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Abstract

Unprecedented proliferation of mobile devices is leading to ever-increasing densification of the
networks. Densification and increase in demand overwhelm the dedicated allocation of spatial
and frequency resources, hence, leading to their reuse. Several techniques, e.g., precoding, have
been considered for the mitigation of interference from this reuse. Despite this, due to resource
limitations, only a few requests can be handled during transmission in a given transmit slot. This
naturally leads to the scheduling of the requests (or typically referred to as users) which, in turn,
impacts co-channel interference. Thus, the average performance of the multiuser multiple-input
single-output (MISO) downlink channel, with a large number of users compared to transmit an-
tennas of the base station, depends on the interference management which necessitates the joint
design of scheduling and precoding. Typically, the joint design of scheduling and precoding is
addressed by mixed-Boolean non-linear programming (MINLP) where the Boolean variables are
associated with scheduling. These MINLP formulations in the literature lead to the coupling of
Boolean and precoding variables; this coupled nature thwarts the joint update of scheduling and
precoding variables. Unlike the previous works which do not offer a truly joint design, this the-
sis focuses on a joint design that truly facilitates the joint update of scheduling and precoding
variables for the following cases in single-cell multiuser MISO downlink channels: per slot joint
design for the unicast scenario, per slot design for multigroup multicast (MGMC) scenario and
joint design over multiple slots for unicast and multicast scenarios.

These scenarios are of relevance and are already being considered in current and upcoming
standards including 4G and 5G. This thesis begins by presenting the necessity of the joint de-
sign of scheduling and precoding for the aforementioned scenario in detail in chapter 1. Further,
the coupled nature of scheduling and precoding that prevails in many other designs is discussed.
Following this, a detailed survey of the literature dealing with the joint design is presented. In
chapter 2, the joint design of scheduling and precoding in the unicast scenario for multiuser MISO
downlink channels for network functionality optimization considering sum-rate, Max-min SINR,
and power. Thereafter, different challenges in terms of the problem formulation and subsequent
reformulations for different metrics are discussed. Different algorithms, each focusing on optimiz-
ing the corresponding metric, are proposed and their performance is evaluated through numerical
results. In chapter 3, the joint design of user grouping, group scheduling, user scheduling, and
precoding is considered for MGMC. Differently to chapter 2, the optimization of a novel metric
called multicast energy efficiency (MEE) is considered. This new paradigm for joint design in
MGMC poses several additional challenges that can not be dealt with by the design in chapter
2. Therefore, towards addressing these additional challenges, a novel algorithm is proposed for
MEE maximization and its efficacy is presented through simulations. In chapters 2 and 3, the joint
design is considered within a given transmit slot and temporal design is not considered. In chapter
4, the joint design scheduling and precoding are considered over a block of multiple time slots
for a unicast scenario. Differently to single slot design, the multi-slot joint design facilitates to
address users’ latency directly in terms of time slots. Noticing this, joint design across multiple
slots is considered with the objective of minimizing the number of slots to serve all the users sub-
ject to users’ QoS and latency constraints. Further, this multi-slot joint design problem is modeled
as a structured group sparsity problem. Finally, by rendering the problem as a DC, high-quality
stationary points are obtained through an efficient CCP based algorithm. In chapter 5, the joint
scheduling and precoding schemes proposed in previous chapters are applied to satellite systems.
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Finally, The thesis concludes with the main research findings and the identification of new research
challenges in chapter 6.
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Notations

log(x) Natural logarithm function of x.

ex Exponential function of x.

E {·} Expected value.

Re {·} Real part.

Im {·} Imaginary part.

a, a, A A scalar, a column vector and a matrix.

|a| Modulus of scalar a.

Aij The entry of the i-th row and j-th column of matrix A.

aT , AT Transpose of vector a, transpose of matrix A.

aH , AH Complex conjugate and transpose (hermitian) of vector a, complex conjugate and
transpose (hermitian) of matrix A.

A � 0 Matrix A positive semidefinite.

A� B Hadamard product between matrices A and B, i.e., the element-wise multiplication
of their elements.

A⊗ B Kronecker product between matrices A and B.

Tr(A) Trace of matrix A.

diag(a) Diagonal matrix whose entries are the elements of vector a.

IQ Identity matrix of dimension Q.

arg Argument.

max Maximum.

min Minimum.

N (µ̃, σ̃2) Gaussian or Normal distribution with mean µ̃ and variance σ̃2.
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Acronyms

MISO multiple input single output.

MINLP Mixed integer non-liner programming.

DC Difference-of-convex/ concave.

SINR Signal-to-noise and interference-ratio

SE Spectral efficiency.

WSR Weighted sum rate.

EE Energy efficiency.

MEE Multicast energy efficiency.

MGMC Multigroup multicast.

SUS Semi orthogonal user scheduling

JSP Joint design of scheduling and precoding.

JGSP Joint design of user grouping, group scheduling, user scheduling and precoding.

CCP Convex-concave procedure
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1
Introduction

1.1 Introduction

The mobile data traffic is exploding unprecedentedly due to the exponential increase in mobile
devices and their demand for throughput hungry services and applications [1]; this overwhelms
the existing networks in terms of resources. Therefore, resource management/allocation policies
play a vital role in wireless communication networks. Resource management policies typically
address a wide spectrum of network functionalities such as scheduling, power control, bandwidth
reservation, call admission control, transmitter assignment, handover, etc [2, 3]. The aforemen-
tioned resource management typically spreads across multiple layers i.e, physical layer, data link
layer, etc. This thesis considers the problems related to resource allocation at the physical layer.
Physical resource management usually includes managing time, frequency, and spatial resources
which are limited in comparison to the number of devices/requests. To cope with the demand of
high throughput services and exponentially increasing devices/requests/users, full frequency and
time resources reuse among the users along with multi-antenna technologies, that facilitate serv-
ing multiple users simultaneously, is considered in the current generation networks. To realize
and leverage the benefits of the aforementioned techniques, the resulting interference among the
users/devices stemming from the reuse of resources and simultaneously serving multiple users
must be addressed [4–7]. Besides the exponential increase in number of devices, multiple requests
per device further exhausts the physical layer resources. Even with aforementioned technologies,
serving all the users concurrently using same spatial and frequency resources becomes unrealis-
tic. This inevitably leads to the scheduling of users per resources in a transmission slot. Further,
multiple slots are necessary to serve all the yet-to-be served users. Therefore, user scheduling
is a inevitable design aspect that must be considered for the resource allocation. Moreover, the
user scheduling when combined with aforementioned technologies like multi antenna, precoding
etc further enhances the gains obtained by these technologies. Therefore, this thesis focuses on
the joint design of user scheduling and precoding in multiuser multiple input single out downlink
channels for unicast and multicast transmission scenarios within a transmission slot. Further, we
investigate the joint design user scheduling and precoding across the multiple transmission slots
for unicast scenario.
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1.1.1 Joint unicast and multicast scheduling and precoding across multiple slots

We consider a network with large number of users each equipped with a single receive antenna.
This is typically the scenario is modern networks like 4G and 5G. Further, a rudimentary process-
ing is assumed at the users hence a user can receive only one data stream at a time. In a typical
network, some data is requested by only one user and some data is requested by multiple users.
Multiple users requesting the same data is referred to as a group. Data transmission to a user
requesting independent data is referred to as unicast transmission and data transmission of same
data to a group of users is referred to as multicast transmission. In such networks, the service
needed to serve all the users can only be measured by the number of independent data transmis-
sions. The number of users and the number of requests per users easily overwhelms the number of
independent data transmissions that can be carried by network in a given transmit slot. Therefore,
the scheduling of groups is inevitable. Further, in some scenarios, all the users in a group also may
not be served as these users may fail to satisfy the associated QoS requirements like minimum rate.
Hence, these users need to be dropped from scheduling; this is referred to as user scheduling in
the thesis. Further, some users may be requesting multiple data simultaneously. Therefore, a user
may show the interest to be member of multiple groups. Since, a simple decoding is assumed at
each user, a user can be member of at most one group. Therefore, despite a user’s interest multiple
groups, a user can be member of utmost one group; this is referred to as user grouping.

In a single transmission, only a fraction of total requests can be served and, hence, typically
multiple time slots required to serve all the requests. For example, a user requesting two ser-
vices are served in two different slots. Therefore, all the above mentioned scheduling aspects are
performed over the multiple slots. Moreover, the precoding design for the users scheduled in all
these levels must be feasible. Therefore, the joint design of group scheduling, user grouping, user
scheduling and precoding over multiple slots is needed. This problem is gigantic and complex to
solve. Therefore, towards reaching this goal we adopt the bottom-up approach of solving the sub-
problems where each sub-problem in the subsequent chapters subsume the sub-problems in the
previous chapters. The rest of chapter presents the overview of the sub-problems in the ascending
order in the bottom-up approach.

1.1.2 Unicast scenario

In a unicast scenario, each user is treated independently and addressed by an independent data
transmission. So, the base station equipped with M transmit antenna can serve simultaneously
up to M users. However, the users that receive the data simultaneously experience interference.
Moreover, this interference decides the maximum rate at which users can be served. Typically,
each user is associated with a minimum rate requirement depending on service the user is sub-
scribed to. The severe interference may preclude the design from serving the users with the
requested data speed. This leads to the infeasibility of the design. Therefore, interference is a
vital factor to be reckoned with and, hence, a great deal of literature has been dedicated towards
addressing it.

Typically, the interference is canceled at the transmitter assuming the availability of chan-
nel state information (CSI) and employing a signal processing technique called precoding (also
referred to as beamforming) [8, 9]. In multiuser downlink precoding, the BS can cancel the inter-
ference towards the unintended mobile stations (MS) to minimize the co-channel interference, e.g.,
by employing multiuser zero-forcing precoding [10, 11]. As a result, multiple MSs can be served
jointly at the same time and frequency resources, resulting in the so-called space-division multi-
ple access (SDMA) schemes [12–14]. Through serving multiple MSs with SDMA concurrently,
multiuser downlink beamforming achieves high spectrum efficiency. In light of the potential ad-
vancement towards energy and spectrum-efficient mobile communications, multiuser downlink
beamforming has been adopted into modern third-generation (3G), fourth-generation (4G) and
fifth-generation (5G) cellular standards, e.g., in long-term evolution (LTE) and LTE-advanced
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(LTE-A) of the third generation partnership project (3GPP) [15–18]. In this framework, different
strategies have been considered for the precoder design. The optimal precoding strategy for the
minimization of the total transmit power, whilst guaranteeing some Quality-of-Service (QoS) tar-
gets at each user was given in [8,19], while the problem of precoding for maximizing the minimum
signal-to-interference-plus-noise ratio (SINR) across the users, under sum power constraints, was
optimally solved in [20]. The goal of the latter formulation is to increase the fairness of the system,
hence the approach is also referred to as the max-min fair. This work on precoding was extended
in [21] accounting for per-antenna power constraints considering generalized power constraints.
The precoding design for energy efficiency maximization in orthogonal frequency division multi-
ple access networks is considered in [22]. Furthermore, the problem of channel level precoding in
a multigroup multicast framework has been tackled in [23, 24].

Typically, the number of users in a cell, say N , are greater than the number of antennas, M ,
at the base station (BS). Assuming independent transmissions on each antenna, BS can support
utmost M independent data transmissions simultaneously in a slot. This naturally leads to the
scheduling of utmost M users (also referred to as user selection and admission control in the
literature). As mentioned previously, the simultaneously served users cause interference among
each other. This interference is thus a function of user scheduling. Users with similar channels
have the highest interference and users with orthogonal channels can lead to zero interference
depending on the beamforming strategy. Further, user scheduling is also a function of the quality-
of-service (QoS) requirements of the users. All users with high QoS requirements may not be
served in the same slot due to the limitation of resources like power or severe interference. In
this case, the precoding design for the independently scheduled users may become infeasible. In
other words, the scheduling need to consider the feasibility of precoding as well. Therefore, the
scheduling and precoding problem are coupled and requires their joint design.

The data transmission is performed by slot, and, so the joint design of scheduling and pre-
coding. In slot one, joint scheduling and precoding are performed on the total number of users
based on the objectives of the design. Further, the joint design for the users that are not scheduled
in the current slot is considered in the future slot. This process is repeated until all the users are
served. In this regard, many works considered the design of scheduling and precoding in a slot for
the following objectives: sum-rate maximization [25], maximize the minimum signal-interference
plus noise ratio (max-min SINR) [26], power minimization [27] and energy efficiency maximiza-
tion [28]. Further, the designs are subject to the subset or all of the following constraints: minimum
rate/SINR requirement, total power, or per antenna power consumption, minimum desired number
of scheduled users or maximum number of scheduled users.

1.1.3 From unicasting to multicasting

In many scenarios, identical data is requested simultaneously by multiple users in the same cell,
for example, live streaming of popular events. Unlike the unicast scenario, which addresses each
user differently, the same information can be multicast to the set of users requesting the same data
using a single beamforming vector in the same time-frequency slot; this design is referred to as
physical layer multicasting (MC) [29, 30]. In the case of a unicast scenario, a data stream serves
only one user, hence, the number of received bits per second per Hz across all the users is the
same as the transmitted bits per second per Hz. Generally, transmitted bits per second per Hz is
commonly referred to as spectral efficiency (SE). However, in the case of MC, a group of users
is served by a single data stream. Therefore, the total number of received bits per second per
Hz is simply the number of users in a group times the SE; this is simply referred to as multicast
spectral efficiency (MSE) in this thesis. Further, the MC technique is extended to multiple anten-
nas scenarios to serve multiple groups simultaneously where each group receives a independent
information; this is referred to as multigroup multicasting (MGMC) [29]. However, similar to
the unicast scenario, MGMC experiences the following challenges that need to be addressed to
fully leverage the gains of MGMC. The similarity among the users in different groups generates
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interference across the groups; this is referred to as inter-group interference (IGI). A study of IGI
is essential as it fundamentally limits achievable minimum rate of the groups and hence the total
throughput of the network [31]. Further, IGI can make the design infeasible [31]. The infeasibility
of MGMC is crucial to the design and is, therefore, typically addressed by user scheduling (also
referred to as admission control in the literature) [32, 33]. Following two examples gives an idea
of how the user scheduling is used for addressing infeasibility of MGMC:

• In some cases, by simply omitting a user IGI can be reduced to a level where the groups can
be served with intended QoS.

• In some other cases, omitting a user with poor channel gain, the groups can be served with
available power budget.

Due to the exponentially growing number of devices, the number of groups, sayG, is typically
larger than the number of antennas M . Since the utmost M groups can be served simultaneously,
this naturally leads to the scheduling of the utmost M out of G groups; this is referred to as group
scheduling. Further, some users are interested in multiple information (or groups) but can only be
a member of one group since the users’ are equipped with a single receive antenna with simple
decoding strategy; this is referred to as user grouping. Further, the user in a scheduled group that
do not meet the QoS requirement are simply not scheduled; this is referred to as user scheduling.
Notice that there are three different scheduling (or selection) schemes at different levels: user
grouping (user’s assignment to a group), user scheduling (addressing scheduling within a group),
group scheduling. User grouping, group scheduling, and user scheduling are inter-related. To see
this, user grouping decides the achievable minimum SINR of the groups (or IGI) which influences
the group scheduling. The IGI among the scheduled group influence the user scheduling. Further,
omitting or adding a user (i.e., user scheduling) to a group changes the IGI, thereby influencing
group scheduling. Similarly, user scheduling in a group might necessitate the re-grouping of users
(i.e., user grouping); this affects IGI and group scheduling. Furthermore, IGI is a function of
precoding [34]. Therefore, optimal performance requires the joint design of user grouping, group
scheduling, user scheduling, and precoding.

1.1.4 One slot joint design to multi-slot joint design

To provide the service to all the users the multi slot design is inevitable as only a fraction of users
can be served in a single slot (ex: 8 out of 1500 users in a 4G advanced LTE network). Therefore,
the users that are not scheduled in the current slot are scheduled in the future slot based on some
procedure like round-robin scheduling, random scheduling etc; these methods are referred to as
sequential designs. However, the scheduled users in the current slot influence the scheduling in the
future time slot. In the worst-case scenario, in the sequential approach, the joint design problem
may become infeasible (the inability of finding a feasible solution) in the future slots. This could
happen due to the following reasons:

• Unmet capacity: In a typical network, user channels are independent due to which some
users may have good channel gains over multiple slots and some users may experience
decay in channel gains over the slots. Failing to schedule the users with decaying channel
gains in the early slots makes it impossible for the design to serve these users in the future
slots with their required capacity.

• Unmet latency: Typically, each user’s request is associated with an independent timer and
the data needs to be delivered within the expiry of the timer. This is referred to as a la-
tency requirement. Scheduling users with relatively lower timer values may not always be
a feasible choice. For example, users with similar channels causes strong interference to
each other, and, hence these two users can not be served in the same slot irrespective of the
urgency in the latency requirement. Failing to consider the current slot scheduling impact
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on the future slots may lead scenario that requires the joint design for the users with similar
channels, hence, the infeasibility of the joint design.

• Unmet capacity and latency: In a typical network, each user is associated with an indepen-
dent capacity and latency requirements. This case subsumes both unmet capacity and unmet
latency. Hence, ignoring the impact of the joint design in the current slot on the future slots
only increases the probability of infeasibility of the joint design in the future slots.

In this case, scheduling exists in two levels: scheduling within a time slot and scheduling
across time slots. Without loss of generality, these are simply referred to as scheduling. It is clear
from the above discussion that it is vital to consider the joint design of scheduling and precoding
over all time slots. In this chapter, we consider the joint design of scheduling and precoding
over multiple slots; this is simply referred to as joint temporal design. For the above mentioned
reasons, the joint temporal design provides a feasible solution where the sequential approach fails
to provide one. This is because, for the cases where joint design becomes infeasible in the future
slots, the joint temporal design offers the flexibility of adjusting scheduling in the previous slots
that can make the joint design feasible in the future slots. Moreover, for the cases where the user
can not be served completely in one slot, the joint temporal design offers the flexibility of serving
the user in multiple slots while meeting the user’s overall QoS and latency requirement; this model
is simply referred to as rate-splitting

1.1.5 Motivation

Most of the existing literature on the design of scheduling and precoding can be classified as:

• Non-iterative decoupled approach: In this approach, scheduling and precoding are treated
as two decoupled problems where usually the users are scheduled according to some criteria
followed by precoding [10, 25], [26, 35, 36].

• Iterative decoupled approach: In this approach, scheduling and precoding are still treated as
two separate problems. However, scheduling and precoding parameters are refined in each
iterate to improve the objective based on the feedback from the previous iterate [27,37–39].

• Joint formulation with alternate update: In this approach, the joint design problem is formu-
lated as a function of both scheduling and precoding [40–42]. However, these formulations
are not amenable for the joint update as the scheduling variables are coupled to precoding
variables which inhibits their joint update. Hence, during the solution stage either schedul-
ing constraints are ignored [40] or the scheduling and precoding variables are updated alter-
natively [41].

Recalling the above discussions, the aforementioned problems requires the respective scheduling
variables and precoding variables are inter-coupled [43]. Hence, the joint update scheduling and
precoding has the potential to achieve better performance over the aforementioned approaches [10,
25, 40], [26, 27, 35–39]. The authors in [44] have shown the user scheduling and power allocation
problem to be NP-hard. The joint design problems that are considered in this thesis encapsulate
the problem considered in [44] as a special case. Hence, considered joint design problems are non-
convex and difficult [37]. Hence, the optimal solution entails an exhaustive search over Boolean
space (user scheduling) and further involves the solution of a non-convex precoding problem. The
exponential complexity of an exhaustive search for practical system dimensions motivates a shift
towards low-complexity achievable solutions.

This thesis focuses on the joint design of various scheduling and precoding aspects that occur
in unicast and multicast downlink transmission in cellular and satellite systems. The applicability
of joint design framework developed in this thesis is not just limited to these problems. Many of
the mixed-integer non-linear programming (MINLP) problems that arise in the context of resource
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allocation in wireless communications can be addressed within this framework (see e.g., [45,46]).
The coupled nature of binary variables with precoding vector appears in many other formula-
tions [47, 48] etc. For example, towards maximizing the weighted sum-rate in a hierarchical
network, binary variables associated with users get multiplied to signal power and interference
power of SINR [40]. Similarly, in [42], a binary variable is multiplied to the rate of the users
in the weighted sum-rate maximization problem. Please note that system models and objectives
discussed in [40, 42, 48] are different from each other, and the emphasis is only on the occurrence
of the joint design (coupled discrete and continuous) nature that prevails in different designs. The
multiplicative nature in previous formulations precludes the joint update of scheduling and pre-
coding. In this thesis, we focus on developing algorithmic framework that can be adopted to most
of the MINLPs that occur in many wireless applications. For this purpose, to provide the emphasis
on algorithmic framework, the joint design framework is presented for the abstract system models
which provide the basis for the most of the existing models. Moreover, the proposed framework
provides solutions with low to moderate complexity with provable theoretical convergence guar-
antees. To this end, the main objectives, contributions, and outline of the thesis summarized in the
sequel.

1.2 Objectives, contributions, and outline of the thesis

The objective of this thesis is to jointly design the various scheduling and precoding aspects that
occur in unicast, multicast, and multislot-unicast downlink transmission scenarios for the opti-
mization of various design objectives (such as sum-rate, max-min SINR, etc) in MU-MISO sys-
tems.

Chapter 2

In chapter 2, the joint design of scheduling and precoding for unicast scenario is considered in the
downlink transmission of MU-MISO systems unlike the quasi-joint approaches of the literature.
In this chapter, scheduling simply refers to the user scheduling. In this model, to address the cur-
rent ultra-dense networks, the number of users is assumed to be larger than the number of transmit
antennas. Hence, scheduling of the users in inevitable in such networks. The sum-rate maximiza-
tion, max-min SINR maximization, and power minimization are considered as the objective of
optimization subject to suitable design constraints. Unlike the previous works, user scheduling is
handled through the norm of the precoding vectors where the non-zero norm represents the user
being scheduled. Further, with the help of binary variables which control the norm of the precod-
ing vectors, the joint design of scheduling and precoding for the aforementioned objectives are
formulated as a structured MINLP problems; this special structure allows the decoupling of the
scheduling and precoding variables which otherwise hinders their joint update. This decoupling
provides the possibility of updating the all of the design variables jointly. Generally, MINLP prob-
lems are hard to solve, however, understanding the underlying structure helps in proposing the al-
gorithms which theoretically guarantee their convergence to high-quality solutions like stationary
points. Realizing this, through novel reformulations, that reveal the hidden difference-of-convex
(DC) structure, followed by binary relaxation and penalization the MINLP problems are trans-
formed as DC problems. Finally, the stationary points of the DC problems are obtained through
the convex-concave procedure (CCP) with theoretical guarantees on their convergence. Due to
the effectiveness of penalization methods, the stationary point of the DC problems includes binary
solutions with high probability. Since the stationary point of DC problems with binary solutions
is also the stationary point of the original MBNLP problems, the proposed algorithms typically
obtain the stationary point of the original problems. The proposed joint design algorithms provide
the gains up to 28% in comparison to decoupled approaches.

Following are the publications that are results as a part of this study:
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[J1]: A. Bandi, B. Shankar M. R, S. Chatzinotas and B. Ottersten, ”A Joint Solution for Schedul-
ing and Precoding in Multiuser MISO Downlink Channels,” in IEEE Transactions on Wireless
Communications, vol. 19, no. 1, pp. 475-490, Jan. 2020, doi: 10.1109/TWC.2019.2946161.

[C1]: A. Bandi, B. S. Mysore R, S. Maleki, S. Chatzinotas and B. Ottersten, ”A Novel Approach to
Joint User Selection and Precoding for Multiuser MISO Downlink Channels,” 2018 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 2018, pp.
206-210, doi: 10.1109/GlobalSIP.2018.8646373.

Chapter 3

In chapter 2, we studied the joint design of user scheduling and precoding for unicast scenario. In
chapter 3, the joint design framework proposed in chapter 2 is extended to the multigroup multi-
cast scenario. In more detail, the joint design of user grouping, group scheduling, user scheduling,
and precoding is considered for a message-based MGMC scenario in the downlink transmission
of an MU-MISO system. In the context of user grouping, group scheduling and user scheduling to
encapsulate the group sizes a novel metric called multicast energy efficiency (MEE) is proposed.
MEE is defined as ratio of multicast spectral efficiency and total consuming power, maximiza-
tion is considered as the objective of the optimization. Further, the network power model that
accounts for the rate-dependent processing power is considered. Unlike the objectives in chapter
1, MEE, beside the combinatorial nature due to different scheduling aspects, brings in additional
fractional programming complexities into the design. Hence, the joint design problem becomes
a mixed-Boolean fractional programming problem (MBFLP). Through novel reformulation, bi-
nary relaxations, and penalization the MBFLP problem is transformed as a DC problem. Finally,
through CCP, first-order stationary points of the DC problems with binary solutions are obtained.
Therefore, the proposed algorithm obtains the stationary points of the original MBFLP problem.
Following are the submitted and accepted publications as part of the study in this chapter:
[J2]: A. Bandi, B. Shankar M. R, S. Chatzinotas and B. Ottersten, ”Joint User Grouping, Schedul-
ing, and Precoding for Multicast Energy Efficiency in Multigroup Multicast Systems,” submitted
to IEEE Transactions on Wireless Communications.

[C2]: A. Bandi, B. S. Mysore R., S. Chatzinotas and B. Ottersten, ”Joint User Scheduling, and
Precoding for Multicast Spectral Efficiency in Multigroup Multicast Systems,” 2020 IEEE In-
ternational Conference on Signal Processing and Communications (SPCOM), Bangalore, India,
2020

Chapter 4

Chapters 2 and 3 deal with joint designs for unicast and multicast scenarios respectively in a given
transmit slot. In chapter 4, the joint design of user scheduling and precoding over multiple slots is
considered for a unicast scenario in MU-MISO channels. Unlike per transmit slot joint designs in
chapters 2 and 3, the multi-slot joint design brings in the additional flexibility to incorporate two
design aspects: user latency and rate-splitting. Assuming the constant traffic arrival process, un-
der the availability of perfect channel state information, the joint temporal design is considered for
two scenarios: unicast and multicast. Minimization of the service time (STM) required to serve all
the users is considered as the objective of the optimization. Similar to the problems in Chapter 1,
these optimization problems are MINLP and NP-hard. Further, STM is modeled as minimization
of highest column index of a non-zero column in the matrix where column j contains scheduled
users in slot j; this renders the problem as structured group sparsity problem. Further, using sim-
ilar reformulations, binary relaxations, and penalization as in chapter 1, the joint design problem
is formulated as a DC problem. Finally, using CCP the first-stationary points of DC (also original
problems as the binary solutions included) are obtained.
Following are the publications to be submitted:
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[J3]: A. Bandi, B. Shankar M. R, S. Chatzinotas and B. Ottersten, ”Joint Design of User Schedul-
ing and Precoding over Multiple Slots: A Structured Group Sparsity based Approach,” to be sub-
mitted to IEEE Transactions on Wireless Communications.

Chapter 5

In chapter 5, we apply the joint scheduling and precoding techniques mentioned in the previous
chapters to satellite systems, assuming digital on-board processing. Unlike the cellular networks,
the satellite systems are limited by the onboard available power which in turn limits the processing
power. Due to the limited processing realization of the existing precoding schemes in practice is
possibly infeasible. The precoder is designed once per coherence time which typically lasts for
multiple slots. Therefore, the processing power needed to apply the calculated precoding matrix
dominates the overall processing power rather than the computational complexity of precoding
design. Therefore, in the first part of this chapter, we design a sparse precoder with as mini-
mum non-zeros as possible subject to QoS and total processing power constraints. Further, the
joint design of group scheduling, user scheduling and precoding is considered for the frame-based
MGMC. Finally, the joint temporal design is considered.

Following are the accepted publications as part of the study in this chapter:

[C3]: A. Bandi, V. Joroughi, B. S. Mysore R., J. Grotz and B. Ottersten, ”Sparsity-Aided Low-
Implementation cost based On-Board beamforming Design for High Throughput Satellite Sys-
tems,” 2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Process-
ing for Space Communications Workshop (ASMS/SPSC), Berlin, 2018, pp. 1-6, doi: 10.1109/ASMS-
SPSC.2018.8510731.

[C4]: A. Bandi, B. S. Mysore R., S. Chatzinotas and B. Ottersten, ”Joint Scheduling and Precoding
for Frame-Based Multigroup Multicasting in Satellite Communications,” 2019 IEEE Global Com-
munications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6, doi: 10.1109/GLOBE-
COM38437.2019.9014235.

Chapter 6

The gigantic problem of joint temporal scheduling and precoding for the MGMC can be solved
using the framework proposed in chapter 2, 3 and 4. However, the complexity of solutions be-
comes a bottleneck. The quest for more elegant solutions is left for the future work. To this end,
discussions, and future research directions are provided in Chapter 6.

1.3 Publications

This dissertation is based on the following publications, which have been published or submitted
during the course of my doctoral studies:

Journals
J1: A. Bandi, B. Shankar M. R, S. Chatzinotas and B. Ottersten, ”A Joint Solution for Scheduling
and Precoding in Multiuser MISO Downlink Channels,” in IEEE Transactions on Wireless Com-
munications, vol. 19, no. 1, pp. 475-490, Jan. 2020, doi: 10.1109/TWC.2019.2946161.

J2: A. Bandi, B. Shankar M. R, S. Chatzinotas and B. Ottersten, ”Joint User Grouping, Schedul-
ing, and Precoding for Multicast Energy Efficiency in Multigroup Multicast Systems,” submitted
to IEEE Transactions on Wireless Communications.

J3: A. Bandi, B. Shankar M. R, S. Chatzinotas and B. Ottersten, ”Joint Design of User Scheduling
and Precoding over Multiple Slots: A Structured Group Sparsity based Approach,” to be submitted

20



to IEEE Transactions on Wireless Communications.

J4: A. Bandi, B. Shankar M. R, S. Chatzinotas and B. Ottersten, ”Joint User Grouping, Schedul-
ing, and Precoding for Multigroup Multicast Scenario in Satellite Systems,” to be submitted.

Conferences
C1: A. Bandi, B. S. Mysore R, S. Maleki, S. Chatzinotas and B. Ottersten, ”A Novel Approach to
Joint User Selection and Precoding for Multiuser MISO Downlink Channels,” 2018 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 2018, pp.
206-210, doi: 10.1109/GlobalSIP.2018.8646373.

C2: A. Bandi, B. S. Mysore R., S. Chatzinotas and B. Ottersten, ”Joint Scheduling and Precoding
for Frame-Based Multigroup Multicasting in Satellite Communications,” 2019 IEEE Global Com-
munications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6, doi: 10.1109/GLOBE-
COM38437.2019.9014235.

C3: A. Bandi, B. S. Mysore R., S. Chatzinotas and B. Ottersten, ”Joint User Scheduling, and
Precoding for Multicast Spectral Efficiency in Multigroup Multicast Systems,” 2020 IEEE Inter-
national Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 2020

C4: A. Bandi, V. Joroughi, B. S. Mysore R., J. Grotz and B. Ottersten, ”Sparsity-Aided Low-
Implementation cost based On-Board beamforming Design for High Throughput Satellite Sys-
tems,” 2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Process-
ing for Space Communications Workshop (ASMS/SPSC), Berlin, 2018, pp. 1-6, doi: 10.1109/ASMS-
SPSC.2018.8510731.

The following are the publications that are resulted in the outcome of my collaboration during
the Ph.D. period. My contributions in these publications are limited to the discussion on optimiza-
tion and adaptation of the proposed framework to scenarios considered in these works.

[J5]: S Gautam, E Lagunas, A Bandi,S Chatzinotas ; Shree Krishna Sharma ; Thang X. Vu et
al., ”Multigroup Multicast Precoding for Energy Optimization in SWIPT Systems With Hetero-
geneous Users,” in IEEE Open Journal of the Communications Society, vol. 1, pp. 92-108, 2020,
doi: 10.1109/OJCOMS.2019.2962077.

[J6]: P. Korrai, E. Lagunas, S. K. Sharma, S. Chatzinotas, A. Bandi and B. Ottersten, ”A RAN
Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA Based
5G Wireless Networks,” in IEEE Access, vol. 8, pp. 45674-45688, 2020, doi: 10.1109/AC-
CESS.2020.2977773.

[J7]: P. K. Korrai, E. Lagunas, A. Bandi, S. K. Sharma and S. Chatzinotas, ”Joint Power and Re-
source Block Allocation for Mixed-Numerology-Based 5G Downlink Under Imperfect CSI,” in
IEEE Open Journal of the Communications Society, doi: 10.1109/OJCOMS.2020.3029553.
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2
Joint scheduling and precoding for unicast scenario

2.1 Introduction

With the adoption of full frequency reuse in the next-generation cellular networks, interference
among the simultaneously served users becomes a limiting factor thwarting the achievement of
near-optimal capacity [4–7]. Linear precoding has been largely used to achieve satisfactory inter-
ference mitigation at low complexity [8, 9]. Moreover, in a network with a large number of users
compared to the number of BS transmit antennas, user scheduling for simultaneous transmission
is pivotal for interference management [10, 25]. Optimizing performance in such a network in-
volves the design of precoding variables and user scheduling. Further, different perspectives to
network performance motivate the need to investigate multiple figures of merit; these include net-
work throughput, user Quality of Service (QoS) power consumed among others. In this context,
we address the joint design of scheduling and precoding problem for multiuser MISO downlink
channels in single-cell scenario for the following network optimization design criteria: 1) Max-
imize the weighted sum rate subject to user’s minimum signal-to-interference plus noise ratio
(MSINR), scheduling and power constraints referred to in the sequel simply as WSR. 2) Maxi-
mize the MSINR of the scheduled users subject to scheduling and total power constraints hence-
forth referred to as MMSINR. 3) Minimize the power utilized subject to scheduling and MSINR
constraints henceforth referred to as PMIN.

The aforementioned criteria are designed to improve the complementary aspects of the net-
works. In all practical wireless systems, a certain minimum received SINR is required for the suc-
cessful transmission of information. In light of this, to enhance the practical relevance, SINR con-
straints are introduced in these design criteria. The WSR problem improves the overall throughput
of a network while satisfying the scheduling constraint and QoS requirement on the scheduled
users. On the contrary, the MMSINR problem improves the performance of the poorest user (in
terms of SINR) among those scheduled. Unlike WSR and MMSINR, PMIN optimizes the con-
sumed power while meeting the scheduling and SINR constraints. An elaborate discussion on
each design is provided in the subsequent sections.

The joint design of scheduling and precoding, which we simply refer to as joint design, is well
studied during the last decade (see [43] and references therein). Most of the existing literature on
the joint design can be classified as:

• Non-iterative decoupled approach: In this approach, scheduling and precoding are treated
as two decoupled problems where usually the users are scheduled according to some criteria
followed by precoding [10, 25], [26, 35, 36].
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• Iterative decoupled approach: In this approach, scheduling and precoding are still treated as
two separate problems. However, scheduling and precoding parameters are refined in each
iterate to improve the objective based on the feedback from the previous iterate [27, 37–39,
49].

