

PhD-FSTM-2020-45

The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defence held on 17/09/2020 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Sergei TIKHOMIROV
Born on 29 May 1991 in Moscow (USSR)

SECURITY AND PRIVACY

OF BLOCKCHAIN PROTOCOLS AND APPLICATIONS

Dissertation defence committee

Dr Alex Biryukov, dissertation supervisor
Professor, Université du Luxembourg

Dr Matteo Maffei
Professor, TU Wien

Dr Volker Müller, Chairman
Associate Professor, Université du Luxembourg

Dr Patrick McCorry
CEO, PISA Research

Dr Andrew Miller, Vice Chairman
Assistant Professor, University of Illinois, Urbana-Champaign

iii

“Imagine there was a base metal as scarce as gold but with the following properties:

– boring grey in colour

– not a good conductor of electricity

– not particularly strong, but not ductile or easily malleable either

– not useful for any practical or ornamental purpose

and one special, magical property: can be transported over a communications channel.”

Satoshi Nakamoto

v

UNIVERSITY OF LUXEMBOURG

Abstract
Faculty of Science, Technology and Medicine

Department of Computer Science

Doctor of Philosophy

Security and Privacy of Blockchain Protocols and Applications

by Sergei TIKHOMIROV

Bitcoin is the first digital currency without a trusted third party. This revolution-
ary protocol allows mutually distrusting participants to agree on a single common
history of transactions. Bitcoin nodes pack transactions into blocks and link those
in a chain (the blockchain). Hash-based proof-of-work ensures that the blockchain is
computationally infeasible to modify.

Bitcoin has spawned a new area of research at the intersection of computer sci-
ence and economics. Multiple alternative cryptocurrencies and blockchain projects
aim to address Bitcoin’s limitations. This thesis explores the security and privacy of
blockchain systems.

In Part I, we study the privacy of Bitcoin and the major privacy-focused cryp-
tocurrencies. In Chapter 2, we explore the peer-to-peer (P2P) protocols underpin-
ning cryptocurrencies. In Chapter 3, we show how a network adversary can link
transactions issued by the same node. We test the efficiency of this novel attack in
real networks, successfully linking our own transactions. Chapter 4 studies the pri-
vacy characteristics of mobile cryptocurrency wallets. We discover that most wallets
do not follow the best practices aimed at protecting users’ privacy.

Part II is dedicated to the Lightning Network (LN). Bitcoin’s architecture em-
phasizes security but severely limits transaction throughput. The LN is a promi-
nent Bitcoin-based protocol that aims to alleviate this issue. It performs low-latency
transactions off-chain but leverages Bitcoin’s security guarantees for dispute resolu-
tion. We introduce the LN and outline the history of off-chain protocols in Chapter 5.
Then, in Chapter 6, we introduce a probing attack that allows an adversary to dis-
cover user balances in the LN. Chapter 7 estimates the likelihood of various privacy
attacks on the LN. In Chapter 8, we describe a limitation on the number of concur-
rent LN payments and quantify its effects on transaction throughput.

Part III explores the security and privacy of Ethereum smart contracts. Bitcoin’s
language for defining spending conditions is intentionally restricted. Ethereum is a
blockchain network allowing for more programmability. Ethereum users can write
programs in a Turing-complete high-level language called Solidity. These programs,
called smart contracts, are stored on-chain along with their state. Chapter 9 out-
lines the history of blockchain-based programming. Chapter 10 describes Findel
– a Solidity-based declarative domain-specific language for financial contracts. In
Chapter 11, we classify the vulnerabilities in real-world Ethereum contracts. We
then present SmartCheck – a static analysis tool for bug detection in Solidity pro-
grams. Finally, Chapter 12 introduces an Ethereum-based cryptographic protocol
for privacy-preserving regulation compliance.

vii

Acknowledgements
This work would not be possible without the help and support of many people. This
is an incomplete list of those to whom I would like to express my gratitude.

First of all, I am deeply grateful to my advisor, Prof. Alex Biryukov, for the op-
portunity to pursue my research interests and the invaluable guidance throughout
this journey. I appreciate Prof. Volker Müller, A-Prof. Andrew Miller, Prof. Mat-
teo Maffei, Dr. Patrick McCorry, and A-Prof. Arthur Gervais agreeing to serve as
jury members. I thank my co-authors: Dmitry Khovratovich, Ekaterina Voskresen-
skaya, Ivan Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, Yaroslav Alexandrov,
Pedro Moreno-Sanchez, Matteo Maffei, René Pickhardt, and Mariusz Nowostawski.
I have learned a lot during our fruitful collaborations. A special thanks goes to Pe-
dro Moreno-Sanchez and Matteo Maffei for inviting me to spend three months on a
research visit at TU Wien in the beautiful city of Vienna.

I thank my colleagues for the insightful and fun conversations: Aleksei Udovenko,
Brian Shaft, Christof Beierle, Dag Arne Osvik, Daniel Dinu, Daniel Feher, Dmitry
Khovratovich, Giuseppe Vitto, Johann Großschädl, Luan Cardoso dos Santos, Léo
Perrin, Qingju Wang, Ritam Bhaumik, Shange Fu, Vesselin Velichkov, and Yann Le
Corre.

The country of Luxembourg and the University of Luxembourg generously pro-
vided me with excellent research conditions. I specifically thank Fabienne Schmitz,
Ida Ienna, and Catherine Violet for their assistance in administrative matters.

A huge thanks goes to my co-hosts for the Basic Block Radio podcast Ivan Ivan-
itskiy, Sergei Pavlin, and Alexander Seleznev, and to all our guests and listeners, for
helping spread the word about decentralized technologies for the Russian-speaking
audience.

My deepest gratitude goes to my family for their endless love and support.
I want to specifically thank my parents for encouraging me to pursue education
abroad.

Finally, I thank Satoshi Nakamoto. Your ingenious invention continues to amaze
and inspire me. I admire your wisdom and humility. It is an honor to be a part of
the movement you started.

ix

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Foreword . 1
1.2 Historical overview . 2

1.2.1 Evolution of the Internet . 2
1.2.2 Evolution of money . 4

1.3 Bitcoin . 7
1.3.1 Bitcoin architecture . 8
1.3.2 Is proof-of-work wasteful? . 9
1.3.3 Professionalization of mining . 10

1.4 Challenges for cryptocurrencies . 12
1.4.1 Expressiveness . 12
1.4.2 Scalability . 13
1.4.3 Privacy . 13

1.5 Our contributions . 15

I Network privacy in Bitcoin and privacy-focused cryptocurrencies 17

2 P2P protocols in cryptocurrencies 19
2.1 Design goals for a cryptocurrency P2P network 19
2.2 P2P protocols in cryptocurrencies . 20

2.2.1 Bitcoin P2P protocol . 20
2.2.2 Dandelion . 21

2.3 Taxonomy of nodes . 22
2.4 Network-level privacy in cryptocurrencies 23

2.4.1 Network-based transaction deanonymization 23

3 Deanonymization of transactions with network analysis 27
3.1 Transaction clustering with timing analysis 27

3.1.1 Weight functions and clustering 28
3.1.2 Measuring clustering quality . 30
3.1.3 Measuring the degree of deanonymization 30

3.2 Implementation details . 31
3.3 Experimental evaluation . 32

3.3.1 Results for desktop wallets . 33
3.3.1.1 Bitcoin testnet . 34
3.3.1.2 Bitcoin mainnet . 35
3.3.1.3 Zcash . 36
3.3.1.4 Dash . 37

x

3.3.1.5 Monero . 37
3.3.2 Results for mobile wallets . 39

3.4 Attack cost estimation . 42
3.5 Discussion and countermeasures . 42
3.6 Conclusion . 44

4 Privacy of cryptocurrency wallets 45
4.1 Minimal privacy criteria . 45
4.2 Analysis of selected wallets . 46

4.2.1 Manual inspection . 47
4.2.2 Static analysis . 50

4.3 Conclusion . 52

II Privacy of the Lightning Network 53

5 Introduction to Lightning Network 55
5.1 Evolution of payment channels in Bitcoin 55

5.1.1 Transaction replacement with sequence numbers 55
5.1.2 Unidirectional channels . 56
5.1.3 Replace-by-timelock and Duplex channels 56
5.1.4 Poon-Dryja channels (Lightning) 57

5.2 Lightning Network architecture . 58
5.2.1 Nodes . 58
5.2.2 Channels . 58
5.2.3 P2P network and path-finding 61
5.2.4 The future of Lightning . 61

5.3 Research directions in payment channel networks 62

6 Probing Lightning channel balances 63
6.1 Probing algorithm . 63

6.1.1 Overview . 63
6.1.2 Assumptions . 64
6.1.3 Selecting channels for probing 65
6.1.4 Probing . 66

6.2 Experimental setup . 69
6.3 Results . 70

6.3.1 Probing times . 70
6.3.2 Probing coefficients . 71
6.3.3 Distribution of channels in routes 72
6.3.4 How balanced are the channels? 72

6.4 Estimating the attack cost . 73
6.5 Limitations . 74
6.6 Countermeasures . 75
6.7 Conclusion . 77

7 Quantitative analysis of Lightning network privacy 79
7.1 Datasets . 79
7.2 Security and privacy attacks: background 80
7.3 Methodology . 81
7.4 Results and discussion . 83
7.5 Countermeasures . 85

xi

7.6 Conclusion . 85

8 Throughput limitation of the Lightning network 87
8.1 Background . 87
8.2 The HTLC limit effect on LN scalability 88
8.3 Depleting the Lightning Network . 90
8.4 Discussion . 91
8.5 Countermeasures . 92
8.6 Conclusion . 92

III Security of Ethereum smart contracts 93

9 Introduction to smart contracts 95
9.1 History of smart contracts . 95

9.1.1 Early ideas . 95
9.1.2 Smart contracts in Bitcoin . 95
9.1.3 Smart contracts in Ethereum . 96

9.2 Ethereum architecture . 96
9.2.1 Accounts . 96
9.2.2 Transactions . 97
9.2.3 Mining and coin issuance . 98
9.2.4 Contracts . 98
9.2.5 Applications . 99

9.3 Challenges for smart contracts . 99

10 Findel: Secure derivative contracts for Ethereum 101
10.1 Findel contracts . 101

10.1.1 Execution model . 102
10.1.2 Example . 103

10.2 Implementation . 104
10.2.1 Users and balances . 104
10.2.2 Ownership transfer . 105
10.2.3 Data sources and gateways . 105
10.2.4 Execution . 106

10.3 Possible improvements . 106
10.3.1 Enforcement . 106
10.3.2 Defaulting on debt . 107
10.3.3 Modeling balances with Tokens 107
10.3.4 Multi-party contracts . 108
10.3.5 Local client . 108

10.4 Platform limitations . 108
10.5 Gas costs . 109

10.5.1 Setup and helper functions . 109
10.5.2 Managing common derivatives 110

10.6 Conclusion . 110
10.7 Examples . 111

xii

11 SmartCheck: Static analysis of Ethereum smart contracts 113
11.1 Classification of issues in Solidity code 113

11.1.1 Security issues . 113
11.1.1.1 Balance equality . 113
11.1.1.2 Unchecked external call 115
11.1.1.3 DoS by external contract 115
11.1.1.4 send instead of transfer 115
11.1.1.5 Re-entrancy . 115
11.1.1.6 Malicious libraries . 116
11.1.1.7 Using tx.origin . 116
11.1.1.8 Transfer forwards all gas 117

11.1.2 Functional issues . 117
11.1.2.1 Integer division . 117
11.1.2.2 Locked money . 117
11.1.2.3 Unchecked math . 117
11.1.2.4 Timestamp dependence 118
11.1.2.5 Unsafe type inference 118

11.1.3 Operational issues . 118
11.1.3.1 Byte array . 118
11.1.3.2 Costly loop . 118

11.1.4 Developmental issues . 119
11.1.4.1 Token API violation . 119
11.1.4.2 Compiler version not fixed 119
11.1.4.3 private modifier . 119
11.1.4.4 Redundant fallback function 119
11.1.4.5 Style guide violation 119
11.1.4.6 Implicit visibility level 120

11.2 SmartCheck architecture . 120
11.3 Experimental results . 122

11.3.1 Definitions . 122
11.3.2 Case studies . 122
11.3.3 Testing on a massive sample . 124

11.4 Conclusion . 126

12 Privacy-preserving KYC on Ethereum 127
12.1 Identity . 127

12.1.1 Centralized identity . 128
12.1.2 Decentralized identity and open blockchains 128
12.1.3 Financial and privacy regulation in the EU 129

12.2 KYCE: a decentralized KYC-compliant exchange 129
12.2.1 Definitions and security properties 129
12.2.2 Tokens and exchanges . 130
12.2.3 Privacy-preserving KYC . 130
12.2.4 Use cases . 132

12.3 Implementation details . 134
12.4 Related work . 134
12.5 Conclusion . 135

Bibliography 137
List of Publications . 165

xiii

List of Figures

3.1 Weight functions for three timestamp vectors. 29
3.2 Transaction clustering for Bitcoin testnet (listener in California). 34
3.3 Transaction clustering for Bitcoin testnet (listener in Tokyo). 34
3.4 Transaction clustering for Bitcoin testnet (listener in Frankfurt). 35
3.5 Transaction clustering for Bitcoin testnet (combined listeners). 35
3.6 Transaction clustering for Bitcoin mainnet. 36
3.7 Transaction clustering for Zcash. 36
3.8 Free connection slots for Bitcoin testnet. 37
3.9 Free connection slots for Zcash mainnet. 37
3.10 Transaction clustering for Dash (messages and transactions). 38
3.11 Transaction clustering for Dash (transactions only). 38
3.12 Transaction clustering for Monero. 38
3.13 Transaction clustering for mobile wallets. 40

5.1 An HTLC-based payment in the Lightning Network. 59

6.1 The distribution of probes (onions) by response time. 70
6.2 Distribution of channels by total probing time. 71
6.3 Distribution of channels by the obtained information coefficient. 72
6.4 Distribution of relative frequencies of channels in routes. 73
6.5 Distribution of balance coefficients. 74

7.1 Node degree distribution. 80
7.2 Channel capacity distribution. 80
7.3 An illustrative example of value privacy (top), relationship anonymity

(middle), and the wormhole attack (bottom). 81
7.4 The share of experiment runs where paths with sufficient capacity ex-

ist between sender and receiver. 82
7.5 Share of prone paths for each parameter combination. 84

8.1 Ratio between the current limit on concurrent channel updates and
the theoretically possible capacity-based limit. 88

8.2 Share of affected channels for different payment amounts. 89
8.3 Historic share of HTLC-limited channels. 89
8.4 Historic borderline amounts. 89
8.5 Effectiveness of targeting highest-capacity channels. 90
8.6 Number of channels to cut to isolate the largest communities. 91

11.1 Parse tree for the Balance equality code example. 121
11.2 Distribution of non-zero contract balances (ether). 124
11.3 Findings on the big dataset (excluding Implicit visibility level). 125

12.1 KYC-compliant exchange. 133
12.2 KYC-compliant token. 133

xv

List of Tables

1.1 PoW hash functions in selected cryptocurrencies. 11

3.1 Experimental results of transaction clustering for Bitcoin testnet and
Zcash. 33

4.1 Minimal privacy criteria for selected wallets. 46
4.2 Alternative installation methods of selected wallets. 47
4.3 Permissions of selected wallets. 48
4.4 Privacy policies of selected wallets: information that the developers

may obtain. 49
4.5 Networking characteristics of selected wallets. 50
4.6 Static analysis of selected wallets. 52

10.1 Findel contract primitives. 103
10.2 Examples of custom Findel contracts. 103
10.3 Cost of setup and helper functions (gas units). 109
10.4 Cost of handling derivatives in Findel (gas units). 110

11.1 Code issues detected by SmartCheck. Gray background – false posi-
tives possible. 114

11.2 Testing results on three selected projects. 123
11.3 Code issues detected on the big dataset. 126

xvii

List of Abbreviations

AMHL Anonymous multi-hop lock
AML Anti money laundering
ANTLR Another tool for language recognition
API Application programming interface
APK Android package
ARPANET Advanced research projects agency network
ASIC Application-specific integrated circuit
AST Abstract syntax tree
BFT Byzantine fault tolerant
BIP Bitcoin improvement proposal
BOLT Basics of Lightning technology
BTC Bitcoin (a currency unit)
CA Certificate authority
CEI Checks-effects-interactions
CLTV Checklocktimeverify
CPU Central processing unit
CTF Counter terrorist financing
DAO Decentralized autonomous organization
DHT Distributed hash table
DMC Duplex micropayment channels
DNS Domain name system
DoS Denial of service
DSL Domain-specific language
ECDSA Elliptic curve digital signature algorithm
EU European Union
EVM Ethereum virtual machine
FDR False discovery rate
FNR False negative rate
FN False negative
FPGA Field-programmable gate array
FP False positive
FTP File transfer protocol
GDPR General data protection regulation
GHOST Greedy heaviest-observed sub-tree
GPU Graphics processing unit
GUI Graphical user interface
HTLC Hash time-locked contract
HTTPS Hypertext transfer protocol secure
HTTP Hypertext transfer protocol
IBD Initial block download
ICO Initial coin offering
ID Identifier
IP Internet protocol

xviii

IR Intermediate representation
ISP Internet service provider
JIT Just in time
JSON JavaScript object notation
KYC Know your customer
LN Lightning network
MPP Multi-part payment
NAT Network address translation
NFC Near-field communication
P2P Peer-to-peer
PBFT Practical Byzantine fault tolerance
PKI Public key infrastructure
PoS Proof of stake
PoW Proof of work
PSD Payment service directive
QR Quick response
RAM Random-access memory
RPC Remote procedure call
SEC Securities and exchange commission
SHA Secure hash algorithm
SMS Short message service
SPV Simplified payment verification
TCP Transmission control protocol
TLS Transport layer security
TN True negative
TP True positive
URL Uniform resource locator
USD United States dollar
US United States
UTXO Unspent transaction output
XML Extensible markup language
XSS Cross-site scripting
zk-SNARK Zero-knowledge succinct non-interactive argument of knowledge

1

Chapter 1

Introduction

Governments are good at cutting off
the heads of a [sic] centrally controlled
networks like Napster, but pure P2P
networks like Gnutella and Tor seem
to be holding their own.

Satoshi Nakamoto [273]

If you’re not breaking the rules, you’re
doing it wrong.

Simon Morris [268]

1.1 Foreword

Bitcoin has emerged at the intersection of two secular trends. First, computer net-
works have enabled nearly-instant global connectivity. The proliferation of the In-
ternet has had a massive economic and societal impact. Second, the world has aban-
doned the gold standard in favor of fiat money. Central banks can arbitrarily inflate
the supply of national currencies. The global financial system has become even more
interconnected.

Modern finance relies on trust. Trusting one’s counterparty differs from trust-
ing the financial system. People are free to choose whom they do business with,
and trustworthy organizations prosper. High counterparty trust lowers transaction
costs and leads to prosperity. The financial system, on the contrary, demands the
trust of all economic actors. This trust concentration puts much power in the ad-
ministrators’ hands. History has shown that they do not always use it responsibly.
Governments routinely abuse their influence over money, printing their way out of
deficits at savers’ expense.

Cryptographers have been working on digital payment systems since the 1980s.
However, completely removing a trusted administrator has long seemed unsolv-
able. The critical challenge is modeling scarcity. Money must be costly to produce,
but copying digital data is cheap. What prevents a malicious user from spending
multiple copies of their digital coin? The traditional solution implies trusting a bank
that keeps track of all coins and prevents fraud. Is it possible to achieve the same
result without trusting any single entity?

Bitcoin provides an alternative. Announced in 2008 and launched in 2009, it
is the first system of its kind. Based on decades of research in cryptography and
distributed systems, it models scarcity without a trusted party. Bitcoin’s security

2 Chapter 1. Introduction

relies on a combination of cryptographic algorithms and economic incentives. We
describe the architecture of Bitcoin in more detail in Section 1.3.

Bitcoin has spawned a new field of study at the intersection of computer science
and economics. Thousands of alternative cryptocurrencies are exploring various
points in the design space. This thesis attempts to tackle some of the problems in the
field, focusing on privacy and security.

In the remainder of this Chapter, we give a more elaborate introduction to cryp-
tocurrencies. First, we outline the relevant historical context and describe the ar-
chitecture of Bitcoin. Then, we list the challenges it faces and the potential ways to
address them. Finally, we outline our original contributions.

1.2 Historical overview

We now provide a historical overview of the two key areas relevant to the develop-
ment of cryptocurrencies: the Internet and money.

1.2.1 Evolution of the Internet

Information networks developed rapidly in the second half of the XX century. Sci-
entists created the first computer networks in 1960s. ARPANET, the precursor of
the Internet, launched in 1969. In 1981, it connected more than 200 computers in
US-based research centers.

Early communication networks used circuit switching. Each pair of hosts used
a dedicated connection throughout the session. Internet protocols use another ap-
proach – packet switching. The sender splits the message into pieces (packets) that
travel through the network independently. The receiver reconstructs the message
from the packets. The sender re-transmits lost or malformed packets. Packet switch-
ing is less reliable but simpler than circuit switching. It has proved indispensable in
connecting heterogeneous networks into the global Internet.

Early computer networks lacked security. Protocol designers prioritized simplic-
ity over data confidentiality and integrity. Early Internet users, mostly academics,
were not inclined to harm others. Perhaps more importantly, no cryptographic algo-
rithms were suited for the Internet.

Cryptography studies methods to control information flows. For hundreds of
years, its primary task was hiding information using symmetric encryption. In a
classical setting, Alice wants to send a confidential message (the plaintext) to Bob.
She encrypts the plaintext using a secret key and transfers the resulting ciphertext to
Bob. Bob uses the same key to decrypt the ciphertext into the original plaintext. An
adversary may intercept the ciphertext but cannot decrypt it without the key.

Note that the parties use the same key. Key establishment is a weak spot of sym-
metric encryption. An adversary who intercepts the key can decrypt all messages.
Before the 1970s, two parties could only establish a shared secret by meeting in per-
son or using a physically protected secure channel. Both options are expensive and
scale poorly.

Moreover, authentication also depended on a shared key. It was impossible to
convince the counterparty that the message was authentic without giving them the
power to sign messages themselves, which is unacceptable for many Internet use
cases. For instance, a company would have to share the signing key with all readers
to convince them of the authenticity of a press release. It immediately follows that
all subsequent messages signed by this key cannot be trusted.

1.2. Historical overview 3

Whitfield Diffie and Martin Hellman solved both problems. In their breakthrough
1976 paper “New directions in cryptography” [121], they proposed two novel algo-
rithms. First, they introduced a key establishment protocol over an insecure channel.
This algorithm allows two parties to securely generate a shared secret even if an
eavesdropper intercepts all their messages. Second, they described the first digital
signature algorithm. A digital signature allows a sender to prove the authenticity
of their messages without sharing the signing key. A new field of cryptography –
asymmetric cryptography – was born.

Asymmetric cryptography enabled the widespread deployment and commer-
cialization of the Internet. Users could now establish spontaneous secure connec-
tions over insecure channels. Businesses started adopting the Internet in the 1980s.
This process accelerated in the early 1990s with the invention of the World Wide
Web and web browsers with a graphical user interface. Entrepreneurs started the
first Internet companies. Many startups proved nonviable and went bankrupt in the
Dot-com crash of 2000. Their early enthusiasm, even if unjustified, attracted talent
and capital into the nascent industry. The first two decades of the XXI century saw
a rapid expansion of Internet businesses. A new generation of companies built and
scaled novel digital services to billions of users.

Modern Internet businesses heavily rely on networks effects. Any network is valu-
able because it allows its members to communicate. Therefore, a new user is more
likely to join the social network most of their friends already use. Network ef-
fects allow established companies to diminish competition. Internet giants gather
vast amounts of user data across all their services. Large-scale data analysis helps
them fine-tune their products to attract and retain users more efficiently. This self-
reinforcing loop favors the incumbents and concentrates market power.

As a result, the Internet in 2020 is highly concentrated. The five US-based In-
ternet giants – Google, Apple, Facebook, Amazon, and Microsoft (abbreviated as
GAFAM) – account for 17.5% of the S&P market index [228]. GAFAM plus the China-
based Alibaba and Tencent are the most valuable companies in the world by market
capitalization. As digital communication now influences most areas of life, Internet
giants play an even larger economic and political role.

File-sharing networks

Peer-to-peer file-sharing, which became widespread in the 1990s, foreshadowed cryp-
tocurrencies. At that time, the Internet was gaining adoption in the developed
world. Increased bandwidth allowed users to distribute large files over the Internet.
P2P file-sharing networks were first to satisfy the demand for fast and convenient
content sharing.1

File-sharing networks and cryptocurrencies share two crucial attributes. First,
networks of both types are driving against the trend towards the centralization of
the Internet. Instead of relying on a centralized service provider, they pool resources
from users’ computers. Second, they demonstrate that given sufficient economic
incentives, a decentralized network is impossible to shut down. We explain the
differences and similarities between file-sharing and cryptocurrency protocols in
Chapter 2.

Napster was the first popular file-sharing network. It launched in 1999. The pro-
tocol was only partially decentralized. Users hosted the files, and a central server
coordinated the exchange. Napster quickly attracted millions of users. Widespread

1Client-server file-sharing predates P2P file-sharing by at least two decades: the File Transfer Pro-
tocol (FTP) was introduced in 1971.

4 Chapter 1. Introduction

sharing of copyrighted content drew the attention of law enforcement. The admin-
istrators shut down the service in 2001 to comply with a court order. Napster shows
how centralization harms resilience. Without central coordination, Napster users
could not locate the files. The existence of the central server made it possible to shut
the network down.

Gnutella, introduced in 2000, took another approach to content addressing.2 In
Gnutella, users forward queries to all their neighbors. Each neighbor either replies
with the requested content or forwards the query further. This “flooding” approach
has no single point of failure but is inefficient.

Distributed hash tables (DHT) offered a compromise by storing the content index
in a distributed manner. This approach proved to be resilient and efficient. A DHT
randomly distributes content among nodes. A searching node forwards the query to
the node “closest” to the required file. DHT allows for efficient querying and min-
imal network restructuring when nodes leave or join. Kademlia [249] is a popular
DHT implementation.

BitTorrent [304], launched in 2001, is arguably the most successful file-sharing
protocol. It strikes a balance between efficiency and resilience by allowing users to
locate files via either specialized websites (torrent trackers) or a Kademlia-like DHT.

File-sharing networks demonstrate the importance of economic incentives – the
central tenet of cryptocurrencies. Users of file-sharing networks download content
from other users’ computers. A protocol without an identity system cannot force
users to upload content. What motivates uploaders to provide the files for free?

BitTorrent implements measures against free-riding. First, downloaders receive
file chunks from peers who do not have the full file. In turn, they upload parts of
the file back while waiting for their download to complete. On top of the protocol-
based measures, some torrent trackers also account for how much their users upload
and download. The combination of these measures makes BitTorrent sufficiently
reliable but not too difficult to use. The file-sharing ecosystem has attracted both
altruistic [318] and profit-driven [333] content distributors.

In 2010s, file-sharing declined in popularity. However, it applied intense compet-
itive pressure on the entertainment industry. Streaming services emerged, offering
unlimited access to content for a fixed monthly price.3

File-sharing demonstrated the resiliency of Internet protocols. Despite copy-
right infringement lawsuits against torrent trackers and their users, law enforcement
could not fully shut down file-sharing networks. One may argue that this is impos-
sible in principle. As long as at least two computers are willing to communicate
according to the protocol rules, the network lives on.

Resilience is crucial for cryptocurrencies. As file-sharing networks opposed a
powerful entertainment industry oligopoly,4 cryptocurrencies compete with central
banks. If cryptocurrencies live up to their promise, attempts to shut them down are
inevitable.

1.2.2 Evolution of money

Money is a form of language to convey value – a particular type of information. For
example, it conveys that the payer performed some valuable work in the past and

2See an overview and comparison of Napster and Gnutella in [337].
3BitTorrent usage rose in the late 2010s because of the fragmentation of content among streaming

services [54].
4For example, three major corporations dominate the music industry: Universal Music Group, Sony

Music Entertainment, and Warner Music Group.

1.2. Historical overview 5

wishes to receive something in return now. Money separates the labor from enjoying
its fruit. Nothing is a universal store of value, because value is subjective. A future
payee may reject payment for myriads of unpredictable reasons.

Throughout history, people used various types of money. Some goods make
better money than others and do so on longer time frames. Gold is arguably the
longest widely recognized money. It possesses the essential properties of money:
recognizability, divisibility, portability, durability, fungibility, and scarcity.

Gold is burdensome to handle directly. The growing speed of commerce de-
manded easier methods of payment, such as representative money (gold certificates)
and, eventually, fiat money, disconnected from physical commodities.

