANCHOR’s WG receives the message
(WaitForHardReset ()), it starts a hard reset of the server, rejuvenating ANCHOR.

Table 6.1: HAAT’s API

Function Operation

GetRecKeys () Returns ANCHOR’s recovery keys stored in HAAT.

SendWarning(E[CI|F) ANCHOR'’s detectors send error E or compromise C or failure
F to HAAT’s oracle.

WaitForReboot () Waits for HAAT’s reboot signal, forcing ANCHOR to recover
in case of warning E or F.

WaitForHardReset () Waits for HAAT’s hard reset signal, forcing ANCHOR to reju-
venate in case of warning C.

Synchrony. We assume partial synchrony [DLS88|, i.e., the system can behave
asynchronously for some time, but it becomes synchronous with a certain prob-
ability, allowing the system to have processing and communication time bounds.
Likewise, we assume that the clocks of ANCHOR and HAAT are loosely synchro-
nized.

Social-technical components. We assume there is one logical entity perform-
ing the system administrator function (S). The system administrator is the only
one entitled to: operate and manage ANCHOR, remotely or locally; manage HAAT
locally. Our definition englobes both the human operator(s) and the machine(s)
implementing S. In the following sections, we discuss the trust issues concerned
with S. We assume there are several logical entities performing the network man-
ager function (M). The network manager is entitled to: manage devices (C and
F), remotely or locally. Our definition englobes both the human operators and the
machines implementing M. We discuss the trust issues concerned with M below.

6.3.2 Trust and Threat model

We assume that the adversary does not have any access, physical or other, to the
HAAT internals. We assume that the adversary does not have physical access to
the ANCHOR, but may manage to remotely access it.

99

We assume that an unlimited number of forwarding devices and controllers in
the system, or ANCHOR itself, can fail on account of accidental faults or attacks at
any given time t. We consider as well that an attacker can obtain all knowledge
of the victim device(s) or ANCHOR, including all stored secrets and the session
status. However, the modified R-ANCHOR protocols continue to guarantee PFS.
While we do not do anything directly about failed or compromised devices, which
will be recovered from scratch, we provide an automated post-compromise recovery
protocol for ANCHOR.

Our modified fault model for R-ANCHOR presents a framework for mitigating
insider threats in the management umbrella, by restricting the actions of network
managers. We assume that up to f out of n network managers entities M can be
malicious. Besides the obvious configuration condition of n > f, in the algorithms
that follow, we rely on this assumption to enforce that any critical operation in the
system performed by network managers, such as registering or associating a new
device, should require the intervention of at least f + 1 network managers entities
to be deemed correct.

However, we assume that the system administrator entity S (as defined in the
last section) is trusted. Consequently, in the algorithms described next, any critical
operations in the system by S, are always deemed correct. Given the rareness of
the intervention of S in the system operation, we can afford to substantiate the
coverage of this assumption in a socio-technical manner, for example through a
four-eyes policy (involving at least two human operators of S, for e.g. opening the
vault, handling HAAT or the ANCHOR server, or the registration of a new network
manager).

We assume an extended Dolev-Yao |[DY83| threat model for the control-plane
communication network, amongst ANCHOR, devices, network managers and sys-
tem administrator. In consequence, an attacker may: (i) arbitrarily delay, drop,
reorder, insert, or modify messages; (ii) log all messages; (iii) compromise any
network device (e.g., a controller or a forwarding device) at any time. However,
we assume the security of the used cryptographic primitives, including HMACs
(e.g., HMAC-SHA256), hash functions (e.g., SHA-256), and symmetric encryption
algorithms (e.g., AES), as well as of the strong hash functions and high entropy
and randoms described earlier for ANCHOR. We also assume that an attacker can
have control of the network for some time, but cannot control the entire network
for the whole time. This is a reasonable assumption for this kind and scale of
infrastructure.

We assume that an attacker can reach full control over the ANCHOR server and
remaining payload system during a limited time (e.g., from ¢ to ¢’, ¢ < t'). During
this time, s/he has full control of the payload system and can access all locally
stored secrets. However, short of a last-resort human detection of malfunctioning,

100

we expect a much earlier and time-bounded latency in automatic error detection,
made possible by the ANCHOR-HAAT interaction mechanisms through the WG
which, as we have postulated (and design accordingly), are unconditional despite
any compromise of ANCHOR. Namely, we are talking about host-based failure or
intrusion-detection mechanisms, and automatic reset and recovery. As such, up
to time ¢ ANCHOR’s payload (server and devices) rejuvenation is automatically
started, with the help of HAAT.

As hinted previously, the HAAT, besides synchronous, fails only by crashing,
and its internals are completely shielded from external interaction. Substantiation
of these assumptions should entail thorough verification. It should also be able of
operating non-stop for some bounded time, even in case of power failures.

6.4 Setup and protocols

In this section, we discuss R-ANCHOR in detail. We start with the system roles and
setup. Following, we delve into the technical and operational specifics of deploying
and maintaining the correct operation of R-ANCHOR.

Before starting, for simplicity and without loss of generality, we denote Exy ()
an encryption using encryption key Kexy, and we denote ||,HMAC xy, respectively
a message field inside [|, followed by an HMAC over the whole material within ||,
using MAC key Khyy, where X, Y € {T,S,M;,A,D;}. It is worth emphasizing that
the system can generate strong keys using a suitable KDF based on the high en-
tropy random material provided by ANCHOR’s source of entropy |[Kre+19|. In Ta-
ble[6.2] for the comfort of the reader, we recapitulate the notations of Table[5.1]and
add new ones (e.g., T, S, and M;) used for describing the algorithms discussed in
the following sections. Finally, in the hybrid architecture, communication through
the control network, interfacing the payload subsystem with the wormhole HAAT

through the wormhole gateway (WG), is denoted WG, i1 the protocols.

6.4.1 System roles and setup

The system has four main types of components: forwarding devices, controllers,
ANCHOR, and HAAT. While network managers are responsible for controlling the
operation of network devices, system administrator are accountable for managing
the operation of crucial parts of the system such as the HAAT. Each time a new
network device (e.g., forwarding device, controller) is added to the network, it
must be registered within ANCHOR before being able to connect to other devices.

HAAT (T) setup. The system administrator, in control of HAAT, generates and
deploys ANCHOR’s master recovery keys Kes and Khy in HAAT.

rec rec

101

Table 6.2: Summary of notations

Notation Description

T Hardware-Assisted Anchor of Trust (HAAT)

S System administrator

M; Network Manager ¢

D; Device i (e.g., controller C or Forwarding device F)

H Cryptographic hash function

MAC Message Authentication Code algorithm

XY One entity belonging to {A, D;, M;, C, F}

Kexy Encryption secret key. XY denotes: referring to X and Y entities
sharing; or the usage the key refers to

Khxy MAC/HMAC secret key. XY denotes: referring to X and Y enti-
ties sharing; or the usage the key refers to

Exy Encryption primitive using secret key Kexy

[LHMACxy keyed-Hash MAC of message || using secret key Khyxy

KDF Key Derivation Function

ANCHOR’s payload setup. To start its operation, the payload system will need
the recovery keys Ke,,,, and Khy, , both during setup, registration and for the
post-compromise recovery steps described ahead. Like happened when manually
handled in the basic algorithms, they live essentially off-line, now inside HAAT, and
exist on-line for the short periods of setup, registration, or recovery. In R-ANCHOR,
they are transacted through the secure ANCHOR to HAAT interface, through the
control channel implemented by the wormwhole gateway (WG). When they are
needed on-line, HAAT sends them to A through the WG.

The steps of the setup protocol are similar to the basic batch setup protocol
presented in the Algorithm [5|, except for the prefix lines, which are now executed
within HAAT and ANCHOR interactions, including the master recovery keys, which
are installed in ANCHOR through the HAAT. The modified prefix lines are described
in the algorithm below. All the remaining lines of the original Algorithm |5 remain
the same. Note that [InitA, GetRecKeys ()] causes T to create new keys.

Network manager setup. Each network manager (denoted M;) is registered by
the system administrator. Each network manager receives a pair of recovery keys
computed by A.

Device setup. The first operation to be made after a device D; is first brought
to the network is the setup concerns the establishment of credentials, for secure
management access by the network manager. For further details, see the device

rec)

102

Algorithm: Batch setup of R-ANCHOR, M, and initial {D;}?_; - modified steps.

WG

Sq. T —= A [InitA, WaitForHardReset ()].
s A XS T [InitA, GetRecKeys ()].

Se. T Y5 A [InitA, Kea ., Kha,, .

{For each manager M; and its associated devices {D;}~,}

ezecute Algorithm|5 from lines 1 to 11.

registration Algorithm
Protocols. In what follows, we discuss the modified protocols required for post-
compromise recovery and device registration.

6.4.2 Fully-automatic post-compromise recovery of ANCHOR

As previously explained, when ANCHOR is reinstated after a compromise, it is cru-
cial to have a way to automatically re-establish the secure communication channels
between ANCHOR and all participants. Also, one streamlined enough to reduce the
window of unavailability of ANCHOR, i.e. to achieve recoverable operation, in terms
of fault-tolerance (see Part II of [VRI12|).

In particular, we consider that when ANCHOR has been compromised by an at-
tacker (e.g., through the exploitation of software vulnerabilities), and has been re-
instated by the operator (e.g., by applying software patches and rebuilding servers),
the system should have a way to automatically re-establish secure communications
between ANCHOR and all other participants, without having to reinstate these com-
ponents (controllers and forwarding devices in this case, whose shared secrets have
become compromised). Though out of the context of the current thesis, this ar-
chitecture lays the ground for further automation of the image regeneration steps,
and even diversification of image sequences for resilience enhancement, in the line
of the work of [Sou+10].

Algorithm presents our solution to automatically re-establish the secure
communication channels when ANCHOR is compromised. The change lies in that
the manual operations and interactions between S and the ANCHOR server are now
automated, represented by the prefix lines to the main recovery protocol.

First, once the compromise has been detected, HAAT (T) immediately sends a
'Rejuvenate’ command to A (line s,) prompting it to the forced hard reset that will
ensue under the control of HAAT. Rejuvenate is harder than Reboot: it implies the
reinstantiation of ANCHOR from a reliable system image (secure and clean-state
read-only). Since ANCHOR’s master recovery keys Key, . and Khy, . are securely
stored in HAAT, they are unknown to an attacker who has stolen all secrets from

103

Algorithm 11: R-ANCHOR fully-automatic post-compromise recovery

So. T 25 A [Rejuvenate, WaitForHardReset ()].
s, A XS T [Rejuvenate, GetRecKeys ()].

se. T 25 A [Rejuvenate, Key, ., Khga,_]

{For each manager M and its associated devices {D;}" ;}

execute Algorithm |8 from lines 1 to 15.

the ANCHOR server. Once rejuvenated, A requests the master recovery keys Key, .
and Khy,, to T (line sp). T sends those keys to ANCHOR (line s.). Note that
[Rejuvenate, GetRecKeys ()| causes T to reuse and return the existing master keys
(unlike the setup protocol where they are created anew). The following steps of

the recovery process are the same as presented in lines 1 to 15 of Algorithm [§] as
described in Section [6.2.1.

6.4.3 Device Registration

The device registration protocol is modified to fulfill the objective of mitigating
insider threats. Having worked on the resilience of ANCHOR, we now turn our
attention to the Managers. We recall that we assume that at most f Managers
can be compromised at any time.

In the modified device registration protocol we present in Algorithm [12] the
ANCHOR serves as a trusted third party (TTP), to vet any registration request
made by any network Manager My, through an additional f network managers. A
set of positive acks from a total of f+1 network managers (including the requester),
is sufficient evidence that the devices to be registered are legitimate. As shown in
the prefix lines, s; initiates the registration request from an My as usual. ANCHOR
broadcasts the reference of the request through all network managers (line sy).
From the set of answers, if not enough positive confirmations exist, the protocol
is exited in abort (lines s3 - s5).

Otherwise (A receives at least f + 1 ACKs), the device registration protocol
proceeds as originally described in Algorithm [6] of Section [5.1.5. The protocol
ensures resilience to insider threats perpetrated by malicious network managers:
no group of up to f, even colluding, malicious managers will be able to register
fake devices in the network.

104

Algorithm 12: R-ANCHOR device registration

{Bootstrap for devices D; —, D,,, using a quorum from Managers M; — M,, }
s1. Mp — A [Reg, My, Eanr, ({(Dy,2t)}y ,2%,),HMAC 4,
{A as Trusted Third Party, seeks correct acks from M;;l }
s2. A — M; Vj € [1,m] [Ack, A, Eang,({(Ds)}iz), HMAC Ay, -
{For set R of collected ack(M;) from Managers M; — M,, }

S3. if #R < f then
sq. A — My [Reg, A, Eanr, (Reject,z?))],HMAC s, ;
s5. A Abort registration and leave.

{(else:) Bootstrap for devices D; — D,, (contd.)}

execute Algorithm |6 from lines 2 to 19.

6.5 Final remarks

In summary, even though ANCHOR as a root-of-trust, is by design a single-point-
of-failure in our system, we have been mitigating the associated risks through
Chapters [5] and [6] by guaranteeing:

e Robustness: the probability of component failure is reduced by basic hard-
ening of the design of all mechanisms, functions and algorithms.

e PFS: the compromise of ANCHOR in the current session does not expose past
communications.

e PCS: the full compromise of ANCHOR does not expose future communica-
tions, after the recovery of communication channels.

e PQS: ANCHOR will stand up against an attacker with quantum computers,
since it only uses symmetric key cryptography.

e Resilience: insider threat mitigation by requiring a quorum of network man-
agers for critical operations such as device registration and association; au-
tomatic recovery for fast turnaround and post-compromise security after full
compromise or failure.

105

106

Chapter 7

Conclusions and Future Work

In this closing Chapter, we start by giving a global perspective of the main contri-
butions of our work. Then we discuss some of its limitations, and point to avenues
for future work.

7.1 Summary of Contributions

We recapitulate and briefly elaborate, in hindsight, the main results and contribu-
tions of our work:

1. We tested with success the innovative conjecture of using logical centralized
services to enforce non-functional properties in SDN. First, by proposing
an architectural blueprint of the concept, the generic ANCHOR architecture.
Second, by designing, implementing and evaluating a specialization of the
architecture for security, probably the hardest of the non-functional property
bodies, besides dependability, safety, or QoS. What we have learned from the
design process allows us to conjecture that the concept is easily re-applicable
to other non-functional property categories.

2. In preparation for the ’security’ target, we performed a thorough and sys-
tematic study of the main threat vectors of SDN ecosystems, providing the
first input towards the existing gaps to fill by the forthcoming architecture.
We are also pleased to see that this study has also been of considerable use
to the community and fellow researchers.

3. We have designed, implemented and evaluated the ANCHOR architecture spe-
cialized to logically-centralized security, providing mechanisms and protocols
for essential security services, such as strong entropy, resilient pseudo-random
generators, secure device registration, association and recommendation.

107

4. We have designed, implemented and evaluated KISS, an infrastructure stim-
ulating the generalization of highly-secure control plane communications.
By introducing cryptographic mechanisms outperforming widely used alter-
natives, we have shown that it brings simplicity and performance to the
provision of integrity, authenticity and confidentiality.

5. Through several steps, we have embedded mechanisms and protocols for the
systematic and incremental mitigation of the risk of logical centralization,
from baseline mechanisms — design hardening with robust functions, sym-
metric cryptography for post-quantum security, embedding of perfect for-
ward secrecy measures in all algorithms, post-compromise security through
manual measures — to additional more sophisticated ones in the path of
resilience, materialized by the R-ANCHOR extension — mitigation of insider
threats, automatic recovery for fast turnaround and post-compromise secu-
rity after full compromise or failure.

We have shown that, compared to the state-of-the-art in SDN security, our
solution preserves at least the same security functionality, but achieves higher levels
of implementation robustness, by vulnerability reduction. Even though we prove
our point with security, it is worth emphasizing that our contribution is generic
enough to inspire further research concerning other non-functional properties (such
as dependability or quality-of-service).

7.2 Limitations
Next, we summarize some of the limitations of our work.

1. The ANCHOR architectural concept, albeit perfectly tailored to SDN fabrics,
may face some barriers to the application in traditional networks, due to the
heterogeneity of the infrastructure and the vertical integration of control and
data planes in forwarding devices.

2. Some device deployments may exhibit backward compatibility issues with
regard to black-box cryptographic libraries, being hostile to the integra-
tion of our high-performance cryptographic libraries such as NaCl. There
is however broad enough market offer of devices with white box implemen-
tations [SDx14]; [Dri20].

7.3 Future Work

This thesis opens several avenues for future work, which we exemplify below.

108

. Investigate how ANCHOR could be used in SDN-based vehicular (V2X) and
Internet of Things (IoT) networks.

. Extended resilience through full Byzantine Fault Tolerance (BFT) and re-
covery in the entire architecture of ANCHOR. This will help to tolerate any
kind of arbitrary fault, including stealth malicious attacks. It is especially
important when using ANCHOR in extremely critical I'T infrastructures.

. Analyze ANCHOR’s cyclomatic complexity metrics and methods as proposed
in [TK14]; |[EC16].

. Even if our results are encouraging in terms of an increase in robustness — an
order of magnitude reduction in the number of LOC, and thus of the implied
cyclomatic complexity — and some algorithms were formally verified, one
future goal should be the formal specification and verification of the whole
set of protocols.

109

Appendix A

Correctness of algorithms of KISS

In this appendix, we introduce the correctness of the iDVV Algorithms [I] and
of the KISS framework for secure control plane communications.

A.1 Correctness of Algorithm [1

Theorem 1. If the initial values of seed and key are indistinguishable from random,
then the resulting initial idvv (line 2) is indistinguishable from random.

Proof: The seed and key are, by assumption (Section of the availability of
robust sources of pseudo-random number generators in the central services (which
generate the former), indistinguishable from random. In consequence, and assum-
ing that H is a strong hash function, the output of H(seed || key) will thus be
indistinguishable from random. O

Theorem 2. Any execution of the function H(seed || key) with the same input
values seed and key, produces the same output value (idvv in line 2).

Proof: Proof that Algorithm [1|is deterministic follows trivially from the determin-
istic nature of hash functions. O

A.2 Correctness of Algorithm [2

Lemma 1. If the seed and idvv are indistinguishable from random, then the re-
sulting new seed (line 2) is indistinguishable from random.

Proof: We start by proving the result of the run with the initial values of seed
and idvv. The initial seed is, by assumption (Section of the availability of
robust sources of pseudo-random number generators in the central services (which
generate the former), indistinguishable from random. Theorem [l| states that the

110

initial idvv is indistinguishable from random. In consequence, with a similar ar-
gumentation of the proof of Theorem (1, and assuming that H is a strong hash
function, the output of H(seed || idvv) will be indistinguishable from random.
Now we recurse the argumentation, to show that the proof is valid for any input
values of seed and idvv. A new seed was just proven to be indistinguishable from
random. A new idvv is proven below in Theorem [3| to be indistinguishable from

random. Feeding these into the argumentation above, we generalise the proof V
seed and idvv. O

Theorem 3. If the seed and key are indistinguishable from random, then the re-
sulting new idvv (line 3) is indistinguishable from random.

Proof: Lemma (1] establishes that seed, output by line 2 and thus used as input
in line 3, is indistinguishable from random. The key is, by assumption of the
availability of robust sources of pseudo-random number generators in the central
services (which generate the former), indistinguishable from random.

We start by proving the result of the run with the initial value ¢dvv. Theorem
states that the initial idvv is indistinguishable from random. In consequence, with
a similar argumentation of the proof of Theorem [I and assuming that H is a
strong hash function, the output of H(seed || key) will be indistinguishable from
random.

Now we recurse the argumentation, to show that the proof is valid for any values
of idvv. Any new idvv was just proven to be indistinguishable from random. In
some next run, it will pair with key, by nature indistinguishable from random,
and with any new seed, proven by Lemma 1| to be indistinguishable from random.
Feeding these into the argumentation above, we generalise the proof V key, seed
and idvv.

In other words, the newly generated iDVV is an indistinguishable from random
value that can be safely used as an authentication or authorization code, secret
key, random nonce, and so forth. 0

Lemma 2. Any execution of the function H(seed || idvv) with the same input
values seed and idvv, produces the same output value (seed in line 2).

Proof: Proof that the function is deterministic follows trivially from the determin-
istic nature of hash functions. U

Lemma 3. Any execution of the function H(seed || key) with the same input
values seed and key produces the same output value (idvv in line 3).

Proof: Proof that the function is deterministic follows trivially from the determin-
istic nature of hash functions. 0J

Theorem 4. Any execution of Algorithm [2| with the same input values seed, idvv
and key produces the same output value (idvv in line 3).

111

Proof: Proof that Algorithm [2| is deterministic follows trivially from Lemma
and (3} since the two functions are executed in a row, and the seed output of line
2 used as input in line 3 is deterministic (Lemma , it satisfies the conditions of

Lemma [3| for determinism. O

112

Appendix B

Operations and security analysis of
ANCHOR

In this appendix, we introduce the stages of ANCHOR in Section B.I and the
correctness of algorithms in Sections and [B.4l Following, we also discuss the
conformance of ANCHOR to security requirements of SDN, as proposed by ONF,
in Section [B.5l

B.1 The three stages of ANCHOR

Figure illustrates the three stages of ANCHOR, namely, setup, normal opera-
tion, and post-compromise recovery. After setup and post-compromise recovery,
it goes to normal operation. The details of normal operation (e.g., device registra-
tion and association) are discussed in Section @.The complete post-compromise
recovery protocol is presented in Section [6.4.2.

Of'f-line_ device

Network Admin & ANCHOR
""""""""" > | a Offiine single mode user boot !
b. Store master recovery keys 1 First boot (setup)
S ¢. Proceed normal boot E
< > 1 Normal operation
a. Compute the keys off-line |)
R ' Recovery after a compromise
F < b. Boot ANCHOR and copy the keys,
-~ 1
< > 1 Normal operation
N N

Figure B.1: Setup, normal operation and PCR

113

B.1.1 Setup
During the setup, three things happen:

1. Off-line single mode user boot. The first boot should be off-line to generate

the master recovery keys safely. These keys need to be generated a single
time and stored in a safe place.

. Store master recovery keys. The network admin should store the master
recovery keys, for future use in case of a compromise, in an offline device
(e.g., USB stick). This device should be kept as secure as possible.

. Normal boot. After generating and safely storing the master recovery keys,
the network admin can proceed with the normal boot of ANCHOR. This boot
is going to bring up all services and functionalities of ANCHOR and put it
online, ready for use.

B.1.2 Normal operation

The normal operation represents the phase in which ANCHOR should be most of the
time, i.e., online and fully operational. The normal operation phase can happen

after a first boot (setup phase) or after a recovery from a compromised state.

B.1.3 Recovery after a compromise

To recover ANCHOR after a compromise, the network admin has to:

1. Compute the keys off-line using the master recovery keys. The network admin

must recursively generate the network manager recovery keys and the device
recovery keys. These are special purpose keys used to automatically and
safely recover communications between ANCHOR and all other entities, i.e.,
without needing additional procedures such as device re-registration. For
more details on how it works, see Section [6.4.2.

. Boot ANCHOR and copy the keys. After recursively computing the master
recovery keys of managers and devices, the network admin should proceed
with a normal boot of the system and copy these keys into ANCHOR.

B.2 Correctness of Algorithm |3

We argue about the properties of Algorithm [3| as a source of strong entropy.

114

Lemma 4. If the initial values of rand bytes() and H(data) are indistinguishable
from random, then the resulting initial external entropy (e entropy - line 2) is
indistinguishable from random. Then, the initial internal entropy (i entropy -
line 3) will be also indistinguishable from random.

Proof: Assuming that rand bytes() uses one of the strongest pools of entropy
of an operating system, such as /dev/urandom, the outcome of this function call
will be indistinguishable from random. Assuming that H is a cryptographically
strong hashing function, the output of H(data) will be indistinguishable from ran-
dom for every different input data. Consequently, the XOR operation between
rand bytes() and H(data) will result in an indistinguishable-from-random initial
e_entropy. Following, the XOR operation between rand bytes() and e entropy
will result in an indistinguishable-from-random initial i entropy. In other words,
both internal and external entropy are initialized with indistinguishable-from-
random values. O

Lemma 5. If P;, P;, and i_entropy are indistinguishable from random, then the
updated external entropy (e entropy - line 5) will be indistinguishable from ran-

dom.

Proof: As discussed before, the pools of entropy P; and P; contain unpredictable
events of external sources of entropy, such as network traffic and idleness of links.
Thus, assuming that H is a cryptographically strong hashing function, then the
output of H(F;||P;) will be indistinguishable from random. Lemma |4 shows that
the internal entropy (i_entropy) is indistinguishable from random. In consequence,
the updated external entropy (e_entropy - line 5), which is the output of an XOR
operation between two indistinguishable-from-random values, will be indistinguish-
able from random. O

Lemma 6. If the initial value of rand bytes() is indistinguishable from random,
then the resulting internal entropy (i_entropy - line 7) is indistinguishable from
random.

Proof: The proof of Lemma 4] establishes that the output of rand_bytes() is in-
distinguishable from random. Additionally, E_counter is an internal counter not
known by external entities. Therefore, assuming that H is a cryptographically
strong hashing function, then i_entropy output by H(rand_bytes()||E_counter)
will be indistinguishable from random. U

Theorem 5. If e _entropy and i _entropy are indistinguishable from random, then
the resulting entropy returned by entropy get (line 8) will be indistinguishable
from random.

Proof: Lemmata {4| and [5| show that the initial and updated external entropy are
indistinguishable from random. Lemma [6] has shown that the internal entropy
generated in line 7 is indeed indistinguishable from random. As a consequence,

115

entropy, as the output of an XOR operation between i_entropy and e_entropy
(line 8) will be indistinguishable from random. This proves that Algorithm
satisfies the property Strong Entropy. O

B.3 Correctness of Algorithm 4

We argue about the properties of Algorithm 4] as a source of indistinguishable-
from-random pseudo-random values.

Lemma 7. If entropy get() returns an indistinguishable-from-random value, then
the initial seed (line 2), counter (line 3) and pseudo random value (nprd - line 4)
will be indistinguishable from random.

Proof: Theorem [5|establishes that the output of entropy_get() is indistinguishable
from random. Thus, both the seed and the first nprd will be indistinguishable from
random. Similarly, the function long_wint() (using as input entropy_get() - line
3), which, on most architectures, uses 64 bits to represent an unsigned long int,
will return the value counter, indistinguishable from random. 0

Lemma 8. If entropy get() returns a value indistinguishable from random, then
the refreshed PRG internal state (lines 6-8) will lead to indistinguishable from
random values for seed, counter and nprd.

Proof: The proof follows the same argumentation of the proof of Lemma |7} for
seed and counter. As for nprd, assuming that neither the seed or counter are
known outside the PRG, and assuming that H is a cryptographically strong hashing
function, then the output of H, having as input a concatenation of the new seed,
current nprd, and new counter, will be indistinguishable from random. O
Theorem 6. If seed and nprd are indistinguishable-from-random values, then the
next nprd returned by PRG _next (line 12) will be indistinguishable from random.
Proof: Lemmata [7| and |8| established that both the seed and nprd are always
indistinguishable from random, since the initial state. Assuming that HMAC is
a cryptographically strong message authentication code primitive, and that the
counter is not known outside of the PRG, then the output of HMAC, keyed by seed
and having as input a concatenation of nprd and counter, will be indistinguishable
from random. This proves that Algorithm {4] satisfies property Robust PRG. U

B.4 Correctness of Algorithm

We now formalize and prove the properties of Algorithm [7]

As a result of the registration process, ANCHOR keeps lists of registered devices
and controllers, and lists of the controllers each device is authorized to associate
with.

116

Proposition 1. Any device F can only associate to a controller C authorized by the
ANCHOR.

Proof: Forwarding devices will be able to associate only to controllers listed in
the CList(F) provided by A (step 2 of Algorithm [7), since if F tries to associate
with a non-authorized controller (for F'), A will not proceed past step 4 after being
contacted by that controller, aborting the association. On the other hand, a rogue
controller posing to F as authorised in reply to step 3, cannot jump to step 6 and
invent an association key AiD that convinces F, since it does not know x . This
proves that Algorithm [7] satisfies property Controller Authorization. O

Proposition 2. Any device F can associate to some controller, only if F is authorized
by the ANCHOR.

Proof: Only if a device F is legitimate, i.e. it is in the list of registered devices, will
it be able to associate to some registered controller. A will not proceed past step 1
of Algorithm [7| after being contacted by a rogue device, aborting the association.
On the other hand, a rogue device posing to C as legitimate and authorised in
step 3, will make C proceed with step 4, indeed, but the request will be rejected
by A, since Er() is not recognisable by A, corresponding to no shared key with a
legitimate device. The replay of an old (but legitimate) encrypted Er() request
in step 3 will also fail, since it is bound to the (current) nonces. This proves that
Algorithm [7] satisfies property Device Authorization. O

Proposition 3. At the end of Algorithm [7| execution, the association ID (AiD) is
only known to F and C.

Proof: A creates AiD in step 5, and forgets about it after sending it to C (see
Section [5.1.6). AiD is sent from A to C, encrypted both by Kesr and Keac,
keys shared by A only with F and C respectively. C trusts it came from A, due to
the HMAC, so the two encrypted blocks should contain the same A:D value, and
sends the AiD under Kesr encryption to F. So, at the end of the execution of the
algorithm, both F and C, and only them, hold AiD. This proves that Algorithm
satisfies property Association ID Secrecy. U

Proposition 4. At the end of Algorithm (7] execution, the seed (SEED) is only
known to F and C.