• Joint formulation with alternate update: In this approach, the joint design problem is formu-
lated as a function of both scheduling and precoding [40–42]. However, these formulations
are not amenable for the joint update as the scheduling variables are coupled to precoding
variables which inhibits their joint update. Hence, during the solution stage either schedul-
ing constraints are ignored [40] or the scheduling and precoding variables are updated alter-
natively. [41].

The joint design is a coupled problem where the efficiency of the precoder design depends on the
interference among the users which, in turn, is a function of the scheduled users [43]. Hence,
the joint update of scheduling and precoding has the potential to achieve better performance over
the aforementioned approaches [10, 25, 40], [26, 27, 35–39]. The authors in [44] shown the user
scheduling and power allocation problem to be NP-hard. The joint design problems that are con-
sidered in this work encapsulate the problem considered in [44] as a special case. Hence, the
considered joint design problems are NP-hard. It is also non-convex due to the constraints on
the SINR or rate of users and scheduling are coupled [37]. Hence, the optimal solution entails
an exhaustive search over Boolean space (user scheduling) and further involves the solution of a
non-convex precoding problem. The exponential complexity of an exhaustive search for practical
system dimensions motivates a shift towards low-complexity achievable solutions. In this context,
we quickly review the various relevant works to place ours in perspective.

The joint design problem to maximize the WSR subject to total power constraint, which is
referred to as the classical WSR problem, is considered for single cell networks in [10,25,35]. The
channel orthogonality based scheduling followed by zero-forcing precoding (SUS-ZF) proposed
in [25] is proven to be asymptotically optimal for sum rate maximization. However, it is easy to see
that SUS-ZF is not optimal for WSR with non-uniform weights and QoS constraints. Similarly,
the classical WSR is addressed for multicell networks in [37–39, 50] and hierarchical networks
in [40]. The joint design problem is also considered for MMSINR in [26] and PMIN in [27].
However, scheduling and precoding are not jointly updated in the aforementioned works.

The coupled nature of binary variables with precoding vector appears in many other formu-
lations [47, 48] etc. For example, towards maximizing the weighted sum-rate in a hierarchical
network, binary variables associated with users get multiplied to signal power and interference
power of SINR [40]. Similarly, in [42], a binary variable is multiplied to the rate of the users
in the weighted sum-rate maximization problem. Please note that system models and objectives
discussed in [40, 42, 48] are different from each other, and the emphasis is only on the occurrence
of the joint design (coupled discrete and continuous) nature that prevails in different designs.
The multiplicative nature in previous formulations precludes the joint update of scheduling and
precoding. To the best of our knowledge, no prior work exists that update the scheduling and pre-
coding jointly for the aforementioned WSR, MMSINR and PMIN problems. Therefore, we focus
on formulating the joint design problem for WSR, MMSINR, and PMIN that facilitates the joint
scheduling and precoding solutions.

Revisiting the WSR and MMSINR design problems for fixed scheduled users, it is well-known
that the problems are non-convex with difficulty to obtain a global solution. However, efficient
suboptimal solutions have been proposed for WSR in [51] and MMSINR in [52, 53] by formulat-
ing these as difference-of-convex (DC) programming problems with the help of auxiliary variables
and semidefinite programming (SDP) transformations and relaxations. However, the semidefinite
relaxations for WSR and MMSINR often lead to non-unity rank solutions from which the ap-
proximate rank-1 solutions are extracted [51–53]. The rank-1 approximation results in a loss of
performance. Moreover, the transformed problems have higher complexity than the original prob-
lems due to auxiliary variables and SDP transformations. In this work, we pose the WSR and
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MMSINR joint design as DC programming problems without SDP transformation and employing
a minimal number of auxiliary variables.

The aforementioned discussion reflects on the novelties of the paper-based both on problem
formulation and its solution. The contributions of the paper include:

• The scheduling is handled through the power of the precoding vector of the corresponding
user, where non-zero power indicates the user being scheduled (and not scheduled other-
wise). Unlike the previous works [40, 42, 48], a binary variable is used for upper bounding
the power of the precoding vector. This renders the formulation amenable to the joint design
of scheduling and precoding.

• With the help of the aforementioned scheduling, the joint design problem for WSR, MM-
SINR, and PMIN design criteria are formulated as mixed-integer non-linear programming
(MINLP) in a way that would facilitate the joint updates of scheduling and precoding. Here,
the nonconvexity of the problem stems from rate and SINRs in the objective and constraints.

• The binary nature of the problem due to scheduling constraints is addressed by relaxing the
binary variables into real values. This is followed by penalizing the objective with a novel
entropy-based penalty function to promote a binary solution for the scheduling variables.
This step transforms the optimization into a continuous non-convex problem.

• Unlike the classical DC formulation using SDP transformation [51–53], a novel useful re-
formulation of the objective and/or SINR constraints are proposed to manipulate the joint
design as DC programming without SDP transformation.

• Further, a convex-concave procedure (CCP) based iterative algorithm is proposed for WSR,
MMSINR and PMIN DC problems. A procedure is proposed to find a feasible initial point,
which is sufficient for these algorithms to converge to a stationary point [54, 55].

• Subsequently, the per iteration complexity of the CCP based algorithms, is discussed. Fur-
ther, a fast convergence behavior of the proposed algorithms is observed through extensive
simulations. Finally, the efficiency of the proposed DC reformulations is compared to the
decoupled solutions using the Monte-Carlo simulations.

The rest of the paper is organized as follows. Section 2.2 presents the system model and prob-
lem formulation of WSR, MMSINR, and PMIN problem. The reformulations and algorithm are
proposed for WSR in Section 2.3, MMSINR in Section 2.4 and PMIN in Section 2.5 respectively.
Section 2.5.4 presents simulation results, followed by Conclusions in Section 2.6.

2.2 System Model

Consider the downlink transmission of a single cell MISO system with N users in a cell and a
BS with M(≤ N) antennas. Let hi ∈ CM×1, wi ∈ CM×1 and xi denote the downlink channel,
precoding vector and data of user i respectively. The BS is assumed to transmit independent
data to utmost M among N users and E{|xi|2} = 1,∀i. Further, let ni be the noise at user i;
the noise realizations at all users are assumed to be independent and characterized as additive
white complex Gaussian with zero mean and variance σ2. Further, it is assumed that perfect
channel state information of all the users is available at BS and that the user channels are constant
during the transmission. Let yi be the noisy received signal of the user i and y , [y1, . . . yN ]T ,
H , [h1, . . . ,hN ]H , W , [w1, . . . ,wN ], x , [x1, . . . xN ]T , n , [n1, . . . nN ]T . The received
signal vector y of all users is given by,

y = HWx + n, (2.1)
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Towards defining the WSR problem mathematically, let T = {1, . . . N} be the set containing
indices of all users and K̄ be a subset of T with cardinality less than or equal to M . Further,
let K be the collection of all the possible subsets of type K̄; clearly, the cardinality of K is C ,∑M

i=0

(
N
i

)
. With the notations defined, the WSR problem is defined as,

PWSR : max
∀K̄∈K

max
WK̄

∑
∀i∈K̄

αiRi (2.2)

s.t Ri ≥ εi,∀i ∈ K̄,∑
∀i∈K̄

‖wi‖22 ≤ PT ,

︸ ︷︷ ︸
precoding problem for selected users︸ ︷︷ ︸

Joint scheduling and Precoding problem

where γi ,
|hHi wi|2

σ2 +
∑

j 6=i∈K̄|hHi wj |2
, Ri , log2 (1 + γi) and εi ≥ 0 are the SINR, rate and

minimum rate requirement of the user i respectively and K̄ is the set of scheduled users. Further
αi ∈ R+ denotes the weight for ith user offering design flexibility, PT is the total available power,
and WK̄ = {wi}|K̄|i=1 is the matrix containing the precoding vectors of users of set K̄.

Unlike the WSR design, scheduling of exactly K(≤ M) users is considered in MMSINR
formulation. This is because constraining the scheduling to utmost K users always leads to the
trivial solution of scheduling only one user and an elaborate discussion is provided at the beginning
of Section 2.4. Let S̄ be a subset of T with cardinality equal to K. Let S be the collection of all
the possible subsets of type S̄; clearly, the cardinality of S is

(
N
K

)
. Letting ε̃i to the MSINR

requirement of user i, ∀i, the design problem for MMSINR can then be defined as,

PMMSINR : max
S̄⊆S

max
WS̄

min
i⊆S̄
{βiγi} (2.3)

s.t
∑
i∈S̄

‖wi‖22 ≤ PT ,

γi ≥ ε̃i, i ∈ S̄,

︸ ︷︷ ︸
precoding problem for selected users︸ ︷︷ ︸

Joint schedueling and Precoding problem

where βi ∈ R+, is weight and WS̄ = {wi}|S̄|i=1 is the matrix containing the precoding vectors
of users in the set S̄. Notice that to accommodate the fairness in the designs, weights or priority
factors are introduced through α and β in WSR and MMSINR problems respectively. Various
fairness metrics are proposed in the literature, e.g. fairness in terms of rates and allocated power
are considered at the physical layer. We refer to [56] and references therein for details on fairness.

Finally, towards defining the PMIN problem, scheduling exactly K(≤M) users is considered
for the same reason mentioned in MMSINR. With notations defined for MMSINR criteria, the
PMIN problem is defined as:

PPMIN : min
S̄⊆S

min
WS̄

∑
i∈S̄

‖wi‖22 s.t. γi ≥ ε̃i, i ⊆ S̄.︸ ︷︷ ︸
PMIN problem for selected users︸ ︷︷ ︸

Joint user scheduling and PMIN problem

(2.4)

The inner optimization in (2.2), (2.3), and (2.4) solves the precoding problem for the scheduled
users. The outer optimization, on the other hand, ensures scheduling users with a maximum
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objective value among all scheduling possibilities. Notice that the inner and outer optimization are
coupled - the design of precoder depends on the selected set of users, while the user scheduling
depends on the objectives in (2.2), (2.3) and (2.4) which, in turn, are functions of the precoder [57].

Towards proposing low-complexity algorithms, we begin by addressing the user scheduling
through the norm of precoding vectors as given below,

‖wi‖2 =

{
= 0; user not selected,
6= 0; user selected.

(2.5)

The zero norm of wi ensures that all elements of wi are zero. Hence, the user i is not scheduled.
Similarly, the non-zero norm of the precoder vector wi indicates user i being scheduled with an
assigned power of ‖wi‖22. In the sequel, we focus on the design of low-complexity solutions to
the joint design using (2.5) to achieve better performance than the decoupled designs.

2.3 Weighted Sum Rate maximization

In (2.2), the weighted sum rate objective is considered to improve the overall weighted throughput
of the network. Thus, WSR problem schedules only the users who contribute to maximizing
the objective. Given sufficient resources, the WSR design schedules close to M users as the
objective increases linearly with the number of scheduled users; on the other hand, scheduling of
few users with high SINRs only contributes logarithmically to the objective. Hence, the constraint
of scheduling utmost of M users is considered as opposed to the harder constraint of scheduling
to exactly M users. Besides, the design is flexible to favor users by increasing the corresponding
weights i.e., αi to relatively larger values over the users. The minimum rate constraints preclude
scheduling of the users whose rates are not in the range of interest. Since the scheduling of zero
users is also included in the feasible set, the problem (2.2) is always feasible. In the sequel, the
WSR problem (i.e., (2.2)) is transformed as a DC programming problem through a sequence of
novel reformulations and low-complexity sub-optimal algorithms within the framework of CCP.

2.3.1 Joint Design Problem Formulation: WSR

Letting K̄ to be the set of scheduled users, a tractable formulation of (2.2) using (2.5) is,

PWSR
1 : max

W,∀K̄∈K

N∑
i=1

αiRi (2.6)

s.t. C1 : ‖[‖w1‖2 , . . . , ‖wN‖2]‖0 ≤M,

C2 :

N∑
i=1

‖wi‖22 ≤ PT ,

C3 : Ri ≥ εi, i ∈ K̄.

Remarks:

• It is clear from (2.5) and the definition of `0 norm, that the constraintC1 imposes restrictions
on the total number of selected users to utmost M . We refer to this constraint as the user
scheduling constraint throughout this section.

• The constraint C2 precludes the design from using a transmission power greater than PT .

• The constraint C3 imposes a minimum rate required for the scheduled users.

A Novel MINLP formulation: The problem PWSR
1 is combinatorial due to the constraint C1

and C3, and non-convex due to the objective and constraints C1 and C3. Towards addressing
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the combinatorial nature, we let ηi and ζi to be the binary scheduling variable and slack variable
associated with user i respectively, and η = [η1, . . . , ηN ]T , ζ = [ζ1, . . . , ζN ]T and ε̃i , 2εi−1, ∀i.
With the defined notations, a tractable formulation of C1 and C3 of PWSR

1 then takes the form,

PWSR
2 : max

W,ζ,η
f (ζ,η) ,

N∑
i=1

αi log (ζi) (2.7)

s.t. C1 : ηi ∈ {0, 1}, ∀i,
C2 : ‖wi‖22 ≤ PT ηi, ∀i,

C3 :
N∑
i=1

ηi ≤M,

C4 :
N∑
i=1

‖wi‖22 ≤ PT ,

C5 : 1 + γi ≥ ζi,∀i,
C6 : ζi ≥ 1 + ηiε̃i, ∀i,

Remarks:

• The binary nature of ηi (i.e., C1) together with C2 determines the scheduling of users. In
other words, ηi = 0 leads to a precoding vector containing all zero entries. Similarly ηi = 1
leads to ‖wi‖22 ≤ PT which is a trivial upper bound compared to C4. Hence the constraint
C2 along with C1 contributes only to the scheduling aspects of the problem.

• From the objective and constraint C5, the variable ζi provides a lower bound for 1 + γi.

• The constraint C6 ensures MSINR or rate constraint of the scheduled users. If user i is
scheduled i.e., ηi = 1, from C6, ζi ≥ 1 + ε̃i. Similarly, for an unscheduled user i, C6

becomes ζi ≥ 1. In fact for ηi = 0, constraint is met with equality i.e., ζi = 1 due to C2.

• It is easy to see that, at the optimal solution, the constraints C5 and C6 are met with equality.

Novelty of PWSR
2 : Novelty of PWSR

2 lies in the formulation of scheduling constraint, C2. This
reformulation is vital to the facilitation of the joint update of η and W as discussed in the sequel.
Notice that this formulation differs from those in the literature ( [40, 42, 48, 58, 59], etc) where the
scheduling constraint is handled by a binary slack variable which multiplies either the precoding
vector or the rate of the user, to control the user scheduling. This multiplication not only makes
the constraints non-convex but also makes it difficult to obtain the joint update of Boolean and
continuous variables due to the coupling of variables. Moreover, the constraints C5 and C6 help
to reformulate the objective as a concave function and connects the minimum rate constraints
to the objective. This reformulation is crucial as it facilitates the reformulation of PWSR

2 as DC
programming problem without resorting to SDP transformations [51, 60–62].

2.3.2 A Novel DC reformulation: WSR

A novel rearrangement of SINR constraint C5 in PWSR
2 that transforms PWSR

2 as a DC program-
ming problem without SDP transformation is,

PWSR
3 : max

W,ζ,η
f (ζ,η) ,

N∑
i=1

αi log (ζi) (2.8)

s.t. C1,C2, C3, C4 and C6 in (2.7)

C5 : Ii (W)− Gi (W, ζi) ≤ 0,∀i,
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where Ii (W) = σ2+
∑

j 6=i|hHi wj |2 and Gi (W, ζi) =
σ2 +

∑N
j=1|hHi wj |2

ζi
. Notice that Ii (W)

is convex in W, and for ζi > 0, Gi (W, ζi) is also jointly convex in W and ζi. Hence, (2.8) is a DC
programming problem with combinatorial constraint C1. This is the first attempt at reformulating
the WSR towards a tractable form without resorting to SDP methods or use of additional slack
variables thereby rendering a low-complexity solution to the problem.

Beyond SDP based DC formulation: Notice that for fixed η, the problem PWSR
3 becomes

a classical WSR maximization problem subject to SINR and total power constraints [51, 60–62].
The problem PWSR

3 is non-convex due to the constraint C5. Although, for fixed ζ (i.e. fixed η), the
constraintC5 inPWSR

3 is formulated as a second-order cone programming (SOCP) constraint [8,9],
a similar SOCP transformation of C5 is not known when ζ is variable. On the other hand, many
previous works have exploited the DC structure in WSR maximization problem without SINR
constraint in [60–62] and with SINR constraint in [51] by transforming it into an SDP problem.
However, the SDP transformations in [51, 60–62], essentially increase the number of variables,
thereby increasing the complexity. Moreover, SDP transformations also introduce the non-convex
rank-1 constraint on the solutions which is difficult to handle in general; this has led to semidefinite
relaxations [8] followed by extraction of feasible rank-1 solutions.

The problem PWSR
3 is still an MINLP with a DC structure in the non-convexity. This structure

can be leveraged with the optimization tools like CCP. Now, to circumvent the combinatorial
nature of PWSR

3 , ηi is relaxed to a box constraint between 0 and 1, and penalized with P (ηi)
so that the relaxed problem favours 0 or 1. The penalized reformulation of PWSR

3 with penalty
parameter λ1 ∈ R+ is,

PWSR
4 : max

W,η,ζ

N∑
i=1

(αi log (ζi) + λ1P (ηi)) (2.9)

s.t. C1 : 0 ≤ ηi ≤ 1, ∀i,
C2, C3, . . . , C6 in (2.8).

We propose a new penalty function P(ηi) , ηi log ηi + (1− ηi) log (1− ηi) which is a convex
function in ηi ≥ 0. P(ηi) incurs no penalty at ηi = 0 or 1 and the penalty increases logarithmically
as ηi drifts away from ηi = 0 or 1 with the highest penalty at ηi = 0.5. Hence, by choosing λ1

appropriately, binary nature of η is ensured.
Now, notice that the objective in PWSR

4 a difference of concave functions i.e. f (ζ,η) =∑N
i=1 (αi log (ζi))−

(
−
∑N

i=1 λ1P (ηi)
)

and constraints are convex and DC. Hence, the problem

PWSR
4 is a DC programming problem. In the sequel, a CCP based algorithm is proposed [63].

2.3.3 JSP-WSR: A Joint Design Algorithm

In this section, we propose a CCP based iterative algorithm to the DC problem in (2.9) which
we refer to as JSP-WSR. CCP is a powerful tool to find a stationary point of DC programming
problems. Within this framework, an iterative procedure is performed, wherein the two steps of
Convexification and Optimization are executed in each iteration. In the convexification step, a
convex optimization problem is obtained from PWSR

4 by linearizing the objective and constraints.
Hence, by definition, the modified objective and constraints lower bound the actual objective and
constraints ofPWSR

4 where the lower bound is tight at the previous iteration [55,63]. The optimiza-
tion step then solves the convex sub-problem globally. Thus, the proposed JSP-WSR algorithm
iteratively executes the following two steps until convergence:

• Convexification: Let (W,η, ζ)k−1 be the estimates of W,η, ζ in iteration k − 1 and
Gi(W, ζi). In iteration k, the convex part of the objective in PWSR

4 i.e.,
∑N

i=1 λ1P (ηi),
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and the concave part of constraint C5 in PWSR
4 for user i are replaced by their first order

Taylor approximations around the estimate of (W,η, ζ)k−1

P̃ (ηi) , λ1

(
P
(
ηk−1
i

)
+
(
ηi − ηk−1

i

)
∇P

(
ηk−1
i

))
,

G̃i(W, ζi)
k−1 , −Gi(W, ζi)−

R
{
∇HGi(W, ζi)

k−1

[
{wl −wk−1

l }Nl=1

ζi− ζk−1
i

]}
, (2.10)

where

∇Gi(W, ζi)
k−1 =



2hih
H
i wk−1

1

ζk−1
i
...

2hih
H
i wk−1

N

ζk−1
i

−
σ2 +

∑N
j=1|hHi wk−1

j |2

ζk−1
i

2


. (2.11)

• Optimization: The next update (W,η, ζ)k+1 is obtained by solving the following convex
problem (which is obtained by replacing convex part of the objective and constraints in
PWSR

4 with (2.10) and ignoring the constant terms in the objective) :

PWSR
5 : max

W,ζ,η

N∑
i=1

(
αi log (ζi) + λ1ηi∇P

(
ηk−1
i

))
(2.12)

s.t C1,C2, C3, C4 and C6 in (2.9)

C5 : Ii (W)− G̃i(W, ζi) ≤ 0,∀i.

Remarks:

• Note that the proposed JSP-WSR algorithm is based on CCP framework hence a feasible
initial point (FIP) is sufficient for the CCP procedure to converge to a stationary point [54,
55].

• Given the binary nature of η, at convergence, the resulting stationary point is a valid feasible
solution to the original problem PWSR

1 . As mentioned previously, with appropriate λ1 a
stationary point with binary η can be obtained easily from the above iterative procedure.

In many cases, obtaining a FIP is difficult. However, in the next section, we propose a method
which promises to obtain at least one FIP.

2.3.4 Feasible Initial Point: WSR

CCP is an iterative algorithm and an initial feasible point guarantees the solutions of all iterations
remain feasible. A trivial initial FIP is obtained by the initializing {wi = 0}Ni=1,η = 0 and ζ = 1
where, 1 and 0 are the column vectors of length N with all ones and zeros respectively. Since
the quality of the solution depends on the FIP, the harder task of finding a better FIP is considered
through the following iterative procedure.

• Step 1: Initialize η = η̂ that satisfies constraints C1 and C3 in PWSR
4 , and 0 < δ < 1.
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• Step 2: Solve the following optimization:

PFESWSR : {Ŵ} : find W (2.13)

s.t. C̃1 : ‖wi‖22 ≤ η̂iPT , ∀i,

C̃2 :
∥∥[σ . . . {hHi wj}j 6=i . . .

]∥∥
2
≤ hHi wi√

η̂iε̃i
, ∀i,

C̃3 :R{hHi wi} ≥ 0, ∀i,
C̃4 :={hHi wi} == 0,∀i,
C̃5 : ‖W‖22 ≤ PT .

• Step 3: If PFESWSR is feasible go to step 4 else update η = δη̂ and go to step 2.

• Step 4: Let Ŵ be the solution of PFESWSR. Choose ζ̂i such that 1 + η̂iε̃i ≤ ζ̂i ≤ 1 + γ̂i
where γ̂i is the SINR of the user i calculated using Ŵ.

Remarks:

• Notice that the updates of η̂ are always feasible. Different η̂ in step 1 which satisfy the
constraint C1 and C3 in PWSR

4 may lead to different FIPs. Similarly, different choices of
δ ∈ (0, 1) in step 1 may also lead to different FIPs.

• The optimization problem in Step 2 is only a function of W since η is fixed apriori and ζ
can be calculated easily from the solution of PFESWSR as given in step 4.

• Following [9], the MSINR constraint, i.e. γi ≥ η̂iε̃i is reformulated as a second-order cone
(SOC) constraint as given in C̃2 with the help of C̃3 and C̃4.

• If PFESWSR in step 2 is in-feasible for η in step 1, update η as given in step 3 and repeat step
2. This is repeated until PFESWSR in step 2 becomes feasible.

• If the initial iterates fail to result an non-zero based initial feasible point, the proposed
method eventually lead to η̂ = 0 and thus PFESWSR in step 2 becomes feasible with Ŵ = 0.
Hence, the proposed methods always results an FIP. By initializing η̂ close to 0, FIP can be
obtained in fewer iterations.

• The FIP obtained by this procedure may not be feasible for the original WSR problem PWSR
in (2.2) unless PFESWSR becomes feasible for {η̂i ∈ {0, 1}}Ni=1 satisfying

∑N
i=1 η̂i ≤M .

• Although the FIP obtained by this method is not feasible for PWSR, the final solution ob-
tained by JSP-WSR with this FIP becomes a feasible for PWSR since the solution satisfies
the scheduling and SINR constraints of PWSR.

Letting PWSR
5 (k) be the objective value of the problem PWSR

5 at iteration k, the pseudo code of
JSP-WSR for the joint design problem is given in algorithm 1.

Algorithm 1 JSP-WSR
Input: H, [ε1, . . . , εN ] , PT ,∆, η0,W0, λ1 = 0, k = 1; Output: W,η
while |PWSR

5 (k)− PWSR
5 (k − 1) | ≥ ∆ do

Convexification: Convexify the problem (2.10)
Optimization: Update (W,η, ζ)k by solving PWSR

5

Update : PWSR
5 (k) , λ1, k

end while
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2.3.5 Complexity: WSR

The computational complexity of JSP-WSR depends on the complexities of iterative procedures
proposed in Section 2.3.3 and Section 2.3.4. The proposed JSP-WSR in Section 2.3.3 is a CCP
based iterative algorithm; hence, the complexity of the algorithm depends on complexity of the
sub-problemsPWSR

5 . The convex problemPWSR
5 has (NM + 2N) decision variables and (2N + 1)

convex constraints and 2N + 1 linear constraints. Hence, the computational complexity of PWSR
5

is O
(

(NM + 2N)3 (4N + 2)
)

[64]. Similarly, the computational complexity of the proposed
procedure in Section 2.3.4 to obtain a FIP depends on the per iteration complexity of PFESWSR.
PFESWSR is a convex problem withMN decision variables, 2N+1 convex constraints and 2N lin-
ear constraints. Hence, the computational complexity of PFESWSR is O

(
(MN)3 (4N + 1)

)
[64].

2.4 Max Min SINR

In this section, we focus on the development of a low-complexity algorithm for the MMSINR
problem defined in (2.3). Dropping a user with low SINR clearly improves MSINR. It also re-
duces the interference to the other users and the power of the dropped user can be used to further
improve the MSINR of other users. Hence, the constraint of scheduling utmost K users leads to
the global solution which has highest MSINR which is achieved by scheduling only one user. To
avoid this, scheduling exactly K users is considered for MMSINR design. Besides the schedul-
ing constraint, the MSINR requirements of the scheduled users are also considered. Without the
MSINR requirement, the design becomes superficial as the solution might include zero SINR or
SINR values which are not usable in practice.

Infeasibility of MMSINR The infeasibility of the problem due to the MSINR requirement is
explained in [9] for fixed set of users. Similarly, it may not be possible to find exactly K users
while satisfying an arbitrarily chosen MSINR, power and system dimension constraints [9]; this
renders the problem (3) infeasible. In this work, it is assumed that problem PMMSINR has at least
one feasible solution for the given scheduling and MSINR constraints. Considering this, a low-
complexity sub-optimal algorithm using the framework of CCP is developed for the MMSINR
problem in the sequel.

2.4.1 Joint Design Problem Formulation: MMSINR

A tractable mathematical formulation of (2.3) is,

PMM
1 : max

W
min

i={1,...,N}
{βiγi} (2.14)

s.t. C1 : ‖[‖w1‖2 , . . . , ‖wN‖2]‖0 == K,

C2 :
N∑
i=1

‖wi‖22 ≤ PT ,

C3 : γi ≥ 1 (‖wi‖2) ε̃i,∀i

where 1 is an indicator function with 1 (‖wi‖2) = 0 if ‖wi‖2 = 0 otherwise 1 (‖wi‖2) = 1.
The SINR γi is non-convex and piece-wise minimum of {γi}Ni=1 is also non-convex. So, PMM

1

maximizes a non-convex objective subject to a combinatorial constraint C1; this is generally a
NP-hard problem. Moreover obtaining a global solution to PMM

1 requires an exhaustive search
over all the possible sets and solving the classical MMSINR problem for each set.

A Novel Reformulation: In the classical MMSINR problem, for the predefined selected users,
SINRs of all users is addressed with a slack variable, say s, that lower bounds βiγi, ∀i i.e.,
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{βiγi}Ni=1 ≥ s [65,66]. However, this approach cannot be applied to the present joint design prob-
lem since there always existN −K unscheduled users whose SINR is identically zero. Therefore,
lower bounding all {βiγi}Ni=1 with s, makes the problem trivial and the solution, say s∗, is always
zero. Letting ηi to be a binary variable associated to user i and S to be the set of scheduled users
and adopting the epigraph formulation, an equivalent formulation of PMM

1 is,

PMM
2 : max

W,η,s
s (2.15)

s.t. C1 : ηi ∈ {0, 1}, ∀i,
C2 : ‖wi‖22 ≤ ηiPT ,

C3 :
N∑
i=1

ηi == K,

C4 :
N∑
i=1

‖wi‖22 ≤ PT ,

C5 : βiγi ≥ ηiε̃i, ∀i,
C6 : βiγi ≥ ηis, ∀i.

Remarks:

• Constraint C5 is the MSINR constraint equivalently written with the help of ηis.

• The variable s inC6 is active only when ηi = 1. For example, when user i not scheduled i.e.,
ηi = 0, its SINR is lower bounded by 0 which is always satisfied by the SINR definition.
Similarly, when user i scheduled i.e., ηi = 1, its SINR is lower bounded by s. Thus the
maximization of s optimizes the MSINR of only the scheduled users.

2.4.2 A Novel DC reformulation: MMSINR

The problem PMM
2 is a MINLP where the non-convexity is due to constraints C5 and C6, while

the combinatorial nature is due to constraint C1. Similar to constraint C5 of PWSR
4 , constraint C5

of the problem PMM
2 can be formulated as a DC constraint. However, the same approach cannot

be applicable to constraint C6 in PMM
2 as ηi and s are both variables. Moreover, to the best of our

knowledge DC reformulation of constraints of type C6 in PMM
2 is not known. In this section, a

novel procedure is proposed to transform constraints of type C6 in PMM
2 as DC constraints which

involves the change of variable s by
1

t
followed by rearrangement as described below,

1 + βiγi ≥ 1 +
ηi
t
⇒ Li (W, t)−Hi (W, ηi, t) ≤ 0, (2.16)

where Ii (W) = σ2 +
∑

j 6=i|hHi wj |2, Hi (W, ηi, t) =
Ii (W) + βi|hHi wi|2

t+ ηi
and Li (W, t) =

Ii (W)

t
. Notice that, for t > 0, Li (W, t) is jointly convex in W and t and Hi (W, ηi, t) is also

jointly convex in W, ηi and t. Hence, (2.16) is a DC constraint.
Towards addressing combinatorial constraint C1, following the approach in Section 2.3, the

binary constraint ηi is relaxed to a box constraint between 0 and 1 and ηi is penalized with P (ηi).

Letting Ji (W, ηi, t) =
Ii (W) + βi|hHi wi|2

1 + ηiε̃i
, for the sake of completion, with the help of vari-

able t, (2.16) and penalization approach proposed in Section 2.3, the problemPMM
2 is reformulated

as,

PMM
3 : min

W,η,t
t− λ2P (ηi) (2.17)
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s.t. C1 : 0 ≤ ηi ≤ 1, ∀i,
C2, C3, C4 in (2.15),

C5 : Ii (W)− Ji (W, ηi, t) ≤ 0, ∀i,
C6 : Li (W, t)−Hi (W, ηi, t) ≤ 0, ∀i,
C7 : t > 0,

where λ2 ∈ R+ is a penalty parameter of the design.
The problemPMM

3 maximizes a convex objective subject to convex and DC constraints. Hence
PMM

3 is a DC problem and a CCP based algorithm could be solved with an FIP obtained from
Section 2.4.4 . However, the strict equality constraint C3 in PMM

3 , limits the update of the η. In
order to allow the flexibility in choosing η, the following problem is considered instead,

PMM
4 : min

W,η,t
t− λ2P (ηi) + Ω

(
N∑
i=1

ηi −K

)2

(2.18)

s.t. C1,C2, C4, C5, C6, C7 in (2.17),

where Ω ∈ R+ is a penalty parameter. It is easy to see that choosing the appropriate Ω (usually
higher value) ensures the equality constraint. The problem P4

MM is also a DC problem and a CCP
based algorithm, JSP-MMSINR, is proposed in the sequel to solve it efficiently.

2.4.3 JSP-MMSINR: A Joint Design Algorithm

In this section, we propose a CCP framework based iterative algorithm to the problemPMM
4 , which

is referred to as JSP-MMSINR, wherein the JSP-MMSINR executes the following Convexification
and Optimization steps in each iteration:

• Convexification: Let (W,η, t)k−1 be the estimates of Wi, ηi, t in iteration k−1. In iteration
k, the concave part of C5 and C6 for user i in PMM

4 i.e., −Hi(W, ηi, t) and −Ji(W, ηi, t)
are replaced by its affine approximation around (W,η, t)k−1 which is given by,

H̃i (W,η, t)k−1 , −Hi (W,η, t)k−1

− R

∇HHi (W,η, t)k−1

{wl −wk−1
l }Nl=1

ηi − ηk−1
i

t− tk−1

 ,

J̃i (W,η, t)k−1 , −Ji (W,η, t)k−1

− R

∇HJi (W,η, t)k−1

{wl −wk−1
l }Nl=1

ηi − ηk−1
i

t− tk−1

 , (2.19)

where∇Hi (W,η, t)k−1 and∇Ji (W,η, t)k−1 are the evaluated gradients ofHi (W,η, t)
and Ji (W,η, t) at (W,η, t)k−1 respectively. The expressions for ∇Hi (W,η, t)k−1 and
∇Ji (W,η, t)k−1 can be obtained by following (2.11). Similarly, the first order Taylor
series approximation of the objective in PMM

4 after ignoring the constant terms,

F (t,η) = t− λ2

N∑
i=1

ηi∇P
(
ηk−1
i

)
+ Ω

(
N∑
i=1

ηi −K

)2

• Optimization: The update (W,η, t)k is obtained by solving the following convex problem:

PMM
5 : max

W,η,t
F (t,η) (2.20)
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s.t. C1, C2, C3, C4 in (2.18)

C5 : Ii (W, t) + J̃ (W,η, t)k−1 ≤ 0, ∀i,
C6 : Li (W, t) + H̃ (W,η, t)k−1 ≤ 0, ∀i.

2.4.4 Feasible Initial Point: MM-SINR

Notice that JSP-MMSINR is a CCP framework based algorithm and hence a FIP is sufficient for
the algorithm to converge to a stationary point [54, 55]. Unlike WSR problem, obtaining a trivial
FIP to the problem PMM

4 is difficult as initializing W to all zeros results in zero SINR for all the
users and thus t = 0 where later is the violation of the constraint C5. However, one may find a
FIP by the following iterative procedure.

• Step 1: Initialize η = η̂ that satisfies constraints C1 and C3 in PMM
4 .

• Step 2: For a fixed η, ignoring the constraints dependent on t, PMM
4 can be reformulated as

a convex problem by [9] or [8]. This would result similar formulation as shown in PFESWSR;
hence omitted due to space limitation. Let Ŵ be the solution from this step.

• Step 3: Exit the loop if Ŵ from step 2 is feasible and t0 =
1

mini{ηiε̃i}
else set η = δη̂ and

continue to step 2.

Remarks:

• By construction, the initial η̂ from step 1 is always feasible to PMM
4 .

• Efficient algorithms to solve the convex precoding problem in step 2 is proposed in [9]
and [8], and is solvable globally using tools like CVX [67].