Fiat money is the basis of the modern financial system. In 1971, the US stopped
converting dollars to gold, ending the Bretton Woods global monetary system. The
currency exchange rates are now determined by supply and demand. Governments
and central banks strongly influence the market. They change interest rates, perform
market interventions, and enforce capital controls.

This transition has deprived money of its fundamental property – trustlessness.
Gold is a bearer asset. It is not anyone’s liability. In contrast, a gold certificate holder
must trust the issuer to exchange it to gold, and a holder of fiat money must trust
the issuer not to dilute its value with excessive issuance.

Network effects in money

Similar to information networks, money exhibits network effects. People are likely
to demand widely accepted currencies for their work. The world economy tends
to converge onto a single currency. The US dollar already plays this role to a large
extent. It is the most popular reserve currency and the currency of international
trade. One can argue that without legal restrictions (such as the need to pay taxes in
local currencies) the US dollar would dominate the global economy.

The effects of centralization induced by network effects are especially adverse
in monetary networks. For example, censorship has more severe consequences: a
frozen bank account causes more problems than a blocked social media account.
The issue is even more concerning if physical cash is unavailable. In many devel-
oped countries, such as Sweden and the Netherlands, banks are phasing out cash to
combat money laundering. Without cash, a person banned from the banking system
cannot buy necessities. Money administrators can also change the rules on short
notice. A recent example is the 2016 demonetization in India. High-denomination
banknotes were declared invalid in an attempt to fight black markets. This sudden
move caused severe economic disruption throughout the world’s second-most pop-
ulous country.

A money network has a unique property: all users value the content that it helps
exchange. Financial administrators may abuse this property and print themselves
money – a privilege that their information network counterparts do not enjoy. A
social network administrator can push their writings into everyone’s news feeds or
inflate the reported number of views but cannot make people perceive their content
as universally valuable.5

Switching monetary systems is hard. People cannot easily “vote with their feet”,
especially if the administrators abuse their position. First, it is not always appar-
ent that abuse takes place. For instance, moderate money printing can long go un-
noticed, slowly diluting savings. Second, it is hard to coordinate which another

5For example, as of 2020, “only” 116 million out of 2.5 billion users of Facebook follow its creator
Mark Zuckerberg.

6 Chapter 1. Introduction

system to switch to. Uncoordinated exodus destroys the benefits of network ef-
fects. Finally, monetary administrators deliberately impede exit with legal action.
Multiple independent centralized payment systems were shut down. Examples in-
clude Liberty Reserve, Liberty Dollar, and e-gold [404, 385]. Others, such as PayPal,
were forced to give up their initial vision and merge with the existing financial sys-
tem [204]. This state of affairs inclines rational actors to accept the corrupt status
quo.

Key challenges for digital currencies

The first digital cash protocols were proposed in the early 1980s, but nearly three
decades passed before the first viable solution – Bitcoin – was introduced. Why did
designing a decentralized digital currency take so long?

Digital signatures provide only a part of the solution. Senders sign transactions
to reliably prove their intent to spend their money. The receiver can verify the signa-
ture without relying on any authority.6 However, asymmetric cryptography is not
sufficient. Two crucial challenges have been hindering the deployment of digital
cash protocols for decades.

Double-spending One cannot easily copy a physical object. A metal coin is either
in the sender’s or the receiver’s hand. In contrast, one can effortlessly copy digital
information. A malicious user can duplicate their “coin” and spend it twice. This
problem is known as double-spending.

Balances must be stored on multiple computers to mitigate centralization risks.
However, it is unclear how to ensure consistency. If two computers report different
balances for the same account, how to agree on the right one?

Voting is a questionable solution in this context. Without an identity management
system, an adversary can launch a Sybil attack and vote multiple times. One way to
combat Sybils implies maintaining a list of all voters and only allowing each of them
to vote once.7 Nevertheless, contrary to the design goals, a party who controls the
voter list becomes the central point of control. To prevent censorship, the network
must allow new users to join unconditionally.

How can a network defend against Sybil attacks while providing free access?

Fair emission A digital currency must come into circulation somehow. Who should
get the newly created money?

On the one hand, the system should reward the users who help maintain it.
Transaction processing requires resources. If no central party allocates these re-
sources, users must provide them. However, without strong identities, economically
rational agents would not contribute. The system needs economic incentives, or it
collapses under the burden of free-riders.

On the other hand, users should perceive the currency distribution as fair. Oth-
erwise, they will not join. Unlike the fiat system, no one is forcing them to. The
currency distribution must also be objectively verifiable. All users should be able to
independently check that everyone else follows the rules.

How can a network automatically reward anonymous participants proportion-
ally to their contributions?

6Assuming that the receiver knows the sender’s public key.
7This class of problems is called Byzantine fault tolerant consensus. A prominent protocol of this class

is Practical Byzantine fault tolerance (PBFT) [79]. Cryptocurrencies such as Ripple [81] and Stellar [250]
use BFT-like protocols.

1.3. Bitcoin 7

Early digital currencies

Let us mention notable pre-Bitcoin proposals of digital currency systems.
David Chaum introduced ecash, an anonymous digital cash protocol, in 1982 [84]

and further enhanced it in 1988 [86]. Ecash users would exchange digital coins is-
sued by a bank. A receiver would consult the bank to verify that the incoming coins
had not been spent. However, the participants’ identities would remain hidden from
the bank due to blind signatures. In 1989, Chaum founded a company called Digicash
to commercialize his invention. While gaining some traction in mid-1990s,8 the com-
pany declared bankruptcy in 1998.

In 1998, Wei Dai proposed b-money [105]. B-money, predating Bitcoin by a decade,
was in many ways similar to it. Users, identified by public keys, would indepen-
dently maintain a list of all current balances. Any user would be able to generate
coins by performing otherwise useless computations.9

A crucial piece of the Bitcoin’s puzzle is proof-of-work (PoW). Cynthia Dwork and
Moni Naor proposed PoW in 1992 as an anti-spam mechanism [128]. A sender of
an electronic message would need to perform computational work. A proof allows
anyone to verify the number of computations performed. The puzzle depends on
the message to prevent re-using one solution for different messages or recipients.
PoW would incur a negligible delay for regular users while deferring spammers.

Adam Back suggested using cryptographic hash functions for PoW in his 1997
Hashcash proposal [19]. The work in Hashcash means finding partial collisions of
a cryptographic hash function. Such functions simulate random oracles. Thus it is
computationally hard to find preimages or partial preimages for them. One can-
not predict whether a function output satisfies a given property without calculating
it. Hence PoW solutions can only be found by trial and error. Hashcash uses this
property as a puzzle with an adjustable level of hardness.

In 2005, Nick Szabo proposed Bitgold [367]. His idea was to represent digital
coins as “a string of bits [computed] from a string of challenge bits.” The solutions
to such puzzles would be linked in a chain using multiple timestamping servers to
preserve integrity.

1.3 Bitcoin

Bitcoin was the first decentralized digital currency to solve the double-spending
problem without a trusted third party. An unknown person under a pseudonym
Satoshi Nakamoto announced Bitcoin in October 2008.10 Shortly after, he published
the source code. The original code repository was later renamed to Bitcoin Core –
the Bitcoin’s reference implementation. Bitcoin launched on 3 January 2009 and started
slowly gaining traction in the technology community.

8For instance, the Dutch authorities considered using Digicash for road toll payments [85].
9“Anyone can create money by broadcasting the solution to a previously unsolved computational

problem. The only conditions are that it must be easy to determine how much computing effort it took
to solve the problem and the solution must otherwise have no value, either practical or intellectual.”

10Nakamoto might have deliberately chosen dates with a symbolic meaning while constructing their
pseudonymous identity. For instance, Nakamoto claimed to have been born on 5 April 1975. The
Executive Order 6102, issued on 5 April 1933, banned private gold ownership in the US. The ban was
repealed on 31 December 1974. The date for the first public announcement of Bitcoin – 31 October
– may have also been chosen deliberately. On that day in 1517, Martin Luther nailed his Ninety-five
Theses on the door of a church in Wittenberg, starting the European Reformation. It has been argued
that Bitcoin may lead to similarly wide-reaching societal shifts [118].

8 Chapter 1. Introduction

Nakamoto’s insight was in the way he combined Bitcoin’s components. All the
necessary ingredients had already been proposed, but never connected in the right
way.

1.3.1 Bitcoin architecture

Let us now briefly describe the architecture of Bitcoin. We refer the reader to [274]
for a historical review of Bitcoin’s building blocks, to [62] and [388] for an overview
of the field, and to [275] and [12] for a comprehensive technical introduction.

Nodes and P2P network The Bitcoin network consists of nodes, or peers. Each node
maintains a few connections to other nodes – neighbors, or entry nodes. Nodes ex-
change messages via unencrypted TCP connections. They forward transactions and
other protocol data to other nodes following a gossip protocol. Eventually, every
node becomes aware of every transaction.

Each node maintains a database of all transactions that have ever taken place.
Transactions are grouped into blocks. Each block contains a hash of the previous
block. Hence, the blocks form a chain (the blockchain). A node that validates all
blocks is called a full node.

Keys and transactions A wallet is a piece of software that stores cryptographic
keys. Users create public-private key pairs locally. The number of possible key pairs
is practically unlimited. To accept coins, the receiver generates an address from a
public key. To send coins, the sender signs a transaction with a private key.

Internally, Bitcoin represents the state of the system as unspent transaction outputs
(UTXO). Each UTXO specifies the amount of coins and their spending conditions. A
Bitcoin transaction consumes UTXOs as inputs and creates new UTXOs. To spend a
UTXO, the sender must provide a valid signature.11 The sum of the outputs must be
less than the sum of the inputs. The difference is the fee (paid to miners).

Mining Some nodes choose to mine. Mining is creating new blocks of transactions.
A block contains the hash of the previous block, the Merkle root of new transactions,
and a nonce. A valid block must only include valid transactions and contain a PoW
solution. The solution is sufficient if the double SHA-256 hash of the block header
is smaller than some target value. Miners achieve this by modifying the nonce in a
trial-and-error process.

Bitcoin produces a block every 10 minutes on average. Automatic difficulty ad-
justment every 2 016 blocks ensures the constant rate of block production. If blocks
were produced too quickly during a 2 016 block period, the difficulty increases; oth-
erwise, it decreases.12

A miner who generates a block gets rewarded. The block reward consists of the
block subsidy and the sum of the fees of all included transactions. Block subsidy is
cut in half every 210 thousand blocks. It decreased from 50 bitcoins to 25 in 2012,
12.5 in 2016, and 6.25 in 2020. The total number of bitcoins will never exceed 21 mil-
lion.

11To give more detail, spending conditions are defined in Bitcoin script – a Forth-like stack-based
non-Turing-complete language. Spending a UTXO requires submitting the arguments such that the
script evaluates to true, which usually involves providing digital signatures.

12Due to a bug, only 2 015 last blocks are accounted for difficulty re-adjustments.

1.3. Bitcoin 9

Different miners may produce two valid but conflicting blocks that link to the
same parent block. This situation is called a fork. Bitcoin nodes apply the fork choice
rule to resolve the conflict. They compare the cumulative amount of work put into
the two branches. The heaviest branch is considered valid. This objective criterion
allows nodes to converge on a single chain without a central authority.

Bitcoin assumes that no more than half of the mining power is under adversarial
control. Otherwise, a colluding majority can perform a 51% attack, which allows the
adversary to re-write blocks and potentially double-spend coins.

Bitcoin’s PoW solves the double-spending problem in a Sybil-resistant way. Min-
ers are not inclined to include conflicting transactions in the same blockchain branch.
An invalid block would make the branch invalid and nullify miners’ rewards.13 In-
cluding a conflicting transaction in another branch requires controlling more hash
power then the rest of the network combined. If the attacker does not control the
majority of hash power, the honest branch would accumulate more work and be
deemed valid according to the fork choice rule. In any case, Sybil attacks on Bit-
coin are expensive. An attacker can only increase their influence in the network by
committing more physical resources – hardware and energy.

Bitcoin’s emission mechanism also elegantly solves the fair emission problem.
Coins only come into existence as miners’ rewards. The more hashing power is com-
mitted to Bitcoin, the harder it is to attack. Therefore, Bitcoin automatically rewards
miners in proportion to their contribution to the network’s security. Miners get rev-
enue in bitcoins, but bear expenses in fiat currencies. Fierce competition forces them
to sell their coins. Bitcoins “percolate” to non-mining users, which stimulates adop-
tion and prevents capital concentration.

1.3.2 Is proof-of-work wasteful?

A standard critique of PoW is that it is “wasteful.” Arrays of computers burning
energy to solve a seemingly arbitrary mathematical equation may indeed look un-
economical. However, we believe this assessment is not accurate.

Markets show that Bitcoin provides value to some people. PoW is crucial for
Bitcoin’s properties that its users value. One such property is predictable issuance.
To guarantee it in a permissionless system, producing new bitcoins must incur a
cost. Energy is arguably the universal form of value. PoW serves as a proxy for the
amount of energy committed, ensuring that producing bitcoins is costly.

The influence of Bitcoin on energy markets is non-obvious [77]. Bitcoin mining
does consume a significant amount of energy (64 TWh annualized as of Septem-
ber 2020 [315]). However, miners rarely compete for energy with other forms of hu-
man activity. Electricity price is the most critical competition factor for miners. Thus
they move to places with the cheapest energy. Low prices often indicate that the
energy would otherwise have been wasted. For instance, the output of hydroelec-
tric power plants is seasonal. In high season, it may be uneconomical to transfer the
excess energy to population centers. Bitcoin utilizes this otherwise wasted power.
We should note that not all Bitcoin miners use renewable energy. For instance, coal-
based mining is gaining popularity in Central Asia [3].

13In the words of Satoshi Nakamoto, “If a greedy attacker is able to assemble more CPU power than
all the honest nodes, he would have to choose between using it to defraud people by stealing back his
payments, or using it to generate new coins. He ought to find it more profitable to play by the rules,
such rules that favour him with more new coins than everyone else combined, than to undermine the
system and the validity of his own wealth.” [272]

10 Chapter 1. Introduction

Useful proof-of-work

One may wonder whether miners can extract more value from mining if a given
amount of energy is spent regardless. Proof-of-work algorithms that allow this are
known as useful proof-of-work, or proof of useful work.14 Primecoin is an early example
of a cryptocurrency with useful PoW. Instead of hash collisions, Primecoin miners
search for Cunningham and bi-twin chains of prime numbers. The extra value is
advancing mathematical science. Primecoin miners have found multiple long Cun-
ningham chains.

Two main lines of reasoning oppose useful PoW. First, it complicates the security
model. Miners have two ways to extract value from the PoW solutions they find:
release them to the network and sell them elsewhere. As revenues from supporting
the network only form a part of the miners’ income, they become more susceptible
to bribery and less committed to the network’s success. It is hard to reason about
such unintended consequences, which depend on unpredictable factors. Second,
real-world problems are rarely perfectly tunable. Recall that PoW rewards miners
in proportion to the committed energy. The network cannot measure energy expen-
ditures directly. For PoW solutions act as a proxy, the committed amount of energy,
as estimated from the PoW solutions, should predictably depend on the real com-
mitted energy. A miner should get roughly x% more solutions for x% more energy
spent.

SHA-256 produces a uniformly distributed output in the range from 0 to Hmax =
2256 − 1.15 A solution is valid if the hash is smaller than the target t. For every t in
the range from 0 to Hmax, and for a random value r, the probability P(h(r) < t) =

t
Hmax

. Therefore, the probability of finding a solution is proportional to the number
of guesses. This property of cryptographic hash functions allows for fine-tuning the
difficulty of PoW.

In contrast, no one knows the distribution of solutions to most real-world prob-
lems. As an example, consider protein folding. At first glance, it is a proper can-
didate for a useful PoW. Similarly to hash-based PoW, it involves searching for so-
lutions in a large space by trial and error. It was also used in volunteer distributed
computation projects such as Folding@Home [26]. However, we do not know how
a unit increase in committed resources affects the probability of finding a solution
per unit time. Therefore, we cannot parameterize the folding-based puzzle to make
it X times harder for an arbitrary coefficient X.

1.3.3 Professionalization of mining

Bitcoin mining has evolved into a highly specialized industry. As mentioned earlier,
Bitcoin miners search for partial collisions of SHA-256 – a general-purpose crypto-
graphic hash function. They iterate over nonce values16 in block headers until the
hash of the header is below the target. Mining is a perfectly parallelizable task be-
cause candidate nonces are hashed independently.

Satoshi Nakamoto originally envisioned a network where every node could gen-
erate coins. Early versions of the software allowed users to generate coins using
regular processors (CPUs). It quickly turned out that graphical processing units
(GPUs) are more suitable for mining due to hardware parallelization. In 2011-2012,

14See [21] for an overview of proofs of useful work.
15This is a cryptographic assumption. It cannot be proved rigorously. No attacks have severely contra-

dicted the cryptographic properties of SHA-256.
16Due to high mining difficulty, miners also modify other parts of a candidate block.

1.3. Bitcoin 11

TABLE 1.1: PoW hash functions in selected cryptocurrencies.

Cryptocurrency Hash function Memory-hard?
Bitcoin SHA-256 No
Ethereum Ethash Yes
Litecoin scrypt Yes
Monero RandomX, CryptoNight (before 2019) Yes
Zcash Equihash Yes

GPUs and configurable integrated circuits (field-programmable gate arrays, FPGA)
became the primary mining equipment. In 2013, China-based manufacturer Canaan
Creative announced the first specialized devices for Bitcoin mining (application-
specific integrated circuits, ASIC) [219]. Fueled by competition and the rising price
of bitcoin, ASICs improved rapidly. All non-specialized mining hardware quickly
became unprofitable.

Mining is a highly competitive business with large capital requirements [224].
Large miners take advantage of economies of scale. They buy devices in bulk and
negotiate low electricity and rent prices. Bitcoin mining is geographically concen-
trated. Two thirds of the mining power originate from China [315].

Mining professionalization has upsides and downsides. On the one hand, spe-
cialized mining discourages 51% attacks. To control the majority of hash power, an
attacker would have to obtain specialized equipment in a large-scale data center in
a region with competitive energy prices. This commitment makes miners less inter-
ested in disrupting the network. In case of a successful attack, the price of bitcoin
is likely to drop. Unlike general-purpose hardware, Bitcoin ASICs cannot be re-
purposed. With the trust in Bitcoin undermined, the ASICs would be hard to sell,
which decreases the attacker’s potential profits. On the other hand, mining concen-
tration increases the risks of collusion or government intervention. The key security
assumption in Bitcoin is the absence of a colluding majority. Even a sizable colluding
minority can perform attacks such as selfish mining [155]. Therefore, mining power
should be under the control of a diverse group of participants.

ASIC-resistant proof-of-work

Multiple alternatives cryptocurrencies aim to discourage mining specialization. This
design goal is known as ASIC resistance. A common path towards ASIC resistance
implies using memory-hard hash functions for PoW (see Table 1.1). Such functions
discourage parallelization by requiring frequent access to random memory regions.
Unlike computation, memory access cannot be substantially optimized in custom
hardware. ASIC-resistant cryptocurrencies can be mined using off-the-shelf equip-
ment, primarily GPUs.

ASIC resistance may raise the probability of 51% attacks. GPUs, unlike ASICs,
are widely available and used for gaming and scientific computing. Therefore, an
attacker can sell the GPUs after the attack, at least partially recouping the initial
investment.17

It is not clear if a cryptocurrency can retain ASIC-resistance in the long run.
An economic argument suggests that mining will be professionalized for any PoW,

17The attacker can also rent hashing power only for the duration of the attack using hash-rate mar-
kets. Multiple cryptocurrencies (Ethereum Classic, Bitcoin Gold) have been 51%-attacked in prac-
tice [412].

12 Chapter 1. Introduction

given sufficient incentives. ASICs have been developed for memory-hard hash func-
tions used in prominent cryptocurrencies such as Ethereum [283] and Zcash [167].

Cryptocurrency developers can discourage ASIC manufacturing by regularly
and unpredictably changing the PoW hash function. This countermeasure is based
on the assumption that specialized hardware takes at least a few months to develop,
manufacture, and deploy. The developers of Monero, a privacy-focused cryptocur-
rency, used to change its hash function every six months [218].18 Ethereum develop-
ers consider a similar strategy known as ProgPoW [284]. Changing the hash func-
tion for PoW is a breaking protocol change. Such updates require coordination and
a degree of trust in the cryptocurrency developers.

Proof-of-stake

An alternative approach for Sybil protection in permissionless networks is to require
the commitment of another scarce resource instead of energy. Proof-of-stake (PoS) is
a family of designs that use the units of cryptocurrency for this purpose [22]. The
key idea behind PoS is that the probability to mine a block must be proportional to
the number of coins a miner holds (the stake). Misbehaving miners can be punished
(slashed) by destroying or re-distributing their stake.

PoS designs include Algorand [87], Ouroboros [217], and SnowWhite [30]. Novel
security issues have been identified in PoS protocols [159, 174, 65, 89]. Some authors
argue that PoW is the only viable Sybil protection mechanism in Bitcoin’s security
model [9, 369, 298]. However, it remains to be seen if a PoS system, albeit with
weaker security guarantees than PoW, proves to be beneficial. We refer the reader
to [29] for a review of cryptocurrencies without PoW.

1.4 Challenges for cryptocurrencies

We identify three key challenges that Bitcoin faces: expressiveness, scalability, and
privacy. These challenges are being addressed both by Bitcoin and alternative cryp-
tocurrencies.

1.4.1 Expressiveness

In Bitcoin, spending conditions are defined in Bitcoin script. It is a simple non-Turing
complete language. The simplicity of Bitcoin script makes it easier to analyze. In
particular, miners can put an upper bound on the number of computational steps
each transaction execution would take.

On the other hand, complex financial contracts are hard or impossible to express
in Bitcoin script. Bitcoin developers address this issue by introducing a more effi-
cient transaction structure [410], new opcodes [331], support for external data ora-
cles [127], and high-level programming languages [281, 411].

Ethereum [70, 407] is a cryptocurrency that supports more expressive programs.
It incorporates a virtual machine that executes code in a Turing complete language.
Such programs are called smart contracts.19 Each contract is stored at a unique ad-
dress along with its state. Users issue transactions to call contracts, which may, in

18In 2019, Monero changed the strategy and switched to a new hash function without plans for
further modifications [113].

19The term “smart contract” dates back to 1997 and refers to digitally encoded and automatically
executed agreements. This term is widely used to refer to Ethereum programs and sometimes used to
refer to Bitcoin scripts. We give a more elaborate introduction to smart contracts in Chapter 9.

1.4. Challenges for cryptocurrencies 13

turn, call other contracts. Interoperability and rich programming environment al-
low for more flexibility but introduce new security risks.20

1.4.2 Scalability

We observe a trade-off between transaction throughput and security of blockchain
networks. In Bitcoin’s security model, users must be able to validate all transac-
tions using universally available hardware. Therefore, the network as a whole can
only process as many transactions as one node. This design choice limits Bitcoin’s
throughput to tens of transactions per second [102].

The simplest way to address this issue is by increasing the block size or decreas-
ing the time between blocks. Bitcoin Cash [225] takes this approach. However, scal-
ing the network for widespread global adoption requires a throughput increase by
many orders of magnitude. Validating all transactions in real time would require
resources unavailable to most users. Tweaking constants for scalability is an interim
solution at best.21

Another approach is sharding [175, 238]. This term is borrowed from database de-
sign, where transactions are split between parts of a database (shards). The key chal-
lenge in blockchain sharding is cross-shard communication: nodes in one shard must
ensure that transactions in other shards are valid. The upcoming22 Ethereum 2.0 is
built on a sharded architecture [348].

Finally, off-chain protocols, also known as layer two (L2) protocols, move the bulk of
the transactions off the blockchain. In an off-chain protocol, users exchange signed
transactions without submitting them to the blockchain but resolve disputes using
the underlying blockchain protocol (referred to in this context as layer one, or L1).
Bitcoin’s Lightning Network [300] takes this approach. Ethereum-based L2 proto-
cols include state channels [129, 313, 258], refereed computation protocols [372, 211],
Plasma [299], and rollups [165, 181]. We refer the reader to [188] for a comprehensive
overview of off-chain protocols.

1.4.3 Privacy

Privacy is essential in money for both ethical and technological reasons.
From an ethical standpoint, people should have the right to choose whom they

disclose their activity. Transactions in the current financial system are linked to peo-
ples’ identities and closely monitored. Undocumented people cannot get access to
basic finance altogether. Banks freeze accounts in case of “suspicious” behavior.
Modern digital technologies facilitate data collection on a massive scale. The con-
centration of power over money in the hands of governments and corporations cre-
ates a breeding ground for human rights abuse. Eradication of cash exacerbates the
issue [64].

From a technical standpoint, a digital currency should be fungible. Fungibility
means that units of a currency of equal value are indistinguishable. Non-fungible
currency fails to act as a unit of account. Merchants may instigate blacklisting of
currency units with a “bad” transaction history. This practice incurs a tax on every-
one as merchants start discounting incoming transactions based on which particular
currency units they contain.

20We refer the reader to [24] for an overview of smart contract platforms.
21Not to mention coordination issues: raising the block size is a non-compatible upgrade.
22Note though that the developers repeatedly shifted the launch date.

14 Chapter 1. Introduction

Bitcoins are not entirely fungible. Each coin has a unique history that can be
tracked up until its creation as a miner reward. (Note that such histories have mul-
tiple threads because values are split and merged in transactions.) Multiple com-
panies provide the service of blockchain analytics to enable blacklisting “tainted”
coins [139, 306].

We can classify privacy attacks on cryptocurrencies into transaction graph analysis
and network analysis. In transaction graph analysis, the attacker studies the graph
built from the publicly available blockchain data [319, 11, 254, 280, 328]. The sim-
plest countermeasure is to generate a new address for each transaction.23 However,
this is insufficient to protect against modern blockchain analysis methods. Mixing
is a more involved technique. In a mixing protocol, a group of users collaboratively
create a transaction with multiple inputs and multiple outputs. Each user gets the
same amount of coins as they put in, minus fee. The links between the inputs and
the outputs of the same user are entangled. The key challenge is trustless mixing co-
ordination. Multiple mixing protocols have been proposed [248, 61, 332, 393]. In net-
work analysis, the attacker participates in the cryptocurrency P2P network to track
or influence data propagation. Network-level attacks include eclipse attacks [245,
193], global network disruption [14], and transaction deanonymization [37].

Privacy-focused cryptocurrencies

Multiple privacy-focused cryptocurrencies have been developed. Dash [111] co-
ordinates mixing using a network of masternodes. Monero [261] implements the
CryptoNote protocol [336]. It uses ring signatures to entangle the transaction graph
and Bulletproofs [68] to hide transaction amounts. Zcash [415] implements the Ze-
rocash protocol [28, 201] – an improvement of an earlier Zerocoin protocol [256].
It uses zk-SNARKs [27] to hide transaction data.24 Grin [186] and BEAM [25] im-
plement the MimbleWimble protocol [206]. They hide transaction amounts using
Pedersen commitments.

Privacy-focused cryptocurrencies face not only technological but also economic
hurdles. Privacy technologies work best with a large number of users (the anonymity
set). However, privacy-focused cryptocurrencies may struggle to get enough users.
Exchanges are less incentivized to support privacy-focused cryptocurrencies. Of-
fering them brings little trading volume, but incurs technical costs and legal risks.
Privacy-focused cryptocurrencies may also be harder to use due to the computa-
tional requirements of advanced cryptography. For example, most Zcash transac-
tions do not use its zero-knowledge cryptography [311, 34], likely because of its
high computation requirements and the difficulty of integrating it into third-party
wallets. Attacks on privacy-focused cryptocurrencies have also been described [311,
269, 35, 36, 384].

In the meantime, the two most popular cryptocurrencies improve their privacy
technologies. Privacy solutions based on zero-knowledge proofs are being devel-
oped on Ethereum. Bitcoin’s privacy is also set to improve with better mixing.25 It
remains to be seen which approach provides more robust privacy – improving the
privacy of existing cryptocurrencies or developing new privacy-focused ones.

23This complicates a widespread use case – collecting donations to a static Bitcoin address published
on a website or a social network page. A safer way to receive donations would be to deterministically
generate a new address for each donation from a master key.

24Zero-knowledge proofs are also used to improve blockchain scalability [60].
25Some argue that for these reasons privacy-focused cryptocurrencies are not a viable market

niche [178].

1.5. Our contributions 15

1.5 Our contributions

This thesis is structured as follows.

• Part I focuses on the privacy of Bitcoin and privacy-focused cryptocurrencies.

– In Chapter 2, we introduce P2P networking in cryptocurrencies.

– In Chapter 3, we describe and evaluate a network-level privacy attack
on Bitcoin and three privacy-focused cryptocurrencies. We describe a
method that allows an adversary to link transactions issued from the
same node based on propagation timings.

