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Abstract

In this paper we present a proof system that operates on
graphs instead of formulas. We begin our quest with the
well-known correspondence between formulas and cographs,
which are undirected graphs that do not have Py (the four-
vertex path) as vertex-induced subgraph; and then we drop
that condition and look at arbitrary (undirected) graphs. The
consequence is that we lose the tree structure of the for-
mulas corresponding to the cographs. Therefore we cannot
use standard proof theoretical methods that depend on that
tree structure. In order to overcome this difficulty, we use
a modular decomposition of graphs and some techniques
from deep inference where inference rules do not rely on the
main connective of a formula. For our proof system we show
the admissibility of cut and a generalization of the splitting
property. Finally, we show that our system is a conserva-
tive extension of multiplicative linear logic (MLL) with mix,
meaning that if a graph is a cograph and provable in our
system, then it is also provable in MLL+mix.

CCS Concepts: « Theory of computation — Proof the-
ory; Linear logic; Concurrency.

Keywords: Proof theory, cographs, graph modules, prime
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1 Introduction

The notion of formula is central to all applications of logic
and proof theory in computer science, ranging from the
formal verification of software, where a formula describes
a property that the program should satisfy, to logic pro-
gramming, where a formula represents a program [27, 31],
and functional programming, where a formula represents
a type [25]. Proof theoretical methods are also employed in
concurrency theory, where a formula can represent a pro-
cess whose behaviours may be extracted from a proof of
the formula [5, 22, 23, 30]. This formulas-as-processes para-
digm is not as well-investigated as the formulas-as-properties,
formulas-as-programs and formulas-as-types paradigms men-
tioned before. In our opinion, a reason for this is that the
notion of formula reaches its limitations when it comes to de-
scribing processes as they are studied in concurrency theory.

For example, BV [17] and pomset logic [37] are proof sys-
tems which extend linear logic with a notion of sequen-
tial composition and can model series-parallel orders. How-
ever, series-parallel orders cannot express some ubiquitous
patterns of causal dependencies such as producer-consumer
queues [28], which are within the scope of pomsets [36],
event structures [33], and Petri nets [34]. The essence of
this problem is already visible when we consider symmet-
ric dependencies, such as separation, which happens to be
the dual concept to concurrency in the formulas-as-processes
paradigm.

Let us use some simple examples to explain the problem.
Suppose we are in a situation where two processes A and B
can communicate with each other, written as A % B, or can
be separated from each other, written as A ® B, such that
no communication is possible. Now assume we have four
atomic processes g, b, ¢, and d, from which we form the two
processes P = (a®b) B (c®d)and Q = (@B ¢) @ (b & d).
Both are perfectly fine formulas of multiplicative linear logic
(MLL) [15]. In P, we have that a is separated from b but can
communicate with ¢ and d. Similarly, d can communicate
with a and b but is separated from c, and so on. On the other
hand, in Q, a can only communicate with ¢ and is separated
from the other two, and d can only communicate with b, and
is separated from the other two. We can visualize this situa-
tion via graphs where a, b, ¢, and d are the vertices, and we
draw an edge between two vertices if they are separated, and
no edge if they can communicate. Then P and Q correspond
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to the two graphs shown below.
P=(a®b)%(c®d) Q=0@®c)e(b%d
b d

b, d
| X W
a ¢ a ¢
It should also be possible to describe a situation where a is
separated from b, and b is separated from c, and c is separated
from d, but a can communicate with ¢ and d, and b can
communicate with d, as indicated by the graph below.

b d
AN (2)
a C

However, this graph cannot be described by a formula in
such a way that was possible for the two graphs in (1).
Consequently, the tools of proof theory, that have been de-
veloped over the course of the last century, and that were
very successful for the formulas-as-properties, formulas-as-
programs, and formulas-as-types paradigms, can be used for
the formulas-as-processes paradigm only if situations as in (2)
above are forbidden. This seems to be a very strong and
unnatural restriction, and the purpose of this paper is to
propose a way to change this unsatisfactory situation.

We will present a proof system, called GS (for graphical
proof system), whose objects of reason are not formulas but
graphs, giving the example in (2) the same status as the
examples in (1). In a less informal way, one could say that
standard proof systems work on cographs (which are the
class of graphs that correspond to formulas as in (1)), and our
proof systems works on arbitrary graphs. In order for this
to make sense, this proof system should obey the following
basic properties:

1. Consistency: There are graphs that are not provable.

2. Transitivity: The proof system should come with an
implication that is transitive, i.e., if we can prove that
A implies B and that B implies C, then we should also
be able to prove that A implies C.

3. Analycity: As we no longer have formulas, we can-
not ask that every formula that occurs in a proof is a
subformula of its conclusion. But we can ask that in
a proof search situation, there is always only a finite
number of ways to apply an inference rule.

4. Conservativity: There should be a well-known logic L
based on formulas such that when we restrict our proof
system to graphs corresponding to formulas, then we
prove exactly the theorems of L.

5. Minimality: We want to make as few assumptions as
possible, so that the theory we develop is as general
as possible.

Properties 1-3 are standard for any proof system, and they
are usually proved using cut elimination. In that respect our
paper is no different. We introduce a notion of cut and show
its admissibility for GS. Then Properties 1-3 are immediate
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consequences, and also Property 4 will follow from cut ad-
missibility, where in our case the logic L is multiplicative
linear logic (MLL) with mix [2, 14, 15].

Finally, Property 5 is of a more subjective nature. In our
case, we only make the following two basic assumptions:

1. For any graph A, we should be able to prove that A
implies A.

2. If a graph A is provable, then the graph G = C[A] is
also provable!, provided that C[-] is a provable context.
This can be compared to the necessitation rule of modal
logic, which says that if A is provable then so is OA,
except that in our case the O is replaced by the provable
graph context C[-].

All other properties of the system GS follow from the need to
obtain admissibility of cut. This means that this paper does
not present some random system, but follows the underlying
principles of proof theory.

In Section 2, we give preliminaries on cographs, which
form the class of graphs that correspond to formulas as in (1).
Then, in Section 3 we give some preliminaries on modules
and prime graphs, which are needed for our move away
from cographs, so that in Section 4, we can present our proof
system, which uses the notation of open deduction [18] and
follows the principles of deep inference [4, 17, 19]. In Sec-
tion 5 we show some properties of our system, and Sections 6,
7, and 8 are dedicated to cut elimination. Finally, in Sec-
tion 9, we show that our system is a conservative extension
of MLL+mix.