Proof: C creates SEED instep 7. SEFED is sent from C to F, encrypted by KiD,
association key known only to C and F, as per Proposition |3l C trusts that F, and
only F, has the same SEED sent, when it receives back from F the XOR of SEED
with the current nonce x, encrypted with AiD, since (as per Proposition |3 only
F could have opened the encryption of SEED with AiD in the first place, and
encrypt the reply. This proves that Algorithm [7|satisfies property Seed Secrecy. [

117

B.5 Meeting ONF’s security requirements

Several security requirements should be fulfilled in control plane communications.
Most of these requirements are enumerated in ONF’s best practice recommenda-
tions [ONF15|. In this appendix we go through the eleven (out of twenty four)
such requirements that are addressed by the ANCHOR, iDVV and NaCl.

Both communicating devices should be authenticated (REQ 4.1.1). Using our
ANCHOR, all devices have to be properly registered and authenticated before pro-
ceeding with any other operation.

Operations (e.g., association) of components should be authorized (REQ 4.1.2).
The ANCHOR needs to explicitly authorize associations between any two devices.
Each association has a unique identification.

Devices should agree upon the security (e.qg., key materials) associations (REQ
4.1.3). By using the ANCHOR and its mechanisms, such as the source of strong
entropy, we ensure strong key materials. The iDVV mechanism is initialized by
the two communicating devices once the association has been authorized by the
ANCHOR.

Integrity of packets should be ensured (REQ 4.1.4). We provide integrity and
authenticity of packets through message authentication codes. By default, we
generate one iDVV per packet, providing strong security.

FEach device should have a unique ID and other devices should be able to verify
the identity (REQ 4.2.1). Devices are uniquely identified by the ANCHOR. The
unique IDs are associated to the devices as soon as they are registered within the
ANCHOR.

Issues related to the lifecycle of IDs should be managed, such as generation,
distribution, maintenance, and revocation (REQ 4.2.2). The ANCHOR provides
the services required for managing device IDs. IDs are assigned to devices during
the registration phase. Revocation can be done by network administrators at any
time.

Devices should be able to verify the integrity of each message (REQ 4.4.4). Any
two communicating devices are able to verify the integrity of each message through
message authentication codes.

Amplification effects should be taken into account, i.e., attackers should not be
able to perform reflection attacks (REQ) 4.4.5). We use requests and replies of the
same size between devices and the ANCHOR, which avoids reflection attacks.

Automated key/credential management should be implemented by default, al-
lowing generation, distribution, and revocation of security credentials (REQ 4.8.3).
We have in place automated mechanisms for refreshing credentials, such as refresh
the iDVV’s seed using the ANCHOR’s source of strong entropy.

Data confidentiality, integrity, freshness and authenticity are ensured by the
integrated device verification value. iDVVs are used to encrypt data and generate

118

message authentication codes. Additionally, iDVVs can also be used as nonces,
ensuring data freshness.

Awailability is ensured by recommending multiple controllers to the forwarding
devices. This is one of the essential tasks of the ANCHOR.

Lastly, it is also worth mentioning that whilst we do not meet all security
requirements of ONF’s guidelines, we do meet the fundamental ones with regard
to security. For instance, requirements such as REQ 4.4.2, REQ 4.4.3, REQ 4.7.1,
REQ 4.7.2, and REQ 4.7.3 [ONF15| are not yet covered by our architecture and
protocols. However, most of these requirements are related to rate control of
messages, additional signaling messages for dealing with future network attack
types, and accountability and traceability. Such kind of requirements can be added
(in the future) without impairing our conceptual architecture. In fact, some of
these requirements, such as rate control of messages, are technical, rather than
conceptual, which can be addressed with the right amount of engineering.

B.6 Security Analysis of ANCHOR

Disclaimer:

The content of this Section is mainly a contribution from Jiangshan Yu.

We provide formal machine-checked verification of the core security properties
of ANCHOR, using the TAMARIN prover. In particular, we formalise the core
protocols of ANCHOR, including device registration protocol, device association
protocol, and post-compromise recovery protocol, through symbolic modeling. In
addition, for each of the protocols, we verify its correctness, message confidentiality,
and perfect forward secrecy (PFS). Moreover, we additionally verify the post-
compromise security of ANCHOR with the post-compromise recovery protocol.

The full model contains 1712 lines of code. In total, we have proved 33 proper-
ties — 23 of them are helper lemmas for the theorem prover to understand ANCHOR
better; 4 lemmas are sanity proofs which check the correctness of our protocols
and their formalization; and 6 main security properties that ensure the message
confidentiality, perfect forward secrecy, and post-compromise security of ANCHOR.
We provide all input files and complete formal model required to understand and
reproduce our security analysis at [Yul§].

119

B.6.1 Security properties

ANCHOR achieves both classical security properties and novel security properties.
In a classical sense, the confidentiality of communications between any two devices
is guaranteed. In particular, ANCHOR also provides perfect forward secrecy, namely
if a device is compromised, then all communications of this device in the past are
still secure.

For the novel security guarantee, as mentioned before, rather than assuming
the trusted party cannot be compromised, such as CAs in X.509 PKI or the KDC
in Kerberos, we also consider that ANCHOR might be compromised. In this case,
we assume that there are means to detect that the compromise has happened, and
then the system can be recovered through our post-compromise recovery protocol,
which also guarantees perfect forward security, when ANCHOR is compromised and
recovered.

B.6.2 Formal analysis

We analyze the security properties of the protocol using TAMARIN |[Mei+13|. The
TAMARIN prover is a symbolic analysis tool that can prove properties of security
protocols for an unbounded number of instances and supports reasoning about
protocols with mutable global state, which makes it suitable for our protocols.
Protocols are specified using multi-set rewriting rules, and properties are expressed
in a guarded fragment of first order logic that allows quantification over timepoints.

TAMARIN is capable of automatic verification in many cases, and it also sup-
ports interactive verification by manual traversal of the proof tree. If the tool ter-
minates without finding a proof, it returns a counter-example. Counter-examples
are given as so-called dependency graphs, which are partially ordered sets of rule
instances that represent a set of executions that violate the property. Counter-
examples can then be used to refine the model, and give feedback to the imple-
menter and designer.

B.6.3 Modeling aspects

As explained, we consider four protocol roles in ANCHOR, namely A (ANCHOR), M
(network Manager), F (Forwarding device), and C (Controller). To simplify our
model, we consider an additional role D (Device) to represent any kind of network
device, when it is irrelevant to distinguish its type (i.e., F or C).

We model the above protocol roles by a set of rewrite rules. Our modeling
of the roles follows the typical TAMARIN models, and directly corresponds to the
algorithm descriptions in the previous sections. Specifically, each rewrite rule
typically models receiving a message, taking an appropriate action, and sending

120

a response message. TAMARIN provides built-in support for a Dolev-Yao style
network attacker, i.e., one who is in full control of the network. We also specify
rules that enable the attacker to compromise ANCHOR and/or any device in the
network, and learn all of their session keys.

B.6.4 Proof goals

We state several proof goals as specified in TAMARIN’s syntax. Since TAMARIN’s
property specification language is a fragment of first-order logic, it contains logical
connectives (|, & ==>, not, ...) and quantifiers (All, Ex). In TAMARIN, proof
goals are marked as lemma. The #-prefix is used to denote timepoints, and “E @
#1” expresses that the event F occurs at timepoint 7. Due to the space limitation,
we only present a set of examples selected from our full model, to explain the core
ideas. We refer the reader to the full model and detailed proof results available at
[Yul§|.

The first example goal is a check for executability that ensures that our model
allows for the successful transmission of a message. The following example, which
is a correctness lemma in the device registration protocol, shows how it is encoded
in our proof.

lemma protocol_correctness [use_induction]:
exists-trace
"Ex A D Did k keAD #il.
SendSec(A, D, Did,k, keAD) @ i1"

The property holds if the TAMARIN model exhibits a behaviour in which a
device D of any type with unique identity Did can successfully exchange with
ANCHOR A a message k encrypted by using a secret keAD shared between D and
A. This property mainly serves as a sanity check on the model. If it does not
hold, it would mean our model does not model the normal message flow, which
could indicate a flaw in the model. TAMARIN automatically proves this property
and generates the expected trace in the form of a graphical representation of the
rule instantiations and the message flow. We additionally proved several other
sanity-checking properties to minimize the risk of modeling errors.

The second example goal is the core secrecy property with respect to a classical
attacker. When a controller C is associated with a forwarding device F, then the
following expresses that unless the attacker compromises either C or F, he cannot
learn any messages exchanged between them. Note that K(m) is a special event
that denotes that the attacker knows m at this time.

lemma message_secrecy [use_induction]:
"All C F Didl Did2 k seed #i.

121

/* If a message k is exchanged */
(SendSec(C, F, Didl, Did2, k, seed) @ #i &
/* without the adversary compromising any device */
not (Ex #j.
Compromise_Device(C, F, Didl, Did2, seed) @ #j)
) =>
/* then the adversary cannot know k */
not (Ex #j. K(k) @ #j) "

TAMARIN also proves this property automatically. The above result implies
that if a forwarding device F with identity Didl and a controller C with identity
Did2 has exchanged a message k encrypted under a shared seed, and the attacker
did not compromise any device at any time, then the attacker will not learn k.

Similarly, the following example expresses the PFS for the communications
between two devices.

lemma message_forward_secrecy [use_induction]:
"All C F Didl Did2 k seed #i.
(SendSec(C, F, Didl, Did2, k, seed) @ #i &
not (Ex #j seed2.
Compromise_Device(C, F, Didl, Did2, seed2) Q@ j &
j<i)
)
==>
(/* then the adversary cannot know k */

not (Ex #j. K(k) @ #j)
)

TAMARIN proves this property automatically, and the result additionally im-
plies that the message is secure if the attacker did not compromise any device
before the current communication session.

The final example property encodes the post-compromise security guarantees
provided by ANCHOR. In this example, if ANCHOR was compromised, and then re-
covered through our protocol, then the confidentiality of communications between
ANCHOR and forwarding device F is guaranteed.

lemma message_secrecy_after_recovery [use_induction]:
"All A M F C Did k enckey #il #i2 #i3.

(Comppromised_A(A) @#il &
Recovery_Done(A,M,F,C)@ #i2 & i1<i2 &
SendSec(A, F, Did, k, enckey) @ #i3 & 12<i3)

==>

/* then the adversary cannot know k */
not (Ex #i4. K(k) @ #i4)

122

The property states that if ANCHOR was compromised at session i1, and the
recovery action has been completed afterwards at session 72, then the confidential-
ity of message k exchanged in a later time between A and forwarding device F is
guaranteed.

The above properties are all proven automatically by the TAMARIN prover on
a PCH within 15 min.

ntel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 16GB memory.

123

Bibliography

[AAP19]

|AAS14|

[ABA17]

[Aca+17|

|[Ace+18|

A. L. Aliyu, A. Aneiba, and M. Patwary. “Secure Communication be-
tween Network Applications and Controller in Software Defined Net-
work”. In: IEEE 18th International Symposium on Network Comput-
ing and Applications (NCA). Sept. 2019, pp. 1-8. DOI: 10.1109/NCA.
2019.8935066. URL: https://ieeexplore.ieee.org/abstract/
document/8935066.

Markku Antikainen, Tuomas Aura, and Mikko Séarela. “Spook in Your
Network: Attacking an SDN with a Compromised OpenFlow Switch”.
English. In: Secure IT Systems. Ed. by Karin Bernsmed and Simone
Fischer-Hiibner. Lecture Notes in Computer Science. Springer Inter-
national Publishing, 2014, pp. 229-244. DOI1: 10.1007/978-3-319-
11599-3_14. URL: http://dx.doi.org/10.1007/978-3-319-
11599-3_14.

A. L. Aliyu, P. Bull, and A. Abdallah. “A Trust Management Frame-
work for Network Applications within an SDN Environment”. In:
31st International Conference on Advanced Information Network-
ing and Applications Workshops (WAINA). 2017, pp. 93-98. DOI:
10.1109/WAINA.2017.100. URL: https://ieeexplore.ieee.org/
abstract/document/7929660.

Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky. “Comparing the usability of cryptographic APIs”.
In: Proceedings of the 38th IEEE Symposium on Security and Pri-
vacy. 2017, pp. 154-171. URL: https://ieeexplore. ieee.org/
abstract/document/7958576.

Giuseppe Aceto, Alessio Botta, Pietro Marchetta, Valerio Persico,
and Antonio Pescapé. “A comprehensive survey on internet out-
ages”. In: Journal of Network and Computer Applications 113 (2018),
pp. 36-63. DOI: https://doi.org/10.1016/j. jnca.2018.03.026.
URL: http://www.sciencedirect.com/science/article/pii/
S51084804518301139.

124

https://doi.org/10.1109/NCA.2019.8935066
https://doi.org/10.1109/NCA.2019.8935066
https://ieeexplore.ieee.org/abstract/document/8935066
https://ieeexplore.ieee.org/abstract/document/8935066
https://doi.org/10.1007/978-3-319-11599-3_14
https://doi.org/10.1007/978-3-319-11599-3_14
http://dx.doi.org/10.1007/978-3-319-11599-3_14
http://dx.doi.org/10.1007/978-3-319-11599-3_14
https://doi.org/10.1109/WAINA.2017.100
https://ieeexplore.ieee.org/abstract/document/7929660
https://ieeexplore.ieee.org/abstract/document/7929660
https://ieeexplore.ieee.org/abstract/document/7958576
https://ieeexplore.ieee.org/abstract/document/7958576
https://doi.org/https://doi.org/10.1016/j.jnca.2018.03.026
http://www.sciencedirect.com/science/article/pii/S1084804518301139
http://www.sciencedirect.com/science/article/pii/S1084804518301139

[ACW16]

[Adr+15al

[Adr+15b)

[AF13]

[Ahm+15]

[Akh+15]

[Akh+16]

O. I. Abdullaziz, Y. J. Chen, and L. C. Wang. “Lightweight Authen-
tication Mechanism for Software Defined Network Using Informa-
tion Hiding”. In: IEEE Global Communications Conference (GLOBE-
COM). 2016, pp. 1-6. DOI: [10.1109/GLOCOM . 2016 . 7841954, URL:
https://ieeexplore.ieee.org/abstract/document/7841954.

David Adrian et al. “Imperfect Forward Secrecy: How Diffie-Hellman
Fails in Practice”. In: Proceedings of the 22Nd ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS 15. Denver,
Colorado, USA: ACM, 2015, pp. 5-17. DOI: 10.1145/2810103 .
2813707. URL: http://doi.acm.org/10.1145/2810103.2813707.

David Adrian et al. “Imperfect Forward Secrecy: How Diffie-Hellman
Fails in Practice”. In: Proceedings of the 22Nd ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS ’15. Denver,
Colorado, USA: ACM, 2015, pp. 5-17. DOI: 10.1145/2810103 .
2813707. URL: http://doi.acm.org/10.1145/2810103.2813707.

Cyril Arnaud and Pierre-Alain Fouque. “Timing Attack against Pro-
tected RSA-CRT Implementation Used in PolarSSL”. English. In:
Topics in Cryptology - CT-RSA 2013. Ed. by Ed Dawson. Vol. 7779.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 18-33. DOI: 10. 1007 /978-3-642-36095-4 _2. URL: http:
//dx.doi.org/10.1007/978-3-642-36095-4_2.

[jaz Ahmad, Suneth Namal, Mika Ylianttila, and Andrei Gurtov.
“Security in software defined networks: A survey”. In: IEEE Com-
munications Surveys € Tutorials 17.4 (2015), pp. 2317-2346. DOL:
10.1109/COMST.2015.2474118. URL: https://ieeexplore. ieee.
org/abstract/document/7226783.

Adnan Akhunzada, Ejaz Ahmed, Abdullah Gani, Muhammad Khur-
ram Khan, Muhammad Imran, and Sghaier Guizani. “Securing soft-
ware defined networks: taxonomy, requirements, and open issues”.
In: IEEE Communications Magazine 53.4 (2015), pp. 36-44. DOL:
10.1109/MCOM.2015.7081073. URL: https://ieeexplore. ieee.
org/abstract/document/7081073.

Adnan Akhunzada, Abdullah Gani, Nor Badrul Anuar, Ahmed Ab-
delaziz, Muhammad Khurram Khan, Amir Hayat, and Samee U.
Khan. “Secure and dependable software defined networks”. In: Jour-
nal of Network and Computer Applications 61 (2016), pp. 199-221.
DOL: https : //doi .org/10.1016/7 . jnca.2015.11.012. URL:
http : / / www . sciencedirect . com/ science /article /pii /S
1084804515002842.

125

https://doi.org/10.1109/GLOCOM.2016.7841954
https://ieeexplore.ieee.org/abstract/document/7841954
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
http://doi.acm.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
http://doi.acm.org/10.1145/2810103.2813707
https://doi.org/10.1007/978-3-642-36095-4_2
http://dx.doi.org/10.1007/978-3-642-36095-4_2
http://dx.doi.org/10.1007/978-3-642-36095-4_2
https://doi.org/10.1109/COMST.2015.2474118
https://ieeexplore.ieee.org/abstract/document/7226783
https://ieeexplore.ieee.org/abstract/document/7226783
https://doi.org/10.1109/MCOM.2015.7081073
https://ieeexplore.ieee.org/abstract/document/7081073
https://ieeexplore.ieee.org/abstract/document/7081073
https://doi.org/https://doi.org/10.1016/j.jnca.2015.11.012
http://www.sciencedirect.com/science/article/pii/S1084804515002842
http://www.sciencedirect.com/science/article/pii/S1084804515002842

[Akh17] Haji Akhundov. Design & development of public-key based authen-
tication architecture for IoT devices using PUF. Tech. rep. TUDelf,
2017. URL: http://resolver.tudelft.nl/uuid:58ad76d8-4552-
461e-aa61-54299d021bd1.

|[Alb+15] Martin R Albrecht, Davide Papini, Kenneth G Paterson, and Ricardo
Villanueva-Polanco. Factoring 512-bit RSA moduli for fun (and a
profit of $9,000). 2015. URL: https ://pdfs . semanticscholar .
org/713c/2e84b69fa865a49ba861297d118f97fb4c7c.pdf.

[Alk+14] Hasan Alkhatib, Paolo Faraboschi, Eitan Frachtenberg, Hironori Kasa-
hara, Danny Lange, Phil Laplante, Arif Merchant, Dejan Miloji-
cic, and Karsten Schwan. [EEE CS 2022 Report (DRAFT). Tech.
rep. IEEE Computer Society, 2014. URL: https://ieeecs-media.
computer.org/assets/pdf/2022Report . pdf.

[Alm+13] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Barbara
Vieira. “Formal verification of side-channel countermeasures using
self-composition”. In: Science of Computer Programming 78.7 (2013).
Special section on Formal Methods for Industrial Critical Systems
(FMICS 2009 + FMICS 2010) & Special section on Object-Oriented
Programming and Systems (OOPS 2009), a special track at the 24th
ACM Symposium on Applied Computing, pp. 796-812. DOI: http:
//dx.doi.org/10.1016/j.scico.2011.10.008. URL: http://wuw.
sciencedirect.com/science/article/pii/S0167642311001857.

[Alv+17| R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello,
and C. Cavazzoni. “Comprehensive survey on T-SDN: Software-de-
fined networking for transport networks”. In: IEEE Communications
Surveys & Tutorials 19.4 (2017), pp. 2232-2283. DOI: 10.1109/COMS
T.2017.2715220. URL: https://ieeexplore.ieee.org/abstract/
document/7947156.

[ALVOS] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A
Scalable, Commodity Data Center Network Architecture”. In: SIG-
COMM Comput. Commun. Rev. 38.4 (Aug. 2008), pp. 63-74. DOI:
10.1145/1402946.1402967. URL: http://doi.acm.org/10.1145/
1402946.1402967.

[AM13| N. Aldaghri and H. Mahdavifar. “Fast Secret Key Generation in
Static Environments Using Induced Randomness”. In: IEEE Global
Communications Conference (GLOBECOM). Dec. 2018, pp. 1-6.
DOI: 10.1109/GLOCOM.2018.8647945. URL: https://ieeexplore.
ieee.org/abstract/document/8647945.

126

http://resolver.tudelft.nl/uuid:58ad76d8-4552-461e-aa61-54299d021bd1
http://resolver.tudelft.nl/uuid:58ad76d8-4552-461e-aa61-54299d021bd1
https://pdfs.semanticscholar.org/713c/2e84b69fa865a49ba861297d118f97fb4c7c.pdf
https://pdfs.semanticscholar.org/713c/2e84b69fa865a49ba861297d118f97fb4c7c.pdf
https://ieeecs-media.computer.org/assets/pdf/2022Report.pdf
https://ieeecs-media.computer.org/assets/pdf/2022Report.pdf
https://doi.org/http://dx.doi.org/10.1016/j.scico.2011.10.008
https://doi.org/http://dx.doi.org/10.1016/j.scico.2011.10.008
http://www.sciencedirect.com/science/article/pii/S0167642311001857
http://www.sciencedirect.com/science/article/pii/S0167642311001857
https://doi.org/10.1109/COMST.2017.2715220
https://doi.org/10.1109/COMST.2017.2715220
https://ieeexplore.ieee.org/abstract/document/7947156
https://ieeexplore.ieee.org/abstract/document/7947156
https://doi.org/10.1145/1402946.1402967
http://doi.acm.org/10.1145/1402946.1402967
http://doi.acm.org/10.1145/1402946.1402967
https://doi.org/10.1109/GLOCOM.2018.8647945
https://ieeexplore.ieee.org/abstract/document/8647945
https://ieeexplore.ieee.org/abstract/document/8647945

[AMA19]

[Amb-+15]

[ANH17]

[Arb-+16]

[ARS1S]

[AS17]

|ASG19)

M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey. “Toward
Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey”. In:
IEEE Access 7 (2019), pp. 107346-107379. DOI: 10.1109/ACCESS.
2019.2932422. URL: https://ieeexplore.ieee.org/abstract/
document/8784036.

M. Ambrosin, M. Conti, F. Gaspari, and R. Poovendran. “LineSwitch:
Efficiently Managing Switch Flow in Software-Defined Networking
While Effectively Tackling DoS Attacks”. In: Proceedings of the 10th
ACM Symposium on Information, Computer and Communications
Security. ASTA CCS ’15. Singapore, Republic of Singapore: ACM,
2015, pp. 639-644. DOI: [10. 1145/2714576 . 2714612, URL: http :
//doi.acm.org/10.1145/2714576.2714612.

Ahmad Aseeri, Nuttapong Netjinda, and Rattikorn Hewett. “ Allevi-
ating Eavesdropping Attacks in Software-defined Networking Data
Plane”. In: Proceedings of the 12th Annual Conference on Cyber and
Information Security Research. CISRC ’17. Oak Ridge, Tennessee:
ACM, 2017, 1:1-1:8. DOI: 10.1145/3064814.3064832. URL: http:
//doi.acm.org/10.1145/3064814.3064832.

R. K. Arbettu, R. Khondoker, K. Bayarou, and F. Weber. “Secu-
rity analysis of OpenDaylight, ONOS, Rosemary and Ryu SDN con-
trollers”. In: 17th International Telecommunications Network Strat-
egy and Planning Symposium (Networks). 2016, pp. 37-44. DOI: 10.
1109/NETWKS . 2016 . 7751150. URL: https://ieeexplore. ieee.
org/abstract/document/7751150.

R. Amin, M. Reisslein, and N. Shah. “Hybrid SDN Networks: A Sur-
vey of Existing Approaches”. In: IEEE Communications Surveys Tu-
torials 20.4 (Oct. 2018), pp. 3259-3306. DOI: [10.1109/COMST.2018.
2837161.

B. Agborubere and E. Sanchez-Velazquez. “OpenFlow Communica-
tions and TLS Security in Software-Defined Networks”. In: IEEE In-
ternational Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cy-
ber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData). June 2017, pp. 560-566. DOI: 10.1109/1iThings-
GreenCom-CPSCom-SmartData.2017.88.

ASG Information Technologies. Best Practices for Server Room Se-
curity. 2019. URL: https://www.asgct.com/best-practices-for-
server-room-security/.

127

https://doi.org/10.1109/ACCESS.2019.2932422
https://doi.org/10.1109/ACCESS.2019.2932422
https://ieeexplore.ieee.org/abstract/document/8784036
https://ieeexplore.ieee.org/abstract/document/8784036
https://doi.org/10.1145/2714576.2714612
http://doi.acm.org/10.1145/2714576.2714612
http://doi.acm.org/10.1145/2714576.2714612
https://doi.org/10.1145/3064814.3064832
http://doi.acm.org/10.1145/3064814.3064832
http://doi.acm.org/10.1145/3064814.3064832
https://doi.org/10.1109/NETWKS.2016.7751150
https://doi.org/10.1109/NETWKS.2016.7751150
https://ieeexplore.ieee.org/abstract/document/7751150
https://ieeexplore.ieee.org/abstract/document/7751150
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.88
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.88
https://www.asgct.com/best-practices-for-server-room-security/
https://www.asgct.com/best-practices-for-server-room-security/

[AvW18| A. Abdou, P. C. van Oorschot, and T. Wan. “Comparative Analysis
of Control Plane Security of SDN and Conventional Networks”. In:
IEEE Communications Surveys Tutorials 20.4 (Oct. 2018), pp. 3542—
3559. DOI: [10.1109/COMST . 2018.2839348. URL: https://ieeexpl
ore.ieee.org/abstract/document/8362609.

[AW19] 0. I. Abdullaziz and L. Wang. “Mitigating DoS Attacks against SDN
Controller Using Information Hiding”. In: IEEE Wireless Communi-
cations and Networking Conference (WCNC). Apr. 2019, pp. 1-6.
DOI: 10.1109/WCNC. 2019 .8885764. URL: https://ieeexplore.
ieee.org/abstract/document/8885764.

[AY18] M. Alhanahnah and Q. Yan. “Towards best secure coding practice
for implementing SSL/TLS”. In: IEEE INFOCOM 2018 - IEEE Con-
ference on Computer Communications Workshops (INFOCOM WK-
SHPS). Apr. 2018, pp. 1-6. DOI: [10. 1109/ INFCOMW . 2018 .8407011.
URL: https://ieeexplore.ieee.org/abstract/document/8407011.

[Azi+18] N. A. Aziz, T. Mantoro, M. A. Khairudin, and A. F. b. A. Mur-
shid. “Software Defined Networking (SDN) and its Security Issues”.
In: International Conference on Computing, Engineering, and De-
sign (ICCED). Sept. 2018, pp. 40-45. DOI: 10.1109/ICCED.2018.
00018. URL: https://ieeexplore.ieee.org/abstract/document/
8691107.

[BAM10] Theophilus Benson, Aditya Akella, and David A. Maltz. “Network
Traffic Characteristics of Data Centers in the Wild”. In: Proceedings
of the 10th ACM SIGCOMM Conference on Internet Measurement.
IMC ’10. Melbourne, Australia: ACM, 2010, pp. 267-280. DOI: [10.
1145/1879141.1879175. URL: http://doi.acm.org/10.1145/
1879141.1879175.

[Bar-+17] R. Barrett, A. Facey, W. Nxumalo, J. Rogers, P. Vatcher, and M.
St-Hilaire. “Dynamic Traffic Diversion in SDN: testbed vs Mininet”.
In: International Conference on Computing, Networking and Com-
munications (ICNC). Jan. 2017, pp. 167-171. DOI: 10.1109/ICCNC.
2017.7876121. URL: https://ieeexplore.ieee.org/abstract/
document/7876121.

[Bar19] Susan Baranowski. How Secure are the Root DNS Servers? 2019.
URL: https://www.sans.org/reading-room/whitepapers/dns/
secure-root-dns-servers-991.

128

https://doi.org/10.1109/COMST.2018.2839348
https://ieeexplore.ieee.org/abstract/document/8362609
https://ieeexplore.ieee.org/abstract/document/8362609
https://doi.org/10.1109/WCNC.2019.8885764
https://ieeexplore.ieee.org/abstract/document/8885764
https://ieeexplore.ieee.org/abstract/document/8885764
https://doi.org/10.1109/INFCOMW.2018.8407011
https://ieeexplore.ieee.org/abstract/document/8407011
https://doi.org/10.1109/ICCED.2018.00018
https://doi.org/10.1109/ICCED.2018.00018
https://ieeexplore.ieee.org/abstract/document/8691107
https://ieeexplore.ieee.org/abstract/document/8691107
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175
https://doi.org/10.1109/ICCNC.2017.7876121
https://doi.org/10.1109/ICCNC.2017.7876121
https://ieeexplore.ieee.org/abstract/document/7876121
https://ieeexplore.ieee.org/abstract/document/7876121
https://www.sans.org/reading-room/whitepapers/dns/secure-root-dns-servers-991
https://www.sans.org/reading-room/whitepapers/dns/secure-root-dns-servers-991

[Bas+10]

|Bas+13]

[BCS13]

[BDK17]

[Bed16]

[BEI19]

|[Ben+10|

[Ber+14]

Lawrence E. Bassham III et al. SP 800-22 Rev. 1a. A Statistical Test
Suite for Random and Pseudorandom Number Generators for Cryp-
tographic Applications. Tech. rep. Gaithersburg, MD, United States,
2010. URL: https://csrc.nist.gov/publications/detail/sp/
800-22/rev-1a/final.

Paul Baskett, Yi Shang, Wenjun Zeng, and Brandon Guttersohn.
“SDNAN: Software-defined networking in ad hoc networks of smart-
phones”. In: IEEE Consumer Communications and Networking Con-
ference (CCNC). IEEE. 2013, pp. 861-862. DOI: 10 . 1109 /CCNC.
2013 .6488568. URL: https://ieeexplore.ieee.org/abstract/
document/6488568.

Kevin Benton, L. Jean Camp, and Chris Small. “OpenFlow vulnera-
bility assessment”. In: Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. HotSDN
"13. Hong Kong, China: ACM, 2013, pp. 151-152. DOI: 10. 1145/
2491185.2491222. URL: http://doi.acm.org/10.1145/2491185.
2491222,

Johannes Behl, Tobias Distler, and Riidiger Kapitza. “Hybrids on
Steroids: SGX-Based High Performance BFT”. In: 2017, pp. 222-
237. DOI: 10.1145/3064176.3064213. URL: http://doi.acm.org/
10.1145/3064176.3064213.