• The number of iterations that are needed to obtain a FIP from above procedure depends on
η̂, δ and K. Suppose, if the initial η̂ ≈ 0, a FIP is obtained in one iteration with high
probability. Similarly, if the initial η̂ ≈ 1 the solution from above can be infeasible in the
initial iterations. For the latter case, smaller δ leads to a FIP in few iterations and larger δ
takes longer iterations to find a FIP.

Notice that a FIP obtained from this process is only feasible to problem PMM
4 but not to the

problem PMMSINR since it violates scheduling constraint and binary constraint of η. However,
appropriate adaptation of the penalty parameters λ2 and Ω (e.g. monotonic increment) ensures
that the obtained final solution from algorithm 2 is always feasible to PMMSINR.

Letting PMM
5 (k) be the objective value of the problem PMM

5 at iteration k, the pseudocode of
JSP-MMSINR for the joint design problem is given in algorithm 2.

Algorithm 2 JSP-MMSINR
Input: H, [ε̃1, . . . , ε̃N ] , PT ,∆, η0, W0, λ1 = 0, k = 1; Output: W,η, t
while |PMM

7 (k)− PMM
7 (k − 1) | ≥ ∆ do

Convexification: Convexify the problem (2.19)
Optimization: Update (W,η, t)k by solving PMM

5

Update : PMM
7 (k) , λ2, k;

end while
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2.4.5 Complexity: MM-SINR

Similar to JSP-WSR, the computational complexity of JSP-MMSINR depends on the complexities
of iterative procedures proposed in Section 2.4.3 and Section 2.4.4. The proposed JSP-MMSINR
in Section 2.3.3 is a CCP based iterative algorithm; hence, the complexity of the algorithm depends
on complexity of the sub-problems PMM

5 . The problem PMM
5 has (NM +N + 1) decision vari-

ables, 2N + 1 convex and 2N + 1 linear constraints, hence the computational complexity of PMM
5

is O
(

(NM +N + 1)3 (4N + 2)
)

. Similarly, the computational complexity of the procedure in
Section 2.4.4 depends on the per iteration complexity of problem in step 2 which is a convex prob-
lem with MN decision variables, 2N + 1 convex constraints and 2N linear constraints. Hence,
the computational complexity of problem in step2 in Section 2.4.4 isO

(
(MN)3 (4N + 1)

)
[64].

2.5 Power Minimization

In this section, we consider the joint design problem with the objective of minimizing the sum
power consumed at the BS subject to scheduling of K users whose MSINR requirement is met.
As mentioned previously, scheduling utmost K users leads to the trivial solution of no users being
scheduled which results in zero consumed power.

2.5.1 Joint Design Problem Formulation: PMIN

Similar to Section 2.4, the user scheduling is handled through the norm of the precoder as shown
in (2.5). With the help of (2.5) and notations defined, and letting S̄ to be the set of scheduled users,
a tractable formulation of PPMIN solely as a function of precoding vectors as follows:

PPMIN
1 : min

W,S̄

∑
i∈S̄

‖Wi‖22 (2.21)

s.t. C1 : ‖[‖w1‖2 , . . . , ‖wN‖2]‖0 == K,

C2 :γi ≥ ε̃i, i ∈ S̄.

The problem PPMIN
1 is combinatorial due to the constraints C1 and C2 and also non-convex due to

{γi}Ni=1 in constraintC2. Letting Υ ∈ R+ to be a constant, a mathematically tractable formulation
that allows us to design a low-complexity algorithm is

PPMIN
2 : min

W,η
‖W‖22 (2.22)

s.t. C1 : ηi ∈ {0, 1}, ∀i,
C2 : ‖wi‖22 ≤ ηiΥ, ∀i,

C3 :
N∑
i=1

ηi == K,

C4 : γi ≥ ε̃iηi, ∀i.

Remarks:

• For ηi = 1, Υ in C2 provides upper bound on the power of user i. Moreover, a lower bound
on Υ would be the total system power.

A DC reformulation: The problem PPMIN
2 is an MINLP due to combinatorial constraintC1 and

non-convex constraint C4. Similar to WSR and MMSINR problems, using the DC formulation of
constraint C4 and penalization method for C1, the DC formulation of the problem PPMIN

2 is,

PPMIN
3 : min

W,η
‖W‖22 − λ3

N∑
i=1

P (ηi) (2.23)
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s.t. C1 : 0 ≤ ηi ≤ 1, ∀i,
C2, C3 in (2.22),

C4 : Ii (W)− fi (W, ηi) , ∀i,

where λ3 ∈ R+ is the penalty parameter and fi (W, ηi) =
Ii (W) + |hHi wi|2

1 + ε̃iηi
.

The problem PPMIN
3 is a DC problem which can be solved using CCP. However, finding a FIP

becomes difficult as for chosen η, PPMIN
3 may become infeasible [9]. For the ease of finding an

FIP, the constraint C2 in PPMIN
4 is relaxed and penalized as follows:

PPMIN
4 : min

W,η
‖W‖22 − Ω

N∑
i=1

P (ηi) + µ

(
N∑
i=1

ηi −K

)2

(2.24)

s.t. C1,C2, C4 in (2.23)

where µ > 0 is penalty parameter. Notice that for the appropriate µ, equality constraint is ensured.
Moreover, The problem PPMIN

4 is a DC problem which solvable using CCP.

2.5.2 Joint Design Algorithm: PMIN

In this section, following the CCP framework proposed in Section 2.4.3, the CCP based algorithm
for PMIN is proposed. The proposed joint scheduling and precoding (JSP) for PMIN (JSP-PMIN)
algorithm executes the following two steps iteratively until the convergence:

• Convexification: Let (W,η)k−1 be the estimates of (W,η) in iteration k − 1. In iteration
k, the concave part of C3 in PPMIN

4 for user i i.e., −fi(W, ηi) is replaced by its affine
approximation around the estimate of (W,η)k−1 which is given by,

f̃(W, ηi) , −f (W, ηi)
k−1−

R
{
∇Hf (W, ηi)

k−1

[
{wl −wk−1

l }Nl=1

ηi − ηk−1
i

]}
. (2.25)

• Optimization: Update (W,η)k is obtained by solving the following convex problem:

PPMIN
5 : min

W,η
‖W‖22 + µ

(
N∑
i=1

ηi −K

)2

− λ3

N∑
i=1

ηi∇P
(
ηk−1
i

)
(2.26)

s.t. C1 :0 ≤ ηi ≤ 1, ∀i,
C2 : ‖wi‖22 ≤ ηiΥ, ∀i,
C3 :Ii (W) + f̃(Wi, ηi)

k−1 ≤ 0, ∀i.

The convex problem PPMIN
5 has (NM +N) decision variables, 2N convex and 2N linear

constraints, hence the computational complexity of PMM
5 is O

(
(NM +N)3 (4N)

)
.

2.5.3 Feasible Initial Point: PMIN

An initial feasible point, which suffices the convergence of JSP-PMIN to a stationary point [54,55],
for the problem PPMIN

5 is obtained by the following iterative procedure.
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• Step 1: Initialize η = η̂ that satisfies C1 and C3 in PPMIN
4 .

• Step 2: The precoding problem of PPMIN
4 for fixed η can be reformulated as a convex

problem by [9] or [8]. Let Ŵ be the solution from this step.

• Step 3: Exit the loop if Ŵ is feasible (see [9]) else set η = δη̂ and continue to step 2.

Notice that a FIP obtained above may not be feasible to PPMIN
2 since it may violate binary and

scheduling constraints. However, the adopted penalty methods ensure the scheduling and binary
constraints. Hence, the final solution obtained from 3 is always a feasible solution to PPMIN

2 .
Letting PPMIN

5 (k) be the objective value of the problem PPMIN
5 at iteration k, The pseudo code

of the algorithm is illustrated in the algorithm 3.

Algorithm 3 JSP-PMIN
Input: H, [¯̃ε1, . . . , ¯̃εN ] ,∆, η0, W0, λ3 = 0, k = 1; Output:W,η
while |PPMIN

5 (k)− PPMIN
5 (k − 1) | ≥ ∆ do

Convexification: Convexify the problem (2.19)
Optimization: Update

(
Wk,ηk

)
by solving PPMIN

5

Update : PPMIN
5 (k) ,Ω, k

end while

2.5.4 Simulation Setup

In this section, we evaluate the performance of the proposed algorithms for the MMSINR, WSR
and PMIN problems. The system parameters and benchmark scheduling method discussed in this
paragraph are common for all the figures. Entries of the channel matrix, i.e., {hij}s are drawn
from the complex normal distribution with zero mean and unit variance and noise variances are
considered to be unity i.e., σ2 = 1. Simulation results in all the figures are averaged over 500
different channel realizations (CRs). The penalty parameter λ1 is initialized to 0.5 and incremented
as λ1 = 1.1λ1 until λ1 ≤ 10. For all the simulations of MMSINR and PMIN, K is chosen as M .
By the nature of MMSINR (PMIN) design, dropping the user with the lowest SINR (higher power)
leads to a better objective. This phenomenon continues until it drops N −M users and can not
drop any further due to the scheduling constraint. Since, this naturally enforces the binary nature
of η, λ2 = 0 (λ3 = 0) in MMSINR (PMIN) still yields the binary η which is shown Section 2.5.7
and 2.5.8. Hence, λ2 and λ3 are fixed zero in all iterations. The penalty parameters Ω and µ are
initialized to 0.01 and incremented as Ω = 1.2Ω and µ = 1.2µ in each iteration until Ω ≤ 20 and
µ ≤ 20.

2.5.5 Benchmark algorithms

To evaluate the performance of the proposed JSP algorithms - due to the lack of a comparable
joint solution - the following benchmarks (iterative decoupled solutions that execute the following
steps in sequence) are devised:

• In step 1, users are scheduled according to proposed weighted semi-orthogonal user schedul-
ing (WSUS) or exhaustive search-based user scheduling (ES) or random user scheduling
(RUS). The considered WSUS is an extension of the SUS algorithm proposed in [25]. In
SUS, the users are selected sequentially based on the orthogonality of their channels with
those of already scheduled ones. In WSUS, orthogonality indices calculated according to
SUS are multiplied with their associated weights and the user with the highest weighted
orthogonality index is scheduled. This process is repeated until M users are scheduled.

• In step 2, the precoding problem for the scheduled users is solved by the following methods:
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Design criteria Scheduling schemes Precoding schemes
WSR: weighted sum rate SUS: Semi orthogonal user

scheduling
WSR: proposed precoding;
WSR-Z: proposed precoding
with a trivial FIP; RWSR:
reference precoding [51]

MMSINR: Max-Min SINR WSUS: Weighted SUS MMSINR: proposed precoding
scheme

PMIN: Power Minimization RUS: Random user scheduling PMIN: reference precoding in
[8]

TABLE 2.1: Summary of the acronyms of different benchmark algorithms based on design criteria.

– It is easy to see that, retaining only the terms corresponding to scheduled users by sub-
stituting corresponding ηis to 1 (rest are made zero) and ignoring the constraint solely
dependent on ηis in (2.9), (2.18) yields the DC formulation of the precoding problem
for the scheduled users for WSR and MMSINR respectively. These problems can be
solved using CCP with a FIP obtained from PFESWSR and PFESPMIN by substituting
corresponding ηis with 1. RUS, ES, SUS and WSUS combined with this proposed
WSR is simply referred to as RUS-WSR, ES-WSR, SUS-WSR, and WSUS-WSR re-
spectively and for MMSINR as RUS-MMSINR, ES-MMSINR, SUS-MMSINR, and
WSUS-MMSINR respectively. Similarly, RUS, ES, SUS and WSUS based scheduling
followed by the SDP based power minimization proposed in [8] is used for PMIN pre-
coding problem and is referred to simply as RUS-PMIN, ES-PMIN, SUS-PMIN, and
WSUS-PMIN respectively. For the ease of reference, acronyms used for benchmark
(BM) algorithms are tabulated in Table 2.5.5.

– An SDR version of DC formulation proposed in [51] also used for solving the precod-
ing for the scheduled users in WSR case as a reference hence is referred to as RWSR.
WSUS combined with RWSR is referred to as WSUS-RWSR.

• In step 3: If the precoding problem in step 2 is infeasible exit the loop else drop the user
with least orthogonality and repeat step 2 for an updated set of scheduled users. However,
the precoding problems for MMSINR and PMIN are assumed to be feasible.

2.5.6 WSR Performance Evaluation

In figure 2.1(a), we compare the performance of JSP-WSR as a function of N varying from 15
to 30 in steps of 5 for M = 10, PT = 10dB and ε̃i = 4dB, ∀i. Weights {αi}Ni=1 are randomly
drawn from the set { kN }, k = 1, . . . , N . In figure 2.1(a), RUS-WSR, SUS-WSR, WSUS-WSR and
WSUS-RWSR are the decoupled benchmark algorithms. The JSP-WSR initialized with a trivial
solution (W0 = 0, η0 = 0) is referred to as JSP-WSR-Z and JSP-WSR initialized with an FIP
obtained from Section 2.3.4 continues to be referred to as JSP-WSR. From figure 2.1(a), it is clear
that the joint solution JSP-WSR outperforms all the other decoupled benchmarks. Although JSP-
WSR, RUS-WSR, SUS-WSR, and WSUS-WSR have the same underlying precoding algorithm,
JSP-WSR achieves better performance as it jointly updates scheduling and precoding. Consider-
ing weights into scheduling in WSUS-WSR improves over SUS-WSR, as shown in figure 2.1(a),
but it still outperformed by JSP-WSR. However, the gains diminish as N increases as the proba-
bility of finding nearly orthogonal user channels (for the considered Gaussian model) increases;
this implies that the user scheduling has minimum impact on performance. Hence, WSUS-WSR
performs close to JSP-WSR for N relatively larger than M . However, the gains obtained by
JSP-WSR even in comparison with WSUS-WSR still amounts up to 28% (N = 15). Notice that
despite the difference in the rate of growth, all methods benefit from multiuser diversity to improve
SR as N increases.
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FIGURE 2.1: Comparison of different WSR optimization approaches for M =10, {ε̃i = 4dB}Ni=1,

PT = 10 dB, and N is varied from 15 to 30 (a) Achieved WSR and (b) algorithm run time

Notice that JSP-WSR and JSP-WSR-Z are identical except the FIPs. JSP-WSR and JSP-WSR-
Z are CCP based algorithms hence the performance differentiation depends on FIP. Figure 2.1(a)
shows that while a poor FIP like W0 = 0, η0 = 0 results in worse performance than decoupled
solutions, the FIPs from Section 2.3.4 achieves better performance. This shows the efficiency of
the FIP mechanism detailed in Section 2.3.4. In particular, W0 = 0, η0 = 0 is a bad choice since
it is the solution that achieves lowest WSR i.e., zero and hence the solutions of JSP-WSR-Z are
generally the stationary points around the lowest objective.

Despite having the same WSUS scheduling algorithm and the same FIP for precoding, WSUS-
WSR outperforms WSUS-RWSR due to the difference in precoding algorithms as shown in fig-
ure 2.1(a). Although classical WSR can be formulated as a DC problem using proposed refor-
mulations and also by the approach in [51], due to the efficiency of proposed reformulations,
WSUS-WSR achieves the better objective which is confirmed by figure 2.1(a).

Figure 2.1(b) illustrates the complexity of algorithms as a function of running time in seconds.
Notice that the running time includes the time to calculate the FIPs and the final solutions. In
the decoupled algorithms i.e., WSUS-WSR and WSUS-RWSR the complexity of scheduling al-
gorithms is negligible compared to the latter precoding problem. Since the precoding is always
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performed onM users, the precoding complexity of RUS-WSR, WSUS-WSR, and WSUS-RWSR
is only a function of M . On the contrary, joint design algorithms, JSP-WSR, JSP-WSR-Z operate
on N users hence the complexity increases with N . However, due to the efficiency in the design
of JSP-WSR, its complexity can be comparable to that of WSUS-WSR for relatively low values
of N , e.g. N = 15.

In table 2.3, the number of iterations needed for JSP-WSR to converge to a stationary point is
illustrated as a function of M = 10, {ε̃i = 4dB}Ni=1, PT = 10 dB, and N is varied from 15 to 30
(in steps of 5). The per-iteration complexity of JSP-WSR is known to be polynomial and Table 2.3
confirms the number of iterations that are need for JSP-WSR to converge is also in O (N). Figure
1-b shows an approximately linear increase in run-time for JSP-WSR to converge, despite the
sub-linear increase in number of iterations. This confirms the predominant contribution of the per-
iteration complexity in PWSR

5 to the total run-time. Moreover, table 2.3 confirms that JSP-WSR, in
general, has a fast convergence rate (i.e., low-complexity). However, in some scenarios, JSP-WSR
may not exhibit fast convergence (i.e., high complexity).
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FIGURE 2.2: Comparison of various WSR optimization methods for uniform weighted case with M =

10, {ε̃i = 4dB}Ni=1, PT = 10dB (a) N varying from 12 to 20. (b) convergence of the JSP-WSR (with

penalty) and convergence of η to binary for N = 20.

In table 2.2, the performance of JSP-WSR is compared with ES-WSR and WSUS-WSR for
M = 3, {ε̃i = 4dB}Ni=1, PT = 10 dB, and N is varied from 5 to 7 in steps of 1. Although the
JSP-WSR is guaranteed to converge only to a stationary point theoretically, the results in table 2.2
confirms that these stationary points are indeed high-quality solutions. On the other hand, the
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TABLE 2.2: Comparison of various WSR solutions for M =3, {ε̃i = 4dB}Ni=1, PT = 10 dB, and N

varying from 5 to 7 .
Users in cell
(N )

weighted sum rate in bps/Hz

ES-WSR JSP-WSR WSUS-WSR
N = 5 5.83 5.67 5.32

N = 6 6.51 5.97 5.59

N = 7 6.64 6.33 6.02

TABLE 2.3: Convergence rate of JSP-WSR for M = 10, {ε̃i = 4dB}Ni=1, PT = 10 dB as a function of

N .
Number of users in a cell Average number of iterations to converge
N = 15 16

N = 20 20.3

N = 25 22.5

N = 30 24.8

shortcomings of the decoupled solution i.e., WSUS-WSR, leads to a large performance gap from
both ES-WSR and JSP-WSR.

The performance of the JSP-WSR is illustrated for uniform weighted case i.e. {αi = 1}Ni=1

in figure 2.2(a) as a function of N . The performance gain by jointly updating scheduling and
precoding in JSP-WSR over the decoupled SUS-WSR and SUS-RWSR is clear from figure 2.2(a).
However, as N increases (N ≈ 20), SUS schedules the users with strong channel gains and least
interference; hence SUS-WSR performs close to JSP-WSR. Despite the efficiency of SUS in the
region aroundN = 20, SUS-RWSR performs poor due to the inefficiency of the RWSR precoding
scheme.

Figure 2.2(b) illustrates the convergence behavior of the JSP-WSR and the convergence of η
to binary values as a function of iterations. The SR obtained in each iteration is shown by the
red curve while the penalized SR is shown by the blue curve. As the FIP of JSP-WSR contains
a non-binary η, the solutions obtained in the initial iterations include the non-binary η; hence,
the difference between SR (red curve) and SR plus penalty (blue curve). However, as the penalty
factor (λ1) increases over the iterations, JSP-WSR favors the solutions with binary ηis. As a
result, the penalty approaches zero over the iterations i.e., P (ηi) ≈ 0, ∀i. This behavior is clear
from iteration 8 onwards. Moreover, the convergence behavior of the JSP-WSR to a stationary
point of PWSR

5 is shown by the convergence of the blue curve which depicts its objective value.

2.5.7 MMSINR Performance Evaluation

Figure 2.3 illustrates the weighted MSINR of the scheduled users (averaged over 500 different
CRs and referred to as average weighted MSINR) as a function of SINR levels. For SINR level
1, 2, 3 and 4, the weight βi associated with user i is randomly drawn from the sets {1}, {0.5, 1},
{0.333, 0.6666, 0.9999} and {0.25, 0.5, 0.75, 1} respectively. For example, for SINR levels 2, βi
is randomly selected from {0.5, 1}. Hence the MMSINR requirement of each user is ε̃i/0.5 or ε̃i
(also ε̃i = 1). Notice that a higher value of βi increases the likeliness of user i being scheduled.

The performance of JSP-MMSINR is compared with SUS-MMSINR and WSUS-MMSINR
for M = 10, {ε̃i = 1 (0 dB) }Ni=1, PT = 10dB and N = 15 in figure 2.3(a) and N = 20 in
figure 2.3(b). It is clear from figure 2.3(a) and 2.3(b) , that the joint solution JSP-MMSINR im-
proves the performance over the decoupled design RUS-MMSINR, SUS-MMSINR, and WSUS-
MMSINR. Despite identical underlying precoding scheme in JSP-MMSINR, RUS-MMSINR,
SUS-MMSINR, and WSUS-MMSINR, the systematic approach of joint scheduling and precoder
update considering the weights helps JSP-MMSINR to achieve better performance. The naive user
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FIGURE 2.3: Comparison of different MMSINR optimization approaches for PT = 10dB, {ε̃i =

0dB}Ni=1 and SINR levels are varied from 1 to 4 (a) N = 15 (b) N = 20 (C) algorithm run time.
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TABLE 2.4: Performance of various MMSINR solutions for M =3, SINR level 4, PT = 10dB and N

varying from 5 to 7
Users in cell (N ) Average MSINR in dB with

ES-MMSINR JSP-MMSINR WSUS-MMSINR
N = 5 5.23 5.15 4.63

N = 6 5.95 5.79 5.03

N = 7 6.71 6.56 5.99

Users in cell
(N )

Average power consumed in dB with

ES-PMIN JSP-PMIN WSUS-PMIN
N = 5 5.4477 5.99 6.2448

N = 6 5.116 5.6164 5.8771

N = 7 3.95 4.5365 5.1270

TABLE 2.5: Performance comparison of various PMIN solutions for M =3, SINR level 4 and N is

varied from 5 to 7.
scheduling based method i.e., RUS-MMSINR clearly performs poorer than other benchmark meth-
ods. Although WSUS-MMSINR achieves better performance over SUS-MMSINR by considering
the weights into scheduling, it still performs worse than JSP-MMSINR showing the inefficiency of
decoupled design. The gains obtained by JSP-MMSINR compared to best performing decoupled
method i.e., WSUS-MMSINR amounts up to 10% (figure 2.3(b), SINR level 4).

In figure 2.3(c), the run time of the algorithms is illustrated as a function of SINR levels for
M = 10, N = 20 and PT = 10dB. Figure 2.3(c) shows that the gains of JSP-MMSINR are
achieved at the expense of high computational complexity as illustrated in figure 2.3(c). More-
over, the complexity of JSP-MMSINR increases as SINR levels increase. The increase in SINR
levels enforces the inclusion of users with higher SINR requirement since the users with lower
SINR requirement may not be sufficient to schedule exactlyM users. Hence, JSP-MMSINR takes
relatively longer time to converge compared lower SINR levels.

The performance of JSP-MMSINR is illustrated for uniform weighted case i.e., {βi = 1}Ni=1

in figure 2.4 for M = 10 and PT = 10dB. In figure 2.4(a), the average MSINR is illustrated as
a function of N varying from 12 to 18 in steps of 2. The superior performance of JSP-MMSINR
over SUS-MMSINR is clear from 2.4(a). However, the gains diminish as N increases as the SUS
based solution becomes efficient as mentioned previously.

In figure 2.4(b), the convergence behavior of the algorithm and progression towards achieving
exact scheduling constraint i.e.,

∑N
i=1 ηi == M are illustrated as a function of the iteration num-

ber. While the blue curve depicts the inverse of MSINR (i.e., t inPMM
4 ) achieved over the iteration,

the red curve depicts the penalized objective where the penalty aims to satisfy the constraint of
scheduling exactly M users. As FIPs violate the exact scheduling constraint, the penalized objec-
tive (red curve) is far from the objective (blue curve). However, increasing the penalty parameter
Ω over the iterations until Ω ≤ 20 ensures the scheduling constraint. This behavior is observed
from iteration 8 in figure 2.4(b) as the difference between penalized objective and objective is
approximately zero. Moreover, the binary nature of η is also achieved over the iterations due to
nature of MMSINR for fixed λ2 = 0 in figure 2.3 and 2.4.

Table 2.4 compares the performance of JSP-MMSINR, WSUS-MMSINR and ES-WSR for
M = 3, SINR level 4, PT = 10 dB. The relatively similar performance of JSP-MMSINR and ES-
MMSINR confirms the efficiency of JSP-MMSINR and high-quality nature of stationary points
that the JSP-MMSINR converges to.
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FIGURE 2.4: Comparison of MMSINR for uniform weighted case, M = 10, βi = 1, ε̃i = 0 dB,

∀i, PT = 10 dB (a) N varies from 12 to 20. (b) Convergence of the JSP-MMSINR (with penalty) and

convergence of η to binary for N = 20.

2.5.8 PMIN Performance Evaluation

The total power consumed by the scheduled users (for each channel realization) is averaged over
500 channel realizations (CRs) which is referred to as average total power per CR. In figure 2.5,
the average total power per CR is depicted as a function of SINR levels for M = 10, N = 15
in figure 2.5(a) and N = 20 in figure 2.5(b). The SINR level 1, 2, 3 and 4 (chosen differently
than MMSINR design) on the x-axis indicate that ε̃i is randomly chosen from the sets {1}, {1, 2},
{1, 2, 3} and {1, 2, 3, 4} for user i respectively. For example, for the SINR level 2, ε̃i for user i is
randomly chosen from the set {1, 2}.

Figure 2.5(a) and 2.5(b) clear shows that the joint solution JSP-PMIN outperforms RUS-
PMIN, SUS-PMIN and WSUS-PMIN. Although the precoding problem for the scheduled users
by RUS, SUS, and WSUS is solved globally using [8], the inefficient scheduling leads to poorer
performance compared to JSP-PMIN. On the contrary, the system design in JSP-PMIN helps to
gain up to 25% ( SINR level 4, figure 2.5(b)) in comparison with WSUS-PMIN. In figure 2.5(c),
the run time of algorithms is illustrated in seconds as a function of SINR levels. As shown in
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FIGURE 2.5: Comparison of different PMIN optimization approaches for M = 10, PT = 10 dB and
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FIGURE 2.6: Comparison of different PMIN optimization approaches for M = 10, PT = 10dB and

{εi = 0dB}Ni=1 (a) N varying from 10 to 30 in steps of 5 (b) convergence of the JSP-PMIN (with penalty)

and convergence of η to binary for N = 15.

figure 2.5(c), the performance gains of JSP-MMSINR incur higher computational complexity.
In table 2.5, the performance of JSP-PMIN and WSUS-PMIN is compared with ES-PMIN for

M = 5, ε̃i ∈ {0, 1, 2, 3},∀i for different N . Despite the theoretical guarantees of convergence
JSP-PMIN only to a stationary point, JSP-PMIN performs close to ES-PMIN as can be observed
in table 2.5. This justifies the efficiency of JSP-PMIN approach.

The performance JSP-PMIN for uniform weighted case (i.e., all users with same MSINR re-
quirement) is illustrated in figure 2.6 for M = 10 and {ε̃i = 1}Ni=1. In figure 2.6(a), the average
total power per CR in dB is depicted as a function of N varying from 15 to 30 in steps of 5.
The superior performance of JSP-PMIN over SUS-PMIN is clear from figure 2.6(a). However,
the gains diminish as N increases as the SUS based scheduling becomes efficient (kindly refer to
similar discussion on WSR results).

In figure 2.6(b), the convergence behavior of the JSP-PMIN algorithm (red curve) and the
progression towards ensuring the exact scheduling constraint is depicted as a function of iterations
for N = 15. The FIP may include the solutions that violate exact scheduling constraint due
to which the penalized objective and objective differs by a large factor in the initial iterations.
However, the increment in the penalty parameter µ ensures the exact scheduling constraint over
the iterations. This is confirmed by figure 2.6(b), as the difference between penalized objective and
objective, becomes approximately zero. For the reasons at the beginning of this section, λ3 = 0
still achieves the binary nature of η over iterations.

46



2.6 Conclusions

In this paper, the joint scheduling and precoding problem was considered for multiuser MISO
downlink channels for three performance optimization criteria: weighted sum rate maximization,
maximization of minimum SINR and power minimization. Unlike the existing works, the de-
sign is formulated in a way that is amenable to the joint update of scheduling and precoding.
Observing that the original optimization to be an instance of the MINLP problem for the three
considered criteria, the paper proposed efficient reformulations and relaxations to transform these
into structured DC programming problems. Subsequently, the paper proposed joint scheduling
and precoding CCP based algorithms (JSP-WSR, JSP-MMSINR, and JSP-PMIN) which are guar-
anteed to converge to a stationary point for the aforementioned DC problems. Finally, the paper
proposed a low-complexity procedure to obtain a good feasible initial point, critical to the imple-
mentation of CCP based algorithms. Through simulations, the paper established the efficacy of
the proposed joint techniques with respect to the decoupled benchmark solutions.
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3
Joint user grouping, scheduling and precoding for

multigroup multicast scenario

3.1 Introduction

The adaptation of full-spectrum reuse and multi-antenna technologies result in significantly im-
proved spectral efficiency (SE). On the other hand, the demand for green communications neces-
sitates achieving these high SEs with limited energy [68]. In this regard, energy efficiency (EE),
which measures the performance in throughput/Watts, becomes a key factor to be considered in
the next-generation wireless networks [69]. Notice that the power minimization or energy mini-
mization is also referred to as energy efficiency in the literature. The aforementioned EE which
measure the performance in throughput/Watts is the focus of this paper.

On the other hand, in some scenarios like live-streaming of popular events, multiple users
are interested in the same data. Realizing that multicasting such information to groups of users
leads to better utilization of the resources, physical layer multigroup multicasting (MGMC) has
been proposed in [29, 30]. Noticing the significant improvement in EE, multicasting has been
adopted into 3GPP standards [70]. However, the following challenges need to be addressed to
fully leverage the gains of MGMC:

• Inter-group interference: The co-channel users in different groups generate interference
across the groups which is referred to as inter-group interference (IGI). A study of IGI is
essential as it fundamentally limits the minimum rate of the groups that can be achieved [31]
and, hence, the total throughput of the network. In this context, user grouping is a pivotal
factor to be considered since it dominantly influences IGI [33, 34].

• Infeasibility: In a real scenario, each user needs to be served with a certain quality-of-service
(QoS); failing to meet the QoS leads to retransmissions which significantly decrease the EE
of the network. The severe IGI and/ or poor channel gains may thwart some users from
meeting their QoS [31]. On the contrary, even in the cases with lower IGI, limited power
may restrain the users from meeting their QoS [29]. Due to a combination of these three
factors, the system may fail to satisfy the QoS requirements of all the users in all groups.
This scenario is referred to as the infeasibility of the MGMC design in the literature [29,31].
The infeasibility of MGMC is crucial to the design and is, therefore, typically addressed by
user scheduling (also referred to as admission control in the literature) [32, 33].
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3.1.1 Joint user grouping, group scheduling and user scheduling for message-based
MGMC systems

In this chapter, similar to [33, 71], a message based user grouping and scheduling are considered.
In the message based MGMC model, each group is associated with a different message, and a user
may be interested in multiple messages, thus requiring user grouping. Unlike [71] and similar
to [33], a limited antenna BS system is considered with the number of groups being larger than
the number of antennas at BS. Therefore, in a given transmit slot, only a few groups (equal to
the number of antennas of BS) are scheduled; this is referred to as group scheduling. Further,
a user that fail to satisfy the QoS requirements of subscribed group is simply excluded from the
grouping; this is referred to as user scheduling. So, the considered model requires the design
of user grouping, group scheduling, and user scheduling. User grouping, group scheduling, and
user scheduling are inter-related. To see this, user grouping decides the achievable minimum
signal-to-interference and noise ratio (SINR) of the groups (or IGI) which influences the group
scheduling and user scheduling. Further, omitting or adding a user (i.e., user scheduling) in a group
changes the IGI, thereby impacting group scheduling. Similarly, user scheduling in a group might
necessitate the re-grouping of users (i.e., user grouping); this affects IGI and group scheduling.
Furthermore, IGI is a function of precoding [34]. Therefore, the optimal performance requires the
joint design of user grouping, group scheduling, user scheduling, and precoding; this is compactly
referred to as joint design in this paper.

3.1.2 EE in the context of the joint design of user grouping, scheduling, and pre-
coding

this chapter, for the reasons mentioned earlier, EE is considered as the measure of the system per-
formance. All the existing works on EE maximization in MGMC systems [30,69,72–74], presume
a particular user grouping and scheduling, therefore, the EE for MGMC systems is defined as the
ratio of the sum of minimum throughput within each group and the total consumed energy. Notice
that the existing EE definition accounts for only the minimum rate of a group ignoring the number
of users in the groups (group sizes). However, in the context of user grouping and scheduling,
group sizes need to be accounted for, in addition to their minimum rates. To comprehend the
necessity, consider two groups with an equal minimum rate and a large difference in group sizes.
According to the existing EE definition, the group with few users could be scheduled as the EE
maximization is not biased to schedule a group with the larger size. However, from the network
operator perspective, scheduling the group with more users results in efficient utilization of the re-
sources. Moreover, the event of scheduling the group with few users is likely for EE maximization
since it usually consumes less energy. However, if a large number of users can be served with a
slight increase in energy, scheduling such a larger group improves the efficiency in the utilization
of resources. The existing frameworks can not handle these scenarios as the number of users is not
included in the EE definition. Noticing the drawbacks of existing EE definition, this chapter, a new
metric called multicast energy efficiency (MEE) is proposed to account for the group sizes along
with the minimum rates. In contrast to EE, in the numerator of MEE minimum throughput within
a group times number of users in that group, is considered. Realizing the importance of MEE,
this chapter, we consider the joint design of user grouping, scheduling, and precoding for MGMC
systems subject to grouping, scheduling, quality-of-service (QoS) and total power constraints for
the maximization of three design criteria: MEE, EE and scheduled users. In this context, related
works in the literature and contributions/novelty of the paper are summarized in the sequel of this
section.
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3.1.3 Related works

Energy efficiency for MGMC systems

The EE maximization problem for MGMC systems was first addressed in the context of coor-
dinated beamforming for multicell networks [72]. By definition, EE belongs to fractional pro-
gramming. The authors in [72] used Dinkelbach’s method to transform this fractional program
to subtractive non-linear form and further solved the problem with an iterative algorithm wherein
each iterate precoding and power vectors are updated alternatively. Later, this work is extended to
the case of imperfect channel state information in [73]. Dinkelbach’s method based transformation
works efficiently if the denominator is a simple linear objective and numerator is convex other-
wise it leads in a multi-level parametric iterative algorithm that is not efficient [75]. In [75], the
authors optimized the EE for MGMC in multicell networks considering the rate-dependent pro-
cessing power. The authors in [75] use successive convex approximation to transform fractional
EE maximization problem as convex-concave programming in iteration k and further solved the
subproblem using Charnes-Cooper transformation (CCT). In [69], EE maximization in a large an-
tenna system with antenna selection is solved using SCA based CCT. Further, the authors in [69]
addressed the boolean nature stemming from antenna selection by continuous relaxation and fol-
lowed by thresholding. In [74], EE maximization for non-orthogonal layered-division multiplex-
ing based joint multicast and the unicast system is considered. A pseudoconvex approach based
parallel solution is developed for EE maximization in MIMO interference channels in [76]. EE
user scheduling and power control is considered for multi-cell OFDMA networks for a unicast
scenario in [77]. Moreover, precoding is not considered in [77]. The methodologies used in all
these works are either SCA based CCT [69,72,75] or SCA based Dinkelbach’s method [74,76,78].
Unlike the aforementioned works which assume the rate-dependent processing power to be a con-
vex function of rate, a non-convex power consumption model is considered this chapter. There-
fore, unlike EE maximization considered in the literature, MEE maximization considered this
chapter belongs to mixed-integer fractional programming where the numerator is mixed-integer
non-convex and denominator is also non-convex. Hence, the SCA based CCT can not be applied
and Dinkelbach’s method yields parametric multilevel iterative algorithms [76]. Moreover, the
integer nature stemming from the user grouping and scheduling is different to the antenna se-
lection problems (see [69] and references therein) and, hence, problem formulation and solution
methodologies used in the antenna selection literature can not be employed.