– In Chapter 4, we study the privacy of mobile cryptocurrency wallets. We
show that few wallets satisfy our minimal privacy criteria.

• Part II is dedicated to security and privacy of the Lightning Network (LN) –
a Bitcoin-based off-chain protocol.

– In Chapter 5, we outline the history of layer-two protocols in Bitcoin and
provide a technical introduction to the Lightning Network.

– In Chapter 6, we introduce a probing attack on the LN. Our method lets
an adversary accurately reveal users’ balances, assumed to be private. We
implement and evaluate the attack on the Bitcoin testnet.

– In Chapter 7, we quantitatively assess the probability of three privacy
attacks on the LN. From a simulation based on an LN snapshot, we con-
clude that compromising a few influential nodes significantly raises the
attack success rates.

– In Chapter 8, we quantify the effects of a known limitation on concurrent
payments in the LN on its throughput.

• Finally, Part III explores the security and privacy of Ethereum smart contracts.

– In Chapter 9, we provide the necessary background on Ethereum.

– In Chapter 10, we propose Findel – a declarative language for financial
contracts – and implement it in Solidity, Ethereum’s main contract lan-
guage.

– In Chapter 11, we introduce SmartCheck – a static analysis tool for Solid-
ity. We classify and codify common Solidity bugs and evaluate our tool
on a large sample of real-world Ethereum contracts.

– Finally, in Chapter 12, we propose a cryptographic scheme for a more
privacy-preserving know-your-customer (KYC) procedure.

17

Part I

Network privacy in Bitcoin and
privacy-focused cryptocurrencies

19

Chapter 2

P2P protocols in cryptocurrencies

Each cryptocurrency relies on a P2P network to disseminate transactions and other
messages. Ensuring that all nodes reliably obtain the relevant data is a prerequi-
site for reaching consensus. Resilience, privacy, and performance are crucial design
considerations for the P2P layer.

This introductory Chapter provides the background on the network-layer as-
pects of cryptocurrencies. First, we outline the design goals for a cryptocurrency
P2P network. Then, we describe the technical details of the P2P protocol in Bitcoin1

and selected alternative cryptocurrencies. Finally, we classify cryptocurrency nodes
from a networking perspective and provide a review of network-level attacks on
cryptocurrency privacy.

2.1 Design goals for a cryptocurrency P2P network

Unlike client-server protocols, all nodes in a P2P network have equal roles. A cryp-
tocurrency P2P protocol has two major tasks. First, it provides new peers with the
entire set of existing blocks. Second, it continuously disseminates new blocks and
transactions as they appear.

While adhering to the same general philosophy as file-sharing (discussed in
Section 1.2.1), cryptocurrency P2P protocols aim at slightly different goals [125].
First, a cryptocurrency P2P protocol is tailored to disseminating one specific dataset,
whereas file-sharing is content-agnostic. Moreover, each block in the blockchain de-
pends on the previous one. This logical structure leads to a trade-off: downloading
blocks out of order in parallel is faster but may lead to bandwidth waste if some of
them turn out to be invalid.

Second, content addressing is not as essential in cryptocurrencies as in file-sharing,
where locating the peer that hosts the required file is the key challenge. All cryp-
tocurrency peers store the same set of blocks (except possibly a few latest blocks).

Third, cryptocurrencies demand stringent security guarantees. Cryptocurrency
P2P protocols prioritize resilience over efficiency to defend against denial-of-service
attacks, eclipse attacks, and network data analysis. For instance, Bitcoin peers de-
liberately connect to peers from a diverse set of IP regions and autonomous sys-
tems [276]. File-sharing protocols, on the contrary, prioritize local connections to
utilize the ISP’s local networks instead of the global Internet [414, 402].

1We refer the reader to [48, 173] for more comprehensive documentation.

20 Chapter 2. P2P protocols in cryptocurrencies

2.2 P2P protocols in cryptocurrencies

Let us now describe the P2P protocol used in Bitcoin and an alternative P2P pro-
tocol for cryptocurrencies – Dandelion. Cryptocurrencies based on a modified Bit-
coin Core codebase, such as Dash and Zcash, inherit its P2P protocol. Others, such
as Ethereum, implement their own P2P protocol [193].

2.2.1 Bitcoin P2P protocol

We now describe the technical details of the P2P protocol in Bitcoin.

Bootstrapping Any P2P network faces the bootstrapping problem: a new peer
does not know any other peers. Bitcoin Core provides two bootstrapping methods:
DNS bootstrapping and seed nodes. The code contains hard-coded DNS records that
resolve into IP addresses of stable peers. If DNS bootstrapping fails, the new peer
connects to some of the seed nodes whose IP addresses are also hard-coded.

Connections and peer discovery Bitcoin peers establish unencrypted TCP connec-
tions.2 A peer tries to maintain 10 outgoing connections: eight connections for relay-
ing all types of messages and two dedicated connections for block propagation [104].
A peer allows up to 117 incoming connections by default.

Peers exchange information about the IP addresses of known peers. A new peer
advertises its IP address to its neighbors in an addr message. Upon receiving an
addr message, a peer may decide to relay it to some of its neighbors. A peer can
ask its neighbor which peers it is aware of using a getaddr message. The neighbor
responds with an addr message containing up to 1 000 addresses of recently seen
peers.

After establishing the initial connections, a new peer asks the bootstrapping
peers about other peers and connects to those. It then disconnects from the boot-
strapping peers to keep them available for new joining peers. Each peer maintains
a persistent database of IP addresses of known peers. Ideally, this database should
suffice for all subsequent connections to the network. DNS bootstrapping and seed
nodes remain available as a fallback mechanism.

Initial block download After connecting to the network, a new peer downloads
and validates all previous blocks. This process is known as the initial block down-
load (IBD). A peer may decide to delete most blocks after validating them (pruning).
It may also enable indexing, allowing for fast querying of transactions in the local
database.

Bitcoin Core supports two IBD modes: blocks-first and headers-first. In blocks-
first IBD, a peer downloads the blocks sequentially from a single peer. This process
ensures that the peer downloads the next block only if the previous block is valid.
Blocks-first IBD is slow and depends on a single peer. Headers-first IBD mode, intro-
duced in 2015 [98], addresses these shortcomings. A peer first downloads all block
headers (using getheaders and headers messages) and ensures that they are well-
formed and contain the necessary PoW. The peer then downloads the full blocks
from multiple peers in parallel. Note that a peer cannot validate a block by only

2Different networks use different default ports: 8333 for Bitcoin, 18333 for the Bitcoin testnet, 8233
for Zcash, 18080 for Monero, 9999 for Dash.

2.2. P2P protocols in cryptocurrencies 21

looking at its header. A block may contain a valid header with sufficient PoW de-
spite containing an invalid transaction. However, headers-first IBD is beneficial in
most practical scenarios.

Propagation of transactions and blocks Bitcoin peers exchange blocks and trans-
actions in a three-step message exchange. A sending peer first announces the hash
of a new object with an inventory (inv) message. Upon receiving an inv, another
peer may reply with getdata to receive the full data. The sending peer replies with
a block or a tx message for blocks and transactions, respectively.

Developers have introduced multiple improvements to Bitcoin’s P2P protocol.
In the initial protocol, each transaction is propagated twice: first on its own, then as
a part of a block. An optimized block propagation protocol called compact blocks [99]
eliminates this redundancy. Peers share block sketches that describe its contents us-
ing short transaction identifiers. A sketch also contains the transactions that the
receiving peer lacks (as predicted by the sending peer). The receiving peer recon-
structs the block from the sketch and requests the missing transactions with addi-
tional getblocktxn queries if necessary. Erlay [277] is another P2P optimization that
reduces the number of redundant inv messages that peers exchange. Miners have
special requirements for the P2P protocol and use dedicated networks [157, 164] for
fast block dissemination.

Broadcast randomization A gossip-based propagation in a P2P network may re-
veal private information such as the original message sender. An attacker may ana-
lyze the timestamps of messages received from different peers. Bitcoin uses broadcast
randomization to protect against network attacks. A peer introduces a random delay
before announcing a transaction to each neighbor. This mechanism, called diffusion,
replaced [409] another randomization technique called trickling. With trickling, a
peer announces a transaction to a random subset of neighbors. Such subsets are
chosen once in a fixed-length interval. Replacing trickling with diffusion provided
only a modest privacy improvement [158].

2.2.2 Dandelion

Dandelion [396, 160] is an alternative P2P protocol for cryptocurrencies designed for
stronger privacy. It addresses the key issue with gossip protocols – the symmetry
of message propagation. Dandelion peers propagate a message in two stages: the
stem phase and the fluff phase. On the stem phase, a peer only relays a message to one
randomly selected neighbor. The peer that receives the message randomly chooses
whether to continue the stem phase (forward the message to one random neighbor)
or start the fluff phase (relay the message to multiple neighbors). Dandelion makes
a network adversary confuse the original message sender with the initiator of the
fluff phase. The authors show that the protocol achieves much stronger anonymity
than Bitcoin’s current P2P protocol. The drawbacks of Dandelion include increased
propagation delays and sensitivity to DoS attacks at the stem phase [361]. As of 2020,
Dandelion is not introduced in Bitcoin but used in privacy-focused cryptocurrencies
Monero, Grin, and Beam.

22 Chapter 2. P2P protocols in cryptocurrencies

2.3 Taxonomy of nodes

Full Bitcoin nodes download, validate, and share the whole blockchain. These ac-
tivities consume bandwidth, storage, and processing power. Alternative types of
nodes offer ways to use Bitcoin with more lenient requirements.

Pruned nodes The simplest protocol change to decrease storage requirements is
to discard (prune) old blocks. A pruned node downloads and validates all blocks,
and then deletes the old blocks. Pruning reduces storage requirements significantly.
Bitcoin Core allows allocating as little as 550 MB for the most recent blocks (the full
Bitcoin blockchain requires 300 GB as of September 2020). Pruned nodes do not
support transaction indexing and cannot serve old blocks to others.

SPV nodes Simplified payment verification (SPV) is another approach, which is out-
lined in the original Bitcoin paper [273]. Instead of downloading full blocks, an SPV
node only asks for block headers and transactions of interest. The peers respond
with the requested transactions and a Merkle proof that they are included in some
block. SPV is based on weaker security assumptions than the full protocol. Recall
that a peer cannot verify a block based only on its header. A malicious peer may
provide a Merkle proof that a transaction is included in an invalid block with suffi-
cient PoW. SPV nodes must therefore ensure they are not eclipse-attacked and query
block headers from multiple independent sources.

Moreover, SPV provides weaker privacy. In the naive implementation, the full
node learns the addresses that belong to the SPV node. To mitigate this threat, mod-
ern SPV uses Bloom filters – probabilistic data structures that allow checking whether
an element belongs to a set. A Bloom filter may produce false positives, wrongly
reporting that an element belongs to a set, but never produces false negatives. If an
element is in the set, the filter always indicates that. An SPV node submits a Bloom
filter to a full node to specify the addresses it is interested in. The full node replies
with the transactions involving all addresses that pass the filter. The SPV node dis-
cards the false positives locally. The privacy guarantees of Bloom filters have also
been questioned [179].

Wallets with trusted remote nodes Finally, one may use Bitcoin without directly
connecting to its P2P network. This mode of operation, implemented by many mo-
bile wallets, requires a trusted node. A wallet stores the keys and signs transactions
locally but can only publish them through a trusted node. The trusted node can lie
about the blockchain state, deny service, learn what addresses a user controls, and
link them to their IP address. The user may gain partial protection by connecting
to the trusted node through Tor – an anonymization overlay network [122]. How-
ever, the administrator of the trusted node can use other methods to associate user’s
transactions (e.g., by making the wallet send a cookie along with transactions). On
the other hand, it gets harder for a global attacker to distinguish users that broadcast
transactions from the same trusted node.

2.4. Network-level privacy in cryptocurrencies 23

2.4 Network-level privacy in cryptocurrencies

We now outline various types of network-level attacks on the privacy of cryptocur-
rency users.

First, an adversary can perform a denial-of-service attack by flooding the network
with messages to overwhelm honest nodes. The Bitcoin’s P2P protocol addresses
this threat: peers do not re-broadcast messages and ban peers that send invalid data
or exhibit other unexpected behavior.

Second, in an eclipse attack, an adversary takes control of all connections between
the victim and the rest of the network. Controlling the victim’s view of the network
allows the attacker to provide incorrect data, censor transactions, and collect net-
work traffic for future analysis. Eclipse attacks may have severe consequences for
miners, as the attacker inhibits or slows down block propagation. In layer-two pro-
tocols such as Lightning, network-level attacks can lead to direct loss of funds [323].

Third, in a network data analysis attack, an adversary extracts information from
the P2P messages and infers private information about the victim. For instance,
timing differences in transaction announcements from different peers may reveal its
original sender. An adversary can establish multiple connections and collect traffic
from many vantage points for more accurate results.

Fourth, the adversary can infer the network topology, i.e., which pairs of nodes are
connected, and use this information in further attacks. Multiple topology estimation
attacks have been described.

One attack [257] exploits some peculiarities in the update mechanism for the ad-
dress database (addrMan) in Bitcoin Core. Each Bitcoin peer maintains a database
of known IP addresses, along with corresponding “freshness” timestamps. Coun-
terintuitively, Bitcoin peers only update timestamps for peers that they maintain
outgoing connections with.3 For incoming connections, the peer preserves the first
timestamp relayed along with the address. The authors implement a tool that ex-
ploits these rules to estimate the network topology.

Another method [278] infers the network topology by analyzing transaction prop-
agation timing. The authors test the method on the real-world Bitcoin network with
high recall and precision. They also show that an inappropriately parameterized
trickling mechanism can reduce the network’s resilience against topology discovery.

Finally, a measurement study [403] of Bitcoin’s unreachable peers (i.e., peers be-
hind NATs and firewalls) reports, among other findings, that a large share of Bitcoin
transactions originate from only two mobile applications.

2.4.1 Network-based transaction deanonymization

In transaction deanonymization attacks, an adversary is trying to associate the victim’s
identities used inside and outside of the cryptocurrency protocol. A more concrete
task towards this goal is to reveal the victim’s IP address, which is often linked to
their geographical location and real-world identity. A related task is transaction clus-
tering, whereby an attacker reveals the hidden relationships between transactions.

Heuristics based on relaying behavior The first work on deanonymization based
on network analysis [222] proposes the following technique. An adversary connects
to all listening Bitcoin nodes and logs the traffic. The attacker then hypothesizes, for
each transaction, that one of the IP addresses that has relayed it “owns” it (i.e., to

3After an update of Bitcoin Core in March 2015, the attack is no longer possible.

24 Chapter 2. P2P protocols in cryptocurrencies

possess the corresponding private key). The method considers multiple cases of
relaying behavior. More than 90% of transactions conform to the “normal” relaying
pattern, where each node relays a transaction at most once. In that case, the method
uses the first relayer heuristic: the first IP to relay a transaction is assumed to own its
inputs and outputs. This correspondence is not guaranteed due to network delays
and broadcast randomization. If a transaction is relayed from one IP address only
and not re-relayed by anyone else, the single relayer is assumed to be the owner. If a
single IP addressed relayed the same transaction twice (while many others relayed
it once), the single re-relayer is assumed to be the owner.4 Other types of anomalous
relaying behavior are excluded from consideration.

The data is then converted into the form of tuples that include the transaction
identifier, the Bitcoin address, and the IP address assumed to own the transaction.
A separate tuple is created for each input and each output of each considered trans-
action. Tuples are then interpreted as “votes” in favor of a hypothesis that an IP
address owns a Bitcoin address. For each Bitcoin address, the authors consider sep-
arately the tuples where it appears as an input and as an output. If the confidence
is high for inputs, the IP address is assumed to own the Bitcoin address. If the con-
fidence is high for outputs but low for inputs, the relationship cannot be identified.
If both metrics are low, there is likely no association between the IP address and the
Bitcoin address in question.

The authors apply the method to 5.6 million Bitcoin transactions recorded in
2012-2013. They only consider 3.9 million transactions with a single input. With
highly conservative constraints, they map “between 252 and 1 162 Bitcoin addresses
to the IPs that very likely own them.” The “vast majority” of the final mappings are
obtained from anomalous relaying behavior. The first relayer heuristic yields poor
results on transactions relayed normally. The authors provide two explanations.
First, the users may follow the recommendation to generate a new Bitcoin address
for each transaction. Second, the first relayer heuristic itself may be “uneffective at
best and invalid at worst.”

Deanonymization based on entry sets A similar attack [37] correlates Bitcoin trans-
actions with IP addresses. It exploits the fact that each Bitcoin node connects to a ran-
dom set of entry nodes, which is used as a fingerprint. Entry sets allow the attacker
to differentiate nodes behind NAT that use the same public IP address. The paper
distinguishes between Bitcoin servers (nodes that accept incoming connections) and
clients (nodes that do not). The authors also describe an attack that prevents the
victim from using Tor by abusing the Bitcoin’s anti-DoS mechanism [40].

Assuming no usage of Tor, the attack proceeds as follows. The attacker is ex-
pected to know the list of IP addresses of Bitcoin clients whose transactions it wants
to deanonymize. First, the attacker establishes multiple parallel connections to all
nodes that accept incoming connections. Then, the attacker learns the entry nodes
of the victim clients from the addr messages they advertise upon connecting.5 Fi-
nally, for each new transaction, the attacker considers the first 10 IP addresses that
have relayed it. Based on this set’s intersection with known entry sets, the attacker
estimates the probability that the transaction originates from a given victim node.

4The relaying rules in Bitcoin Core that generally disallow nodes to re-relay transactions, but make
an exception for the sender and the receiver.

5Note that the method assumes that the attacker is capturing the traffic when the victim is connect-
ing to the network.

2.4. Network-level privacy in cryptocurrencies 25

Combining blockchain analysis with network analysis Another attack [279] clus-
ters Bitcoin addresses and associates them with IP addresses by combining trans-
action graph analysis and network analysis. The attacker determines the transac-
tion originator using the first relayer heuristic. It uses two listening nodes and ap-
plies multiple heuristics to discard the “obviously false mappings” between transac-
tions and their first relayers. The authors show that most clusters obtained through
blockchain analysis cannot be directly associated with a single IP address. Likewise,
most IP addresses cannot be associated with one cluster. However, a small number
of participants exhibit correlations that make them prone to such attacks.

Network-level attacks on privacy-focused cryptocurrencies Network-level attacks
on privacy-focused cryptocurrencies have also been described [384]. The time it
takes for a remote node to reply to a specific request reveals whether that node is
the sender of a given transaction. The implementation of zero-knowledge proofs
in Zcash allows for timing side-channel attacks. Grin allows for linking transaction
senders and receivers [55].

27

Chapter 3

Deanonymization of transactions
with network analysis

In this Chapter, we describe a novel network-level deanonymization attack on cryp-
tocurrencies.1 We show how a global passive adversary can cluster transactions
issued from the same node and correlate the clusters with IP addresses.

Our method is based on analyzing the timings of transaction announcements.
We, as the authors of [37], go beyond the first relayer heuristic [222] and consider
multiple announcements for each transaction. First, we collect the data using geo-
graphically distributed listening nodes. We then apply carefully chosen weight func-
tions to transaction announcement timestamps. We observe that the weight vectors
of transactions issued from the same node exhibit stronger correlations. This tech-
nique allows us to cluster such transactions with high accuracy. We also unpack
address advertisement messages (addr), which may help link transaction clusters to
IP addresses of the corresponding nodes under certain assumptions.

We test our method on Bitcoin and three privacy-focused cryptocurrencies. We
cluster our own transactions in the Bitcoin testnet and Zcash with high levels of pre-
cision and recall. In particular, we can cluster Zcash transactions that involve both
transparent and shielded addresses. We estimate the cost of a full-scale attack on the
Bitcoin mainnet at hundreds of US dollars, feasible for a low budget adversary. We
also prove the applicability of our technique to Dash and Monero.

Our clustering method may act as a complement to transaction graph analysis.
The network-based analysis may reveal a relationship between transactions with no
common public keys used in their inputs and outputs. Analogously, transactions
sharing some addresses may be announced though different sets of nodes.

3.1 Transaction clustering with timing analysis

Each transaction is initially introduced by a single peer – the source. The source
first announces a transaction to its immediate neighbors (entry nodes). They, in turn,
announce the transaction to their neighbors, and so forth.

Each peer is typically receiving announcements for the same transaction from
multiple neighbors. Intuitively, the first peer to announce a given transaction is
likely to be close to its source. Earlier network-based deanonymization attacks [222]
are based on the first relayer heuristic – an assumption that the first peer to announce
a transaction is the source. An attacker connects to all nodes and derives the corre-
spondence between transactions and their first relayer’ IP addresses. This heuristic

1This Chapter is based on [41, 43]. This work was partially supported by the Zcash Foundation
grant 2017Q4-24 [161].

28 Chapter 3. Deanonymization of transactions with network analysis

assumes that the attacker establishes connections to all nodes and that all nodes an-
nounce a new transaction to all neighbors as soon as they become aware of it. Both
assumptions do not fully hold in practice. First, some nodes decline incoming con-
nections. The attacker cannot connect to such nodes directly and learns about their
transactions from other nodes. Second, cryptocurrencies use broadcast randomization
methods to break the latter assumption. In particular, Bitcoin uses diffusion, whereas
Zcash uses trickling (see Section 2.2.1 for details).

Our goal is to divide all transactions into clusters, where each cluster corre-
sponds to one source. Compared to [222], we go beyond the first relayer heuristic by
considering multiple IP addresses for each transaction. We hypothesize that propa-
gation patterns of transactions issued from the same source are similar because they
are announced through the same set of entry nodes. To exploit this similarity, we first
connect to all nodes and log the timestamps of transaction announcements. We then
characterize transaction propagation patterns with weight vectors. This technique
distinguishes our method from [37], where the attacker correlates transactions with
clients based on how many of the transaction’s first relayers fall into a known entry
set. Each element of a vector corresponds to a node2 that has announced at least one
transaction to us. For each transaction, we assign decreasing non-zero weights to
the first N nodes that have announced it and a zero weight to all others. We expect
transactions from the same source to have a stronger correlation between the weight
vectors compared to transactions from different sources.

As an example, consider a source that announces three transactions tx1, tx2,
and tx3 via eight entry nodes p1, . . . , p8. If all transactions are broadcast via the
same subset of the entry nodes, for instance, p1, p2, and p3, the transactions would
be easy to correlate: their weight vectors would have non-zero elements at positions
1, 2, and 3. But due to broadcast randomization, the following scenario is more typ-
ical: tx1 is relayed via p{1,2,3}, tx2 via p{3,4,5}, and tx3 via p{5,6,7}. With our technique,
the correlation between tx1 and tx2 and between tx2 and tx3 would be noticeable,
considering that weight vectors are sparse. This observation allows us to reveal
not only the relationship between these two transaction pairs but also among all
three transactions. The technique is also applicable for transactions initially broad-
cast from behind a trusted node (see Section 2.3 for the taxonomy of nodes). In that
case, a cluster represents transactions from multiple clients connected to the same
full node.

3.1.1 Weight functions and clustering

Let tx be a transaction. Let ptx = [ptx
1 , ptx

2 , . . . , ptx
N] be the first N IP addresses that

have announced tx to us. Let ttx = [ttx
1 , ttx

2 , . . . , ttx
N] be the vector of the corresponding

relative announcement timestamps. A relative timestamp is defined as t = tabs
i −

tabs
0 , where ti

abs is the Unix timestamp of the announcement of txi. In other words,
we subtract the timestamp of the first announcement of each transaction from the
timestamps of all its announcements. For each ptx

i ∈ ptx, we assign a parameterized
weight:

wk(ptx
i) = e−(t

tx
i /k)2

The weight function reflects the decreasing importance of every next announce-
ment. p1 is assigned the maximum weight of 1, other nodes receive lower weights.
Our experiments show that this function family yields better clustering (compared

2We identify nodes by their IP addresses.

3.1. Transaction clustering with timing analysis 29

FIGURE 3.1: Weight functions for three timestamp vectors.

to 1/(kt) and e−kt). The intuition is that it gives greater weights to a certain window
depending on k, while exponentially decreasing outside of it. Moreover, the window
size is adjusted for each vector.

For each ptx, we want to use such wk that gives sufficient variance among the
weight values. Weights quickly fall to nearly zero if k is too low and stay close to
one if k is high. We choose ktx

opt such that the weight of the median value ttx
med in ttx is

equal to 0.5:

ktx
opt =

ttx
med√
− ln(0.5)

This choice of k distributes the weights for any ttx: they neither stay close to one
nor quickly fall to zero (Figure 3.1).

For each transaction, we evaluate the vector of weights:

wtx = wktx
opt
(ttx)

Let X be the set of all transactions we consider. Let P be the set of IP addresses
of nodes that appear in at least one of p vectors in X:

P =
⋃

tx∈X

ptx

We define an extended weight vector vtx for each tx by setting the weight of
nodes in P\ptx to zero and sorting the values in the weight vectors w. r. t. the alpha-
betical order of P. We then calculate a matrix where an element in i-th row and j-th
column is the Pearson correlation of the extended weight vectors vtxi and vtxj . This
matrix can supposedly be transformed into a block-diagonal matrix with blocks
(clusters) corresponding to transaction sources. To reveal the clusters, we use spec-
tral co-clustering [119] implemented in the Python sklearn.cluster.biclustermod-
ule [290, 227]. Given an input matrix A, the algorithm forms An as follows:

An = R−1/2AC−1/2

30 Chapter 3. Deanonymization of transactions with network analysis

R is the diagonal matrix with entry i equal to ∑j Aij, and C is the diagonal ma-
trix with entry j equal to ∑i Aij. This defines the singular value decomposition
(SVD) of the normalized matrix An. The l = dlog2 ke singular vectors u2, . . . , ul+1
and v2, . . . , vl+1 of An may be used to solve a real approximation of the minimal
cut problem. Let U be a matrix with columns u2, . . . , ul+1, and similarly for V and
v2, . . . , vl+1. Then Z is defined as:

Z =

[
R−1/2 U
C−1/2 V

]
The rows of Z are then clustered using the k-means algorithm to obtain the de-

sired partitioning.

3.1.2 Measuring clustering quality

We use the Rand score as an external metric of clustering quality (see [8], Section 4.2).
A clustering algorithm decides for each pair of elements, whether to put it in the
same cluster or different clusters. Let SS, SD, DS, and DD be the numbers of trans-
action pairs defined as follows:

• SS: same cluster, same category3 (our transactions in one cluster);

• SD: same cluster, different category (our and foreign transactions in one clus-
ter);

• DS: different cluster, same category (our transactions in different clusters);

• DD: different cluster, different category (our and foreign transactions in differ-
ent clusters).

The Rand score reflects the proportion of correct decisions:

R =
SS + DD

SS + SD + DS + DD
Note that this assessment only considers clusters with “our” transactions, be-

cause we do not know whether any two “foreign” transactions should have been
assigned to the same cluster.

We parameterize this metric with the minimal number of our transactions in a
cluster required to consider this cluster in the calculation. In our experiments, we
only consider clusters with at least two of our transactions. With no such threshold,
large clusters with one of our transactions disproportionately increase DD and bring
the score close to 1, which does not reflect the subjective amount of information an
adversary acquires.

3.1.3 Measuring the degree of deanonymization

We measure the success of the attack using a quality score based on the anonymity
degree [120]. The goal is to assign to each transaction a probability that it originates
from Scontrol . Initially, all transactions have equal probabilities. The attacker adjusts
the probabilities based on clustering results. The anonymity degree measures the
amount of information the attacker gains.

Let pi be the probability that a transaction i originates from Scontrol . K is the total
number of transactions. The entropy is calculated as:

3Here we consider two categories: “our” and “foreign” transactions.

3.2. Implementation details 31

H = −
K

∑
i=1

pilog2(pi)

The maximum entropy is:

Hmax = log2(K)

The anonymity degree is defined as:

d =
H

Hmax

Our goal is to put transactions that originate from one target source Scontrol into
one cluster. Out of K captured transactions, k are issued from Scontrol . For each
transaction i, the a priori probability of it having originated from Scontrol is pi = k/K.

We then divide all transactions into clusters. However, multiple clusters may
correspond to Scontrol . To account for this, each cluster is assigned a weight that re-
flects how likely this cluster represents Scontrol . Consider an example. The attacker
captures 10 transactions t0, . . . , t9. Five of them, t0, . . . , t4, originate from the target
source Scontrol . The clustering algorithm yields three clusters: ca = {t0, t1, t2, t3}, cb =
{t4, t5, t6, t7}, cc = {t8, t9}. The attacker knows that t0 and t4 originate from Scontrol
and assigns a weight of 0.5 to clusters ca and cb, and a weight of 0 to cluster cc.
Therefore, the total “probability weight” of transactions from Scontrol is distributed
evenly among ca and cb (t0, . . . , t7). Note that the true distribution is 1 for transac-
tions t0, . . . , t4 and 0 for all others.