Ann Bednarz. Top reasons for network downtime. 2016. URL: https:
/ /www . networkworld . com/article /3142838 /infrastructure/
top-reasons-for-network-downtime.html.

Jaouad Benabbou, Khalid Elbaamrani, and Noureddine Idboufker.
“Security in OpenFlow-based SDN, opportunities and challenges”.
In: Photonic Network Communications 37.1 (Feb. 2019), pp. 1-23.
DOI: 10.1007/s11107-018-0803-7. URL: https://doi.org/10.
1007/s11107-018-0803-7.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
“Understanding Data Center Traffic Characteristics”. In: SIGCOMM
Comput. Commun. Rev. 40.1 (Jan. 2010), pp. 92-99. DOI: 10.1145/
1672308.1672325. URL: http://doi.acm.org/10.1145/1672308.
1672325.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar.
“ONOS: Towards an Open, Distributed SDN OS”. In: Proceedings
of the Third Workshop on Hot Topics in Software Defined Network-
ing. HotSDN ’14. Chicago, Illinois, USA: Association for Computing

129

https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://doi.org/10.1109/CCNC.2013.6488568
https://doi.org/10.1109/CCNC.2013.6488568
https://ieeexplore.ieee.org/abstract/document/6488568
https://ieeexplore.ieee.org/abstract/document/6488568
https://doi.org/10.1145/2491185.2491222
https://doi.org/10.1145/2491185.2491222
http://doi.acm.org/10.1145/2491185.2491222
http://doi.acm.org/10.1145/2491185.2491222
https://doi.org/10.1145/3064176.3064213
http://doi.acm.org/10.1145/3064176.3064213
http://doi.acm.org/10.1145/3064176.3064213
https://www.networkworld.com/article/3142838/infrastructure/top-reasons-for-network-downtime.html
https://www.networkworld.com/article/3142838/infrastructure/top-reasons-for-network-downtime.html
https://www.networkworld.com/article/3142838/infrastructure/top-reasons-for-network-downtime.html
https://doi.org/10.1007/s11107-018-0803-7
https://doi.org/10.1007/s11107-018-0803-7
https://doi.org/10.1007/s11107-018-0803-7
https://doi.org/10.1145/1672308.1672325
https://doi.org/10.1145/1672308.1672325
http://doi.acm.org/10.1145/1672308.1672325
http://doi.acm.org/10.1145/1672308.1672325

[Ber+15]

[Ber09]

[Bet19]

[Beu+15]

[BF18]

|[Bha+13]

Machinery, 2014, pp. 1-6. DOI: |10 . 1145/2620728 . 2620744. URL:
https://doi.org/10.1145/2620728.2620744.

DanielJ. Bernstein, Bernard van Gastel, Wesley Janssen, Tanja Lange,
Peter Schwabe, and Sjaak Smetsers. “TweetNaCl: A Crypto Library
in 100 Tweets”. English. In: Progress in Cryptology - LATINCRYPT
2014. Ed. by Diego F. Aranha and Alfred Menezes. Vol. 8895. Lec-
ture Notes in Computer Science. Springer International Publishing,
2015, pp. 64-83. DOI: |10. 1007 /978-3-319-16295-9 _4. URL:
http://dx.doi.org/10.1007/978-3-319-16295-9_4.

Daniel J. Bernstein. “Introduction to post-quantum cryptography”.
In: Post-Quantum Cryptography. Ed. by Daniel J. Bernstein, Jo-
hannes Buchmann, and Erik Dahmen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 1-14. DOI1: 10.1007/978-3-540-88702-
7_1. URL: https://doi.org/10.1007/978-3-540-88702-7_1.

BetterCloud. State of Insider Threats in the Digital Workplace. Tech.
rep. BetterCloud.com, 2019. URL: https://www.bettercloud.com/
monitor/wp-content/uploads/sites/3/2019/03/BetterCloud-
State-of-Insider-Threats-2019-FINAL.pdf.

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Jean Karim Zinzindohoue. “A messy state of the
union: Taming the composite state machines of TLS”. In: IEEFE Sym-
posium on Security and Priwvacy. ITEEE. 2015, pp. 535-552. DOI:
10.1109/SP.2015. 39. URL: https://ieeexplore. ieee . org/
abstract/document/7163046.

O. I. Bentstuen and J. Flathagen. “On Bootstrapping In-Band Con-
trol Channels in Software Defined Networks”. In: IEEFE International
Conference on Communications Workshops (ICC Workshops). 2018,
pp. 1-6. DOI: 10 . 1109 / ICCW . 2018 . 8403796. URL: https : //
ieeexplore.ieee.org/document/8403796.

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, and Pierre-Yves Strub. “Implementing TLS with verified
cryptographic security”. In: IEEE Symposium on Security and Pri-
vacy (SP). IEEE. 2013, pp. 445-459. DOI: 10 . 1109 /SP . 2013 .
37. URL: https://ieeexplore. ieee.org/abstract/document/
6547126.

130

https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1007/978-3-319-16295-9_4
http://dx.doi.org/10.1007/978-3-319-16295-9_4
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1007/978-3-540-88702-7_1
https://www.bettercloud.com/monitor/wp-content/uploads/sites/3/2019/03/BetterCloud-State-of-Insider-Threats-2019-FINAL.pdf
https://www.bettercloud.com/monitor/wp-content/uploads/sites/3/2019/03/BetterCloud-State-of-Insider-Threats-2019-FINAL.pdf
https://www.bettercloud.com/monitor/wp-content/uploads/sites/3/2019/03/BetterCloud-State-of-Insider-Threats-2019-FINAL.pdf
https://doi.org/10.1109/SP.2015.39
https://ieeexplore.ieee.org/abstract/document/7163046
https://ieeexplore.ieee.org/abstract/document/7163046
https://doi.org/10.1109/ICCW.2018.8403796
https://ieeexplore.ieee.org/document/8403796
https://ieeexplore.ieee.org/document/8403796
https://doi.org/10.1109/SP.2013.37
https://doi.org/10.1109/SP.2013.37
https://ieeexplore.ieee.org/abstract/document/6547126
https://ieeexplore.ieee.org/abstract/document/6547126

[Bha+17]

[Big20]

[BLN16]

IBLS12]

[BMV17]

[BOC15]

[Bot+16]

Karthikeyan Bhargavan et al. “Everest: Towards a Verified, Drop-
in Replacement of HTTPS”. In: 2nd Summit on Advances in Pro-
gramming Languages (SNAPL 2017). Ed. by Benjamin S. Lerner,
Rastislav Bodik, and Shriram Krishnamurthi. Vol. 71. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017, 1:1-1:12.
DOI: 10 . 4230 /LIPIcs . SNAPL . 2017 . 1. URL: http://drops .
dagstuhl.de/opus/volltexte/2017/7119.

Big Switch Networks, Inc. Open Network Linux. 2020. URL: https:
//opennetlinux.org/.

Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. “Dual
EC: A Standardized Back Door”. In: The New Codebreakers: Essays
Dedicated to David Kahn on the Occasion of His 85th Birthday. Ed.
by Peter Y. A. Ryan, David Naccache, and Jean-Jacques Quisquater.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 256-281.
DOI: |10.1007/978-3-662-49301-4_17. URL: https://doi.org/
10.1007/978-3-662-49301-4_17.

DanielJ. Bernstein, Tanja Lange, and Peter Schwabe. “The Security
Impact of a New Cryptographic Library”. English. In: Progress in
Cryptology - LATINCRYPT 2012. Ed. by Alejandro Hevia and Gre-
gory Neven. Vol. 7533. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 159-176. DOI: 10.1007/978-3-642-
33481-8_9. URL: http://dx.doi.org/10.1007/978-3-642-
33481-8_9.

Samaresh Bera, Sudip Misra, and Athanasios V Vasilakos. “Software-
Defined Networking for Internet of Things: A Survey”. In: IEEFE In-
ternet of Things Journal 4.6 (2017), pp. 1994-2008. DOI: [10.1109/
JIOT . 2017 . 2746186. URL: https : // ieeexplore . ieee . org/
abstract/document/8017556.

KEVIN BOCEK. Infographic: How an Attack by a Cyber-espionage
Operator Bypassed Security Controls. 2015. URL: https://wuw.ven
afi.com/blog/post/infographic-cyber-espionage-operator-
bypassed-security-controls/.

Fabio Botelho, Tulio A Ribeiro, Paulo Ferreira, Fernando MV Ramos,
and Alysson Bessani. “Design and Implementation of a Consistent
Data Store for a Distributed SDN Control Plane”. In: 12th European
Dependable Computing Conference (EDCC). IEEE. 2016, pp. 169—
180. DOI: 10.1109/EDCC . 2016 . 12. URL: https://ieeexplore.
ieee.org/abstract/document/7780356.

131

https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
http://drops.dagstuhl.de/opus/volltexte/2017/7119
http://drops.dagstuhl.de/opus/volltexte/2017/7119
https://opennetlinux.org/
https://opennetlinux.org/
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1109/JIOT.2017.2746186
https://doi.org/10.1109/JIOT.2017.2746186
https://ieeexplore.ieee.org/abstract/document/8017556
https://ieeexplore.ieee.org/abstract/document/8017556
https://www.venafi.com/blog/post/infographic-cyber-espionage-operator-bypassed-security-controls/
https://www.venafi.com/blog/post/infographic-cyber-espionage-operator-bypassed-security-controls/
https://www.venafi.com/blog/post/infographic-cyber-espionage-operator-bypassed-security-controls/
https://doi.org/10.1109/EDCC.2016.12
https://ieeexplore.ieee.org/abstract/document/7780356
https://ieeexplore.ieee.org/abstract/document/7780356

[BP10]

[BSA14]

[BSM18]

[BT11

[Buh-+15]

[Cal+07]

[Can-+18|

Olivier Benoit and Thomas Peyrin. “Side-Channel Analysis of Six
SHA-3 Candidates”. English. In: Cryptographic Hardware and Em-
bedded Systems, CHES 2010. Ed. by Stefan Mangard and Francois-
Xavier Standaert. Vol. 6225. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, pp. 140-157. DOI: 10.1007/978-
3-642-15031-9_10. URL: http://dx.doi.org/10.1007/978-3-
642-15031-9_10.

A. Bessani, J. Sousa, and E. E. P. Alchieri. “State Machine Repli-
cation for the Masses with BEFT-SMART”. In: 44th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks.
2014, pp. 355-362. DOI: 10.1109/DSN. 2014 .43. URL: https://
ieeexplore.ieee.org/abstract/document/6903593.

F. Bannour, S. Souihi, and A. Mellouk. “Distributed SDN Control:
Survey, Taxonomy, and Challenges”. In: IEEE Communications Sur-
veys Tutorials 20.1 (Jan. 2018), pp. 333-354. DOI: 10.1109/COMST.
2017 .2782482. URL: https://ieeexplore.ieee.org/abstract/
document/8187644.

BillyBob Brumley and Nicola Tuveri. “Remote Timing Attacks Are
Still Practical”. English. In: Computer Security - ESORICS 2011.
Ed. by Vijay Atluri and Claudia Diaz. Vol. 6879. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, pp. 355-371.
DOI: 10.1007/978-3-642-23822-2_20. URL: http://dx.doi.org/
10.1007/978-3-642-23822-2_20.

D. Buhov, M. Huber, G. Merzdovnik, E. Weippl, and V. Dimitrova.
“Network Security Challenges in Android Applications”. In: 10th In-
ternational Conference on Availability, Reliability and Security. 2015,
pp. 327-332. DOI: 10.1109/ARES.2015.59. URL: https://ieeexpl
ore.ieee.org/abstract/document/7299933.

J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.
OpenPGP Message Format. RFC 4880 (Proposed Standard). Up-
dated by RFC 5581. Internet Engineering Task Force, Nov. 2007.
URL: http://www.ietf.org/rfc/rfc4880.txt.

M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid. “Re-
naissance: A Self-Stabilizing Distributed SDN Control Plane”. In:
IEEE 38th International Conference on Distributed Computing Sys-
tems (ICDCS). July 2018, pp. 233-243. DOI: 10.1109/ICDCS.2018.
00032. URL: https://ieeexplore.ieee.org/abstract/document/
8416295.

132

https://doi.org/10.1007/978-3-642-15031-9_10
https://doi.org/10.1007/978-3-642-15031-9_10
http://dx.doi.org/10.1007/978-3-642-15031-9_10
http://dx.doi.org/10.1007/978-3-642-15031-9_10
https://doi.org/10.1109/DSN.2014.43
https://ieeexplore.ieee.org/abstract/document/6903593
https://ieeexplore.ieee.org/abstract/document/6903593
https://doi.org/10.1109/COMST.2017.2782482
https://doi.org/10.1109/COMST.2017.2782482
https://ieeexplore.ieee.org/abstract/document/8187644
https://ieeexplore.ieee.org/abstract/document/8187644
https://doi.org/10.1007/978-3-642-23822-2_20
http://dx.doi.org/10.1007/978-3-642-23822-2_20
http://dx.doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1109/ARES.2015.59
https://ieeexplore.ieee.org/abstract/document/7299933
https://ieeexplore.ieee.org/abstract/document/7299933
http://www.ietf.org/rfc/rfc4880.txt
https://doi.org/10.1109/ICDCS.2018.00032
https://doi.org/10.1109/ICDCS.2018.00032
https://ieeexplore.ieee.org/abstract/document/8416295
https://ieeexplore.ieee.org/abstract/document/8416295

[Cao+19]

[Carl7|

[Cas+07]

[Cas+18]

[CCG16]

[CDM17]

[Cer01]

Jiahao Cao, Kun Sun, Qi Li, Mingwei Xu, Zijie Yang, Kyung Joon
Kwak, and Jason Li. “Covert Channels in SDN: Leaking Out Infor-
mation from Controllers to End Hosts”. In: Security and Privacy in
Communication Networks. Ed. by Songqing Chen, Kim-Kwang Ray-
mond Choo, Xinwen Fu, Wenjing Lou, and Aziz Mohaisen. Cham:
Springer International Publishing, 2019, pp. 429-449. DOI: https:
//doi.org/10.1007/978-3-030-37228-6_21. URL: https:
//1ink . springer . com/chapter/10.1007/978-3-030- 37228 -
6_21.

K. Carter. “Francois Raynaud on DevSecOps”. In: IEEE Software
34.5 (2017), pp. 93-96. DOI: [10.1109/MS. 2017 . 3571578, URL: http
s://ieeexplore.ieee.org/abstract/document/8048652.

Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Nick McKeown, and Scott Shenker. “Ethane: Taking Control of the
Enterprise”. In: SIGCOMM Comput. Commun. Rev. 37.4 (Aug. 2007),
pp- 1-12. DOI: 10.1145/1282427.1282382. URL: https://doi.org/
10.1145/1282427.1282382.

Valentina Casola, Alessandra [De Benedictis|, Massimiliano Rak, and
Umberto Villano. “Security-by-design in multi-cloud applications: An
optimization approach”. In: Information Sciences 454-455 (2018),
pp. 344-362. DOIL: https://doi.org/10.1016/j.ins.2018.04.081.
URL: http://www.sciencedirect.com/science/article/pii/
S50020025518303517.

Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. “On post-
compromise security”. In: IEEFE 29th Computer Security Foundations
Symposium (CSF). IEEE. 2016, pp. 164-178. DOI: 10.1109/CSF .
2016.19. URL: https://ieeexplore.ieee.org/abstract/docume
nt/7536374.

Mauro Conti, Fabio De Gaspari, and Luigi V. Mancini. “Know Your
Enemy: Stealth Configuration-Information Gathering in SDN”. In:
Green, Pervasive, and Cloud Computing. Ed. by M. H. A. Au, A. Cas-
tiglione, K. K. R. Choo, F. Palmieri, and K. C. Li. Cham: Springer
International Publishing, 2017, pp. 386—401. DOI: https://doi .
org/10.1007/978-3-319-57186-7_29. URL: https://link.
springer.com/chapter/10.1007/978-3-319-57186-7_29.

Iliano Cervesato. “The Dolev-Yao Intruder is the Most Powerful At-
tacker”. In: Proceedings of the Sixteenth Annual Symposium on Logic
in Computer Science. IEEE Computer Society Press. Short, 2001,

133

https://doi.org/https://doi.org/10.1007/978-3-030-37228-6_21
https://doi.org/https://doi.org/10.1007/978-3-030-37228-6_21
https://link.springer.com/chapter/10.1007/978-3-030-37228-6_21
https://link.springer.com/chapter/10.1007/978-3-030-37228-6_21
https://link.springer.com/chapter/10.1007/978-3-030-37228-6_21
https://doi.org/10.1109/MS.2017.3571578
https://ieeexplore.ieee.org/abstract/document/8048652
https://ieeexplore.ieee.org/abstract/document/8048652
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1145/1282427.1282382
https://doi.org/https://doi.org/10.1016/j.ins.2018.04.081
http://www.sciencedirect.com/science/article/pii/S0020025518303517
http://www.sciencedirect.com/science/article/pii/S0020025518303517
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://ieeexplore.ieee.org/abstract/document/7536374
https://ieeexplore.ieee.org/abstract/document/7536374
https://doi.org/https://doi.org/10.1007/978-3-319-57186-7_29
https://doi.org/https://doi.org/10.1007/978-3-319-57186-7_29
https://link.springer.com/chapter/10.1007/978-3-319-57186-7_29
https://link.springer.com/chapter/10.1007/978-3-319-57186-7_29

|[Cha+17]

[Che+16]

[Che+17]

[CHH16]

[Chi+15]

|Chi+16]

pp. 16-19. URL: https://citeseerx. ist . psu. edu/viewdoc/
summary?doi=10.1.1.21.2903/

Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Se-
bastian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg
Zaverucha. “Post-Quantum Zero-Knowledge and Signatures from Sym-
metric Key Primitives”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’17.
Dallas, Texas, USA: ACM, 2017, pp. 1825-1842. poI: 10. 1145/
3133956.3133997. URL: http://doi.acm.org/10.1145/3133956.
3133997.

Min Chen, Yongfeng Qian, Shiwen Mao, Wan Tang, and Ximin Yang.
“Software-Defined Mobile Networks Security”. In: Mobile Networks
and Applications 21.5 (Oct. 2016), pp. 729-743. DOIL: 10 . 1007 /s
11036-015-0665-5. URL: https://doi.org/10.1007/s11036-
015-0665-5.

Manuel Cheminod, Luca Durante, Lucia Seno, Fulvio Valenza, Adri-
ano Valenzano, and Claudio Zunino. “Leveraging SDN to improve se-
curity in industrial networks”. In: IEEFE 13th International Workshop
on Factory Communication Systems (WFCS). IEEE. 2017, pp. 1-T7.
DOI: [10.1109/WFCS . 2017 .7991960. URL: https://ieeexplore.
ieee.org/abstract/document/7991960.

Golriz Chehrazi, Irina Heimbach, and Oliver Hinz. “The impact of
security by design on the success of open source software”. In: Furo-
pean Conference on Information Systems (ECIS). 2016. URL: https:
//aisel.aisnet.org/ecis2016_rp/179.

Po-Wen Chi, Chien-Ting Kuo, Jing-Wei Guo, and Chin-Laung Lei.
“How to detect a compromised SDN switch”. In: Proceedings of the
2015 1st IEEE Conference on Network Softwarization (NetSoft). 2015,
pp. 1-6. DOI: 10.1109/NETSOFT . 2015.7116184. URL: https://
ieeexplore.ieee.org/abstract/document/7116184.

Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrovié¢, Aurojit Panda,
Andrei Gurtov, Aleksander Maidry, Michael Schapira, and Scott
Shenker. “The quest for resilient (static) forwarding tables”. In: The
35th Annual IEEFE International Conference on Computer Commu-
nications (INFOCOM). IEEE. 2016, pp. 1-9. DOI: 10.1109/INFOCO
M.2016.7524552. URL: https://ieeexplore.ieee.org/abstract/
document/7524552/.

134

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.2903
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.2903
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
http://doi.acm.org/10.1145/3133956.3133997
http://doi.acm.org/10.1145/3133956.3133997
https://doi.org/10.1007/s11036-015-0665-5
https://doi.org/10.1007/s11036-015-0665-5
https://doi.org/10.1007/s11036-015-0665-5
https://doi.org/10.1007/s11036-015-0665-5
https://doi.org/10.1109/WFCS.2017.7991960
https://ieeexplore.ieee.org/abstract/document/7991960
https://ieeexplore.ieee.org/abstract/document/7991960
https://aisel.aisnet.org/ecis2016_rp/179
https://aisel.aisnet.org/ecis2016_rp/179
https://doi.org/10.1109/NETSOFT.2015.7116184
https://ieeexplore.ieee.org/abstract/document/7116184
https://ieeexplore.ieee.org/abstract/document/7116184
https://doi.org/10.1109/INFOCOM.2016.7524552
https://doi.org/10.1109/INFOCOM.2016.7524552
https://ieeexplore.ieee.org/abstract/document/7524552/
https://ieeexplore.ieee.org/abstract/document/7524552/

|[Cho+17a|

[Cho+17b)

[Cho+19|

[Chu-+07]

|Cis14]

[CKM16]

[CL17]

[Cob20]

Tom Chothia, Flavio D Garcia, Chris Heppel, and Chris McMahon
Stone. “Why Banker Bob (still) Can’t Get TLS Right: A Security
Analysis of TLS in Leading UK Banking Apps”. In: International
Conference on Financial Cryptography and Data Security. Springer.
2017, pp. 579-597. DOIL: https://doi.org/10.1007/978-3-319-
70972-7_33. URL: https://1link. springer . com/chapter/10.
1007/978-3-319-70972-7_33.

Ankur Chowdhary, Sandeep Pisharody, Adel Alshamrani, and Di-
jlang Huang. “Dynamic Game Based Security Framework in SDN-
enabled Cloud Networking Environments”. In: Proceedings of the
ACM International Workshop on Security in Software Defined Net-
works and Network Function Virtualization. SDN-NFVSec ’17. Scotts-
dale, Arizona, USA: ACM, 2017, pp. 53-58. DOI: 10.1145/3040992.
3040998. URL: http://doi.acm.org/10.1145/3040992.3040998.

A. Chowdhary, D. Huang, A. Alshamrani, M. Kang, A. Kim, and
A. Velazquez. “TRUFL: Distributed Trust Management Framework
in SDN”. In: IEEE International Conference on Communications
(ICC). May 2019, pp. 1-6. DOI: [10.1109/ICC.2019.8761661. URL:
https://ieeexplore.ieee.org/abstract/document/8761661/.

Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubia-
towicz. “Attested append-only memory: making adversaries stick to
their word”. In: 2007, pp. 189-204. DOI: 10.1145/1294261.1294280.
URL: http://doi.acm.org/10.1145/1294261.1294280.

Cisco. Annual Security Report. 2014. URL: https://www . cisco.
com/c/dam/assets/global/UK/pdfs/executive_security/sc-
01_casr2014_cte_lig_en.pdf.

V. Catros, R. Kerherve, and A. Munyandekwe. Access Control Based
on DHCP. 2016. URL: https://wiki.onosproject.org/display/
ONOS/Access+Control+Based+on+DHCP.

Yen-Chun Chiu and Po-Ching Lin. “Rapid detection of disobedi-
ent forwarding on compromised OpenFlow switches”. In: Interna-
tional Conference on Computing, Networking and Communications
(ICNC). IEEE. 2017, pp. 672-677. DOI: 10. 1109/ ICCNC . 2017 .
7876210. URL: https://ieeexplore.ieee.org/abstract/docume
nt/7876210.

Sarah Coble. Cost of Insider Threats Rises 31%. 2020. URL: https:
/ /www . infosecurity-magazine . com/news/cost - of - insider -
threats-rises-31/.

135

https://doi.org/https://doi.org/10.1007/978-3-319-70972-7_33
https://doi.org/https://doi.org/10.1007/978-3-319-70972-7_33
https://link.springer.com/chapter/10.1007/978-3-319-70972-7_33
https://link.springer.com/chapter/10.1007/978-3-319-70972-7_33
https://doi.org/10.1145/3040992.3040998
https://doi.org/10.1145/3040992.3040998
http://doi.acm.org/10.1145/3040992.3040998
https://doi.org/10.1109/ICC.2019.8761661
https://ieeexplore.ieee.org/abstract/document/8761661/
https://doi.org/10.1145/1294261.1294280
http://doi.acm.org/10.1145/1294261.1294280
https://www.cisco.com/c/dam/assets/global/UK/pdfs/executive_security/sc-01_casr2014_cte_liq_en.pdf
https://www.cisco.com/c/dam/assets/global/UK/pdfs/executive_security/sc-01_casr2014_cte_liq_en.pdf
https://www.cisco.com/c/dam/assets/global/UK/pdfs/executive_security/sc-01_casr2014_cte_liq_en.pdf
https://wiki.onosproject.org/display/ONOS/Access+Control+Based+on+DHCP
https://wiki.onosproject.org/display/ONOS/Access+Control+Based+on+DHCP
https://doi.org/10.1109/ICCNC.2017.7876210
https://doi.org/10.1109/ICCNC.2017.7876210
https://ieeexplore.ieee.org/abstract/document/7876210
https://ieeexplore.ieee.org/abstract/document/7876210
https://www.infosecurity-magazine.com/news/cost-of-insider-threats-rises-31/
https://www.infosecurity-magazine.com/news/cost-of-insider-threats-rises-31/
https://www.infosecurity-magazine.com/news/cost-of-insider-threats-rises-31/

[CPP15|

|Crol7|

[CS04]

[Cyb18|

[Dac+17]

[Dar+17]

[De +14]

[Dha+ 15|

Roy Liang Chua, Andrew Keith Pearce, and Matthew Palmer. Au-
thentication for software defined networks. US Patent 9,038,151. 2015.
URL: https://patents.google.com/patent/US9038151B1.

Bob Cromwell. Massive Failures of Internet PKI. http://cromwell-
intl.com/cybersecurity/pki-failures.html. 2017. URL: http:
//cromwell-intl.com/cybersecurity/pki-failures.html.

C. Cachin and A. Samar. “Secure distributed DNS”. In: International
Conference on Dependable Systems and Networks. 2004, pp. 423-432.
DOI: 10.1109/DSN . 2004 . 1311912, URL: https://ieeexplore.
ieee.org/abstract/document/1311912.

Cybersecurity Insiders. Insider Threat. Tech. rep. Crowd Research
Partners, 2018. URL: https://crowdresearchpartners. com/wp-
content/uploads/2017/07/Insider-Threat-Report-2018.pdf.

Marc C Dacier, Hartmut Konig, Radoslaw Cwalinski, Frank Kargl,
and S. Dietrich. “Security Challenges and Opportunities of Software-
Defined Networking”. In: IEEE Security € Privacy 15.2 (2017), pp. 96—
100. DOI:|10.1109/MSP.2017.46. URL: https://ieeexplore.ieee.
org/abstract/document/7891523.

T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti.
“A Survey on the Security of Stateful SDN Data Planes”. In: IFEFE
Communications Surveys Tutorials 19.3 (Sept. 2017), pp. 1701-1725.
DOI: 10.1109/COMST . 2017 .2689819. URL: https://ieeexplore.
ieee.org/abstract/document/7890396.

Rogério Leao Santos De Oliveira, Christiane Marie Schweitzer, Ailton
Akira Shinoda, and Ligia Rodrigues Prete. “Using mininet for emu-
lation and prototyping software-defined networks”. In: IEEE Colom-
bian Conference on Communications and Computing (COLCOM).
IEEE. 2014, pp. 1-6. DOI:10.1109/ColComCon . 2014 .6860404. URL:
https://ieeexplore.ieee.org/abstract/document/6860404.

Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and V. Mann.
“SPHINX: Detecting Security Attacks in Software-Defined Networks.”
In: Proceedings of the Network and Distributed System Security Sym-
posium (NDSS). Internet Society, 2015. DOI: 10.14722/ndss.2015.
23064. URL: https : //www . ndss - symposium . org / ndss2015 /
ndss-2015 - programme /sphinx - detecting- security- attacks-
software-defined-networks/.

136

https://patents.google.com/patent/US9038151B1
http://cromwell-intl.com/cybersecurity/pki-failures.html
http://cromwell-intl.com/cybersecurity/pki-failures.html
http://cromwell-intl.com/cybersecurity/pki-failures.html
http://cromwell-intl.com/cybersecurity/pki-failures.html
https://doi.org/10.1109/DSN.2004.1311912
https://ieeexplore.ieee.org/abstract/document/1311912
https://ieeexplore.ieee.org/abstract/document/1311912
https://crowdresearchpartners.com/wp-content/uploads/2017/07/Insider-Threat-Report-2018.pdf
https://crowdresearchpartners.com/wp-content/uploads/2017/07/Insider-Threat-Report-2018.pdf
https://doi.org/10.1109/MSP.2017.46
https://ieeexplore.ieee.org/abstract/document/7891523
https://ieeexplore.ieee.org/abstract/document/7891523
https://doi.org/10.1109/COMST.2017.2689819
https://ieeexplore.ieee.org/abstract/document/7890396
https://ieeexplore.ieee.org/abstract/document/7890396
https://doi.org/10.1109/ColComCon.2014.6860404
https://ieeexplore.ieee.org/abstract/document/6860404
https://doi.org/10.14722/ndss.2015.23064
https://doi.org/10.14722/ndss.2015.23064
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/sphinx-detecting-security-attacks-software-defined-networks/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/sphinx-detecting-security-attacks-software-defined-networks/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/sphinx-detecting-security-attacks-software-defined-networks/

[Digl7]

[Dix+18]

[DK16]|

[DLS8S)|

[Dod-+13|

[Dov13|

[Dov17|

[Dri20]

DigiCert Inc. Enabling Perfect Forward Secrecy. 2017. URL: https:
//www .digicert . com/ssl - support/ssl-enabling- perfect -
forward-secrecy.htm.