User grouping, scheduling, and precoding for EE maximization in MGMC systems

this chapter, we consider the joint design of user grouping, group scheduling, user scheduling, and
precoding for MEE maximization in message-based MGMC systems. Joint design of admission
control and beamforming for MGMC systems was initially addressed in [32] for the power min-
imization problem. The authors in [32] addressed the admission control using binary variables
and transformed the resulting mixed-integer non-linear problem (MINLP) into a convex problem
using semidefinite programming (SDP) transformations; SDR based precoding is likely to include
high-rank matrices for MGMC systems [79]; hence, the solutions may become infeasible to the
original problems. Later, the design of user grouping and precoding without admission control
is considered in [34] for satellite systems. However, the authors in [34] adopted the decoupled
approach of heuristic user grouping followed by a semidefinite relaxation (SDR) based precoding.
In [71], the authors considered the joint user grouping and beamforming without user schedul-
ing for massive multiple-input multiple-output (MIMO) systems and proved that arbitrary user
grouping is asymptotically optimal for max-min fairness criteria. However, the arbitrary group-
ing is not optimal for other design criteria and also not optimal for max-min criteria in the finite
BS antenna system. Moreover, the underlying precoding problem in [32–34] is solved by SDR
transformation, hence, as mentioned earlier the solutions may become infeasible to the original
problems [79]. In [80], joint adaptive user grouping and beamforming is considered for MGMC
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scenario in massive MIMO system. The authors in [80] adapted iterative approach wherein each
iterate user grouping and beamforming are solved separately by decoupling the two problems.
However, the EE or MEE maximization problem in the context of user grouping, scheduling, and
precoding is not considered in the literature.

The system model considered in this chapter is similar to [33]. The authors in [33] considered
the joint design for power minimization and its extension to EE maximization is not clear. More-
over, at the solution level, the problem is decoupled into user grouping and scheduling followed
by SDR based precoding which is likely to include high-rank matrices for MGMC systems [79];
hence, the solutions may become infeasible to the original problems. In our previous work [81],
we considered the joint design of scheduling and precoding for the unicast scenario to optimize
sum rate, Max-min SINR, and network power. In [81], scheduling is addressed by bounding the
power of the precoder with the help of a binary variable. However, in the MGMC system, each
precoder is associated with a group of users, hence, the same method can not be employed. More-
over, the MEE or EE maximization in the context of user grouping, scheduling, and precoding
belongs to mixed-integer fractional programming which is not dealt in [81], and its extension to
proposed system model is not clear. Furthermore, the proposed MEE belongs to Mixed-integer
fractional programming problems with a mixed-integer non-convex objective in the numerator and
a non-convex objective in the denominator. Therefore, the MEE maximization problem consid-
ered this chapter is significantly different from [81] in terms of the system model, performance
metric of optimization, problem formulation, and the nature of the optimization problem. Hence,
the solution in [81] can not be applied directly here. The MEE maximization problem considered
for the joint design this chapter is highly complex as it inherits the complications of user grouping,
group scheduling and user scheduling, and EE problems, and poses additional challenges.

3.1.4 Contributions

Below we summarize the contribution on the joint design of user grouping, scheduling, and pre-
coding for the MGMC system to maximize the MEE and EE as follows:

• Noticing that the existing EE definition accounts only for the minimum rate of groups ig-
noring group size, in the context of user grouping and scheduling a new metric called MEE
is proposed to account for the group sizes along with the minimum rate of the groups in
the messaged-based MGMC systems [33]. Unlike the existing works e.g., [33, 75, 81], this
results in a new mixed-Boolean fractional objective function posing additional challenges
to the existing challenges in user grouping, scheduling, and EE designs.

• Further, unlike existing models which assumes rate-dependent processing power to be a
convex function of rate [69, 72, 74, 75, 77], rate-dependent processing power is assumed
to be a non-convex function of rate with admissible DC decomposition. Therefore, the
considered power consumption model applies to a broader class of models.

• Inspired by the work in [81], user grouping, group scheduling, and user scheduling are
addressed with the help of binary variables. Unlike [81], MEE maximization problems
along with binary constraints result in a new mixed-Boolean fractional programming to
which the existing SCA based CCT [75] can not be applied and Dinkelbach’s [72] method
results in the parametric multilevel iterative algorithm which is not efficient.

• The resulting mixed-Boolean fractional formulations are non-convex and NP-hard. Towards
obtaining a low-complexity stationary solution, with the help of novel reformulations, the
fractional and non-convex nature of the problems is transformed as DC functions. Further,
Boolean nature is handled with appropriate relaxation and penalization. These reformula-
tions render the joint design as a DC problem, a fact hitherto not considered.
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• Finally, within the framework of the convex-concave procedure (CCP) [63] (which is a spe-
cial case of SCA [82]), an iterative algorithm is proposed to solve the resulting DC problem
wherein each iterate a convex problem is solved. A simple low-complexity non-iterative
procedure to obtain a feasible initial point, which inherently establishes convergence of the
proposed algorithms to a stationary point [54, 55], is proposed.

• The performance of the proposed algorithms affecting the three design aspects, namely
MEE, EE, and number of scheduled users, and their typical quick convergence behavior
(which confirms the low-complexity nature) are numerically evaluated through Monte-Carlo
simulations.

3.2 System model

3.2.1 Message based user grouping and scheduling

We consider the downlink scenario of a single cell multiuser MISO system with M transmit base
station (BS) antennas and N (≥M) users each equipped with a single receive antenna. In this
chapter, similar to [33, 71], message-based user grouping, and scheduling is considered. In this
context, it is assumed that each group is associated with a unique message. Therefore, the number
of groups, say G, is equal to the number of messages. Further, each user is assumed to be inter-
ested in at least one message and a user may be interested in multiple messages. Despite the user’s
interest in multiple messages, a user is allowed to be a member of utmost one group in a given
slot. This constraint is simply referred to as user grouping constraint (UGC). Letting S〉 to be the
set of users belonging to message (group) i and φ to be the empty set, the UGC is formulated as
S〉 ∩ S| = φ, for 〉 6= |. Further, to establish the relevance of the design to the real scenarios, a
certain QoS requirement (typically depending on the type of service/application) on the messages
is assumed. UGC also captures the worst-case scenario of a user failing to meet any QoS require-
ment associated with any of the interesting messages: hence, the user is simply not scheduled in
the current slot. Therefore, UGC naturally leads to

∑G
i=1 |S〉| ≤ N . Further, it is assumed that

G ≥M , hence, scheduling of exactly M groups out of G is considered. This constraint is simply
referred to as group scheduling constraint (GSC).

User channels are assumed to constant and perfectly known. The noise at all users is assumed
to be independent and characterized as additive white complex Gaussian with zero mean and
variance σ2. Furthermore, total transmit power at the BS is limited to PT for each transmission.
Finally, the BS is assumed to transmit independent data to different groups with E{|xi|2} = 1,∀i,
where xi is the message associated with group i. Let wi ∈ CM×1 be the precoding vector with
group i and W = [w1, . . . ,wG], hi ∈ CM×1 be the downlink channel of user i, and γij =

|hHi wj |2∑
l 6=j |hHi wl|2 + σ2

be the SINR of user i belonging to group j.

3.2.2 Power consumption model, Energy efficiency, and Multicast energy efficiency

Power consumption model

this chapter, we adopt the ideal power consumption model proposed in [75]. Let B be the band-
width of the channel and rj = B log2

(
1 + mini∈Sj γij

)
be the minimum rate of group j. Notice

that all the users in a group receive exactly the same message associated with the group. There-
fore, the transmission rate of the message j to group j at the BS is simply the minimum rate of the
group i.e., rj . With defined notations, the power consumption at the BS is defined as

g(W, r) , P0 +
G∑
j=1

(
1

ρ
‖wi‖2 + Πp (rj)

)
, (3.1)
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where r = [r1, . . . , rG], P0 is the static power spent by the cooling systems, power supplies etc.,
ρ < 1 is the power amplifier efficiency, and Π ≥ 0 is a constant accounting for coding and
decoding power loss, and p(rj) = p1 (rj)− p2 (rj) is a differentiable non-negative difference-of-
convex function of rj reflecting the rate-dependent processing power of group j with p(0) = 0,
and p1 and p2 are convex functions. Notice that unlike previous works e.g. [69,75,77] where p(rj)
is assumed to be a convex functions, the considered model g(W, r) represents relatively broader
class of rate-dependant power consumption models.

Energy efficiency

EE for MGMC systems is typically defined as a ratio of the throughput of the network to the
energy consumed at the BS in the literature. Letting T to be the set of scheduled groups and B be
the bandwidth of the channel, the EE is defined as (3.2).

EE ,

∑
j∈T B log

(
1 + mini∈Sj γij

)
g(W, r)

. (3.2)

The numerator of the EE in (3.2) models the network’s multicast throughput as the sum of the
minimum throughput of all groups. So, this definition only accounts for the minimum throughput
of a group ignoring its size.

Multicast energy efficiency

In the context of user grouping and scheduling for MGMC systems, the standard EE metric needs
to be redefined to account for the size of the group. To understand this, consider a scenario of
scheduling a group between two groups having the same minimum throughput, consuming the
same energy and large difference in group sizes. The EE criterion does not discriminate between
two groups. However, scheduling a group with a large number of users leads to better utilization
of resources. So, to account for the number of users being served in each group along with its
minimum rate, we propose a new metric called MEE for the MGMC systems. With the help of
defined notations, MEE is formally defined as,

MEE ,

∑
j∈T

(
Ψj |Sj |B log

(
1 + mini∈Sj γij

))
g(W, r)

. (3.3)

where Ψj is the weight associated with group j. The weights i.e., Ψjs are introduced in MEE to
address the fairness among the groups. For example, by choosing Ψ1 to be relatively much larger
than {Ψi}Gj=2 scheduling of group 1 can be prioritized.

Interpretation of MEE as total received bits/Joule

From the physical layer transmission perspective, the network throughput (number of transmitted
bits per second) in MGMC systems is same as unicast systems. In unicast scenario, the transmitted
information is received by only one user. However, in MGMC scenario, the information transmit-
ted to group j is received by |Sj | users. Hence, from the network operator perspective, throughput
of group j in this multicast scenario is |Sj |B log

(
1 + mini∈Sj γij

)
received bits per second. Mo-

tivated by this, the numerator of equation (3.3) i.e.,
∑

j∈T
(
|Sj |B log

(
1 + mini∈Sj γij

))
reflects

the combined multicast throughput of all the groups i.e., network throughput, henceforth, simply
referred to this chapter as multicast throughput. Similarly, MEE defined in (3.3) reflects MEE for
MGMC systems. Thus, MEE can be seen as number of received bits for one joule of transmitted
energy.
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3.3 Multicast Energy Efficiency

In this section, at first, the joint design of user grouping, scheduling, and precoding is mathemati-
cally formulated to maximize the MEE subject to appropriate constraints on the number of groups,
users per group, number of scheduled groups, power, and QoS constraints. This problem is simply
referred to as the MEE problem. Further, with the help of useful relaxations and reformulations,
the MINLP NP-hard MEE problem is transformed as a DC programming problem. Finally, within
the framework of CCP, an iterative algorithm is proposed which guarantees to attain a stationary
point of the original problem.

3.3.1 Problem formulation: MEE

The EE maximization problem, with the notations defined, in the context of user grouping, schedul-
ing and precoding for the MGMC scenario in Section 3.2 is formulated as,

PMEE
1 : max

{wj ,Sj}Gj=1

∑G
j=1

(
Ψj |Sj |B log

(
1 + mini∈Sj γij

))
g(W, r)

(3.4)

s.t. C1 : Si ∩ Sj = φ, i 6= j,∀i, ∀j,
C2 : ‖[|S1|, . . . , |SG|]‖0 = M,

C3 : log (1 + γij) ≥ εj , i ∈ Sj , ∀j,

C4 :
G∑
j=1

‖wj‖2 ≤ PT ,

C5 : Si ⊂ {1, . . . , N}, ∀i,

where εj is the QoS requirement of group j, ∀i refers to i ∈ {1, . . . , N} and ∀j refers to j ∈
{1, . . . , G}
Remarks:

• Constraint C1 is the UGC; constrains a user to be a member of at most one group.

• Constraint C2 is the GSC; it ensures the design to schedule exactly M groups.

• Constraint C3 is the QoS constraint; it enforces the scheduled users in each group to satisfy
the corresponding minimum rate requirement associated with the group. This enables the
flexibility to support different rates on different groups. Hereafter, the constraint C3 is
simply referred to as QoS constraint. Moreover, the constraint C3 together with C1 ensure
the USC.

• Constraint C4 is the total power constraint (TPC); precludes the design from consuming the
power in excess of available power i.e., PT .

Necessity of low-complexity algorithms for joint design The problem PMEE
1 is combinatorial

due to constraints C1 and C2. Hence, obtaining the optimal solution to PMEE
1 requires an exhaus-

tive search-based user grouping and scheduling. To understand the complexity of the exhaustive
search methods, assume that each user is interested in only one message. Further, let Ni be the
number of users in the group i. Let Ti be the all possible scheduling subsets of Si, so the number
of sets in Ti is

∑Ni
j=0

(
Ni
j

)
for i ∈ {1, . . . , G}. So, the exhaustive search needs to be performed

over the Cartesian product of sets Tis i.e., ×Gi=1 (Ti). It is easy to see that the exhaustive search
algorithms quickly become impractical due to exponential complexity. This case merely a simple
case of the problem considered in PMEE

1 . Additionally, for each scheduled combination, the cor-
responding precoding problems in PMEE

1 need to be solved. Moreover, these precoding problems
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are generally not only NP-hard but also non-convex [29]. Thus, in the sequel, we focus on devel-
oping low-complexity algorithms that are guaranteed to obtain a stationary point of the NP-hard
and non-convex problem PMEE

1 .

3.3.2 A mixed integer difference of concave formulation: MEE

In this section, firstly, avoiding the set notation by using binary variables the problem PMEE
1 is

equivalently reformulated as an MINLP problem without the set notations. Further, with the help
of a minimal number of slack variables and novel reformulations, the resulting MINLP problem is
transformed as a difference-of-concave (DC) problem subject to binary constraints.

Towards transforming the MEE problem in PMEE
1 as DC a problem, let ηij be the binary

variable indicating the membership of user i ∈ {1, . . . , N} in group j ∈ {1, . . . , G}. In other
words, ηij = 1 indicates that user i is a member of the group j and not a member otherwise.
Since a user may not be interested in some groups, the ηijs corresponding to these groups is fixed
beforehand to zero. Hence, only a subset of the entries in ηi are the variables of the optimization.
However, for the ease of notation, without the loss of generality, henceforth, we assume that each
user is interested in all the groups. In other words, all the entries in ηi become variables of
optimization. It is easy to see that this is only a generalization to the aforementioned case. Hence,
a solution to this generalized problem is a solution to the aforementioned problem.

Letting Θj and ζj be the slack variables associated with minimum rate of group j respectively,
and αij be the slack variable associated with SINR of user i of group j, the problem PMEE

1 is
equivalently reformulated as,

PMEE
2 : max

W,Θ,η,α,ζ

∑M
j=1

(∑Ni
i=1 ηij

)
BΨjΘj

g(W, ζ)
(3.5)

s.t. C1 : ηij ∈ {0, 1}, ∀i, ∀j, C2 :
G∑
j=1

ηij ≤ 1, ∀i,

C3 :

∥∥∥∥∥
[
N∑
i=1

ηi1, . . . ,
N∑
i=1

ηiG

]∥∥∥∥∥
0

= M, C4 : 1 + γij ≥ αij , ∀i, ∀j,

C5 : logαij ≥ ηijΘj , ∀i, ∀j, C6 : Θj ≥ εj , ∀j,

C7 :
M∑
i=1

‖wi‖22 ≤ PT , C8 : 0 ≤ ζj ≤

∥∥∥∥∥
N∑
i=1

ηij

∥∥∥∥∥
0

BΘj ,∀j,

where Θ = [Θ1, . . . ,ΘM ], ζ = [ζ1, . . . , ζM ], η = [η1, . . . ,ηG], ηi = [ηi1, . . . , ηiG], α =
[α1, . . . ,αG], and αi = [αi1, . . . , αiG]
Remarks:

• Constraints C1 and C2 in PMEE
2 ensures the UGC. The constraint C3 is the equivalent refor-

mulation of GSC constraint C2 in PMEE
1 .

• For all the users that are not subscribed to group j ( i.e., users with ηij = 0), the constraint
C5 implies logαij ≥ 0 which is satisfied by the definition of rate. On the contrary, for all
the users subscribed to group j (i.e., users with ηij = 1) constraint C4 implies logαij ≥
Θj . Hence, Θj provides the lower bound for the minimum rate of the group. Moreover,
at the optimal solution of PMEE

2 , Θj is equal to the minimum rate of group j i.e., Θj =
minj∈Si logαij .

• In the objective of PMEE
2 , the term

∑Ni
i=1 ηij is equivalent to |Si|. Since at the optimal

solution Θj = minj∈Si logαij , the objective in PMEE
2 is equivalent to the EE objective in

PMEE
1 .
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• Constraint C8 is introduced to address the rate-dependent processing power in g (W, r) in
problem PMEE

1 . For a unscheduled group j (i.e.,
∥∥∥∑N

i=1 ηij

∥∥∥
0

= 0), from constraint C8

ζj = 0 and for a scheduled group i.e., (
∥∥∥∑N

i=1 ηij

∥∥∥
0

= 1) ζj = Θj which is the minimum
rate of the group.

Notice that the problem PMEE
2 is significantly different and much more complex than prob-

lems dealt in [33, 69, 71, 72, 75, 76, 81]. The MEE objective in P2 is unlike any EE objective in
the literature (see [69, 72, 75, 76] and reference therein). The power consumption model g (W, r)

and multicast throughput i.e.,
∑M

j=1

(∑Ni
i=1 ηij

)
BΘj considered this chapter are non-convex and

multicast throughput is a function of binary variables. Hence, SCA based CCT [69] can not be ap-
plied to P2 and Dinkelbach’s methods [72] results in a parametric multi level iterative algorithm.
Further, problem P2 differs from [81] where the binary variables are only associated with precod-
ing and SINR terms. The transformation to deal with the MEE objective, constraint C3 and C8 are
not dealt in [81]. The problem PMEE

2 inhibits the complexities associated with EE problems and
user grouping and scheduling problems, hence, much more challenging than standalone EE and
user grouping and scheduling problems.

The reformulation given in PMEE
2 is equivalent to PMEE

1 that the optimal solution of P2 is also
the optimal solution of P1. Hence, the problem P2 is an equivalent reformulation of P1. The
problem P2 is combinatorial due to constraint C1 and C3, and non-convex due to constraint C3,
C4 and the objective. Letting δi to be the slack variable associated with group i and t to be the
slack variable associated with power consumption, P2 is transformed into a DC problem subject
to binary constraints as,

PMEE
3 : max

W,Θ,η,δ,α,ζ

N∑
i=1

G∑
j=1

f (ηij ,Θj , t) , BΨj

(ηij + Θj)
2 − η2

ij −Θ2
j

2t
(3.6)

s.t. C1 : ηij ∈ {0, 1}, ∀i, ∀j; C2 :
G∑
j=1

ηij ≤ 1, ∀i;

C3 :

N∑
i=1

ηij ≤ δjN, ∀j, C4 : δj ∈ {0, 1},∀j;

C5 :
∑
l 6=i
|hHi wl|2 + σ2 ≤ Jij(W, αij), ∀i, ∀j, C6 :

M∑
j=1

‖wj‖22 ≤ PT ,

C7 : (ηij + Θj)
2 − 2 logαij ≤ η2

ij + Θ2
j , ∀i, ∀j, C8 : Θj ≥ δjεj , ∀j,

C9 :
ζj
B

+ δ2
j + Θ2

j ≤ (δj + Θj)
2 , ∀j,

C10 : P0 +
G∑
j=1

(
1

ρ
‖wj‖2 + Π (p1 (ζj)− p2 (ζj))

)
≤ t,

C11 :

G∑
j=1

δj = M, ∀j,

where Jij(W, αij) ,

∑G
l=1 |hHi wl|2 + σ2

αij
, δ = [δ1, . . . , δG]T . In constraint C3 in PMEE

3 , the

binary slack variable δj is used for controlling the scheduling of group j. In other words, δj = 0
indicates that group j is not scheduled else scheduled. However, for scheduled group j (i.e.,
δj = 1) constraint C3 becomes superfluous as it is always satisfied. With the help C3 and C4,
constraint C10 ensures that number of scheduled groups is exactly M . The constraint C9 in PMEE

3

is the DC reformulation of ζj ≤ BδjΘj , ∀j.
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3.3.3 Continuous DC using relaxation and penalization: MEE

Ignoring the combinatorial constraints C1 and C4, the constraint set of PMEE
3 can be seen as a DC

problem. So, the stationary points of such DC problems can be efficiently obtained by convex-
concave procedure (CCP). With the aim of adopting the CCP framework, the binary constraints
C1 and C4 in PMEE

4 are relaxed to box constraint between 0 and 1 i.e., [0, 1]. The CCP framework
can be readily applied to this relaxed continuous problem; however, the obtained stationary points
might yield non-binary δjs and ηijs. Although, a quantization procedure can be used to obtain
binary δjs and ηijs, the resulting solutions may not be even feasible to PMEE

1 . Therefore, obtaining
binary δjs and ηij in the relaxed problem is crucial to ensure that the obtained solution are feasible
to the original problem PMEE

2 . Therefore, the relaxed variables δjs and ηijs are further penalized
to encourage the relaxed problem to include binary δjs and ηijs in the final solutions. Letting
λ1 > 0 and λ2 > 0 be the penalty parameters respectively and P (.) be the penalty function, the
penalized continuous formulation of PMEE

4 is,

PMEE
4 : max

W,Θ,η,δ,α,ζ,t

N∑
i=1

G∑
j=1

f (ηij ,Θj , t) +
G∑
j=1

N∑
i=1

λ1P (ηij) + λ2

G∑
j=1

P (δj) (3.7)

s.t. C1 : 0 ≤ ηij ≤ 1, ∀i, ∀j, C4 : 0 ≤ δj ≤ 1, ∀j, C2, C3, C5 to C11 in (3.6)

It is easy to see that any choice of convex function P (ηij) that promotes the binary solutions
suffice to transform PMEE

4 as a DC problem of our interest. The entropy based penalty function
proposed in Chapter 2 i.e., P(ηij) , ηi log ηij+(1− ηij) log (1− ηij) is considered for this work.
With this choice of P(ηij), the problem PMEE

4 becomes a DC problem. In order to apply the CCP
framework to the problem PMEE

4 , a feasible initial point (FIP) needs to supplied. However, the
constraint C5 in PMEE

4 limits the choices of FIPs. For ease of finding the FIPs, the constraint C10

is brought into the objective with another penalty parameter Ω1 > 0 as,

PMEE
5 : max

W,Θ,η,δ,α,ζ,t

N∑
i=1

G∑
j=1

f (ηij ,Θj , t) + λ2

G∑
j=1

P (δj)

+
G∑
j=1

N∑
i=1

λ1P (ηij)− Ω1

∥∥∥∥∥∥
G∑
j=1

δj −M

∥∥∥∥∥∥
2

(3.8)

s.t. C1 to C10 in (3.7)

3.3.4 A CCP based Joint Design Algorithm: MEE

In this section, a CCP based algorithm is proposed for joint user grouping, scheduling and precod-
ing for MEE (JGSP-MEE) problem given in problem (3.8). CCP proposed in [63] is a special case
of successive convex approximation framework [82] designed for DC programming problem. So,
CCP is an iterative framework where in each iteration convexification and optimization steps are
applied to the DC problem until the convergence. The convexification and optimization steps of
PMEE

5 of JGSP-MEE at the iteration k is given as,

• Convexification: Let (W,η, δ,Θ,α, , t)k−1 be the estimates of (W,η, δ,Θ,α, t) in iter-
ation k−1 respectively. In iteration k, the functions P (δj) ,P (ηij) , p2 (ζj) and f (ηij ,Θj , t)
are replaced their first Taylor approximations P̃k (ηij) , P̃k (δj) , p̃2 (ζj), and fk (ηij ,Θj , t)
respectively which are given in Appendix I. Similarly, the concave parts in of C5, C7 and C9

inPMEE
5 are replayed their first Taylor approximations G̃kij(ηij ,Θj), K̃kij(δj ,Θj), J̃ kij(W, αij)

respectively given in Appendix I.
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• Optimization: Updated (W,α,Θ,η, δ, t)k+1 is obtained by solving the following convex
problem,

PMEE
6 : max

W,Θ,ζ,η,δ,α,t

N∑
i=1

G∑
j=1

(
fk (ηij ,Θj , t) + λ1P̃k (ηij)

)

− Ω1

∥∥∥∥∥∥
G∑
j=1

δj −M

∥∥∥∥∥∥
2

+
G∑
j=1

λ2P̃k (δj) (3.9)

s.t. C1 to C4 and C6, C8 in (3.8),

C5 :
∑
l 6=i
|hHj wl|2 + σ2 ≤ J̃ kij(W, αij), ∀i, ∀j,

C7 : (ηij + Θj)
2 ≤ 2 logαij + G̃kij(ηij ,Θj), ∀i, ∀j.

C9 :
ζj
B

+ δ2
j + Θ2

j ≤ K̃kij(δj ,Θj), ∀j,

C10 : P0 +

G∑
j=1

(
1

ρ
‖wj‖2 + Π (p1 (ζj)− p̃2 (ζj))

)
≤ t,

The proposed CCP based JGSP-MEE algorithm iteratively solves the problem in PMEE
6 . How-

ever, to guarantee its convergence to a stationary point JGSP-MEE needs to be initialized with
a FIP (kindly refer [54, 55]). In this case, δ = η = 0 results a trivial FIP. Although the trivial
solution is a valid FIP to the problem PMEE

5 , it is observed through simulations that it usually
converges to a poorly performing stationary point with the poor objective function value. This
behavior might be due to the fact the trivial FIP has the lowest objective (i.e., zero), therefore, the
JGSP-MEE initialized with the trivial FIP may converge to a stationary point around this lowest
objective value. Since, FIP is crucial for JGSP-MEE’s performance, in the sequel, a simple pro-
cedure is proposed to obtain a FIP that promises the convergence to stationary points which yield
better performance.

3.3.5 Feasible Initial Point: MEE

Since, the quality of the solution depends on the FIP, the harder task of finding a better FIP is
considered through the following procedure.

• Step 1: Initialize W0 with complex random values subject to
∥∥W0

∥∥2

2
≤ PT and calculate

initial SINRs γ0.

• Step 2: Solve the following optimization:

PFES : {δ0,η0} : max

G∑
j=1

δj +

G∑
j=1

N∑
i=1

ηij (3.10)

s.t. C1 : 0 ≤ ηij ≤ 1, ∀i, ∀j, C2 :
G∑
j=1

ηij ≤ 1, ∀i,

C3 :

N∑
i=1

ηij ≤ δjN, ∀j, C4 : 0 ≤ δj ≤ 1, ∀j,

C5 : log
(
1 + γ0

ij

)
≥ ηijεj , ∀i, ∀j,

• Step 3: The parameters Θ0, ζ0,α0, t0 can easily be derived from W0, δ0 and η0.
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Remarks:

• The problemPFES is a linear programming problem and always feasible since trivial solution
δ0 = η0 = 0 is also a feasible solution. However, the optimization problemPFES usually re-
sults a better solution than trivial one. Therefore, initial parameters W0, δ0,Θ0,η0,α0, t0

are always feasible. Different W0 in step 1 may lead to different FIPs.

• The optimization problem in Step 2 is a linear programming problem which can be solved
efficiently to large dimensions with many of the existing tools like CVX.

• The FIP obtained by this procedure may not be feasible for the original MEE problem PMEE
1

unless W0,η0, δ0 becomes feasible to PMEE
2 .

• Although the FIP obtained by this method is not feasible for PMEE
1 , the final solution ob-

tained by JGSP-MEE with this FIP becomes a feasible for PMEE
1 since the final solution

satisfies the group scheduling constraint C2 in PMEE
1 .

Letting PMEE
6 (k) be the objective value of the problem PMEE

6 at iteration k, the pseudo code of
JGSP-MEE for the joint design problem is given in algorithm 4.

Algorithm 4 JGSP-MEE
Input: H, [ε1, . . . , εN ] , PT ,∆,W

0, δ0,Θ0, ζ0,η0,α0, t0, λ1 = 0, k = 1;
Output: W,η
while |PMEE

6 (k)− PMEE
6 (k − 1) | ≥ ∆ do

Convexification: Convexify the problem (3.8)
Optimization: Update (W,η, δ, α, ζ,Θ, t)k by solving PMEE

6

Update : PMEE
6 (k) , λ1, λ2,Ω1, k

end while

3.3.6 Complexity of JGSP-MEE

Since JGSP-MEE is a CCP based iterative algorithm, its complexity depends on complexity of
the convex sub-problem PMEE

6 . The convex problem PMEE
6 has (MG+ 2NG+ 3G+ 1) deci-

sion variables and (2NG+ 2 +G) convex constraints and (2NG+ 4G+N) linear constraints.
Hence, the complexity of PMEE

6 is O
(

(MG+ 2NG+ 2G+ 1)3 (4NG+ 4G+N + 2)
)

[64].

Commercial software such as CVX can solve the convex problem of type PMEE
6 efficiently to a

large dimension. Besides the complexity per iteration, the overall complexity also depends on
the convergence speed of the algorithm. Through simulations, we observe that the JGSP-MEE
converges typically in 15-20 iterations.

3.4 Variants of Multicast Energy Efficiency

In this section, two special cases of the MEE problem namely the maximization of EE and the
number of scheduled users are considered.

3.4.1 Energy efficiency

In this section, we focus on developing a CCP based low-complexity algorithm for the joint design
of user grouping, scheduling, and precoding for maximization of weighted EE (defined in (3.2))
subject to grouping, scheduling, precoding, power, and QoS constraints. This problem is simply
referred to as the EE problem.
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Problem formulation: EE

With the defined slack variables in Section 3.3, the EE problem is mathematically formulated as,

PEE
1 : max

W,Θ,η,δ,α

∑M
j=1BΨjΘj

t
(3.11)

s.t. C1 to C8 and C11 in (3.6),

C9 : P0 +

G∑
j=1

(
1

ρ
‖wj‖2 + Π p (Θj)

)
≤ t, C10 : Θj ≤ δjΘ∗,∀j,

where Θ∗ ≥ maxGj=1 Θj is a constant. The constant Θ∗ in constraint C12 in PEE
1 is used for

forcing Θj to zero when the group is not scheduled i.e., δj = 0. For the scheduled group i.e.,
δj = 1 constraint C12 becomes superficial as Θj ≤ Θ∗ is always true. Without the constraint
C12 the problem PEE

1 becomes unbounded as the Θj can be infinity for the unscheduled group
j thus yielding the highest EE which is infinity. The constraint C12 helps in containing Θj to
zero for the unscheduled group j. Therefore the problem PEE

1 becomes bounded due to C12.
Notice the difference between the constraint C9 in PEE

1 and C10 in PMEE
3 . Due to C10 in PEE

1

for an unscheduled group j the minimum rate of the group i.e., Θj is zero. Therefore, the power
consumption can be modelled simply using Θj unlike ζj in MEE case.

Nature of EE in the context of grouping and scheduling EE problem is not biased to favor
the solutions with more number of users since it only considers the minimum rate of the group
ignoring its size. Typically, adding more users to groups either leads to increased inter-group
interference and/or lower minimum rate of the group due to lower channel gains. Hence, to obtain
the same rate as with few users extra power needs to be used. Since the linear increase in rate is
achieved at the cost of exponential increase power, newly added users result in lower EE.

DC formulation and CCP based algorithm: EE

The problem PEE
1 is combinatorial and non-convex similar to the problem PMEE

3 . With the help
of a slack variable Γ, and applying reformulations and relaxations proposed in Section 3.3, the
problem PEE

1 is reformulated into a DC problem as,

PEE
2 : max

W,Θ,η,δ,α,Γ,t

Γ2

t
− Ω2

∥∥∥∥∥∥
G∑
j=1

δj −M

∥∥∥∥∥∥
2

+
G∑
j=1

N∑
i=1

λ3P (ηij) + λ4

G∑
j=1

P (δj) (3.12)

s.t. C1 to C10 in (3.11), C11 :
G∑
j=1

BΨjΘj ≥ Γ2.

where λ3 > 0, λ4 > 0 and Ω2 > 0 are the penalty parameters.
Notice that the DC problem PEE

2 resembles the DC problem PMEE
5 , hence, the CCP frame-

work proposed in Section 3.3.4 can be simply be adapted. The proposed CCP framework based
algorithm for the EE problem is simply referred to as JGSP-EE. Since JGSP-EE is a CCP based
iterative algorithm at iteration k it executes the following convex problem:

PEE
3 : max

W,Θ,η,δ,α,Γ,t

2Γk−1Γ

t
− Ω2

∥∥∥∥∥∥
G∑
j=1

δj −M

∥∥∥∥∥∥
2

+ λ3

G∑
j=1

N∑
i=1

P̃k (ηij) +
G∑
j=1

λ4P̃k (δj)

(3.13)

s.t. C1 to C8 in (3.8), C9 : P0 +
G∑
j=1

(
1

ρ
‖wj‖2 + Π (p1 (Θj)− p̃2 (Θj))

)
≤ t,
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C10 : Θj ≤ δjΘ∗, ∀j, C11 :
G∑
j=1

BΨjΘj ≥ Γ2.

Letting PEE
2 (k) be the objective value of the problem PEE

2 at iteration k, the pseudo code of
JGSP-EE for the joint design problem is given in algorithm 5.