Finally, we calculate the adjusted anonymity degree accounting for cluster weights.
We calculate the median square error e between the vectors of probabilities pi de-
rived by the attacker and the actual probabilities. The adjusted anonymity degree is
defined as follows:

dadj = 1− (1− e)× (1− d)

Consider two edge case examples. If e = 0 (the attacker correctly guessed the Scontrol
cluster), dadj = d. If e = 1 (the attacker’s cluster weights do not at all reflect the real-
ity), dadj = 1 (the system retains full anonymity).

3.2 Implementation details

We use a modified Bitcoin network probing tool bcclient [309] to maintain paral-
lel connections to peers and log incoming messages. Multiple parallel connections
increase our chance to be among the first peers to learn about a new transaction de-
spite broadcast randomization. The tool is relatively easy to adapt for usage with
Dash and Zcash, which mostly inherit the networking layer from Bitcoin Core. We
re-compile bcclient with modified constants (port numbers, protocol magic bytes,
DNS seeder addresses). For Monero, which is not based on the Bitcoin Core code-
base, we modify the reference implementation (monerod). We add the required log-
ging and disable the built-in limits on the total bandwidth and artificial delays be-
tween network requests.

First, we collect a fresh snapshot of the network. We start by resolving the boot-
strapping DNS seeds. We try to connect to all known peers and ask them for peers
they know using getaddr command. We recursively repeat the process three times.

32 Chapter 3. Deanonymization of transactions with network analysis

For each transaction announcement, we log the transaction hash, the IP that has
announced it, and the timestamp of this event. We only log inv messages, and never
continue with the getdata – tx exchange. For selected experiments on the Bitcoin
testnet, we also log addr messages. Address announcements allow us to infer the set
of most probable IP addresses that correspond to each transaction cluster.

We use additional Python scripts to issue series of transactions from two dif-
ferent nodes. For each transaction set (learning set and control set) for each ex-
periment, we emit a series of transactions to our own newly generated addresses.
We use the command line interface of the underlying full node (such as bitcoind
for Bitcoin). To send a transaction, we use sendtoaddress command. We gener-
ate a new address for each transaction with getnewaddress. The payment amounts
are generated uniformly at random from an interval between the minimum and the
maximum allowed amount. The maximum amount is 10 times higher than the min-
imum amount. The minimum amounts for Bitcoin and Zcash are 0.00001 BTC and
0.0005 ZEC, respectively.

Experiments on the cryptocurrencies based on the Bitcoin Core codebase are im-
plemented similarly. For Zcash, we issue both transactions that involve shielded
addresses (we call such transactions shielded for short) and transactions between
transparent addresses (i.e., transparent transactions). Issuing transparent transac-
tions is similar to issuing transactions in Bitcoin. For shielded transactions, we use
z_getnewaddress to generate a new address and z_sendmany to send a transaction.

We use Python scripts to process the log. We parse the log, extract the relevant
information (transaction hashed and timestamps), and save the data in a more com-
pact JSON format. We then analyze the data, perform the clustering, and visualize
the results.

The number of transactions we issue per experiment is limited due to the be-
havior of Bitcoin Core when spending unconfirmed UTXOs. It does not allow cre-
ating chains of unconfirmed transactions of length 25 or more. Therefore, issuing
more transactions within a short time frame (shorter than the block generation inter-
val) demands creating multiple confirmed UTXOs in advance at both issuing nodes,
which would require additional time and effort during the setup phase of each ex-
periment. Splitting the transactions in multiple chains and increasing the length of
the experiment would lead to difficulties in parsing and processing the logs.

3.3 Experimental evaluation

The outline of our experiment is as follows:

1. collect a fresh list of live peers;

2. establish multiple parallel connections to them;

3. launch the listening nodes and start logging inv and addr messages;

4. launch two nodes Slearn and Scontrol ;

5. issue two series of transactions: the learning set from Slearn and the control set
from Scontrol ;

6. for each considered number N of first propagations, calculate the transaction
correlation matrix;

3.3. Experimental evaluation 33

TABLE 3.1: Experimental results of transaction clustering for Bitcoin
testnet and Zcash.

Network Listener Anon. deg. Servers Avg free slots Tx invs addrs
Bitcoin test California 0.83 1 141 64 139 402
Bitcoin test Tokyo 0.80 1 128 64 193 414
Bitcoin test Frankfurt 0.72 1 137 64 172 403
Bitcoin test combined 0.63 1 154 63 250 1 321
Bitcoin main Frankfurt 0.88 1 000* 25* 3 238 11 300
Zcash Frankfurt 0.86 206 36 62 1 086

7. run the clustering algorithm with various assumed average numbers of trans-
actions per cluster;

8. choose the best clustering by Rand score based on the “learning” set;

9. in the best clustering, assign the cluster weights proportionally to the distribu-
tion of known transactions from Scontrol ;

10. assign zero probability of being in Scontrol to transactions from Slearn;

11. re-distribute the probability weight among transactions in each cluster;

12. calculate the final adjusted anonymity score;

13. re-arrange the clusters such that high correlation values are close to the main
diagonal;

14. visualize the results.

We visualize the results with heatmaps. We assign a color to each element of the
correlation matrix. A darker color at the intersection of the i-th row and j-th column
represents a stronger correlation of weight vectors of i-th and j-th transactions. The
heatmap is diagonally symmetric by definition: each vector is perfectly correlated
with itself. We permute rows and columns such that the highly correlated elements
are close to the main diagonal. We expect such permutation to reveal the block-
diagonal structure of the matrix.

3.3.1 Results for desktop wallets

We evaluate our method by clustering our own transactions in Bitcoin (testnet and
mainnet) and Zcash. For these experiments, we log the traffic for 15 minutes. For
Dash and Monero, we run the clustering algorithm without calculating the anonymity
degree. We obtain clearly visible clusters, which indicates that our approach is ap-
plicable to these cryptocurrencies as well. In the experiments on the Bitcoin mainnet,
we deliberately do not attempt to occupy all connection slots and operate only on
a subset of 1 000 nodes (out of approximately 10 000 nodes reachable at any given
time [52]). In this section, we refer to the node that logs the incoming messages as
the listener. Following the terminology of [37], servers are peers that accept incoming
connections.

34 Chapter 3. Deanonymization of transactions with network analysis

FIGURE 3.2: Transac-
tion clustering for Bit-
coin testnet (listener in

California).

FIGURE 3.3: Transac-
tion clustering for Bit-
coin testnet (listener in

Tokyo).

3.3.1.1 Bitcoin testnet

We perform four experiments on the Bitcoin testnet using listeners in different geo-
graphical locations: Frankfurt (Germany), Tokyo (Japan), and North California (the
US). We conduct three experiments with each of the listeners and the fourth experi-
ment using all listeners simultaneously. To use multiple listeners in one experiment,
we distribute live peers equally among the three listeners. Each listener connects
only to the peers from its chunk of the list. We then merge the log files. The fourth
experiment measures the advantage an adversary gains from using geographically
distributed listeners. Each listener attempts to establish 117 connections to each as-
signed peer.

In each experiment, we issue two sets of test transactions (the learning and the
control sets) containing 30 transactions each from computers located in Luxembourg.
We denote 10 transactions from the control set as “known” to estimate the anonymity
degree.

The number of live peers collected by each of the listeners is close, which in-
dicates that we obtain a complete view of the network. The number of received
transactions varies little between experiments, whereas the number of addr mes-
sages is significantly higher in the multi-listener experiment: addr messages prop-
agate through the network more slowly than transactions. The average number of
available connection slots is independent of the location of the listener.

The anonymity degree calculated on our own transactions indicates a substan-
tial loss of privacy (Table 3.1). The “*” sign in the table indicates the experiments
where we only connected to a subset of available nodes. The joint experiment with
three geographically distributed listeners gained the best results with an anonymity
degree of 0.63. Out of the three single-listener experiments, only the Frankfurt ex-
periment shows a lower anonymity degree. We explain it by a small geographical
distance between the listener and the transaction source. The results are presented
in Figures 3.2, 3.3, 3.4, and 3.5 (ticks along the axes denote our transaction from the
control set).

3.3. Experimental evaluation 35

FIGURE 3.4: Transac-
tion clustering for Bit-
coin testnet (listener in

Frankfurt).

FIGURE 3.5: Transac-
tion clustering for Bit-
coin testnet (combined

listeners).

Estimating the original IP We use the addr messages to determine (with some
level of precision) the IP address of the transaction source. In our experiments, we
first launch the listener and only then launch the issuing nodes. This allows the
listener to capture the addr messages issued by the issuing nodes during bootstrap-
ping. Address messages propagate through the network more slowly than trans-
actions and are periodically re-broadcast. A listener can distinguish between addr
messages of recently joined nodes and re-broadcasts of older addr messages. If only
one or two nodes announce an IP address, we assume it is a re-broadcast. If more
nodes announce an IP address, we assume that the node has just joined the network
or is re-advertising its IP address.

We leverage the addr messages as follows. For each cluster, we determine the
IPs of the most “important” nodes, i.e., nodes we assume might be the source or its
entry nodes. For each transaction in the cluster, we sum up the weights of all IPs
that have relayed it to us. We assume the top 10% of most weighted IPs to be the
entry nodes. The intuition is that the entry nodes are among the first to relay addr
messages from the source. Therefore, we assume that an addr message relayed by a
set of IPs that substantially intersects with the entry nodes contains the IP address
of the source of the cluster.

We apply this heuristic to the Bitcoin testnet experiments. We consider the clus-
ters that mostly consist of control transactions. In three out of four experiments, the
actual IP address is among the top five most “important” IPs. This result indicates
that an adversary can narrow down the search for the source IP address to only a
handful of IPs.

3.3.1.2 Bitcoin mainnet

We perform one experiment on the Bitcoin mainnet with a listener located in Frank-
furt. The learning and control sets consist of 20 transactions each. Five transactions
from the control set are assumed “known” for anonymity degree calculation.

36 Chapter 3. Deanonymization of transactions with network analysis

FIGURE 3.6: Transac-
tion clustering for Bit-

coin mainnet.

FIGURE 3.7: Trans-
action clustering for

Zcash.

The results are presented in Table 3.1 and Figures 3.6 and 3.7. The correlation
matrix also exhibits the “clustering” behavior, though the anonymity loss is smaller
than for the Bitcoin testnet and Zcash. We explain these weaker results by multiple
factors. First, the Bitcoin mainnet is substantially larger than other networks that
we consider. More transactions in Bitcoin constitute a larger anonymity set. Second,
Bitcoin nodes provide fewer connection slots and often limit the number of slots one
IP can occupy. A low number of parallel connections decreases the probability that
our listener learns about a new transaction quickly. Third, we only establish up to
50 connections to 1 000 peers to avoid disrupting the network, and due to resource
constraints.

3.3.1.3 Zcash

Zcash is based on the Bitcoin Core codebase.4 As of the time of our experiments
(mid-2018), Zcash uses trickling for broadcast randomization, while Bitcoin uses dif-
fusion. Zcash does not provide privacy by default: zero-knowledge proofs are used
only in transactions involving shielded addresses [213]. Most transactions happen
between transparent addresses and have no added privacy-preserving mechanisms
compared to Bitcoin.

We perform one experiment on the Zcash mainnet with a listener located in
Frankfurt. The learning and control sets consist of 20 and 18 transactions, respec-
tively. Eight out of 18 control transactions use shielded addresses (transactions from
a t-address to a z-address, also known as t-to-z). We use 6 control transactions as
“known” for anonymity degree estimation.

The results are presented in Figures 3.6 and 3.7. T-to-z transactions from the
control set are marked with longer ticks. Note that our method clusters transactions
involving both transparent and shielded addresses.

We notice that Zcash peers offer far fewer connection slots on average: 36 com-
pared to 64 on the Bitcoin testnet (Figures 3.8 and 3.9). Many servers only accept
fewer than ten connections. These results may reflect a larger share of protected nodes

4Bitcoin Core version 0.11.2 (commit 7e27892), November 2015.

3.3. Experimental evaluation 37

FIGURE 3.8: Free con-
nection slots for Bitcoin

testnet.

FIGURE 3.9: Free con-
nection slots for Zcash

mainnet.

in Zcash. Protected nodes use firewalls or other network-level mechanisms to limit
the number of connections from each IP. However, an adversary can overcome this
limitation by purchasing IP addresses from a cloud provider.

3.3.1.4 Dash

Dash is also based on the Bitcoin Core codebase and inherits the basics of its net-
working protocol. Dash uses diffusion for broadcast randomization. The Dash net-
working protocol is substantially more complex compared with Bitcoin. Dash con-
tains 22 new message types for masternode management [339]. Masternode-related
tasks include periodic pings to check whether masternodes are online, coin mixing
and voting for governance proposals. Our tool does not handle Dash-specific mes-
sages.

In our experiment, we connect to 500 out of 3 065 randomly chosen Dash nodes
and ask for 30 connection slots. During 15-minutes, we receive 12 transaction inven-
tory messages and 396 Dash-specific messages.

We run the clustering algorithm twice: accounting for the Dash-specific mes-
sages (Figure 3.10), and considering only standard transaction inventory messages
(Figure 3.11). In both cases, we obtain clearly visible clusters. These preliminary
results show a privacy concern, especially if combined with transaction graph anal-
ysis [212].

3.3.1.5 Monero

Monero is a privacy-focused cryptocurrency not based on the Bitcoin Core code-
base. Monero provides privacy by default: users do not have to explicitly choose the
“private” option, contrary to Zcash (shielded transactions) and Dash (PrivateSend).

The Monero community recognizes the threat of deanonymization through net-
work analysis [392, 243, 154, 76]. This has motivated the integration of Dande-
lion++ networking protocol in 2020 [145] (see Section 2.2.2). Moreover, the Kovri
project [223] aims to add an I2P router into Monero. As of the time of our experi-
ments (mid-2018), Monero uses no broadcast randomization.

Monero does not allow creating and spending a transaction output in the same
block. A new output appears as “locked” until the transaction that creates it receives
10 confirmations (20 minutes at the target block time of 2 minutes) [126]. Though this

38 Chapter 3. Deanonymization of transactions with network analysis

FIGURE 3.10: Trans-
action clustering for
Dash (messages and

transactions).

FIGURE 3.11: Trans-
action clustering for
Dash (transactions

only).

FIGURE 3.12: Transaction clustering for Monero.

is a wallet-level and not a protocol-level restriction, the official desktop wallet and
Monerujo, a popular Monero wallet for Android, enforce it. Therefore, the scenario
of our earlier experiments is somewhat unrealistic. For example, to issue 20 transac-
tions within a 20 minute period, a user must have 20 “unlocked” transaction outputs
(each takes 20 minutes to create).

We conduct an experiment on Monero without issuing transactions. This experi-
ment aims to detect a block-diagonal structure in the correlation matrix derived from
real-world transactions. We connect to 200 nodes and receive 124 transactions in a
38 minute window (Figure 3.12).

We explain a less clear picture compared to the Bitcoin testnet as follows. First,
we connect to only 200 out of 1 700–1 800 nodes (as of the time of the experiment [262]).
Second, Monero does not use the three-step transaction propagation (inv – getdata

3.3. Experimental evaluation 39

– tx), which may have opposite effects on clustering quality. On the one hand, re-
laying a transaction unconditionally to all neighbors increases the probability that
we receive a new transaction from a node other than the source of one of its entry
nodes. On the other hand, this broadcast type may provide a near-perfect insight
into transaction sources, if the attacker connects to all or nearly all nodes. Third,
monerod connects to nodes slower than bcclient, which impedes data collection.
In our experiment, while trying to connect to 200 nodes, we obtain 150 connections
after approximately 2 hours, 175 connections after 3 hours, 200 connections after
nearly 8 hours.

Monero uses hard-coded DNS seeds and seed IP addresses for bootstrapping
(see Chapter 2.2.1). As of July 2018, all DNS seeds fail to resolve. The official client
falls back to seed IP addresses.

3.3.2 Results for mobile wallets

We perform analogous experiments on Bitcoin (testnet and mainnet) and Zcash is-
suing transactions from selected mobile wallets for Android. Most mobile wallets
connect to the P2P network via a trusted server maintained by the wallet’s develop-
ers. We refer to wallets that connect to the P2P network directly as P2P wallets. Most
P2P wallets rely on the BitcoinJ library for networking. None of them uses broad-
cast randomization. Unlike Bitcoin Core, BitcoinJ sends tx unconditionally.5 The
BitcoinJ developers acknowledge that the three-step inv – getdata – tx exchange
in Bitcoin Core improves privacy, but argue that since SPV nodes have a weaker
privacy model, the three-step broadcast would only decrease efficiency.

We choose a diverse selection of mobile wallets for our experiments: Bitcoin-
only and multi-coin, with centralized and P2P networking. We perform experi-
ments on the Bitcoin testnet (Bitcoin wallet), the Bitcoin mainnet (Bitcoin wallet,
BRD, Coinomi, Mycelium), and Zcash (Coinomi). Bitcoin wallet and BRD6 use P2P
broadcast. Coinomi and Mycelium use centralized broadcast. For wallets with cen-
tralized broadcast, we only issue one set of transactions, using it as a “label” for a
presumed wallet cluster. If our transactions form a visible cluster, we inspect the
IP addresses of nodes among the first ones to broadcast them. Thus we infer the IP
addresses of nodes likely to be used for transaction broadcasts for this wallet. This
information allows us to associate subsequent transactions with popular wallets.

The correlation matrices exhibit a block-diagonal structure (Figure 3.13), as ex-
pected. The clusters are clearly visible for the Bitcoin wallet on testnet, for which we
obtained the anonymity degree of 0.5089. The adjusted anonymity degree for the
Bitcoin mainnet is 0.8646 for Bitcoin wallet, 0.8413 for BRD, and 0.9117 for Coinomi.
Similar to the results with a desktop node as a transaction source, the picture for the
Bitcoin mainnet is much less clear because of more transactions and nodes overall
and a smaller number of connections that we establish.

Estimating the IP addresses of wallet’s nodes

Apart from clustering transactions, an adversary might be interested in obtaining the
IP address of the nodes that a centralized wallet uses for transaction broadcast. The

5Note that in this case a full node receiving a tx message from an SPV node can be sure that the
transaction originates at that SPV node, whereas receiving an inv announcement from a full node
may also be a re-broadcast. This demonstrates the privacy enhancement of exclusively connecting to a
trusted node for SPV.

6Bitcoin wallet and BRD are the two most popular Bitcoin clients [403].

40 Chapter 3. Deanonymization of transactions with network analysis

(A) Bitcoin testnet, Mycelium. (B) Bitcoin testnet, Bitcoin wallet.

(C) Bitcoin mainnet, Bitcoin wallet. (D) Bitcoin mainnet, BRD.

(E) Bitcoin mainnet, Coinomi. (F) Zcash, Coinomi.

FIGURE 3.13: Transaction clustering for mobile wallets.

3.3. Experimental evaluation 41

IP address of a centralized wallet’s node may not necessarily be secret. Still, linking
Bitcoin transactions with IP addresses may reveal which wallet a victim is using.
The adversary can later leverage this information for social engineering attacks.

We test this attack scenario in two experiments (Figure 3.13). In the first exper-
iment, we consider the Bitcoin testnet and Mycelium wallet. The Mycelium trans-
actions exhibit a clearly visible cluster: they are quickly announced from the same
two IP addresses. The time difference between these announcements is in single
milliseconds. Other nodes re-broadcast then only after tens or hundreds of millisec-
onds. According to IP geolocation services, the two nodes are located in Germany
(2a01:4f9:2b:4ca::2) and in Helsinki, Finland (95.216.68.181). A reverse DNS
lookup service robtex.com suggests that one of these IP addresses corresponds to
a URL electrumx-b.mycelium.com. Both IP addresses belong to Hetzner (a cloud
provider) and host Bitcoin nodes with a latency of 25 ms [52]. We estimate that
each of these nodes offers more than 700 connection slots in a separate experiment.
The second experiment considers Zcash and Coinomi wallet. Though the Coinomi
transactions do not form a clear cluster, we observe that some of them (in the second
cluster) are quickly announced from the same IP (5.79.123.194), which, we assume,
is one of Coinomi’s nodes.

Comparison with prior work

Multiple research works propose deanonymization techniques for cryptocurrencies.
However, few of them quantify their results based on ground truth data, i.e., by
deanonymizing transactions known to have originated from one source. For in-
stance, one of the earliest papers [254] clusters Bitcoin transactions using transaction
graph heuristics and known deanonymized addresses as a starting point. However,
it does not provide a way to verify how many of the addresses assigned, for example,
to the cluster of an exchange, actually belong to it.

The same is mostly true for related work on network analysis. As outlined in
Section 2.4.1, the most closely related prior work is [222, 37, 279]. In [222], the first
relayer heuristic is used. However, after refining the results to eliminate likely false
positives, the authors conclude that most results are based on anomalous propaga-
tion and have limited applicability.

In [279], two clustering methods are compared: based on transaction graph anal-
ysis and networking analysis (first relayer heuristic with optimizations). The authors
find little correlation between the two types of clusters. Less than 8% of clusters from
transaction graph analysis correspond to a single IP address. No evaluation based
on the ground truth has been performed.

Only in [37] do the authors estimate the success using their own transactions, in
addition to theoretical calculations. They achieve a success rate of nearly 60% on the
Bitcoin testnet, over a set of 424 transactions.7 This means that 60% of the testnet
transaction issued from a given entry set are correctly identified as such.

Our method seems more promising since it tries to use all the available informa-
tion, including timing. In the experiment on the Bitcoin testnet (Figure 3.5), 24 out
of 30 control set transaction are assigned to one cluster. Additionally, 7 transactions

7The experiments described in [37] were conducted in 2014. Since then, Bitcoin Core implemented
stricter rules on chains of unconfirmed transactions. The length of such chains is now restricted to 25
by default [103, 266, 247]. This limits our ability to emit a large number of transactions during one
experiment. This issue does not apply to Zcash, as its source code was forked from Bitcoin Core before
the relevant changes were introduced. However, the limitation in the Zcash experiments is the time
required to generate a shielded transaction (around 30 seconds on a consumer laptop as of 2018). As of
2020, after a series of protocol optimizations, generating a shielded Zcash transaction takes 2-3 seconds.

robtex.com
electrumx-b.mycelium.com

42 Chapter 3. Deanonymization of transactions with network analysis

not from the control set have been put into this cluster. Therefore, we achieve a false
positive rate of 23% and a false negative rate of 20%. This corresponds to the success
rate of 80%, which is higher than 60% reported in [37].

We should note however that while our method is promising, more statistical
evidence is needed to quantify its advantage over previous methods precisely.

3.4 Attack cost estimation

We now estimate the resources required for a full-scale attack on the Bitcoin main-
net. The Bitcoin mainnet consists of approximately 10 000 nodes reachable at any
given time [52]. Bitcoin nodes provide 43 connections slots on average (measured on
1 000 random nodes). The size of an inv message is “36x + const for message with
x objects” [48]. We assume that an inv for a single transaction requires 40 bytes.
Bitcoin processes around 250 000 transactions per day (as of November 2018), or
2.89 transactions per second. Assuming each connection eventually relays each
transaction, we arrive at the required bandwidth for one connection slot: 2.89× 40 =
115.6 B/s. A full-scale attack on the Bitcoin mainnet would require maintaining an
average of 43 connections to 10 000 nodes, i.e., a total bandwidth of 115.6× 10 000×
43 = 49 708 000 B/s = 47.4 MB/s = 379 Mbit/s. An hour-long attack at this band-
width will require receiving approximately 167 GB of incoming traffic.

We estimate the attack cost based on the cost of running a full Bitcoin node. Var-
ious estimations put that cost between 3 and 20 US dollars per month [416, 95]. By
default, Bitcoin nodes relay transactions through 8 outgoing connections and accepts
up to 117 incoming connections.8 Assuming an average node has a total of 125 con-
nection slots, 125− 43 = 82 slots eventually get occupied. An adversary needs to
maintain 10 000× 43 = 430 000 connections, or approximately 5 244 times more than
a regular node. Considering that one month (30-days) is 720 hours, we conclude that
an estimated cost of an hour-long attack is approximately 5244÷ 720 = 7.3 times the
monthly cost of running a regular full node. That leads to an estimation of band-
width costs between 20 and 150 USD. The total cost of the attack is on the order of
hundreds of US dollars (taking into account the cost of computation and storage).
We conclude that the attack is well within reach of even low-budget adversaries. All
our experiments on the Bitcoin testnet and Zcash mainnet cost 35 USD, which can
likely be decreased by optimizing the scripts and storing data locally.

3.5 Discussion and countermeasures

Our technique performs well on relatively small networks (Bitcoin testnet, Zcash)
and works to some extent on Bitcoin. We expect a resourceful attacker to achieve
better results on the Bitcoin mainnet by establishing more connections.

Application-level cryptographic countermeasures, such as zero-knowledge proofs
in Zcash, cannot defend against our attack. We only consider transaction hashes
and their announcement times, ignoring their content. Overlay networks such as
Tor [381] are a popular mitigation for deanonymization attacks. In our case, trans-
actions announced from the same Bitcoin node would form a cluster, even if they
are sent to this node through Tor. Moreover, broadcasting transactions via Tor may
introduce man-in-the-middle vulnerabilities [40].

8The experiments were performed before Bitcoin Core introduced two more connections for block
propagation. In any case, blocks are outside of the scope of our technique [104].

3.5. Discussion and countermeasures 43

Our method’s main limitation is the assumption that a user issues multiple trans-
actions during a relatively short time frame through the same set of entry nodes
(i.e., the same session). Transactions issued from different sessions would not be
linkable by our technique.

Practical countermeasures against transaction clustering depend on the wallet
type. For a full node that accepts incoming connections (a server):

• run the node with more outgoing connections to dilute the quality of the topo-
logical fingerprint;

• introduce random delays on top of those implemented in the node software;

• drop connections to randomly chosen entry nodes and establish new ones,
constantly altering the set of entry nodes;

• advise users not to broadcast sensitive transactions within a short period (if
the node is used for broadcasting users’ transactions).

Users of full nodes without incoming connections (e.g., behind NAT) may wish
to re-launch the software to issue each transaction through a new set of entry nodes.

Proposed countermeasures for SPV nodes would be:

• use wallets with P2P broadcast (e.g., Bitcoin wallet for Android [44]);

• if using wallets with centralized broadcast, use different wallets for transac-
tions not meant to be linkable;

• connect to a trusted full node.

All users should avoid sending multiple transactions within a short time frame.
Note that an attacker may leverage external information to increase clustering

accuracy, such as known addresses of exchanges and other service providers [400].

Dandelion and Erlay The key property of the currently used cryptocurrency P2P
protocols that we exploit is that nodes do not distinguish between incoming and
outgoing connections. A node announces transactions to a random subset of con-
nections. This allows a well-connected listener to receive more information by initi-
ating more connections. For instance, by saturating 50% of a node’s connection slots,
a listener has a 50% chance to be the first to receive a new transaction from it.

Dandelion [160] is a P2P protocol for cryptocurrencies (see Section 2.2.2). It is an
effective countermeasure against our attack.9 In Dandelion, nodes choose neighbors
for the stem phase from their outgoing connections only. An attacker has no easy
way to force a remote peer to initiate a connection. Therefore, a malicious node
with many outgoing connections does not have an advantage in the stem phase. It
can only aggregate incoming information while acting as a regular relay, gaining
some but not much insight into possible transaction clusters. The same applies to
Erlay [277] – a P2P protocol for a more efficient transaction broadcast in Bitcoin.

9The authors mention ([160], Section 4.2) that some configurations of the protocol may be prone to
transaction correlation attacks.

44 Chapter 3. Deanonymization of transactions with network analysis

3.6 Conclusion

We have studied the state of anonymity of cryptocurrencies on the network level.
We have described and implemented a novel transaction clustering method based
on the analysis of transaction announcements. We have implemented and tested our
technique on four popular cryptocurrencies using a variety of wallets.

Our results show that Bitcoin and the major privacy-focused cryptocurrencies
do not sufficiently defend against network-based transaction clustering. A low bud-
get adversary can accurately link transactions that originate from the same node.
A similar technique allows an attacker to infer the IP addresses of nodes used for
transaction broadcast by mobile wallets. Cryptocurrencies should defend against
network analysis to provide stronger privacy guarantees.

45

Chapter 4

Privacy of cryptocurrency wallets

Smartphones have become the primary computing device for many millions of peo-
ple and play an increasingly important role in the cryptocurrency ecosystem. In
this Chapter, we study the privacy of mobile cryptocurrency wallets for Android –
the most prevalent mobile operating system.1 We systematize the privacy-related
characteristics of popular wallets and study 23 selected wallets in more detail. We
compare their privacy-related properties and analyze their source code, both manu-
ally and using static analysis tools. Our results show that most mobile wallets do not
follow privacy guidelines. Privacy-conscious users are quite limited in choosing a
mobile wallet for Bitcoin, and even more so – for privacy-focused cryptocurrencies.