The contributions of this paper can thus be summarized
as follows:

e We present (to our knowledge) the first proof system
that is not tied to formulas/cographs but handles arbi-
trary (undirected) graphs instead.

e We prove a Splitting Lemma (in Section 6), which is of-
ten a crucial ingredient in a proof of cut elimination in
a deep inference system. But in our case the statement
and the proof of this lemma is different from stan-
dard deep inference systems, in particular, the general
method proposed by Aler Tubella in her PhD [44] does
not apply. But we still use the name Splitting Lemma,
as it serves the same purpose.

e We propose a cut rule which corresponds to the stan-
dard cut rule in a deep inference system, and show
its admissibility. But again, due to the different nature
of our proof system, the standard methods must be
adapted.

2 From Formulas to Graphs

Definition 2.1. A (simple, undirected) graph G is a pair
(Vi, Eg) where Vg is a set of vertices and Eg is a set of

Formally, the notation G = C[A] means that A is a module of G, and C[-]
is the graph obtained from G by removing all vertices belonging to A. We
give the formal definition in Section 3.
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two-element subsets of V5. We omit the index G when it
is clear from the context. For v, w € V5 we write vw as an
abbreviation for {v, w}. A graph G is finite if its vertex set
VG is finite. Let L be a set and G be a graph. We say that G
is L-labelled (or just labelled if L is clear from context) if
every vertex in Vg is associated with an element of L, called
its label. We write {g(v) to denote the label of the vertex
v in G. A graph G’ is a subgraph of a graph G, denoted as
G' € Giff Voo C Vi and Egr € Eg. We say that G’ is an
induced subgraph of G if G’ is a subgraph of G and for all
v,w € Vi, if vw € Eg then vw € Eg . The size of a graph G,
denoted by |G|, is the number of its vertices, i.e., |G| = |V;]|.

In the following, we will just say graph to mean a finite,
undirected, labelled graph, where the labels come from the
set A of atoms which is the (disjoint) union of a countable
set of propositional variables V = {a,b,c, ...} and their
duals V*+ = {a*,b*,c*, ...},

Since we are mainly interested in how vertices are labelled,
but not so much in the identity of the underlying vertex, we
heavily rely on the notion of graph isomorphism.

Definition 2.2. Two graphs G and G’ are isomorphic if
there exists a bijection f: Vg — Vi such that for all v,u €

Ve wehavevu € Egiff f(v)f(u) € Eg and £G(v) = € (f(v)).

We denote this as G ~¢ G’, or simply as G ~ G’ if f is clear
from context or not relevant.

In the following, we will, in diagrams, forget the identity
of the underlying vertices, showing only the label, as in the
examples in the introduction.

In the rest of this section we recall the characterization
of those graphs that correspond to formulas. For simplicity,
we restrict ourselves to only two connectives, and for rea-
sons that will become clear later, we use the % (par) and ®
(tensor) of linear logic [15]. More precisely, formulas are
generated by the grammar

py=olala ¢y oy ®)

where o is the unit, and a can stand for any propositional
variable in V. As usual, we can define the negation of for-
mulas inductively by letting a** = a for all a € V, and by
using the De Morgan duality between % and ®: (¢ % )+ =
$t @yt and (¢ ® ¥)* = - ByY*; the unit is self-dual: o+ = o.

On formulas we define the following structural equiva-
lence relation:

PRYBO=PBYPY)BE ¢ [YRH=@0Y)e{
PBYy=y B¢ pYy=y¢
pBWo=¢ pRo=¢

In order to translate formulas to graphs, we define the
following two operations on graphs:

Definition 2.3. Let G = (Vg5,Eg) and H = (Vy,Ey) be
graphs with Vg N Vg = &. We define the par and tensor
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operations between them as follows:
GX¥H = (VgUVy,EgUEn)
G®H = (VgUVyg,EGUEgU{vw|v e Vg, weVg})

For a formula ¢, we can now define its associated graph [¢]
inductively as follows: o] = @ the empty graph; [a] = a
a single-vertex graph whose vertex is labelled by a (by a
sight abuse of notation, we denote that graph also by a);
similarly [a*] = a*; finally we define [¢ % ¢] = [¢] & [V]
and [ @ y] = [4] ® [y].

Theorem 2.4. For any two formulas, ¢ = ¢ iff [¢] = [V].
Proof. By a straightforward induction. O

Definition 2.5. A graph is P4-free (or N-free or Z-free) iff
it does not have an induced subgraph of the shape

N (@

Theorem 2.6. Let G be a graph. Then there is a formula ¢
with [¢] = G iff G is P4-free.

A proof of this can be found, e.g., in [32] or [17].

The graphs characterized by Theorem 2.6 are called
cographs, because they are the smallest class of graphs con-
taining all single-vertex graphs and being closed under com-
plement and disjoint union.

Because of Theorem 2.6, one can think of standard proof
system as cograph proof systems. Since in this paper we want
to move from cographs to general graphs, we need to inves-
tigate, how much of the tree structure of formulas (which
makes cographs so interesting for proof theory [26, 38, 42])
can be recovered for general graphs.

3 Modules and Prime Graphs

In this section we take some of the concepts that make work-
ing with formulas so convenient and lift them to graphs that
are not P,-free.

Definition 3.1. Let G be a graph. A module of G is an
induced subgraph M = (Vy, Epr) of G such that for all v €
Vo \ Vm and all x,y € M we have vx € Eg iff vy € Eg.

Modules are used in this paper since they are for graphs
what subformulas are for formulas.

Notation 3.2. Let G be a graph and M be a module of G.
Let Vo = Vi \ Vi and let C be the graph obtained from G
by removing all vertices in M (including incident edges). Let
R C V¢ be the set of vertices that are connected to a vertex in
Vum (and hence to all vertices in M). We denote this situation
as G = C[M]g and call C[-]g (or just C) the context of M
in G. Alternatively, C[M]g can be defined as follows. If we
write C[x]g for a graph in which x is a distinct vertex and R
is the set of neighbours x, then C[M]p is the graph obtained
from C[x]g by substitution of x for M.
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Lemma 3.3. Let G be a graph and M, N be modules of G.
Then

1. M N N is a module of G;
2. ifMNN # &, then M U N is a module of G; and
3. if N ¢ M then M\ N is a module of G.

Proof. The first statement follows immediately from the def-
inition. For the second one, let L = M NN # @&, and let
veG\(VyUVyN)andx,y € Vyy U V. If x, y are both in M
or both in N, then we have immediately vx € Eg iff vy € Eg.
So,let x € V)y and y € Vy, and let z € L. We have vx € Eg
iff vz € Eg iff vy € Eg. Finally, for the last statement, let
x,y€ Vy\Vnandletv € Vg \ (Vi \ Vn). If v & Vi, we
immediately have vx € Eg iff vy € Eg. So, let v € Vy, and
therefore v € Vjy N Vy. Let z € Vy \ V. Then vx € Eg iff
zx € Eg iff zy € Eg iff vy € Eg. O

Definition 3.4. Let G be a graph. A module M in G is max-
imal if for all modules M’ of G such that M # G we have
that M € M’ implies M = M".