Algorithm 5 JGSP-EE-SR
Input: H, [ε1, . . . , εN ] , PT ,∆,W

0, δ0,Θ0,η0,α0, t0, λ3, λ4,Ω2, k = 1;
Output: W,η
while |PEE

2 (k)PEE
2 (k − 1) (k − 1) | ≥ ∆ do

Convexification: Convexify the problem (3.8)
Optimization: Update (W,η, δ, α,Θ,Γ, t)k by solving PEE

2 (k)
Update : PEE

2 (k) , λ3, λ4,Ω2, k
end while

3.4.2 Maximization of scheduled users

In this section, the problem of maximizing the scheduled users (SUM) is considered subject to
grouping, scheduling, precoding, total power, and QoS constraints. This problem is simply re-
ferred to as SUM problem in this paper and is formulated as,

PSUM
1 : max

W,Θ,η,δ

N∑
i=1

G∑
j=1

ηij (3.14)

s.t. C1 : ηij ∈ {0, 1}, ∀i, ∀j, C2 :
G∑
j=1

ηij ≤ 1,∀i, C3 :
N∑
i=1

ηij ≤ δjN, ∀j,

C4 : δj ∈ {0, 1},∀j, C5 :

G∑
j=1

δj = M, ∀j, C6 :

M∑
i=1

‖wi‖22 ≤ PT ,

C7 : 1 + γij ≥ 1 + ηijεj , ∀i, ∀j.

Notice that except for constraint C6 all the constraints and the objective in PSUM
1 are linear

and convex. Further, similar to the constraint C4 in PEE
2 , the constraint C6 can be easily equiva-

lently transformed as a DC. Therefore, with the help of the relaxations and penalization approach
provided in Section 3.3 and 3.4, the problem can be transformed as a DC programming problem.
Hence, the CCP framework can be adapted to solve the resulting DC problem. The transformed
DC problem and the convexified problem to be solved in the CCP framework for the SUM prob-
lem are given appendix A. The CCP framework based algorithm proposed for the SUM problem
is simply referred to as JGSP-SUM.

3.5 Simulation results

3.5.1 Simulation setup and parameter initialization

Simulation setup

In this section, the performance of the proposed algorithms JGSP-MEE, JGSP-EE and JGSP-SUM
is evaluated. The system parameters discussed in this paragraph are common for all the figures.
Bandwidth for all the groups is assumed to be 1 Hz i.e., B = 1 Hz. The coefficients of the channel
matrix, i.e., hij are drawn from the complex normal distribution with zero mean and unit variance
and noise variances at the receivers are considered to be unity i.e., σ2 = 1. All the simulation
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results are averaged over 100 different channel realizations (CRs). Weights are assumed to be
unity i.e., {Ψj = 1}Gj=1. Following are the acronyms/definitions commonly used for all simulation
results: 1) Number of scheduled users: the sum of all the scheduled users in all scheduled groups.
2) Orthogonal user: An user with zero channel correlations with all the users in all the other
groups. 3) Non-orthogonal user: A user with at least one non-zero channel correlation with any

user in other groups. 4) Consumed power , P0 +
∑G

j=1

(
1

ρ
‖wi‖2 + Πp (rj)

)
. 5) Throughput

,
∑M

j=1BΘj .

Parameter initialization

power amplifier efficiency i.e., ρ is assumed to 0.2 and fixed static power i.e., P0 is assumed to
be 16 Watts, B = 1MHz, Π = 2.4Watts/(bits/sec)2 [69], and p (x) = x2 [76]. The penalty
parameters responsible for binary nature of η, δ are initialized as follows λ1 = λ2 = 0.01 and ,
λ3 = λ4 = 0.5 and λ5 = λ6 = 0.05 and . Further {λi}6i=1 are incremented by factor 1.2. Further,
penalty parameters corresponding to group scheduling constraint are initialized to relatively larger
values such as Ω1 = 2.5, Ω2 = 5, and Ω3 = 1 and are incremented by 1.5 in each iteration. MEE
and SUM maximization criteria naturally encourage the solutions towards to non-zero η and δ.
Therefore, small initial values and slow update of penalty parameters corresponding to MEE and
SUM problems eventually result in a binary solution of η, δ. Further, relatively large initial value
and larger increments for Ω1 and Ω2 in each iteration, along with binary nature of δ, eventually
ensure the group scheduling constraint i.e.,

∑G
j=1 δj = M . On the contrary, as discussed in

Section 3.4, the EE problem is not biased to favor the solutions with a higher number of users
since it only considers the minimum rate of the group ignoring its size. Moreover, the solutions
with ηij < 1 might be encouraged as it would facilitate larger Θj hence better objective in PEE

1

(from constraint C5 in the problem PEE
1 ). Hence, to ensure the group scheduling constraint and

the binary nature of η, δ, the penalty parameters are initialized to relatively larger values in EE
than in MEE and SUM problems and incremented in large steps.

3.5.2 Performance as a function of total users (N )

In figure 3.1, the performance of the proposed algorithm i.e., JGSP-MEE, JGSP-EE, and JGSP-
SUM is illustrated as a function of N varying from 20 to 32 in steps of 4 for M = 5, G = 8,
PT = 10dBW and εj = 1 bps/Hz, ∀j.

Number of scheduled users versus N

In figure 3.1(a), the number of scheduled users is illustrated as function of N . Since JGSP-SUM
directly maximizes the number of scheduled users, it schedules the maximum number of users
compared to JGSP-MEE and JGSP-EE. Moreover, due to low QoS requirement and availability
of resources to satisfy the QoS requirement, JGSP-SUM schedules almost all the users despite
the increase in N . Since the number of scheduled users contribute linearly to MEE objective
a similar increase in the number of scheduled users versus N in JSP-MEE can be observed in
figure 3.1(a). However, JSP-MEE also considers the power consumed by the scheduled users,
hence, JSP-MEE schedules fewer users than JSP-SUM as scheduling these excess users requires
huge power which can be observed in figure 3.1(c). On the contrary, the EE objective is not
accounting for the number of scheduled users, hence, JGSP-EE schedules the lowest number of
users i.e. M = 5. In other words, it is serving one user per group which is nothing but a unicast
scenario. Furthermore, despite the increase in N , the number of users scheduled by JGSP-EE
remains the same. This can be attributed to three reasons: 1) non-orthogonal users: scheduling any
non-orthogonal user increases interference to users in other groups which decreases the minimum
rate of the influenced groups hence decreases EE. 2) Orthogonal users with un-equal channel
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FIGURE 3.1: Comparison of proposed algorithms as a function of N varying from 20 to 32 for M =

5, G = 8, {εi = 1bps/Hz}Nj=1, and PT = 20dBW (a) number of scheduled users (b) throughput in bps (c)

Consumed power in dBW (d) MEE in bits/Joule versus N

gains: EE swaps the existing user with the best available user in the pool as scheduling the second
best user decreases the minimum rate of the group hence lower EE. 3) Orthogonal users with
equal channel gains: This is an unlikely event; even if such users exist, as mentioned earlier, their
scheduling is not guaranteed as the EE objective is unaffected.

Throughput versus N

In figure 3.1(b), the throughput in bps obtained by JGSP-MEE, JGSP-EE, and JGSP-SUM is
illustrated as a function of N . The nature of JSP-MEE to schedule more users and consume fewer
power results in lower throughput than JSP-SUM and JSP-EE. On the other hand, as the JSP-
EE objective includes throughput in the objective, hence, it naturally achieves higher throughput
than JSP-SUM. Moreover, as N increases the probability of finding M orthogonal users with
good channels increases. This leads to a better throughput in JSP-EE with an increase of N .
However, the gains in throughput for JGSP-EE diminishes as the gains in multiuser diversity
diminish. On the contrary, an increase in multiuser diversity withN is utilized to schedule a higher
number of users by JSP-MEE and JSP-SUM which can be observed in figure 3.1(a). Moreover,
the degradation in throughput in JSP-MEE and JSP-SUM is due to the combination of two factors:
1) for relatively lower N i.e., 20, after scheduling the maximum number of users, resources could
be used to improve minimum throughput of the groups. 2) for relatively higher N , as scheduling
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higher users improve the objectives of JSP-SUM and JSP-EEE, the available power is used to
schedule more users and this is also achieved by keeping their achieved minimum rate close to the
required rates of the groups. Hence, the throughput by JSP-MEE and JSP-SUM decreases slightly
with an increase of N .

Consumed power versus N

In figure 3.1(b), the consumed power in Watts by JSP-SUM, JSP-EE and JSP-MEE is illustrated
as a function of N . As the JSP-SUM does not optimize power, in the process of scheduling
the maximum number of users (as shown in figure 3.1(a)) it inefficiently utilizes the power by
consuming all of the available power as depicted in figure 3.1(c). On the contrary, as the EE
and MEE objectives are penalized inversely for excess usage of power, both JSP-EE and JSP-
MEE utilize power efficiently as shown in figure 3.1(c). However, JSP-MEE slightly utilizes more
power than JSP-EE as illustrated in figure 3.1(c) to schedule a higher number of users (as shown
in figure 3.1(a)) as it improves over the MEE.

MEE versus N

Recall that MEE can be interpreted as the number of received bits for one joule of transmitted
energy as explained in Section 3.2.2. It can be seen in figure 3.1(d), by directly optimizing MEE,
JGSP-MEE obtains the highest MEE value compared to JGSP-EE and JGSP-SUM. The linear
increase in MEE with respect to N can be observed in JSP-MEE and JSP-SUM as the number of
scheduled users linearly with N in both the methods. However, as JSP-SUM utilizes the power
inefficiently, it results in poorer MEE overall compared to JSP-MEE. Unlike JSP-MEE and JSP-
SUM, the improvement in MEE obtained by JSP-EE is negligible as it does not gain in scheduled
users and the increase in throughput is comparatively negligible.
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FIGURE 3.2: Convergence of JSP-MEE as a function of iterations for M = 5, G = 8, {εi =

1bps/Hz}Nj=1, N = 40 and PT = 30 dBW

Figure 3.2 illustrates the convergence behavior of the proposed algorithm as function of it-
eration. The objective value in PMEE

3 is simply the MEE value i.e.,
∑N

i=1

∑G
j=1 f (ηij ,Θj , t)

64



and the objective value in PMEE
5 contains the MEE value plus the penalty values added to en-

sure binary nature of η, δ and GSC constraint i.e.,
∑N

i=1

∑G
j=1 f (ηij ,Θj , t) + λ2

∑G
j=1 P (δj) +∑G

j=1

∑N
i=1 λ1P (ηij) − Ω1

∥∥∥∑G
j=1 δj −M

∥∥∥2
. In the initial iterations, η, δ and GSC constraints

are not satisfied, hence, PMEE
5 has higher objective value than PMEE

3 which can be observed
in Figure 3.2 until iteration 18. However, from iteration 19 the objective value of PMEE

5 and
PMEE

3 almost same. This is because the additional penalty objective in PMEE
5 becomes zero i.e.,

+λ2
∑G

j=1 P (δj) +
∑G

j=1

∑N
i=1 λ1P (ηij) − Ω1

∥∥∥∑G
j=1 δj −M

∥∥∥2
= 0 as the binary nature of

η, δ and GSC constraints are satisfied by iteration 19. The proposed algorithm converges in 39
iterations for the system with N = 40, M = 5 and G = 8.

Number of scheduled users versus versus MEE

In figure 3.3, MEE obtained by JSP-MEE is plotted as function of the number of users scheduled
by JSP-MEE. The linear increase in MEE of JSP-MEE with respect to the number of scheduled
users is observed in figure 3.3. In other words, figure 3.3 confirms that major contributing factor
to MEE maximization is the number of scheduled users.
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FIGURE 3.3: Performance of JSP-MEE as function of Number of scheduled users versus MEE for N

varying from 20 to 32, M = 5, G = 8, {εi = 1bps/Hz}Nj=1, and PT = 30 dBW

3.5.3 Performance as a function of total power PT

In figure 3.4, the performance of the proposed algorithms i.e., JGSP-MEE, JGSP-EE, and JGSP-
SUM is illustrated as a function of PT varying from 6 to 12 in steps of 2 dBW for M = 5, G = 8,
N = 15 and εj = 1 bps/Hz, ∀j.

Number of scheduled users versus PT

In figure 3.4(b), number of scheduled users is illustrated as function of PT . By directly maximizing
the number of scheduled users, JSP-SUM schedules the maximum number of users compared to
JGSP-MEE and JGSP-EE. In the low-available power regime i.e., PT = 6 dBW and 8 dBW, JSP-
SUM schedules only few users. However, in the high-available power regime, due to the sufficient
power, JSP-SUM schedules almost all the users i.e., 15 users by utilizing all of the power. Unlike
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FIGURE 3.4: Comparison of proposed algorithms as a function of PT varying from 6 to 12 for M =

5, G = 8, {εi = 1bps/Hz}Nj=1, and N = 15 (a) consumed power in dBW versus PT (b) number of

scheduled users versus PT (c) throughput in bps versus PT (d) MEE in bits/Joule versus PT

JSP-SUM, despite the increased available power, the number of scheduled users in JSP-MEE is
saturated to 13 users. This is because scheduling those extra users results in the consumption of
huge power which decreases the overall MEE. Moreover, for the available for 8 dBW, JSP-SUM
and JSP-MEE schedules almost equal number of users, however, JSP-MEE consumes almost 6.8
dBW less than JSP-SUM. On the contrary, for the reasons mentioned in section 3.5.2, JSP-EE
schedules only M despite the availability of power.

Throughput versus PT

In figure 3.4(c), the throughput in bps obtained by JGSP-MEE, JGSP-EE, and JGSP-SUM is
illustrated as a function of PT . Since JSP-MEE and JSP-SUM sacrifice in throughput to schedule
more users for the available power, the lower throughput of JSP-MEE and JSP-SUM compared to
JSP-EE can be observed in figure 3.4(c). Moreover, the throughput of JSP-EE saturates to 8 bps
for available power of 8 dBW as improving throughput further results in the consumption of huge
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power which results in overall lower EE. On the other hand, in the low-available power regime
PT = 6 and 8 dBW, the number of scheduled users (by JSP-SUM) are around 11 and 13 which less
than total number of users N = 15. In other words, scheduling a higher number of users than 13
requires higher available power than 8 dBW. Therefore, the available-power in this regime is used
to improve the minimum throughput of scheduled groups by JSP-MEE which can be observed in
figure 3.4(d). In this high-available power regime i.e., PT ≥ 10 dBW, JSP-SUM uses all of the
available power to schedule almost all the users as shown in figure 3.4(d). On the contrary, despite
the availability of the power to schedule all users and/or to improve the throughput, JSP-MEE
relatively maintains the same throughput as for the case of PT = 8 dBW since the improvement
in throughput leads to consumption of huge power.

Consumed power versus PT

In figure 3.4(a), the consumed power in Watts by JSP-SUM, JSP-EE and JSP-MEE is illustrated
as a function of N . As the JSP-SUM does not optimize power, the inefficient utilization of the
available power of JSP-SUM can be observed in figure 3.4(a). On the contrary, as the EE and MEE
objectives include the consumed power in the denominator, the objective values of EE and MEE
are decreases inversely for a linear increase in consumed power. Hence, JSP-EE and JSP-MEE
utilize power efficiently as shown in figure 3.4(a).

MEE versus PT

In figure 3.4(d), the MEE in bits/Joule obtained by JGSP-MEE, JGSP-EE, and JGSP-SUM is
illustrated as a function ofPT . By striking the trade-off among optimizing the number of scheduled
users, throughput, and consumed power, JSP-MEE obtains higher MEE compared to JSP-EE and
JSP-SUM as shown in figure 3.4(d). Although JSP-SUM schedules more users than JSP-MEE,
it does so by consuming huge power and also by inefficiently utilizing the available power. This
results in decreasing in MEE of JSP-SUM with the increase of available power. On the other
hand, JSP-MEE schedules also increase the number of users while simultaneously optimizing
power and throughput. This results in an overall better MEE of JSP-MEE. On the contrary, JSP-
EE schedules only M = 5 users despite the opportunity to schedule more users. Hence, JSP-EE
results in the lowest MEE. However, JSP-MEE schedules more users while efficiently utilizing
power and throughput.

3.6 Conclusions

In this chapter, the joint design of user grouping, scheduling, and precoding problem was consid-
ered for the message-based multigroup multicast scenario in multiuser MISO downlink channels.
In this context, to fully leverage the multicast potential, a novel metric called multicast energy
efficiency is considered as a performance metric. Further, this joint design problem is formulated
as a structured MINLP problem with the help of Boolean variables addressing the scheduling and
grouping, and linear variables addressing the precoding aspect of the design. Noticing the struc-
ture in MINLP to be difference-convex/concave, this paper proposed efficient reformulations and
relaxations to transform it into structured DC programming problems. Subsequently, the paper
proposed CCP based algorithms for MEE and its variants i.e., EE and SUM problems (JSP-MEE,
JSP-EE, and JSP-SUM) which are guaranteed to converge to a stationary point for the afore-
mentioned DC problems. Finally, the paper proposed low-complexity procedures to obtain good
feasible initial points, critical to the implementation of CCP based algorithms. Through simula-
tions, the paper established the efficacy of the proposed joint techniques and studied the influence
of the algorithms on the different parameters namely scheduled users, multicast throughput and
consumed power.
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4
Joint Scheduling and Precoding over Multiple

Time Slots: A Structured Group Sparsity based
Design

4.1 Introduction

Most of the existing works focus on the design of joint scheduling and precoding solely in the
current time slot [27,37,81]. However, the users served in the current slot influence the scheduling
in the future time slot. In the worst-case scenario, the design of scheduling and precoding in the
current slot without considering its impact on the future time slots may lead to infeasibility (the
inability of finding a scheduling and precoding solution meeting the QoS constraints) of the joint
design in the future slots. This could happen due to the following reasons::

• Unmet capacity: In a typical network, user channels are independent resulting in some users
may have good channel gains over multiple slots and some users may experience decay in
channel gains over the slots. Failing to schedule the users with decaying channel gains in
the early slots makes it impossible for the design to serve these users in the future slots with
their required capacity.

• Unmet latency: Typically, each user’s request is associated with a time constraint and the
data needs to be delivered within this time constraint. This is referred to as a latency re-
quirement. Scheduling users with relatively lower timer values may not always be a feasible
choice. For example, users with co-linear channels (channels correlation equals to one) can
not be scheduled (or served successfully) irrespective of the urgent latency requirement.
Failing to consider the impact of scheduling in the current slot on the future slots may lead
to the aforementioned co-linear channels, hence, the infeasibility of the joint design.

• Unmet capacity and latency: In a typical network, each user is associated with an inde-
pendent capacity and latency requirements. This case subsumes both the aforementioned
situations

It is clear from the above discussion that it is vital to consider the joint design of scheduling and
precoding over all time slots. However, such a joint design entails the availability of channel
state information (CSI) of all users over the time slots of interest. Since the wireless channels are
time-varying and independent, it may seem unrealistic to assume the availability of CSI over all
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time slots. However, in many cases like low-mobility scenario or satellite, channels usually admit
a quasi-static behavior or can be predicted accurately up to a few slots [83]. Further, with the
advancements of machine learning the channel prediction can be predicted quite accurately with
reasonable complexity [84–86]. Furthermore, it would be of practical interest for an academic
evaluation of the performance improvement with multiple slots to ascertain bounds on perfor-
mance. Therefore, joint design can be applied over these few slots. The number of slots over
which the CSI is the information of all users is available is referred to as block. Assuming the
availability of CSI over the block, in this work, we focus on the joint design of scheduling and
precoding over a block of time slots to minimize the service time (ST) required to serve all the
users. This multislot joint design of scheduling and precoding is simply referred to as a joint
multislot design (JMSP) in the rest of the paper.

ST minimization as a structured group sparsity problem Similar to [81], we address the
scheduling aspects of the joint block design by controlling the power of precoding vectors through
binary variables. In other words, user i in slot j is scheduled if the associated binary variable
is 1 and is not scheduled otherwise. With the help of the binary variables, each of which is
associated with a user in a time slot, the ST minimization problem for the JMSP can be modeled
as a structured group-sparsity (SGS) problem. To see this, let η be a binary scheduling matrix
with rows representing users and columns representing time slots. An all zero column represents
no user being scheduled in that slot and a non-zero column represents at least one user being
scheduled in that slot. Thus, the number of non-zero columns of η represents the number of
slots in which at least one user is served. For the static channels, i.e., where CSI is the same
over all the time slots in a block, ST can be defined as the minimization of the number of non-
zero columns because of the possibility to permute the columns without loss of performance;
this problem is widely addressed in the domain of sparse signal recovery under group-sparsity
(GS) [87]. However, when the CSI is different over different slots (non-static CSI), the ST is
defined as the highest index of the non-zero column. Therefore, the matrix with all the non-zero
columns, in the beginning, has a lower ST; this leads to the imposition of structure in addition to
group sparsity leading to SGS.

In this work, we focus on the joint design of scheduling and precoding over a block in multiuser
multiple-input single-output (MISO) downlink channels for two transmission scenarios: unicast
system (UC) and multigroup multicast system (MC). Further, to accommodate serving the users
with a large payload, scheduling a user over multiple slots is considered. Further, service time
minimization is considered as the objective subject to latency, rate, per slot power and total power.
The joint design over the block is simply referred to as joint block design and the service time
minimization problem as STM in the rest of the paper. To the best of our knowledge, this is the
first work that considers the joint design of scheduling and precoding over a block.

Related work

The design of scheduling and precoding is considered in many works in the past decade [25, 37,
41, 81]. All of these can be categorized as follows:

• One-shot decoupled solution: In this approach, the design is considered as a decoupled
design: usually scheduling followed by precoding [25, 34]

• Iterative decoupled solution: In this approach, scheduling and precoding are updated/refined
iteratively wherein each iterate scheduling and precoding are solved separately [27,37–39].

• Relaxed joint design of scheduling and precoding: In this approach, at the problem formu-
lation the design of scheduling and precoding are considered jointly. However, due to the
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difficulty in obtaining the joint update of scheduling and precoding, the design is either re-
laxed simply as a precoding problem [40] or an alternate update of scheduling and precoding
is considered [41].

• Joint design of scheduling and precoding: In this approach, the joint design of schedul-
ing and precoding is formulated as a mixed-integer non-linear problem (MINLP) that is
amenable for the joint update of scheduling and precoding [81, 88]. Further, by transform-
ing the MINLP problem as a difference-of-convex (DC) a convex-concave procedure (CCP)
based iterative algorithm is proposed wherein each iterate scheduling and precoding are
updated jointly.

Related work

The design of scheduling and precoding is considered in many works in the past decade [25, 37,
41, 81]. All of these can be categorized as follows:

• One-shot decoupled solution: In this approach, the design is considered as a decoupled
design: usually scheduling followed by precoding [25, 34]

• Iterative decoupled solution: In this approach, scheduling and precoding are updated/refined
iteratively wherein each iterate scheduling and precoding are solved separately [27,37–39].

• Relaxed joint design of scheduling and precoding: In this approach, at the problem formu-
lation the design of scheduling and precoding are considered jointly. However, due to the
difficulty in obtaining the joint update of scheduling and precoding, the design is either re-
laxed simply as a precoding problem [40] or an alternate update of scheduling and precoding
is considered [41].

• Joint design of scheduling and precoding: In this approach, the joint design of schedul-
ing and precoding is formulated as a mixed-integer non-linear problem (MINLP) that is
amenable for the joint update of scheduling and precoding [81, 88]. Further, by transform-
ing the MINLP problem as a difference-of-convex (DC) a convex-concave procedure (CCP)
based iterative algorithm is proposed wherein each iterate scheduling and precoding are
updated jointly.

Long term admission control and precoding Although many works considered joint design ad-
mission control and precoding problems in a slot [27, 32, 37, 81] only a few works considered the
long-term joint design of admission control and precoding [89, 90]. In [89], the authors proposed
a sequential algorithm to provide the long-term fair admission control in a dynamic network based
on channel statistics. Moreover, the authors in [89] consider the sequential approach of design
one-time slot at a time without latency constraints. Instead objective of the optimization is aver-
age fairness and max-min fair in [89]. In [90], the authors addressed the stability of long-term
admission control by minimizing the switching frequency of admissible users. The objective of
optimization in [90] is weighted power and switching frequency minimization. Moreover, users’
latency is not considered in [90]. Further, the extension of [90] minimize ST under latency data-
fragmentation (or multislot per user) constraint is not clear.

Group sparsity GS based precoding or beamforming designs have been considered in the wire-
less networks [40, 48, 91–93]. GS is typically addressed through mixed `p,q norm [87] where `q
norm typically quantifies each group and `p norm quantifies number of non-zero groups. While,
p = 0 delivers the best performance, `0 norm is highly non-convex and non-smooth requiring a
combinatorial search for obtaining the optimal solution. Therefore, several convex and non-convex
approximations have been proposed in the literature [94,95]. In convex approximation, `0 norm is
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typically approximated by its tightest convex `1 norm [91,92,92,94]. To further enhance the spar-
sity, re-weighted `1,q norm-based methods are proposed in [96,97]. In non-convex approximation,
`0 norm is typically approximated by a smooth functions [48,98]. However, all these methods are
developed for promoting the sparsity or group sparsity. To the best of our knowledge, approxima-
tions to promote the resulting SGS are not readily available in the literature. Therefore, we take
the opportunity of tailoring the existing approximations to promote the solutions with SGS.

Contributions

The aforementioned discussion reflects on the novelties of the paper-based both on problem for-
mulation and its solution. The contributions of the paper include:

• The joint design of scheduling and precoding over a block of time slots is considered for
two transmission scenarios: unicast and multicast. In this context, the task of minimizing
the service time is considered as an objective for both unicast and multicast scenarios subject
to user scheduling, latency, minimum rate constraints. To the best of our knowledge, true
joint design of scheduling and precoding over multiple slots is not considered in literature.

• With the help of binary scheduling matrix, where rows represents users and columns repre-
sent slots and the variable represents the scheduling a user in that slot, the joint design prob-
lem is modelled as a structured mixed-integer non-linear programming problem (MINLP).

• Further, the service time minimization objective is rendered as a structured group sparsity
(SGS) problem by formulating it as a minimization of highest column index of the non-zero
column in the matrix. Noticing the lack of regularizations to promote the intended SGS, a
regularization function is proposed. Noticing the special structure in STM problem, follow-
ing transformation and penalization proposed in [81], the MINLP nature is transformed as
difference-of-convex (DC) problem.

• Further, two convex-concave procedure (CCP) based iterative algorithm is proposed for UC
and UC models respectively: JMSP-UC and JMSP-MC. Noticing the necessity of feasible
initial point (FIP) for these algorithms to converge to a stationary point [54, 55], a simple
procedure is proposed to obtain a FIP that yields quality stationary points.Subsequently, the
per iteration complexity of JMSP-UC and JMSP-MC is discussed.

• Finally, the efficiency and necessity of the joint design of scheduling and precoding over
multiple slots over sequential design is shown through average service time and probability
of infeasibility respectively, through the Monte-Carlo simulations.

4.2 Unicast transmission

4.2.1 System Model

We consider the downlink transmission of a multiuser MISO system in a single cell with a total
of N users served by a BS with M (≤ N) transmit antennas. Further, unicast transmission is
employed at the BS i.e., each user is assumed to be requesting independent data. Since M ≤ N ,
a BS can serve the utmost M users in any given time slot; this is simply referred to as scheduling
constraint. Therefore, multiple time slots are required to serve all N users; this is simply referred
to as multi-slot transmission. Typically, in real scenarios, some users have a larger payload which
may not be delivered in one slot. Such users with large payloads are usually served by fragmen-
tation and multi-slot scheduling. In the fragmentation step, the large payload is split into multiple
payloads such that each portion can be delivered in a slot. In multi-slot scheduling, the same user
is scheduled in multiple slots until all the fragments are delivered. Further, in practice, a scheduled
user i must transmit with a minimum rate of θmin

i to ensure the successful decoding at the receiver;
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this is simply referred to as minimum rate requirement. Furthermore, the total payload of user
i must be delivered with a target rate θi > θmin

i within Ti slots; the former rate requirement is
referred to as target rate requirement and the latter time requirement referred to as latency require-
ment. Further, all time slots are assumed to be of equal length. Channels of users are constant
during the transmission in any given time slot and CSI may vary across the slots. Further, CSI of
all users across all time slots is assumed to be available at BS. Further, noise at all users is assumed
to be an independent realization of a zero-mean additive white complex Gaussian with variance
σ2 in all time slots. The above-considered system model is simply referred to as unicast system
(UC).

Towards defining the signal model mathematically, let hij ∈ CM×1, wij ∈ CM×1 and nij
denote the downlink channel, precoding vector and noise of user i at time slot j respectively.
Letting xij to be the fragmented data of the user i in slot j with E

{
|xij |2

}
= 1, the received

signal of user i at time slot j, say yij , is given by,

yij = hHijwijxij + nij , u ∈ {1, . . . , N}, t ∈ {1, . . . , Ti} (4.1)

Similarly, let γij =
|hHi wij |2∑

l 6=i |hHi wlt|2 + σ2
andRij = log(1+γij) be the signal-to-interference and

noise ratio (SINR) and rate of user i in slot j respectively, and PS is available transmit power per
time slot.

In this work, we consider the joint design of scheduling and precoding to minimize the number
of time slots to serve all the N users subject to the following constraints:

• Worst case per slot rate constraint: A scheduled user i in slot j must be served with at least
θmin
i i.e., Rij ≥ θmin

i .

• Worst case target rate and latency constraint: The overall rate of user i must be greater than
θi i.e.,

∑Ti
j=1Rij ≥ θi. Notice that the target rate and latency constraints are intertwined.

• Maximum scheduled users per slot constraint: Number of scheduled users in any slot must
not be greater than the number of transmit antennas i.e., M .

• Per slot power and total power constraint: The consumed power in any time slot must be
lower than or equal to a maximum allowed power PS , and the total consumed power across
all the slots must not exceed total available power PT

The above optimization problem is simply referred to as the service time minimization (STM)
problem in the rest of the paper. Towards formulating the STM problem, scheduling of user i in
slot j is simply addressed through the norm of the corresponding precoder as given below,

‖wij‖2 =

{
= 0; user not scheduled,
6= 0; user scheduled.

(4.2)

4.2.2 Problem formulation: UC

Towards formulating STM, without loss of generality, let Ti = T, ∀i, Wi = [wi1, . . . ,wiT ] be the
precoding matrix of user i, W =

[
WT

i , . . . ,W
T
N

]T , and f (W) be the highest index of the non-
zero column of W. Each non-zero column of W represents an active slot with at least one user
being scheduled. Each slot is associated with set of user channels which may be different from
other slots. Therefore, the highest non-zero column (active slot) in W i.e., f (W) represents the
service time. With the help of defined notations, the STM problem is mathematically formulated
as,

PUC
∞ : min

W
{ (W) s.t. C1 :

∥∥[‖w1j‖2 , . . . , ‖wNj‖2
]∥∥

0
≤M, ∀j, (4.3)
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C2 :
N∑
i=1

‖wij‖22 ≤ PS , ∀j, C3 : Rij ≥
⌈‖wij‖2

PS

⌉
θmin
i , ∀i, ∀j,

C4 :

T∑
j=1

Rij ≥ θi, ∀ i, C5 :

N∑
i=1

T∑
j=1

‖wij‖22 ≤ PT ,

where ∀i refers to i ∈ {1, . . . , N} and ∀j refers to j ∈ {1, . . . , T}.
Remarks:

• Maximum scheduled users per slot constraint: From constraint C1, utmostM precoders can
be non-zero in a slot j. In other words, in time slot j, constraint C1 precludes the design
from scheduling more than the number of antennas i.e., M users.

• Per time slot power constraint C2: Constraint C2 thwarts the design from consuming more
power than PS in time slot j.

• Per time slot minimum rate constraint C3: The ceil operator on the right hand side of con-
straint C3 returns unity if ‖wij‖22 6= 0 and zero otherwise. Hence, constraint C3 effectively
becomes Rij ≥ θi if user i scheduled in slot j else Rij ≥ 0. The latter requirement is
satisfied by the definition of Rij .

• target minimum rate and latency constraint C4: Due to constraint C1, the power of the
precoder, thereby the rate, of an unscheduled user i in slot j is zero. Therefore,

∑T
j=1Rij

provides the overall achievable sum rate of user i, and, hence, the C4 imposes target mini-
mum rate requirement and, also, inherently ensures the latency requirement.

The problem PUC1 is combinatorial due to the `0 norm in constraint C1, and non-convex due
to the objective, constraints C3 and C4. Hence, obtaining an optimal solution requires exhaustive
search-based solutions. Further, for each combination, a non-convex precoding problem needs to
be solved. Hence, obtaining an optimal solution is not only challenging but also NP-hard [44].
So, we focus on obtaining a low-complexity sub-optimal solution to PUC1 . To the best of our
knowledge, no framework exists that can be applied to solve the problem PUC1 in its original form.
Therefore, in the sequel, we focus on transforming PUC1 as a structured non-convex problem with
the structure being difference-of-convex programming (DC). Thereafter, the first-order stationary
point of PUC1 is obtained by employing the existing framework of the convex-concave procedure
(CCP) [63].

4.2.3 DC programming transformation: UC

Towards obtaining the tractable formulation ofP1, let ηij ∈ {0, 1} to be the binary scheduling vari-
able (used for controlling the norm of precoding vector wij) associated with user i ∈ {1, . . . , N}
in slot j ∈ {1, . . . , T}. In other words, ηij = 1 indicates that user i in slot j is scheduled and is
not scheduled otherwise. With the help of {ηij}∀i,∀j , the problem PUC

1 is reformulated as,

PUC
∈ : max

W,η
f (W) s.t. C1 : ηij ∈ {0, 1}, ∀i, ∀j, (4.4)

C2 : ‖wij‖22 ≤ PSηij , ∀i, ∀j, C3 :

T∑
j=1

ηij ≤M, ∀i,

C4 :
N∑
j=1

‖wij‖22 ≤ PS , ∀i, C5 : Rij ≥ ηijθmin
i , ∀i, ,∀j,

C6 :

T∑
j=1

Rij ≥ θi, ∀i, C7 :

N∑
i=1

T∑
j=1

‖wij‖22 ≤ PT ,
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where η = [η1, . . . ,ηT ] and ηj = [η1j , . . . , ηNj ]
T .

Remarks:

• Constraint C1 in PUC
∈ together with C2 controls the scheduling of users. For ηij = 0, C2

implies ‖wij‖22 = 0 and the user i in slot j is not scheduled. Similarly for scheduled user
i.e., ηij = 1, the constraint C2 yields an upper bound on ‖wij‖22 i.e., ‖wij‖22 ≤ PS ; this
bound is trivial due to C4.

• Constraint C3 ensures the maximum number of scheduled users per slot constraint.

• The constraint C5 ensures the per slot minimum rate requirement. For a scheduled user,
C5 implies Rij ≥ θmin

i . Similarly, for an unscheduled user, C5 becomes Rij ≥ 0 which is
satisfied by definition. In fact, for ηij = 0, C5 is met with equality i.e., Rij = 0 due to C2.

Following [81], with the help of slack variable ζij associated with user i in slot j, constraint
C5 in PUC

2 is reformulated as DC constraint as given below,

PUC
3 : min

W,ζ,η
f (W) s.t. C1, C2, C3, C4 in (4.4), (4.5)

C5 : Iij (W)− Gij (W, ζij) ≤ 0,∀i,∀j, C6 : log (ζij) ≥ ηijθmin
i , ∀i, ∀j.