Vaibhav Hemant Dixit, Adam Doupé, Yan Shoshitaishvili, Ziming
Zhao, and Gail-Joon Ahn. “AIM-SDN: Attacking Information Mis-
management in SDN-Datastores”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security.
CCS "18. Toronto, Canada: Association for Computing Machinery,
2018, pp. 664-676. DOI: |10.1145/3243734 .3243799. URL: https:
//doi.org/10.1145/3243734.3243799.

Felix Dorre and Vladimir Klebanov. “Practical Detection of Entropy
Loss in Pseudo-Random Number Generators”. In: Proceedings of the
ACM SIGSAC Conference on Computer and Communications Se-
curity. CCS ’16. Vienna, Austria: Association for Computing Ma-
chinery, 2016, pp. 678-689. DOI: |10.1145/2976749 .2978369. URL:
https://doi.org/10.1145/2976749.2978369.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus
in the Presence of Partial Synchrony”. In: J. ACM 35.2 (Apr. 1988),
pp. 288-323. DOI: 10.1145/42282.42283. URL: https://doi.org/
10.1145/42282.42283.

Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Verg-
niaud, and Daniel Wichs. “Security Analysis of Pseudo-random Num-
ber Generators with Input: /Dev/Random is Not Robust”. In: Pro-
ceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS '13. Berlin, Germany: ACM, 2013, pp. 647—
658. DOI: 10.1145/2508859.2516653. URL: http://doi.acm.org/
10.1145/2508859.2516653.

Jeremy M Dover. A denial of service attack against the Open Flood-
light SDN controller. 2013. URL: https://docplayer.net/7087999-
A-denial-of-service-attack-against-the-open-floodlight-
sdn-controller.html.

Jeremy M. Dover. A switch table vulnerability in the Open Floodlight
SDN controller. 2017. URL: http://docplayer .net/4847712-A-
switch-table-vulnerability-in-the-open-floodlight-sdn-
controller.html.

DriveNets. White Box Architecture. 2020. URL: https://drivenets.
com/products/white-box-architecture/.

137

https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm
https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm
https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm
https://doi.org/10.1145/3243734.3243799
https://doi.org/10.1145/3243734.3243799
https://doi.org/10.1145/3243734.3243799
https://doi.org/10.1145/2976749.2978369
https://doi.org/10.1145/2976749.2978369
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/2508859.2516653
http://doi.acm.org/10.1145/2508859.2516653
http://doi.acm.org/10.1145/2508859.2516653
https://docplayer.net/7087999-A-denial-of-service-attack-against-the-open-floodlight-sdn-controller.html
https://docplayer.net/7087999-A-denial-of-service-attack-against-the-open-floodlight-sdn-controller.html
https://docplayer.net/7087999-A-denial-of-service-attack-against-the-open-floodlight-sdn-controller.html
http://docplayer.net/4847712-A-switch-table-vulnerability-in-the-open-floodlight-sdn-controller.html
http://docplayer.net/4847712-A-switch-table-vulnerability-in-the-open-floodlight-sdn-controller.html
http://docplayer.net/4847712-A-switch-table-vulnerability-in-the-open-floodlight-sdn-controller.html
https://drivenets.com/products/white-box-architecture/
https://drivenets.com/products/white-box-architecture/

[DSZ16]

[DY33]

[EC16]

[Edw14]

|[Ege+13]

[Ekr19]

|[Eng12]

|[Fah-+12]

Benjamin Dowling, Douglas Stebila, and Greg Zaverucha. “Authen-
ticated Network Time Synchronization”. In: 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Associa-
tion, 2016, pp. 823-840. URL: https://www.usenix . org/confe
rence/usenixsecurityl6/technical - sessions/presentation/
dowling.

Danny Dolev and Andrew Yao. “On the security of public key pro-
tocols”. In: IEEE Transactions on Information Theory 29.2 (1983),
pp- 198-208. pOI: 10.1109/TIT. 1983 . 1056650. URL: https://
ieeexplore.ieee.org/abstract/document/1056650.

C. Ebert and J. Cain. “Cyclomatic Complexity”. In: IEEE Software
33.6 (2016), pp. 27-29. DOI: 10.1109/MS.2016.147. URL: https:
//ieeexplore.ieee.org/abstract/document/7725232.

Chris Edwards. “Researchers probe security through obscurity”. In:
Communications of the ACM 57.8 (2014), pp. 11-13. DOI: 10.1145/
2632038. URL: https://dl.acm.org/doi/fullHtml/10.1145/
2632038.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. “An Empirical Study of Cryptographic Misuse in Android
Applications”. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. CCS "13. Berlin, Germany:
ACM, 2013, pp. 73-84. DOI:[10. 1145/2508859 . 2516693. URL: http:
//doi.acm.org/10.1145/2508859.2516693.

Ekran System. Insider Threat Statistics for 2019: Facts and Figures.
2019. URL: https://www.ekransystem.com/en/blog/insider-
threat-statistics-facts-and-figures.

Theresa Enghardt. “Authentication, Authorization and Mobility in
Openflow-enabled Enterprise Wireless Networks”. MA thesis. Berlin:
Technische Universitat Berlin, 2012. URL: https://www.net .t -
labs.tu-berlin.de/papers/E-AAMOE-11.pdf.

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgartner,
Bernd Freisleben, and Matthew Smith. “Why eve and mallory love
android: an analysis of android SSL (in)security”. In: Proceedings of
the 2012 ACM conference on Computer and communications secu-
rity. CCS "12. Raleigh, North Carolina, USA: ACM, 2012, pp. 50-61.
DOI: [10.1145/2382196.2382205. URL: http://doi.acm.org/10.
1145/2382196.2382205.

138

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dowling
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dowling
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dowling
https://doi.org/10.1109/TIT.1983.1056650
https://ieeexplore.ieee.org/abstract/document/1056650
https://ieeexplore.ieee.org/abstract/document/1056650
https://doi.org/10.1109/MS.2016.147
https://ieeexplore.ieee.org/abstract/document/7725232
https://ieeexplore.ieee.org/abstract/document/7725232
https://doi.org/10.1145/2632038
https://doi.org/10.1145/2632038
https://dl.acm.org/doi/fullHtml/10.1145/2632038
https://dl.acm.org/doi/fullHtml/10.1145/2632038
https://doi.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2508859.2516693
https://www.ekransystem.com/en/blog/insider-threat-statistics-facts-and-figures
https://www.ekransystem.com/en/blog/insider-threat-statistics-facts-and-figures
https://www.net.t-labs.tu-berlin.de/papers/E-AAMOE-11.pdf
https://www.net.t-labs.tu-berlin.de/papers/E-AAMOE-11.pdf
https://doi.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2382196.2382205

|[Fan+19|

|[Far+19|

|Fer+13]

[FM19]

|[Fon+15|

[Fre+-19]

[FSK11]

L. Fang, Y. Li, X. Yun, Z. Wen, S. Ji, W. Meng, Z. Cao, and
M.Tanveer. “THP: A Novel Authentication Scheme to Prevent Multi-
ple Attacks in SDN-based IoT Network”. In: IEEE Internet of Things
Journal (2019), pp. 1-1. DOI: [10.1109/JI0T . 2019 . 2944301. URL:
https://ieeexplore.ieee.org/abstract/document/8851192.

I. Farris, T. Taleb, Y. Khettab, and J. Song. “A Survey on Emerging
SDN and NFV Security Mechanisms for IoT Systems”. In: IEFEE
Communications Surveys Tutorials 21.1 (Jan. 2019), pp. 812-837.
DOI: |10.1109/COMST . 2018.2862350. URL: https://ieeexplore.
ieee.org/abstract/document/8424018.

Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca,
and Shriram Krishnamurthi. “Participatory networking: an API for
application control of SDNs”. In: Proceedings of the ACM SIGCOMM
conference on SIGCOMM. SIGCOMM ’13. Hong Kong, China: ACM,
2013, pp. 327-338. DOIL: 10.1145/2486001 . 2486003. URL: http:
//doi.acm.org/10.1145/2486001.2486003.

J. Fiaidhi and S. Mohammed. “Security and Vulnerability of Ex-
treme Automation Systems: The IoMT and IoA Case Studies”. In:
IT Professional 21.4 (July 2019), pp. 48-55. DOI: [10.1109/MITP.
2019.2906442. URL: https://ieeexplore.ieee.org/abstract/
document/8764076.

Ramon R Fontes, Samira Afzal, Samuel HB Brito, Mateus AS San-
tos, and Christian Esteve Rothenberg. “Mininet-WiFi: Emulating
software-defined wireless networks”. In: 11th International Confer-
ence on Network and Service Management (CNSM). IEEE. 2015,
pp- 384-389. DOI: 10 . 1109 /CNSM . 2015 . 7367387. URL: https :
//ieeexplore.ieee.org/abstract/document/7367387.

Lars-undefinedke Fredlund, Clara Benac Earle, Thomas Arts, and
Hans Svensson. “Gaining Trust by Tracing Security Protocols”. In:
Proceedings of the 18th ACM SIGPLAN International Workshop on
Erlang. Erlang 2019. Berlin, Germany: Association for Computing
Machinery, 2019, pp. 56-67. DOI: |10.1145/3331542.3342573. URL:
https://doi.org/10.1145/3331542.3342573.

Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography
engineering: design principles and practical applications. John Wiley
& Sons, 2011. URL: https://www.wiley . com/en-us/Cryptog
raphy +Engineering /% 3A+Design+Principles+and+Practical +
Applications+-p-9780470474242.

139

https://doi.org/10.1109/JIOT.2019.2944301
https://ieeexplore.ieee.org/abstract/document/8851192
https://doi.org/10.1109/COMST.2018.2862350
https://ieeexplore.ieee.org/abstract/document/8424018
https://ieeexplore.ieee.org/abstract/document/8424018
https://doi.org/10.1145/2486001.2486003
http://doi.acm.org/10.1145/2486001.2486003
http://doi.acm.org/10.1145/2486001.2486003
https://doi.org/10.1109/MITP.2019.2906442
https://doi.org/10.1109/MITP.2019.2906442
https://ieeexplore.ieee.org/abstract/document/8764076
https://ieeexplore.ieee.org/abstract/document/8764076
https://doi.org/10.1109/CNSM.2015.7367387
https://ieeexplore.ieee.org/abstract/document/7367387
https://ieeexplore.ieee.org/abstract/document/7367387
https://doi.org/10.1145/3331542.3342573
https://doi.org/10.1145/3331542.3342573
https://www.wiley.com/en-us/Cryptography+Engineering:+Design+Principles+and+Practical+Applications+-p-9780470474242
https://www.wiley.com/en-us/Cryptography+Engineering:+Design+Principles+and+Practical+Applications+-p-9780470474242
https://www.wiley.com/en-us/Cryptography+Engineering:+Design+Principles+and+Practical+Applications+-p-9780470474242

[FWC16]

|Gar+19|

|Gio+20]

[GKO1]

[Gog17]

|Gov+16]

[GPM15]

Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. “ Attacking OpenSSL
Implementation of ECDSA with a Few Signatures”. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. CCS "16. Vienna, Austria: Association for Computing
Machinery, 2016, pp. 1505-1515. DOI: [10 . 1145/2976749 . 2978400.
URL: https://doi.org/10.1145/2976749.2978400.

S. Garg, K. Kaur, N. Kumar, and J. J. P. C. Rodrigues. “Hybrid
Deep-Learning-Based Anomaly Detection Scheme for Suspicious Flow
Detection in SDN: A Social Multimedia Perspective”. In: IEEE Trans-
actions on Multimedia 21.3 (Mar. 2019), pp. 566-578. DOI: 10 .
1109/TMM. 2019 .2893549. URL: https://ieeexplore.ieee.org/
abstract/document/8613868.

A. Giorgetti, A. Sgambelluri, R. Casellas, R. Morro, A. Campanella,
and P. Castoldi. “Control of open and disaggregated transport net-
works using the Open Network Operating System (ONOS) [Invited|”.
In: IEEE/OSA Journal of Optical Communications and Networking
12.2 (2020), A171-A181. poI: 10. 1364 /JOCN . 12 . 00A171. URL:
https://ieeexplore.ieee.org/abstract/document/8925429.

Geoffrey K. Gill and Chris F. Kemerer. “Cyclomatic complexity den-
sity and software maintenance productivity”. In: IEEFE transactions
on software engineering 17.12 (1991), p. 1284. pOI: 10.1109/32.
106988. URL: https://search.proquest.com/docview/195570778.

Marcell Gogan. Insider Threats as the Main Security Threat in 2017.
2017. URL: https://www. tripwire. com/state - of - security/
security-data-protection/insider-threats-main-security-
threat-2017/.

Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and
Amin Vahdat. “Evolve or Die: High-Availability Design Principles
Drawn from Googles Network Infrastructure”. In: Proceedings of the
ACM SIGCOMM Conference. SIGCOMM ’16. Florianopolis, Brazil:
Association for Computing Machinery, 2016, pp. 58-72. DOI: |10 .
1145 /2934872 . 2934891. URL: https://doi . org/10. 1145/
2934872.2934891.

Christina Garman, Kenneth G. Paterson, and Thyla Van der Merwe.
“Attacks Only Get Better: Password Recovery Attacks Against RC4
in TLS”. In: 24/th USENIX Security Symposium (USENIX Security
15). Washington, D.C.: USENIX Association, 2015, pp. 113-128.
URL: https://www.usenix.org/conference/usenixsecurityi1s/
technical-sessions/presentation/garman.

140

https://doi.org/10.1145/2976749.2978400
https://doi.org/10.1145/2976749.2978400
https://doi.org/10.1109/TMM.2019.2893549
https://doi.org/10.1109/TMM.2019.2893549
https://ieeexplore.ieee.org/abstract/document/8613868
https://ieeexplore.ieee.org/abstract/document/8613868
https://doi.org/10.1364/JOCN.12.00A171
https://ieeexplore.ieee.org/abstract/document/8925429
https://doi.org/10.1109/32.106988
https://doi.org/10.1109/32.106988
https://search.proquest.com/docview/195570778
https://www.tripwire.com/state-of-security/security-data-protection/insider-threats-main-security-threat-2017/
https://www.tripwire.com/state-of-security/security-data-protection/insider-threats-main-security-threat-2017/
https://www.tripwire.com/state-of-security/security-data-protection/insider-threats-main-security-threat-2017/
https://doi.org/10.1145/2934872.2934891
https://doi.org/10.1145/2934872.2934891
https://doi.org/10.1145/2934872.2934891
https://doi.org/10.1145/2934872.2934891
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/garman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/garman

|Gre+08]

|Gre-+09]

|Gre09|

|Grel2]

[Grel7|

[GT16]

|Guo+16]

[Han+19]

Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel,
and Sudipta Sengupta. “Towards a Next Generation Data Center
Architecture: Scalability and Commoditization”. In: Proceedings of
the ACM Workshop on Programmable Routers for Extensible Services
of Tomorrow. PRESTO ’08. Seattle, WA, USA: ACM, 2008, pp. 57—
62. DOI: [10.1145/1397718.1397732. URL: http://doi.acm.org/
10.1145/1397718.1397732.

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-
dula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen
Patel, and Sudipta Sengupta. “VL2: A Scalable and Flexible Data
Center Network”. In: SIGCOMM Comput. Commun. Rev. 39.4 (Aug.
2009), pp. 51-62. DOIL: 10 . 1145 /1594977 . 1592576. URL: http :
//doi.acm.org/10.1145/1594977.1592576.

K. Greene. MIT Tech Review 10 Breakthrough Technologies: Software-
defined Networking. http://www2.technologyreview.com/articl
e/412194/tr10-software-defined-networking/. 2009.

Matthew Green. The anatomy of a bad idea. 2012. URL: http://
blog.cryptographyengineering.com/2012/12/the-anatomy-of -
bad-idea.html.

Matthew Green. The Strange story of “Extended Random” 2017.
URL: https://blog.cryptographyengineering. com.

Shafi Goldwasser and Yael Tauman Kalai. “Cryptographic Assump-
tions: A Position Paper”. In: Theory of Cryptography. Ed. by Eyal
Kushilevitz and Tal Malkin. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2016, pp. 505-522. URL: https://link. springer . com/
chapter/10.1007/978-3-662-49096-9_21.

Ivy Guo, Makan Pourzandi, Sandra Scott-Hayward, Haibin Song,
Clair Wangke, Frank Xialiang, Dacheng Zhang, and Xiaojun Zhuang.
Security Foundation Requirements for SDN Controllers. Tech. rep.
Open Networking Foundation, 2016. URL: https://3vf60mmveqlg
8vzn48q207la-wpengine.netdna-ssl.com/wp-content/uploads/
2013/05/Security_Foundation_Requirements_for_SDN_Control
lers.pdf.

T. Han, S. Rooh Ullah Jan, Zhiyuan Tan, Muhammad Usman, Mian
Ahmad Jan, Rahim Khan, and Yongzhao Xu. “A comprehensive
survey of security threats and their mitigation techniques for next-
generation SDN controllers”. In: Concurrency and Computation: Prac-
tice and Experience (2019). 5300 cpe.5300. DOI: 10. 1002/ cpe . 5300.

141

https://doi.org/10.1145/1397718.1397732
http://doi.acm.org/10.1145/1397718.1397732
http://doi.acm.org/10.1145/1397718.1397732
https://doi.org/10.1145/1594977.1592576
http://doi.acm.org/10.1145/1594977.1592576
http://doi.acm.org/10.1145/1594977.1592576
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://blog.cryptographyengineering.com/2012/12/the-anatomy-of-bad-idea.html
http://blog.cryptographyengineering.com/2012/12/the-anatomy-of-bad-idea.html
http://blog.cryptographyengineering.com/2012/12/the-anatomy-of-bad-idea.html
https://blog.cryptographyengineering.com
https://link.springer.com/chapter/10.1007/978-3-662-49096-9_21
https://link.springer.com/chapter/10.1007/978-3-662-49096-9_21
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2013/05/Security_Foundation_Requirements_for_SDN_Controllers.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2013/05/Security_Foundation_Requirements_for_SDN_Controllers.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2013/05/Security_Foundation_Requirements_for_SDN_Controllers.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2013/05/Security_Foundation_Requirements_for_SDN_Controllers.pdf
https://doi.org/10.1002/cpe.5300

[Hel+10]

|Hel19]

[Hen+12]

[Hep+19)

[Her-+00]

[HFH16|

[Hicl7]

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.
5300.

Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiak-
oumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown. “Elas-
ticTree: saving energy in data center networks”. In: Proceedings of
the 7th USENIX conference on Networked systems design and im-
plementation. NSDI’10. San Jose, California: USENIX Association,
2010, pp. 17-17. URL: http://dl.acm.org/citation.cfm?id=
1855711.1855728.

Help Net Security. 99% of misconfiguration incidents in the cloud go
unnoticed. 2019. URL: https://www.helpnetsecurity.com/2019/
09/25/cloud-misconfiguration-incidents/.

Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Hal-
derman. “Mining Your Ps and Qs: Detection of Widespread Weak
Keys in Network Devices”. In: Proceedings of the 21st USENIX Con-
ference on Security Symposium. Security’12. Bellevue, WA: USENIX
Association, 2012, pp. 35-35. URL: http://dl.acm.org/citation.
cfm?1d=2362793.2362828.

T. Hepp, F. Spaeh, A. Schoenhals, P. Ehret, and B. Gipp. “Explor-
ing Potentials and Challenges of Blockchain-based Public Key In-
frastructures”. In: IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). Apr. 2019, pp. 847-852. DOL:
10 . 1109/ INFCOMW . 2019 . 8845169. URL: https://ieeexplore .
ieee.org/abstract/document/8845169.

A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. “Ac-
cess control meets public key infrastructure, or: assigning roles to
strangers”. In: Proceeding IEEE Symposium on Security and Privacy.
2000, pp. 2-14. DOI: 0.1109/SECPRI . 2000 . 848442, URL: https:
//ieeexplore.ieee.org/abstract/document/848442.

Marcella Hastings, Joshua Fried, and Nadia Heninger. “Weak Keys
Remain Widespread in Network Devices”. In: Proceedings of the In-
ternet Measurement Conference. IMC ’16. Santa Monica, California,
USA: Association for Computing Machinery, 2016, pp. 49-63. DOTI:
10.1145/2987443 . 2987486. URL: https://doi.org/10.1145/
2987443 .2987486.

Andrew Hickey. Application layer DDoS attacks rising. Sept. 2017.
URL: https://www.csoonline.com/article/3222824/network-
security/application-layer-ddos-attacks-rising.html.

142

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5300
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5300
http://dl.acm.org/citation.cfm?id=1855711.1855728
http://dl.acm.org/citation.cfm?id=1855711.1855728
https://www.helpnetsecurity.com/2019/09/25/cloud-misconfiguration-incidents/
https://www.helpnetsecurity.com/2019/09/25/cloud-misconfiguration-incidents/
http://dl.acm.org/citation.cfm?id=2362793.2362828
http://dl.acm.org/citation.cfm?id=2362793.2362828
https://doi.org/10.1109/INFCOMW.2019.8845169
https://ieeexplore.ieee.org/abstract/document/8845169
https://ieeexplore.ieee.org/abstract/document/8845169
https://doi.org/0.1109/SECPRI.2000.848442
https://ieeexplore.ieee.org/abstract/document/848442
https://ieeexplore.ieee.org/abstract/document/848442
https://doi.org/10.1145/2987443.2987486
https://doi.org/10.1145/2987443.2987486
https://doi.org/10.1145/2987443.2987486
https://www.csoonline.com/article/3222824/network-security/application-layer-ddos-attacks-rising.html
https://www.csoonline.com/article/3222824/network-security/application-layer-ddos-attacks-rising.html

[Hil13]

[HMK12]

[Hom+19|

[Hon +15]

[Hou+02]

[HPOS)]

[Hua+ 14|

Brad Hill. Failures of Trust in the Online PKI Marketplace Cannot be
Fized by "Raising the Bar" on Certificate Authority Security. 2013.
URL: http://csrc.nist.gov/groups/ST/ca-workshop-2013/
cfp-submissions/hill_failures_to_trust.pdf.

Gernot Heiser, Toby Murray, and Gerwin Klein. “It’s Time for Trust-
worthy Systems”. In: IEEE Security & Privacy 10.2 (2012), pp. 67—
70. DOI: 10.1109/MSP.2012.41. URL: https://ieeexplore.ieee.
org/abstract/document/6173000.

Ivan Homoliak, Flavio Toffalini, Juan Guarnizo, Yuval Elovici, and
Martién Ochoa. “Insight Into Insiders and IT: A Survey of Insider
Threat Taxonomies, Analysis, Modeling, and Countermeasures”. In:
ACM Comput. Surv. 52.2 (Apr. 2019). DOI: 10.1145/3303771. URL:
https://doi.org/10.1145/3303771.

Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. “Poisoning
Network Visibility in Software-Defined Networks: New Attacks and
Countermeasures.” In: Proceedings of the Network and Distributed
System Security Symposium (NDSS). Internet Society, 2015. URL:
https://www.ndss - symposium. org/ndss2015/ndss - 2015 - pr
ogramme / poisoning - network-visibility- software-defined-
networks-new-attacks-and-countermeasures/.

R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 3280 (Proposed Standard). Obsoleted by RFC 5280,
updated by RFCs 4325, 4630. Internet Engineering Task Force, Apr.
2002. URL: http://www.ietf.org/rfc/rfc3280.txt.

Helena Handschuh and Bart Preneel. “Key-Recovery Attacks on Uni-
versal Hash Function Based MAC Algorithms”. English. In: Advances
in Cryptology - CRYPTO 2008. Ed. by David Wagner. Vol. 5157. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp- 144-161. DOI: 10.1007/978-3-540-85174-5_9. URL: http:
//dx.doi.org/10.1007/978-3-540-85174-5_9.

L. S. Huang, S. Adhikarla, D. Boneh, and C. Jackson. “An Experi-
mental Study of TLS Forward Secrecy Deployments”. In: IEEE In-
ternet Computing 18.6 (2014), pp. 43-51. DOI: 10.1109/MIC.2014.
86. URL: https://ieeexplore. ieee.org/abstract/document/
6870379.

143

http://csrc.nist.gov/groups/ST/ca-workshop-2013/cfp-submissions/hill_failures_to_trust.pdf
http://csrc.nist.gov/groups/ST/ca-workshop-2013/cfp-submissions/hill_failures_to_trust.pdf
https://doi.org/10.1109/MSP.2012.41
https://ieeexplore.ieee.org/abstract/document/6173000
https://ieeexplore.ieee.org/abstract/document/6173000
https://doi.org/10.1145/3303771
https://doi.org/10.1145/3303771
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/poisoning-network-visibility-software-defined-networks-new-attacks-and-countermeasures/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/poisoning-network-visibility-software-defined-networks-new-attacks-and-countermeasures/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/poisoning-network-visibility-software-defined-networks-new-attacks-and-countermeasures/
http://www.ietf.org/rfc/rfc3280.txt
https://doi.org/10.1007/978-3-540-85174-5_9
http://dx.doi.org/10.1007/978-3-540-85174-5_9
http://dx.doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1109/MIC.2014.86
https://doi.org/10.1109/MIC.2014.86
https://ieeexplore.ieee.org/abstract/document/6870379
https://ieeexplore.ieee.org/abstract/document/6870379

[Hua+16]

[Hua+17|

[IBM13]

IEE15)

[IEE18]

[1K18|

[Inf13]

|Is1+19]

Liang-Hao Huang, Hsiang-Chun Hsu, Shan-Hsiang Shen, De-Nian
Yang, and Wen-Tsuen Chen. “Multicast traffic engineering for soft-
ware-defined networks”. In: The 35th Annual IEEE International
Conference on Computer Communications. IEEE. 2016, pp. 1-9. DOI:
10 . 1109/ INFOCOM . 2016 . 7524383. URL: https://ieeexplore .
ieee.org/abstract/document/7524383.

X. Huang, S. Bian, Z. Shao, and H. Xu. “Dynamic switch-controller
association and control devolution for SDN systems”. In: IEEE Inter-
national Conference on Communications (ICC). 2017, pp. 1-6. DOI:
10.1109/1ICC.2017.7997427. URL: https://ieeexplore. ieee.
org/abstract/document/7997427.

IBM Security. 2018 IBM X-Force Threat Intelligence Index. 2018.
URL: https://www.ibm. com/security/data-breach/threat -
intelligence?ce=15M0484&ct=SWG&cmp=1IBMSocial&cm=h&cr=
Security&ccy=US.

[EEE Spectrum. Special Report: 50 years of Moore’s Law. 2015. URL:
http://spectrum.ieee.org/static/special-report-50-years-
of-moores-1law.

[EEE 802.1. 802.1AR: Secure Device Identity. 2018. URL: https :
//1.ieee802.org/security/802-1ar/.

Qamar Ilyas and Rahamatullah Khondoker. “Security Analysis of
FloodLight, ZeroSDN, Beacon and POX SDN Controllers”. In: SDN
and NFV Security: Security Analysis of Software-Defined Networking
and Network Function Virtualization. Ed. by Rahamatullah Khon-
doker. Cham: Springer International Publishing, 2018, pp. 85-98.
DOI: [10.1007/978-3-319-71761-6_6. URL: https://doi.org/10.
1007/978-3-319-71761-6_6.

InfoSec. Layer 7 DDoS attacks: detection € mitigation. 2013. URL:
http://resources.infosecinstitute.com/layer-7-ddos-attac
ks-detection-mitigation/.

S. Islam, M. A. Islam Khan, S. Tasnim Shorno, S. Sarker, and M. A.
Siddik. “Performance Evaluation of SDN Controllers in Wireless Net-
work”. In: 1st International Conference on Advances in Science, En-
gineering and Robotics Technology (ICASERT). 2019, pp. 1-5. DOTI:
10.1109/ ICASERT . 2019 . 8934553. URL: https://ieeexplore .
ieee.org/abstract/document/8934553.

144

https://doi.org/10.1109/INFOCOM.2016.7524383
https://ieeexplore.ieee.org/abstract/document/7524383
https://ieeexplore.ieee.org/abstract/document/7524383
https://doi.org/10.1109/ICC.2017.7997427
https://ieeexplore.ieee.org/abstract/document/7997427
https://ieeexplore.ieee.org/abstract/document/7997427
https://www.ibm.com/security/data-breach/threat-intelligence?ce=ISM0484&ct=SWG&cmp=IBMSocial&cm=h&cr=Security&ccy=US
https://www.ibm.com/security/data-breach/threat-intelligence?ce=ISM0484&ct=SWG&cmp=IBMSocial&cm=h&cr=Security&ccy=US
https://www.ibm.com/security/data-breach/threat-intelligence?ce=ISM0484&ct=SWG&cmp=IBMSocial&cm=h&cr=Security&ccy=US
http://spectrum.ieee.org/static/special-report-50-years-of-moores-law
http://spectrum.ieee.org/static/special-report-50-years-of-moores-law
https://1.ieee802.org/security/802-1ar/
https://1.ieee802.org/security/802-1ar/
https://doi.org/10.1007/978-3-319-71761-6_6
https://doi.org/10.1007/978-3-319-71761-6_6
https://doi.org/10.1007/978-3-319-71761-6_6
http://resources.infosecinstitute.com/layer-7-ddos-attacks-detection-mitigation/
http://resources.infosecinstitute.com/layer-7-ddos-attacks-detection-mitigation/
https://doi.org/10.1109/ICASERT.2019.8934553
https://ieeexplore.ieee.org/abstract/document/8934553
https://ieeexplore.ieee.org/abstract/document/8934553

[Jai+13]

[JCL19)

[Jer+17a]

[Jer+17b]

[Jin+16]

[JTKK19]

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S.
Venkata, J. Wanderer, J. Zhou, M. Zhu, and et al. “B4: Experience
with a Globally-Deployed Software Defined Wan”. In: SIGCOMM
Comput. Commun. Rev. 43.4 (Aug. 2013), pp. 3—-14. DOI: 10.1145/
2534169 . 2486019. URL: https://doi.org/10.1145/2534169.
2486019.