Definition 3.5. A module M of a graph G is trivial iff either
Vm = @ or Vi is a singleton or Vi = V. A graph G is prime
iff |[Vg| > 2 and all modules of G are trivial.

Definition 3.6. Let G be a graph with n vertices Vg =
{v1,...,v,} and let Hy,...,H, be n graphs. We de-
fine the composition of Hy,...,H, via G, denoted as
G(Hi,...,H,), by replacing each vertex v; of G by the
graph H;; and there is an edge between two vertices x and
y if either x and y are in the same H; and xy € Ep, or
x € Vg, and y € Vy, for i # jand v;u; € Eg. Formally,
G(Hy, ..., H,) = (V*,E*) with

V= Ulsisn Vh,
E* = UlSiSn EHi U {xy | X € VHi,y € VHj»Uin € EG}

This concept allows us to decompose graphs into prime
graphs (via Lemma 3.7 below) and recover a tree structure
for an arbitrary graph, seeing prime graphs as generalized
non-decomposable n-ary connectives. The two operations
% and ®, defined in Definition 2.3 are then represented by
the two prime graphs.

B e . and ®: o . (5)

If we name these graphs % and ®, respectively, then we can
write (G, H) = G® H and ®(G, H) = G® H.

Lemma 3.7. Let G be a nonempty graph. Then we have ex-
actly one of the following four cases:
(i) G is a singleton graph.
(i) G = A% B for some A, B with A + & # B.
(iii) G = A® B for some A, B with A # & # B.
(iv) G = P(A4,...,Ay) for some prime graph P with n =
|Vp| > 4 and A; # @ forall0 <i<n.
Proof. Let G be given. If |G| = 1, we are in case (i). Now

assume |G| > 1, and let My, . .., M, be the maximal modules
of G. Now we have two cases:
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- Foralli,j e {1,...,n} withi # j we have M; N M; = @.
Since every vertex of G forms a module, every vertex must
be part of a maximal module. Hence Vg = Vg, U--- U Vyy, .
Therefore there is a graph P such that G = P(Mj, . .., M,).
Since all M; are maximal in G, we can conclude that P is
prime. If |Vp| > 4 we are in case (iv). If |Vp| < 4 we are
either in case (ii) or (iii), as the two graphs in (5) are only
two prime graphs with |[Vp| = 2, and there are no prime
graphs with |Vp| = 3.

- We have some i # j with M; " M; # @. Let L = M; N M;
and N = M; \ M; and K = M; \ M;. By Lemma 3.3, L, N,
K, and M; U M; are all modules of G. Since M; and M;
are maximal, it follows that G = M; U M;, and therefore
G=NQL®KorG=NZ®LZXK. O

4 The Proof System

To define a proof system, we need a notion of implication.
To do so, we first introduce a notion of negation.

Definition 4.1. For a graph G = (Vs, Eg), we define its
dual G* = (Vg, Eg.) to have the same set of vertices, and
an edge vw € Eg. iff vw ¢ Eg (and v # w). The label of
a vertex v in G* is the dual of the label of that vertex in
G, ie., €. (v) = €g(v)*. For any two graphs G and H, the
implication G —o H is defined to be the graph G* % H.

Example 4.2. To give an example, consider the graph G on
the left below

Its negation G* is shown on the right above.

Observe that the dual graph construction defines the stan-
dard De Morgan dualities relating conjunction and disjunc-
tion, i.e., for every formula ¢, we have [¢*] = [#]*. Fur-
thermore, the De Morgan dualities extend to prime graphs,
say P,as P(My, ..., M,)* = P-(M;, ..., M;), where P is
the dual graph to P. Furthermore, P* is prime if and only if
P is prime. Thus each pair of prime graphs P and P* defines
a pair of connectives that are De Morgan duals to each other.

We will now develop our proof system based on the above
notion of negation as graph duality. From the requirements
mentioned in the introduction it follows that:

(i) for any G, the graph G —o G should be provable;
(i) if G # @ then G and G* should not be both provable;
(iii) the implication —o should be transitive, i.e., if G —o H,
and H —o K are provable then so should be G — K;
(iv) the implication —o should be closed under context, i.e.,
if G — H is provable and C[-] is an arbitrary context,
then C[G]g — C[H]g should be provable;
(v) if A and C are provable graphs, and R C V¢, then the
graph C[A]gr should also be provable.
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Example 4.3. As an example, consider the following three
graphs:

at a at a at a

Az | \ Azt | \ Az: | \ (7)
b” bt b bt b bt

The graph A; on the left should clearly be provable, as it
corresponds to the formula (a* % a) ® (b % b*), which is
provable in MLL. The graph A; on the right should not be
provable, as it corresponds to the formula (a* ® b) % (a® b™),
which is not provable in MLL. But what about the graph
A; in the middle? It does not correspond to a formula, and
therefore we cannot resort to MLL. Nonetheless, we can
make the following observations. If A, were provable, then
so would be the graph A, shown below:

at a
A4Z \\‘ (8)
a at

as it is obtained from A, by a simple substitution. However,
Ay = A4, and therefore A} and A; would both be provable,
which would be a contradiction and should be ruled out.
Hence, A; should not be provable.

We can make further observations without having pre-
sented the proof system yet: Notice that A; — A; cannot
hold, as otherwise we would be able to use A; and modus
ponens to establish that A; is provable, which cannot hold
as we just observed. By applying a dual argument, A, — As
cannot hold. Hence, implication is not simply subset inclu-
sion of edges.?

For presenting the inference system we use a deep infer-
ence formalism [17, 19], which allows rewriting inside an
arbitrary context and admits a rather flexible composition of
derivations. In our presentation we will follow the notation
of open deduction, introduced in [18].