C7 :
T∑
j=1

log ζij ≥ θi,∀i, C8 :
N∑
i=1

T∑
j=1

‖wij‖22 ≤ PT ,

where ζ = [ζ1, . . . , ζT ], ζj = [ζ1j , . . . , ζNj ]
T , Iij (W) = σ2+

∑
l 6=i|hHijwlj |2 and Gij (W, ζij) =

σ2 +
∑N

l=1|hHijwlj |2

ζij
, and C5 is simply the rearrangement of 1 + γij ≥ ζij .

Notice that Iij (W) is convex in W, and for ζij > 0 (which is satisfied by the construction
of lower bound in C5 in P3), Gij (W, ζi) is also jointly convex in W and ζij . Hence, C5 in P3 is
a DC constraint. Further, by relaxing the binary constraint on {ηij}s to a box constraint between
0 and 1 i.e., C1 : 0 ≤ ηij ≤ 1,∀i, ∀i, the constraint set of P4 can be transformed as a DC
set. However, the obtained solutions due to this relaxation may not be binary, hence, may not be
feasible [81]. Therefore, to promote binary solutions, {ηij}s are penalized with a penalty function
P (ηij) as given below,

PUC
4 : min

W,η,ζ
{ (W) + λ∞

N∑
〉=∞

T∑
|=∞

P
(
η〉|
)

(4.6)

s.t. C1 : 0 ≤ ηi ≤ 1, ∀i,∀j, C2, C3, C4, C5, C6, C7, C8 in (4.5).

where λ1 > 0 is a penalty parameter. As explained in [81], the appropriate value of λ1 together
with a concave penalty function P (ηij) with the following two properties suffices to ensure the
binary nature of ηij : 1) P (ηij) should have minimum at ηij = 0 and 1. 2) The value of P (ηij)
should increase as ηij drifts away from 0 and 1 with maximum being at ηij = 0.5. The entropy
based concave penalty function i.e., P(ηi) , −ηi log ηi − (1− ηi) log (1− ηi) is considered in
this work [81].

4.2.4 Structured group sparsity

The problem PUC
4 involves the minimization of a non-convex objective subject to a DC constraint

set. Moreover, a tractable formulation of f (W) is not known. Therefore, we need to resort to
surrogate functions that indirectly optimize the highest index of the non-zero column. As men-
tioned in the problem formulation, one such way is to focus on obtaining f (W) matrix with as
few initial non-zero columns. The structure of having all the non-zero columns at the beginning
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of a matrix is simply referred to as structured group sparsity (SGS) in the rest of the paper. No-
tice that group-sparsity (GS) is a special case of SGS. GS methods typically focus on obtaining
the matrix with few non-zero columns as possible without any emphasis on their position in the
matrix [87, 99]. Contrary to GS, the position of non-zero columns is crucial for the STM problem
as mentioned previously. Therefore, the existing GS based method can not be directly used as
surrogate functions.

Notice that the highest non-zero column in W is also the highest non-zero column in η i.e.,
f (W) = f (η). Since it is easy to work with η, service time is transformed as a function of η.
In this work, penalization of the columns of η in the order of the column index is considered for
promoting SGS. This column penalization can also be applied to the existing GS regularizers for
promoting SGS as shown below:

• Modified reweighted `1 norm: The modified reweighted `1 norm based function that pro-
motes the SGS is,

f̃1 (η) =
T∑
j=1

Ωj

∥∥ηj∥∥p (4.7)

where Ωj is a weight factor for column j and p ≥ 1. Notice that the weights factors proposed
in [100] or [101] depends only the number of non-zeros in the column not the column index
and, hence, do not promotes SGS. Therefore, the weights proposed in [100] or [101] can not
applied to this problem.

Weights for promoting SGS One way to promote the SGS is to penalize the columns in the
order of their column index i.e., Ωj ≥ Ωj−1,∀j. Another way to promote the SGS is to ensure
the product inside the summation in (4.7) increases in the order of column index j. For example,
letting ηk−1 to be solution from iteration k−1, in iteration k, the update given of Ωj given in (4.8)
ensures that Ωj ≥ Ωj−1.

Ωj =

j−1∑
l=1

Ωl

(
1 +

∥∥∥ηk−1
j

∥∥∥
p

)
(4.8)

. Notice that for group sparsity Ωj is solely a function of current column [100,101]. However, for
SGS Ωj needs to be function of previous columns and weights.

With the replacement of f (W) by f̃1 (η), the problem PUC
4 becomes a DC problem. There-

fore, given the feasible initial point (FIP), the first order stationary point of PUC
4 can be obtained

by convex-concave procedure. However, the constraint C7 in PUC
4 limits the choices of FIP. To

ease the process of finding an FIP, constraintC7 is brought into objective with penalization method
as given below,

PUC
5 : min

W,η,ζ
f̃1 (η) + λ1

N∑
i=1

T∑
j=1

P (ηij) +

N∑
i=1

αi max

θi −
T∑
j=1

log ζij , 0

 (4.9)

s.t. C1 : 0 ≤ ηij ≤ 1, ∀i, ∀j, C2 : ‖wij‖22 ≤ PSηij , ∀i, ∀j,

C3 :
T∑
j=1

ηij ≤M, ∀i, C4 :
N∑
i=1

‖wij‖22 ≤ PS , ∀j,

C5 : Iij (W)− Gij (W, ζij) ≤ 0,∀i, ∀j, C6 : log ζij ≥ ηijθmin
i , ∀i, ∀j.

C7 :
N∑
i=1

T∑
j=1

‖wij‖22 ≤ PT ,
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where αi > 0 are the penalty parameters. Notice that point-wise maximum of convex function
is convex, hence, problem PUC

5 is also a DC problem. In the sequel, the CCP based iterative
algorithm is proposed for solving PUC

6 .

4.2.5 JMSP-UC: A CCP based algorithm

In this section, a CCP based iterative algorithm is proposed for the JMSP for the STM model
which is simply referred to as JMSP-UC. The CCP is an iterative algorithm wherein each iterate
the following two steps are executed until the convergence:

• Convexification: Let (W,η, ζ)k−1 be the estimates of W,η, ζ in iteration k − 1. Fur-
ther, let P̃

(
ηij ; η

k−1
ij

)
and G̃ij

(
W, ζij ; W

k−1, ζk−1
ij

)
be the first order Taylor approxima-

tions of P (ηij) and Gij (W, ζij) around (W,η, ζ)k−1 respectively and their correspond-
ing expressions can easily obtained as given in [81]. In convexification step, in iteration
k, the concave part of the objective in PUC

5 i.e., λ1
∑N

i=1

∑T
j=1 P (ηij) is replaced by

λ1
∑N

i=1

∑T
j=1 P̃

(
ηij ; η

k−1
ij

)
and the concave part of constraint C5 i.e., −Gij (W, ζij) is

replaced by −G̃ij
(
W, ζij ; W

k−1, ζk−1
ij

)
. This approximation renders the problem PUC

5
into a convex problem. In other words, this step convexifies the problem at the current it-
erate, hence, the name convexification. Notice that this convex problem, obtained from the
convexification step, provides a global upper bound for the original non-convex DC problem
PUC
6 . So, the CCP iteratively constructs a global upper bound at the current iterate which is

solved in the optimization step.

• Optimization: The next update (W,η, ζ)k is obtained by solving the following convex
problem :

PUC
7 : min

W,η,ζ
f1 (η) +

N∑
i=1

αi max

θi −
T∑
j=1

log ζij , 0

+ λ1

N∑
i=1

T∑
j=1

P̃ (ηij) (4.10)

s.t. C1, C2, C3, C4, C6, C7 in (4.9),

C5 : Iij (W)− G̃ij
(
Wk−1, ζk−1

ij

)
≤ 0,∀i, ∀j.

Remarks:

• The proposed JMSP-UC algorithm is based on the CCP framework. Therefore, to ensure
the convergence to a stationary point, JMSP-UC needs to be initialized with a feasible point
[54, 55].

• An FIP and the appropriate choice of λ1 and {αi}s ensure the convergence of JMSP-UC to
a stationary point with binary η. Hence, the obtained stationary point by JMSP-UC is also
feasible to original problem PUC

1 .

In the next section, a simple procedure is proposed to obtain a FIP for JMSP-UC.

4.2.6 Feasible Initial Point: UC

The performance of CCP based algorithms is dependent on the quality of FIPs. The JMSP-UC
can simply be initialized with an all-zero trivial FIP i.e., η = 0, ζ = 0 and W = 0. However,
the all-zero trivial FIP has the worst performance, hence, the algorithm is likely to converge to a
stationary point in the region around the trivial FIP which typically performs poorly [81]. Hence,
the simple iterative procedure, inspired by [81], is proposed to obtain a better choice of FIPs.
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• Step 1: Initialize η̂ that satisfies constraints C1 and C3 in PUC
6 , and 0 < ε < 1.

• Step 2: Solve the following optimization:

PUC
FES : Ŵ : find W (4.11)

s.t. C1 : ‖wij‖22 ≤ PSηij , ∀i,∀j, C2 : R{hHijwij} ≥ 0,∀i,∀j,

C3 : ={hHijwij} = 0, ∀i,∀j, C4 :
∥∥[σ . . . {hHijwlj}l 6=i . . .

]∥∥
2
≤

hHijwij√
η̂ijθmin

i

, ∀i,∀j

C5 :

N∑
i=1

‖wij‖22 ≤ PS ,∀j. C6 :

N∑
i=1

T∑
j=1

‖wij‖22 ≤ PT .

• Step 3: If PUC
FES is feasible go to step 4 else update η̂ = εη̂ and go to step 2.

• Step 4: Set W0 = Ŵ and η0 = η̂. Choose ζ0
ij such that 1 + ηijθ

min
i ≤ ζ0

ij ≤ 1 + γ0
ij where

γ0
ij is the SINR of the user i in slot j calculated using W0.

Remarks:

• the updates of η̂ chosen in step1 are always feasible. Different choices of initial η̂ and
ε ∈ (0, 1) in step 1 may lead to different FIPs.

• For a fixed η̂, with the help of C3 and C4 in PUC
FES, the the QoS constraint, i.e. γij ≥ η̂ijθmin

i

is reformulated as a second-order cone (SOC) constraint C2 in PUC
FES [9]. Problem PUC

FES is
convex and it can be solved efficiently using convex optimization solver like CVX to a large
dimension [67].

• Notice that the proposed procedure always yields a feasible initial point. To see this, If the
initial iterates fail to result an non trivial feasible point, the update in step 3 eventually lead
to η̂ = 0 and thus PUC

FES in step 2 becomes feasible with Ŵ = 0. Hence, the proposed
methods always result in FIP.

• The FIP obtained by this procedure may not be feasible for the original problem P∞UC unless
η̂ and Ŵ satisfies the constraint set of PUC

∞ . However, the stationary point obtained by
JMSP-UC with this FIP becomes a feasible to PUC

∞ since it satisfies the scheduling and QoS
constraints of PUC

∞ .

4.2.7 Complexity: UC

The JMSP-UC is an iterative algorithm and its overall complexity is the summation of complexity
to obtain FIP by the procedure proposed in Section 4.2.6 and the complexity to obtain a stationary
point by the procedure proposed in Section 4.2.5. The complexity of iterative procedure proposed
in Section 4.2.6 depends on the per iteration complexity of the problem PFES-UC. PFES-UC is a
convex problem withMNT decision variables, 2NT+T convex constraints and 2NT linear con-
straints. Hence, the computational complexity of PUC

FES is O
(

(MNT )3 (4NT + T )
)

[64]. Simi-
larly, the complexity of obtaining a stationary point by the procedure in Section 4.2.5 depends on
the per iteration complexity of the convex problem PUC

7 . The problem PUC
7 has (MNT + 2NT )

decision variables and (3NT + T ) convex constraints and 2NT + N linear constraints. Hence,
the computational complexity of PUC

7 is O
(

(MNT + 2NT )3 (5NT + T +N)
)

[64].

Letting PUC
6 (‖) to be the objective value of the problem PUC

6 at iteration k, the pseudo code
of JMSP-UC is given in algorithm 6.
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Algorithm 6 JMSP-UC

Input: {hij}N,Ti=1,j=1, κ, PS , {ωj , δj}Tj=1, η0, ζ0,W0, λ1 = 0, {αi, θi}Ni=1, k = 1;
Output: W,η
while |PUC

6 (‖)− PUC
6 (‖ −∞) | ≥ κ do

Convexification: Convexify the problem (4.9).
Optimization: Update (W,η, ζ)k by solving PUC

7
Update : PUC

6 (‖) , λ∞, {α〉}N〉=∞, {ω|}
T
|=∞, ‖

end while

4.3 Multigroup multicasting

In this section, we consider the joint design of user scheduling and precoding over for the multi-
group multicast (MGMC) transmission scenario. Within the framework proposed in Section 4.2
together with [102], joint design for MGMC system with number of groups larger than transmit
antennas (referred to as group scheduling in [102]) and multislot transmission per user (similar
to Section 4.2) can be addressed. Therefore, to focus more on addressing MGMC characteristics
associated with joint design, we consider the following system model. Let M be the number of
groups and without of loss of generality, and for notional simplicity, N̄ be the number of users in
each group. Generally, groups with a large number of users with huge variations in the channel
gains of users may not be served with required QoS in a slot completely. This is accommodated
by serving each group over multiple slots. However, a user belonging to a group is allowed to be
scheduled in exactly one slot. Furthermore, all the users in group k must be served with a latency
requirement of T̄k and with a target rate of θ̄k.

Towards defining the signal model mathematically, let hij,k ∈ CM×1, wj,k ∈ CM×1 and
nij,k denote the downlink channel, precoding vector and noise of user i in group k at time slot

j respectively. Similarly, let γij,k =
| (hij,k)H wj,k|2∑

l 6=i | (hij,k)
H wj,k|2 + σ2

and Rij,k = log(1 + γij,k)

be the SINR and rate of user i in group k in slot j respectively. Further, γj,k = min∀i γij,k and
Rj,k = min∀iRij,k be the SINR and rate of group k in slot j respectively. Finally, let ηij,k ∈ {0, 1}
be the binary scheduling variable associated with user i in group k in time slot j and δj,k ∈ {0, 1}
be the binary variable associated with group k in time slot j.

Similar to the UC model, service time minimization required to serve all the groups is consid-
ered as the objective of design subject to minimum rate and latency requirements of each group,
and per slot and total transmission power limitations; this problem is simply referred to as STM-
MC. Without of loss of generality and notional simplification, let T̄k = T, ∀k. With the help of
defined notations, the STM-MC problem is formulated as,

PMC
∞ : min

W,η,δ
f (W) s.t. C1 : ηij,k ∈ {0, 1}, ∀i, ∀j, ∀k, (4.12)

C2 : δj,k ∈ {0, 1}, ∀j, ∀k, C3 : ‖wj,k‖22 ≤ PSδj,k, ∀j, ∀k,

C4 :

T∑
j=1

ηij,k = 1,∀i,∀g, C5 :

N∑
i=1

ηij,k ≥ δj,k, ∀j, ∀k,

C6 :
G∑
k=1

‖wj,k‖22 ≤ PS ,∀j, C7 : Rij,k ≥ ηij,kθ̄k, ∀i, ∀j, ∀k,

C8 :

T∑
j=1

G∑
k=1

‖wj,k‖22 ≤ PT . (4.13)

Remarks

• Constraint C3 in PMC
∞ controls the scheduling of groups.
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• Constraint C4 in PMC
∞ ensure that user i belong to group k is scheduled exactly in one of the

time slots within the latency requirement T .

• Constraint C5 ensures that in a scheduled group at least one user is scheduled

• C6 is the per slot maximum allowed power constraint and C8 is the total power constraint.

• Constraint C7 ensures that scheduled users satisfy the corresponding QoS requirement.

Notice that the problem PMC
∞ is combinatorial and non-convex. Similar to PUC

3 , the constraints
C1 and C2 can also be addressed by relaxation and binary penalization. The transformed DC
formulation of PMC

∞ using slack variables ζij,ks followed by binary relaxation of ηij,k, δj,ks and
penalization is,

PMC
∈ : min

W,η,δ,ζ
f̃1 (δ) + λ2

N∑
i=1

T∑
j=1

G∑
k=1

P (ηij,k) + λ3

T∑
j=1

G∑
k=1

P (δj,k)

+
N∑
i=1

G∑
k=1

βi,k

∥∥∥∥∥∥
T∑
j=1

ηij,k − 1

∥∥∥∥∥∥
2

(4.14)

s.t. C1 : 0 ≤ ηij,k ≤ 1, ∀i, ∀j, ∀k, C2 : ‖wij‖22 ≤ PSηij , ∀i, ∀j, ∀k,

C3 : 0 ≤ δj,k ≤ 1, ∀i, ∀j, ∀k, C4 :
N∑
i=1

ηij,k ≥ δj,k, ∀j, ∀k,

C5 :
G∑
k=1

δj,k ≤M, ∀j, C6 : Iij,k (W)− Gij,k (W, ζij,k) ≤ 0,∀i, ∀j, ∀k,

C7 : log ζij,k ≥ ηij,kθ̄k, ∀i, ∀j, ∀k, C8 :

T∑
j=1

G∑
k=1

‖wj,k‖22 ≤ PT ,

where δk = [δ1,k, . . . , δT,k], δ =
[
δT1 , . . . , δ

T
k

]T
, λ2 > 0 and λ3 > 0 penalty parameters for

promoting the binary nature of ηij,k and δkj respectively, and Iij,k (W) = σ2 +
∑

l 6=k|hHij,kwj,l|2

and Gij,k (W, ζij,k) =
σ2 +

∑N
l=1|hHij,kwj,l|2

ζij,k
. Notice that for the ease of finding the FIPs, the

constraint C3 in PMC
∞ brought into objective of PMC

∈ with the help of penalty parameter βi,k > 0.
The problem PMC

∈ is a DC problem and, hence, given a FIP its first-order stationary point can
be obtained through CCP based algorithm JMSP-MC given in Appendix B

A FIP to PMC
∈ can be obtained by the following procedure:

• Step 1: Initialize η̂, δ̂ that satisfy constraints C1, C3, C4 and C5 in PUC
∈ , and 0 < ε < 1.

• Step 2: Solve the following optimization:

PMC
FES : Ŵ : find W (4.15)

s.t. C1 : ‖wj,k‖22 ≤ PSηij,k, ∀i,∀j, C2 : R
{

(hij,k)
H wj,k

}
≥ 0,∀i,∀j,

C3 : =
{

(hij,k)
H wj,k

}
= 0,∀i,∀j,

C4 :

∥∥∥∥[σ . . .{(hij,k)
H wj,l

}
l 6=k

. . .

]∥∥∥∥
2

≤
(hij,k)

H wj,k√
η̂ij,kθ̄k

, ∀i,∀j
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C5 :
G∑
k=1

‖wj,k‖22 ≤ PS , ∀j. C6 :
G∑
k=1

T∑
j=1

‖wj,k‖22 ≤ PT .

• Step 3: If PMC
FES is feasible go to step 4 else update η̂ = δη̂, δ̂ = εδ̂ and go to step 2.

• Step 4: Set W0 = Ŵ, η0 = η̂ and δ0 = δ̂. Choose ζ0
ij such that 1 + ηij,kθ

min
i ≤ ζ0

ij,k ≤
1 + γ0

ij where γ0
ij,k is the SINR of the user i belong to group to group k in slot j calculated

using W0.

The FIP obtained by this procedure may not be feasible for the original problem PMC
∞ unless

the solution of PUC
FES i.e., η̂,Ŵ satisfies the constraint set of PMC

∞ . However, the stationary point
obtained by JMSP-MC with this FIP becomes a feasible to P∞MC since it satisfies the scheduling
and QoS constraints of PMC

∞ .

4.4 Simulation results

In this section, we evaluate the performance of the proposed algorithms i.e., JMSP-UC and JMSP-
MC for UC and MC system models respectively.

4.4.1 Simulation setup and parameter initialization

The system and algorithmic parameters that are discussed in this paragraph are common to all the
presented cases. Receiver noise variance is assumed to unity i.e., σ2 = 1. The algorithms JMSP-
UC and JMSP-MC are prioritized to ensure the relaxed constraints C1 in PUC

1 and C7 in PUC
3

over obtaining binary solutions. Therefore, {αi, βi}Ti=1 are initialized with relatively larger values
than λ1 and λ2. The penalty parameters λ1 and λ2 are initialized each to 0.5 and incremented
by a factor 1.1 until λ1, λ2 ≤ 100 and {αi, βi}Ti=1 are initialized each with 50 and incremented
until the constraints C1 in PUC

1 and C7 in PMC
3 are met. Correlated Rayleigh channel coefficients

in time across multiple time slots is generated as in [103] independently for each combination
of user and BS transmit antenna with the following parameters: sampling rate 1Hz and maximum
Doppler shift is 0.1Hz. Simulation results in all the figures are averaged over 500 different channel
realizations (CRs).

4.4.2 Sequential benchmark solution

Due to a lack of available benchmark solutions, the performance of the proposed JMSP algorithms
is compared with a sequential benchmark solution (SBS). In SBS, each iteration fills the current
time slot considering the previous results and current channel/ user requirement conditions. In
the sequel, we propose SBS algorithms for both the UC and MC models, and are referred to as
SBS-UC and SBS-MC respectively.

SBS-UC

In SBS-UC, in iteration (or time slot) j, a joint scheduling and precoding algorithm (proposed
in [81]) is performed based on the channel states of the users whose QoS requirements are not yet
fully served in the previous j − 1 time slots. The proposed SBS-UC executes the following steps:

• Step 1: InitializeN = {1, . . . , N}, j = 1, θ̂i = θi, ∀i, T̂i = Ti, ∀i, P̂T = PT , and P̂S = PS

• Step 2: In iteration j, solve the following problem:

PSBS-UC : max
Z,b

∑
i∈N

θ̃i

T̂i
bi s.t. C1 : bi ∈ {0, 1}, ∀i ∈ N ,
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C2 : ‖wi‖22 ≤ PSbi, ∀i ∈ N , C3 :
∑
i∈N

bi ≤M,∀i ∈ N ,

C4 :
∑
i∈N
‖wi‖22 ≤ P̂S , C5 : R̃ij ≥ biθmin

i , ∀i ∈ N ,

where bi ∈ {0, 1}, zi ∈ CM×1 be the binary scheduling variable and precoding vec-

tor associated with user i respectively, and R̃ij = log

(
1 +

|hHij zi|2∑
l 6=i |hHij zl|2 + σ2

)
, b =

[. . . , bi∈N , . . .], and Z = [. . . , zi∈N , . . .].

• Step 3: SBS-UC is infeasible if PSBS-UC in step 2 is infeasible and exit the procedure. If
PSBS-UC in step 2 is feasible then then update P̃T = P̃T −

∑
i∈N
‖zi‖22, P̃S = min

{
P̃S , P̃T

}
,

N = N \ {i if Ri >= θ̃i}i∈N , and T̃i = T̃i − 1,∀i ∈ N . For the updated N and T̃is three
possibilities can occur:

– If |N | 6= 0 and max
i
Ti <= 0 then SBS-UC is infeasibe and exit the procedure; this is

because at least one of the users’ latency requirement is not met.

– If |N | = 0 then SBS-UC is feasible with j being the minimum number of required
slots.

– If |N | 6= 0 and max
i
Ti >= 0 then update θ̃i = θ̃i −Ri, i ∈ N} and go to step 2

The problem PSBS-UC in step 2 maximizes the sum-rate for µ = 1 and maximizes the scheduled
users for µ = 0. In SBS-UC, in iteration or slot j, to account for QoS and latency requirements,
a weighted maximization of sum of scheduled users (or sum-rate depending on µ) is considered
where weights are ratio of remaining rate to be met to the remaining latency requirements. Notice
that the problem PSBS-UC is combinatorial and non-convex hence it is difficult to obtain its optimal
solution. However, the first-order stationary points of PSBS-UC can be obtained by [81].

SBS-MC

Similar to SBS-UC, the sequential solution for MC model i.e. SBS-MC executes the following
steps:

• Step 1: Initialize Nk = {1, . . . , N̄}, ∀k, j = 1, T̃k = Tk, ∀k, P̃T = PT , K = {1, . . . ,M}
and P̃S = PS

• Step 2: In iteration j, solve the following problem:

PSBS-MC : max
Z,{bk}∀k

∑
k∈K

∑
i∈Nk

θ̄k

T̃k
bi,k s.t. C1 : bi,k ∈ {0, 1}, ∀i ∈ Nk, ∀k ∈ K,

C2 : ak ∈ {0, 1}, ∀k ∈ K, C3 : ‖wk‖22 ≤ P̃Sak, ∀ ∀k ∈ K,

C4 :
∑
∀i∈Nk

bk,i ≥ ak, ∀k ∈ K, C5 :
∑
∀k∈K

ak ≤M,

C5 : R̃ij,k ≥ bi,kθ̄k,∀i, C6 :

G∑
k=1

‖zk‖22 ≤ P̃S ,

where bi,k ∈ {0, 1} is the binary scheduling variable associated with user i in group k,
ak and zk ∈ CM×1 are the binary variable and precoding vector associated with group k

respectively, and R̃ij,k = log

(
1 +

|hHij,kzk|2∑
l 6=k |hHij,kzl|2 + σ2

)
, bk = [. . . , bi∈Nk,k, . . .], and

Z = [. . . , zk∈K, . . .].
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• Step 3: SBS-MC is infeasible if PSBS-MC in step 2 is infeasible and exit the procedure. If
PSBS-MC in step 2 is feasible then update P̃T = P̃T −

∑
k∈K
‖zi‖22, P̃S = min

{
P̃S , P̃T

}
,

Nk = Nk \ {i if R̃ij,k >= θ̃k}i∈N , K = K \ {k if Nk = ∅} and T̃i = T̃i − 1,∀i ∈ N . For
the updated K, Nks and T̃is three possibilities can occur:

– If |K| 6= 0 and max
i
Ti <= 0 then SBS-UC is infeasible and exit the procedure; this is

because at least one of the users’ latency requirement is not met.

– If |K| 6= 0 and max
i
Ti >= 0 then go to step 2.

– If |K| = 0 then SBS-UC is feasible with j being the minimum number of required
slots.

The problem PSBS-MC in step 2 maximizes the scheduled users. To account for QoS and
latency requirements of groups, a weighted maximization of the sum of scheduled users is consid-
ered where weights are the ratio of the remaining rate to be met to the remaining latency require-
ments. Similar to to the problem PSBS-UC, the problem PSBS-MC is combinatorial and non-convex
hence it is difficult to obtain its optimal solution. The problem PSBS-MC is a special case of JMSP-
MC or [88], and hence its first-order stationary points of PSBS-UC can be obtained easily from by
following the procedure similar to JMSP-MC or by [88].

Notice that the problem PSBS-UC is combinatorial and non-convex hence it is difficult to obtain
its optimal solution. However, the first-order stationary points of PSBS-UC can be obtained the
JMSP-WSR algorithm proposed in [81].

4.4.3 UC scenario

In this section, we evaluate the performance of the proposed framework for the unicast scenario.
For comparison, we also consider the unstructured group sparsity based solution, where Ωj , ∀j
in JMSP-UC are updated according to [100] and it is termed as GS based JMSP-UC. Similarly,
if the weights Ωj , ∀j in JMSP-UC are updated according to (4.8) then it is termed as proposed
JMSP-UC.

Performance comparison as a function of N

In figure 4.1, performance of the proposed JMSP-UC, GS based JMSP-UC and SBS-UC are com-
pared as function of N . The simulation set up of figure 4.1 is as follows: M = 3, PS = 5 Watts,
PT = 30 Watts, {θi = [5, 7] dB}Ni=1, {θmin

i = 0 dB}Ni=1, and Ti = dNM e + 3 and N varying from
6 to 15 in steps of 3. Notice that the target SINR requirement for user i ∈ [1, . . . , N ] is randomly
drawn from [5, 7] dB. In figure 4.1(a), Average service time (measured in time slots) in plotted
as a function N . Notice that as GS based JMSP-UC does not promote the solutions with SGS,
it requires the maximum service time. On the contrary, proposed JSBP-UC outperforms the GS
based JMSP-UC as the weights proposed in (4.8) promote the SGS. Although SBS-UC manages
to obtain feasible solution when the number of slots relatively larger with probability 0.4 (see in
figure 4.1(b)) for N = 6, it fails completely for higher N e.g., N = 12. As SBS-UC can not
foresee the consequences or advantages of scheduling or rejecting some users, it fails to obtain
even a feasible solution in most of the cases. On the other hand, the joint design methods i.e., GS
based JMSP-UC and proposed JMSP-UC obtain a feasible solution in most cases as they facilitate
permuting users across the slots in order to obtain a feasible solution. Further, the joint design
methods can foresee the split of SINR across the slots such that users’ SINR requirement is met
within the latency requirement.

In figure 4.1(b), the infeasibility of proposed JMSP-UC, GS based JMSP-UC and SBS-UC
are depicted as a function of N . Due to the per slot maximum allowed power constraint PS ,
scheduling at a conducive slot offers the only possibility to serve users whose SINR requirements
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FIGURE 4.1: Comparison of different optimization approaches for M = 3, PS = 5 Watts, PT = 30

Watts, {θi = [5, 7]dB}Ni=1, {θmin
i = 0 dB}Ni=1, and Ti = dNM e+ 3 and N varying from 6 to 15 in steps of 3

(a) average service time in slots (b) Probability of infeasibility

are not met currently.. This indicates that some users may require multiple slots which can be seen
in figure 4.1(a) (e.g., for N = 12 case on an average the design requires 4.6 slots to serve all the
users). In dNM e+L, dNM e can be seen as the minimum number of slots to serve and L is the buffer
to accommodate multiple slots per user and in figure 4.1(a), we use L = 3. For the given range
of SINR requirement, when dNM e ≤ 3, the probability of infeasibility almost zero (as given in
figure 4.1(b)) indicating that an excess of 3 slots is sufficient to serve all the users. The increase in
N also typically increases the users requiring multiple slots and hence necessitating larger number
slots to serve all users. Since SBS-UC does not consider the joint design across the slots it fails to
obtain a feasible even for N = 9 with 0.9 probability. On the contrary, the joint design methods
obtain a feasible for N = 9 almost with probability 1. This shows the efficacy of joint design
methods over sequential methods.

As the superiority of the proposed JMSP-UC is established over SBS-UC and GS-based JMSP-
UC, in the sequel we focus on evaluating JMSP-UC in different scenarios.

Performance comparison as a function of θi

In figure 4.2, performance of JMSP-UC illustrated as a function of target SINR requirement i.e.,
θi for M = {3, 4, 5}, PT = 40 Watts, N = 15, Ti = dNM e+ 3 and θi varying from 4 to 10 dB in
steps of 2 dB. For a fixed combination of N , M , PS , PT and θmin

i , increment in the service time
with respect to increase in the target SINR requirement can be observed in figure 4.2(a). This is
because per slot maximum allowed power constraint limits the SINR at which a user can be served
As a result, the users with relatively higher θi requirement need to be scheduled over a number of
slots to meet the target SINR requirement of users. Further, the decrease in the service time with
more antennas, i.e.,M , for the same θi requirements can be observed in figure 4.2(a). This is due
to the multiplexing capability brought out by the antennas. As a result, the required service time
decreases with an increase of M .

In figure 4.2(b), probability of infeasibility of problem PUC
1 is illustrated as a function of target

SINR requirement. An increase in the probability of infeasibility can be observed as the target
SINR requirement increases in figure 4.2(b). This could happen for two reasons: 1) Power outage:
the total available power PT is insufficient to serve all the users with required θi 2) Exceeding
latency: Serving all the users with high θi within Tis is not possible. However, the improvement
in the probability of infeasibility can be observed for a higher number of transmit antennas in
figure 4.2(b).
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FIGURE 4.2: Performance of JMSP-UC as a function of target SINR (i.e., θi) for M = {3, 4, 5}, PT =

40 Watts, {θmin
i = 0 dB}Ni=1, N = 15, Ti = dNM e+ 3, and PS = 5 Watts and θi varying from 4 to 10 dB in

steps of 2 dB (a) average service time in slots (b) Probability of infeasibility
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FIGURE 4.3: Performance of JMSP-UC as a function per slot maximum allowed power (i.e., PS) for

M = {3, 4, 5, 6}, PT = 40 Watts, {θi = [7]dB}Ni=1, {θmin
i = 0 dB}Ni=1, N = 15, Ti = dNM e + 3, and

PS = varying from 2 to 10 Watts in steps of 2 Watts (a) average service time in slots (b) Probability of

infeasibility

In figure 4.3, performance of JMSP-UC is illustrated as a function of per slot maximum al-
lowed power i.e., PS for M = {3, 4, 5}, PT = 40 Watts, {θi = 7 dB}Ni=1, {θmin

i = 0 dB}Ni=1,
N = 15 and PS varying from 2 to 10 Watts in steps of 2 Watts. In figure 4.3(a), average service
time (in slots) is plotted as a function of PS . As the PS limits the per slot achievable rates of users,
for lower values PS the design requires higher number of slots to fulfill the user QoS require-
ments. Similarly, relatively higher values PS facilitate the users to obtain higher rates per slot; as
a as result the total number of slots to serve all the users decreases in figure 4.3(a). The lower
values of PS in combination with tighter latency requirements can be lead to a higher probability
of feasibility as shown in figure 4.3(b). On the other higher values of PS facilitate the design to
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meet the relatively tighter latency requirements as a result the lower probability of infeasibility can
be observed in the right-hand side of figure 4.3(b).

4.4.4 MC scenario
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FIGURE 4.4: Performance of JMSP-MC and SBS-MC as a function of users per group (i.e., N̄ ) for

M = M = 3, PT = 40 Watts, {θ̄k = 3dB}Ni=1, and PS = 10 dB (a) average service time in slots (b)

Probability of infeasibility

In figure 4.4, performance of JMSP-MC against SBS-MC is illustrated as a function of user
per group (i.e., N̄ ) for M = M = 3, PT = 40 Watts, {θ̄k = [3]dB}Ni=1, and PS = 10 dB and
N̄ varying from 4 to 8 in steps of 2. In figure 4.4(a), average service time (in slots) required by
JMSP-MC and SBS-MC is plotted. The superior performance of JMSP-MC over SBS-MC can
be observed in figure 4.4(a) as it jointly design the scheduling and precoding over all the slots.
SBS-MC iteratively maximizes the scheduled users in each slots, hence, it fails to foresee the
consequence of scheduling particular users in this slot. One situation could be, it may schedule
the users with orthogonal channels in the initial slots and leaves the correlated users to the later
slots. As a result, it may schedule most of the users in the initial slots and may take more slots to
schedule remaining fewer correlated users. On the other hand, JMSP-MC foresees these situations
due to the joint and explore other combinations which result in relatively less service time.