Wafa Ben Jaballah, Mauro Conti, and Chhagan Lal. “A Survey on
Software-Defined VANETSs: Benefits, Challenges, and Future Direc-
tions”. In: CoRR abs/1904.04577 (2019). arXiv: 1904 .04577. URL:
http://arxiv.org/abs/1904.04577.

S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow. “Identifier Binding Attacks and Defenses in Software-
Defined Networks”. In: 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, 2017, pp. 415—
432. URL: https://www.usenix.org/conference/usenixsecurity
17/technical-sessions/presentation/jero.

Samuel Jero, Xiangyu Bu, Cristina Nita-Rotaru, Hamed Okhravi,
Richard Skowyra, and Sonia Fahmy. “BEADS: Automated Attack
Discovery in OpenFlow-Based SDN Systems”. In: Research in At-
tacks, Intrusions, and Defenses. Ed. by Marc Dacier, Michael Bailey,
Michalis Polychronakis, and Manos Antonakakis. Cham: Springer In-
ternational Publishing, 2017, pp. 311-333. DOIL: https://doi.org/
10.1007/978-3-319-66332-6_14. URL: https://link.springer.
com/chapter/10.1007/978-3-319-66332-6_14.

Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi
Li, Wei Xu, and Jennifer Rexford. “Optimizing Bulk Transfers with
Software-Defined Optical WAN”. In: Proceedings of the ACM SIG-
COMM Conference. SIGCOMM ’16. Florianopolis, Brazil: Associa-
tion for Computing Machinery, 2016, pp. 87-100. DOI: |10 . 1145/
2934872 .2934904. URL: https://doi.org/10.1145/2934872.
2934904.

Prathima Mabel J., Vani K.A., and Rama Mohan Babu K.N. “SDN
Security: Challenges and Solutions”. In: Emerging Research in FElec-
tronics, Computer Science and Technology. Ed. by Sridhar V., Padma
M., and Rao K. Vol. 545. Lecture Notes in Electrical Engineering,
Springer, Singapore, 2019. DOI: 10.1007/978-981-13-5802-9_73.
URL: https://doi.org/10.1007/978-981-13-5802-9_73.

145

https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1145/2534169.2486019
https://arxiv.org/abs/1904.04577
http://arxiv.org/abs/1904.04577
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jero
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jero
https://doi.org/https://doi.org/10.1007/978-3-319-66332-6_14
https://doi.org/https://doi.org/10.1007/978-3-319-66332-6_14
https://link.springer.com/chapter/10.1007/978-3-319-66332-6_14
https://link.springer.com/chapter/10.1007/978-3-319-66332-6_14
https://doi.org/10.1145/2934872.2934904
https://doi.org/10.1145/2934872.2934904
https://doi.org/10.1145/2934872.2934904
https://doi.org/10.1145/2934872.2934904
https://doi.org/10.1007/978-981-13-5802-9_73
https://doi.org/10.1007/978-981-13-5802-9_73

[JSV17]

[Jun0g]

[JYR11]

[KAI14]

[Kam-+16]

|[Kap+12]

[KDH18]|

Anthony Journault, Frangois-Xavier Standaert, and Kerem Varici.
“Improving the security and efficiency of block ciphers based on
LS-designs”. In: Designs, Codes and Cryptography 82.1 (Jan. 2017),
pp- 495-509. DOI: 10 . 1007 /s10623 - 016 - 0193 - 8. URL: https:
//doi.org/10.1007/s10623-016-0193-8.

Inc. Juniper Networks. What’s Behind Network Downtime? 2008.
URL: https://www-935.1ibm. com/services/au/gts/pdf/200249.
pdf.

Lavanya Jose, Minlan Yu, and Jennifer Rexford. “Online measure-
ment of large traffic aggregates on commodity switches”. In: Proceed-
ings of the 11th USENIX conference on Hot topics in management
of internet, cloud, and enterprise networks and services. Hot-ICE’11.
Boston, MA: USENIX Association, 2011, pp. 13-13. URL: https:
//static.usenix.org/events/hoticell/tech/full _papers/
Jose.pdf.

7. K. Khattak, M. Awais, and A. Igbal. “Performance evaluation of
OpenDaylight SDN controller”. In: 20th IEEE International Confer-
ence on Parallel and Distributed Systems (ICPADS). 2014, pp. 671
676. DOI: 10.1109/PADSW.2014.7097868. URL: https://ieeexplo
re.leee.org/abstract/document/7097868.

A. V. Kamath, S. S, K. Kataoka, N. Vijayvergiya, G. B. Reddy, and
S. Phatale. “SAFE: Software-Defined Authentication Framework”.
In: Proceedings of the 12th Asian Internet Engineering Conference.
AINTEC ’16. Bangkok, Thailand: Association for Computing Ma-
chinery, 2016, pp. 57-63. DOI: 10.1145/3012695 . 3012703. URL:
https://doi.org/10.1145/3012695.3012703.

Rudiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler,
Simon Kuhnle, Seyed Vahid Mohammadi, W. Schroder-Preikschat,
and Klaus Stengel. “CheapBFT": resource-efficient byzantine fault tol-
erance”. In: 2012, pp. 295-308. DOI: 10.1145/2168836 . 2168366.
URL: http://doi.acm.org/10.1145/2168836.2168866.

R. Khalili, Z. Despotovic, and A. Hecker. “Flow Setup Latency in
SDN Networks”. In: IEEFE Journal on Selected Areas in Communi-
cations 36.12 (2018), pp. 2631-2639. DOI: 10 . 1109/ JSAC . 2018 .
2871291. URL: https://ieeexplore.ieee.org/abstract/docume
nt/8468231.

146

https://doi.org/10.1007/s10623-016-0193-8
https://doi.org/10.1007/s10623-016-0193-8
https://doi.org/10.1007/s10623-016-0193-8
https://www-935.ibm.com/services/au/gts/pdf/200249.pdf
https://www-935.ibm.com/services/au/gts/pdf/200249.pdf
https://static.usenix.org/events/hotice11/tech/full_papers/Jose.pdf
https://static.usenix.org/events/hotice11/tech/full_papers/Jose.pdf
https://static.usenix.org/events/hotice11/tech/full_papers/Jose.pdf
https://doi.org/10.1109/PADSW.2014.7097868
https://ieeexplore.ieee.org/abstract/document/7097868
https://ieeexplore.ieee.org/abstract/document/7097868
https://doi.org/10.1145/3012695.3012703
https://doi.org/10.1145/3012695.3012703
https://doi.org/10.1145/2168836.2168866
http://doi.acm.org/10.1145/2168836.2168866
https://doi.org/10.1109/JSAC.2018.2871291
https://doi.org/10.1109/JSAC.2018.2871291
https://ieeexplore.ieee.org/abstract/document/8468231
https://ieeexplore.ieee.org/abstract/document/8468231

[Kee+05]

[KF15]

[Kha+17]

[KHL13]

[Kim+06]

[Kim-+19]

[KKS13)

Michelle Keeney, Eileen Kowalski, Dawn Cappelli, Andrew Moore,
Timothy Shimeall, and Stephanie Rogers. Insider threat study: Com-
puter system sabotage in critical infrastructure sectors. Tech. rep. Na-
tional Threat Assessment CTR Washington DC, 2005. URL: https:
//legacy.secretservice.gov/ntac/its_report_050516_es.pdf.

Andrzej Kamisinski and Carol Fung. “FlowMon: Detecting Malicious
Switches in Software-Defined Networks”. In: Proceedings of the 2015
Workshop on Automated Decision Making for Active Cyber Defense.
SafeConfig '15. Denver, Colorado, USA: ACM, 2015, pp. 39-45. DOTI:
10.1145/2809826.2809833. URL: http://doi.acm.org/10.1145/
2809826 .2809833.

S. Khan, A. Gani, A. W. Abdul Wahab, M. Guizani, and M. K.
Khan. “Topology Discovery in Software Defined Networks: Threats,
Taxonomy, and State-of-the-Art”. In: IEEE Communications Surveys
Tutorials 19.1 (2017), pp. 303-324. DOI: 10 . 1109 / COMST . 2016 .
2597193. URL: https://ieeexplore.ieee.org/abstract/docume
nt/7534866.

Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee. “Predictability
of Android OpenSSL’s Pseudo Random Number Generator”. In: Pro-
ceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’13. Berlin, Germany: ACM, 2013, pp. 659—
668. DOI: 10.1145/2508859.2516706. URL: http://doi.acm.org/
10.1145/2508859.2516706.

Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong.
“On the Security of HMAC and NMAC Based on HAVAL, MD4,
MD5, SHA-0 and SHA-1 (Extended Abstract)”. English. In: Secu-
rity and Cryptography for Networks. Ed. by Roberto De Prisco and
Moti Yung. Vol. 4116. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2006, pp. 242-256. DOI: 10.1007/11832072_17.
URL: http://dx.doi.org/10.1007/11832072_17.

Yeonkeun Kim, Jachyun Nam, Taejune Park, Sandra Scott-Hayward,
and Seungwon Shin. “SODA: A software-defined security framework
for ToT environments”. In: Computer Networks 163 (2019), p. 106889.
DOI: https://doi.org/10.1016/j.comnet.2019.106889. URL:
http : //www . sciencedirect . com/ science /article /pii/S
1389128619307522.

R. Kloti, V. Kotronis, and P. Smith. “Openflow: A security analysis”.
In: 21st IEEE International Conference on Network Protocols. IEEE.

147

https://legacy.secretservice.gov/ntac/its_report_050516_es.pdf
https://legacy.secretservice.gov/ntac/its_report_050516_es.pdf
https://doi.org/10.1145/2809826.2809833
http://doi.acm.org/10.1145/2809826.2809833
http://doi.acm.org/10.1145/2809826.2809833
https://doi.org/10.1109/COMST.2016.2597193
https://doi.org/10.1109/COMST.2016.2597193
https://ieeexplore.ieee.org/abstract/document/7534866
https://ieeexplore.ieee.org/abstract/document/7534866
https://doi.org/10.1145/2508859.2516706
http://doi.acm.org/10.1145/2508859.2516706
http://doi.acm.org/10.1145/2508859.2516706
https://doi.org/10.1007/11832072_17
http://dx.doi.org/10.1007/11832072_17
https://doi.org/https://doi.org/10.1016/j.comnet.2019.106889
http://www.sciencedirect.com/science/article/pii/S1389128619307522
http://www.sciencedirect.com/science/article/pii/S1389128619307522

[Kop+10]

[Kou+19|

[KPY15]

|Kre+-14]

[Kre+15]

|Kre+16]

2013, pp. 1-6. DOI: 10.1109/ICNP.2013.6733671. URL: https:
//ieeexplore.ieee.org/abstract/document/6733671.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M.
Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker.
“Onix: A Distributed Control Platform for Large-Scale Production
Networks”. In: Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation. OSDI'10. Vancouver,
BC, Canada: USENIX Association, 2010, pp. 351-364. URL: https:
//dl.acm.org/doi/10.5555/1924943.1924968.

Michail-Alexandros Kourtis, G. Xilouris, D. Makris, A. Sarlas, T.
Soenen, H. Koumaras, and A. Kourtis. “An End-to-End Carrier Eth-
ernet MEF enabled 5G network architecture”. In: IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM). Apr.
2019, pp. 20-24. URL: https://ieeexplore. ieee.org/abstract/
document/8717808.

J. W. Kang, S. H. Park, and J. You. “Mynah: Enabling lightweight
data plane authentication for SDN controllers”. In: 2/th International
Conference on Computer Communication and Networks (ICCCN).
IEEE. 2015, pp. 1-6. DOI: [10. 1109/ ICCCN . 2015 . 7288433. URL:
https://ieeexplore.ieee.org/abstract/document/7288433.

D. Kreutz, A. Bessani, E. Feitosa, and H. Cunha. “Towards Secure
and Dependable Authentication and Authorization Infrastructures”.
In: IEEFE 20th Pacific Rim International Symposium on Dependable
Computing. 2014, pp. 43-52. DOI: 10.1109/PRDC. 2014 . 14. URL:
https://ieeexplore.ieee.org/abstract/document/6974750.

D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothen-
berg, S. Azodolmolky, and S. Uhlig. “Software-Defined Networking;:
A Comprehensive Survey”. In: Proceedings of the IEEE 103.1 (Jan.
2015), pp. 14-76. DOI: 10.1109/JPROC.2014.2371999. URL: https:
//ieeexplore.ieee.org/abstract/document/6994333.

Diego Kreutz, Oleksandr Malichevskyy, Eduardo Feitosa, H. Cunha,
Rodrigo da Rosa Righi, and Douglas D.J. de Macedo. “A cyber-
resilient architecture for critical security services”. In: Journal of Net-
work and Computer Applications 63 (2016), pp. 173-189. DOI: http:
//dx.doi.org/10.1016/j.jnca.2015.09.014. URL: http://www.
sciencedirect.com/science/article/pii/S1084804516000539.

148

https://doi.org/10.1109/ICNP.2013.6733671
https://ieeexplore.ieee.org/abstract/document/6733671
https://ieeexplore.ieee.org/abstract/document/6733671
https://dl.acm.org/doi/10.5555/1924943.1924968
https://dl.acm.org/doi/10.5555/1924943.1924968
https://ieeexplore.ieee.org/abstract/document/8717808
https://ieeexplore.ieee.org/abstract/document/8717808
https://doi.org/10.1109/ICCCN.2015.7288433
https://ieeexplore.ieee.org/abstract/document/7288433
https://doi.org/10.1109/PRDC.2014.14
https://ieeexplore.ieee.org/abstract/document/6974750
https://doi.org/10.1109/JPROC.2014.2371999
https://ieeexplore.ieee.org/abstract/document/6994333
https://ieeexplore.ieee.org/abstract/document/6994333
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2015.09.014
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2015.09.014
http://www.sciencedirect.com/science/article/pii/S1084804516000539
http://www.sciencedirect.com/science/article/pii/S1084804516000539

|Kre+17]

[Kre-+18]

[Kre+19]

[KRV13]

[KSG14]

[KSM13]

[Ku+14]

Diego Kreutz, Paulo Jorge Esteves Verissimo, Catia Magalhaes, and
Fernando M. V. Ramos. “The KISS principle in Software-Defined
Networking: An architecture for Keeping It Simple and Secure”. In:
CoRR abs/1702.04294 (2017). arXiv: 1702 .04294. URL: http://
arxiv.org/abs/1702.04294.

D. Kreutz, J. Yu, P. Esteves-Verissimo, C. Magalhaes, and Fernando
M. V. Ramos. “The KISS Principle in Software-Defined Network-
ing: A Framework for Secure Communications”. In: IEEE Security
Privacy 16.5 (Sept. 2018), pp. 60-70. DOI: 10.1109/MSP . 2018 .
3761717. URL: https://ieeexplore.ieee.org/abstract/docume
nt/8490167.

Diego Kreutz, Jiangshan Yu, F. M. V. Ramos, and Paulo Esteves-
Verissimo. “ANCHOR: Logically Centralized Security for Software-
Defined Networks”. In: ACM Trans. Priv. Secur. 22.2 (Feb. 2019),
8:1-8:36. DOI: 10.1145/3301305. URL: http://doi.acm.org/10.
1145/3301305.

Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. “Towards
Secure and Dependable Software-Defined Networks”. In: Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking. HotSDN ’13. Hong Kong, China: Association
for Computing Machinery, 2013, pp. 55-60. DOI: 10.1145/2491185.
2491199. URL: https://doi.org/10.1145/2491185.2491199.

K. Kaur, J. Singh, and N. S. Ghumman. “Mininet as software defined
networking testing platform”. In: International Conference on Com-
munication, Computing & Systems (ICCCS). 2014, pp. 139-42. URL:
http://www.sbsstc.ac.in/icccs2014/Papers/Paper29.pdf.

Timo Kiravuo, Mikko Sarela, and Jukka Manner. “A survey of eth-
ernet LAN security”. In: IEEE Communications Surveys € Tutorials
15.3 (2013), pp. 1477-1491. por: 10.1109/SURV . 2012 . 121112..
00190. URL: https://ieeexplore.ieee.org/abstract/document/
6407456.

Ian Ku, You Lu, Mario Gerla, Francesco Ongaro, Rafael L. Gomes,
and Eduardo Cerqueira. “Towards software-defined VANET: Archi-
tecture and services”. In: 13th Annual Mediterranean Ad Hoc Net-
working Workshop (MED-HOC-NET). IEEE. 2014, pp. 103-110. DOI:
10.1109/MedHocNet . 2014 .6849111. URL: https://ieeexplore.
ieee.org/abstract/document/6849111.

149

https://arxiv.org/abs/1702.04294
http://arxiv.org/abs/1702.04294
http://arxiv.org/abs/1702.04294
https://doi.org/10.1109/MSP.2018.3761717
https://doi.org/10.1109/MSP.2018.3761717
https://ieeexplore.ieee.org/abstract/document/8490167
https://ieeexplore.ieee.org/abstract/document/8490167
https://doi.org/10.1145/3301305
http://doi.acm.org/10.1145/3301305
http://doi.acm.org/10.1145/3301305
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1145/2491185.2491199
http://www.sbsstc.ac.in/icccs2014/Papers/Paper29.pdf
https://doi.org/10.1109/SURV.2012.121112.00190
https://doi.org/10.1109/SURV.2012.121112.00190
https://ieeexplore.ieee.org/abstract/document/6407456
https://ieeexplore.ieee.org/abstract/document/6407456
https://doi.org/10.1109/MedHocNet.2014.6849111
https://ieeexplore.ieee.org/abstract/document/6849111
https://ieeexplore.ieee.org/abstract/document/6849111

[Kuo-+18]

|[Lam+16|

[Lam-+18]

[Lan19]

ILBL16]

|Lee+17]

|Lee+20]

Chien-Ting Kuo, Po-Wen Chi, Victor Chang, and Chin-Laung Lei.
“SFaaS: Keeping an eye on loT fusion environment with security
fusion as a service”. In: Future Generation Computer Systems (2018).
DOI: https://doi.org/10.1016/j.future.2017.12.069. URL: htt
ps://www.sciencedirect.com/science/article/pii/S0167739X
17324834.

Jun Huy Lam, Sang-Gon Lee, Hoon-Jae Lee, and Yustus Eko Ok-
tian. “TLS Channel Implementation for ONOS’s East/West-Bound
Communication”. In: Flectronics, Communications and Networks V.
Ed. by Amir Hussain. Singapore: Springer Singapore, 2016, pp. 397—
403. DOI: https://doi.org/10.1007/978-981-10-0740-8_45.
URL: https://link.springer.com/chapter/10.1007/978-981-
10-0740-8_45.

JunHuy Lam, Sang-Gon Lee, Hoon-Jae Lee, and Yustus Eko Oktian.
“Design, implementation, and performance evaluation of identity-
based cryptography in ONOS”. In: International Journal of Network
Management 28.1 (2018). €1990 nem.1990, €1990. poI: 10 . 1002/
nem. 1990. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/nem. 1990. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/nem. 1990.

Bob Lantz. Mininet: Rapid Prototyping for Software Defined Net-
works. 2019. URL: https://github.com/mininet/mininet.

Nan (Peter) Liang, David P. Biros, and Andy Luse. “An Empiri-
cal Validation of Malicious Insider Characteristics”. In: Journal of
Management Information Systems 33.2 (2016), pp. 361-392. DOL:
10.1080/07421222 . 2016 . 1205925. eprint: https://doi . org/
10.1080/07421222.2016 . 1205925. URL: https://doi.org/10.
1080/07421222.2016.1205925.

Seungsoo Lee, Changhoon Yoon, Chanhee Lee, Seungwon Shin, Vinod
Yegneswaran, and Phillip Porras. “DELTA: A security assessment
framework for software-defined networks”. In: Proceedings of the Net-
work and Distributed System Security Symposium (NDSS). Vol. 17.
Internet Society, 2017. URL: https://www.ndss-symposium. org/
ndss2017/ndss-2017 - programme/delta-security-assessment-
framework-software-defined-networks/.

S. Lee, J. Kim, S. Woo, C. Yoon, S. Scott-Hayward, V. Yegneswaran,
P. Porras, and S. Shin. “A comprehensive security assessment frame-
work for software-defined networks”. In: Computers € Security 91
(2020), p. 101720. DOI: [10 . 1016 / j . cose . 2020 . 101720. URL:

150

https://doi.org/https://doi.org/10.1016/j.future.2017.12.069
https://www.sciencedirect.com/science/article/pii/S0167739X17324834
https://www.sciencedirect.com/science/article/pii/S0167739X17324834
https://www.sciencedirect.com/science/article/pii/S0167739X17324834
https://doi.org/https://doi.org/10.1007/978-981-10-0740-8_45
https://link.springer.com/chapter/10.1007/978-981-10-0740-8_45
https://link.springer.com/chapter/10.1007/978-981-10-0740-8_45
https://doi.org/10.1002/nem.1990
https://doi.org/10.1002/nem.1990
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.1990
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.1990
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1990
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1990
https://github.com/mininet/mininet
https://doi.org/10.1080/07421222.2016.1205925
https://doi.org/10.1080/07421222.2016.1205925
https://doi.org/10.1080/07421222.2016.1205925
https://doi.org/10.1080/07421222.2016.1205925
https://doi.org/10.1080/07421222.2016.1205925
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/delta-security-assessment-framework-software-defined-networks/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/delta-security-assessment-framework-software-defined-networks/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/delta-security-assessment-framework-software-defined-networks/
https://doi.org/10.1016/j.cose.2020.101720

[Lev-+09]

[LHM10]

|Liu+ 18]

[Liv+15]

[LMK16]

[LP17]

[LS17]

http : / /www . sciencedirect . com/ science / article /pii/S
0167404820300079.

Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Mosci-
broda. “TrInc: Small Trusted Hardware for Large Distributed Sys-
tems”. In: 2009, pp. 1-14. URL: http://www.usenix.org/events/
nsdi09/tech/full_papers/levin/levin.pdf.

Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in a
Laptop: Rapid Prototyping for Software-Defined Networks”. In: Pro-
ceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks. Hotnets-IX. Monterey, California: Association for Com-
puting Machinery, 2010. DOI: 10 . 1145/ 1868447 . 1868466. URL:
https://doi.org/10.1145/1868447.1868466.

L. Liu, O. De Vel, Q. Han, J. Zhang, and Y. Xiang. “Detecting and
Preventing Cyber Insider Threats: A Survey”. In: IEEE Commu-
nications Surveys Tutorials 20.2 (Apr. 2018), pp. 1397-1417. DpOI:
10.1109/COMST.2018.2800740. URL: https://ieeexplore.ieee.
org/abstract/document/8278157.

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondfej
Lhotak, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer,
Uday P. Khedker, Anders Mgller, and Dimitrios Vardoulakis. “In
Defense of Soundiness: A Manifesto”. In: Commun. ACM 58.2 (Jan.
2015), pp. 44-46. DOI: 10.1145/2644805. URL: https://doi.org/
10.1145/2644805.

W. Li, W. Meng, and L. F. Kwok. “A survey on OpenFlow-based

Software Defined Networks: Security challenges and countermeasures”.
In: Journal of Network and Computer Applications 68 (2016), pp. 126
139. por: https://doi.org/10.1016/j . jnca.2016.04.011.

URL: http://www.sciencedirect.com/science/article/pii/

S51084804516300613.

Hewlett Packard Enterprise Development LP. Aruba VAN SDN Con-
troller 2.8 Administration Guide. 2017. URL: http://h20628.www2.
hp.com/km-ext/kmcsdirect/emr_na-a00003662en_us-1.pdf.

Chumg-Wei Lin and Alberto Sangiovanni-Vincentelli. Security-Aware
Design for Cyber-Physical Systems. Springer, 2017. DOI: 10. 1007/
978-3-319-51328-7. URL: https://www.springer.com/gp/book/
9783319513270.

151

http://www.sciencedirect.com/science/article/pii/S0167404820300079
http://www.sciencedirect.com/science/article/pii/S0167404820300079
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/COMST.2018.2800740
https://ieeexplore.ieee.org/abstract/document/8278157
https://ieeexplore.ieee.org/abstract/document/8278157
https://doi.org/10.1145/2644805
https://doi.org/10.1145/2644805
https://doi.org/10.1145/2644805
https://doi.org/https://doi.org/10.1016/j.jnca.2016.04.011
http://www.sciencedirect.com/science/article/pii/S1084804516300613
http://www.sciencedirect.com/science/article/pii/S1084804516300613
http://h20628.www2.hp.com/km-ext/kmcsdirect/emr_na-a00003662en_us-1.pdf
http://h20628.www2.hp.com/km-ext/kmcsdirect/emr_na-a00003662en_us-1.pdf
https://doi.org/10.1007/978-3-319-51328-7
https://doi.org/10.1007/978-3-319-51328-7
https://www.springer.com/gp/book/9783319513270
https://www.springer.com/gp/book/9783319513270

[Lua+19]

[LW18]

[Maa-+18]

[Mah-+19]

[Mal+16]

[Mat+19]

[Mau96]

S. Luangoudom, T. Nguyen, D. Tran, and L. G. Nguyen. “End to end
message encryption using Poly1305 and XSalsa20 in Low power and
Lossy Networks”. In: 11th International Conference on Knowledge
and Systems Engineering (KSE). Oct. 2019, pp. 1-5. DOI: |10.1109/
KSE.2019.8919479. URL: https://ieeexplore.ieee.org/abstra
ct/document/8919479.

Jacho Lee and Dan S Wallach. “Removing Secrets from Android’s
TLS”. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS). 2018. URL: https://www.cs.rice.edu/~jl
128 / papers /ndss18 - removing _secrets _from_androids_tls_
jaeho_dan.pdf.

R. Maaloul, R. Taktak, L. Chaari, and B. Cousin. “Energy-Aware
Routing in Carrier-Grade Ethernet Using SDN Approach”. In: IEEFE
Transactions on Green Communications and Networking 2.3 (Sept.
2018), pp. 844-858. DOI:/10.1109/TGCN.2018.2832658. URL: https:
//ieeexplore.ieee.org/abstract/document/8353829.

T. Mahboob, I. Arshad, A. Batool, and M. Nawaz. “Authentica-
tion Mechanism to Secure Communication between Wireless SDN
Planes”. In: 16th International Bhurban Conference on Applied Sci-
ences and Technology (IBCAST). Jan. 2019, pp. 582-588. DOI: 10.
1109/ IBCAST . 2019.8667157. URL: https://ieeexplore. ieee.
org/abstract/document/8667157.

Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Gold-
berg. “Attacking the Network Time Protocol.” In: Proceedings of the
Network and Distributed System Security Symposium (NDSS). 2016.
URL: https://www.ndss-symposium.org/wp-content/uploads/
2017/09/attacking-network-time-protocol.pdf.

[. Mathebula, B. Isong, N. Gasela, and A. M. Abu-Mahfouz. “Anal-
ysis of SDN-Based Security Challenges and Solution Approaches for
SDWSN Usage”. In: IEEFE 28th International Symposium on Indus-
trial Electronics (ISIE). June 2019, pp. 1288-1293. DOI: 10.1109/
ISIE . 2019 . 8781268. URL: https : / / ieeexplore . ieee . org/
abstract/document/8781268.

Ueli Maurer. “Modelling a public-key infrastructure”. In: Computer
Security — ESORICS 96. Ed. by Elisa Bertino, Helmut Kurth, Gi-
ancarlo Martella, and Emilio Montolivo. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 325-350. DOI: https://doi.org/10.
1007/3-540-61770-1_45. URL: https://link. springer . com/
chapter/10.1007/3-540-61770-1_45.

152

https://doi.org/10.1109/KSE.2019.8919479
https://doi.org/10.1109/KSE.2019.8919479
https://ieeexplore.ieee.org/abstract/document/8919479
https://ieeexplore.ieee.org/abstract/document/8919479
https://www.cs.rice.edu/~jl128/papers/ndss18-removing_secrets_from_androids_tls_jaeho_dan.pdf
https://www.cs.rice.edu/~jl128/papers/ndss18-removing_secrets_from_androids_tls_jaeho_dan.pdf
https://www.cs.rice.edu/~jl128/papers/ndss18-removing_secrets_from_androids_tls_jaeho_dan.pdf
https://doi.org/10.1109/TGCN.2018.2832658
https://ieeexplore.ieee.org/abstract/document/8353829
https://ieeexplore.ieee.org/abstract/document/8353829
https://doi.org/10.1109/IBCAST.2019.8667157
https://doi.org/10.1109/IBCAST.2019.8667157
https://ieeexplore.ieee.org/abstract/document/8667157
https://ieeexplore.ieee.org/abstract/document/8667157
https://www.ndss-symposium.org/wp-content/uploads/2017/09/attacking-network-time-protocol.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/attacking-network-time-protocol.pdf
https://doi.org/10.1109/ISIE.2019.8781268
https://doi.org/10.1109/ISIE.2019.8781268
https://ieeexplore.ieee.org/abstract/document/8781268
https://ieeexplore.ieee.org/abstract/document/8781268
https://doi.org/https://doi.org/10.1007/3-540-61770-1_45
https://doi.org/https://doi.org/10.1007/3-540-61770-1_45
https://link.springer.com/chapter/10.1007/3-540-61770-1_45
https://link.springer.com/chapter/10.1007/3-540-61770-1_45

[Mav11]

[MB16]

IMBM17]

[McB+13]

[McK+08|

[MD16]

IMDP15]|

[ME15]

Nikos Mavrogiannopoulos. The price to pay for perfect-forward se-
crecy. Dec. 2011. URL: http://nmav.gnutls.org/2011/12/price-
to-pay-for-perfect-forward.html.

Jonathan Margulies and Michael Berg. “That Certificate You Bought
Could Get You Hacked”. In: IEEE Security ¢ Privacy 14.5 (2016),
pp- 93-95. DOI: [10.1109/MSP.2016.106. URL: https://ieeexplor
e.leee.org/abstract/document/7676181.