Let us start with the following two inference rules

%] B®A
f——
AR A ' BlAls

il SCVg, S#Vg 9)
which are induced by the two Points (i) and (v) above, and
which are called identity down and super switch up, re-
spectively. The i| says that for arbitrary graphs C and A and
any R C V, if C is provable, then so is the graph C[AZ A* |g.
Similarly, the rule ssT says that whenever C[B ® A]g is prov-
able, then so is C[B[A]s]r for any three graphs A, B, C and
any R C Ve and S C Vg. The condition S # Vj is there to
avoid a trivial rule instance, as B[A]s = B® Aif S = V3.

Definition 4.4. An inference system S is a set of inference
rules. We define the set of derivationsin S inductively below,

2However, the converse holds in our particular case: We will see later
that whenever we have G — H and Vg = Vi then Eg C Eg. But this
observation is not true in general for logics on graphs. For example in the
extension of Boolean logic, defined in [8], it does not hold.
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and we denote a derivation O in S with premise G and
conclusion H, as follows:

G
D|s
H

1. Every graph G is a derivation (also denoted by G) with
premise G and conclusion G.

2. If D, is a derivation with premise G; and conclusion
Hj, and Dy is a derivation with premise G, and con-
clusion Hy, then D; % D, is a derivation with premise
G1 %G, and conclusion H; %8 H;, and similarly, D; ® D,
is a derivation with premise G; ® G, and conclusion
H; ® H,, denoted as

G1 GZ G1 GZ

Dills B Dylls and Dills ® Dylls

H] HZ Hl H2
respectively.

3. If D, is a derivation with premise G; and conclusion
H;, and D, is a derivation with premise G, and con-
clusion H,, and

is an instance of an inference rule r, then D, o, D,
is a derivation with premise G, and conclusion Hy,

denoted as

Gy @

Duls oils

H; H

r or r—

G, Gz

.l 2els

H, H,

If H; ~¢ G; we can compose D; and D, directly to
D, 0 Dy, denoted as

Gy Gy Gy
D1 ls D1 ls D1 ls
H,; H,; H,;

f ............ or ) T o) ST (10)
G, G, G,
Do IS Dy l's Dy l's
H, H, H,
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If f is the identity, i.e., H] = G, we can write D, o D

as
G G
Oill's Dill's
H1 or Gz
Dy l's Dy l's
H, H,

A proof in S is a derivation in S whose premise is @. A graph
G is provable in S iff there is a proof in S with conclusion
G. We denote this as s G (or simply as - G if S is clear from
context). The length of a derivation D, denoted by |D|, is
the number of inference rule instances in D.

Remark 4.5. If we have a derivation D from A to B, and a
context G[-]g, then we also have a derivation from G[A]R to
G[B]gr. We can write this derivation as

G[A]r A
Gl or G[ ol ]r
G[B]r B

Example 4.6. Let us emphasize that the conclusion of a
proof in our system is not a formula but a graph. The fol-
lowing derivation is an example of a proof of length 2, using
only i] and ssT:

_ %)
N at—bt a\b
|\
¢t dt c—d (11)
ssT——7
a=—b

a\b
/ I\
t dt ¢ d

where the ssT instance moves the module d in the context
consisting of vertices labelled a, b, c. The derivation in (11)
establishes that the following implication is provable:

a_ b a_ b
N = N (12)
c—d c d

which is a fact beyond the scope of formulas.

As in other deep inference systems, we can give for the
rules in (9) their duals, or corules. In general, if

G
r—

H

is an instance of a rule, then
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is an instance of the dual rule. The corules of the two rules
in (9) are the following:

A® AL B[A]s
) > ss| BEZA SCVg, S+& (13)

called identity up (or cut) and super switch down, respec-
tively. We have the side condition S # @ to avoid a triviality,
as B[A]s = B® Aif S = .

Example 4.7. The implication in (12) can also be proven us-
ing only only ss| and i| instead of ssT and i|, as the following
proof of length 3 shows:

' %)
" at—bt a b
|
" c c
I at—bt a_ b
(14)
/IR
) c c\d\di

at—bt a b
|

7n N

Definition 4.8. Let S be an inference system. We say that
an inference rule r is derivable in S iff

d

G G
for every instance r T there is a derivation D||s
H

We say that r is admissible in S iff
for every instance rﬁ we have that +¢ G implies s H .

If r € S then r is trivially derivable and admissible in S.
Most deep inference systems in the literature (e.g. [4, 17,
19, 20, 24, 40]) contain the switch rule:

(A®B)®C
A% (B®C)

On can immediately see that it is its own dual and is a special
case of both ss| and ssT. We therefore have the following:

(15)

Lemma 4.9. Ifin an inference system S one of the rules ss|
and ssT is derivable, then so is s.

Remark 4.10. In a standard deep inference system for for-
mulas we also have the converse of Lemma 4.9, i.e., if s is
derivable, then so are ssT and ss| (see, e.g., [41]). However,
in the case of arbitrary graphs this is no longer true, and the
rules ssT and ss| are strictly more powerful than s.

Lemma 4.11. LetS be an inference system. If the rulesi| and
iT and s are derivable in S, then for every ruler that is derivable
in S, also its corule r* is derivable in S.
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Proof. Suppose we have two graphs G and H, and a deriva-
tion from G to H in S. Then it suffices to show that we can
construct a derivation from H* to G* in S:

%)

i|— — ®H"
“GEn G

G
s  H:
ool

iP—
%)

Note that @ ® H = H* and G* ® @ = G*. O

Lemma 4.12. If the rulesiT and s are admissible for an in-
ference system S, then —o is transitive, i.e., if rs G — H and
ts H —o K thents G — K.

Proof. We can construct the following derivation
%} %]

Is ® II's
G*®H H'B®K

H® (H* %K)

G'% H®H'

iT K

from @ to G* % K in S. O

Lemma 4.12 is the reason why i is also called cut. In a
well-designed deep inference system for formulas, the two
rules i| and iT can be restricted in a way that they are only
applicable to atoms, i.e., replaced by the following two rules
that we call atomic identity down and atomic identity
up, respectively:

%] q a®at
an ail
atRNa

We would like to achieve something similar for our proof
system on graphs. For this it is necessary to be able to de-
compose prime graphs into atoms, but the two rules ss| and
ssT cannot do this, as they are only able to move around
modules in a graph. For this reason, we add the following
two rules to our system:

. M BN)® - (M, B Ny)
P PE(My, ..., M) B P(Ny,. ... Ny)
called prime down, and

TP(]Ml,...,MnD®P*QN1,...,N,,[) a8)
P P prime, |Vp|24
MLON)S RN,

called prime up. In both cases, the side condition is that P
needs to be a prime graph and has at least 4 vertices. We also

ail (16)

P prime, |Vp|>4 (17)
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require that for all i € {1,...,n} at least one of M; and N;
is nonempty in an application of p| and pT. The reason for
these conditions is not that the rules would become unsound
otherwise, but that the rules are derivable in the general case,
as we will see in Lemma 5.2 in the next section.