In figure 4.4(b), the probability of failure to find the feasible solution is illustrated as a function
of users per group. SBS-MC has a higher probability of finding a feasible solution compared to
JMSP-MC as shown in figure 4.4(b). This could happen due to multiple reasons: 1) As SBS-MC
tries to schedule relatively orthogonal users in different groups in the initial slots, it might be left
with extremely correlated users whose SINR requirements can not be met [31]. 2) Power outage:
as the power may not be optimized optimally, the joint scheduling and precoding problems in later
iterations of SBS-MC could be infeasible due to insufficient power. On the other hand, JMSP-
MC can foresee these scenarios might avoid putting users with extremely correlated channels
from different groups in the same slot thus reducing the probability of infeasibility as shown in
figure 4.4(b). Further, as the JMSP-MC considers the joint design across all the slots, it uses the
power more efficiently in a way that improves the chances of the joint design becoming feasible
compared to SBS-MC as shown in figure 4.4(b)

In figure 4.5, performance of JMSP-MC against SBS-MC is illustrated as a function of number
of groups (i.e., M ) for for N̄ ,PT = 40 Watts, {θ̄k = 3dB}Ni=1, and PS = 10 dB and M varying
from 2 to 6 in steps of 2. The superiority in performance of JMSP-MC compared to SBS-MC can
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be observed in average service time in figure 4.5(a) and in the probability of finding a feasible so-
lution in figure 4.5(b). Further, as the number of groups increases interference among the groups’
increases and, hence, the achievable minimum SINR of the groups could be decreased. Therefore,
all the users within a group may not be served in one slot. As a result, few users in a group can
be served in a slot. Therefore, the average service time increases along with the increase in the
number of groups which can be observed in figure 4.5(a). Moreover, the increase in the number of
groups also leads to exhaustion of resources like power more quickly. As a result, the probability
of problem becoming infeasible increases with an increase in the number of groups as shown in
figure 4.5(b)
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FIGURE 4.5: Performance of JMSP-MC and SBS-MC as a function of groups (i.e., M ) for N̄ ,PT = 40

Watts, {θ̄k = 3dB}Ni=1, and PS = 10 dB (a) average service time in slots (b) Probability of infeasibility

4.5 Conclusions

In this paper, the joint design of user scheduling and precoding over multiple slots is addressed for
two transmission scenarios: unicast and multicast. In this context, minimization of service time
is considered as the objective of optimization adhering minimum rate, latency, per slot power and
total power constraints. Further, this joint multislot design problem, with the help of Boolean vari-
ables addressing the scheduling and grouping, and linear variables addressing the precoding aspect
of the design, is formulated as a structured MINLP problem. Furthermore, the service time min-
imization is transformed as a structured group sparsity problem with structure being having only
few initial non-zero columns. These transformations render the problem as a DC programming
problem. Subsequently, the paper proposed CCP based algorithms for both the models. Finally,
the paper proposed low-complexity procedures to obtain good feasible initial points, critical to the
implementation of CCP based algorithms. Through simulations, the paper establishes necessity
of the joint multislot design over sequential solutions through probability of obtaining feasible
solutions and also establishes superiority in service time.
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5
Joint Sparse Scheduling and Precoding in Satellite

Systems

5.1 Introduction

In the past few decades, satellite communication (SatCom) systems have exploited new techniques
and technologies that were originally implemented in terrestrial communications. For instance,
while in the mid-1980s advanced analog-to-digital and digital-to-analog converters (ADC and
DAC, respectively) were used in delay-sensitive audio/voice applications, satellite systems adapted
them into more complex digital signal processing techniques in delay-tolerant video broadcasting.
Adaptation is critical due to the peculiarities of the SatCom system when compared to its terrestrial
counterparts, including satellite channels, system constraints, and processing.

In the past few years, two important new trends have been observed in the satellite sector.
The first one relies on the vast potential of the new generation of the so-called very high and
high throughput satellite (V/HTS), as is explained in the next sub-section. Many operators are
currently upgrading their constellations to deliver higher radio frequency (RF) power, enhanced
functionality, and higher frequency reuse with V/HTS technology. The second one takes into
account the fact that terrestrial wireless communications are going up in frequency and, due to
that, the coexistence with the SatCom systems for using the same frequency bands will be needed.
These new trends pose interesting challenges regarding new interference limited scenarios, and
signal processing (SP) offers valuable tools to cope with them. Before going more into the details
of these new challenges, let us comment about the actual and future context of SatCom services.

5.1.1 High Throughput Satellites: A New Interference-Limited Paradigm

In contrast to mono-beam satellites, high throughput satellites split the service area into multi-
spot beam service areas, which allows higher aggregate throughput and more service flexibility
to satisfy a heterogeneous demand. The system architecture is shown in figure 5.1 and comprises
a Gateway (GW), a satellite, and multiple UTs. The gateway (GW) is connected to the core
network and serves a set of users that are geographically far away using the satellite as relaying
node. The link from the GW to the satellite, and from the satellite to the UT are known as the
feeder link and the user link, respectively. In the usual star configuration that is observed in
Fig. 1, the feeder link presents high directivity and gain. As this link presents a SNR that is
considerably higher than the one in the user link, it is assumed in general to be noiseless and
perfectly calibrated against channel power variations due to atmospheric events. Also, depending
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on the direction of the communication, the link receives the name forward link when it goes
from the GW to the UT and reverse link when it goes from the UT to the GW. Each of the four
mentioned links usually works in a different frequency band. The frequency selection is driven by
many considerations, among them coverage and beam size, atmospheric conditions in the served
region, and availability of a robust ecosystem of ground equipment technologies. For instance,
current-generation GEO HTSs typically use the Ka-band, which is less congested than the C/Ku-
band. For fixed satellite services (FSS), this refers to the exclusive satellite band from 19.7 to 21.2
GHz for the forward link and from 29.5 to 31 GHz for the reverse link. In land mobile satellite
services (MSS) generally use lower frequencies such as the L-band (i.e., from 1.5 to 2.5 GHz)
because of its lower attenuation, which enables a less complex UT. Note, however, that recently
the Ka-band is also being considered to provide in-flight and maritime connectivity.

The HTSs that are currently operative (e.g., Viasat-2, SES-12) provide aggregate data rates
of more than 100 Gbps. These HTS systems use the Ku/Ka-band in both feeder and user link,
and serve in the user link as much as 200 beams in the same frequency band. VHTS systems
(e.g., Viasat-3) aim at achieving data rates in the range of Tbps and, due to that, they need higher
frequencies in the Q-band (30 to 50 GHz), V-band (50 to 75 GHz), and W-band (75 to 110 GHz), in
order to serve as much as 3000 beams in the user link. For these reasons, advanced SP is required
in order to reduce the interference among so many multiple beams, facilitate adaptive coverage,
dynamically optimize the traffic, and share the spectrum with terrestrial services, among other
functions. Flexibility in the resource allocation per beam can significantly improve the quality of
service and bring down the incurred cost of the V/HTS system per transmitted bit.

Today there are approximately 1300 fully operational communication satellites. Every type
of orbit has an important role to play in the overall communications system. Geostationary earth
orbit (GEO), at 35,000 km, present an end-to-end propagation delay of 250 ms; therefore, they
are suitable for the transmission of delay-tolerant data. Medium earth orbit (MEO), at 10,000
km, introduce a typical delay of 90 ms; based on that, they can offer a compromise in latency
and provide fiber-like data rates. Finally, low earth orbit (LEO) is at between 350 and 1,200 km,
and introduce short delays that range from 20 to 25 ms. In all these cases, the satellite is a very
particular wireless relaying node, whose specificities lead to a communication system that cannot
be treated like a wireless terrestrial one. This is because the channel, communication protocols,
and complexity constraints of the satellite system create unique set of features [104], notably:

• Due to the long distance to be covered from the on-ground station to the satellite, the satel-
lite communication link may introduce both a high round-trip delay and a strong path-loss
of hundreds of dB. To counteract the latter, satellites are equipped with high power ampli-
fiers (HPA) that may operate close to saturation and create intermodulation and nonlinear
impairments.

• Satellite communications traverse about 20 km of atmosphere and introduce high molec-
ular absorption, which is even higher in the presence of rain and clouds, particularly for
frequencies above 10 GHz. Therefore, satellite links are designed based on thermal noise
limitations and on link budget analysis that considers large protection margins for additional
losses (e.g., rain attenuation).

• In the non-geostationary orbits (i.e., MEO and LEO), there are high time-channel variations
due to the relative movement of the satellites with respect to the ground station.

• Due to the long distance and carrier frequencies, the satellite antenna feeds are generally
seen as a point in the far-field, thus making the use of spatial diversity schemes challenging.
Also, due to the absence of scatters near the satellite (i.e., there are no objects in space that
create multiple paths) and the strong path-loss (i.e., it is a long distance communication),
the presence of a line-of-sight component, which focuses all the transmitted power and is
not blocked or shadowed, is much more critical than in terrestrial cellular communications.
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FIGURE 5.1: Caption

On the positive side, due to the lack of rich scatters, satellite communications experience
higher cross-polarization isolation than terrestrial communication networks

• The processing complexity on-board the satellite is limited, as it is highly correlated with
its power consumption, mass, and ultimately, with the final cost of the system.

• The received signal-to-noise Ratio (SNR) is very low and therefore the user terminal (UT)
must have high sensitivity, good receiver antenna gains, and good tracking capabilities to
steer the beam of the UT such that it continuously points to the satellite.

• The practical challenges of the satellite system require solutions that are different from
the ones used in the terrestrial wireless communications. An important one is the specific
satellite multi-user protocol framing that is defined in the current broadcast and broadband
standards (i.e., DVB-S2X). In these protocols, in order to overcome the satellite channel
noise, channel codes are long and, therefore, must take into account data from multiple
users. This fact creates a multicast transmission, because the same information has to be
decoded by a group of users. Multicast transmission creates specific precoding techniques,
as section II explains.

• Finally, satellite solutions are generally characterized by a relatively long development
phase before deployment. This is different from terrestrial solutions, where it is easier to
test new technologies without incurring in excessive deployment costs.

Finally, it is important to note that V/HTS systems require the most advanced transmission
standards. Currently, DVB S2/S2X are the standards of both forward broadcast and broadband
satellite networks. Using high efficiency modulation and coding schemes (MODCODs) up-to
256APSK combined with advanced interference management techniques enable aggressive and
flexible frequency reuse. DVB-S2X incorporates the novel super-framing structure that enables
the use of SP techniques that have never been used before in the satellite context, such as precod-
ing and multi-user detection at the user terminal. Among other things, it incorporates orthogonal
Walsh-Hadamard (WH) sequences as reference/training sequences, allowing simultaneous estima-
tion of the channel state information of multiple beams. The super-frame concept was designed to
maximize the efficiency of the channel coding scheme by encapsulating the information intended
to several UTs using the same MODCOD. Remarkably, the length of the super-frame remains
unaffected by the various transmission parameters that are applied on the different beams (e.g.
MODCODs).
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5.2 Precoding in multibeam satellites

With the aim of increasing the offered data rates of a given satellite, both operators and manu-
facturers are investigating a variety of alternatives. One main approach is to consider satellite
communication links at extremely high frequencies such as the W-band [105]. However, large
investments are required for implementing the communication subsystems in these bands; in addi-
tion, new challenging channel impairments appear. As a result, spectrally efficient alternatives that
exploit the current frequency bands are of great interest. This is the case of precoding techniques
that allow a high frequency reuse factor among different beams. With the aid of precoding, a satel-
lite UT can obtain a sufficiently large signal to interference and noise ratio (SINR) even though
the carrier bandwidth is reused by adjacent beams. In order to maintain a certain SINR value,
the precoder mitigates the interference that can affect the satellite UT. Resorting to the system
architecture depicted schematically in Fig. 5.1, the precoding matrix is computed at the satellite
GW. After that, the beam signals are precoded and transmitted through the feeder link using a Fre-
quency Division Multiplexing (FDM) scheme. Then, the satellite payload performs a frequency
shift and routes the resulting radio signal over an array-fed reflector antenna that transmits the
precoded data over a larger geographical area that is served by the multiple beams in the user link.

Multibeam precoded satellite systems can be modeled as a multiple-input-multiple-output
(MIMO) broadcast channel [106]. As it happens, in terrestrial systems, low complexity linear
precoding techniques are of great interest. Indeed, the computational complexity that is required
to implement multibeam satellite precoding techniques gains importance as the dimensions of
multibeam satellite systems grow. For instance, the forthcoming Viasat-3 system is expected to
utilize nearly 1000 beams to serve the coverage area that is presented in Fig. 4. As a result, the on-
ground equipment should be prepared to update a precoding matrix of 1000 users on a per-frame
basis.

Apart from the already mentioned interference limitation, another major issue of multibeam
systems is to deal with the large spectral demands on the feeder link, i.e. the bidirectional link
between satellite and the Gateway (GW), whose bandwidth requirements increase as it aggregates
the traffic of all users. Keeping a full frequency reuse allocation (Nc = 1), the required feeder link
resources can be calculated as

Bfeeder-link = NBbeam, (5.1)

where N is the number of on-board feed signals. The notations Bbeam and Bfeeder-link are the per-
beam and the feeder link required bandwidths, respectively. From (5.1), it is evident that any beam
available bandwidth enhancement forces the feeder link resources to be increased accordingly and,
eventually the feeder link might become the communication bottleneck.
In the context of applying interference mitigation techniques and optimizing feeder link resources
in multibeam networks, the following possible configurations can be conceived:

• Ground Processing (GP): single GW employs an interference mitigation technique to cope
with increased level of inter-beam interference. Satellite payload works in the transparent
mode. There is no certain feeder link optimization strategy such that a set of Bfeeder-link in
(5.1) is required [107].

• Multi Gateway Processing (MGP): this architecture exploits the multiplexing diversity by
reusing all the available feeder link bandwidth across multiple GWs. The GWs employ in-
terference mitigation techniques and the required feeder link bandwidth is optimized with
the number of GWs. In this context, the required feeder link bandwidth becomes [108]
Bfeeder-link-MG = N

F Bbeam, where F is the number of GWs, and Bfeeder-link-MG denotes the
feeder link bandwidth which is required at MGP architecture. Indeed, the MGP architecture
reduces the required feeder link bandwidth to Bfeeder-link-MG < Bfeeder-link-onboard. Neverthe-
less, the deployment of several GWs increases the cost of the system.

90



This study investigates the forward link of a MGP scheme, where a OBP scheme is applied at
the payload. The OBP is developed while:

(i) A low complex payload infrastructure is targeted.

(ii) Inter-beam interference shall be mitigated, leading to optimize achievable rate at each user
terminal.

Furthermore, we develop a OBP scheme aiming to fulfill the requirements in (i) and (ii). Some
additional benefits can be realized via applying OBP in MGP network. First, it is not necessary to
establish a CSI feedback mechanism between satellite and the GWs. Second, CSI exchange mech-
anism is not needed among GWs, leading to a low complex transmitting segment infrastructure.
Third, in case of failing one GW, the traffic can be easily rerouted to the satellite through other
GWs without applying any extra signal processing schemes at the GWs.

5.3 Sparse precoding

The realization of on-board precoding entails low complexity beamformer design and low imple-
mentation cost. Many iterative and non-iterative low complexity beamformer designs exist in the
literature. Design of classical zero-forcing (ZF) and minimize mean square error (MMSE) are two
widely used non-iterative beamformers due to their low-complexity in the design. Several con-
vex and non-convex iterative beamformer designs addressing various design aspects of precoding
such as power minimization [9], weighted sum rate (WSR) maximization [109] etc are proposed
in the literature. Iterative methods are generally have high complexity than non-iterative methods.
However, to the best of our knowledge, design of beamformer with the objective of minimizing
implementation cost is not addressed in the literature.

As the satellite operates on signal bandwidth, which is usually of the order of several GHzs,
implementation of on-board precoding in the real-time and power consumed for implementation
become pivotal. As mentioned previously, the implementation cost involves multiplication and
additions of the beamformer coefficients with on-board frame symbols or sample and it is pri-
marily dominated by multiplications. Although efficient implementation techniques, exist in the
literature, aids in reducing multiplication cost, further contribution can be made by avoiding the
multiplications to the extent possible. In this chapter, we address the low-implementation cost of
the beamformer by sparsifying the beamformer matrix subject to design constraints.

Following are the contributions made through the first part of the chapter:

• We formulate the on-board precoding problem with objective of minimizing implementation
subject to minimum rate constraints of users with the help of sparsity constraints. We refer
this problem as sparse precoding problem

• Aforementioned sparse precoding problem contains the `0 norm of the beamformer as the
objective, hence it is a NP-hard in general which requires non-polynomial time complex-
ity algorithm for attaining a global solution. Hence, we relax `0 norm to `1 norm, which
convexifies the problem.

• We show the efficacy of the proposed design, over the traditional designs with respect to
implementation cost, through Monte-carlo simulations.

5.3.1 System Model and Scenario description

Consider the forward link of a MGP multibeam satellite system, where a single geosynchronous
(GEO) satellite with multibeam coverage provides fixed broadband services to a large set of users
with N feeds and K beams, with N = K.
By employing a Time Division Multiplexing (TDM) scheme, at each time instant, a total of K
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single antenna users, i.e. exactly one user per beam, is simultaneously served by a set of F GWs.
Without loss of generality, we assume each GW has access to an identical number of feeds1. In
particular, we let f -th GW, with f = 1, . . . , F , employs Nf = N

F on-board feeds to transmits its
signals. In addition, it is conceived that each GW transmits a subset of traffic streams to satellite.
Again, without loss of generality, we consider an identical set of traffic streams at each GW. In
this context, for available K number of beams, f -th GW calculates and transmits a subset of
Kf = K

F traffic streams, one stream per user such that f -th GW serves a subset of Kf out of
K user terminals within the whole coverage area. To make sure that the user demands are met,
we further assume an aggressive Nc = 1 frequency reuse where all the beams use the same user
link spectrum leading to inter-beam interference among the beams. In consequence, inter-beam
interference in user link become the bottleneck of the whole system motivating the use of the
interference mitigation techniques.
Remark 1. Even with highly directive antennas the feeder link originating at different GWs are
partially interfering. Nevertheless, in this chapter we assume that GWs are sufficiently separated
on the Earth surface and space so that the inter-feeder link interference can be ignored. In this
context, the received signal at the coverage area can be modeled as

y =
√
κHWx + n, (5.2)

where y is a K × 1 vector containing the symbols received by K users, one per beam, at a given
time instant. The K × 1 vector x = [x1, ...,xf , ...,xF ]T denotes the stacked transmitted signals
at all the on-board feeds with E{xxH} = IK . The notation xf of size Kf × 1 is a vector denotes
the signals transmitted by f -th GW to the satellite. The vector n of size K × 1 contains the
stacked zero mean unit variance Additive White Gaussian Noise (AWGN) at K users such that
E{nnH} = IK . The OBP weights are included in matrix W. The scalar κ is the power scaling
factor and must adapt with

trace(WWH) ≤ P, (5.3)

where P is the transmit power of N feeds.
Note that the transmit power constraint in (5.3) is set considering W. Throughout this paper it is
conceived that the power allocation mechanism is located at the array fed reflector system with N
embedded feeds.
In the sequel, H is the overall K × N user link channel matrix whose element (H)ij represents
the gain of the link between the i-th user (in the i-th beam) and the j-th satellite feed. The matrix
H includes the propagation losses and radiation pattern, and as such is decomposed as [108]

H = diag
(

1√
A1

, ...,
1√
AK

)
R, (5.4)

where Ak denotes the propagation losses from the satellite to the k-th user. R is a K ×N matrix
which models the feed radiation patterns, the path loss and the received antenna gain. The (k, n)-th
entry of R is modeled as

(R)kn =

√
WR gkn

4π dkλ
√
kBTRBW

, (5.5)

where WR denotes the user receive antenna’s power gain. gkn is referring to the amplitude gain
from feed n toward the k-th user such that the respective feed transmit gain is 10 log10(|(R)kn|2)
if expressed in dBi. Finally, dk is the distance between the k-th user and the satellite, λ the carrier
wavelength, kB the Boltzmann constant, TR the receiver noise temperature, and BW the carrier
bandwidth.

1This implies the fact that an identical number of feeder link resources and on-board feeds is assumed so that the
OBP directly converts one by one feeder link signals to on-board feed signals.
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5.3.2 Design of On-Board precoding

On-board design of precoding entails two factors into the design: Low design complexity and
low implementation cost. While the design complexity considers the complexity involved in cal-
culation of precoding matrix, implementation cost considers the cost of implementing precod-
ing feature with designed precoding matrix. The dominant factor in the implementation cost is
incurred by multiplication of precoding coefficients with data symbols or samples. Hence, we
assume that implementation cost which includes the power and time required to implement pre-
coding feature on-board can be translated into the order of number of multiplications. Moreover,
the number of multiplications can be translated to number of non-zeros in OBP matrix. While ef-
ficient implementation techniques help in reduction of complexity, sparsification of OBP (zeroing
out precoding coefficients) helps further in reduction as it reduces number of multiplications. In
this chapter, we address the implementation cost of OBP by sparsifying the precoding matrix to
minimize implementation cost subject to total transmit power and minimum rate constraints.

Low implementation cost modeling

Let hi be the ith row of H and Wi be ith column of W. With the help of aforementioned defi-
nitions, the problem of minimizing the implementation cost subject to total power and minimum
SINR constraints can mathematically be formulated as:

P1 : min
W
‖W‖0 (5.6)

subject to C1 :
|hHi Wi|2

σ2 +
∑N

j 6=i |hHi Wj |2
≥ εi, ∀i

C2 : ‖W‖2 ≤ P0, ∀i,

where P0 is the available total transmit power, ‖W‖0 is the `0 norm of W and εi is the minimum
SINR constraint of user i.

Remarks:

• The problem P1 is non-convex due to non-convex objective

• ‖W‖0 counts number of non-zeros in W. Hence the the objective is also combinatorial and
known to be NP-hard for high dimensional matrices.

• The minimum rate constraint of user i, for i = 1, . . . , N , in C1 in P1 appears to be non-
convex. However, constraint C1 can be written as a second order cone constraint which is
convex.

Obtaining a global solution to P1 entails the exhaustive search over the precoding space due
to the combinatorial nature of the problem (i.e. ‖W‖0). Exhaustive search based algorithms
become non-polynomial time complex even for practically realizable dimensions of W. Many
non-combinatorial relaxations of W are proposed in literature. Relaxations are primarily classified
into two categories: Convex and non-convex. In non-convex relaxations, ‖W‖0 is relaxed to
‖W‖p for 0 < p < 1. In convex relaxation, ‖W‖0 is relaxed to ‖W‖1. Under particular
conditions, ‖W‖1 based relaxation is shown to obtain the same solution as ‖W‖0 [110].

In this chapter, we adopt the `1 relaxation as it results the convex objective. The problem P1

with convex relaxation of ‖W‖0 can be mathematically formulated as

P2 : min
W
‖W‖1 (5.7)

subject to C1 :
|hHi Wi|2

σ2 +
∑N

j 6=i |hHi Wj |2
≥ εi, ∀i
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C2 : ‖W‖2 ≤ P0, ∀i,

Although, the objective in P2 is convex, the problem P2 can not be solved efficiently with
existing tools, that can solve convex problems efficiently, due to constraint C1. The constraint C1

can rearranged as

(
1 +

1

εi

)
|hHi Wi|2 ≥

∥∥∥∥∥∥∥∥∥
σ

hHi W1
...

hHi WN

∥∥∥∥∥∥∥∥∥
2

2

, ∀i (5.8)

Suppose W is an optimal precoding matrix for P2, then W diag{ejφi}, where φi for i =
1, . . . , N are arbitrary phases, is also optimal. This can be easily verified as the phase does not alter
the objective nor the constraints. Hence, we restrict ourselves to the design of the beamformers
with Re {hHi Wi} ≥ 0, Im{hHi Wi} = 0, i = 1, . . . , N as it helps to reformulate the constraint
as a convex constraint. With this newly imposed restriction on real and imaginary parts of hHi Wi,
for i = 1, . . . , N , the constraint C1 in P2 is reformulated as

(√
1 +

1

εi

)
<{hHi Wi} ≥

∥∥∥∥∥∥∥∥∥
σ

hHi W1
...

hHi WN

∥∥∥∥∥∥∥∥∥ , ∀i (5.9)

The problem P2 with the convex reformulation of constraint C1 is

P3 : min
W
‖W‖1 (5.10)

subject to C1 :

(√
1 +

1

εi

)
hHi Wi ≥

∥∥∥∥∥∥∥∥∥
σ

hHi W1
...

hHi WN

∥∥∥∥∥∥∥∥∥ , ∀i
C2 : ‖W‖2 ≤ P0, ∀i,

The problem P3 is convex problem since the objective and the constraint are convex. Hence,
the problem P3 can be solved globally and efficiently. Existing tools like CVX can be used to
solve the problem P3 efficiently. In the next section we present the performance of P3 through
Monte-Carlo simulations.

5.3.3 Numerical Results

System setup

To compare the performance of the proposed scenarios in this study, Monte Carlo simulations have
been carried out. The simulation setup is based on an array fed reflector antenna/feed provided by
European Space Agency (ESA) in the context of NGW project with N = K = 12 feeds/beams,
at each time instant, which serve a single user per beam and spread over the whole Europe [111].
Results have been averaged for a total of 500 channel realizations. For each beam different user
positions is considered at consecutive channel realizations. The detail of simulation parameters are
collected in precoding 5.1. Note that the channel fading statistics corresponds to the city of Rome.
We compare the achieved implementation cost for different transmit powers by the problem P3,
referred as `1-minimization (`1-min), with classical power minimization problem [9], referred as
`2-minimization (`2-min). The classical power minimization problem given in [9] can be obtained
replacing ‖W‖1 in (5.6) with ‖W‖2 and ignoring constraint C2.
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FIGURE 5.2: Power consumed by `2-minimization versus spectral efficiency for 12 beam HTS system

with one user per beam

TABLE 5.1: User link simulation parameters

Parameter Value
Satellite height 35786 km (GEO)
Satellite longitude, latitude 10◦East, 0◦

Frequency 20×109

Earth radius 6378.137 Km
Feed radiation pattern Provided by ESA [111]
Number of feeds N 12
Number of beams 12
Carrier frequency 20 GHz (Ka band)
Total bandwidth 500 MHz
Atmospheric fading Rain attenuation [111]
Roll-off factor 0.25
User antenna gain 41.7 dBi
clear sky gain 17.68 dB/K

Results

In figure 5.2, The total transmit required in watts for 4 different spectal efficiencies (SE) (2.20, 2.5,
2.666, 3 bps) is plotted. In figure 5.3(a), we compare the implementation cost of `2-min with `1-
min for the previously mentioned SEs. The reduction in the implementation cost of `1-min can be
observed that in figure 5.3(a), when it is supplied with small percentage of extra power (EP) than
`2-min. For example in figure 5.3(a) for SE=2.25 bps/Hz, the number of non-zeros in precoding
matrix of `2-minimization is 144 for the transmit power of 6dB but with total transmit power of
6.07 dB (see figure 5.4(a) for extra power needed), `1-minimization can achieve the same SE with
beamformer matrix which has less than 60 non-zero coefficients. Similarly, it can be observed
in figure 5.3(a), the implementation cost that can be achieved with `1-min for different SEs and
transmit powers.

In figure 5.4(a), we plot the amount extra power needed for different SEs in achieving the
implementation costs provided in figure 5.3(a). From figure 5.5, we can observe that `1-min can
achieve only a small gain in the implementation cost if P0 is same as optimal power, say Popt,
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FIGURE 5.3: Number non-zero precoder coefficients for `2-min and `1-min for different transmission
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2.2 2.4 2.6 2.8 3

Spectral efficiency (SE)

0

0.2

0.4

0.6

0.8

E
x
tr

a
 p

o
w

e
r
 i
n

 w
a
tt

s

L1-min: EP=0.25%

L1-min: EP=0.5%

L1-min: EP=0.75%

L1-min: EP=1%

(a)

FIGURE 5.4: Extra power consumed by `1-minimization versus spectral efficiency

FIGURE 5.5: Performance comparison of `2-min with `1-min for different transmission powers for 12

beam HTS system with one user per beam.

96



achieved by `2-min. However, we can see larger gain in implementation cost of `1-min for P0

which is slightly greater than Popt. We also observe that the gain in implementation cost are larger
for lower SEs, this because lower SEs can afford to have some interference. As a result, `1-min
makes the most of the precoding coefficients zeros allowing the interference that can be affordable
at this low SEs. However, we see the gain in the implementation cost diminishes with increase
in SE, this is due to the fact that higher SEs demand the lowest interference also to be canceled
hence the `1-min can not make many of the coefficients as it allows the interference that can not
be affordable at this high SEs.

5.3.4 Conclusion

In this section, design of on-board precoding is considered with the objective of minimizing im-
plementation cost subject to minimum SINR requirement of users and total transmission power
constraints. The major contribution of the implementation cost is by the multiplications involved
in applying the precoder coefficients to the data symbols. Hence, we modeled the objective of min-
imizing the implementation cost as the objective of minimizing the number of non-zero precoder
coefficients as a zero precoder coefficient avoids the need of multiplication. Hence, the minimiz-
ing the implementation cost is modelled with the help `0 norm constraint on precoding matrix.
However, the `0 norm objective problem is NP-hard so we relax objective to `1 norm which makes
the problem convex. Finally, we show the reduction in the implementation cost compared to the
classical power minimization problem through Monte-Carlo simulations.

5.4 Joint Scheduling and Precoding for Frame-Based Multigroup Mul-
ticasting in Satellite Communications

In this section, we address the frame-based MGMC precoding for forward link of a multibeam
system where each beam equipped with a single transmit antenna covers a large number of users
equipped with single antenna receivers. Due to practical constraints such as limited power and
frame length, only a few users can be accommodated into a frame transmitted over a beam. Natu-
rally, this leads to the scheduling of users that maximizes the objective of interest. In this chapter,
the summation over all the beams of per beam minimum user rate, termed as sum rate (SR) is
considered as the objective. Clearly, the rate and hence the user scheduling in a beam is a function
of signal-to-interference plus noise ratio (SINR). Moreover, the interference to users in a beam de-
pends on the precoding, which in turn, depends on the scheduled users (SU) in other beams. Thus,
the maximization of the objective requires the joint design of scheduling and precoding across the
users in all the beams. In this context, the joint design of scheduling and precoding simply refer
to as joint design.

Related works

The sum-rate maximization (SRM) for MGMC was initially addressed in [79] under the sum
power constraint. Therein, a heuristic algorithm based on decoupling of precoding and power al-
location is proposed. The authors in [112] proposed a heuristic user scheduling and extended the
precoding framework in [79] to SRM under PBPC for frame-based MGMC. Noticing the com-
plexity of the algorithms in [79] and [112], the authors in [113] propose a heuristic two-stage
low-complexity solution where the precoder design for inter-beam is followed by the precoder
design for intra-beam interference. User scheduling is not addressed [79], [113] and the proposed
user scheduling in [112] is heuristic. Further, the precoding solutions proposed in [79, 112, 113]
for SRM problem are heuristic without any guarantees on performance. Moreover, as mentioned
previously, the SRM problem entails a joint design of scheduling and precoding. Hence, the
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decoupled approach adopted in [112] provides only a feasible solution and results in loss of per-
formance compared to the joint design methods. To the best of our knowledge, joint design for
MGMC systems is not addressed in the literature.

To this end, the contributions of this chapter are as follows:

• To capture the coupled nature of scheduling and precoding, a novel formulation of the SRM
problem is proposed that embodies scheduling aspects of the design with the help of binary
variables besides precoding. Unlike the formulations in [79,112], the proposed formulation
results a continuous precoding problem for given SUs.

• With the help of novel reformulations, the non-convex nature of the problem arising from
SINR terms is transformed as a difference-of-convex/concave (DC) functions. The binary
constraint is handled with appropriate relaxation and penalization. Thus by rendering the
joint design as a DC problem, a fact hitherto not considered.

• Within the framework of the convex-concave procedure (CCP), an iterative algorithm is pro-
posed to solve the resulting DC problem wherein, each iterate, a convex problem is solved.
Convergence to a stationary point is inherently guaranteed and performance is enhanced.

5.4.1 MGMC Scenario and Problem Formulation

MGMC Scenario

We consider the forward link of a geostationary satellite having multibeam capabilities and offer-
ing broadband services. Considering the evolving trends in satellite systems, full frequency reuse
is considered for the multiple beams; this results in multi-user interference, whose mitigation is
the key aspect of the paper. The system is assumed to support the DVB-S2x Physical layer based
on superframing [114] to support the synchronized frames of the same length and the required
CSI pilots as necessitated by precoding [112]. Further, the users are assumed to possess a single
antenna with processing power to demodulate one data stream. Furthermore, the feeder link is as-
sumed ideal and the satellite is operated in the linear mode. Finally, the service needed for a much
larger number of users compared to the number of beams is provided by scheduling different users
in frames transmitted over time.

We consider an MGMC transmission in the aforementioned multibeam scenario comprising
N beams formed by N transmit antennas. The beam i serves Ui users and the total number of
users in all beams is assumed greater than number of beams (also antennas) i.e.,

∑N
i=1 Ui > N .

In a given time slot, exactly say, Ki ≤ Ui, users are served by multiplexing the users’ data in
a codeword designed for the transmission to users in beam i; this is referred to as frame-based
multicasting [112]. The generic case of Ki ≥ 1 arises from the need to use spectrally efficient
long codewords while avoiding transmission inefficiency due to concatenating a user’s data with
sizable dummy bits in the codeword [112]. Further, due to the use of full frequency reuse, a
multicast group of Ki users in beam i is interfered by Kj , j 6= i, users from other co-channel
beams leading to the MGMC scenario. Since Ki ≤ Ui, this naturally leads to the selection of Ki

of users out of Ui which is referred to as user scheduling in this paper (which is also referred to
equivalently as user selection or admission control in the literature).

Performance metric and problem formulation

In this chapter, we consider the sum of minimum rates achieved by each of the different multicast
groups as the performance metric. This metric considers the minimum rate of SUs in each beam
and summation is across the beams; this will be simply referred to as a sum-rate henceforth (also
in the literature in the context of MGMC [112]). In the sequel, we focus on maximization of
this sum-rate subject to constraints on the number of SUs per beam, minimum SINR (MSINR) or
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equivalently minimum rate of SUs per beam and the consumed power per beam; this problem is
compactly referred to SR in the rest of paper.

Towards formulating the SR, let wi ∈ CN×1, Pi > 0 and εi > 0 be the precoding vector,
maximum allowed per beam transmit power and MSINR (i.e., QoS) requirement of beam i re-
spectively. Noise at each user is characterized to be as additive white Gaussian with zero mean

and variance σ2. Let hij ∈ CN×1, and γij =
|hHijwi|2∑

l 6=i |hHijwl|2 + σ2
be the downlink channel and

SINR of user j belonging to beam i respectively. Let Si be any subset of {1, . . . , Ui} with cardi-
nality equal to Ki and Ti be the dictionary of all sets of type Si. Clearly, the number of sets in Ti
is
(
Ui
Ki

)
for i ∈ {1, . . . , N}. With the notations defined, the SR is formulated as,

P1 : max
{wi,Si∈Ti}Ni=1

N∑
i=1

log (1 + Ωi) (5.11)

s.t. C1 : Ωi = min
j∈Si

γij , i ∈ {1, . . . , N},

C2 : γij ≥ εi, i ∈ {1, . . . , N}, j ∈ Si,

C3 :

N∑
j=1

|wij |2 ≤ Pi, i ∈ {1, . . . , N}.