4.1 Minimal privacy criteria

We argue that the following privacy criteria are minimally necessary for a mobile
wallet:

1. No registration required. Otherwise, the wallet provider can link together and
deanonymize user’s transactions.

2. Open-sourced code. A malicious closed-source application can track users or
steal their funds. Open-sourced code decreases the risk of backdoors or other
unintended functionality.

3. Private keys generated and stored locally. Otherwise, the server that stores the
keys requires full trust.

4. Direct connection to the P2P network. The wallet should query blockchain
data and broadcast transactions to peers directly and not through a server.
Otherwise, the server can deanonymize and censor transactions.

We check the first criterion by attempting to generate a receiving address in the wal-
let without registering or providing any personal information. If we succeed, we
proceed to check the next criteria. We consider the second criterion met if we find a
publicly available code repository with a fully-fledged Android application that the
wallet’s official website links to.2 We check the third and the fourth criteria based on
the official documentation and the source code.

We compile a list of wallets recommended on the official websites of the consid-
ered cryptocurrencies: Bitcoin, Dash, Monero, and Zcash. We also consider the most
popular wallets (based on the publicly available approximate number of Play Store

1This Chapter is based on [42].
2Strictly speaking, reproducible builds are required to assure that the file in the Play Store is not

modified compared to the repository. We do not check for build reproducibility in this work.

46 Chapter 4. Privacy of cryptocurrency wallets

TABLE 4.1: Minimal privacy criteria for selected wallets.

Wallet C
oi

n
su

pp
or

t

N
o

re
gi

st
ra

ti
on

O
pe

n-
so

ur
ce

Lo
ca

lp
ri

va
te

ke
ys

P2
P

ne
tw

or
ki

ng

Bi
tc

oi
n

D
as

h

M
on

er
o

Z
ca

sh

Abra + + + + - - + ?
Airbitz + - - - - + + ?
ArcBit + - - - + + + -
Bitcoin.com + - - - + + + -
Bitcoin wallet + - - - + + + +
Bither + - - - + - + +
BTC.com + - - - - + + -
BRD + - - - + + + +
Coin.space + - - - + + + -
Coinomi + + - + + + + -
Copay + - - - + + + -
Dash wallet - + - - + + + +
Edge + + + - - - + -
Electrum + - - - + + + +
Ethos + + + + - - ? ?
GreenBits + - - - + + + -
Jaxx + + - + + - + -
Mobi.me + + + + - - ? ?
Monerujo - - + - + + + +
Mycelium + - - - + + + -
Samourai + - - - + + + +*
Simple Bitcoin + - - - + + + +
Zelcore + - - + - - + -

downloads). The following wallets satisfy these criteria (Bitcoin unless specified):
Bitcoin wallet, Bither, BRD, Dash wallet (Dash), Electrum,3 Monerujo (Monero), Sim-
ple Bitcoin (marked in bold in Table 4.1). No multi-currency wallets and no Zcash
wallets satisfy these criteria.

4.2 Analysis of selected wallets

The following wallets have passed the minimal privacy criteria: Bitcoin Wallet, Bither,
BRD, Dash Wallet, Electrum, Monerujo, and Simple Bitcoin. We add the Samourai

3Electrum is originally a desktop application; the official GitHub repository gives instructions on
how to generate an APK file using Kivy GUI. Electrum wallet relies on an independent network of
nodes (Electrum servers) to receive blockchain data and broadcast transactions. Though Electrum
servers are not genuine cryptocurrency P2P nodes, we consider Electrum satisfy the P2P criteria, as a
user can technically choose which Electrum servers to connect to, including their own trusted server.

4.2. Analysis of selected wallets 47

TABLE 4.2: Alternative installation methods of selected wallets.

Bi
tc

oi
n

W
al

le
t

Bi
th

er

BR
D

D
as

h
w

al
le

t

El
ec

tr
um

M
on

er
uj

o

Si
m

pl
e

Bi
tc

oi
n

Bi
tc

oi
n.

co
m

M
yc

el
iu

m

C
oi

no
m

i

Ja
xx

C
op

ay

A
ir

bi
tz

Sa
m

ou
ra

i

F-Droid + - - - - + + - - - - - - -
APK + + - - + + + + + + - - - -

wallet to our list due to its heavy emphasis on privacy.4 We now study these wallets
in more detail.

4.2.1 Manual inspection

Independent installation Users usually install Android applications from the Play
Store, which requires a Google account. A privacy-conscious user may want to
avoid linking their cryptocurrency activity with their Google profile. They may
use F-Droid (an independent application store for free and open-source applica-
tions [156]) or install the application manually from an APK file. Out of the seven wal-
lets we considered, three are available in F-Droid, and five can be installed from an
APK file (see Table 4.2).

Permissions Android permissions restrict access to sensitive user information and
device functionality. Application developers declare the necessary permissions in
the application’s manifest file. The user grants permissions at installation time or run-
time.5 Permissions that give access to critical functionality or personal information
are referred to as dangerous [10].

Wallets vary in the number and importance of permissions they require (Table 4.3,
dangerous permissions in bold). Airbitz requires the highest number of permissions
(15). Two applications require access to coarse and fine location (Airbitz, BRD) and
sending SMS (BRD, Samourai). Electrum requests the lowest number of permis-
sions – four (three of them dangerous). All wallets require at least one dangerous
permission – camera access, required to scan cryptocurrency addresses presented as
QR codes.

Privacy policies Google Play store rules prescribe all Android applications that
handle “personal or sensitive user data” to declare a privacy policy. We compare the
privacy policies of the selected wallets (Table 4.4).

Privacy policies of some wallets (Bitcoin wallet [45], Dash wallet [112], Bither [49],
Monerujo [263]) are relatively concise and only justify the use of some of the required
permissions. Privacy policies of BRD [63] and Electrum [137] are more elaborate.
Bither privacy policy provides the rationale behind requiring permission to record
audio: it allows for “collecting ambience entropy for XRandom.” BRD uses cook-
ies, trackers, and third-party providers for analytics: Google Analytics and Firebase.
These tools allow wallet developers to analyze crash reports and collect application
usage patterns. Such data may be used to link users’ activity with unique identifiers

4Strictly speaking, Samourai did not pass our initial test: it connects to a remote node via RPC, not
P2P, and requires full control over it [389]. We mark it with “+*” in Table 4.1.

5Starting from Android 6.0.

48 Chapter 4. Privacy of cryptocurrency wallets

TABLE 4.3: Permissions of selected wallets.

Bi
tc

oi
n

W
al

le
t

Bi
th

er

BR
D

D
as

h
w

al
le

t

El
ec

tr
um

M
on

er
uj

o

Si
m

pl
e

Bi
tc

oi
n

Bi
tc

oi
n.

co
m

M
yc

el
iu

m

C
oi

no
m

i

Ja
xx

C
op

ay

A
ir

bi
tz

Sa
m

ou
ra

i

read storage + + + + + + + + + + + + + +
modify storage - + + + + + + + + + + + + +
take pictures + + + + + + + + + + + + + +
coarse location - - + - - - - - + - - - + -
fine location - - + - - - - - - - - - + -
send SMS - - + - - - - - - - - - - +
view connections + + + + - - - + + + + + + +
Bluetooth + + - + - - - - - + - - + -
full network access + + + + + + + + + + + + + +
control NFC + - - + - + - - + + - - + -
run at startup + + - + - - - - - + - - + +
control vibration + + - + - - + - + + - + - +
prevent sleeping + + + + - + - + + + - + + -
upd component usg - - + - - - - - - - - - - -
receive data - - + - - - - + + + - + - -
background work - - + - - - - - - - - - - -
display settings - - + - - - - - - - - - - -
disable screen lock - - + - - - - - - - - - - -
retrieve running apps - + - - - - - - - - - - - -
record audio - + - - - - - - - - - - - -
view Wi-Fi - + - - - - - - - - - - - -
send sticky broadcast - + - - - - - - - - - - - -
read phone status - - - - - - - + + - - + - +
read service config - - - - - - - + - - - - - -
license check - - - - - - - - + - - - - -
find accounts - - - - - - - - - - - - + -
read contact card - - - - - - - - - - - - + -
Bluetooth settings - - - - - - - - - - - - + -
use accounts - - - - - - - - - - - - + -
receive SMS - - - - - - - - - - - - - +
reroute out calls - - - - - - - - - - - - - +
Total permissions 9 13 14 10 4 6 5 9 12 11 5 9 15 11

4.2. Analysis of selected wallets 49

TABLE 4.4: Privacy policies of selected wallets: information that the
developers may obtain.

Bi
tc

oi
n

W
al

le
t

Bi
th

er

BR
D

D
as

h
w

al
le

t

El
ec

tr
um

M
on

er
uj

o

Si
m

pl
e

Bi
tc

oi
n

Bi
tc

oi
n.

co
m

M
yc

el
iu

m

C
oi

no
m

i

Ja
xx

C
op

ay

A
ir

bi
tz

Sa
m

ou
ra

i

IP address - - + - + (+) ? - ? + - + + +*
browser version - - + - - (+) ? - ? + - ? + +
pages visited - - + - - (+) ? - ? + - ? + +
time of visit - - + - + (+) ? - ? + - ? + +
unique device ID - - + - - (+) ? - ? - - ? ? -
other diagnostics - - + - + (+) ? - ? + + ? + +
type of device - - + - - (+) ? - ? - - ? + +
OS type - - + - + (+) ? - ? + - ? + +
location - - + - - (+) ? - ? + - ? - -
device name - - - - + - ? - ? - - ? ? -
app configuration - - - - + - ? - ? - - ? - -
pages visited before - - - - - (+) ? - ? + - ? - -
browser plug-ins - - - - - (+) ? - ? - - ? - -
time zone - - - - - (+) ? - ? - - ? - -
“clickstream” - - - - - (+) ? - ? - - ? - -
cookies - - + - - - ? - ? - + ? + +
analytics - - + - + - ? - - - - ? + +

of their devices. Simple Bitcoin has no privacy policy. The link from Google Play
refers to the wallet’s official website [349], which does not specify whether the ap-
plication collects, stores, or transmits the users’ data. Monerujo privacy policy notes
that the application uses the exchange rates from the public API of kraken.com, and
an exchange service xmr.to, which are subjects to their privacy policies (marked
with (+) in Table 4.4). Mycelium transmits a report to the developers’ server in case
of a crash. The developers claim they “took care that it does not contain unnec-
essary privacy relevant information.” The Samourai wallet collects users’ IP ad-
dresses “with replaced last byte,” which can hardly be considered anonymization:
one may still infer the approximate location from the first three bytes of the IP ad-
dress (marked with “+*” in Table 4.4). Airbitz broadcasts transactions through Elec-
trum servers; a user may choose a server. In many cases, the link to the privacy pol-
icy from the wallet’s Play Store page leads to the privacy policy of the corresponding
website, not the wallet.

Networking All wallets with P2P transaction broadcasting except Monerujo use
hard-coded DNS seeds to bootstrap. Simple Bitcoin adds one random node from a
hard-coded list to a list of peers obtained via bootstrapping.6 Electrum connects to
two random servers from a hard-coded list of 52 servers. It requests the transaction
history from a single server and checks it against block headers sent by other servers.
Monerujo lets the user either choose from three hard-coded URLs that resolve to a

65.9.104.252, 213.133.103.56, 213.133.99.89; all unreachable as of 2018.

kraken.com
xmr.to
5.9.104.252
213.133.103.56
213.133.99.89

50 Chapter 4. Privacy of cryptocurrency wallets

TABLE 4.5: Networking characteristics of selected wallets.

Bi
tc

oi
n

W
al

le
t

Bi
th

er

BR
D

D
as

h
w

al
le

t

El
ec

tr
um

M
on

er
uj

o

Si
m

pl
e

Bi
tc

oi
n

Bi
tc

oi
n.

co
m

M
yc

el
iu

m

C
oi

no
m

i

Ja
xx

C
op

ay

A
ir

bi
tz

Sa
m

ou
ra

i

Trusted node + - - + + + + - - - - - + +
F-Droid download + - - - - + + - - - - - - -
APK download + + - - + + + + + + - - - -
Uses BitcoinJ + - - + - - + - + + - - - +
Net monitor + + ± + ± + -
Connections 4-6 6 3 4-6 2 1 10

list of publicly available nodes 7 or provide the credentials for connecting to a custom
node.

We tried to connect Bitcoin wallets with P2P broadcast to our own full node.
Bitcoin wallet and Simple Bitcoin did connect,8 BRD did not. Bither did not provide
this option.

Wallets with P2P networking have a network monitor that displays the IP ad-
dresses of connected nodes. BRD shows only the IP of the “primary node” (without
specifying what it means). Electrum shows the address of the server used to query
the transaction history (other servers are used to check it). Simple Bitcoin only shows
the number of connected peers. The number of established connections varies from
wallet to wallet.

The summary of the networking characteristics is presented in Table 4.5.

4.2.2 Static analysis

We analyzed the source code of the selected wallets using two tools: FlowDroid and
SmartDec Scanner.

FlowDroid

FlowDroid [15] is an open-source static analysis tool.9 It uses data flow analysis
to detect execution paths that transfer data from sources (functions that may return
sensitive data) into sinks (functions that send data elsewhere). FlowDroid fails to
scan Bitcoin wallet, Bither, and Monerujo (stopped after a 2 hour timeout). Samourai
has not been scanned because of the unavailability of the APK file.10 FlowDroid
detected potential data leaks in 8 out of 14 applications (see Table 4.6).

SmartDec Scanner

We scan the wallets with a proprietary static analysis tool SmartDec Scanner [354].
We manually inspect the results and summarize the most prevalent privacy-related

7node.moneroworld.com:18089, node.xmrbackb.one, node.xmr.be
8Version strings: /bitcoinj:0.14.7/Bitcoin Wallet:6.29/, /bitcoinj:0.14.4/Bitcoin:1.075/.
9The source code is available at [166].

10The application was marked as “unreleased” in the Play Store at the time of the experiment, which
prevented us from obtaining the APK.

node.moneroworld.com:18089
node.xmrbackb.one
node.xmr.be

4.2. Analysis of selected wallets 51

issues, in a roughly decreasing order of potential threat. Note that these issues do
not directly lead to exploits.

Leak to external storage Android provides internal and external storage.11 An
application can only access its own directory in the internal storage. External storage
is available to other applications.

Sensitive data should only be kept in internal storage. Android automatically
backs up data and settings of applications that did not opt out.12 Automatic backups
should be disabled for privacy-critical applications.

XSS attacks via Javascript in WebView One method of developing dynamic user
interfaces on Android is using JavaScript inside a WebView – an Android compo-
nent that displays web pages. By default, execution of JavaScript code in WebView is
disabled, but a developer can override this setting (setJavaScriptEnabled(true)).
Executing malicious JavaScript code may lead to cross-site scripting (XSS) and other
attacks.13 We detect two instances of this issue in BRD (in FragmentSupport and
WebViewActivity classes). In both cases, the warning from Android Lint – a static
analyzer built into the standard Android development environment – is suppressed.

Insecure connection In Java, the X509TrustManager class specifies the parame-
ters of a TLS connection. A developer can override its methods to accept all cer-
tificates. Accepting certificates that are not authenticated by a chain of signatures
up to a trusted root CA may lead to a man-in-the-middle attack. Connections be-
tween Electrum servers, unlike the Bitcoin protocol, are encrypted and authenti-
cated with TLS. Bitcoin wallet and Dash wallet, in addition to their respective P2P
protocols, use Electrum servers for querying the balance when sweeping a paper
wallet. Bither defines HTTP URLs of its own API (bither.net) and a block explorer
blockchain.info (class BitherUrl), which can lead to displaying incorrect balances
or fake transactions in case of a man-in-the-middle attack. Simple Bitcoin uses five
hard-coded URLs to query current fees. One of them14 uses an unencrypted connec-
tion. A man-in-the-middle attack of a fee estimator may lead to a denial of service
attack (transactions with low fees may never be confirmed), though this scenario
requires four other APIs served over HTTPS to fail simultaneously.

Leak into logs Each Android application can write to its log. Applications can also
read their logs with the READ_LOGS permission. Before Android 4.0, this permission
also granted access to logs of other applications.

It is possible to access logs on a rooted device or using developer tools. All wal-
lets log details about their operation, including error messages, which may include
sensitive data (e.g., the IP address of a trusted node). This issue is present in all wal-
lets, as all wallets use logging in exception handlers. One may find all occurrences
of this issue by searching for the methods of the Log class, print, println, and ex-
ception handlers with ex.printStackTrace(). Further investigation is needed to
determine the impact and probability of data leaks.

11Historically, external storage was assumed to be on a removable memory card, which now may
not be the case.

12By setting android:allowBackup=“false” in the Manifest file.
13Even trusted code, e.g., from the application’s resources, may contain unintended side effects or

bugs, and implicitly leak information.
14http://api.blockcypher.com/v1/btc/main.

bither.net
blockchain.info
http://api.blockcypher.com/v1/btc/main

52 Chapter 4. Privacy of cryptocurrency wallets

TABLE 4.6: Static analysis of selected wallets.

Bi
tc

oi
n

W
al

le
t

Bi
th

er

BR
D

D
as

h
w

al
le

t

El
ec

tr
um

M
on

er
uj

o

Si
m

pl
e

Bi
tc

oi
n

Bi
tc

oi
n.

co
m

M
yc

el
iu

m

C
oi

no
m

i

Ja
xx

C
op

ay

A
ir

bi
tz

Sa
m

ou
ra

i

Leaks (FlowDroid) 0 4 3 1 0 2 1 0 6 4 0 0 4 ?
Leak to ext. storage - - - - + - + - - - + + + -
XSS WebView - - + - - - - + - + + + + -
Insecure conn. + + - + - - + - - - - - - -
Leak into logs + + + + + + + + + + + + + +

The summary of the results obtained with static analysis (both FlowDroid and
SmartDec Scanner) is presented in Table 4.6.

4.3 Conclusion

We have studied Android wallets for Bitcoin and the major privacy-focused cryp-
tocurrencies. Most wallets do not satisfy our minimal privacy criteria. Many wallets
obtain dangerous permissions and potentially leak users’ private information. Static
analysis reveals defects in their source code.

Secure development practices are especially relevant for application targeting
mobile devices, which store lots of personal data and can be easily lost or stolen.
Mobile developers should require as few permissions as possible, open-source the
code, provide alternative installation methods (F-Droid, direct APK download), and
implement other privacy-preserving measures to protect their users’ privacy.

53

Part II

Privacy of the Lightning Network

55

Chapter 5

Introduction to Lightning Network

Bitcoin’s security model assumes that every node must be able to validate every
transaction, which severely limits transaction throughput. Layer-two, or off-chain
protocols provide a solution. They allow the participants to exchange value without
broadcasting every transaction to the blockchain. Conflicts can be resolved on the
blockchain, preserving some of its security guarantees. Moving most transactions
off the blockchain increases the throughput without modifying the base protocol
(also referred to as layer-one in this context).

Most Bitcoin-based layer-two protocols implement on the concept of payment
channels. A payment channel is a protocol for off-chain payments.1 It allows two par-
ties to continuously update the distribution of the initially committed funds. This
Chapter provides the background on the evolution of payment channels and the
most prominent implementation of this idea – the Lightning Network.

5.1 Evolution of payment channels in Bitcoin

To put our work in a historical context, we now describe the evolution of Bitcoin-
based payment channels.2

5.1.1 Transaction replacement with sequence numbers

The first protocol for re-negotiating unconfirmed transactions, proposed by Satoshi
Nakamoto [190], uses two transaction fields: sequence number (nSequence) and
timelock (nLockTime). nSequence acts as a counter. nLockTime mandates a time be-
fore which a transaction cannot be included in a block. In the transaction replace-
ment protocol, two parties sign a series of transactions with increasing sequence
numbers and a timelock set to a point in the future. The final state is confirmed after
the timelock expires. The major drawback of this approach is that sequence numbers
are not enforceable. Miners have no economic incentives to prioritize a transaction
with a higher sequence number if it offers a lower fee than a conflicting transaction
with a lower sequence number. They even enjoy a degree of plausible deniability:
they may claim that they have not heard of the later transaction versions, which may
happen without malicious intent due to delays in the P2P network.

1We follow the terminology of [13]: a transaction is a data structure that records the transfer of
control over bitcoins, whereas a payment is a process of moving value across one or multiple LN
channels. Each LN payment implies signing and exchanging multiple Bitcoin transactions.

2See [253] for an overview of Bitcoin payment channel designs.

56 Chapter 5. Introduction to Lightning Network

5.1.2 Unidirectional channels

Spillman channels, introduced in 2013, is the first version of unidirectional chan-
nels [360]. This protocol is a modified implementation of Nakamoto’s transaction
replacement protocol. BitcoinJ, a popular Bitcoin library written in Java, supports
this protocol [47].

Consider two channel participants: a customer and a merchant. Initially, they
lock coins into a multi-signature output and create a time-locked refund transaction.
The customer can thus withdraw all funds in case the merchant goes offline. Then
the customer signs a transaction that distributes the coins from the funding transac-
tion in a new proportion, allocating more funds to the merchant, and sends the new
transaction to the merchant. The merchant either co-signs and broadcasts it, closing
the channel, or waits for the next version of the transaction. Shortly before the time-
lock of the refund transaction expires, the merchant broadcasts the latest transaction.
The last transaction closes the channel and confirms the latest agreed-upon balances.

This protocol has two major drawbacks. First, it only supports unidirectional
channels. The customer can pay the merchant but not vice versa. Second, the time-
lock of the refund transaction limits the lifetime of a channel.

A similar unidirectional payment channel design uses CHECKLOCKTIMEVERIFY –
an opcode added to Bitcoin in 2015 [380]. Contrary to nLockTime, which speci-
fies transaction-level timelocks, CLTV allows specifying absolute timelocks for each
transaction output.

State replacement Let us explain why the protocols described so far do not sup-
port bidirectional payments. Consider a channel between Alice and Bob. Initially,
Alice commits 10 coins to a multi-signature address. Thus, she owns 10 coins, and
Bob has none. Alice sends 2 coins to Bob by signing a new transaction that spends
the multi-signature output and sends this transaction to Bob. The update distributes
the coins as follows: 8 coins to Alice, 2 coins to Bob. However, Bob cannot send
1 coin back to Alice. If he signs a new transaction that assigns 1 coin to him and
9 coins to Alice, she would not accept it. She knows that Bob has another valid
transaction that gives him 2 coins. Therefore, he can fraudulently broadcast that
older transaction and effectively cancel his payment.

This issue is called the state replacement problem and is the key challenge in pay-
ment channel design. On the one hand, each channel state transition should be rep-
resented with signed Bitcoin transactions. On the other hand, only one (latest) chan-
nel state should be enforceable on-chain. All previous transactions, representing old
channel states, must be provably invalidated.

The state replacement mechanism in unidirectional channels is called revocation
by incentive [188]. Bob is incentivized to close the channel using the last transaction
because it gives him the largest amount of money. Bi-directional channels require
other state replacement mechanisms.

5.1.3 Replace-by-timelock and Duplex channels

Bidirectional channels can be implemented using timelocks. The two parties ex-
change a series of transactions. Each of them becomes valid at a point in time closer
to the present than the previous transaction. The transaction with the lowest time-
lock represents the latest state. Any channel party can close the channel by submit-
ting the latest state to the blockchain before other states become valid. This protocol

5.1. Evolution of payment channels in Bitcoin 57

has two shortcomings. First, similar to BitcoinJ’s unidirectional channels, timelock-
based bidirectional channels have a limited lifetime. The timelock of the first trans-
action determines when the parties must close the channel. Second, such channels
only support a limited number of updates. The difference between the subsequent
timelocks must be higher than a security margin. Each party must have sufficient
time to close the channel with the latest state before other states become valid. There-
fore, the first timelock and the minimal safe difference between timelocks determine
the maximum number of channel updates. This state replacement mechanism is
known as replace by timelock.

Duplex micropayment channels [116] (DMC) implement bidirectional channels
as pairs of unidirectional channels. The protocol combines replace by timelock and
replace by incentive state replacement techniques. DMC’s key concept is invalidation
tree – a hierarchical transaction structure for invalidating old channel states. The
construction leverages the fact that the first transaction’s timelock defines the valid-
ity of all subsequent transactions in a chain. A follow-up paper [69] describes a way
to share the cost of opening and closing channels among multiple parties.

5.1.4 Poon-Dryja channels (Lightning)

The Lightning Network (LN) [300] overcomes the limitations of earlier payment
channel designs. Lightning channels are bidirectional and have an unlimited lifetime.

Lightning is based on a novel revocation-based state replacement. Each payment in a
channel invalidates the previous one. Though all intermediate states are represented
by valid Bitcoin transactions, broadcasting any of them except the latest one leads
to economic loss: the other party can then withdraw all funds from the channel,
punishing the cheater.

The development of the LN is guided by a set of documents called “Basics of
Lightning Technology” (BOLTs) [59], followed by several implementation teams.
The three most advanced implementations available in 2020 are LND [235] (written
in go), c-lightning [73] (written in C), and Eclair [132] (written in Scala). Implementa-
tions at earlier stages of development include Electrum [135, 136], lit [232], lpd [237],
ptarmigan [308], and rust-lightning [335]. As of September 2020, the LN facilitates
the off-chain exchange of more than 1 000 BTC. A separate Lightning Network op-
erates on top of Litecoin [2] – a cryptocurrency similar to Bitcoin.

Lightning takes advantage of two relatively recent updates in Bitcoin: relative
timelocks and segregated witness. A relative timelock makes a UTXO valid only af-
ter a specified time has passed after the transaction that created this UTXO is con-
firmed. This functionality was implemented in BIP-112 [66] (CHECKSEQUENCEVERIFY)
and activated in 2016. Relative timelocks allow Lightning channels to be left open
indefinitely.

Segregated witness Transaction malleability was a critical roadblock preventing the
development of L2 protocols for Bitcoin. ECDSA signatures used in Bitcoin are mal-
leable, i.e., multiple valid signatures exist for the same message. Therefore, one
can create different transactions with the same semantics but different hashes. Re-
call that a payment channel is initiated in three steps. First, the parties co-sign the
funding transaction that creates a multi-signature output. Second, they co-sign the
refund transaction that spends the multi-signature output and distributes the funds
back in the original proportion. Third, they confirm the funding transaction on the
blockchain.

58 Chapter 5. Introduction to Lightning Network

Note that the refund transaction spends the output of the unconfirmed funding
transaction. Transaction malleability makes this step unreliable. One of the parties
may invalidate the funding transaction by broadcasting a modified version of the
funding transaction with the same semantics but a different hash [189].

Transaction malleability also complicates fraud prevention. L2 protocols assume
that the parties react to broadcasts of old channel states to the blockchain. With
transaction malleability, a hash does not uniquely identify a transaction, which com-
plicates watching the blockchain for relevant events.

Segregated Witness, or SegWit was introduced in 2017 and mitigated transaction
malleability. Originally, the transaction hash was calculated based on all transaction
data, including the signature. SegWit introduced a new category of transaction out-
puts with the witness (i.e., the signature) segregated from other components and no
longer affecting the transaction hash. SegWit opened the way for the practical im-
plementation and deployment of more advanced Bitcoin-based L2 protocols such as
the Lightning Network.

5.2 Lightning Network architecture

We now describe the key details of the Lightning Network protocol.

5.2.1 Nodes

Each LN node is defined by an ECDSA private-public key pair. A persistent node
identifier is derived from the hash of the public key. A user can add a human-readable
alias to their node. Operations from a node are authorized with a digital signature
created with the corresponding signing key. One user can potentially own several
nodes.

Nodes connect to each other in the P2P network identifying themselves by the
IP address and the node ID. Revealing the IP address is optional but is required to
accept incoming connections. Nodes exchange information about the currently open
channels and their fee policies. Nodes communicate with an underlying Bitcoin
node (such as Bitcoin Core) to receive information on the confirmed transactions.3

5.2.2 Channels

A Lightning channel operates in three stages: opening (locking the coins), operating
(performing off-chain payments), and closing (broadcasting the most recent channel
state to the blockchain).

Channel opening

Opening a channel consists of several steps. To open a channel to Bob, Alice estab-
lishes a connection to Bob in the P2P network and issues a request to open a channel.
If the parties agree on channel parameters, they co-sign a funding transaction that es-
tablishes the initial distribution of funds.4. The funding transaction creates a 2-of-2
multi-signature output that can be spent by Alice and Bob together if they agree to
do so.

3Some LN implementations partially support pruned nodes [236].
4While in the initial specifications [300] it was assumed that both parties could fund a channel,

the current LN channels are single-funded: Alice provides all funds and may optionally “push” some
funds to Bob as a gift.