Example 4.13. Below is a derivation of length 5 using the
pl-rule, and proves that a prime graph implies itself.

X aliibl?gb ® allcl:’g’c ® ai

a=—bt a b
|

Lo 1N

This completes the presentation of our system, which is
shown in Figure 1.

ailaJ'?S’a ldJ':’S’d

pl

d

Definition 4.14. We define system SGS to be the set
{ail,ss|, pl, pT,ssT, aiT} of inference rules shown in Figure 1.
The down-fragment (resp. up-fragment) of SGS consists
of the rules {ai|, ss|, pl} (resp. {aiT, ssT, pT}) and is denoted
by SGS| (resp. SGST). The down-fragment SGS| is also called
system GS.

5 Properties of the System

The first observation about SGS is that the general forms
of the identity rules i| and iT are derivable, as we show in
Lemma 5.1 below. Next, we have a similar result for the prime
rules, for which also a general form is derivable, i.e., they
can be applied to any graph instead of only prime graphs.

Lemma 5.1. The rulei] is derivable in SGS|, and dually, the
rule i1 is derivable in SGST.

Proof. We show by induction on G, that G* % G has a proof
in SGS|, using Lemma 3.7.

(i) If G is a singleton graph, we can apply ai.
(ii) If G = A% B then G* = B* ® A*, and we can construct

1%]
D ||scs|
Bt ®B

Bt ® ] sGs|
Afll“ % B

B ea)ma

where D; and D; exist by induction hypothesis.
(iii) If G = A ® B, we proceed similarly.
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<z B[A]s

a[lal7§?a SSlB7§’A

SCVg, S#9

. M BN)® - ® (M, B Np)
P PE(M, .. My) B P(NL, ..., Ny)

P prime, |Vp|>4

Matteo Acclavio, Ross Horne, and Lutz Straf3burger

a®at B® A
i T——— ScVg, SV,
ai ss B[A]S B B
P(Mi, ..., M) ® PA(Ny,...,Ny)

P prime, |Vp|>4
(M @N) B8 My @ Ny P!

Figure 1. The inference rules for systems GS (rules ail, ss|, p| on the left) and SGS (all rules in the figure).

(iv) If G = P(Ay4, ..., Ay) for P prime and |Vp| > 4, we get
%) %)

DilIsGs) ® -+ ® D, |lsGs|

AT B A A BA,

pl
PL(AL, ..., AL) B P(A;,..., AL)

where Dy, ..., D, exist by induction hypothesis. O

Lemma 5.2. For any graph G with |Vg| = n, and graphs

M, Ny, ..., My, N, we have derivations
M BN)®---® (M, B N,)
lscsy (19)
GH(My, ..., M) B G(Ny,...,Ny)
and dually
G(My, ..., M) ® GH(Ny, ..., Ny)

I scst (20)
M ®@N)®--- B (M, ® Np)

Proof. We only show (19), and proceed by induction on the
size of G, using Lemma 3.7.
(i) If G is a singleton graph, the statement holds trivially.
(i) If G = A B then G(Ny,...,Nu) = A(Ny,....Ni) &
B(Nk1, ..., Ny) for some 1 < k < n. We therefore
have
(M; B Np) ® .. ® (Mg & Ni)

D, ||sGs| ®
A (M, .., Mi) B A(N, ., Nk

(Mkﬂ % Nk+1) ®.8 (Mn z Nn)
D, ||scs

B*(Ms1s s Mu) % B(Nis1. .. Nu)

ss|

(A (M, M) B AN, Ne) ® B (M1, Ma)
SS.
(A(M, ... Mi) ® B (M1, ..o Ma) B A(N1, ... Ne

2 BquHa ~~aNnD

where D, and D, exist by induction hypothesis.
(iii) If G = A ® B, we proceed similarly.
(iv) IfG = P(Ay, . . ., A,) for P prime and |Vp| > 4, we have
an instance of p|.
The derivation in (20) can be constructed dually. O

Next, observe that Lemmas 4.11 and 4.12 hold for sys-
tem SGS. In particular, we have that if Fsgs A — B and
Fsgs B —o C then +sgs A —o C because iT € SGS. The main
result of this paper is that Lemma 4.12 does also hold for GS.
More precisely, we have the following theorem:

Theorem 5.3 (Cut Admissibility). The rule il is admissible
for GS.

To prove this theorem, we will show that the whole up-
fragment of SGS is admissible for GS.

Theorem 5.4. The rules aif, ssT, pT are admissible for GS.

Then Theorem 5.3 follows immediately from Theorem 5.4
and the second statement in Lemma 5.1.

The following three sections are devoted to the proof of
Theorem 5.4. But before, let us finish this section by exhibit-
ing some immediate consequences of Theorem 5.3.

Corollary 5.5. For every graph G, we have +scs A iff Fgs A.
Corollary 5.6. For all graphs G and H, we have

[] [e] G
tgsG —o H — [cs [[scs < ||scs
G*®H G*®H H

Proof. The first equivalence is just the definition of +- . The
second equivalence follows from Theorem 5.4, and the last
equivalence follows from the two derivations

(%]
—2 Ge |
G Gt ®H
Gy | and BN —
G®G*t
H i ¥H
together with Lemma 5.1. O

Corollary 5.7. We have +A®B iff +A and +B.

Proof. This follows immediately by inspecting the inference
rules of GS. O

Corollary 5.8. We have + P(Mj, ..., Mp,|) with P prime and
n>4and M; # @ foralli = {1,...,n}, if and only
if there is at least one i = {1,...,n} such that + M; and
I-P(]Ml, e ,Mi,l’, @,M,‘+1, e ’MnD .

This can be seen as a generalization of the previous corol-
lary, and it is proved similarly.

Remark 5.9. The system GS forms a proof system in the
sense of Cook and Reckhow [10], as the time complexity of
checking the correct application of inference rules is poly-
nomial, since the modular decomposition of graphs can be
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obtained in linear time [29]. Also whenever graph isomor-
phism is used to compose derivations, as in (10), we assume
that the isomorphism f is explicitly given.