Massimiliano Maggiari, Michela Bevilacqua, and Carla Marcenaro.
Monitoring carrier ethernet networks. US Patent 9,590,881. Mar.
2017. URL: https://patents.google.com/patent/US9590881B2/
en.

Mike McBride, Marc Cohn, Smita Deshpande, Meenakshi Kaushik,
Mat Mathews, and Shaji Nathan. SDN Security Considerations in
the Data Center. Tech. rep. Open Networking Foundation, 2013. URL:
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/solution-briefs/sb-security-data-center.
pdf.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, S. Shenker, and J. Turner. “Open-
Flow: Enabling Innovation in Campus Networks”. In: SIGCOMM
Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69-74. DOI: 10.1145/
1355734 . 1355746. URL: https://doi.org/10.1145/1355734 .
1355746.

Diogo Menezes Ferrazani Mattos and Otto Carlos Muniz Bandeira
Duarte. “AuthFlow: authentication and access control mechanism
for software defined networking”. In: Annals of Telecommunications
71.11-12 (2016), pp. 607-615. DOIL: https://doi.org/10.1007/s
12243-016-0505-z. URL: https://link.springer.com/article/
10.1007/s12243-016-0505-z.

D. Mahu, V. Dumitrel, and F. Pop. “Secure Entropy Gatherer”. In:
20th International Conference on Control Systems and Computer
Science. 2015, pp. 185-190. DOI: 10 . 1109 /CSCS . 2015 . 74. URL:
https://ieeexplore.ieee.org/abstract/document/7168427.

Konstantinos Manousakis and Georgios Ellinas. “ Attack-aware plan-
ning of transparent optical networks”. In: Optical Switching and Net-
working 0 (2015). DOI: http://dx.doi.org/10.1016/j.0sn.2015.
03.005. URL: http://www.sciencedirect.com/science/article/
pii/S1573427715000302.

153

http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
https://doi.org/10.1109/MSP.2016.106
https://ieeexplore.ieee.org/abstract/document/7676181
https://ieeexplore.ieee.org/abstract/document/7676181
https://patents.google.com/patent/US9590881B2/en
https://patents.google.com/patent/US9590881B2/en
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-security-data-center.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-security-data-center.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-security-data-center.pdf
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/https://doi.org/10.1007/s12243-016-0505-z
https://doi.org/https://doi.org/10.1007/s12243-016-0505-z
https://link.springer.com/article/10.1007/s12243-016-0505-z
https://link.springer.com/article/10.1007/s12243-016-0505-z
https://doi.org/10.1109/CSCS.2015.74
https://ieeexplore.ieee.org/abstract/document/7168427
https://doi.org/http://dx.doi.org/10.1016/j.osn.2015.03.005
https://doi.org/http://dx.doi.org/10.1016/j.osn.2015.03.005
http://www.sciencedirect.com/science/article/pii/S1573427715000302
http://www.sciencedirect.com/science/article/pii/S1573427715000302

IMEF20]
[Mei+13]

[Men+17]

[Men-+18]

[Meul3|

[IMGM19]

[MHP14|

[Mim16]

MEF Community. MEF. 2020. URL: https://www.mef .net/.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin.
“The TAMARIN Prover for the Symbolic Analysis of Security Proto-
cols”. In: Computer Aided Verification. Ed. by Natasha Sharygina and
Helmut Veith. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 696-701. DOI: https://doi.org/10.1007/978-3-642-39799-
8_48. URL: https://link.springer.com/chapter/10.1007/978-
3-642-39799-8_48.

A. Mendiola, J. Astorga, E. Jacob, and M. Higuero. “A Survey on
the Contributions of Software-Defined Networking to Traffic Engi-
neering”. In: IEEE Communications Surveys Tutorials 19.2 (2017),
pp. 918-953. DOI: [10. 1109/ COMST . 2016 . 2633579. URL: https :
//ieeexplore.ieee.org/abstract/document/7762818.

V. B. Mendiratta, L. J. Jagadeesan, R. Hanmer, and M. R. Rahman.
“How Reliable Is My Software-Defined Network? Models and Failure
Impacts”. In: IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). Oct. 2018, pp. 83-88. DOI: 10.
1109/ISSREW.2018.00-26. URL: https://ieeexplore.ieee.org/
abstract/document/8539168.

Nicole van der Meulen. “DigiNotar: Dissecting the First Dutch Digi-
tal Disaster”. In: Journal of Strategic Security 6.2 (2013). DOI: http:
//dx.doi.org/10.5038/1944-0472.6.2.4. URL: https://www.
jstor.org/stable/26466760.

E. M. M. Manucom, B. D. Gerardo, and R. P. Medina. “Analysis
of Key Randomness in Improved One-Time Pad Cryptography”. In:
IEEE 13th International Conference on Anti-counterfeiting, Secu-
rity, and Identification (ASID). Oct. 2019, pp. 11-16. DOI: 10.1109/
ICASID. 2019 .8925173. URL: https://ieeexplore . ieee . org/
abstract/document/8925173.

Stephanos Matsumoto, Samuel Hitz, and Adrian Perrig. “Fleet: De-
fending SDNs from Malicious Administrators”. In: Proceedings of
the Third Workshop on Hot Topics in Software Defined Network-
ing. HotSDN ’14. Chicago, Illinois, USA: ACM, 2014, pp. 103-108.
DOI: 10.1145/2620728.2620750. URL: http://doi.acm.org/10.
1145/2620728.2620750.

Michael Mimoso. GPG patches 18-year-old LibGCrypt RNG bug.
2016. URL: https://threatpost . com/gpg- patches- 18- year-
old-libgcrypt-rng-bug/119984/.

154

https://www.mef.net/
https://doi.org/https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/https://doi.org/10.1007/978-3-642-39799-8_48
https://link.springer.com/chapter/10.1007/978-3-642-39799-8_48
https://link.springer.com/chapter/10.1007/978-3-642-39799-8_48
https://doi.org/10.1109/COMST.2016.2633579
https://ieeexplore.ieee.org/abstract/document/7762818
https://ieeexplore.ieee.org/abstract/document/7762818
https://doi.org/10.1109/ISSREW.2018.00-26
https://doi.org/10.1109/ISSREW.2018.00-26
https://ieeexplore.ieee.org/abstract/document/8539168
https://ieeexplore.ieee.org/abstract/document/8539168
https://doi.org/http://dx.doi.org/10.5038/1944-0472.6.2.4
https://doi.org/http://dx.doi.org/10.5038/1944-0472.6.2.4
https://www.jstor.org/stable/26466760
https://www.jstor.org/stable/26466760
https://doi.org/10.1109/ICASID.2019.8925173
https://doi.org/10.1109/ICASID.2019.8925173
https://ieeexplore.ieee.org/abstract/document/8925173
https://ieeexplore.ieee.org/abstract/document/8925173
https://doi.org/10.1145/2620728.2620750
http://doi.acm.org/10.1145/2620728.2620750
http://doi.acm.org/10.1145/2620728.2620750
https://threatpost.com/gpg-patches-18-year-old-libgcrypt-rng-bug/119984/
https://threatpost.com/gpg-patches-18-year-old-libgcrypt-rng-bug/119984/

[MK17]

[Mol+19]

[Mor+18]

[MR19]

[MRS19]

[MT19]

IMTG18]

O. Michel and E. Keller. “SDN in wide-area networks: A survey”. In:
Fourth International Conference on Software Defined Systems (SDS).
May 2017, pp. 37-42. DOL: [10.1109/SDS.2017.7939138. URL: http
s://ieeexplore.ieee.org/document/7939138.

A. Molina Zarca, D. Garcia-Carrillo, J. Bernal Bernabe, J. Ortiz, R.
Marin-Perez, and A. Skarmeta. “Enabling Virtual AAA Management
in SDN-Based IoT Networks”. In: Sensors 19.2 (2019), p. 295. DOI:
https://doi.org/10.3390/s19020295. URL: https://www.mdpi.
com/1424-8220/19/2/295.

R. Morro et al. “Automated End to End Carrier Ethernet Provision-
ing Over a Disaggregated WDM Metro Network with a Hierarchi-
cal SDN Control and Monitoring Platform”. In: European Confer-
ence on Optical Communication (ECOC). Sept. 2018, pp. 1-3. DOIL:
10.1109/ECOC.2018.8535422. URL: https://ieeexplore. ieee.
org/document/8535422.

Guido Maier and Martin Reisslein. “Transport SDN at the dawn of
the 5G era”. In: Optical Switching and Networking 33 (2019), pp. 34—
40. DOIL: https://doi.org/10.1016/j.0sn.2019.02. 001.
URL: http://www.sciencedirect.com/science/article/pii/
S1573427719300402.

Salvatore Manfredi, Silvio Ranise, and Giada Sciarretta. “Lost in
TLS? No More! Assisted Deployment of Secure TLS Configurations”.
In: Data and Applications Security and Privacy XXXIII. Ed. by Si-
mon N. Foley. Cham: Springer International Publishing, 2019, pp. 201—
220. DOI: https://doi.org/10.1007/978-3-030-22479-0_11.
URL: https://link. springer . com/chapter/10.1007/978-3-
030-22479-0_11.

S. Midha and K. Triptahi. “Extended TLS security and Defensive
Algorithm in OpenFlow SDN”. In: 9th International Conference on
Cloud Computing, Data Science Engineering (Confluence). Jan. 2019,
pp. 141-146. DOI: [10. 1109/CONFLUENCE . 2019. 8776607, URL: http
s://ieeexplore.ieee.org/abstract/document/8776607.

P. M. Mohan, T. Truong-Huu, and M. Gurusamy. “Towards resilient
in-band control path routing with malicious switch detection in SDN”.
In: 10th International Conference on Communication Systems Net-
works (COMSNETS). Jan. 2018, pp. 9-16. DOI: 10.1109/COMSNETS.
2018.8328174. URL: https://ieeexplore.ieee.org/document/
8328174.

155

https://doi.org/10.1109/SDS.2017.7939138
https://ieeexplore.ieee.org/document/7939138
https://ieeexplore.ieee.org/document/7939138
https://doi.org/https://doi.org/10.3390/s19020295
https://www.mdpi.com/1424-8220/19/2/295
https://www.mdpi.com/1424-8220/19/2/295
https://doi.org/10.1109/ECOC.2018.8535422
https://ieeexplore.ieee.org/document/8535422
https://ieeexplore.ieee.org/document/8535422
https://doi.org/https://doi.org/10.1016/j.osn.2019.02.001
http://www.sciencedirect.com/science/article/pii/S1573427719300402
http://www.sciencedirect.com/science/article/pii/S1573427719300402
https://doi.org/https://doi.org/10.1007/978-3-030-22479-0_11
https://link.springer.com/chapter/10.1007/978-3-030-22479-0_11
https://link.springer.com/chapter/10.1007/978-3-030-22479-0_11
https://doi.org/10.1109/CONFLUENCE.2019.8776607
https://ieeexplore.ieee.org/abstract/document/8776607
https://ieeexplore.ieee.org/abstract/document/8776607
https://doi.org/10.1109/COMSNETS.2018.8328174
https://doi.org/10.1109/COMSNETS.2018.8328174
https://ieeexplore.ieee.org/document/8328174
https://ieeexplore.ieee.org/document/8328174

IMVV96]

[Nam19]

[Nay-+14|

[NDK16]

[NIS18]

[Niz19]

[NK19]

[NM16]

[Noh+16]

Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone.
Handbook of applied cryptography. CRC press, 1996. URL: http :
//cacr.uwaterloo.ca/hac/.

Namecheap.com. Cipher Suites Configuration (and forcing Perfect
Forward Secrecy). 2019. URL: https : //www . namecheap . com/ su
pport / knowledgebase /article . aspx/ 9601/ /cipher - suites -
configuration-and-forcing-perfect-forward-secrecy.

David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunen-
berger, Marco Mellia, Maurizio Munafo, Konstantina Papagiannaki,
and Peter Steenkiste. “The Cost of the "S" in HTTPS”. In: Pro-
ceedings of the Tenth ACM Conference on Emerging Networking Ez-
periments and Technologies. CONEXT ’14. Sydney, Australia: ACM,
2014, p. 7. DOI: 10.1145/2535372.2535416. URL: http://doi.acm.
org/10.1145/2535372.2535416.

V. Nguyen, T. Do, and Y. Kim. “SDN and virtualization-based LTE
mobile network architectures: A comprehensive survey”. In: Wireless
Personal Communications 86.3 (2016), pp. 1401-1438. DOIL: https:
//doi.org/10.1007/s11277-015-2997-7. URL: https://link.
springer.com/article/10.1007/s11277-015-2997-7.

NIST. NIST Statistical Test Suite. 2018. URL: http://csrc.nist.
gov/groups/ST/toolkit/rng/documentation_software.html.

David Nizen. 10 Reasons for Network Downtime & What to Do About
It. 2019. URL: https://www.iglass .net/blog/reasons- for -
network-downtimel

Victor Netes and Margarita Kusakina. “Reliability Challenges in
Software Defined Networking”. In: Proceedings of the 24th Conference
of Open Innovations Association FRUCT. FRUCT’24. Moscow, Rus-
sia: FRUCT Oy, 2019. URL: https://dl.acm.org/doi/10.5555/
3338290.3338390.

T. Nishinaga and M. Mambo. “Implementation of uNaCl on 32-bit
ARM Cortex-M0”. In: IEICE TRANSACTIONS on Information and
Systems 99.8 (2016), pp. 2056-2060. DOI: 10.1587/transinf.20151
NPOO13. URL: https://search.ieice.org/bin/summary.php?7id=
€99-d_8_2056.

Jiseong Noh, Seunghyeon Lee, Jaechyun Park, Seungwon Shin, and
Brent B. Kang. “Vulnerabilities of network OS and mitigation with
state-based permission system”. In: Security and Communication Net-
works 9.13 (2016), pp. 1971-1982. DOI: 10.1002/sec . 1369. eprint:

156

http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy
https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy
https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy
https://doi.org/10.1145/2535372.2535416
http://doi.acm.org/10.1145/2535372.2535416
http://doi.acm.org/10.1145/2535372.2535416
https://doi.org/https://doi.org/10.1007/s11277-015-2997-7
https://doi.org/https://doi.org/10.1007/s11277-015-2997-7
https://link.springer.com/article/10.1007/s11277-015-2997-7
https://link.springer.com/article/10.1007/s11277-015-2997-7
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
https://www.iglass.net/blog/reasons-for-network-downtime
https://www.iglass.net/blog/reasons-for-network-downtime
https://dl.acm.org/doi/10.5555/3338290.3338390
https://dl.acm.org/doi/10.5555/3338290.3338390
https://doi.org/10.1587/transinf.2015INP0013
https://doi.org/10.1587/transinf.2015INP0013
https://search.ieice.org/bin/summary.php?id=e99-d_8_2056
https://search.ieice.org/bin/summary.php?id=e99-d_8_2056
https://doi.org/10.1002/sec.1369

[NOL17|

[NS78]

INT94]

[Nur+14]

[Obs18]

[ONF13]

[ONF14]

|ONF15]

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1369.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.
1369.

MARIANNA NOLL. When Insider Threats Come From Your Priv-
ileged User. 2017. URL: https://itsecuritycentral . teramind.
co /2017 /12 /29 /when - insider - threats - come - from - your -
privileged-user/.

Roger M. Needham and Michael D. Schroeder. “Using Encryption
for Authentication in Large Networks of Computers”. In: Commun.
ACM 21.12 (Dec. 1978), pp. 993-999. DOI: 10.1145/359657 . 359659.
URL: https://doi.org/10.1145/359657.359659.

B Clifford Neuman and Theodore Ts’o. “Kerberos: An authentication
service for computer networks”. In: IEEE Communications magazine
32.9 (1994), pp. 33-38. DOI: 10.1109/35.312841. URL: https :
//ieeexplore.ieee.org/abstract/document/312841.

J. R. C. Nurse, O. Buckley, P. A. Legg, M. Goldsmith, S. Creese,
G. R. T. Wright, and M. Whitty. “Understanding Insider Threat:
A Framework for Characterising Attacks”. In: IEEE Security and
Privacy Workshops. 2014, pp. 214-228. DOI1: |10.1109/SPW.2014.38.
URL: https://ieeexplore.ieee.org/document/6957307.

Observelt. 2018 Cost of Insider Threats: Global Organizations. 2018.
URL: https://www.observeit . com/ponemon-report- cost-of -
insider-threats/.

ONF. OpenFlow Switch Specification (Version 1.4.0). 2013. URL: h
ttps://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-
v1.4.0.pdf.

ONF. OpenFlow Switch Specification (Version 1.5.0). 2014. URL: ht
tps://www.opennetworking.org/images/stories/downloads/sd
n-resources/onf-specifications/openflow/openflow-switch-
v1.5.0.noipr.pdf.

ONF. Principles and Practices for Securing Software-Defined Net-
works. Tech. rep. ONF TR-511. Open Networking Foundation, 2015.
URL: https://www . opennetworking . org/ images/stories/d
ownloads / sdn - resources / technical - reports / Principles _
and _Practices _for _Securing_Software-Defined _Networks_
applied_to_0Fv1.3.4_V1.0.pdf.

157

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1369
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1369
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1369
https://itsecuritycentral.teramind.co/2017/12/29/when-insider-threats-come-from-your-privileged-user/
https://itsecuritycentral.teramind.co/2017/12/29/when-insider-threats-come-from-your-privileged-user/
https://itsecuritycentral.teramind.co/2017/12/29/when-insider-threats-come-from-your-privileged-user/
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1109/35.312841
https://ieeexplore.ieee.org/abstract/document/312841
https://ieeexplore.ieee.org/abstract/document/312841
https://doi.org/10.1109/SPW.2014.38
https://ieeexplore.ieee.org/document/6957307
https://www.observeit.com/ponemon-report-cost-of-insider-threats/
https://www.observeit.com/ponemon-report-cost-of-insider-threats/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf

[ONF19]
[ONO16]

(0018

[Ope]

[Opel6|
|Opel8a]

|Opel8b]

[Opel8¢]

[Opel8d]

|Opel9a]
|[Opel9b|

[Ope20)|

[ORS7]

ONF. Open Networking Foundation. 2019. URL: https://www.open
networking.org/.

ONOS Project. Configuring ONOS. 2016. URL: https://wiki.onos
project.org/display/0ONOS/Configuring+0NOS.

F. Y. Okay and S. Ozdemir. “Routing in Fog-Enabled IoT Plat-
forms: A Survey and an SDN-Based Solution”. In: IEEFE Internet of
Things Journal 5.6 (Dec. 2018), pp. 4871-4889. DO1:(10.1109/JI0T.
2018.2882781. URL: https://ieeexplore.ieee.org/document/
8542693.

OpenDaylight Project. OpenDaylight Karaf Features. URL: https :
//docs.opendaylight.org/en/stable-boron/getting-started-
guide/karaf_features.html.

OpenSSL.org. OpenSSL Security Advisory [10 Nov 2016]. Nov. 2016.
URL: https://www.openssl.org/news/secadv/20161110.txt.

OpenDaylight Project. OpenDaylight. 2018. URL: https : // www .
opendaylight.org.
OpenDaylight Project. Security Considerations. 2018. URL: http :

//docs.opendaylight.org/en/stable-nitrogen/getting-start
ed-guide/security_considerations.html.

OpenDaylight Project. SNBI User Guide. 2018. URL: https://test-
odl-docs.readthedocs.io/en/stable-boron/user-guide/snbi-
user-guide.html.

OpenDaylight Project. Unified Secure Channel. 2018. URL: https://
docs.opendaylight.org/en/stable-neon/user-guide/unified-
secure-channel.html.

Open Whisper Systems. Signal. 2019. URL: https://signal.org.

OpenDaylight Project. Defense4All Overview. 2019. URL: https :
/ /nexus . opendaylight . org/content/sites/site/org. openda
ylight .docs/master/userguide/manuals/userguide/bk-user-
guide/content/_defensed4all_overview.html.

OpenDaylight Project. Security Considerations. 2020. URL: https:
//docs . opendaylight . org/en/stable - magnesium/getting -
started-guide/security_considerations.html.

Dave Otway and Owen Rees. “Efficient and Timely Mutual Authen-
tication”. In: SIGOPS Oper. Syst. Rev. 21.1 (Jan. 1987), pp. 8-10.
DOI: 10 .1145/24592 . 24594, URL: https://doi.org/10.1145/
24592 .24594.

158

https://www.opennetworking.org/
https://www.opennetworking.org/
https://wiki.onosproject.org/display/ONOS/Configuring+ONOS
https://wiki.onosproject.org/display/ONOS/Configuring+ONOS
https://doi.org/10.1109/JIOT.2018.2882781
https://doi.org/10.1109/JIOT.2018.2882781
https://ieeexplore.ieee.org/document/8542693
https://ieeexplore.ieee.org/document/8542693
https://docs.opendaylight.org/en/stable-boron/getting-started-guide/karaf_features.html
https://docs.opendaylight.org/en/stable-boron/getting-started-guide/karaf_features.html
https://docs.opendaylight.org/en/stable-boron/getting-started-guide/karaf_features.html
https://www.openssl.org/news/secadv/20161110.txt
https://www.opendaylight.org
https://www.opendaylight.org
http://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/security_considerations.html
http://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/security_considerations.html
http://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/security_considerations.html
https://test-odl-docs.readthedocs.io/en/stable-boron/user-guide/snbi-user-guide.html
https://test-odl-docs.readthedocs.io/en/stable-boron/user-guide/snbi-user-guide.html
https://test-odl-docs.readthedocs.io/en/stable-boron/user-guide/snbi-user-guide.html
https://docs.opendaylight.org/en/stable-neon/user-guide/unified-secure-channel.html
https://docs.opendaylight.org/en/stable-neon/user-guide/unified-secure-channel.html
https://docs.opendaylight.org/en/stable-neon/user-guide/unified-secure-channel.html
https://signal.org
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userguide/bk-user-guide/content/_defense4all_overview.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userguide/bk-user-guide/content/_defense4all_overview.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userguide/bk-user-guide/content/_defense4all_overview.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userguide/bk-user-guide/content/_defense4all_overview.html
https://docs.opendaylight.org/en/stable-magnesium/getting-started-guide/security_considerations.html
https://docs.opendaylight.org/en/stable-magnesium/getting-started-guide/security_considerations.html
https://docs.opendaylight.org/en/stable-magnesium/getting-started-guide/security_considerations.html
https://doi.org/10.1145/24592.24594
https://doi.org/10.1145/24592.24594
https://doi.org/10.1145/24592.24594

[Par+17]

[Par+18|

[Par+19|

[Par19]

[Pas14|

[Pat19)]

[Per-+02]

[Pet-+13]

Sae Hyong Park, Tae Hong Kim, Soo Myung Park, Ji Soo Shin, and
Chang Gyu Lim. SDN CONTROLLER AND METHOD OF IDEN-
TIFYING SWITCH THERFEOQOF. Mar. 2017. URL: http: // www .
freepatentsonline.com/y2017/0093825.html.

Younghee Park, Hongxin Hu, Xiaohong Yuan, and Hongda Li. “En-
hancing Security Education Through Designing SDN Security Labs
in CloudLab”. In: Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. SIGCSE ’18. Baltimore, Maryland,
USA: Association for Computing Machinery, 2018, pp. 185-190. DOTI:
10.1145/3159450 . 3159514, URL: https://doi.org/10.1145/
3159450.3159514.

Taejune Park, Yeonkeun Kim, Vinod Yegneswaran, Phillip Porras,
Zhaoyan Xu, KyoungSoo Park, and Seungwon Shin. “DPX: Data-
Plane eXtensions for SDN Security Service Instantiation”. In: De-
tection of Intrusions and Malware, and Vulnerability Assessment.
Ed. by Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto, and
Magnus Almgren. Cham: Springer International Publishing, 2019,
pp. 415-437. URL: https://1link. springer . com/chapter/10.
1007/978-3-030-22038-9_20.

Paragon Initiative Enterprises. Using Libsodium in PHP Projects.
2019. URL: https://paragonie.com/book/pecl-libsodium.

Matthew Pascucci. Fvaluating the Security of Software Defined Net-
working. Tech. rep. TechTarget, 2014. URL: http://cdn. ttgtmed
ia.com/searchNetworking/Downloads/NetSecurity+November+
2014+Incentive’20(1) .pdf.

Andy Patrizio. The biggest risk to uptime? Your staff. 2019. URL:
https://www.networkworld.com/article/3444762/the-biggest
-risk-to-uptime-your-staff.html.

Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David
E. Culler. “SPINS: Security Protocols for Sensor Networks”. In: Wire-
less Networks 8.5 (Sept. 2002), pp. 521-534. DOIL: 10 . 1023 /A :
1016598314198, URL: https://1link . springer . com/article/
10.1023/A:1016598314198.

W. Michael Petullo, Xu Zhang, Jon A. Solworth, Daniel J. Bernstein,
and Tanja Lange. “MinimalLT: Minimal-latency Networking Through
Better Security”. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. CCS 13. Berlin, Germany:
ACM, 2013, pp. 425-438. DOI: 10 . 1145/2508859 . 2516737. URL:
http://doi.acm.org/10.1145/2508859.2516737.

159

http://www.freepatentsonline.com/y2017/0093825.html
http://www.freepatentsonline.com/y2017/0093825.html
https://doi.org/10.1145/3159450.3159514
https://doi.org/10.1145/3159450.3159514
https://doi.org/10.1145/3159450.3159514
https://link.springer.com/chapter/10.1007/978-3-030-22038-9_20
https://link.springer.com/chapter/10.1007/978-3-030-22038-9_20
https://paragonie.com/book/pecl-libsodium
http://cdn.ttgtmedia.com/searchNetworking/Downloads/NetSecurity+November+2014+Incentive%20(1).pdf
http://cdn.ttgtmedia.com/searchNetworking/Downloads/NetSecurity+November+2014+Incentive%20(1).pdf
http://cdn.ttgtmedia.com/searchNetworking/Downloads/NetSecurity+November+2014+Incentive%20(1).pdf
https://www.networkworld.com/article/3444762/the-biggest-risk-to-uptime-your-staff.html
https://www.networkworld.com/article/3444762/the-biggest-risk-to-uptime-your-staff.html
https://doi.org/10.1023/A:1016598314198
https://doi.org/10.1023/A:1016598314198
https://link.springer.com/article/10.1023/A:1016598314198
https://link.springer.com/article/10.1023/A:1016598314198
https://doi.org/10.1145/2508859.2516737
http://doi.acm.org/10.1145/2508859.2516737

[Pic18|

[Pic19]
[Pon20]

[Por+12]

[Por-+15]

[PP17]

[PPJ11]

[Prel5|

[PST18]

Pica8 Open Networking. PicOS Overview. 2018. URL: https://wuw.
pica8 . com/wp - content /uploads /pica8 - whitepaper - picos -
overview.pdf.

Pica8 Inc. Pica8. 2019. URL: https://www.pica8.com/.

Ponemon Institute. 2020 Cost of Insider Threats Global Report. Tech.
rep. Observe IT and IBM Security, 2020. URL: https://www.obser
veit.com/cost-of-insider-threats/.

Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong,
Mabry Tyson, and Guofei Gu. “A Security Enforcement Kernel for
OpenFlow Networks”. In: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks. HotSDN ’12. Helsinki, Fin-
land: Association for Computing Machinery, 2012, pp. 121-126. DOTI:
10.1145/2342441 . 2342466, URL: https://doi.org/10.1145/
2342441 .2342466.

Phillip A Porras, Steven Cheung, Martin W Fong, Keith Skinner,
and Vinod Yegneswaran. “Securing the Software Defined Network
Control Layer.” In: Proceedings of the Network and Distributed Sys-
tem Security Symposium (NDSS). 2015. URL: http://www.csl.sri.
com/papers/sefloodlight/.

H. Polat and O. Polat. “The effects of DoS attacks on ODL and POX
SDN controllers”. In: 8th International Conference on Information
Technology (ICIT). May 2017, pp. 554-558. DOI:|10.1109/ICITECH.
2017 .8080058. URL: https://ieeexplore. ieee.org/document/
8080058.

Jianli Pan, Subharthi Paul, and Raj Jain. “A survey of the research
on future internet architectures”. In: IEEFE Communications Maga-
zine 49.7 (2011). DOI: 10.1109/MCOM. 2011 .5936152. URL: https:
//ieeexplore.ieee.org/abstract/document/5936152.

Bart Preneel. System security after Snowden. Keynote Speak at the
45th Annual IEEE/IFIP DSN. 2015. URL: http://2015.dsn.org/
keynote-speakers/.

M. Paliwal, D. Shrimankar, and O. Tembhurne. “Controllers in SDN:
A Review Report”. In: IEEE Access 6 (2018), pp. 36256-36270. DOI:
10.1109/ACCESS.2018.2846236. URL: https://ieeexplore.ieee.
org/document/8379403.

160

https://www.pica8.com/wp-content/uploads/pica8-whitepaper-picos-overview.pdf
https://www.pica8.com/wp-content/uploads/pica8-whitepaper-picos-overview.pdf
https://www.pica8.com/wp-content/uploads/pica8-whitepaper-picos-overview.pdf
https://www.pica8.com/
https://www.observeit.com/cost-of-insider-threats/
https://www.observeit.com/cost-of-insider-threats/
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/2342441.2342466
http://www.csl.sri.com/papers/sefloodlight/
http://www.csl.sri.com/papers/sefloodlight/
https://doi.org/10.1109/ICITECH.2017.8080058
https://doi.org/10.1109/ICITECH.2017.8080058
https://ieeexplore.ieee.org/document/8080058
https://ieeexplore.ieee.org/document/8080058
https://doi.org/10.1109/MCOM.2011.5936152
https://ieeexplore.ieee.org/abstract/document/5936152
https://ieeexplore.ieee.org/abstract/document/5936152
http://2015.dsn.org/keynote-speakers/
http://2015.dsn.org/keynote-speakers/
https://doi.org/10.1109/ACCESS.2018.2846236
https://ieeexplore.ieee.org/document/8379403
https://ieeexplore.ieee.org/document/8379403

[PST20]

[PwC14|

[Raj+11]

[Raw15|

[Raz+17]

[Red18]

[RHE16]

[RLM19]

Christian Paquin, Douglas Stebila, and Goutam Tamvada. “Bench-
marking Post-quantum Cryptography in TLS”. In: Post-Quantum
Cryptography. Ed. by Jintai Ding and Jean-Pierre Tillich. Cham:
Springer International Publishing, 2020, pp. 72-91. URL: https://
link.springer.com/chapter/10.1007/978-3-030-44223-1_5.