5.2. Lightning Network architecture 59

2. HTLC(u1, u2, y, 1.3, 4)u1
3. HTLC(u2, u3, y, 1.2, 3)

9. r
u2

4. HTLC(u3, u4, y, 1.1, 2)

8. r
u3 7. r

5. HTLC(u4, u5, y, 1, 1)
u4 6. r

1. y := H(r)

u5

FIGURE 5.1: An HTLC-based payment in the Lightning Network.

The channel is open when the funding transaction gets a sufficient number of
confirmations (usually 3 to 6). The capacity of the channel stays constant during its
lifetime.

Channel updates

An LN payment is an atomic update of one or multiple channels. In single-channel
payments, two users agree on an updated balance. In multi-hop payments, the bal-
ances of several channels forming a path are simultaneously updated.

Single-channel payments To send a payment to Bob, Alice negotiates a new chan-
nel state. Each channel state is reflected in a commitment transaction. A commitment
transaction spends the output of the funding transaction and re-distributes the coins
between Alice and Bob.

More precisely, each channel state is encoded in a pair of commitment transac-
tions: one for Alice and one for Bob. These transactions are symmetric: they enforce
a timelock on the party that holds the transaction. In particular, Alice’s version of
a commitment transaction allows her to redeem her output only after a timeout.
Bob’s version imposes analogous restrictions on his output. The timelocks allow the
counterparty to dispute an incorrect channel closure. This mechanism provides eco-
nomic security guarantees to LN channels, assuming the parties are watching the
blockchain sufficiently often.

Outputs of commitment transactions are called hash time-locked contracts (HTLCs).
An HTLC allows a node (u1) to lock x coins in a channel between u1 and u2 and re-
lease them according to the encoded conditions. The terms for the HTLC(u1, u2, y, x, t)
are defined with a hash value y := H(r), an amount x of coins, and a timeout t, as
follows. If u2 reveals a value r such that H(r) = y before t expires, u1 pays x to u2. If
t expires, u1 receives x back.

A simple LN payment proceeds as follows. If Alice wants to send x coins to Bob,
she first asks him for a payment hash. Bob generates r uniformly at random and sends
its hash H(r) to Alice in an invoice message. Alice then offers Bob an HTLC that can
be resolved in one of two ways. Either Bob reveals r and redeems the coins before
time t, or Alice gets the coins back. A payment channel can keep track of multiple
concurrent unresolved, or in-flight HTLCs.

Multi-channel payments A multi-channel payment leverages a path of channels
between a sender and a receiver, who might not share a channel between them. To
initiate a multi-channel payment, the receiver generates a random r and sends its
hash H(r) to the sender. The sender then constructs a path to the receiver and sets
up an HTLC with the next node in the path. The second node sets up an HTLC with
the same hash value with the third node, and so on. Finally, the receiver redeems the
payment from the last channel by revealing r, which allows all involved channels to
be updated.

60 Chapter 5. Introduction to Lightning Network

Note that all HTLCs along the path use the same hash value y = H(r) to achieve
atomicity. If the receiver reveals r, all channels are updated. Otherwise, none of
them are.

An illustrative example of an HTLC-based payment is depicted in Figure 5.1.
Here, the user u1 transfers 1 coin to u5 using u2, u3, and u4 as intermediaries. For
that, u5 locally chooses a value r uniformly at random, computes the cryptographic
challenge for the HTLC as y := H(r), and sends y to the sender in an invoice (step 1).
Then, the payment starts with a commit phase (steps 2-5) where every pair of nodes,
starting from the sender, establishes an HTLC using y. After the commit phase is
finished, the payment enters the release phase. Here, the receiver reveals r to u4 to
fulfill the contract (step 6), triggering the release phase where every pair of nodes
fulfills their contract from the receiver to the sender (steps 6-9).

Intermediaries may charge fees for their forwarding service. For instance, u2 re-
ceives 1.3 coins but only forwards 1.2 coins, getting a fee of 0.1 coins. No fees are
collected if a payment fails, as all pending balance updates roll back. In the LN im-
plementations, the fee consists of two parts: a constant base fee for each payment and
a fee rate proportional to the payment value.5

The time parameter of the HTLCs along the path decreases to guarantee a safety
margin between the timeouts. For example, the HTLC between u1 and u2 sets a
timeout of four days, whereas the timeout in the HTLC between u2 and u3 is only
three days. The difference between the timelocks ensures that u2 has enough time to
settle the contract with u1 after receiving r from u3, even if u3 reveals the preimage
at the last moment. We observe an inherent trade-off regarding timeout lengths. If
timeouts are short, a victim of a malicious channel closure may be unable to dispute
it if the blockchain is congested at that time. If timeouts are long, an attacker can
route many unsettled payments through a channel and effectively block it until the
timelock expires.

Multi-path payments use onion routing to enforce the order of intermediary
nodes. Each intermediary node only knows the immediately previous and next
nodes, but not the final sender or receiver and not its position in the path.

Channel closure

A channel is closed when a transaction that spends the output of the funding trans-
action gets confirmed on-chain. Channel closure may happen in one of three ways:

• Collaborative closure. Alice signals the intent to close the channel, and Bob
cooperates in signing the transaction that reflects the latest channel state. Col-
laborative closure results in one on-chain transaction and imposes no delays.
Both parties must be online and cooperating.

• Non-cooperative closure without breach. Alice signals the intent to close the
channel, but Bob does not respond. In this case, Alice publishes the latest com-
mitment transaction on the blockchain. Bob can redeem his output immedi-
ately, but Alice has to wait until a timeout expires. This safety measure allows
Bob to broadcast a justice transaction if Alice were trying to broadcast an old
commitment transaction.

5The LN fee structure is different from Bitcoin fees, where the fee is proportional to transaction
weight (roughly speaking, size in bytes) but does not account for the transaction value. As of 2019, LN
fees are largely non-economical [32].

5.2. Lightning Network architecture 61

• Non-cooperative closure with a breach. Alice broadcasts an old commitment
transaction, thus potentially stealing from Bob. If Bob does not react before
the timelock on Alice’s output expires, Alice can redeem her output, and the
channel is closed.6 If Bob is online and notices the breach before the timeout,
he broadcasts the justice transaction that closes the channel and spends Alice’s
output before she can spend it, punishing her for the cheating attempt.

This state replacement mechanism makes Lightning superior to earlier payment
channel designs. Lightning channels have an unlimited lifetime (the parties do not
have to close the channel if none of them wants to) and support bi-directional pay-
ments. However, the parties must be online to notice potential malicious channel
closures and broadcast justice transactions. LN users may outsource this function
to watchtowers – entities that watch the blockchain for malicious channel closures
and dispute them on the user’s behalf. Implementing effective, economically incen-
tivized, and privacy-preserving watchtowers in an active area of research [252].

The LN’s revocation technique has proved useful as deterrence against malicious
channel closures. As of July 2019, only 241 channel closures have been followed by
a justice transaction. This constitutes only 0.7% of channels at that time [50].7

5.2.3 P2P network and path-finding

Lightning network is source-routed. The sender determines the path to the receiver.
LN nodes gossip about new channels available for routing. Based on this informa-
tion, each node maintains a local model of the network graph and uses it to generate
routes to the receiver. The total capacities of public channels are known. The sender
only considers channels with the capacity larger than x for a payment of amount x.

However, this is insufficient to prevent routing failures. The ability of channel
parties to send or forward payments is limited by their local channel balances. Con-
sider an example. After Alice opens a channel with Bob, all funds are initially on her
side. She can send up to the total capacity, but she cannot receive payments. As the
local balances change, the routing capabilities of the channel in both directions also
change.

The lack of information about local channel balances makes routing unreliable,
especially for larger amounts. If a payment fails, an error message notifies the sender
which channel has failed. The sender then tries a different route. The process repeats
until the payment succeeds.

5.2.4 The future of Lightning

The future of the LN depends in part on the planned modifications in the Bitcoin
protocol. Such changes usually take years to implement, test, and roll out. Let us
outline some of the directions for future developments of Lightning.

6From the on-chain point of view, a non-disputed non-cooperative close is indistinguishable from a
non-cooperative close without a breach. Layer-one does not know whether a commitment transaction
is the last one, unless this fact is disputed.

7The research is based on the LN’s on-chain footprint and may not show the full picture. A non-
cooperative closure followed by a justice transaction may also happen without malicious intent, for
example, if a channel is incorrectly restored from backup (where Alice’s node “forgets” about the latest
state and broadcasts an earlier state assuming it is the latest one).

62 Chapter 5. Introduction to Lightning Network

Schnorr-Taproot Schnorr signatures is a digital signature algorithm that is consid-
ered preferable to ECDSA currently used in Bitcoin.8 In particular, this signature
scheme allows for arithmetic on signatures. In the context of Bitcoin, this makes
multi-signatures indistinguishable from signatures with a single signer. Schnorr sig-
natures are being integrated in Bitcoin as part of a complex Schnorr-Tapscript-Taproot
update [195]. In the LN context, Schnorr signatures allow for privacy improve-
ments, making Lightning-related transactions indistinguishable from other trans-
action types to an external observer.

Eltoo Eltoo9 is an alternative payment channel proposal proposed in 2018 [115]. In
Eltoo, intermediary transactions are linked linearly, unlike the LN, where they spend
the same funding transaction output. On channel closure, the final transaction is
“re-attached” to the funding transaction’s output allowing for more efficient state
replacement.

Eltoo requires a new signature flag – SIGHASH_NOINPUT [114]. A signature flag
specifies whether a transaction signature commits to all or only some of the inputs.
Allowing a transaction to not commit to any input allows for “re-attaching” it to any
compatible output. If SIGHASH_NOINPUT is deployed, this replacement mechanism
can be used in the LN or a separate payment channel network.

5.3 Research directions in payment channel networks

Multiple research works have shed light on various aspects of payment-channel net-
works, such as security [240, 216], liquidity [109, 267, 96], topology [246, 345], and
routing [142, 305, 242, 187, 287, 294, 329, 351, 20, 295, 297, 420, 419, 418]. Security
and privacy are the directions most relevant to our work.

Security Payment channel networks operate in a permissionless environment and
should be resilient to attacks. For instance, in the current LN design, no fees are
charged if a payment fails, but failed payments consume network resources. An
attacker may leverage this issue to launch a DoS attack. Various DoS attacks have
been described based on route hijacking [379], depleting channel capacity [291], and
exceeding the supported number of concurrent in-flight HTLCs [260].

Privacy From the privacy point of view, layer-two protocols improve upon layer-
one. L2 protocols do not store transactions in a globally distributed open database
available for analysis. However, multiple weaknesses in LN privacy have been iden-
tified. Payment privacy can be breached due to short routes and strong statistical
hints [32]. A potential countermeasure – adding noise to channel balances – has
been shown ineffective [370]. An attack that allows determining channel balances,
similar to our contribution presented in Chapter 6, has also been proposed [194]. A
payment channel protocol called Bolt10 has also been proposed for a privacy-focused
cryptocurrency Zcash [184] and later modified for compatibility with Bitcoin and re-
named to zkChannels [5]. Lightning network privacy remains an active research
area [241, 221, 371, 327, 214].

8US patent [341] covering Schnorr signatures expired in 2008. The patent prevented the implemen-
tation of this signature scheme in the original version of Bitcoin.

9Stylized as eltoo in the original paper.
10Not to be confused with Basics of Lightning Technology (BOLT) – the Lightning Network specifi-

cation.

63

Chapter 6

Probing Lightning channel
balances

The LN protocol provides no method for a node to query the distribution of funds
in remote channels. In this Chapter, we show that this information may not be pri-
vate in practice.1 We demonstrate how a low-resource attacker can infer balances of
most channels by sending a fake payment (a probe) and observing the resulting error.
Our probing method shows better accuracy and cost compared to similar approaches
described in the literature and scales to the whole network. Compared to earlier ap-
proaches [194, 107], we do not need to establish a channel with one of the endpoints
of each target channel. The ability to probe remote channels dramatically reduces
the time and capital required for the attack. Half of the channels can be probed in
under 21 seconds each. The attacker does not spend the committed capital but only
temporarily locks it up. We test our proof-of-concept implementation on the Bitcoin
testnet and successfully probe a significant portion of its channels. We also outline
potential countermeasures, including changes in error handling, sharing channel
balances explicitly, and just-in-time (JIT) routing.

On a more general note, we raise a question of the privacy-efficiency trade-off in the
LN. On the one hand, the lack of information about channel balances increases the
payment failure rate. On the other hand, the LN does a poor job of protecting this
information. Can we strike a better balance between balance privacy and routing
efficiency? Answering this question remains an exciting avenue for future work.

6.1 Probing algorithm

6.1.1 Overview

As described in Chapter 5, an LN channel operates as follows. Two parties lock
funds in a multi-signature UTXO and then change the distribution of funds in a se-
quence of off-chain payments. Nodes gossip about channels available for routing
and their total capacities. To issue a multi-hop payment, the sender chooses a route
based on its local knowledge of the network. Nodes do not announce the distribu-
tion of funds in their channels.

Consider two adjacent LN nodes. Let us denote the total capacity of their channel
as c. Without loss of generality, let us denote one of the nodes as source (with balance
bs) and the other as destination (with balance bd).2 By definition, c = bs + bd. Our goal
is to determine how c is split between bs and bd. For concreteness, for each channel,
we estimate bs, and refer to it as b.

1This Chapter is based on [376].
2The BOLT specification defines the source as the node with an alphanumerically smaller node ID.

64 Chapter 6. Probing Lightning channel balances

In a nutshell, our algorithm consists of the following steps:

• set up a Lightning node;

• open a few entry channels to manually selected nodes (entry nodes);

• compile a list of target channels;

• for each channel in the list, perform a binary search for the value of b by send-
ing fake payments through routes ending with the target channel.

6.1.2 Assumptions

To be suitable for probing, the channel must be active (available for routing) and live
(responding to requests). We assume that nodes follow the BOLT specification (in
particular, they return errors as prescribed).

Error interpretation The types of errors that we use have broader semantics than
our method is aware of. A node returns a temporary_channel_failure (UPDATE|7)
if it is “unable to handle this HTLC, but may be able to handle it, or others, later.”
We interpret this error as “insufficient balance,” though a channel may be unavail-
able for other reasons. A node returns incorrect_or_unknown_payment_details
(PERM|15) if “[t]he payment_hash is unknown to the final node, the payment_secret
doesn’t match the payment_hash, the amount for that payment_hash is incorrect or
the CLTV expiry of the HTLC is too close to the current block height for safe han-
dling.” We interpret this error as only the first of the listed conditions. The payment
hash is unknown to the receiving node, as we have generated it randomly. Other
conditions should not hold: the amount and the HTLC expiry date should be con-
sistent, as we rely on the standard functionality of c-lightning to construct payments.
We assume it to be compliant with the specification and well-tested. Experiments on
our own channels show that c-lightning indeed returns these errors under the con-
ditions relevant to our experiment.

A note on probing directions Our probing algorithm is agnostic to the direction
of probing. For instance, sending a probe via a route ending in “Alice – Bob” theo-
retically gives the same information as a probe via a route ending in “Bob – Alice.”
However, channel directions may have different properties in practice. Each channel
party controls the routing policy in its channel direction. Alice may allow routing
to Bob without Bob allowing routing to Alice. To extract the maximum amount of
information, we probe channels in both directions. Doing so also helps us overcome
the technical issue with large channels. Due to the limitation on the LN payment
amount, we cannot fully probe large channels. However, if a large channel’s capac-
ity is skewed, we can successfully probe it from the “smaller” instead of the “larger”
end. For clarity, we omit this implementation detail from the algorithm description.

A note on applicability Our experiments demonstrate the probing technique’s fea-
sibility, but the results from the testnet cannot be directly applied to the mainnet. In
particular, the mainnet LN contains four times more channels than the testnet LN.
Therefore, probing the whole LN on the mainnet would take more than two days in-
stead of 14 hours. We note that the attacker can still target specific channels, such as
those belonging to an individual service provider. Tens or hundreds of chosen chan-
nels can be probed in a feasible amount of time. Probing selected channels would
give the attacker valuable insights into the victim’s financial situation.

6.1. Probing algorithm 65

6.1.3 Selecting channels for probing

First, we compile a list of active and live channels. We define a channel as active if
at least one of its two directions is announced as active (available for routing) in the
gossip data. To determine liveness, we use the heuristics presented in Algorithm 1.

Data: Gossip data
Result: Channels selected for probing
for node in gossip data do

connect to node;
if connection established then

add node to live nodes;
end

end
for channel in gossip data do

if source and destination in live nodes then
add channel to channels to probe;

end
end
for channel in gossip data do

send a 1 000 sat probe;
if error returned then

add channel to channels to probe;
end

end
Algorithm 1: Selecting channels for probing.

Heuristic 1: Connecting to nodes For a channel to be live, both its parties must be
live. We extract a list of nodes from gossip data and establish a P2P connection to
each of them.3 We consider a channel live if both its parties are live. We close all the
connections after this step, except for the connections to our entry nodes.

Heuristic 2: Pre-probing To further optimize probing, we introduce a pre-probing
step. We send a probe of 1 000 satoshis to every channel marked as active in the
gossip data.4 If we get no response, we mark the channel as dead and do not probe
it in the main probing step. For the first round of probing, we consider all channels
classified as live by either the first or the second heuristic.

Heuristic 3: Liveness detected during probing Each probe results in an error
propagated back to the sender. During the first probing round, we expand our list
of live channels. If we issue a probe along the route of channels c1, c2, . . . , cn and re-
ceive an error from channel ci, we conclude that all preceding channels cj, j <= i are
live. If any of cj is not on our live channels list, we add it. During the second probing
round, we use the updated live channels list.

3Establishing a P2P connection is nearly instant and, unlike opening a channel, does not require
capital commitment.

4We use the same probing function as for the main probing.

66 Chapter 6. Probing Lightning channel balances

Channel order

We say that channel c1 is closer to us than channel c2, if the shortest route from our
node to one of the endpoints of c1 is shorter than that for c2. We informally refer
to a channel as important, if a large share of our probes is forwarded through it.
Our method is agnostic to the order in which we probe the channels. However,
we choose to probe the “closer” and more “important” channels first. The rationale
is that it is beneficial to first probe the channels often used as intermediary hops.
Knowing their balances allows us to avoid sending payments that would fail due to
insufficient balance at an intermediary hop.

We probe channels in the following order:

1. channels adjacent to our entry nodes (the “first layer”);

2. channels between hubs – channels connecting nodes out of 1% of the most
connected nodes (if not already probed);

3. channels adjacent to the “first layer” (if not already probed);

4. all other channels (if not already probed).

6.1.4 Probing

After compiling a list of live and active channels, we issue a series of probes to each
of them.

Recall that in the ordinary course of operation, the payment receiver generates a
random value r and sends its hash h = H(r) to the sender. The sender then creates a
series of HTLCs with the same hash value h. A probe is an unsolicited payment with
a random value instead of h. Such payments fail in any case. However, we can obtain
the information on channel balances based on which error occurred and where. In
particular, we can infer whether the balance of the erring channel is higher than
the probing amount a. Intermediary nodes cannot distinguish randomly generated
and genuine payment hashes. They will, therefore, forward our probes as regular
payments. If all channels along a route have sufficient balances (higher than a), the
probe only fails at the last step. The final recipient finds out that it does not know the
preimage for the payment hash and emits the corresponding error message. If any
channel along the route has insufficient capacity, the payment fails at that channel
before reaching the final recipient.

Let c1, c2, . . . , cn be a sequence of channels in a route, and bi be their respective
balances. Let cj be the erring channel. After each probe with an amount a, we obtain
the following information:

• bi > a for i < j;

• bj < a if the error is “insufficient capacity”, or bj > a if the error is “unknown
preimage”.5

The probing algorithm for a single route is presented in Algorithm 2.
For each channel, we keep a lower (bmin) and an upper (bmax) bound for its bal-

ance b. Initially, bmin = 0 and bmax = c. At each probing step, we aim at shrinking this
interval with binary search, i.e., by issuing a probe with the amount of 1

2 (bmin + bmax).
If the midpoint between bmin and bmax is larger than the maximum HTLC amount
allowed by the specification, we decrease it to that maximum minus a safety margin.
The algorithm for all channels selected for probing is presented in Algorithm 3.

5The latter is only possible if j = n.

6.1. Probing algorithm 67

Data: Route and amount to probe
Result: Updated balance estimates for channels in route
send payment along route;
for channels before erring channel do

bmin = a;
end
for erring channel do

if insufficient funds then
bmax = a;

end
if unknown preimage then

bmin = a;
end

end
Algorithm 2: Probing a route.

Data: Gossip data
Result: Improved estimates for channels
SelectChannelsForProbing;
for channel in channels for probing do

bmin = 0;
bmax = c;
for number of probings per channel do

for number of attempts per probing do
GetRouteToTargetChannel;
ProbeRoute;
for channel in route do

if channel is live and not marked as live then
mark channel as live

end
end
if target channel estimates updated then

continue;
end

end
if required precision reached then

continue;
end

end
end

Algorithm 3: Probing all channels.

68 Chapter 6. Probing Lightning channel balances

Choosing routes For each probe for a chosen target channel, we select routes to-
wards it based on the following criteria:

• the target channel is the last channel in the route;

• all previous channels in the route have sufficient balances to forward the probe
(to the best of our current knowledge).

The route generation algorithm is presented in Algorithm 4.

Data: target channel, amount a
Result: Route to target suitable for a
for channels adjacent to destination do

if channel is not target then
add channel to excluded channels;

end
end
for all channels do

if a > cmax then
add channel to excluded channels;

end
end
while route is bad do

get route to target without excluded channels;
for channel in route do

if a > bmax then
route is bad;

end
end
route is good;

end
return route;

Algorithm 4: Getting a route to the target channel.

We rely on the built-in functionality of our LN node (c-lightning) to generate
routes.6 The c-lightning API allows us to customize routes, excluding specified
nodes and channels. We use this functionality to pre-filter suggested routes based on
the information we have obtained through probing so far. If we know that a balance
of some channel in a suggested route is insufficient, we exclude this channel from
consideration for the current probe. This filtering allows us to speed up the prob-
ing by not sending probes through routes with insufficient balances in intermediary
channels.

Finally, we perform the second probing pass to probe the channels that have been
only detected as live during the first pass (the third liveness heuristic).

Channel information coefficient To measure the effectiveness of our technique,
we introduce the channel information coefficient. Let c is the original channel capacity,
and bmax and bmin be our upper and lower bound estimates for b. Then the informa-
tion coefficient is defined as:

6Internally, c-lightning uses the Dijkstra algorithm.

6.2. Experimental setup 69

i = 1− bmax − bmin

c
Thus, i = 0 means that we do not know any extra information about b besides

public knowledge. The value i = 1 means that we know b precisely.

6.2 Experimental setup

We implement the algorithm described in Section 6.1 as a c-lightning plugin. The
plugin functionality allows developers to integrate Python code with the c-lightning
node [93]. We only collect data from the Bitcoin testnet. We try to perform at least
7 probings per channel, which means that in a successful probing, we shrink the
[bmin, bmax] interval to 1

128 of its initial length, determining b with the precision better
than 1%.

Entry nodes We launch our own LN node7 and fund it with testnet coins. Then,
we establish five entry channels to handpicked nodes with high connectivity and
liquidity. Four of our channels have the maximum standard capacity of 0.167 BTC.8

One entry channel has a capacity of 0.043 BTC. We choose nodes to connect to based
on the following requirements (as reported by 1ML [1]):

• well-connected and well-capitalized;

• located relatively close to our node (i.e., in Europe) to decrease latency.

Choosing the timeout One of the decisions we have to make is to set a timeout,
after which we declare a channel unresponsive and move to the next one. The LN
protocol does not prescribe how quickly a node should react. The only time lim-
itation is the HTLC timeout, usually on the order of hours or days. Therefore, to
probe all channels in a reasonable time, we choose a timeout of 10 seconds. Our
later results showed that this was a reasonable trade-off between probing speed and
accuracy.

Route selection We generate routes with the standard c-lightning getroute rou-
tine and exclude routes with known insufficient balances in intermediary channels.
Note that route generation is a local operation. One route generation takes under
10 ms in our experiments, two orders of magnitude less than the average probe re-
sponse time (3 seconds).

In our main experiment, we perform 12 895 payments. We reject 96 768 routes
because of low balance. That is, we filter out around 8 routes per payment. There-
fore, our method of route generation does not significantly increase the time of our
experiment. This approach may be improved with custom route generation.

Another trade-off we have to address is the maximum route length. The LN
protocol limits the length of a route to 20 channels. Longer routes allow for collecting
more information per probe but increase the probability of failure at intermediary
channels. For our experiment, we limit the length of routes to 10 channels.

7c-lightning version v0.8.0-40-g899f5de.
8The LN limits the channel capacity at 0.167 BTC. Larger channels can be created with a special

command-line argument and are sometimes called wumbo channels.

70 Chapter 6. Probing Lightning channel balances

Hanging HTLCs Our method assumes that an error is returned quickly (within
seconds, as Figure 6.1 shows). If some intermediary hop does not return an error,
our entry channels are left with an unresolved in-flight HTLC that we call hanging.
Hanging HTLCs occupy our channels’ capacity, preventing us from issuing large
probes from the affected channel. The protocol does not allow us to cancel HTLCs
unilaterally, and closing a channel involves long timeouts until the funds are avail-
able and can be committed to a new channel. Therefore, we use multiple entry chan-
nels to be able to tolerate some hanging HTLCs. This issue is related to the attack
presented in Chapter 8 and the one described in [260].

6.3 Results

The LN on the Bitcoin testnet contains 1 974 nodes and 5 884 channels, including
2 527 announced as active (as of 26 February 2020). The initial estimate shows that
207 nodes and 1 625 channels are live. We detect 3 more live channels during the
first probing pass. The strongly connected component of the live subgraph contains
1 489 channels. The other 139 channels point towards nodes for which we could not
get meaningful error messages.

We send 3 153 (24.45%) during the pre-probing and 9 742 (75.55%) during the
main probing phase (12 895 probes in total). Out of 9 742 probes in the main phase,
8 256 (84.75%) return errors that we can use to improve the balance estimates (“chan-
nel temporary unavailable” and “incorrect or unknown payment details”). The time
of the experiment is 14 hours and 6 minutes. Probing 1 628 live channels takes 65% of
the time (roughly 9 hours). The rest is spent on slow-responding channels or chan-
nels that reply with an unexpected error.

6.3.1 Probing times

First, we consider the distribution of probing times for various route lengths (Figure 6.1).

FIGURE 6.1: The distribution of probes (onions) by response time.

6.3. Results 71

Nearly all probes sent along the routes of 3 hops and shorter return within 10 sec-
onds. The median of the 8 256 probes is at 3.36 seconds. Recall that 15.25% of the
probes time out or return an error that we cannot interpret within our algorithm.
The corrected median without the timed out and erring probes is 3.93 seconds. We
conclude that the cutoff at 10 seconds presents an acceptable trade-off. The diameter
of the strongly connected component on the LN is 3.9

Next, we consider the time it takes to probe a single channel. With the parameters
we have chosen, each probe cannot take longer than 70 seconds (7 probes of up to
10 seconds each). For each channel, we add up the times of probes sent to this
channel. Figure 6.2 shows the cumulative distribution function of channels by the
total time spent probing them. We observe that 50% of channels can be probed in
less than 21.2 seconds.

FIGURE 6.2: Distribution of channels by total probing time.

6.3.2 Probing coefficients

We use the channel information coefficient to measure how much information we
obtain for each channel. The LN specification limits the value of a single payment to
0.043 BTC. We denote channels with the capacity more than two times that (i.e., 2×
0.043 = 0.086 BTC) as large channels. We call other channels small. All small channels
can, in principle, be fully probed. A large channel can only be fully probed if the
local balance at one of its endpoints is smaller than the maximum payment amount.

Figure 6.3 represents the distribution of channels by their information coeffi-
cients. We obtained full balance information on over 1 000 of 1 628 channels. We ex-
plain the jump at 0.5 for the large channels as follows. The maximum standard chan-
nel capacity (0.167 BTC) is approximately four times the maximum HTLC amount
(0.043). Consider a channel with a total capacity of 0.167 BTC and the local balance
between 0.043 BTC and 0.167− 0.043 = 0.124 BTC. We probe this channel from both
sides and receive the “unknown hash” error in both cases. From that, we conclude

9It is not always possible to use the shortest route, as it may not have sufficient balances in all
channels.

72 Chapter 6. Probing Lightning channel balances

FIGURE 6.3: Distribution of channels by the obtained information co-
efficient.

that the local balance is between 0.043 BTC and 0.124 BTC. This estimate yields a
channel information coefficient of 0.515. However, with our current technique, we
cannot improve it.