Theorem 5.10. Provability in GS is decidable and in NP.

Proof. This follows immediately from the observation that to
each graph only finitely many inference rules can be applied,
and that the length of a derivation in GS is O(n®) where n is
the number of vertices in the conclusion. This can be seen as
follows: every inference rule application in GS, when seen
bottom-up, removes either two vertices or at least one edge.
No rule can introduce vertices or edges. O

6 Splitting

The standard syntactic method for proving cut elimination
in the sequent calculus is to permute the cut rule upwards in
the proof and decomposing the cut formula along its main
connective, and so inductively reduce the cut rank. How-
ever, in our proof system this method cannot be applied,
as derivations can be constructed in a more flexible way
than in the sequent calculus. For this reason, the splitting
technique has been developed in the literature on deep in-
ference [17, 21, 24, 41]. However, since we are working on
general graphs instead of formulas, the generic method de-
veloped by Aler Tubella [44], cannot directly be applied in
our case. For this reason, we needed to adapt the method
and prove all lemmas from scratch. The central lemma is the
following:

Lemma 6.1 (Splitting). Let G, A, B be graphs, let P be a prime

graph withn = |Vp| > 4, let My, . . ., M,, be nonempty graphs,

and let a be an atom.

(1) If +Gs G @ (A ® B) then there are a context C[-]g and
graphs K4 and Kg, such that there are derivations

C[Ka ©® Kglr o %) %)
DgllGs , Dcllcs , Dallcs , Dgsllcs
G C Ki®A Kg%¥B

(2) If rgs G P(My, . .., My, then there are
o either a context C[-|g and graphs Ky, ...
there are derivations

CIP*(Ky, .. .
DglGs , Dcllcs ,
G C

, Kn, such that

sKnD]R %] (%)
D;lcs
K; B M;

foralli e {1,...,n},
e or a context C[-|gr and graphs Kx and Ky such that
there are derivations

C|Kx % Ky|r %] (%]
De |l Gs , Oclles , oxllcs
© C Kx ¥ M;

31t can in fact be shown that the length is O(n?) (see also [6]), but as the
details are not needed for this paper, we leave them to the reader.
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%]
Dy |l Gs
KYQPGMI""7Mi—1a®9Mi+l7~‘-,MnD
for somei € {1,...,n}.

(3) If +Gs G % a then there is a context C[-]|g such that there
are derivations

C[al]R %)
Delles  and  DcllGs
G C

Note that in the statement of Lemma 6.1, the first case (1)
is superfluous, as it is a special case of (2), when we see ® as
a prime graph, as indicated in (5) in Section 3. In this case
the two subcases of (2) collapse. We nonetheless decided
for pedagogical reasons to list case (1) explicitly. It shows
how our splitting lemma is related to the standard splitting
lemmas in the deep inference literature [17, 19, 21, 24, 41, 44],
and thus enables the reader to see where the two subcases
in case (2) come from.

The idea of splitting is that, in a provable “sequent-like
graph”, consisting of a number of disjoint connected compo-
nents, we can select any of these components as the principal
component and apply a derivation to the other components,
such that eventually a rule breaking down the principal com-
ponent can be applied. This allows us to approximate the
effect of applying rules in the sequent calculus.

We will use the proof in (14) as an example to explain this
idea. In the conclusion we have 3 connected components.
We can select the N-shape component on the right as the
principal component, and apply case (2) of Lemma 6.1 to re-
organise the proof (14) such that an instance of p| involving
the N-shape can be applied, as in Example 4.13. The bottom-
most step of such a reorganised proof is shown below:

at—bt a\b
I\
t—dt ¢ d

ss| aiibl (21)

a\b
BN
c/dL c d

If, on the other hand we pick in (14) the d* as principal
component, and apply case (3) of Lemma 6.1, we get the
following derivation

dlyg('lg ®'l® ®'l®
b- b ct W

atBa
at—bt a b
|

IN

which we can complete to a proof with an an application of
the rule ai|.

®d)
pl

dt ¢ d
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A significant departure from established splitting lemmas
in the literature, is the need for contexts in the premises of
derivations. This is required to cope with graphs such as the

following:
at
| (22)
b/cl\c

b

If we take a as the principal component, and apply case (3)
of Lemma 6.1, we get a nonempty context C. Notice, further-
more, the above graph is provable only by applying rules
deep inside the modular decomposition of the graph, as fol-
lows:

a

bt ¢t c—b

' ¢t ¢
ail p al
AN
b cl\cb
ss| T
a
/|
a b cl\cb

This shows that deep inference is necessary for this kind of
proof theory on graphs.

The second subcase in case (2) of Lemma 6.1 is required
for examples such as the following:

b oat bt
\\a
a

If we select the N-shape as the principal component and
try to apply pl, then a and a* can no longer communicate.
Therefore, we must first move b* or c¢* into the structure
and apply an ai|, in order to destroy the prime graph. For
example, by using b to cancel out b, we obtain a provable

graph of the form a ¥ (c ® a*) & ¢*.

(23)

o (24)
4 c

The proof of Lemma 6.1 proceeds by induction on the size
of the derivation by exhaustively considering all ways in
which the bottommost rule can interact with the principal
component.

7 Context Reduction

The Splitting Lemma 6.1 only applies in a shallow context,
i.e., the outermost nodes in the modular tree construction
of a graph (see Lemma 3.7). In order to use splitting for cut
elimination, we need to apply it in arbitrary contexts. For
this we need the context reduction lemma.

Lemma 7.1 (Context reduction). Let A be a graph and G[-]s
be a context. If +gs G[Als then there is a graph K and a context
C[-]r such that there are derivations

& %] C[K % X]r
Dcllcs  and  oDallcs  and De |l Gs
C K% A G[X]s

for any graph X.

Matteo Acclavio, Ross Horne, and Lutz Straf3burger

The proof of this lemma proceeds by a case analysis on
the structure of the context G[-]s employing splitting at each
step.