PwC, CSO magazine and CERT /CMU. US cybercrime: Rising risks,
reduced readiness. Tech. rep. PwC, 2014, p. 21. URL: http://www.
pwc.com/us/en/increasing-it-effectiveness/publications/
assets/2014-us-state-of-cybercrime.pdf.

Himanshu Raj, David Robinson, Talha Bin Tariq, Paul England, Ste-
fan Saroiu, and Alec Wolman. Credo: Trusted Computing for Guest
VMs with a Commodity Hypervisor. Tech. rep. MSR-TR-2011-130.
2011. URL: http://research.microsoft.com/apps/pubs/default
.aspx?1d=157213.

Kristi Rawlinson. Security Threat Landscape Still Plagued by Known
Issues, says HP. 2015. URL: https://www8.hp.com/mx/es/hp-
news/press-release.html?id=1915228.

Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez,
Srikanth Sundaresan, Johanna Amann, and Phillipa Gill. “Studying
TLS Usage in Android Apps”. In: Proceedings of the 13th Interna-
tional Conference on Emerging Networking EXperiments and Tech-
nologies. CONEXT ’17. Incheon, Republic of Korea: Association for
Computing Machinery, 2017, pp. 350-362. DOI: 10.1145/3143361 .
3143400. URL: https://doi.org/10.1145/3143361.3143400.

Red Hat, Inc. OpenShift SDN. 2018. URL: https://docs.openshi
ft.com/container-platform/3.7/architecture/networking/
sdn.html.

Fabian Ruffy, Wolfgang Hommel, and Felix von Eye. “A STRIDE-
based Security Architecture for Software-Defined Networking”. In:
The Fifteenth International Conference on Networks. IARIA. 2016,
p. 107. URL: http://cial.csie.ncku.edu. tw/presentation/
group _pdf /A% 20STRIDE - based /% 20Security % 20Architecture
20for’20Software-Defined/20Networking. pdf.

J. D. Roth, C. E. Lutton, and J. B. Michael. “Security Through Sim-
plicity: A Case Study in Logical Segmentation Inference”. In: Com-
puter 52.7 (July 2019), pp. 76-79. DOI: 10.1109/MC.2019.2906443.
URL: https://ieeexplore.ieee.org/document/8747213.

161

https://link.springer.com/chapter/10.1007/978-3-030-44223-1_5
https://link.springer.com/chapter/10.1007/978-3-030-44223-1_5
http://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2014-us-state-of-cybercrime.pdf
http://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2014-us-state-of-cybercrime.pdf
http://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2014-us-state-of-cybercrime.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=157213
http://research.microsoft.com/apps/pubs/default.aspx?id=157213
https://www8.hp.com/mx/es/hp-news/press-release.html?id=1915228
https://www8.hp.com/mx/es/hp-news/press-release.html?id=1915228
https://doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/3143361.3143400
https://docs.openshift.com/container-platform/3.7/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.7/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.7/architecture/networking/sdn.html
http://cial.csie.ncku.edu.tw/presentation/group_pdf/A%20STRIDE-based%20Security%20Architecture%20for%20Software-Defined%20Networking.pdf
http://cial.csie.ncku.edu.tw/presentation/group_pdf/A%20STRIDE-based%20Security%20Architecture%20for%20Software-Defined%20Networking.pdf
http://cial.csie.ncku.edu.tw/presentation/group_pdf/A%20STRIDE-based%20Security%20Architecture%20for%20Software-Defined%20Networking.pdf
https://doi.org/10.1109/MC.2019.2906443
https://ieeexplore.ieee.org/document/8747213

[RME13]

[RR17]

[RWW17]

[Ryul9]

[Saf12]

[Sah+-17]

[Sal+16]

[Sam15]

R.M. Ramos, M. Martinello, and C. Esteve Rothenberg. “SlickFlow:

Resilient source routing in Data Center Networks unlocked by Open-
Flow”. In: IEEFE 38th Conference on Local Computer Networks (LCN).
2013, pp. 606-613. DOI: [10. 1109/LCN. 2013.6761297. URL: https:

//ieeexplore.ieee.org/document/6761297.

Danda B Rawat and Swetha R Reddy. “Software defined network-
ing architecture, security and energy efficiency: A survey”. In: IEEE
Communications Surveys € Tutorials 19.1 (2017), pp. 325-346. DOI:
10.1109/COMST.2016.2618874. URL: https://ieeexplore.ieee.
org/abstract/document/7593247.

G. Rzepka, S. Wenke, and S. Walling. “Choose simplicity for a better
digital substation design”. In: 70th Annual Conference for Protective
Relay Engineers (CPRE). Apr. 2017, pp. 1-9. DOI: 10.1109/CPRE.
2017 .8090016. URL: https://ieeexplore. ieee.org/document/
8090016.

Ryu SDN Framework Community. Ryu component-based software
defined networking framework. 2019. URL: https://github. com/
faucetsdn/ryu.

SafeNet, Inc. Security and Handling Issues - HSM Appliance. 2012.
URL: http://cloudhsm- safenet-docs-5.3.s3-website-us-
east-1.amazonaws.com/007-011136-006_lunasa_b5-3_webhelp_
rev-c/startpage . htm#administration/physical _security_
guidance.htm.

Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, Khalifa Toumi, and
Hervé Debar. “Adaptive Policy-Driven Attack Mitigation in SDN”.
In: Proceedings of the 1st International Workshop on Security and
Dependability of Multi-Domain Infrastructures. New York, NY, USA:
Association for Computing Machinery, 2017. DOI:|10.1145/3071064.
3071068. URL: https://doi.org/10.1145/3071064.3071068.

O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab. “SDN con-
trollers: A comparative study”. In: 18th Mediterranean Electrotechni-
cal Conference (MELECON). 2016, pp. 1-6. DOI: |10.1109/MELCON.
2016 .7495430. URL: https://ieeexplore.ieee.org/abstract/
document/7495430.

D. Samociuk. “Secure communication between openflow switches and
controllers”. In: The Seventh International Conference on Advances
in Future Internet (AFIN). 2015, p. 39. URL: https://www.thinkm
ind.org/download.php?articleid=afin_2015_2_30_40047.

162

https://doi.org/10.1109/LCN.2013.6761297
https://ieeexplore.ieee.org/document/6761297
https://ieeexplore.ieee.org/document/6761297
https://doi.org/10.1109/COMST.2016.2618874
https://ieeexplore.ieee.org/abstract/document/7593247
https://ieeexplore.ieee.org/abstract/document/7593247
https://doi.org/10.1109/CPRE.2017.8090016
https://doi.org/10.1109/CPRE.2017.8090016
https://ieeexplore.ieee.org/document/8090016
https://ieeexplore.ieee.org/document/8090016
https://github.com/faucetsdn/ryu
https://github.com/faucetsdn/ryu
http://cloudhsm-safenet-docs-5.3.s3-website-us-east-1.amazonaws.com/007-011136-006_lunasa_5-3_webhelp_rev-c/startpage.htm%23administration/physical_security_guidance.htm
http://cloudhsm-safenet-docs-5.3.s3-website-us-east-1.amazonaws.com/007-011136-006_lunasa_5-3_webhelp_rev-c/startpage.htm%23administration/physical_security_guidance.htm
http://cloudhsm-safenet-docs-5.3.s3-website-us-east-1.amazonaws.com/007-011136-006_lunasa_5-3_webhelp_rev-c/startpage.htm%23administration/physical_security_guidance.htm
http://cloudhsm-safenet-docs-5.3.s3-website-us-east-1.amazonaws.com/007-011136-006_lunasa_5-3_webhelp_rev-c/startpage.htm%23administration/physical_security_guidance.htm
https://doi.org/10.1145/3071064.3071068
https://doi.org/10.1145/3071064.3071068
https://doi.org/10.1145/3071064.3071068
https://doi.org/10.1109/MELCON.2016.7495430
https://doi.org/10.1109/MELCON.2016.7495430
https://ieeexplore.ieee.org/abstract/document/7495430
https://ieeexplore.ieee.org/abstract/document/7495430
https://www.thinkmind.org/download.php?articleid=afin_2015_2_30_40047
https://www.thinkmind.org/download.php?articleid=afin_2015_2_30_40047

[Sas+16]

[Sch11]

[Sch12]

[Sch15]

[Sch19]

[Scol7]

[SD16]

ISDH16]|

[SDW17]

[SDx14]

T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig. “SDNsec:
Forwarding Accountability for the SDN Data Plane”. In: 25th In-
ternational Conference on Computer Communication and Networks
(ICCCN). 2016, pp. 1-10. DOI: 10. 1109/ICCCN . 2016 . 7568569, URL:
https://ieeexplore.ieee.org/document/7568569.

Scott Schenker. The Future of Networking, and the Past of Protocols.
2011. URL: http://www.youtube.com/watch?v=YHeyuD89n1Y.

Bruce Schneier. Lousy Random Numbers Cause Insecure Public Keys.
2012. URL: https://www.schneier.com/blog/archives/2012/02/
lousy_random_nu.html.

Bruce Schneier. Data and Goliath: The hidden battles to collect your
data and control your world. WW Norton & Company, 2015. URL:
https://www.schneier.com/books/data_and_goliath/.

Holger Schulze. Cloud Security Report. 2019. URL: https://www.cy
bersecurity-insiders.com/portfolio/2019-cloud-security-
report-isc2/.

Sandra Scott-Hayward. “Trailing the Snail: SDN Controller Security
Evolution”. In: CoRR abs/1711.08406 (2017). arXiv: 1711 . 08406.
URL: http://arxiv.org/abs/1711.08406.

Ameya Sanzgiri and Dipankar Dasgupta. “Classification of Insider
Threat Detection Techniques”. In: Proceedings of the 11th Annual Cy-
ber and Information Security Research Conference. CISRC '16. Oak
Ridge, TN, USA: ACM, 2016, 25:1-25:4. DOT: [10.1145/2897795.
2897799. URL: http://doi.acm.org/10.1145/2897795.2897799.

Drew Springall, Zakir Durumeric, and J. Alex Halderman. “Measur-
ing the Security Harm of TLS Crypto Shortcuts”. In: Proceedings
of the Internet Measurement Conference. IMC ’16. Santa Monica,
California, USA: ACM, 2016, pp. 33-47. DOI: 10.1145/2987443.
2987480. URL: http://doi.acm.org/10.1145/2987443.2987480.

Dominik Schiirmann, Sergej Dechand, and Lars Wolf. “OpenKey-
chain: An Architecture for Cryptography with Smart Cards and NFC
Rings on Android”. In: Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies 1.3 (2017), p. 99.

SDxCentral. What is White Box Switching & White Box Switches
(€9 are they SDN Switches)? 2014. URL: https://www.sdxcentral.
com/data-center/bare-metal /white-box/definitions/what-
is-white-box-networking/.

163

https://doi.org/10.1109/ICCCN.2016.7568569
https://ieeexplore.ieee.org/document/7568569
http://www.youtube.com/watch?v=YHeyuD89n1Y
https://www.schneier.com/blog/archives/2012/02/lousy_random_nu.html
https://www.schneier.com/blog/archives/2012/02/lousy_random_nu.html
https://www.schneier.com/books/data_and_goliath/
https://www.cybersecurity-insiders.com/portfolio/2019-cloud-security-report-isc2/
https://www.cybersecurity-insiders.com/portfolio/2019-cloud-security-report-isc2/
https://www.cybersecurity-insiders.com/portfolio/2019-cloud-security-report-isc2/
https://arxiv.org/abs/1711.08406
http://arxiv.org/abs/1711.08406
https://doi.org/10.1145/2897795.2897799
https://doi.org/10.1145/2897795.2897799
http://doi.acm.org/10.1145/2897795.2897799
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.1145/2987443.2987480
http://doi.acm.org/10.1145/2987443.2987480
https://www.sdxcentral.com/data-center/bare-metal/white-box/definitions/what-is-white-box-networking/
https://www.sdxcentral.com/data-center/bare-metal/white-box/definitions/what-is-white-box-networking/
https://www.sdxcentral.com/data-center/bare-metal/white-box/definitions/what-is-white-box-networking/

[Sec+17|

[Sec+19]

[Sec19]

SG13]

[Sha+17]

[Sha-+20]

[Shal5|

Stefano Secci, Kamel Attou, Dung Chi Phung, Sandra Scott-Hayward,
Dylan Smyth, Suchitra Vemuri, and You Wang. ONOS Security and
Performance Analysis: Report No. 1. Tech. rep. ONOS Project, 2017.
URL: https://3vi60mmveqlg8vznd8q2071a - wpengine . netdna -
ssl.com/wp-content/uploads/2017/07/0NOS - security- and -
performance-analysis-brigade-report-nol.pdf.

Stefano Secci, Alessio Diamanti, Jose Manuel Vilchez Sanchez, Ma-
madou Tahirou Bah, Petra Vizarreta, Carmen Mas Machuca, Sandra
Scott-Hayward, and Dylan Smith. Security and Performance Com-
parison of ONOS and ODL controllers. Tech. rep. Informational Re-
port, Open Networking Foundation, 2019. URL: https://mediatum.
ub.tum.de/doc/1525888/file.pdf.

Securonix, Inc. 2019 Insider Threat Survey Report. 2019. URL: htt
ps://www.securonix . com/resources/2019- insider - threat -
survey-report.

Seungwon Shin and Guofei Gu. “Attacking Software-Defined Net-
works: A First Feasibility Study”. In: Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Network-
ing. HotSDN ’13. Hong Kong, China: Association for Computing
Machinery, 2013, pp. 165-166. DOI: 10 . 1145 /2491185 . 2491220.
URL: https://doi.org/10.1145/2491185.2491220.

G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui. “FloodDefender:
Protecting data and control plane resources under SDN-aimed DoS
attacks”. In: IEEE Conference on Computer Communications (IN-
FOCOM). 2017, pp. 1-9. DOL: [10 . 1109/ INFOCOM . 2017 . 8057009,
URL: https://ieeexplore.ieee.org/document/8057009.

Arash Shaghaghi, Mohamed Ali Kaafar, Rajkumar Buyya, and San-
jay Jha. “Software-Defined Network (SDN) Data Plane Security: Is-
sues, Solutions, and Future Directions”. In: Handbook of Computer
Networks and Cyber Security: Principles and Paradigms. Ed. by Brij
B. Gupta, Gregorio Martinez Perez, Dharma P. Agrawal, and Deepak
Gupta. Cham: Springer International Publishing, 2020, pp. 341-387.
DOI: 10.1007/978-3-030-22277-2_14. URL: https://doi.org/
10.1007/978-3-030-22277-2_14.

Adi Shamir. Post-Snowden Cryptography. 2015. URL: https://w
wwfr . uni . lu/snt /distinguished _lectures/post _snowden _
cryptography_june_11_2015|

164

https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2017/07/ONOS-security-and-performance-analysis-brigade-report-no1.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2017/07/ONOS-security-and-performance-analysis-brigade-report-no1.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2017/07/ONOS-security-and-performance-analysis-brigade-report-no1.pdf
https://mediatum.ub.tum.de/doc/1525888/file.pdf
https://mediatum.ub.tum.de/doc/1525888/file.pdf
https://www.securonix.com/resources/2019-insider-threat-survey-report
https://www.securonix.com/resources/2019-insider-threat-survey-report
https://www.securonix.com/resources/2019-insider-threat-survey-report
https://doi.org/10.1145/2491185.2491220
https://doi.org/10.1145/2491185.2491220
https://doi.org/10.1109/INFOCOM.2017.8057009
https://ieeexplore.ieee.org/document/8057009
https://doi.org/10.1007/978-3-030-22277-2_14
https://doi.org/10.1007/978-3-030-22277-2_14
https://doi.org/10.1007/978-3-030-22277-2_14
https://wwwfr.uni.lu/snt/distinguished_lectures/post_snowden_cryptography_june_11_2015
https://wwwfr.uni.lu/snt/distinguished_lectures/post_snowden_cryptography_june_11_2015
https://wwwfr.uni.lu/snt/distinguished_lectures/post_snowden_cryptography_june_11_2015

[SHC19]

[She+12]

|Shi +13a

[Shi+13b]

[Shi+13c|

[Shi+14]

[SHS15|

Nicolas Serrano, Hilda Hadan, and L. Jean Camp. “A Complete
Study of P.K.I. (PKI’s Known Incidents)”. In: SSRN (2019). DOTI:
http://dx.doi.org/10.2139/ssrn.3425554. URL: https://ssrn.
com/abstract=3425554.

Charles Shen, Erich Nahum, Henning Schulzrinne, and Charles P
Wright. “The impact of TLS on SIP server performance: measure-
ment and modeling”. In: IEEE/ACM Transactions on Networking
(TON) 20.4 (2012), pp. 1217-1230. pOI1: 10 . 1109 / TNET . 2011 .
2180922. URL: https://ieeexplore. ieee.org/abstract/docu
ment/6129420.

S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson. “FRESCO: Modular Composable Security Services for
Software-Defined Networks.” In: Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS). 2013. URL: https :
/ /www .ndss - symposium. org/ndss2013/ndss-2013 - programme /
fresco - modular - composable - security - services - software -
defined-networks/.

Seungwon Shin, Phillip Porras, Vinod Yegneswaran, and Guofei Gu.
“A framework for integrating security services into software-defined
networks”. In: Proceedings of the open networking summit (Research
Track poster paper). ONS’13. Open Networking Summit, 2013. URL:
http://hdl.handle.net/10203/205988.

Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.
“AVANT-GUARD: Scalable and Vigilant Switch Flow Management
in Software-Defined Networks”. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer €& Communications Security. CCS
"13. Berlin, Germany: Association for Computing Machinery, 2013,
pp. 413-424. DOT: [10. 1145/2508859 . 2516684, URL: https://doi.
org/10.1145/2508859.2516684.

S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang. “Rosemary: A Robust, Secure, and High-
Performance Network Operating System”. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Secu-
rity. CCS "14. Scottsdale, Arizona, USA: Association for Computing
Machinery, 2014, pp. 78-89. DOI: 10.1145/2660267 .2660353. URL:
https://doi.org/10.1145/2660267 .2660353.

Y. Sheffer, R. Holz, and P. Saint-Andre. Recommendations for Se-
cure Use of Transport Layer Security (TLS) and Datagram Transport

165

https://doi.org/http://dx.doi.org/10.2139/ssrn.3425554
https://ssrn.com/abstract=3425554
https://ssrn.com/abstract=3425554
https://doi.org/10.1109/TNET.2011.2180922
https://doi.org/10.1109/TNET.2011.2180922
https://ieeexplore.ieee.org/abstract/document/6129420
https://ieeexplore.ieee.org/abstract/document/6129420
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/fresco-modular-composable-security-services-software-defined-networks/
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/fresco-modular-composable-security-services-software-defined-networks/
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/fresco-modular-composable-security-services-software-defined-networks/
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/fresco-modular-composable-security-services-software-defined-networks/
http://hdl.handle.net/10203/205988
https://doi.org/10.1145/2508859.2516684
https://doi.org/10.1145/2508859.2516684
https://doi.org/10.1145/2508859.2516684
https://doi.org/10.1145/2660267.2660353
https://doi.org/10.1145/2660267.2660353

[SKD20]

[SM11]

[SNS16]

[Sof09]

[Son+17]

[Son18|

[SOP20]

[SOS13]

Layer Security (DTLS). RFC 7525. Internet Engineering Task Force,
May 2015. URL: https://tools.ietf.org/html/rfc7525.

Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis.
“Post-Quantum Authentication in TLS 1.3: A Performance Study”.
In: Proceedings of the Network and Distributed System Security Sym-
posium (NDSS). 2020, pp. 1-16. URL: https://www.ndss-symposi
um. org/wp-content/uploads/2020/02/24203-paper . pdf.

Jurgen Schonwalder and Vladislav Marinov. “On the Impact of Secu-
rity Protocols on the Performance of SNMP”. In: IEEE Transactions
on Network and Service Management 8.1 (2011), pp. 52-64. DOL:
10.1109/TNSM.2011.012111.00011. URL: https://ieeexplore.
ieee.org/abstract/document/5702353.

S. Scott-Hayward, S. Natarajan, and S. Sezer. “A Survey of Security
in Software Defined Networks”. In: IEEE Communications Surveys
Tutorials 18.1 (2016), pp. 623-654. DOI: 10 . 1109 / COMST . 2015 .
2453114. URL: https://ieeexplore.ieee.org/abstract/docume
nt/7150550.

R. C. Sofia. “A survey of advanced Ethernet forwarding approaches”.
In: IEEE Communications Surveys Tutorials 11.1 (2009), pp. 92-115.
DOI: 10 .1109/SURV . 2009 . 090108. URL: https://ieeexplore.
ieee.org/document/4796929.

S. Song, H. Park, B. Y. Choi, T. Choi, and H. Zhu. “Control Path
Management Framework for Enhancing Software-Defined Network
(SDN) Reliability”. In: IEEE Transactions on Network and Service
Management 14.2 (2017), pp. 302-316. DOIL: 10.1109/TNSM. 2017 .
2669082. URL: https://ieeexplore.ieee.org/document/7855810.

Do Son. OpenFlow Protocol Exposure Authentication Vulnerability.
2018. URL: https://securityonline.info/openflow-protocol-
exposure-authentication-vulnerability/.

SOPHOS. Sophos 2020 Threat Report. 2020. URL: https://www .
sophos . com/ en - us /medialibrary/PDFs /technical - papers/
sophoslabs-uncut-2020-threat-report.pdf|

S. Scott-Hayward, G. O’Callaghan, and S. Sezer. “Sdn Security: A

Survey”. In: IEEE SDN for Future Networks and Services (SDN4FNS).
2013, pp. 1-7. DOI: [10. 1109/SDN4FNS . 2013. 6702553. URL: https:

//ieeexplore.ieee.org/document/6702553.

166

https://tools.ietf.org/html/rfc7525
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24203-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24203-paper.pdf
https://doi.org/10.1109/TNSM.2011.012111.00011
https://ieeexplore.ieee.org/abstract/document/5702353
https://ieeexplore.ieee.org/abstract/document/5702353
https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1109/COMST.2015.2453114
https://ieeexplore.ieee.org/abstract/document/7150550
https://ieeexplore.ieee.org/abstract/document/7150550
https://doi.org/10.1109/SURV.2009.090108
https://ieeexplore.ieee.org/document/4796929
https://ieeexplore.ieee.org/document/4796929
https://doi.org/10.1109/TNSM.2017.2669082
https://doi.org/10.1109/TNSM.2017.2669082
https://ieeexplore.ieee.org/document/7855810
https://securityonline.info/openflow-protocol-exposure-authentication-vulnerability/
https://securityonline.info/openflow-protocol-exposure-authentication-vulnerability/
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://ieeexplore.ieee.org/document/6702553
https://ieeexplore.ieee.org/document/6702553

[Sou+10]

[Stal5]

[Stal7|

[Stel5]

[Str16]

[Sul+19]

[Sym16]

[TB19]

[TFS19]

P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Veris-
simo. “Highly Available Intrusion-Tolerant Services with Proactive-
Reactive Recovery”. In: IEEFE Transactions on Parallel and Distributed
Systems 21.4 (2010), pp. 452-465. DOI: |10 . 1109/ TPDS . 2009 . 83.
URL: https://ieeexplore.ieee.org/abstract/document/5010435.

Stanford University. Stanford cybersecurity expert: Dan Boneh. 2015.
URL: https://www.youtube.com/watch?v=H-YGdcNFBJk.

Philip B. Stark. Don’t Bet on your Random Number Generator. 2017.
URL: https://github.com/pbstark/pseudorandom/blob/master/
proglux17.1ipynb.

Harlan Stenn. “Securing Network Time Protocol”. In: Commun. ACM
58.2 (Jan. 2015), pp. 48-51. DOI: [10.1145/2697397. URL: http:
//doi.acm.org/10.1145/2697397.

Falko Strenzke. “An Analysis of OpenSSL’s Random Number Gener-
ator”. In: Advances in Cryptology — EUROCRYPT 2016. Ed. by Marc
Fischlin and Jean-Sébastien Coron. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 644-669. DOI: https://doi.org/10.1007/
978-3-662-49890-3_25. URL: https://link.springer . com/
chapter/10.1007/978-3-662-49890-3_25.

Nasrin Sultana, Naveen Chilamkurti, Wei Peng, and Rabei Alhadad.
“Survey on SDN based network intrusion detection system using
machine learning approaches”. In: Peer-to-Peer Networking and Ap-
plications 12.2 (2019), pp. 493-501. DOI: https://doi.org/10.
1007/s12083-017-0630-0. URL: https://link.springer.com/
article/10.1007/s12083-017-0630-0.

Symantec. Internet Security Threat Report. 2016. URL: https://
www . insight . com/content/dam/insight-web/en_US/article-
images/whitepapers/partner-whitepapers/Internet’20Securi
ty%20Threat’,20Report . pdf.

N. Tuveri and B. B. Brumley. “Start Your ENGINEs: Dynamically
Loadable Contemporary Crypto”. In: IEEE Cybersecurity Develop-
ment (SecDev). Sept. 2019, pp. 4-19. DOI: [10.1109/SecDev.2019.
00014. URL: https://ieeexplore.ieee.org/document/8901574.

Samuel Thibault, Mike Frysinger, and Andreas Schwab. OpenDay-
light — Languages. 2019. URL: https : / / www . openhub . net /p/
opendaylight/analyses/latest/languages_summary.

167

https://doi.org/10.1109/TPDS.2009.83
https://ieeexplore.ieee.org/abstract/document/5010435
https://www.youtube.com/watch?v=H-YGdcNFBJk
https://github.com/pbstark/pseudorandom/blob/master/prngLux17.ipynb
https://github.com/pbstark/pseudorandom/blob/master/prngLux17.ipynb
https://doi.org/10.1145/2697397
http://doi.acm.org/10.1145/2697397
http://doi.acm.org/10.1145/2697397
https://doi.org/https://doi.org/10.1007/978-3-662-49890-3_25
https://doi.org/https://doi.org/10.1007/978-3-662-49890-3_25
https://link.springer.com/chapter/10.1007/978-3-662-49890-3_25
https://link.springer.com/chapter/10.1007/978-3-662-49890-3_25
https://doi.org/https://doi.org/10.1007/s12083-017-0630-0
https://doi.org/https://doi.org/10.1007/s12083-017-0630-0
https://link.springer.com/article/10.1007/s12083-017-0630-0
https://link.springer.com/article/10.1007/s12083-017-0630-0
https://www.insight.com/content/dam/insight-web/en_US/article-images/whitepapers/partner-whitepapers/Internet%20Security%20Threat%20Report.pdf
https://www.insight.com/content/dam/insight-web/en_US/article-images/whitepapers/partner-whitepapers/Internet%20Security%20Threat%20Report.pdf
https://www.insight.com/content/dam/insight-web/en_US/article-images/whitepapers/partner-whitepapers/Internet%20Security%20Threat%20Report.pdf
https://www.insight.com/content/dam/insight-web/en_US/article-images/whitepapers/partner-whitepapers/Internet%20Security%20Threat%20Report.pdf
https://doi.org/10.1109/SecDev.2019.00014
https://doi.org/10.1109/SecDev.2019.00014
https://ieeexplore.ieee.org/document/8901574
https://www.openhub.net/p/opendaylight/analyses/latest/languages_summary
https://www.openhub.net/p/opendaylight/analyses/latest/languages_summary

[Thel9al

[Thel9b)
[Thel9c|

[Thi+ 18]

[Thy-+16]

[TK14]

[TNK18]

[Tos+ 14|

[Tro+16]

The Haystax Team. Insider Threat Report. Tech. rep. Cybersecurity
Insiders, 2019. URL: https://haystax.com/wp-content/uploads/
2019/07/Haystax-Insider-Threat-Report-2019.pdf.

The OpenStack project. OpenStack. 2019. URL: https://www.open
stack.org/.

The Sodium crypto library (libsodium). Libsodium users. 2019. URL:
https://download.libsodium.org/doc/libsodium_users/.

Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas
Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
“Taking Control of SDN-based Cloud Systems via the Data Plane”.
In: Proceedings of the Symposium on SDN Research. SOSR ’18. Los
Angeles, CA, USA: ACM, 2018, 1:1-1:15. DOI: 10.1145/3185467 .
3185468. URL: http://doi.acm.org/10.1145/3185467 .3185468.

Akhilesh S Thyagaturu, Anu Mercian, Michael P McGarry, Martin
Reisslein, and Wolfgang Kellerer. “Software defined optical networks
(SDONS): A comprehensive survey”. In: IEEE Communications Sur-
veys & Tutorials 18.4 (2016), pp. 2738-2786. DOI: 10.1109/COMST.
2016 .2586999. URL: https://ieeexplore.ieee.org/abstract/
document/7503119.

Umesh Tiwari and Santosh Kumar. “Cyclomatic Complexity Metric
for Component Based Software”. In: SIGSOFT Softw. Eng. Notes
39.1 (Feb. 2014), pp. 1-6. DOI: 10.1145/2557833 . 2557853. URL:
https://doi.org/10.1145/2557833.2557853.