6.3.3 Distribution of channels in routes

We also want to understand how often we send probes through each channel. Most
of our routes go through the same few channels (Figure 6.4), which is partially ex-
plained by the fact that all routes include one of our entry channels.

6.3.4 How balanced are the channels?

A channel is informally called balanced if the parties have roughly equal balances. We
introduce the balance coefficient to quantify this. The balance coefficient represents the
distance from the actual channel balance to 0.5 of the total capacity, where b is the
estimated local balance and c is the total channel capacity:

cbal = 0.5− |b− c|
c

A channel is unbalanced if its whole capacity is on one side (cbal = 0). A channel
is perfectly balanced if the two parties have equal balances (cbal = 1).

Figure 6.5 depicts the distribution of balance coefficients among “small” channels
that we are able to probe with high accuracy (information coefficient higher than
0.9). We conclude that many small channels are unbalanced (coefficient close to
zero). 15% have the balance coefficient below 0.001, 45% below 0.01, and 62% below
0.1. However, note that the picture may change if we consider large channels, and
that channel management practices on mainnet may differ.

6.4. Estimating the attack cost 73

FIGURE 6.4: Distribution of relative frequencies of channels in routes.

6.4 Estimating the attack cost

The attack requires moderate resources. The attacker only needs to commit funds
to the entry channels. The capacities of the entry channels determine the maximum
probing amount. The computational and communication requirements are similar to
the ones required to run a standard LN node. The adversary only needs to maintain
a few TCP connections during the main phase of the experiment. (We also open and
immediately close connections to all nodes to check their liveness; this process can be
parallelized.) Note that running an LN node implies running a fully synchronized
Bitcoin node, which requires hundreds of gigabytes of storage (265 GB at the time of
our experiments in February 2020).

With our current approach, the maximum probing amount is the protocol’s limit
of 0.043 BTC. This is the minimal amount the attacker has to commit to theoretically
be able to probe all “small” channels fully. Our experience shows that it is beneficial
to open multiple channels to decrease the negative effect of hanging HTLCs. In our
experiments, we use five entry channels.

Note that since all probing payments fail, the attacker pays no fees. If no HLTCs
are left unresolved after the probing, the attacker can close the entry channels col-
laboratively and immediately withdraw the committed funds. If some HTLCs are
left unresolved, or the attacker’s channel partners are offline or unwilling to cooper-
ate on channel closure, the attacker would have to wait for the agreed-upon timeout
(usually on the order of days) before withdrawing the funds. In any case, no coins
are irrevocably lost. However, the attacker still bears the opportunity cost: the coins
committed to the attack could have been invested elsewhere.

74 Chapter 6. Probing Lightning channel balances

0.0 0.1 0.2 0.3 0.4 0.5

Balance coefficient

100

101

102

Ch
an

ne
l c

ou
nt

Distribution of balance coefficients among small well probed channels

FIGURE 6.5: Distribution of balance coefficients.

6.5 Limitations

Now we discuss the limitations of our approach and potential ways to improve it.

Unannounced channels LN nodes do not have to announce their channels. For
example, casual users using mobile devices are not supposed to do so. According to
a 2020 study [321], 28% of LN channels are unannounced.10 Unannounced channels
are not prone to our probing methodology. The sender does not know the private
channel endpoint’s identifier and cannot construct a route to it.

It may be possible to extend our technique with on-chain heuristics to locate
unannounced channels. In particular, each channel has a short identifier composed
of the block number, the transaction index, and the UTXO index of the funding
transaction’s multisignature output. An attacker may scan the blockchain looking
for such outputs and cross-reference them with the LN gossip data [296].

Lack of suitable routes We cannot probe a route if we do not find a suitable route
to the target channel. In particular, we cannot probe a high-capacity channel if only
a low-capacity channel connects it to the rest of the network. We can partially over-
come this limitation by diverging from the series of probing amounts determined
by binary search. Recall that for each yet unknown channel balance b we maintain
the current estimation interval [bmin, bmax]. The binary search prescribed to choose
the next probing amount as bmin+bmax

2 . If this value is too high, we may instead use
the maximum value for which we can find a suitable route. Decreasing the prob-
ing amount would allow us to obtain at least some information on the channel in
question. In the initial version of our algorithm, we do not do it for simplicity.

10Unannounced channels are also called private.

6.6. Countermeasures 75

Concurrent probing of large channels Recall that our method cannot fully probe
large channels because of the limitation on the HTLC amount. Lightning implemen-
tations impose a limit on the maximal amount transferred in one HTLC. This limit is
approximately 0.043 BTC.11 Therefore, we can only fully probe channels where the
local balance of one of the channel parties is below 0.043 BTC.

A possible way to overcome this limitation would be to probe large channels
with multiple HTLCs concurrently. The goal of concurrent probing is to temporarily
block the capacity of the attacked channel. Our current method does not support
concurrent probing because we only control the sender, not the receiver. An honest
receiver quickly returns an error and unblocks the capacity. Concurrent probing
would involve another malicious node acting as the receiver of all our probes. The
malicious receiver would deliberately delay the response, thus temporarily blocking
funds along the route.

Concurrent probing could also decrease the probing time, bringing the results
closer to an instant network snapshot. However, adding concurrency is a non-trivial
task. Parallel probings may interfere with each other if the same channel is involved
in two routes probed simultaneously.

Note also that some realistic attack scenarios do not involve probing the whole
network. An adversary may choose one “important” Lightning node and probe all
its channels relatively quickly. The obtained information may be a business secret of
the node operator.

Parallel channels and non-strict forwarding Our method is based on the assump-
tion that the probe is forwarded through the channels determined by the sender.
However, the LN specification only guarantees that the payment follows the cho-
sen sequence of nodes. A pair of nodes may share multiple parallel channels. A for-
warding node is free to choose a channel from all parallel channels to the next node.
This practice is known as non-strict forwarding and provides flexibility in addressing
local balance restrictions. While the LN specification allows non-strict forwarding,
c-lightning cannot open multiple channels to the same node. The other two popular
implementations, LND and Eclair, support parallel channels. Therefore, we cannot
ensure that an intermediary node uses a given channel. It may forward our probe
through a parallel channel instead. We accept this issue as a limitation of our ap-
proach.

As seen from our LN snapshot dated 25 February 2020, the mainnet LN con-
tained 1 438 parallel channels (17.64% of all channels), which indicates that the ef-
fects on the probing precision could be significant on mainnet.12 However, most node
pairs have at most one channel, which thus can be probed using our method.

6.6 Countermeasures

The simplest countermeasure that does not require protocol changes can be imple-
mented as part of a node routing policy. Note that all our probing payments fail
(either due to insufficient balance or unknown hash preimage). Intermediary nodes
know whether a payment they participate in succeeds or fails. Therefore, an inter-
mediary node observing a flood of failing payments from the same channel may
suspect a probing, especially if the amounts follow the binary search pattern. An
intermediary node can then close the channel or otherwise limit the flow of failing

114294967295 millisatoshis.
12Unannounced parallel channels may also influence our results.

76 Chapter 6. Probing Lightning channel balances

payments from the node in question. Of course, the adversary can trick such detec-
tion techniques, for example, by connecting to Bob via Alice and making Bob think
that Alice is performing the probing.

We divide the other potential countermeasures into two categories: prioritizing
privacy and prioritizing efficiency.

Prioritizing privacy

We argue that reliably protecting channel balances in the LN is currently infeasible.
This conclusion comes from the following observations:

• the sender knows whether the payment has failed or succeeded;

• if the payment fails, the sender knows the erring channel.

However, we can change the protocol to make the latter assumption not hold.

Merging error types When a payment fails, the sender receives an error message.
Depending on the cause of the error, these messages differ in two ways. They have
different error codes and originate from different nodes. In particular, if the target
channel has insufficient balance, the error is returned by the previous node. If the
target channel has enough balance, then the final recipient reports incorrect payment
details. We propose a change to error handling in the LN that would prevent the
sender from knowing where the payment has failed. In particular, each node in a
route changes the error it sends back as if it has originated from its own channel. We
also suggest merging the two error types (“incorrect or unknown payment details”
and “temporary channel failure”). A similar countermeasure has already been im-
plemented (see note about error types 16 and 17 in BOLT4 [58]). The drawback of
this method is a decrease in payment reliability. The sender can no longer exclude
the failing channel from the subsequent route search. However, the payment relia-
bility problem may become less pressing with multi-part payments (MPP) that split a
large payment into small parts that are sent along different routes and thus increase
routing efficiency.

Added loops Another potential countermeasure would be for intermediary nodes
to add extra hops to the route. Currently, the sender chooses the route. The order
of nodes in the route is enforced with onion routing. If this scheme is modified,
an intermediary node could instead forward the payment to the next node in the
route through an added random sub-route. Added loops would blur the picture
for the sender, as the sender would not know which path the payment has taken.
One drawback of this approach is the requirement to substantially change the onion
routing protocol, which, as argued in [240], is necessary for LN security. The fee
structure would also have to be more complex.

JIT routing Just In Time Routing (JIT routing) algorithm has been originally pro-
posed to improve payment reliability [295, 297]. JIT routing works as follows. If a
forwarding node lacks the balance to forward a payment, it sends a circular pay-
ment to itself to add more funds to the necessary channel. This process is called
channel rebalancing.13 A JIT-supporting node does not send an error message back

13Another research paper [96] analyzes the influence of hubs on the LN and proposes a channel
rebalancing algorithm.

6.7. Conclusion 77

if it lacks funds on the attacked (probed) channel in the probing scenario. Instead,
it interrupts the routing process, re-balances its channels, and then continues the
forwarding. The attacker would interpret the lack of error as a signal that the tar-
get channel has enough funds, but the same would hold if the channel is probed
from the other side. JIT routing can be an effective countermeasure against channel
probing attacks. However, timing attacks may become an issue.

Prioritizing efficiency: sharing balance data

If hiding LN channel balances is infeasible, we may want to use balance information
to improve routing efficiency. Broadcasting all intermediate balances to all nodes
would introduce a large networking overhead. We propose to develop a reason-
able method for nodes to share information about their channel balances selectively.
This information would improve path-finding and help nodes decide how to allocate
funds to new channels. We propose adding an API call that would allow the sender
to query a channel’s balance it wants to route a payment through. In this scenario, a
sender creates a preliminary route and asks the nodes along this route, whether they
have sufficient balance. If some of them do not, the sender re-calculates the route
until a suitable route is found. This algorithm would improve upon the current LN
payment workflow, where a sender is receiving errors and re-sending a payment
along multiple routes until it succeeds. Nodes could develop policies regarding bal-
ances, for instance, only reveal balances to trusted nodes, or only to nodes that pay
a fee. A node’s ability to reveal a channel balance for routing purposes may also be
subject to negotiation between channel partners during channel establishment. A
detailed analysis of this protocol is needed to prevent abuse.

6.7 Conclusion

Hiding balances from everyone except for the channel parties is a cornerstone of L2
privacy. Making intermediate channel balances available would enable revealing
remote channel balances in real time. However, unknown local balances decrease
routing efficiency. The sender cannot know in advance whether the chosen route
can handle the required amount. Therefore, LN payments often fail due to insuffi-
cient balance at an intermediary hop. In that case, the payment is attempted again
with a different route. The sender could prevent such failures if it knew the channel
balances in advance.

Our experiments show that channel balances cannot be considered private data.
A low-resource attacker can probe the balances of most live and active channels with
high precision. We implement and evaluate our technique on the Bitcoin testnet,
successfully probing a large portion of channels. We identify a privacy-efficiency trade-
off : hidden balances improve privacy but hinder routing efficiency. The LN does not
address this trade-off optimally: channel balances are neither well protected nor
utilized. We envision two paths for LN development with either privacy or routing
efficiency prioritized. Future research is needed to find the right balance between
the two.

79

Chapter 7

Quantitative analysis of Lightning
network privacy

Payment channel networks such as the Lightning Network introduce novel security
and privacy challenges. Multiple attacks on the LN have been described [241]. In
value privacy attacks, the adversary learns payment amounts. In relationship anonymity
attacks, the mapping between senders and receivers becomes known. The wormhole
attack [240] allows an adversary to steal fees from honest intermediaries and tem-
porarily block their funds.

In this Chapter, we quantitatively analyze the LN’s resistance to the three at-
tacks.1 We estimate attack success probabilities based on a simulated network for
an array of parameters. Our findings suggest that the privacy of the LN depends on
highly connected and highly capitalized nodes. An attacker who successfully com-
promises those nodes succeeds with a high probability. Our results are concerned
with the LN as described in the specification and apply to all implementations.

7.1 Datasets

We use a snapshot of publicly announced LN channels as of 25 February 2020 [163].
This snapshot consists of 5 929 nodes and 35 233 channels. We model the LN as
an undirected multi-graph (i.e., may contain multiple edges between each pair of
nodes), as two LN nodes can share several channels. We only consider the largest
connected component, which contains 5 862 nodes (98.87%) and 35 196 channels
(99.89%). We refer to this dataset as LN20.2

Based on LN20, LN nodes have an average degree of 12.01 and a median de-
gree of 3 (Figures 7.1 and 7.2). Most nodes have only a few channels, whereas a
small number of nodes have many channels. In particular, 1 744 nodes have de-
gree 1, and the most connected node has 1 198 channels. The capacity is also un-
equally distributed. These observations motivate the methodology in our experi-
ments in Section 7.2.

Ethical considerations Our analysis is based solely on publicly available data.
All our calculations use a local representation of the LN network graph obtained
from [163]. We do not interfere with the LN activity, nor deanonymize any nodes.

1This Chapter is based on [375].
2Our code is available at [373].

80 Chapter 7. Quantitative analysis of Lightning network privacy

100 101 102 103

Node degree

100

101

102

103

No
de

 c
ou

nt

FIGURE 7.1: Node degree distribution.

100 101 102 103 104 105 106 107 108

Channel capacity (satoshis)

100

101

102

103

Ch
an

ne
l c

ou
nt

FIGURE 7.2: Channel capacity distribution.

7.2 Security and privacy attacks: background

The LN builds upon hash time-locked contracts aiming to achieve atomicity in multi-
hop payments. However, [240] argues that due to the wormhole attack, atomicity does
not hold in the LN. Another study [241] shows that attackers can breach the privacy
of LN users. The feasibility of these attacks depends, among other factors, on the
topology of the LN. In this experiment, we aim to quantify the impact of these
security and privacy issues on the LN.

Value privacy

Intuitively, value privacy ensures that for a payment involving only honest users,
corrupted users outside the payment path learn no information about the payment
value. This notion thus heavily relies on the existence of paths without malicious
nodes. Otherwise, a malicious intermediary node can trivially learn the (upper
bound of the) amount of a payment that it forwards. For instance, in Figure 7.3
the adversary u3 forwards 1.2 coins to u4, estimating the payment amount at around
1 coin plus forwarding fees.

Relationship anonymity

Intuitively, relationship anonymity ensures that given two simultaneous payments
between two pairs of nodes (u1, u2) and (u′1, u′2) routed through the same path of
intermediary users i1, . . . , in, the adversary controlling some of those intermediaries
cannot tell who is paying to whom with probability better than 1/2. However, the
LN does not achieve relationship anonymity. An adversary controlling i1 and in can

7.3. Methodology 81

2. HTLC(u1, u2, y, 1.3, 4)u1
3. HTLC(u2, u3, y, 1.2, 3)

9. r
u2

4. HTLC(u3, u4, y, 1.1, 2)

8. r
u3 7. r

5. HTLC(u4, u5, y, 1, 1)u4 6. r

1. y := H(r)

u5

Transaction
amount is 1

2. HTLC(u1, u2, y, 1.3, 4)u1
3. HTLC(u2, u3, y, 1.2, 3)

3'. HTLC(u2, u3, y', 1.2, 3)
u2

4. HTLC(u3, u4, y, 1.1, 2)
4'. HTLC(u3, u4, y', 1.1, 2)

u3 u4
5. HTLC(u4, u5, y, 1, 1)

u5

2'. HTLC(u1, u2, y', 1.3, 4)
u'1

5'. HTLC(u4, u'5, y', 1, 1)
u'5

u1 pays u5. They
use same y

u1 pays u5. They
use same y

2. HTLC(u1, u2, y, 1.3, 4)u1
3. HTLC(u2, u3, y, 1.2, 3)

8. r
u2

4. HTLC(u3, u4, y, 1.1, 2)u3
5. HTLC(u4, u5, y, 1, 1)

7. r

u4 6. r

1. y := H(r)

u5

HTLC with u2
and u3 expireGet 1.3 Pay 1

FIGURE 7.3: An illustrative example of value privacy (top), relation-
ship anonymity (middle), and the wormhole attack (bottom).

use the cryptographic challenge included in the HTLC to determine who pays to
whom. For instance, in Figure 7.3 the adversary controlling u2 and u4 can determine
that u1 is transacting with u5 as the same value y is used along the whole path.
Similarly, u2 and u4 can determine that u′1 is transacting with u′5 as the same y′ is
used along the path.

The wormhole attack

In the wormhole attack, two colluding nodes in a payment path prevent honest in-
termediaries from participating in the payment, stealing the fees intended for honest
intermediaries. One may argue that this is not an attack, as, from the sender’s point
of view, the payment is delivered. However, this attack diminishes the economic
incentive for honest users to forward payments in the first place.

An example of the wormhole attack is depicted in Figure 7.3. Here, u4 does not
send the opening value r to u3 (step 7 in Figure 5.1). Instead, u4 sends the value r
to u2 outside the LN protocol, which allows u2 to settle the HTLC with u1. As a
result, contracts with u3 expire, simulating payment failure, and prevent u3 from
participating in the payment’s successful completion.

7.3 Methodology

We first compute the paths between pairs of nodes. Given nodes u1 and u2, we com-
pute the list of paths that connect them with one restriction: we consider only the
paths with at most three intermediary nodes. We observe that these path lengths suf-
fice to allow more than 85% of payments between a random pair of nodes (Figure 7.4)
and allow us to exemplify all attacks that we want to study in this experiment.

Let paths〈u1,u2〉 be the set of paths between u1 and u2. We prune the set paths〈u1,u2〉
into a subset paths〈u1,u2〉,x, containing only the paths that allow to transfer at least

82 Chapter 7. Quantitative analysis of Lightning network privacy

102 103 104 105

Transaction amount (satoshi)

0.2

0.4

0.6

0.8

1.0

Pa
ym

en
t s

uc
ce

ss
 p

ro
ba

bi
lit

y
Max 3 intermediary nodes
Max 2 intermediary nodes
Max 1 intermediary node

FIGURE 7.4: The share of experiment runs where paths with sufficient
capacity exist between sender and receiver.

x satoshis. For instance, paths〈u1,u2〉,10 contains the paths between u1 and u2, which
allows transferring at least 10 satoshis.

For a channel to be capable of transferring x satoshis from ui to uj, ui must have a
balance of at least x satoshis. However, the current balance of each counterparty in a
channel is not publicly available. Thus, we consider a path suitable for a given pay-
ment if the total capacity of every channel in the path is above the payment amount,
independently of how this capacity is distributed between the counterparties. This
heuristic might consider a path suitable for a payment while it is not. We neverthe-
less follow this heuristic as LN nodes also use it in practice.

As the next step, we study the effectiveness of the selected attack. For a chosen
payment amount x, we split the set paths〈u1,u2〉,x into two subsets:

1. paths-prone〈u1,u2〉,x: the subset of paths prone to the attack;

2. paths-safe〈u1,u2〉,x: the subset of paths not susceptible to being attacked.

The definition of a path of the form u1 → i1 → . . .→ in → u2 being prone to the
specific attack depends on the attack:

• Value privacy: We say that a path is prone to the value privacy attack if any
intermediary node is under adversarial control.

• Relationship anonymity: We say that a path is prone to the relationship anonymity
attack if nodes i1 and in are under adversarial control.

• Wormhole attack: We say that a path is prone to the wormhole attack if there ex-
ist two non-neighboring intermediary nodes ij and ik under adversarial control
(i.e., j < k and k 6= j + 1).

Note the difference between the definitions of a prone path in the wormhole
attack and the relationship anonymity attack. The latter does not require an honest
user to be located between the two malicious nodes. For instance, a path of the
form u1 → i1 → i2 → u2 where i1 and i2 are under adversarial control would be
considered prone to the relationship anonymity attack but safe against the wormhole
attack.

Another aspect that we consider is which nodes are malicious. We follow three
strategies. First, we assume that nodes with the highest degrees (i.e., highly con-
nected nodes) are colluding. Highly connected nodes have the highest stake in the
network. Thus, an adversary might attempt to corrupt them (e.g., by bribery or

7.4. Results and discussion 83

stealing the private key) to maximize the effect of the attack. Second, we assume
that nodes with the highest total capacity in their adjacent channels are colluding.
Finally, we consider that random nodes are colluding. We illustrate here that any
node (independently of its node degree) might be corrupted. For instance, the same
user might create several LN nodes at strategic positions to carry out the attacks.

We then consider these three attack strategies. For each number of malicious
nodes (y) and each strategy, we re-split the set paths-prone〈u1,u2〉,x into prone paths
and safe paths. For instance, we denote by paths-prone〈u1,u2〉,x,y-con the subset of paths
between u1 and u2 that allow to transfer x satoshis and that are prone to the attack
if y nodes with the highest node degree are corrupted. Correspondingly, we denote
by paths-prone〈u1,u2〉,x,y-ran the subset of paths between u1 and u2 that allow to transfer
x satoshis and that are prone to the attack if y nodes chosen uniformly at random are
corrupted.

Finally, for each attack strategy, we consider

α〈ui ,uj〉 :=
|paths-prone〈ui ,uj〉,x,y|

|paths-prone〈ui ,uj〉,x,y|+ |paths-safe〈ui ,uj〉,x,y|

the probability that a payment between ui and uj is vulnerable to the attack. Aver-
aging across all the pairs of nodes tested, we extract the final probabilities reported
in Figure 7.5.

7.4 Results and discussion

For every attack and a given number of compromised nodes, the share of prone
paths is relatively stable for all payment amounts (Figure 7.5). This result indicates
that the payment amount does not significantly affect the security of payments.

The three attacks differ in how quickly the share of prone paths changes as the
number of compromised nodes increases. For value privacy, the effect of added
highly-connected nodes being compromised is the most profound. The share of
prone paths is 50% if only the 5 most connected nodes are compromised, and nearly
100% if the 100 most connected nodes are compromised. Thus, we conclude that an
adversary needs to corrupt only 2% of the nodes to almost nullify any value privacy
guarantee in the LN.

The average share of prone paths decreases for relationship anonymity. How-
ever, the adversary controlling the 100 most connected nodes can launch the rela-
tionship anonymity attack on about 70% of the paths. Interestingly, the adversary
has fewer possibilities to launch the wormhole attack. For instance, with 100 most
connected nodes corrupted, around 30% of the paths are prone to the attack. A re-
strictive path structure in the definition of the attack may explain this reduction in
the attack’s effectiveness.

The attacker benefits less from compromising high-capacity nodes, as opposed
to high-degree nodes. This distinction is most profound for relationship anonymity:
around 50% of paths are vulnerable if the 50 highest degree nodes are corrupted, but
only around 25% paths are vulnerable if the 50 highest capacity nodes are corrupted.
This difference may be explained by the fact that routing algorithms optimize for
short paths. Note that forwarding channels’ capacity is not as important as good
connectivity, especially for payments of small and medium amounts.

Finally, we consider random nodes compromised. In contrast to the earlier re-
sults, less than 10% of paths are prone to value privacy, and nearly no paths are

84 Chapter 7. Quantitative analysis of Lightning network privacy

102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

Pr
on

e
pa

th
s.

Ba
d

no
de

s:
hi

gh
es

t d
eg

re
e

Value privacy

102 103 104 105 106

Relationship anonymity

102 103 104 105 106

Wormhole attack

102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

Pr
on

e
pa

th
s.

Ba
d

no
de

s:
hi

gh
es

t c
ap

ac
ity

102 103 104 105 106 102 103 104 105 106

102 103 104 105 106

Payment amount (satoshi)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
on

e
pa

th
s.

Ba
d

no
de

s:
ra

nd
om

102 103 104 105 106

Payment amount (satoshi)
102 103 104 105 106

Payment amount (satoshi)

100 malicious nodes
50 malicious nodes
20 malicious nodes
10 malicious nodes
5 malicious nodes
0 malicious nodes

FIGURE 7.5: Share of prone paths for each parameter combination.

7.5. Countermeasures 85

prone to relationship anonymity and wormhole attacks. We note that randomly se-
lected nodes have few connections (note the degree distribution in Figure 7.1). Thus
their compromise does not affect routing at large.

In summary, our results show that highly connected nodes and nodes with high
capacity channels have a high impact on the security and privacy of the LN. As-
suming that paths are selected uniformly at random from the set of available paths,
an adversary that selectively corrupts 100 (i.e., only 2%) of LN nodes can effectively
learn all the payment values, the sender and the receiver for most payments, and
carry out the wormhole attack in about 30% of the paths. These estimations evi-
dence that the security and privacy attacks shown in theory are indeed crucial in
practice.

Carrying out such attacks might be feasible in the live network: an unknown
entity under the pseudonym LNBIG is known to control 23 out of top 50 highest
connected nodes [1] and 40% of the network capacity [53] (as of 2019).

7.5 Countermeasures

We assume that every two nodes carry out their payments along a path chosen uni-
formly at random from the set of all available paths. However, LN nodes might
implement different routing strategies. For instance, while routing through well-
connected nodes improves the chances to reach the receiver through a short and
highly liquid path, the sender might instead choose low degree nodes. Routing
around popular nodes may reduce the probability of choosing a compromised path.
We envision a trade-off between connectivity on the one hand and security and
privacy on the other, which constitutes a direction for future work. A node may
also route payments through a trusted proxy node, thus guaranteeing that the first
node in a path is not compromised. This strategy would mitigate the relationship
anonymity and wormhole attacks (if the path contains no more than three interme-
diaries).

7.6 Conclusion

The LN has emerged as the most widely deployed solution for scalability issues af-
fecting current blockchains such as Bitcoin. Despite its conceptual appeal and grow-
ing adoption, several works [241, 240] have identified security, anonymity, and scal-
ability limitations. However, a quantitative analysis of their impact is missing, and
this work aims to fill this gap.

We quantitatively study the LN’s proneness to the wormhole attack and attacks
against value privacy and relationship anonymity. We observe that a moderately
resourceful adversary controlling only 2% of the total node count can carry out these
attacks with high success probability. As the LN evolves, the developers should
acknowledge these results in future protocol design decisions.

87

Chapter 8

Throughput limitation of the
Lightning network

In this Section, we describe an inherent limitation on the number of concurrent pay-
ments Lightning channels can handle.1 Due to the size limitations on Bitcoin trans-
actions, a payment channel can hold only a certain number of concurrent unresolved
HTLCs. An attacker can create unresolved payments between two nodes under their
control. This attack blocks the capacity of channels along the route by depleting
their “HTLC slots.” This effect may be critical for micro-payment applications – a
significant use case for the LN. This limitation has been pointed out [141] but never
quantitatively analyzed.

We study the management of concurrent payments in the LN and quantify its
negative effect on scalability. We observe that for micropayments, the forwarding
capability of up to 50% of channels is under-utilized. This phenomenon not only hin-
ders scalability but also opens the door for DoS attacks. We estimate that a network-
wide DoS attack costs within 1.64M USD, while isolating the biggest community
from the rest of the network costs only 250k USD. We also evaluate the evolution of
this phenomenon over the two years of the LN’s existence, based on the historical
data. We finally discuss potential countermeasures.

8.1 Background

Bitcoin Core imposes a 100 KB transaction size limit [168, 46]. More precisely, trans-
action size is one of the requirements for a standard transaction. Bitcoin Core nodes,
which make up 97% of the network [108], do not propagate non-standard transac-
tions, which are therefore unlikely to get confirmed. An LN channel cannot contain
more than 966 unsettled HTLCs [56]. This limit ensures that both counterparties can
close the channel using one standard Bitcoin transaction. We call this limitation the
HTLC limit.

Despite the perceived focus on micropayments, the LN does not fully support
payments of very small value. Every HTLC increases the weight of a potential clos-
ing transaction and therefore increases the on-chain fees. Redeeming very small
outputs on-chain can be more expensive than their value. Therefore, BOLT specifi-
cations prescribe that nodes negotiate the dust limit before opening a channel. Nodes
do not create HTLCs for payments below this limit. Such non-existent outputs are
called trimmed HTLCs [57]. Out of the three most popular LN implementations,
c-lightning and Eclair use the default dust limit of 546 satoshis. LND estimates
the dust limit dynamically based on the current on-chain fees. We thus assume
546 satoshis as the dust limit.

1This Chapter is based on [375].

88 Chapter 8. Throughput limitation of the Lightning network

500 1000 1500 2000 2500 3000
Average transaction amount (satoshi)

20

40

60

80

100

%
 c

on
cu

rre
nt

 u
pd

at
es

Concurrent channel updates (% of theoretical limit)

FIGURE 8.1: Ratio between the current limit on concurrent channel
updates and the theoretically possible capacity-based limit.