Assume G[A]s = G” B P(M[Als, M, . . ., M) for some
G”, prime graph P and My, . .., M,. Applying Lemma 6.1.(2)
gives us three different cases, of which we show here only
one: We get C’[-]g’ and Kx and Ky, such that

C'[Kx % Ky|r (%) (%)
g |l , ol ox ,
G” C'  Kx % M[A]s
(%)
Dy ||

Ky B P(2, M,, ..., My)

We apply the induction hypothesis to Dx and get K and
C”[]r~, such that

) o C"[K B X]gr
ol ., oAl ;s
C” KB®A Kx3®M[X]s

forany X. Welet C[-]g = C’[Ky BP(C”[|rr» M2, - . ., My) g/
and obtain D¢ via
%)
Der || GS
%)
04 |l Gs
ed] % Ir
Ly BQ( D, IGS ,Ny,...,Nn)
CII
and Dy is as follows:
C"[K 3 X]gr
o Ky??P(] D,G” ,Mg,...,MnD
[ Kx % My[X]s I
ss|
Kx B Ky 3 P(My[X]s/, Ma, ..., My)
ss|
C'[Kx ® Kylr'
Dg“ ??P(]Ml[X]S',Mg,...,MnD
G//

The other cases follow by a similar reasoning.

8 Elimination of the Up-Fragment

In this section we discuss how we use splitting and context
reduction to prove Theorem 5.4, i.e., the admissibility of the
rules aiT, ssT, and pT. For the rules aiT and ssT, this is similar
to ordinary deep inference systems (see, e.g., [9, 21, 24, 41].
But for pT, there are surprising differences. In particular, we
need to invoke an induction on the “size of the cut formula”.
In other cut elimination proofs in deep inference, there is no
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(%)
D |
%)
s ||
%)
Dl
(%]
Dul
%] %]
Dw || ® Dy ||
Kw B P(My,....Mi_1, @, Mis1,... M) Hy B P(Ny,...,Nj_1. @, Nis1. ... Ny)
Cg[ ss| ]Rz
Gs[ P(My, ..., Mi—1, @, Mit1,...My) ® PH(Ny,...,Nj_1, @, Njs1, ... Ny 1z,
Cq[ D ||sas? IR,
Kw ¥ Hy % (%) (%]
Gl (Mi®@N)B---B( Dzllcs ON)B---B(M;® oxllcs )T --- B (M, ® Np) Ir,
Kz 3 M; Hy % N;
ss|
K7 % Kw @ Hx 7?Hy78(M1 ®N1)7?"'7?(M,, ®Nn)
ss|
C4[KZ x KW % HX ??I'Iy]R‘1
Cs[ ssl— 1R
P+ (Kz % Kw|) % C4[Hx % Hylg,
Cof >t !
’ CslKz B Kwlr,  CilHx B Hylg, BMN)T -3 (M ® Ny)
sl Gs % Dy || GS
Lp Lps
D4l Gs
L
Ds |
G[(M; ® N1) % -+ - B (M, ® Np)ls
Figure 2. Derivation for the elimination of pT.
need for such an induction, as it is outsourced to the splitting for any graph X. We apply Lemma 6.1.(1) to D, and get
lemma. graphs Lp and Lp. and a context C,[-]g, such that
Consider an instance of pT, as follows.
Cz[Lp ?y LP*]RZ (%)
G[P(My, ..., M) ® PH(Ni,...,Ny)ls ol , o5l
pT P prime, |Vp|>4 I C
G[(Ml ®N1)?87?(Mn ®Nn)]5 2
Here, we define the size of such an instance of pT as
%) %)
D, ” ’ -D7 ” .
M;| + |N; 6
DT (M| + Ny Le B P(Mi,...,Ma)  Lps B PL(Ny, ..., Ny)

1<i<n

i.e., the number of vertices in the subgraph that is modified Applying Lemma 6.1.(2) to D and D gives us four different

by the rule. To prove admissibility of pT, assume we have cases, according to the two possible outcomes of case (2) in
a proof of G[P(M,, . .., My) ® P~(Ni, ..., Ny)]s. We apply Lemma 6.1. We show here only the most complicated one,
Lemma 7.1 and get a graph L and a context C;[-]g,, such that in which we get Kz and Ky and Hx and Hy and contexts
there are derivations Cs[-1r, and Cy[-]g,, such that
% @ C1[L % X]g, C3[Kz % Kw ], 2 2
ol D | . D5l sl s Dol . Dzl ,

Cq L%’(P(]M] ..... MnD®PJ‘(]N1 ..... NnD) G[X]S Lp C3 KZ 7?M,
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I,p Ay
P
a,a* T,o®y,A

L. ¢

r A
5 4
Loxy

mix
I,A

Figure 3. The inference rules of the system MLLx

1%

DW” ’
Kw 3 P(My, ..., Mi_1, @, M1, ... M)

Ca[Hx % Hy]g, a =
Dio ” ,» Dn ” ’ Dx ” s
Lps C:  Hx®N;

%)
Dy ||

Hy B PL(Ny, ..., Nj-1, @, Njs1, . .. Ny)

for some i, j € {1, ..., n}. In this case we use the derivation
in Figure 2 to prove G[(M; ® N1) % - - - % (M, ® Ny,)]s. More
precisely, Figure 2 shows the case i < j, the cases i = j and
i > j are similar. The derivation D* exists by the second
statement in Lemma 5.2. If i # j, this derivation consists of
a single pT instance. If i = j, it can be a longer derivation
containing all rules of SGST (where the instances of aiT and
ssT can be eliminated by the previous two theorems). The
important observation to make is that all instances of pT
occurring in D* have smaller size than the one we started
with. Therefore we can invoke the induction hypothesis.

9 Conservativity

We are now able to show that GS is a conservative extension
of unit-free multiplicative linear logic with mix (MLLx) [15].
The formulas of MLLy are as in (3), but without the unit,
and inference rules of MLLx are shown in Figure 3 where
I' and A are sequents, i.e. multisets of formulas, separated
by commas. We write FmiL, I' if the sequent I' is provable in
MLLy, i.e. if there is a derivation in MLLy with conclusion T.

Lemma 9.1. Iftgs A and A is a cograph, then there is a deriva-
tion
%]
Dl Gs (25)
A

such that every graph occurring in D is a cograph.

The proof of this lemma proceeds by contradiction using
Lemma 6.1.

Lemma 9.2. Let A and B be cographs. Then

A A
ssl— = [l {s} (26)
B B

Matteo Acclavio, Ross Horne, and Lutz Straf3burger

Proof. By Theorem 2.6, the graphs A and B are cographs iff
there are formulas ¢ and ¢ with [¢] = A and [¢/] = B. Now
the statement follows from the corresponding statement for
formulas (see e.g., Lemma 4.3.20 in [41]). o

Theorem 9.3. Let A be a cograph. Then tgs A iff F(ai|s) A.