Y. Tseng, F. Nait-Abdesselam, and A. Khokhar. “SENAD: Secur-
ing Network Application Deployment in Software Defined Networks”.
In: IEEFE International Conference on Communications (ICC). May
2018, pp. 1-6. DOI: 10.1109/1ICC. 2018 .8422405. URL: https:
//ieeexplore.ieee.org/document/8422405.

U. Toseef, A. Zaalouk, T. Rothe, M. Broadbent, and K. Pentikousis.
“C-BAS: Certificate-Based AAA for SDN Experimental Facilities”.
In: Third European Workshop on Software Defined Networks. 2014,
pp. 91-96. DOI: 10.1109/EWSDN.2014.41. URL: https://ieeexplo
re.ieee.org/document/6984058.

Celio Trois, Marcos D Del Fabro, Luis CE de Bona, and Magnos
Martinello. “A survey on SDN programming languages: toward a tax-
onomy”. In: IEEE Communications Surveys & Tutorials 18.4 (2016),
pp. 2687-2712. DOI: 10.1109/COMST . 2016 . 25653778. URL: https:
//ieeexplore.ieee.org/abstract/document/7452335.

168

https://haystax.com/wp-content/uploads/2019/07/Haystax-Insider-Threat-Report-2019.pdf
https://haystax.com/wp-content/uploads/2019/07/Haystax-Insider-Threat-Report-2019.pdf
https://www.openstack.org/
https://www.openstack.org/
https://download.libsodium.org/doc/libsodium_users/
https://doi.org/10.1145/3185467.3185468
https://doi.org/10.1145/3185467.3185468
http://doi.acm.org/10.1145/3185467.3185468
https://doi.org/10.1109/COMST.2016.2586999
https://doi.org/10.1109/COMST.2016.2586999
https://ieeexplore.ieee.org/abstract/document/7503119
https://ieeexplore.ieee.org/abstract/document/7503119
https://doi.org/10.1145/2557833.2557853
https://doi.org/10.1145/2557833.2557853
https://doi.org/10.1109/ICC.2018.8422405
https://ieeexplore.ieee.org/document/8422405
https://ieeexplore.ieee.org/document/8422405
https://doi.org/10.1109/EWSDN.2014.41
https://ieeexplore.ieee.org/document/6984058
https://ieeexplore.ieee.org/document/6984058
https://doi.org/10.1109/COMST.2016.2553778
https://ieeexplore.ieee.org/abstract/document/7452335
https://ieeexplore.ieee.org/abstract/document/7452335

[TSS17]

[TT19]

[TZN16]

[VAM15]

[Vaulg|

[Ver+13]

[Ver06]

[Ver15|

[Ver19]

K. Thimmaraju, L. Schiff, and S. Schmid. “Outsmarting Network
Security with SDN Teleportation”. In: IEEE European Symposium
on Security and Privacy (EuroS P). IEEE. 2017, pp. 563-578. DOI:
10.1109/EuroSP.2017.21. URL: https://ieeexplore.ieee.org/
abstract/document/7962003.

A. Takahashi and M. Tibouchi. “Degenerate Fault Attacks on Elliptic
Curve Parameters in OpenSSL”. In: IEEE European Symposium on
Security and Privacy (EuroS P). June 2019, pp. 371-386. DOI: 10.
1109/EuroSP.2019.00035. URL: https://ieeexplore.ieee.org/
document/8806763.

Yuchia Tseng, Zonghua Zhang, and Farid Nait-Abdesselam. “Con-
trollerSEPA: A Security-Enhancing SDN Controller Plug-in for Open-
Flow Applications”. In: 17th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT).
[EEE. 2016, pp. 268-273. DOI: 10.1109/PDCAT . 2016 . 064. URL:
https://ieeexplore.ieee.org/abstract/document/7943369.

VAMPIRE. SUPERCOP. 2015. URL: http://bench.cr.yp.to/
supercop.html.

Steven Vaughan-Nichols. How to secure your server room. 2018. URL:
https://www.hpe.com/us/en/insights/articles/how- to-
secure-your-server-room-13809.html.

Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,
Lau Cheuk Lung, and Paulo Verissimo. “Efficient Byzantine Fault-
Tolerance”. In: IEEE Trans. Computers 62.1 (2013), pp. 16-30. DOI:
10.1109/TC.2011.221. URL: http://doi.ieeecomputersociety.
org/10.1109/TC.2011.221.

Paulo E. Verissimo. “Travelling Through Wormholes: A New Look at
Distributed Systems Models”. In: SIGACT News 37.1 (Mar. 2006),
pp. 66-81. DOI:/10.1145/1122480.1122497. URL: http://doi.acm.
org/10.1145/1122480.1122497.

Verizon. 2015 Data Breach Investigations Report. Tech. rep. Verizon,
2015. URL: https://www.verizon.com/about/news/2015-data-
breach-report-info.

Verizon. Insider Threat Report. Tech. rep. USA: Verizon, 2019. URL:
https://enterprise.verizon.com/resources/reports/insider
-threat-report/.

169

https://doi.org/10.1109/EuroSP.2017.21
https://ieeexplore.ieee.org/abstract/document/7962003
https://ieeexplore.ieee.org/abstract/document/7962003
https://doi.org/10.1109/EuroSP.2019.00035
https://doi.org/10.1109/EuroSP.2019.00035
https://ieeexplore.ieee.org/document/8806763
https://ieeexplore.ieee.org/document/8806763
https://doi.org/10.1109/PDCAT.2016.064
https://ieeexplore.ieee.org/abstract/document/7943369
http://bench.cr.yp.to/supercop.html
http://bench.cr.yp.to/supercop.html
https://www.hpe.com/us/en/insights/articles/how-to-secure-your-server-room-1809.html
https://www.hpe.com/us/en/insights/articles/how-to-secure-your-server-room-1809.html
https://doi.org/10.1109/TC.2011.221
http://doi.ieeecomputersociety.org/10.1109/TC.2011.221
http://doi.ieeecomputersociety.org/10.1109/TC.2011.221
https://doi.org/10.1145/1122480.1122497
http://doi.acm.org/10.1145/1122480.1122497
http://doi.acm.org/10.1145/1122480.1122497
https://www.verizon.com/about/news/2015-data-breach-report-info
https://www.verizon.com/about/news/2015-data-breach-report-info
https://enterprise.verizon.com/resources/reports/insider-threat-report/
https://enterprise.verizon.com/resources/reports/insider-threat-report/

[VEV15]

[VH14]

[Viz+18]

[Viz+19]

[Viz18]

[VM15]

[VMw20]

[Voe+13|

[VR12]

C Van Bruggen, NF Feddes, and M Vermeer. Anonymous HD Video
Streaming for Android using Tribler. 2015. URL: https://reposito
ry.tudelft.nl/islandora/object/uuid: 5bd6dadf - 1464-4203-
a383-321ab34d4386.

Apostol Vassilev and Timothy A. Hall. “The Importance of Entropy
to Information Security”. In: Computer 47.2 (2014), pp. 78-81. DOIL:
10.1109/MC.2014.47. URL: http://doi.ieeecomputersociety.
org/10.1109/MC.2014 .47.

P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, Andreas Blenk,
W. Kellerer, and C. Mas Machuca. “Assessing the Maturity of SDN
Controllers With Software Reliability Growth Models”. In: IEEE
Transactions on Network and Service Management 15.3 (Sept. 2018),
pp- 1090-1104. por: 10.1109/TNSM. 2018 . 2848105. URL: https:
//ieeexplore.ieee.org/document/8386840.

P. Vizarreta, E. Sakic, W. Kellerer, and C. M. Machuca. “Mining
Software Repositories for Predictive Modelling of Defects in SDN
Controller”. In: IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). Apr. 2019, pp. 80-88. URL: https://
ieeexplore.ieee.org/abstract/document/8717837.

P. Vizarreta. “Modelling, Design and Optimization of Dependable
Softwarized Networks for Industrial Applications”. In: IEEFE Inter-
national Symposium on Software Reliability Engineering Workshops
(ISSREW). Oct. 2018, pp. 170-173. DOI: [10. 1109/ ISSREW . 2018 .
000-3. URL: https://ieeexplore.ieee.org/document/8539191.

Vladimir Vujovié and Mirjana Maksimovi¢. “Raspberry Pi as a Sen-
sor Web node for home automation”. In: Computers € Electrical En-
gineering 44 (2015), pp. 1563-171. DOI: https://doi.org/10.1016/
j .compeleceng.2015.01.019. URL: http://www.sciencedirect.
com/science/article/pii/S0045790615000257.

VMware, Inc. NSX Data Center. 2020. URL: https://www.vmware.
com/products/nsx.html.

Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and
Paul Hudak. “Maple: Simplifying SDN Programming Using Algo-
rithmic Policies”. In: SIGCOMM Comput. Commun. Rev. 43.4 (Aug.
2013), pp. 87-98. DOI: |10 .1145/2534169 . 2486030. URL: https :
//doi.org/10.1145/2534169.2486030.

Paulo Verissimo and Luis Rodrigues. Distributed systems for system
architects. Vol. 1. Springer Science & Business Media, 2012.

170

https://repository.tudelft.nl/islandora/object/uuid:5bd6da9f-1464-4203-a383-321ab34d4386
https://repository.tudelft.nl/islandora/object/uuid:5bd6da9f-1464-4203-a383-321ab34d4386
https://repository.tudelft.nl/islandora/object/uuid:5bd6da9f-1464-4203-a383-321ab34d4386
https://doi.org/10.1109/MC.2014.47
http://doi.ieeecomputersociety.org/10.1109/MC.2014.47
http://doi.ieeecomputersociety.org/10.1109/MC.2014.47
https://doi.org/10.1109/TNSM.2018.2848105
https://ieeexplore.ieee.org/document/8386840
https://ieeexplore.ieee.org/document/8386840
https://ieeexplore.ieee.org/abstract/document/8717837
https://ieeexplore.ieee.org/abstract/document/8717837
https://doi.org/10.1109/ISSREW.2018.000-3
https://doi.org/10.1109/ISSREW.2018.000-3
https://ieeexplore.ieee.org/document/8539191
https://doi.org/https://doi.org/10.1016/j.compeleceng.2015.01.019
https://doi.org/https://doi.org/10.1016/j.compeleceng.2015.01.019
http://www.sciencedirect.com/science/article/pii/S0045790615000257
http://www.sciencedirect.com/science/article/pii/S0045790615000257
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://doi.org/10.1145/2534169.2486030
https://doi.org/10.1145/2534169.2486030
https://doi.org/10.1145/2534169.2486030

[Wal0g|

[Wan+13]

[Wan-+14]

[Wan-+15]

[Wan-+18]

[Wan+19al

[Wan+19b|

John Walker. ent - A Pseudorandom Number Sequence Test Program.
2008. URL: http://www.fourmilab.ch/random/.

Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans,
and Yuri Gurevich. “Explicating SDKs: Uncovering Assumptions Un-
derlying Secure Authentication and Authorization”. In: Presented as
part of the 22nd USENIX Security Symposium (USENIX Security
13). Washington, D.C.: USENIX, 2013, pp. 399-314. URL: https:
//www .usenix .org/conference/usenixsecurity13/technical -
sessions/presentation/wang_rui.

Huangxin Wang, Quan Jia, Dan Fleck, Walter Powell, Fei Li, and
Angelos Stavrou. “A moving target DDoS defense mechanism”. In:
Computer Communications 46.0 (2014), pp. 10-21. DOIL: http://
dx.doi.org/10.1016/j.comcom.2014.03.009. URL: http://www.
sciencedirect.com/science/article/pii/S0140366414000954.

An Wang, Yang Guo, Fang Hao, T. V. Lakshman, and Songqing
Chen. “UMON: Flexible and Fine Grained Traffic Monitoring in
Open VSwitch”. In: Proceedings of the 11th ACM Conference on
Emerging Networking FExperiments and Technologies. CONEXT "15.
Heidelberg, Germany: Association for Computing Machinery, 2015.
DOI:10.1145/2716281.2836100. URL: https://doi.org/10.1145/
2716281 .2836100.

P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun. “Minimiz-
ing Controller Response Time Through Flow Redirecting in SDNs”.
In: IEEE/ACM Transactions on Networking PP.99 (2018), pp. 1-14.
DOI: [10.1109/TNET . 2017 . 2786268. URL: https://ieeexplore.
ieee.org/document/8248798.

C. Wang, Y. Zhang, X. Chen, K. Liang, and Z. Wang. “SDN-Based
Handover Authentication Scheme for Mobile Edge Computing in
Cyber-Physical Systems”. In: IEEE Internet of Things Journal 6.5
(Oct. 2019), pp. 8692-8701. DOI: |10 . 1109/ JIOT . 2019 . 2922979.
URL: https://ieeexplore.ieee.org/document/8736826.

X. Wang, K. Sun, A. Batcheller, and S. Jajodia. “Detecting "0-Day"
Vulnerability: An Empirical Study of Secret Security Patch in OSS”.
In: 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). June 2019, pp. 485-492. DOI: 10 .
1109/DSN . 2019 . 00056. URL: https://ieeexplore. ieee. org/
document/8809499.

171

http://www.fourmilab.ch/random/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_rui
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_rui
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_rui
https://doi.org/http://dx.doi.org/10.1016/j.comcom.2014.03.009
https://doi.org/http://dx.doi.org/10.1016/j.comcom.2014.03.009
http://www.sciencedirect.com/science/article/pii/S0140366414000954
http://www.sciencedirect.com/science/article/pii/S0140366414000954
https://doi.org/10.1145/2716281.2836100
https://doi.org/10.1145/2716281.2836100
https://doi.org/10.1145/2716281.2836100
https://doi.org/10.1109/TNET.2017.2786268
https://ieeexplore.ieee.org/document/8248798
https://ieeexplore.ieee.org/document/8248798
https://doi.org/10.1109/JIOT.2019.2922979
https://ieeexplore.ieee.org/document/8736826
https://doi.org/10.1109/DSN.2019.00056
https://doi.org/10.1109/DSN.2019.00056
https://ieeexplore.ieee.org/document/8809499
https://ieeexplore.ieee.org/document/8809499

[Wan+19c¢|

[Wan}20]

[Wan14]

[WAv17|

[WH13]

[WK16]

[Wu-+98|

[(WW1S]

Yingjie Wang, Xing Liu, Weixuan Mao, and Wei Wang. “DCDroid:
Automated Detection of SSL/TLS Certificate Verification Vulnera-
bilities in Android Apps”. In: Proceedings of the ACM Turing Cele-
bration Conference - China. ACM TURC '19. Chengdu, China: As-
sociation for Computing Machinery, 2019. DOI: 10.1145/3321408.
3326665. URL: https://doi.org/10.1145/3321408.3326665

Ziyu Wang, Hui Yu, Zongyang Zhang, Jiaming Piao, and Jianwei
Liu. “ECDSA weak randomness in Bitcoin”. In: Future Generation
Computer Systems 102 (2020), pp. 507-513. DOI: https://doi .
org/10.1016/j.future.2019.08.034. URL: http://www.science
direct.com/science/article/pii/S0167739X17330030.

Shie-Yuan Wang. “Comparison of SDN OpenFlow network simula-
tor and emulators: EstiNet vs. Mininet”. In: IEEE Symposium on
Computers and Communication (ISCC). IEEE. 2014, pp. 1-6. DOTI:
10.1109/ISCC.2014.6912609. URL: https://ieeexplore. ieee.
org/abstract/document/6912609.

T. Wan, A. Abdou, and P. C. van Oorschot. “A Framework and
Comparative Analysis of Control Plane Security of SDN and Conven-
tional Networks”. In: ArXiv e-prints (Mar. 2017). arXiv: 1703.06992
[cs.NI]. URL: https://arxiv.org/abs/1703.06992.

M. Wasserman and S. Hartman. Security Analysis of the Open Net-
working Foundation (ONF) OpenFlow Switch Specification. Internet
Engineering Task Force, 2013. URL: https://datatracker.ietf.
org/doc/draft-mrw-sdnsec-openflow-analysis/.

Dan Williams and Ricardo Koller. “Unikernel monitors: extending
minimalism outside of the box”. In: 8th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 16). USENIX Association.
2016. URL: https://www.usenix.org/conference/hotcloud16/
workshop-program/presentation/williams.

Thomas D Wu et al. “The Secure Remote Password Protocol.” In:
Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS). Vol. 98. 1998, pp. 97-111. URL: https://www.ndss-
symposium.org/ndss1998/secure-remote-password-protocol/.

Li Wang and Dinghao Wu. “Bridging the Gap Between Security Tools
and SDN Controllers”. In: EAI Endorsed Transactions on Security
and Safety 5.17 (2018). URL: https://eudl.eu/doi/10.4108/eai.
10-1-2019.156242.

172

https://doi.org/10.1145/3321408.3326665
https://doi.org/10.1145/3321408.3326665
https://doi.org/10.1145/3321408.3326665
https://doi.org/https://doi.org/10.1016/j.future.2019.08.034
https://doi.org/https://doi.org/10.1016/j.future.2019.08.034
http://www.sciencedirect.com/science/article/pii/S0167739X17330030
http://www.sciencedirect.com/science/article/pii/S0167739X17330030
https://doi.org/10.1109/ISCC.2014.6912609
https://ieeexplore.ieee.org/abstract/document/6912609
https://ieeexplore.ieee.org/abstract/document/6912609
https://arxiv.org/abs/1703.06992
https://arxiv.org/abs/1703.06992
https://arxiv.org/abs/1703.06992
https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis/
https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.ndss-symposium.org/ndss1998/secure-remote-password-protocol/
https://www.ndss-symposium.org/ndss1998/secure-remote-password-protocol/
https://eudl.eu/doi/10.4108/eai.10-1-2019.156242
https://eudl.eu/doi/10.4108/eai.10-1-2019.156242

[Xie+19]

[Xu+17]

[Yan 15|

[Yan-+16]

[YB14]

[Yig+19]

[YJ15]

J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu. “A
Survey of Machine Learning Techniques Applied to Software Defined
Networking (SDN): Research Issues and Challenges”. In: IEEE Com-
munications Surveys Tutorials 21.1 (Jan. 2019), pp. 393-430. DOL:
10.1109/COMST.2018.2866942. URL: https://ieeexplore. ieee.
org/document/8444669.

Lei Xu, Jeff Huang, Sungmin Hong, Jialong Zhang, and Guofei Gu.
“Attacking the Brain: Races in the SDN Control Plane”. In: 26th
USENIX Security Symposium (USENIX Security 17). Vancouver,
BC: USENIX Association, 2017, pp. 451-468. URL: https://wuw.
usenix.org/conference/usenixsecurityl7/technical-session
s/presentation/xu-lei.

Mao Yang, Yong Li, Depeng Jin, Lieguang Zeng, Xin Wu, and Athana-
sios V Vasilakos. “Software-defined and virtualized future mobile and

wireless networks: A survey”. In: Mobile Networks and Applications
20.1 (2015), pp. 4-18. DOI: https://doi.org/10.1007/s11036-

014-0533-8. URL: https://link. springer.com/article/10.

1007/s11036-014-0533-8.

Q. Yan, F. R. Yu, Q. Gong, and J. Li. “Software-Defined Network-
ing (SDN) and Distributed Denial of Service (DDoS) Attacks in
Cloud Computing Environments: A Survey, Some Research Issues,
and Challenges”. In: IEEE Communications Surveys Tutorials 18.1
(Jan. 2016), pp. 602-622. DOI: [10.1109/COMST . 2015. 2487361 URL:
https://ieeexplore.ieee.org/document/7289347.

Y. Yarom and N. Benger. “Recovering OpenSSL ECDSA Nonces
Using the FLUSH+ RELOAD Cache Side-channel Attack.” In: JACR
Cryptology ePrint Archive 2014 (2014), p. 140. URL: https://epri
nt.iacr.org/2014/140.pdf.

B. Yigit, G. Gur, B. Tellenbach, and F. Alagoz. “Secured Communi-
cation Channels in Software-Defined Networks”. In: IEEE Communi-
cations Magazine 57.10 (Oct. 2019), pp. 63—69. DOI: 10.1109/MCOM.
001.1900060. URL: https://ieeexplore. ieee.org/document /
8875716.

Jiagi Yan and Dong Jin. “V'T-Mininet: Virtual-Time-Enabled Mininet
for Scalable and Accurate Software-Define Network Emulation”. In:
Proceedings of the 1st ACM SIGCOMM Symposium on Software De-
fined Networking Research. SOSR ’15. Santa Clara, California: As-
sociation for Computing Machinery, 2015. DOI: [10.1145/2774993.
2775012. URL: https://doi.org/10.1145/2774993.2775012.

173

https://doi.org/10.1109/COMST.2018.2866942
https://ieeexplore.ieee.org/document/8444669
https://ieeexplore.ieee.org/document/8444669
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/xu-lei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/xu-lei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/xu-lei
https://doi.org/https://doi.org/10.1007/s11036-014-0533-8
https://doi.org/https://doi.org/10.1007/s11036-014-0533-8
https://link.springer.com/article/10.1007/s11036-014-0533-8
https://link.springer.com/article/10.1007/s11036-014-0533-8
https://doi.org/10.1109/COMST.2015.2487361
https://ieeexplore.ieee.org/document/7289347
https://eprint.iacr.org/2014/140.pdf
https://eprint.iacr.org/2014/140.pdf
https://doi.org/10.1109/MCOM.001.1900060
https://doi.org/10.1109/MCOM.001.1900060
https://ieeexplore.ieee.org/document/8875716
https://ieeexplore.ieee.org/document/8875716
https://doi.org/10.1145/2774993.2775012
https://doi.org/10.1145/2774993.2775012
https://doi.org/10.1145/2774993.2775012

[Yoo+17al

[Yoo+17h|

[YR15]

[YRC18]

[Yul8]

[YYO05]

[ZET15]

Changhoon Yoon, Seungsoo Lee, Heedo Kang, Taejune Park, Seung-
won Shin, V. Yegneswaran, Phillip Porras, and Guofei Gu. “Flow
Wars: Systemizing the Attack Surface and Defenses in Software-
Defined Networks”. In: IEEE/ACM Transactions on Networking 25.6
(2017), pp. 3514-3530. DOI: 10.1109/TNET . 2017 . 2748159. URL:
https://ieeexplore.ieee.org/abstract/document/8048353.

Changhoon Yoon, Seungwon Shin, Phillip Porras, Vinod Yegneswaran,
Heedo Kang, Martin Fong, Brian O’Connor, and Thomas Vachuska.
“A Security-Mode for Carrier-Grade SDN Controllers”. In: Proceed-
ings of the 33rd Annual Computer Security Applications Conference.
ACSAC 2017. Orlando, FL, USA: ACM, 2017, pp. 461-473. DOI:
10.1145/3134600.3134603. URL: http://doi.acm.org/10.1145/
3134600.3134603.

Jiangshan Yu and Mark D. Ryan. “Device Attacker Models: Fact and
Fiction”. In: Security Protocols XXIII. Ed. by Bruce Christianson,
Petr Svenda, Vashek Matyas, James Malcolm, Frank Stajano, and
Jonathan Anderson. Cham: Springer International Publishing, 2015,
pp. 158-167. DOL: https://doi .org/10.1007/978-3-319-26096-
9_17. URL: https://link.springer.com/chapter/10.1007/978-
3-319-26096-9_17.

J. Yu, M. Ryan, and C. Cremers. “DECIM: Detecting Endpoint Com-
promise In Messaging”. In: IEEE Transactions on Information Foren-
sics and Security 13.1 (2018), pp. 106-118. DOI: 10. 1109/ TIFS.
2017 .2738609. URL: https://ieeexplore.ieee.org/document/
8007243.

Jiangshan Yu. Tamarin models for ANCHOR. 2018. URL: http://
www . jiangshanyu.com/doc/paper/ANCHOR-proof .zip.

FrancesF. Yao and YiqunLisa Yin. “Design and Analysis of Password-
Based Key Derivation Functions”. English. In: Topics in Cryptology
- CT-RSA 2005. Ed. by Alfred Menezes. Vol. 3376. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2005, pp. 245-261.
DOI: 10.1007/978-3-540-30574-3_17. URL: http://dx.doi.org/
10.1007/978-3-540-30574-3_17.

KIM ZETTER. Researchers Solve Juniper Backdoor Mystery; Signs
Point to NSA. 2015. URL: https://www.wired . com/2015/12/
researchers-solve-the-juniper-mystery-and-they-say-its-
partially-the-nsas-fault/.

174

https://doi.org/10.1109/TNET.2017.2748159
https://ieeexplore.ieee.org/abstract/document/8048353
https://doi.org/10.1145/3134600.3134603
http://doi.acm.org/10.1145/3134600.3134603
http://doi.acm.org/10.1145/3134600.3134603
https://doi.org/https://doi.org/10.1007/978-3-319-26096-9_17
https://doi.org/https://doi.org/10.1007/978-3-319-26096-9_17
https://link.springer.com/chapter/10.1007/978-3-319-26096-9_17
https://link.springer.com/chapter/10.1007/978-3-319-26096-9_17
https://doi.org/10.1109/TIFS.2017.2738609
https://doi.org/10.1109/TIFS.2017.2738609
https://ieeexplore.ieee.org/document/8007243
https://ieeexplore.ieee.org/document/8007243
http://www.jiangshanyu.com/doc/paper/ANCHOR-proof.zip
http://www.jiangshanyu.com/doc/paper/ANCHOR-proof.zip
https://doi.org/10.1007/978-3-540-30574-3_17
http://dx.doi.org/10.1007/978-3-540-30574-3_17
http://dx.doi.org/10.1007/978-3-540-30574-3_17
https://www.wired.com/2015/12/researchers-solve-the-juniper-mystery-and-they-say-its-partially-the-nsas-fault/
https://www.wired.com/2015/12/researchers-solve-the-juniper-mystery-and-they-say-its-partially-the-nsas-fault/
https://www.wired.com/2015/12/researchers-solve-the-juniper-mystery-and-they-say-its-partially-the-nsas-fault/

[ZFC17|

|Zha+14]

[ZIR15]

2J717]

1ZSV02]

Hong Zhong, Yaming Fang, and Jie Cui. “LBBSRT: An efficient SDN
load balancing scheme based on server response time”. In: Future
Generation Computer Systems 68 (2017), pp. 183-190. DOIL: https:
//doi.org/10.1016/j.future.2016.10.001. URL: http://www.
sciencedirect.com/science/article/pii/S0167739X16303727.

Jing Zhang, Zakir Durumeric, Michael Bailey, Mingyan Liu, and
Manish Karir. “On the Mismanagement and Maliciousness of Net-
works”. In: Symposium on Network and Distributed System Secu-
rity (NDSS). 2014. URL: https: //www . ndss - symposium . org /
ndss2014/programme/mismanagement-and-maliciousness-netwo
rks/.

Y. Zhao, L. lannone, and M. Riguidel. “On the performance of SDN
controllers: A reality check”. In: IEEE Conference on Network Func-
tion Virtualization and Software Defined Network (NFV-SDN). 2015,
pp. 79-85. DOI: [10. 1109 /NFV - SDN . 2015 . 7387410, URL: https :
//ieeexplore.ieee.org/document/7387410.

Shengzhi Zhang, Xiaoqi Jia, and Weijuan Zhang. “Towards compre-
hensive protection for OpenFlow controllers”. In: 19th Asia-Pacific
Network Operations and Management Symposium (APNOMS). IEEE.
2017, pp. 82-87. DOI:|10.1109/APNOMS.2017.8094183. URL: https:
//ieeexplore.ieee.org/abstract/document/8094183.

Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. “COCA:

A Secure Distributed Online Certification Authority”. In: ACM Trans.
Comput. Syst. 20.4 (Nov. 2002), pp. 329-368. DOI: 10.1145/571637.

571638. URL: https://doi.org/10.1145/571637.571638.

175

https://doi.org/https://doi.org/10.1016/j.future.2016.10.001
https://doi.org/https://doi.org/10.1016/j.future.2016.10.001
http://www.sciencedirect.com/science/article/pii/S0167739X16303727
http://www.sciencedirect.com/science/article/pii/S0167739X16303727
https://www.ndss-symposium.org/ndss2014/programme/mismanagement-and-maliciousness-networks/
https://www.ndss-symposium.org/ndss2014/programme/mismanagement-and-maliciousness-networks/
https://www.ndss-symposium.org/ndss2014/programme/mismanagement-and-maliciousness-networks/
https://doi.org/10.1109/NFV-SDN.2015.7387410
https://ieeexplore.ieee.org/document/7387410
https://ieeexplore.ieee.org/document/7387410
https://doi.org/10.1109/APNOMS.2017.8094183
https://ieeexplore.ieee.org/abstract/document/8094183
https://ieeexplore.ieee.org/abstract/document/8094183
https://doi.org/10.1145/571637.571638
https://doi.org/10.1145/571637.571638
https://doi.org/10.1145/571637.571638

	Abstract
	Introduction
	Problem statement
	Proposal
	Contributions
	Structure of the Thesis

	Background and Related Work
	Software-Defined Networking
	The Threat Plane
	Security requirements of control plane communications
	Securing Control Plane Communications
	Final Remarks

	Logical Centralization Revisited
	anchor Blueprint
	Security Challenges
	Logically-Centralized Security

	Secure Control Plane Communications
	KISS architecture
	iDVV: Keep It Simple and Secure
	iDVV Evaluation
	Discussion
	Final remarks

	anchor: Design and Implementation
	Enforcing Logically-centralized Security
	Implementation
	Evaluation
	Discussion

	r-anchor: Robust and Resilient anchor
	Before and after anchor
	Baseline measures for hardening anchor
	r-anchor Resilient Management Architecture
	Setup and protocols
	Final remarks

	Conclusions and Future Work
	Summary of Contributions
	Limitations
	Future Work

	Correctness of algorithms of KISS
	Correctness of Algorithm 1
	Correctness of Algorithm 2

	Operations and security analysis of anchor
	The three stages of anchor
	Correctness of Algorithm 3
	Correctness of Algorithm 4
	Correctness of Algorithm 7
	Meeting ONF's security requirements
	Security Analysis of anchor