Remarks:

• Si contains the set of SUs in beam i, hence the constraint C1 in P1 represents the MSINR
of the SUs.

• Constraint C2 in P1 enforces the SUs in each beam to satisfy the corresponding MSINR
requirement associated with the beam. This enables the flexibility to support different rates
on different beams.

• Constraint C3 is the PBPC. This follows from the use of a separate transponder for each
beam due to co-channel assumption [115].

• The objective in P1 denotes the sum-rate.

Notice that the problem P1 is coupled in two levels:

• Design of scheduler and precoder in a beam entails their joint design as the scheduling of a
user depends on the precoder and the precoder design depends on the user.

• Design of scheduling and precoding in a beam requires joint design across all the beams
as the precoder of a beam (which in turn depends on scheduled user) contributes to the
interference to other beams.

Hence, the optimal solution to problem P1 entails the joint design of scheduling and precoding
where the scheduling is performed across all the users in all beams (multicast groups) and precod-
ing is performed across all beams.

The problem P1 is combinatorial due to the selection of sets of users and also non-convex due
to constraintC1 andC2. Hence, obtaining the optimal solution toP1 requires the exhaustive search
algorithms whose complexity grows exponentially with the increase in problem dimension (e.g.,
dictionary for each beam has dimensions

(
Ui
Ki

)
and their joint design is entailed). Therefore, in the

next section, we focus on transforming the problem P1 into a continuous problem and exploiting
the hidden DC structure in the non-convexity.
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5.4.2 DC formulation: A tractable approach

Towards formulating the problemP1 without the set notions, let ηij ∈ {0, 1} be the binary variable
associated with user j in beam i, where ηij = 1 when the corresponding user is scheduled and
zero otherwise. With the help ηijs, the problem P1 is reformulated as,

P2 : max
W,η,Ω

N∑
i=1

log (1 + Ωi) (5.12)

s.t. C1 : ηij ∈ {0, 1}, ∀i,∀j,
C2 : γij ≥ ηijΩi,∀i,∀j,
C3 : Ωi ≥ εi,∀i,

C4 :

Ui∑
j=1

ηij = Ki,∀i,

C5 :
N∑
j=1

|wij |2 ≤ Pi, ∀i,

where ∀i refers to i ∈ {1, . . . , N}, ∀j refers to j ∈ {1, . . . , Ui}, W = [w1, . . . ,wN ] ,ηi =
[ηi1, . . . , ηiUi ]

T , for i ∈ {1, . . . , N},η = [η1, . . . ,ηN ] and Ω = [Ω1, . . . ,ΩN ]. Remarks:

• When ηij = 0, the constraint C2 imposes a trivial lower bound on SINR of the unscheduled
user j in beam i i.e., γij ≥ 0. When ηij = 1, constraint C2 leads to γij ≥ Ωi.

• Letting USi to be the set of SUs in beam i, the constraint C2 ensures Ωi ≥ minj∈US
i
γij .

Hence, maximization of the objective in the problem P2 equivalently maximizes the sum-
rate in P1.

• Constraint C3 is the MSINR requirement of users.

• Constraint C4 imposes a limit on the number of SUs in each beam; this ensures each user
gets sufficient share of the physical layer frame.

Novelty of P2 The proposed reformulation transforms non-smooth non-tractable joint design
problem P1 into a tractable problem given in P2. Moreover, this reformulation is crucial for the
reformulations that are proposed in sequel to transform P1 to a smooth DC problem. The novelty
mainly lies in the reformulation of C1 in P1 to C2 in P2. To the best of our knowledge, the
formulation given in P2 is the first of its kind that captures both scheduling and precoding.

The problem P2 is non-smooth and combinatorial due to constraint C1; further the constraint
C2 is non-convex. Towards uncovering structure in the non-convexity, let βij be the slack variable
for lower bounding the SINR of user j and beam i. A reformulation of P2 with the help of βijs is,

P3 : max
W,η,Ω,β

N∑
i=1

log (1 + Ωi) (5.13)

s.t. C1, C3, C4, C5 in (5.12)

C2 : γij ≥ βij , ∀i,∀j,
C6 : βij ≥ ηijΩi, ∀i,

where β = [βi, . . . ,βN ] and βi = [βi1, . . . , βiUi ]
T . Following [81], a DC reformulation of

constraint C2 in P2 is,

C2 ⇒ 1 + γij ≥ 1 + βij ⇒ Iij (W)− Jij (W, βij) ≤ 0, (5.14)
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where Iij (W) = σ2 +
∑N

l 6=i|hHijwl|2 and Jij (W, βij) =
σ2 +

∑N
l=1|hHijwl|2

1 + βij
. Notice that

Iij (W) is convex and Jij (W, βij) is also jointly convex in W and βij . Hence, by the equivalent
reformulation given in (5.14), the constraint C2 in P3 is a DC constraint. Further, a DC form of
C6 is,

C6 : 4βij + (ηij − Ωi)
2 ≥ (ηij + Ωi)

2 . (5.15)

With the reformulations given in (5.14) and (5.15), and ignoring the combinatorial constraint
C1 for the moment, the problem P3 leads to the maximization of concave objective subject to
difference-of-convex, convex and linear constraints; this is a DC problem [63] and can be solved
efficiently by CCP [63].

As the final step, the combinatorial constraint C1 is addressed by relaxing ηijs to a box con-
straint between 0 and 1 i.e., 0 ≤ ηij ≤ 1. This relaxation along with the aforementioned reformu-
lations renders P3 as a DC programming problem. However, the resulting ηijs obtained with this
relaxation might be non-binary. Hence, to ensure their binary nature, ηij is penalized with P (ηij).
Letting λ to be the penalty parameter, the resulting penalized reformulation is,

P4 : max
W,η,Ω,β

N∑
i=1

log (1 + Ωi) + λ

Ui∑
j=1

P (ηij)

 (5.16)

s.t. C1 : 0 ≤ ηij ≤ 1, ∀i,∀j,
C2 : Iij (W)− Jij (W, βij) ≤ 0, ∀i,∀j
C3, C4, C5 in (5.13)

C6 : 4βij + (ηij − Ωi)
2 ≥ (ηij + Ωi)

2 , ∀i,∀j

It is easy to see that any choice of convex function P (ηij) that promotes the binary solutions
suffice to transform P4 as a DC problem of our interest. For example, the penalty functions pro-
posed in [81] and [99] can be chosen as P (ηij). The log-entropy based penalty function proposed
in [81] i.e., P(ηi) , ηi log ηi + (1− ηi) log (1− ηi) is considered for this chapter. With this
choice of P(ηi), the problem P4 becomes a DC problem. In order to apply the CCP framework
to the problem P4, a feasible initial point (FIP) needs to supplied. However, the constraint C4 in
P4 limits the choices of FIPs. For ease of finding the FIPs, the constraint C2 is brought into the
objective with another penalty parameter γ > 0 as,

P5 : max
W,η,Ω,β

F (Ω, η) s.t. C1, C2, C3, C5, C6 in (5.16). (5.17)

where F (Ω, η) =
∑N

i=1

(
log (1 + Ωi) + λ

∑Ui
j=1 P (ηij)

)
−
∑N

i=1 γ
(∑Ui

j=1 ηij −Ki

)2
. Given a non-empty solution set, a solution of the problem P4 is

always obtained by solving P5 with right choice of γ (usually larger value).

5.4.3 CCP based Joint Design Algorithm

In this section, a CCP [63] based algorithm is proposed to solve the DC problem in (5.16). CCP
is an efficient tool to find a stationary point of DC programming problems [55]. It is an itera-
tive framework wherein the two steps of Convexification and Optimization are executed in each
iteration. In the convexification step, the DC problem is approximated as a convex problem by
linearizing the convex part of the objective and the concave part of the DC constraints by their
first-order Taylor approximations. The convex problem obtained from convexification step pro-
vides a global lower bound for the original problem where the lower bound is tight at the previous
iteration. The optimization step involves the maximization of the lower bound obtained from
Convexification step.
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Joint Scheduling and Precoding (JSP) Algorithm

The convexifcation and optimization steps of CCP framework, applied to the DC problem P5, are
as follows,

• Convexification: Let (W,η,β,Ω)k−1 be the estimates of (W,η,β,Ω) in iteration k − 1

respectively. In iteration k, the convex part of the objective,
(∑N

i=1 λP (ηi)
)

is replaced by

P̃ (ηi) , λ
(
P
(
ηk−1
i

)
+
(
ηi − ηk−1

i

)
∇P

(
ηk−1
i

))
. So, the objective of P5 after convex-

ification, say F̃ (Ω, η), is F̃ (Ω, η) =
∑N

i=1

(
log (1 + Ωi) + λ

∑Ui
j=1 P̃ (ηi)

)
−
∑N

i=1 γ
(∑Ui

j=1 ηij −Ki

)2
. Similarly, the concave part of C2 i.e., Jij (W, βij) is re-

placed by

J̃ij(W, βij)
k−1 , −Jij(W, βij)−

<

{
∇HJi(W, βij)

k−1

[
{wl −wk−1

l }Nl=1

βij − βk−1
ij

]}
,

and concave part of C6 i.e., (ηij − Ωi)
2 is replaced by

Gij(ηij ,Ωi) ,
(
ηk−1
ij − Ωk−1

i

)2
+ 2

(
ηk−1
ij − Ωk−1

i

)
−2
(
ηk−1
ij − Ωk−1

i

)T (ηk−1
ij − ηij

)(
Ωk−1
i − Ωi

) .
• Optimization: Updated

(
Wk+1,Ωk+1,ηk+1,βk+1

)
is obtained by solving the following

convex problem,

P6 : max
W,η,Ω,β

F̃ (Ω, η) (5.18)

C1 : 0 ≤ ηij ≤ 1, ∀i,∀j,
C2 : Iij (W)− J̃ij(W, βij)

k−1 ≤ 0, ∀i,∀j
C3 : Ωi ≥ εi,∀i,

C4 :
N∑
j=1

|wij |2 ≤ Pi, ∀i,

C5 : 4βij + Gij(ηij ,Ωi) ≥ (ηij + Ωi)
2 ,∀i,∀j

The problem in P6 optimizes the sum-rate over scheduling and precoding variables jointly. This
joint scheduling and precoding (JSP) algorithm is based on CCP framework. It is well known that
a FIP is sufficient for the CCP procedure to converge to a stationary point (kindly refer [54, 55]).
The QOS problem for fixed η can be solved using [8]. Let Ŵ be the solution for fixed η = δ
where 0 ≤ δ ≤ 1 is constant. For δ ≈ 0, the corresponding QOS problem always becomes feasible
( kindly refer to [8]). So, a FIP of the problem P5 can be

(
Ŵ, η̂, β̂, Ω̂

)
where β̂ is the SINRs

obtained with Ŵ, η̂ = δ and Ω̂i = εi for i = 1, . . . , N .

5.4.4 Complexity of JSP and its reduction

Since JSP is a CCP based iterative algorithm, its complexity depends on complexity of the con-
vex sub-problem P5. The convex problem P5 has

(
N2 + 2

∑N
i=1 Ui +N

)
decision variables and
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(
2
∑N

i=1 Ui +N
)

convex constraints and
(

2
∑N

i=1 Ui + 2N
)

linear constraints. Hence, the com-

putational complexity of P5 is O
((

N2 + 2
∑N

i=1 Ui +N
)3 (

4
∑N

i=1 Ui + 3N
))

[64]. Com-

mercial software such as CVX can solve the convex problem of type P5 efficiently. Besides the
complexity per iteration, the overall complexity also depends on the convergence speed of the
algorithm. Through simulations, we observe that the JSP converges typically in 20-30 iterations.

Pre-selection of Users for Large System Dimensions

The proposed JSP algorithm is computationally efficient for small to medium system dimensions.
However, the complexity per iteration of P5 grows in the order of power seven to number of users
as the system dimension increases. Such a situation is inherent in satellite systems with increasing
user base per beam. A case in point is the satellite system (for which we present numerical results
in the next section) with N = 9 and {Ui = 100,Ki = 2}Ni=1; the number of users is much larger
than what could be accommodated in a beam. Such scenarios inhibit the applicability of JSP or the
obtained solution may become obsolete due to lengthier processing times. However, for special
cases of large dimension systems with {Ui � Ki}Ni=1, the proposed joint design algorithm can be
still applied by adopting the following two step process:

• Pre-selection: In this step, a small subset of users, say ζi, in beam i, for i = 1, . . . , N
is selected based on some scheduling scheme. This is step is referred to as pre-selection.
Typically ζi is chosen as Ki ≤ ζi ≤ Ui.

• Joint design for the pre-selected users: In this step, the proposed JSP algorithm is employed
for the beams with pre-selected users to jointly schedule Ki users out of ζi and design
corresponding precoders.

The proposed pre-selection based JSP with two step process is simply referred to PS-JSP. The
values of {ζi}Ui=1 are chosen such that the complexity of proposed JSP algorithm is affordable.
The proposed two step process typically results in loss of performance in comparison with JSP
algorithm employed for original system dimension. This performance loss is typically a function
of the scheduling scheme employed in pre-selection step and also on {ζi −Ki}Ni=1.

5.4.5 Simulation results

In this section, the performance of JSP and PS-JSP are evaluated based on the system setup de-
scribed in Section 5.4.1 and simulation model defined in [111]. We consider the Shannon rate for
JSP and PS-JSP for its analytical appeal. However, in satellite systems, the throughput is defined
by the modulation and coding (MODCOD) schemes used. In this context, while the optimization
problem is solved for the Shannon rate, the resulting SINRs are used to compute the following
metric,

Ravg =
2Bu

1 + α

1

N

N∑
i=1

fDVB-S2X

(
min
i∈Ŝi
{SINRi}

)
. (5.19)

This metric, in [Gbps/beam], represents average user throughput when using DVB-S2x framing;
the relevant parameters are defined in Table 5.2. The function fDVB-S2X in (5.19) maps the received
MSINR of a beam to the highest MODCOD scheme (defined in [114]) that can be supported. In
this chapter, a MSINR threshold εi of −2.85 dB corresponding to minimum transmission and σ2

is assumed to be 0dB at all user terminals. Number of beams N is fixed to be 9 for all results.
Further, the results are averaged over 100 different channel realizations.

The solution proposed in [112] is considered as a benchmark (BM) for all the performance
comparisons. As discussed previously, the joint design entails the design of scheduling and pre-
coding across all the users in all the beams jointly. The BM algorithm proposed in [112] is based
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TABLE 5.2: Simulation Parameters
Frequency Band Ka (20 GHz)
User terminal clear sky
temp, Tcs

235.3K

User Link
Bandwidth, Bu

500 MHz

Output Back Off, OBO 5 dB
On board Power, Ptot 50 dBW
hline Atmospheric fad-
ing

Rain attenua-
tion [111]

Roll-off factor, α 0.20
User terminal antenna
gain, GR

41.7 dBi

Multibeam Antenna
Gain, Gij

Ref: [111]

on the decoupled design of scheduling followed by precoding. Moreover, the scheduling and pre-
coding algorithms proposed in [112] are heuristic methods without any guarantees on the nature
of the solutions. On the contrary, the proposed JSP algorithm jointly designs the scheduling and
precoding over all the users in all beams and PS-JSP jointly design the scheduling and precoding
for the given subset of users in all the beams; further, the optimization algorithm is based on a
CCP which inherently provides qualifications on the solution. Hence, the gains obtained by JSP
or PS-JSP is attributed to two factors: (i) improved precoder design per-se even for a given user
set, (ii) jointly optimizing scheduling and precoding. Through the following numerical results, the
gains in different scenarios are quantified. These scenarios are reflective of the typical operational
aspects encountered in satellite communications.

Ravg as a function of total users per beam

It is quite essential in satellite communications to achieve higher spectral efficiencies with limited
power. In figure 5.6, Ravg is illustrated as a function of total users per beam for a limited power
of 100 Watts. The number of users per beam {Ui = ∆}Ni=1 is varied from 10 to 50 in steps of
10, and users per frame {Ki}Ni=1 is fixed to be 2. Recalling the PS-JSP, the joint design is carried
out on a pre-selected user pool containing ζi users in the ith beam; here it is further assumed
that ζ = ζi,∀i. Figure 5.6 further illustrates the impact of choosing different ζ. The scheduling
algorithm proposed in [112] is employed to pre-select ζ users from Ui in the pre-selection step of
PS-JSP. Following are the gains obtained by JSP and PS-JSP over BM for this scenario:

• Precoding gain: For {ζi = Ki = 2}Ni=1, the scheduling algorithms employed in PS-JSP and
BM are the same leading to same set of SUs. In other words, the second step of PS-JSP
(i.e., JSP) essentially designs only the precoder as {ζ = Ki}Ni=1. So, the gains obtained by
PS-JSP over BM for ζi = Ki, which amounts to approximately 12%, is solely attributed to
efficiency in the precoding of JSP which is introduced before as precoding gains.

• Joint optimization gain: For {ζi > Ki}Ni=1, the gains of PS-JSP over BM is due to both
scheduling and precoding. In other words, the JSP step of PS-JSP schedules the users that
contribute less interference to other beams and also users that consume less power to meet
the MSINR requirements. The gains obtained by PS-JSP for { ζiKi

= 4}Ni=1 amounts to
approximately 50% for {Ui}Ni=1 = 10 (and 20% for {Ui}Ni=1 = 50) is referred to as joint
optimization gains.
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FIGURE 5.6: Performance comparison of Ravg (in Gbps/beam) versus Ui for N = 9, {Ki = 2, Pi =
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FIGURE 5.7: Performance comparison of Ravg in Gbps/beam versus Ui for N = 9, {Ui = 100, Pi =

11.11 Watts}Ni=1.

Multiuser Diversity Due to increased diversity in selecting users, (MUD: multiuser user di-
versity), the performance of PS-JSP improves as {ζi}Ni=1 increases. For example, when {Ui =
10}Ni=1, the gain for {ζi = 4Ki}Ni=1 is larger than that for {ζi < 4Ki}Ni=1 as the former case
benefits from higher MUD. In other words, as {ζi}Ni=1 increases, the probability of finding the or-
thogonal users with good channel gains across beams increases. Moreover, probability of finding
parallel users within the beam with good channel gains also increases with {ζi}Ni=1. This is shown
in figure 5.6. However, the gains diminish as ζ increases further; additional users included due
to increase in ζ tend to be less orthogonal with users in other beams and possess low correlation
with users of the same beam. Similarly, as the number of users per beam increases, the aforemen-
tioned probability increases. Hence, the performance of BM and PS-JSP improves as the number
of users per beam increases initially, but these gains per-se diminish with further increase in users
per beam.

Ravg as a function of users per frame

The throughput of PS-JSP against BM is illustrated in figure 5.7 as a function of number of users
per frame i.e., {Ki}Ni=1. It is easy to see that due to systematic joint design, PS-JSP outperforms
the BM. Similar to figure 5.6, for {ζi = Ki}Ni=1 the gains obtained by PS-JSP is solely attributed to
the precoding gains and the gains for {ζi > Ki}Ni=1 are attributed to the gains from joint scheduling
and precoding. The performance in a beam ( or frame) is dependent on the MSINR of the frame.
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Notice, scheduling in BM and pre-selection in PS-JSP are based on orthogonality of users across
beams and co-channel nature of users within the beam. Since the channel dimensions are finite,
the correlation between the newly added SUs with those already selected tends to increase (less
orthogonal). Hence, newly added SUs increase interference. Further, due to the nature of adopted
scheduling, newly SUs have less channel gains. Hence, the increased interference with more SUs
and reduced channel gains of the newly SUs lead to lower MSINR of a frame. As a result, Ravg
decreases as {Ki}Ni=1 increases which is shown in figure 5.7.

5.4.6 Conclusions

In this section, the joint scheduling and precoding problem was considered for an MGMC scenario
in frame-based satellite systems from a physical layer perspective. Unlike the existing works, the
joint design problem is formulated that facilitates the update of scheduling and precoding jointly.
Noticing the problem to be MINLP, an efficient framework is developed that transform it as a DC
problem. Finally, an efficient low-complexity CCP based iterative algorithm is proposed. Through
Monte-Carlo simulations, the superiority in performance of the proposed algorithm over the state-
of-the-art methods is illustrated.
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6
Future works

This thesis focuses on the joint design of various scheduling and precoding aspects that occur
in unicast and multicast downlink transmission in cellular and satellite systems. Noticing the
prevalence of challenges that preclude the joint update prevail across all the designs, this thesis
provides the methodology, that could be applicable to many designs, to the joint design problems
in the rudimentary single cell multiuser MISO downlink channels. In this chapter, the issues for
future work are identified and discussed.

This thesis adopted somewhat ideal system assumptions e.g., the availability of perfect channel
informations. This means that the results can be regarded as upper bounds for the achievable
performance in practice. The next step would be to take these non-idealities into account to bridge
the gap between theory and reality. For example, an interesting future research project would
be to study robust joint design considering the imperfect channel state information. Further, the
complexity of solutions increases in the cubic order with number of variables of optimizations.
This could limit the applicability of the framework to large dimensional systems. This could be
addressed by parallelizing the solutions.

The frameworks proposed in this thesis can easily be extended to multi cell scenarios. How-
ever, the existing joint design framework for multicell network requires centralized processing.
Generally, the centralized processing increases communication overhead and processing power,
imperfect. Thus, some form of decentralized joint designs are necessary. Further, robust central-
ized joint design, to account for the imperfectness of the channel information, is also interesting.

Another important research direction would be to consider cloud-RAN systems with cache-
aware scheduling and precoding. Caches enable base stations to store a certain amount of content
for future use, without the need to download the content to be transmitted every time from the
center. In terms of network energy efficiency, the cache size, caching time, and the decisions as to
whether to store some content or not play important roles.

This dissertation has only covered a few exemplary problems regarding discrete resource al-
location in modern cellular networks. There are many practical discrete resource allocation prob-
lems in wireless networks that can be addressed using the MINLP framework presented in this
thesis, e.g., wireless link activation [116], delay-constrained routing in multihop networks [117],
and resource block scheduling in 3GPP LTE systems [118], to name but a few. As more advanced
discrete and mixed-integer optimization techniques and algorithms are emerging, more and more
practical discrete resource allocation problems in wireless communications and signal processing
can be addressed within the developed MINLP framework.

107



A
Chapter3 appendix

Appendix I

P̃k (ηij) , ηij∇P
(
ηk−1
ij

)
; P̃k (δj) , δj∇P

(
δk−1
j

)
,

fk (ηij ,Θj , t) , B

2

(
ηk−1
ij + Θk−1

j

)
(ηij + Θj)

tk−1
−

(
ηk−1
ij + Θk−1

j

tk−1

)2

t−
η2
ij

t
−

Θ2
j

t

 .
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Appendix II

DC formulation and CCP based algorithm: SUM

Applying reformulations and relaxations proposed in Section 3.3, the problem PSUM
1 is reformu-

lated into DC problem as,

PSUM
2 : max

W,Θ,η,δ

N∑
i=1

G∑
j=1

ηij − Ω3

∥∥∥∥∥∥
G∑
j=1

δj −M

∥∥∥∥∥∥
2

+ λ4

G∑
j=1

N∑
i=1

P (ηij) +
G∑
j=1

λ5P (δj) (A.2)
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s.t. C1 : 0 ≤ ηij ≤ 1, ∀i, ∀j, C4 : 0 ≤ δj ≤ 1, ∀j,

C7 :
∑
l 6=i
|hHi wl|2 + σ2 ≤

∑G
l=1 |hHi wl|2 + σ2

1 + ηijεj
, ∀i, ∀j, C2, C3, C5 and C6 in (3.14),

where λ5, λ6 and Ω3 are the penalty parameters.
The convexified problem to be solved as part of JGSP-SUM (CCP based algorithm applied to

the DC problem PSUM
2 ) algorithm at iteration k is:

PSUM
3 : max

W,Θ,η,δ

N∑
i=1

G∑
j=1

ηij − Ω3

∥∥∥∥∥∥
G∑
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δj −M

∥∥∥∥∥∥
2

+ λ4

G∑
j=1

N∑
i=1

P̃k (ηij) +
G∑
j=1

λ5P̃k (δj)

(A.3)

s.t. C1, C2,C3, C5 to C6 in (A.2), C7 :
∑
l 6=i
|hHi wl|2 + σ2 ≤ Ik (W, ηij) , ∀i, ∀j,

where Ik (W, ηij) =
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l |2 + σ2
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Letting PSUM
3 (k) + be the objective value of the problem PSUM

3 at iteration k, the pseudo code
of JGSP-EE-SR for the joint design problem is given in algorithm 7.

Algorithm 7 JGSP-SUM
Input: H, [ε1, . . . , εN ] , PT ,∆,W

0, δ0,Θ0,η0, λ4 = 0, λ5 = 0,Ω3 = 0, k = 1;
Output: W,η
while |PSUM

3 (k)− PSUM
3 (k − 1) | ≥ ∆ do

Convexification: Convexify the problem (A.3)
Optimization: Update (W,η, δ,Θ)k by solving PSUM

3

Update : PSUM
3 (k) , λ4, λ5,Ω3, k

end while
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Appendix II

JBSP-MC: A CCP based algorithm for MC scenario

The proposed JBSP-MC is a CCP based algorithm that executes the following steps iteratively to
solves the DC problem PMC

2 :

• Convexification: Let (W,η, ζ, δ)l−1 , be the estimates of W,η, ζ in iteration l−1. Further,
let P̃

(
ηl−1
ij

)
and G̃ij,k

(
Wl−1, ζ l−1

ij

)
be the first order Taylor approximations of P (ηij,k),

P (δj,k) and Gij,k (W, ζij,k) around (W,η, δ, ζ)k−1 respectively and their corresponding
expressions can be easily obtained similar to Appendix B.

• Optimization: The next update (W,η, δ, ζ)k+1 is obtained by solving the following convex
problem :

PMC
3 : min
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(B.2)
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s.t. C1 : 0 ≤ ηij,k ≤ 1,∀i, ∀j, ∀k, C2 : ‖wij‖22 ≤ PSηij ,∀i, ∀j, ∀k,

C3 : 0 ≤ δj,k ≤ 1}, ∀i, ∀j, ∀k, C4 :

N∑
i=1

ηij,k ≥ δj,k, ∀j, ∀k,

C5 :
G∑
k=1

δj,k ≤M, ∀j, C6 : Iij,k (W)− G̃ij,k (W, ζij,k) ≤ 0,∀i, ∀j, ∀k,

C7 : log ζij,k ≥ ηij,kθ̄k, ∀i, ∀j, ∀k, C8 :
T∑
j=1

G∑
k=1

‖wj,k‖22 ≤ PT ,
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[2] S. Stańczak, M. Wiczanowski, and H. Boche, “Fundamentals of resource allocation in wire-
less networks - theory and algorithms (2. ed.),” in Foundations in Signal Processing, Com-
munications and Networking, 2008.

[3] D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu, “Multi-cell mimo
cooperative networks: A new look at interference,” IEEE J. Sel. Areas Commun., vol. 28,
no. 9, pp. 1380–1408, December 2010.

[4] H. Weingarten, Y. Steinberg, and S. S. Shamai, “The Capacity Region of the Gaussian
Multiple-Input Multiple-Output Broadcast Channel,” IEEE Trans. Inf. Theory, vol. 52,
no. 9, pp. 3936–3964, Sept 2006.

[5] H. Viswanathan, S. Venkatesan, and H. Huang, “Downlink capacity evaluation of cellu-
lar networks with known-interference cancellation,” IEEE J. Sel. Areas Commun., vol. 21,
no. 5, pp. 802–811, June 2003.

[6] P. Zetterberg and B. Ottersten, “The spectrum efficiency of a base station antenna array
system for spatially selective transmission,” IEEE Trans. Veh. Technol., vol. 44, no. 3, pp.
651–660, Aug 1995.

[7] S. Anderson, M. Millnert, M. Viberg, and B. Wahlberg, “An adaptive array for mobile
communication systems,” IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 230–236, Feb 1991.

[8] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit beamforming,” in Hand-
book of Antennas in Wireless Communications. CRC Press, 2001, pp. 18–1–18–33, qC
20111107.

[9] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization for fixed
MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–176, Jan 2006.

[10] G. Dimic and N. D. Sidiropoulos, “On downlink beamforming with greedy user selection:
performance analysis and a simple new algorithm,” IEEE Trans. Signal Process., vol. 53,
no. 10, pp. 3857–3868, Oct 2005.

[11] J. Wang, D. J. Love, and M. D. Zoltowski, “User selection with zero-forcing beamforming
achieves the asymptotically optimal sum rate,” IEEE Transactions on Signal Processing,
vol. 56, no. 8, pp. 3713–3726, 2008.

[12] C. Farsakh and J. A. Nossek, “Spatial covariance based downlink beamforming in an sdma
mobile radio system,” IEEE Transactions on Communications, vol. 46, no. 11, pp. 1497–
1506, 1998.

[13] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. USA: Cambridge
University Press, 2005.

114



[14] B. Ottersten, “Spatial division multiple access (sdma) in wireless communications,” in Pro-
ceedings of Nordic Radio Symposium, 1995.

[15] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long Term Evolution: From Theory to
Practice. Wiley Publishing, 2009.

[16] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband,
1st ed. USA: Academic Press, Inc., 2011.

[17] D. Astely, E. Dahlman, G. Fodor, S. Parkvall, and J. Sachs, “LTE release 12 and beyond
[Accepted From Open Call],” IEEE Communications Magazine, vol. 51, no. 7, pp. 154–
160, 2013.

[18] ——, “E-utra: Physical channels and modulation (release 11). 3gpp ts 36.211,” IEEE Com-
munications Magazine.

[19] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beamforming and power con-
trol for cellular wireless systems,” IEEE Journal on Selected Areas in Communications,
vol. 16, no. 8, pp. 1437–1450, 1998.

[20] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with
individual sinr constraints,” IEEE Transactions on Vehicular Technology, vol. 53, no. 1, pp.
18–28, 2004.

[21] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-
antenna power constraints,” IEEE Transactions on Signal Processing, vol. 55, no. 6, pp.
2646–2660, 2007.

[22] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource allocation in ofdma
systems with large numbers of base station antennas,” IEEE Transactions on Wireless Com-
munications, vol. 11, no. 9, pp. 3292–3304, 2012.

[23] E. Karipidis, N. D. Sidiropoulos, and Z. Luo, “Far-field multicast beamforming for uniform
linear antenna arrays,” IEEE Transactions on Signal Processing, vol. 55, no. 10, pp. 4916–
4927, 2007.

[24] E. Karipidis, N. D. Sidiropoulos, and Z. Q. Luo, “Quality of service and max-min fair trans-
mit beamforming to multiple cochannel multicast groups,” IEEE Trans. Signal Process.,
vol. 56, no. 3, pp. 1268–1279, March 2008.

[25] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using
zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–541,
March 2006.

[26] B. Song, Y. Lin, and R. L. Cruz, “Weighted max-min fair beamforming, power control,
and scheduling for a MISO downlink,” IEEE Trans. Wireless Commun., vol. 7, no. 2, pp.
464–469, February 2008.

[27] E. Matskani, N. D. Sidiropoulos, Z. q. Luo, and L. Tassiulas, “Convex approximation tech-
niques for joint multiuser downlink beamforming and admission control,” IEEE Trans.
Wireless Commun., vol. 7, no. 7, pp. 2682–2693, July 2008.

[28] F. Meshkati, H. V. Poor, and S. C. Schwartz, “Energy-efficient resource allocation in wire-
less networks,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 58–68, 2007.

[29] E. Karipidis, N. D. Sidiropoulos, and Z. Luo, “Quality of service and max-min fair transmit
beamforming to multiple cochannel multicast groups,” IEEE Trans. Signal Process., vol. 56,
no. 3, pp. 1268–1279, March 2008.

115



[30] M. Alodeh, D. Spano, A. Kalantari, C. G. Tsinos, D. Christopoulos, S. Chatzinotas, and
B. Ottersten, “Symbol-level and multicast precoding for multiuser multiantenna downlink:
A state-of-the-art, classification, and challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 3, pp. 1733–1757, thirdquarter 2018.

[31] Z. Xiang, M. Tao, and X. Wang, “Coordinated multicast beamforming in multicell net-
works,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 12–21, January 2013.

[32] E. Matskani, N. D. Sidiropoulos, Z. Luo, and L. Tassiulas, “Efficient batch and adaptive
approximation algorithms for joint multicast beamforming and admission control,” IEEE
Trans. Signal Process., vol. 57, no. 12, pp. 4882–4894, Dec 2009.

[33] B. Hu, C. Hua, C. Chen, and X. Guan, “User grouping and admission control
for multi-group multicast beamforming in MIMO systems,” https://doi.org/10.1007/
s11276-017-1510-5, pp. 2851–2866, Nov 2018.

[34] D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Multicast multigroup precoding and
user scheduling for frame-based satellite communications,” IEEE Trans. Wireless Com-
mun., vol. 14, no. 9, pp. 4695–4707, Sept 2015.

[35] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-Antenna Downlink Channels with Limited
Feedback and User Selection,” IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp. 1478–1491,
September 2007.

[36] G. Lee and Y. Sung, “A New Approach to User Scheduling in Massive Multi-User MIMO
Broadcast Channels,” IEEE Trans. Commun., vol. 66, no. 4, pp. 1481–1495, April 2018.

[37] W. Yu, T. Kwon, and C. Shin, “Multicell Coordination via Joint Scheduling, Beamforming,
and Power Spectrum Adaptation,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 1–14,
July 2013.

[38] M. Li, I. B. Collings, S. V. Hanly, C. Liu, and P. Whiting, “Multicell Coordinated Schedul-
ing With Multiuser Zero-Forcing Beamforming,” IEEE Trans. Wireless Commun., vol. 15,
no. 2, pp. 827–842, Feb 2016.

[39] M. Kountouris, D. Gesbert, and T. Sälzer, “Enhanced multiuser random beamforming: deal-
ing with the not so large number of users case,” IEEE J. Sel. Areas Commun., vol. 26, no. 8,
pp. 1536–1545, October 2008.

[40] M. L. Ku, L. C. Wang, and Y. L. Liu, “Joint Antenna Beamforming, Multiuser Scheduling,
and Power Allocation for Hierarchical Cellular Systems,” IEEE J. Sel. Areas Commun.,
vol. 33, no. 5, pp. 896–909, May 2015.

[41] L. Yu, E. Karipidis, and E. G. Larsson, “Coordinated scheduling and beamforming for
multicell spectrum sharing networks using branch and bound,” in Proc. EUSIPCO, Aug
2012, pp. 819–823.

[42] A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M. S. Alouini, “Coordinated Scheduling and
Power Control in Cloud-Radio Access Networks,” IEEE Trans. Wireless Commun., vol. 15,
no. 4, pp. 2523–2536, April 2016.
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