Proof. The implication from right to left follows immediately
from the fact that s is a special case of ss| (see Lemma 4.9).
For the implication from left to right, apply Lemma 9.1 to
get a derivation D that only uses cographs. Hence the rule
pl is not used in D. Therefore, by Lemma 9.2, we can get a
derivation D’ that uses the rules ai| and s. o

Corollary 9.4. For any unit-free formula ¢,

FMLL 9 &= Fes [9]

Proof. Tt has been shown before (see, e.g., [19, 41] that a unit-
free formula ¢ is provable in MLLy iff it is provable in {ai|, s}
(note that in (15) we can have B = &). Now the statement
follows from Theorem 9.3 and Theorem 2.6. O

Corollary 9.5. Provability in GS is NP-complete.

Proof. Since MLLx is NP-complete, we can conclude from
Corollary 9.4 that GS is NP-hard. Containment in NP has
been proved in Theorem 5.10. O

10 Discussion and related work

Here we draw attention to challenges surrounding GS. Using
examples, such as (22) and (24), we have already explained
why GS necessarily demands deep inference. Since no estab-
lished deep inference system matches GS we have a funda-
mentally new proof system. Furthermore, we explain in this
section that simply taking an established semantics for MLLx
based on graphs and dropping the restriction to cographs
does not immediately yield a semantics for GS.

Criteria for proof nets. Graphical approaches to proof
nets such as R&B-graphs [38] have valid definitions when
we drop the restriction to cographs. However, we show that
(at least without strengthening criteria), these definition do
not yield a semantics for a logic over graphs, since logical
principles laid out in the introduction are violated.

Consider again graph (8), which is not provable in GS. In
an R&B-graph we draw blue edges representing the axiom
links of proof nets, as shown below for graph (8).

at—a

27

[\7_1\7 . (27)
The established correctness criterion for R&B-graphs would
wrongly accept the above graph. The reason is the cycle of 4
nodes alternating between red and blue edges has a chord.
Notice this observation is independent of the rules of the
system GS, since, in Sec. 4, we showed that graph (8) cannot
be provable in a system subject to the logical principle of
consistency.
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What about cliques and stable sets? The switch rule
has the property that it reflects edges and maximal cliques.
That is: if there is an edge in the conclusion it will also appear
in the premise and every maximal clique in the premise is a
superset of some maximal clique in the conclusion. Indeed,
mappings reflecting maximal cliques and preserving stable
sets (mutually independent nodes) have a long history in
program semantics [3] which led to coherence spaces and the
discovery of linear logic [15], see also [8, 12, 13]. Therefore
it is a reasonable starting point to try generalising switch
by using such maximal clique reflecting homomorphisms,
instead of ss|. Indeed this is how we discovered ss|, which
is sound with respect to such homomorphisms.

Unfortunately, replacing ss| with maximal clique reflect-
ing homomorphisms yields a system distinct from our graph-
ical system, for example the following would be provable,
but is not provable in GS.

a——->b
at bt (28)
N

We may try replacing both ss| and ssT using a stronger sym-
metric notion of homomorphism where, in addition, every
maximal stable set in the conclusion is a superset of some
maximal stable set in the premise. Using such a homomor-
phism which is both maximal clique reflecting and stable set
preserving as a rule, the above example is not provable. To
see why, observe that at some point either a and @ or b and
b must be brought together into a module where they can
interact, but this cannot be achieved while preserving the
maximal stable set {a, bl}.

Notice however, that if we replace ss| and ssT by the sym-
metric homomorphism described above, the implication be-
low would be provable.

a a
\

b % b
s SNy (29)
SN,
In contrast, the above is not provable in GS, since both sides
are distinct prime graphs; and there is no suitable way to
apply ss|. Thus, we would obtain a distinct system from GS
by using such homomorphisms.

Studying logics coming out of reflecting maximal cliques
and preserving maximal stable sets is currently a topic of
active research and leads to possible extensions of Boolean
logic to graphs [7, 8, 45].

Generalised connectives. In this paper, we use a modu-
lar decomposition of graphs based on prime graphs (see
Lemma 3.7). The connectives 7§ and ® are given by the
prime graphs on two vertices. This choice is coherent with
the graphs operations of union, join and composition, i.e.
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G®H = ®(G, H) and G % H = %(G, H). Pushing forward
this idea, any graph can be interpreted as a (multiplicative)
generalized connective [1, 11, 16]. In particular, in light of
Lemma 3.7, every prime graph defines a non-decomposable
connective. Furthermore, our Lemma 3.7 also provides a
more refined notion of decomposition than the %-® decom-
position known in the literature. However, the exact relation
between the two constructions requires further investigation.
Note, for example, that the number of pairs of orthogonal
6-ary non-decomposable connectives known at the time of
writing is strictly smaller than the number of pairs of dual
prime graphs on 6 vertices. Nonetheless, we conjecture that
there is a correspondence between connectives defined by
means of orthogonal sets of partitions and connectives de-
fined by means of graphs.

11 Conclusion

Guided by logical principles, we have devised a minimal
proof system (GS in Fig. 1) that operates directly over graphs,
rather than formulas. Negation is generalised in terms of
graph duality, while disjunction is disjoint union of graphs,
allowing us to define implication “G implies H” as the stan-
dard “not G or H” (see Def. 4.1). All other design decisions
are then fixed by our guiding logical principles. Most of
these principles follow from cut elimination (Theorem 5.3),
to which the majority of this paper is dedicated. We also con-
firm that GS conservatively extends MLLy (Corollary 9.4) —
a logic at the core of many proof systems.

Surprisingly, even for such a minimal generalisation of
logic to graphs, deep inference is necessary. Proof systems
for classical logic, MLLx and many other logics may be ex-
pressed using deep inference, but deep inference is generally
not necessary, since many standard logics have presenta-
tions in the sequent calculus where all inferences are applied
at the root of some formula in a sequent. In contrast, for
some logics (e.g., BV [17, 43] and modal logic S5 [35, 39]),
deep inference is necessary in order to define a proof system
satisfying cut elimination. System GS goes further than the
aforementioned systems in that all intermediate lemmas such
as splitting (Lemma 6.1) and context reduction (Lemma 7.1)
also demand a deep formulation, requiring additional context
awareness. As such we were required to generalise the basic
mechanisms of deep inference itself in order to establish cut
elimination (Theorem 5.3) for a logic over graphs. This is
due to a property of general graphs that is forbidden in for-
mulas — that the shortest path between any two connected
nodes may be greater than two; and hence, when we apply
reasoning inside a module (i.e., a context), there may exist
paths of dependencies that indirectly constrain the module.
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