8.2 The HTLC limit effect on LN scalability

This section estimates the effect of the HTLC limit on the number of concurrent chan-
nel updates. We use the same dataset LN20 as in Chapter 7. We derive a series of
historical snapshots representing the state of the LN on the first day of each month
from April 2018 to February 2020. We refer to this dataset as LNHist.

Let C be the total network capacity (i.e., the sum of all channels’ capacities). We
only consider amounts above the dust limit D. Let aavg be the average payment
amount. We define the limit on concurrent updates based solely on capacity as
ucap := C/aavg. In contrast, the limit on concurrent updates considering the HTLC
limit is uHTLC = N ∗ 966, where N is the number of channels. We remark here that
uHTLC does not depend on payment amounts.

Given those two values, we define the effective update rate ureff as the ratio be-
tween the actual limit on concurrent payments considering the HTLC limit and the
theoretical limit based solely on capacity:

ureff =
min(ucap, uHTLC)

ucap

Note that the effective update rate ureff depends on the average payment amount,
as shown in Figure 8.1. Starting from D, the effective number of concurrent updates
diverges from what could be theoretically possible without the HTLC limit. We
observe that 2 677 satoshis (0.27 USD) is the borderline amount: for higher average
payment amounts, the limiting factor for the number of concurrent channel updates
is channel capacity. For amounts between D and 2 677 satoshis, the limiting factor is
the HTLC limit.

Affected channels The ureff is an aggregated measurement that does not shed light
on how the HTLC limit affects individual channels. We now study how many chan-
nels are affected by the HTLC limit. The number of affected channels depends on the
average payment amount aavg. For high values of aavg, it is more likely that the chan-
nel’s capacity limits its effective update rate, whereas the HTLC limit determines the
update rate cap for small values of aavg. We quantify this as follows. Given a fixed
average payment amount aavg, we consider a channel affected by the HTLC limit if
uHTLC,aavg < ucap,aavg , i.e, ueff,aavg < 100% (Figure 8.2).

8.2. The HTLC limit effect on LN scalability 89

2000 4000 6000 8000 10000
Average transaction amount (satoshi)

10

20

30

40

50

Af
fe

ct
ed

 c
ha

nn
el

s (
%

) Share of channels affected by HTLC limit

FIGURE 8.2: Share of affected channels for different payment
amounts.

20
18

-0
3-

01
20

18
-0

4-
01

20
18

-0
5-

01
20

18
-0

6-
01

20
18

-0
7-

01
20

18
-0

8-
01

20
18

-0
9-

01
20

18
-1

0-
01

20
18

-1
1-

01
20

18
-1

2-
01

20
19

-0
1-

01
20

19
-0

2-
01

20
19

-0
3-

01
20

19
-0

4-
01

20
19

-0
5-

01
20

19
-0

6-
01

20
19

-0
7-

01
20

19
-0

8-
01

20
19

-0
9-

01
20

19
-1

0-
01

20
19

-1
1-

01
20

19
-1

2-
01

20
20

-0
1-

01
20

20
-0

2-
01

Date

0

20

40

Af
fe

ct
ed

 c
ha

nn
el

s (
%

)

546 sat (dust limit)
1k sat
10k sat
100k sat

FIGURE 8.3: Historic share of HTLC-limited channels.

The effect of the HTLC limit over time We study the effect of the HTLC limit on
the LN using our historical snapshots LNHist. For each monthly snapshot and four
assumed average payment amounts, we calculate the share of channels affected by
the HTLC limit (Figure 8.3). As expected, the HTLC limit becomes a more pressing
issue with smaller payment amounts, if they are above the dust limit. We also ob-
serve that the share of affected channels has been increasing in the early months of
the LN’s existence and has remained stable since mid-2019.

We finally study how the borderline amount has changed over time. As Figure 8.4
shows, the HTLC limit finds its inflection point at payment amounts of approxi-
mately 2 500 satoshis, with the borderline amount stabilizing in mid-2019, after the
initial growth.

20
18

-0
3-

01
20

18
-0

4-
01

20
18

-0
5-

01
20

18
-0

6-
01

20
18

-0
7-

01
20

18
-0

8-
01

20
18

-0
9-

01
20

18
-1

0-
01

20
18

-1
1-

01
20

18
-1

2-
01

20
19

-0
1-

01
20

19
-0

2-
01

20
19

-0
3-

01
20

19
-0

4-
01

20
19

-0
5-

01
20

19
-0

6-
01

20
19

-0
7-

01
20

19
-0

8-
01

20
19

-0
9-

01
20

19
-1

0-
01

20
19

-1
1-

01
20

19
-1

2-
01

20
20

-0
1-

01
20

20
-0

2-
01

Date

500

1000

1500

2000

2500

Bo
rd

er
lin

e
(s

at
) Borderline tx amount

FIGURE 8.4: Historic borderline amounts.

90 Chapter 8. Throughput limitation of the Lightning network

0 20 40 60 80 10
0

Top channels blocked

0.0

0.1

0.2

0.3

0.4

0.5

At
ta

ck
er

's
ca

pa
cit

y
(B

TC
) Attacker's capacity (BTC)

Capacity blocked (BTC)

0

10

20

30

40

Ca
pa

cit
y

bl
oc

ke
d

(B
TC

)

FIGURE 8.5: Effectiveness of targeting highest-capacity channels.

8.3 Depleting the Lightning Network

The HTLC limit enables a network-wide DoS attack. An adversary connects to both
endpoints of the target channel and forwards multiple small payments to itself, but
does not finalize them. After 966 HTLCs are added, the channel loses its ability to
forward payments until some HTLCs expire. The attacker can thereby deplete a
channel, making it unusable.

The cost of this attack depends on the minimum payment amount. We assume
it equal to the dust limit of 546 satoshis (the default value in two out of three major
LN implementations).

We calculate the total capital requirements for an attacker to block the LN com-
pletely. To block all 31 084 channels, the attacker would send, in the worst case,
966 payments of 546 satoshi to each channel. This brings the total capital require-
ments to approximately 163.9482 BTC (1.64M USD).

Each HTLC defines a timeout, after which the funds are returned to the sender if
the receiver provides no preimage. From our dataset, we see that HTLC timeouts are
long: 75.44 blocks on average. At a block creation rate of 10 minutes per block, this
implies that an average HTLC can block the capacity for around 12 hours. Therefore,
the attacker can render channels useless for around 12 hours using the same HTLC
parameters as regular LN users.

While this rough upper bound estimate suggests a relatively high attack cost, the
following optimizations make it more affordable.

Targeting highest-capacity channels The attack impact can be maximized by tar-
geting the highest-capacity channels. For example, it requires 0.05 BTC to block
10 top channels with combined capacity of 17.91 BTC (Figure 8.5).

Real HTLC limit Our calculations are based on the maximum number of con-
current HTLCs (483) as defined by BOLT specifications. LN implementations may
choose other values. In particular, Eclair and c-lightning enforce a lower default
HTLC limit (30). Lower limits mean that in the real network, the attacker would
need to create fewer HTLCs to block channels between c-lightning and Eclair nodes
than between LND nodes (which by default support 483 concurrent HTLCs per
channel). LND makes up 91% of the nodes in the network, and Eclair is another
1% [260]. That brings the real average HTLC limit to 442.23 and lowers the attack
cost by 8.44%.

8.4. Discussion 91

1 2 3 4 5 6
Number of largest communities

4000

6000

8000

10000

12000

14000

16000

Ch
an

ne
ls

to
 c

ut

FIGURE 8.6: Number of channels to cut to isolate the largest commu-
nities.

Multi-hop payments Our estimation assumes single-hop payments. An attacker
can leverage multi-hop payments to multiply the effect of the committed capital,
connecting to both ends of a 20-hop [58] payment path and performing a payment
to itself that never gets completed. This technique resembles capacity-based griefing
attacks [291, 326] but entails much lower capital requirements.

Optimizing the attack based on communities The attacker may wish to prevent
different parts of the network from transacting to each other. To evaluate this pos-
sibility, we first divide the network into communities using the Clauset-Newman-
Moore greedy modularity maximization algorithm [92]. Then we consider a scenario
where the attacker tries to block the channels that connect communities rather than
channels within communities. For a chosen number N of the largest communities,
we calculate how many channels the attacker has to block to split the network into at
least N + 1 parts: the N largest communities and the rest of the network (Figure 8.6).
We infer, e.g., that the attacker needs to block 4 670 channels (13% of all channels)
to isolate the largest community from the rest of the network, locking up 25 BTC
(250k USD) – or around 2.8% of the total LN capacity.

8.4 Discussion

Our simplistic model does not fully reflect all the details of payment handling. In
particular, we do not account for multi-hop payments and payments that try mul-
tiple paths before succeeding. We do not reflect the unequal forwarding ability of
a unit of capacity at a well-connected node, as opposed to a poorly connected one.
We also do not account for unannounced channels, which may account for 28% of
all channels [321]. Nevertheless, our approach allows us to calculate the effect of the
HTLC limit, as we derive both estimations (capacity-based limit and HTLC limit)
under the same assumptions.

The negative effect of the HTLC limit manifests itself at low payment amounts.
This threatens potential LN applications involving micro-payments, such as paying
for online content [300]. Our calculations show that for payments of 1 000 satoshis
(0.1 USD), the network-wide rate of concurrent channel updates is 60% lower than
it could have been based solely on capacity limitations.

The low value for the default minimum payment amount and the reduced num-
ber of in-flight payments open a DoS attack vector with a moderate cost for the
adversary. Note that the capital in the attacker’s channels will be recouped after the

92 Chapter 8. Throughput limitation of the Lightning network

HTLCs time out. Moreover, the unequal distribution of connectivity in the current
LN paves the way for optimized attacks where the attacker focuses on high-capacity
or inter-community channels to disrupt the transfer of value across the network.

8.5 Countermeasures

One of the limiting factors for payment throughput is the total available capacity.
This limitation is overcome by opening new channels, a countermeasure naturally
implemented with the growing LN adoption. The HTLC limit issue is more chal-
lenging as it comes from the limitations of the Bitcoin and Lightning protocols them-
selves. Therefore, more fundamental changes are needed to reduce the information
required to carry out the functionality encoded in HTLCs. One countermeasure in-
volves replacing HTLCs with atomic multi-hop locks (AMHL) [240]. While an HTLC
requires a digital signature, hash value, and a timelock, AMHL only requires a dig-
ital signature and a timelock while providing the same functionality. This coun-
termeasure would reduce the number of bytes required per in-flight payment and
increase the number of payments handled concurrently. While not removing the
limitation on the number of concurrent payments, this countermeasure raises this
limit, reducing its harmful effect.

Another countermeasure is implementing payments across multiple channels
with small packetized payments that are not secured by HTLCs [324]. Instead, this
mechanism relies on economic incentives: if a counterparty misbehaves, an honest
party stops the interaction and only loses a negligible value.

Firewall-like solutions have been proposed to protect Lightning nodes against
HTLC-based DoS attempts [205].

8.6 Conclusion

We have quantitatively analyzed the negative effect on scalability produced by the
limit on concurrent payments in the LN. The LN’s limited concurrency implies that
an adversary can block the complete network investing around 1.64M USD (18.5% of
the network capacity). In comparison to [291], our HTLC depletion attack achieves
the same result (a victim node cannot forward payments) but exploits the HTLC
limit at each channel rather than its capacity. Compared to [260], we properly ac-
count for the way LN handles payments below the dust limit. The attack cost can
be substantially reduced by targeting highly valuable channels (e.g., high-capacity
channels or those connecting the network’s largest communities).

93

Part III

Security of Ethereum smart
contracts

95

Chapter 9

Introduction to smart contracts

In this Chapter, we provide an introduction to smart contracts and Ethereum.1 We
describe the history of the concept of smart contracts and its implementation in
blockchain networks. We then provide the background on Ethereum – a blockchain-
based smart contract platform – and outline its security and privacy challenges.

9.1 History of smart contracts

A contract is a fundamental building block of the market economy. The foundational
mechanics of a contract has not changed in centuries. A contract is typically a written
text interpreted by humans.

Financial contracts face major challenges in the digital era. First, contacts are
becoming more complex. It is hard for humans to keep up with the speed and com-
plexity of international finance. Second, contracts must be enforced. Usually, the
government assumes the responsibility for contract enforcement. However, this in-
troduces challenges in the global Internet.

9.1.1 Early ideas

The term smart contract originates from a 1997 essay by Nick Szabo [368]. The au-
thor argues that “contractual clauses [. . .] can be embedded in the hardware and
software [. . .] to make breach of contract expensive.” A vending machine exempli-
fies a primitive smart contract. The machine receives cash and dispenses goods and
change according to the listed price. The physical properties of the machine make
attacking it sufficiently expensive to be unprofitable. A vending machine contract is
automated but still requires trust. Moreover, the administrator has privileged access
to the money and goods in the machine.

9.1.2 Smart contracts in Bitcoin

The idea of digital smart contracts remained dormant until the introduction of Bit-
coin. Bitcoin, for the first time, enabled trustless digital contracts. A user can only
spend coins by providing the required arguments to their respective output scripts.
Not only do Bitcoin scripts execute as programmed, but every user can indepen-
dently verify this. Therefore, after a contract is created, users no longer have to trust
any administrator.

This key property of Bitcoin has lead to the first attempts at encoding complex
contracts in Bitcoin outputs. Early Bitcoin-based protocols towards this goal include
Colored Coins [330], Counterparty [100, 23], and Mastercoin [405].

1This Chapter is partially based on [374].

96 Chapter 9. Introduction to smart contracts

Bitcoin’s programming capabilities are too restrictive to encode many types of
contracts. First, Bitcoin script is not Turing-complete. It means, for instance, that
it does not support loops. Second, Bitcoin contracts cannot access other contracts.
Each transaction is executed in isolation and can either be deemed valid or not. It is
impossible to branch depending on the results of executing another transaction. On
the one hand, such constraints limit the potential attack surface and simplify secu-
rity analysis. On the other hand, they make implementing many types of contracts
difficult, if not impossible [258].

9.1.3 Smart contracts in Ethereum

Ethereum is a blockchain platform that aims to address Bitcoin’s limitations regard-
ing programmability. It was announced in 2014 [70, 407] and launched in 2015.

Ethereum differs from Bitcoin in three major ways. First, Ethereum provides
a richer programming environment. An Ethereum smart contract is written in a
Turing-complete programming language and stored at a unique address. Contracts
can be called by users or by other contracts. Each transaction can have complex ef-
fects in addition to moving cryptocurrency units. This interoperability allows for
composing contracts. Second, Ethereum has updatable and addressable storage.
Ethereum maintains consensus on the state of all accounts. Contracts can perma-
nently store arbitrary data on-chain. Third, Ethereum implements an account-based
model, as opposed to Bitcoin’s UTXO-based model. Explicitly modeling accounts
simplifies the contract logic. For instance, an Ethereum node can perform a single
lookup to find out the current balance of an address, instead of scanning its whole
history.

Bitcoin and Ethereum represent different points in the blockchain design space.
The differences between these two dominant open blockchain networks are often a
subject of heated debate. Some proponents of Bitcoin are eager to point out the ques-
tionable architectural decisions in the core Ethereum protocol and the vulnerabilities
discovered in Ethereum smart contracts. Members of the Ethereum community em-
phasize a faster evolution of Ethereum and a wider range of applications it powers.

Simple systems are usually more secure than complex ones. The more inter-
actions parts of the system engage in, the more things can break or be exploited.
Ethereum’s rich programming environment leaves more possibilities for program-
mers to make mistakes. Indeed, multiple high-profile smart contracts have been
hacked, losing tens of millions of US dollars. These unfortunate events have shown
that secure programming practices are crucial for smart contracts.

9.2 Ethereum architecture

We now provide a short introduction to the architecture of Ethereum.

9.2.1 Accounts

Ethereum can be thought of as a state machine. Ethereum nodes communicate
through a peer-to-peer network and maintain a shared view of the global state,
which consists of accounts with their respective states. Accounts belong to one of
two types: externally owned accounts and contract accounts. An externally owned
account is controlled by a private key. A contract account is controlled by a smart con-
tract. Each account has a balance and a nonce. The balance is the amount of the native
cryptocurrency ether controlled by this account. Internally, balances are expressed in

9.2. Ethereum architecture 97

wei – the smallest denomination of ether.2 The nonce is a counter that keeps track of
the number of transactions issued from the account, preventing replay attacks.

Apart from balance, contract accounts have code and storage. Contract code is
a piece of bytecode for the Ethereum virtual machine (EVM). Contract storage is a
mapping of arbitrary variable names to their values. The contract code controls the
changes to the balance and storage of the account.3 Internally, account data is stored
in Merkle Patricia trees – radix trees with 256-bit keys [398, 67].

9.2.2 Transactions

Users interact with Ethereum by issuing transactions. A transaction represents a pro-
posed state transition.

A transaction includes the following fields:

• nonce – the number of transactions sent by the sender;

• gasPrice – the number of wei per gas unit that the sender is paying;

• gasLimit – the maximum amount of gas to be spent during execution;

• to – the destination address (0x0 for contract creation transactions);

• value – the number of wei transferred along with the transaction;

• v, r, s – signature data.

An Ethereum transaction belongs to one of two categories. A message call trans-
action executes a function of an existing contract or transfers ether. It contains the
arguments for the function call in an optional data field. A smart contract function
called by a transaction can, in turn, call other functions in this or other contracts. A
contract creation transaction deploys a new contract. It contains an init field – a byte
array containing the EVM bytecode of the new contract and the initialization code
executed once on contract creation.

Transactions incur fees to prevent resource abuse. Every computational step in
EVM is priced in units of gas. A transaction sender specifies the gas limit and the gas
price. The gas limit is the maximum amount of gas that the transaction is allowed
to consume. The gas price is the amount of ether the sender wants to pay per unit
of gas consumed. Therefore, the maximum transaction fee (in ether) equals the gas
limit multiplied by the gas price. If the execution is successful, the remaining ether
is refunded.

EVM executes transactions atomically. A failed transaction does not affect the
state4 but consumes all provided gas. Ethereum specification (the Yellow paper [407])
defines gas costs of EVM opcodes. Developers occasionally change them in protocol
upgrades. The market determines the price of a gas unit in ether. The block gas limit
bounds the amount of gas consumed in one block. Miners can vote to gradually
change this limit [208].

21 ether = 1018 wei.
3The balance of any account can also be increased by mining or by transferring the balance of

another contract destroyed with selfdestruct.
4It still increases the nonce value for the sender’s account and is included in a block.

98 Chapter 9. Introduction to smart contracts

9.2.3 Mining and coin issuance

Ethereum uses proof-of-work as a Sybil resistance mechanism. Miners pick uncon-
firmed transactions from the P2P network, serialize them, and apply them to the
current state. They then solve a PoW puzzle based on the new state. Ethereum uses
a memory-hard hash function Ethash for PoW [146]. Miners often use GPUs, though
ASICs have also been introduced [283].

Miners are rewarded with transaction fees and block subsidy. Initially, Ethereum
issued 5 ether per block. The block subsidy decreased to 3 ether in 2017 and 2 ether
in 2019. Contrary to Bitcoin, the Ethereum issuance rate is not hard-coded into the
protocol [151]. The core developers discuss proposed changes in the issuance sched-
ule within a governance process.

Ethereum aims at a short average interval between blocks: 15 seconds, compared
to 10 minutes in Bitcoin. Without specific countermeasures, short block intervals
lead to a high orphan rate. An orphan is a valid block that is not included in the
main chain. Network delays lead to miners unwillingly generating multiple blocks
on the same height. Only one of these blocks is eventually accepted, whereas the
hash power spent on other blocks is essentially wasted. In a double-spend attack,
the attacker would only have to re-generate the PoW for the main chain, but not for
orphan blocks. A short time between blocks exacerbates the problem.

To address the issue, Ethereum uses the modified [229] GHOST protocol [358,
123]. In Ethereum, orphan blocks are refereed to as uncle blocks, or uncles. Miners
include hashes of uncles in block headers to receive a higher reward. The protocol
rewards uncles no more than 6 blocks old. No more than 2 uncles per block are
allowed. Miners of uncles whose headers get included in the main chain are also
rewarded.

9.2.4 Contracts

Solidity [356] is the most popular high-level language for Ethereum smart contracts.5

It is a statically typed language with a Javascript-like syntax. Listing 9.1 provides an
example of a program in Solidity.

Developers compile Solidity code and deploy the resulting bytecode. Users then
interact with it by issuing transactions.

Ethereum nodes execute contract bytecode on the Ethereum virtual machine (EVM).
EVM bytecode is a low-level Turing complete stack-based language operating on
256-bit words. The EVM’s design goals differ from those for general-purpose vir-
tual machines such as the Java virtual machine (JVM). For instance, EVM executes
deterministically and natively supports relevant cryptographic operations [71].

pragma solidity 0.4.17;
contract StringStorageContract {
string private str = "Hello , world!";
function getString () public constant returns (string) {
return str;
}
function setString(string _str) public {
str = _str;
}
}

LISTING 9.1: A simple contract in Solidity

5Vyper is an alternative language in an earlier stage of development [399]. Other alternative high-
level languages, such as Serpent [347] and LLL [140], have been largely abandoned.

9.3. Challenges for smart contracts 99

9.2.5 Applications

Crowdfunding is arguably the first widespread application of smart contracts [251].
This use case is exemplified by the so-called initial coin offerings (ICO). A token is a
unit of new cryptocurrency built on top of Ethereum. An ICO is a crowdfunding
mechanism whereby a team sells tokens to fund project development. A token is
usually implemented as a smart contract that maintains a list of balances. Users
can transfer tokens by interacting with the contract. ERC20 [397] is the de-facto
standard way to implement a token on Ethereum. In 2017, ICOs attracted 1.8 bil-
lion USD [94], surpassing early stage venture capital funding [365]. Many ICOs
turned out to be dubious or outright scams. However, Ethereum was proven useful
as a global crowdfunding platform.

In 2019, another category of Ethereum-based applications known as decentral-
ized finance (DeFi), gained momentum. DeFi projects build financial services, such
as loans, in a more trustless way, eliminating the traditional intermediaries. The ba-
sic building block for DeFi is a stablecoin – a token with the value linked to a fiat
currency, usually the US dollar. MakerDAO is a prominent algorithmic stablecoin
project. It maintains price stability by providing economic incentives to market par-
ticipants to restore the dollar parity if the exchange rate starts to diverge from it.6

Other popular DeFi projects include Uniswap (a decentralized exchange) and Com-
pound (a lending platform). Applications of Ethereum also include decentralized
file storage [362] and computation [183], name systems [143], and prediction mar-
kets [17, 182].

9.3 Challenges for smart contracts

In 2016, an unknown hacker exploited a high-profile Ethereum contract called The
DAO [350] and appropriated around 40 million USD worth of ether. Ethereum
developers proposed a non-backwards-compatible protocol upgrade to return the
funds. This move sparked controversy because the EVM had behaved correctly. It
was the logical fault in the contract code that caused the calamity. Most community
members accepted the proposal. A dissident minority continued to support the orig-
inal chain (Ethereum Classic [147]). In 2017, an estimated 150 million USD were lost
in two attacks against the Parity MultiSig contract [288]. These and other attacks on
smart contracts [117, 16] show the importance of tools to ensure the correctness and
security of smart contracts. Let us list some of the most pressing security challenges
in this area.

Code security First of all, smart contracts must precisely reflect the developers’ in-
tent, which may not always be the case in practice. Smart contract programming
languages, such as Solidity, are unfamiliar to developers. The execution model of
Ethereum differs from centrally managed environments. Developers might not be
used to their code being executed by a global network of anonymous, mutually dis-
trusting, profit-driven actors. Some argue that the Solidity language itself inclines
programmers towards unsafe development practices [413]. Moreover, the Ethereum
network executes bytecode, not Solidity code. The security thus depends on the
compiler and the EVM runtime environment.

6As of 2020, the most widely used stablecoin is Tether (also known as USDT). In contrast to Maker-
DAO, it is centrally managed. We refer the reader to [91, 220] for an overview of stablecoins.

100 Chapter 9. Introduction to smart contracts

Approaches to smart contract security include systematizing good and bad pro-
gramming practices [148, 88], designing general-purpose [197, 72, 292] and domain-
specific [133] smart contract programming languages, formalizing smart contracts
execution model [346]. Multiple tools aim at improving the security and correctness
of Ethereum smart contracts [33, 239, 198, 196, 387, 207, 352, 244, 271, 131]. See [344]
for an overview of approaches to smart contract programming.

Bug-fixing and updates Smart contracts cannot be patched, which presents a trade-
off [303]. On the one hand, smart contracts should guarantee fairness. Ideally, no-
body should be able to change the contract code after deployment. This immutabil-
ity ensures that privileged parties cannot unexpectedly change the rules of the game
in their favor. On the other hand, smart contracts are experimental software. De-
ployed contracts are likely to contain bugs. An adversary can then exploit contract
vulnerabilities without restraint.7 Real-world projects often address this issue by en-
coding an administrator key in their contracts. The owner of this key can perform
a limited number of actions. For example, an administrator might be able to pause
withdrawals without being able to steal users’ funds.

Anonymous attackers Exploiting smart contracts is attractive compared to other
types of cybercrime. First, smart contracts store significant amounts of value. Sec-
ond, digital assets are more liquid than, e.g., data from compromised databases.8

Third, the risk of punishment is relatively low.

External data sources Some smart contracts rely on external data to operate. Many
potential use cases envision smart contracts that depend on the data from the “real
world,” e.g., financial quotes. External information can only get into a smart contract
from a transaction. Centralized data providers (also known as oracles) are a poten-
tial point of failure. This issue is known as the oracle problem. Multiple designs of
trust-minimized oracles have been proposed. Mechanisms to ensure data authentic-
ity include TLS-based cryptographic guarantees [307], trusted hardware [417], and
economic incentives [80].

Front-running and miner influence Miners determine which transactions and in
which order are included in a block. For certain applications, such as trading, trans-
action ordering is crucial. Miners and other users are incentivized to engage in front-
running: prioritizing their transactions at the expense of others. It has been shown
that automated bots do perform front-running in Ethereum-based decentralized ex-
changes [106, 325].

Privacy Smart contacts introduce new privacy challenges. On the one hand, an
account-based model inclines users to perceive their Ethereum address as their semi-
permanent identity, which harms privacy. On the other hand, richer programming
capabilities enable sophisticated privacy solutions built as Ethereum smart contracts.
For instance, the possibility to verify zero-knowledge proofs on-chain enabled the
development of advanced protocols such as Aztec [18] and Tornado Cash [382].

7Smart contract immutability introduces a new dimension into the debate on responsible disclo-
sure [340]. It is ethical to disclose a smart contact vulnerability publicly, if the developers have no
technical means to fix it?

8However, the know-your-customer procedure that most exchanges require, and blockchain ana-
lytics, has made cashing out more difficult.

101

Chapter 10

Findel: Secure derivative contracts
for Ethereum

The financial industry lacks a universal domain-specific language. The inherent am-
biguity of natural language leads to misinterpretation of contracts. Multiple pro-
posals have been drafted to create a rigorous domain-specific language (DSL) to
mitigate disputes and stimulate automated processing of contracts. One approach is
to leverage ideas from functional programming [293, 366, 169, 172, 343, 342]. These
languages use a succinct set of basic building blocks to express financial agreements.
Primitive contracts are combined using well-defined operators. A key feature of this
approach is composability. New indefinitely complex derivative contracts can be
defined based on existing ones. Due to their nested structure, contracts in these
languages are well-suited for automated processing and valuation. However, an
external enforcement mechanism is still required.

Blockchain networks present an environment for automated contract enforce-
ment. Blockchains have fueled interest in the concept of smart contracts [78], the-
oretically described in the 1990s [368]. However, general-purpose smart contract
languages, such as Solidity, are error-prone [350, 16].

In this Chapter, we introduce a declarative language for financial derivatives on
top of Solidity.1 Based on ideas from [293], we describe Findel (Financial Derivatives
Language) – an Ethereum-based financial DSL. Findel unambiguously describes
contract clauses. A user only defines what a contract is (“I owe you $10 tomorrow”),
not how it is executed (“if the timestamp is greater than t0, . . . ”). The entire execution
logic is implemented inside a smart contract, which is executed on-chain. Thus, we
take the best of both worlds: unambiguity and composability of a concise declarative
DSL, and trustless execution of a blockchain network. We implement an Ethereum
smart contract that acts as a marketplace for Findel contracts and measure the cost
of its operation.2 We refer the reader to [202, 338] for a review of financial DSLs and
to [344, 90] for a review of approaches to smart contract programming languages.

10.1 Findel contracts

Definition 1 A Findel contract3 C is a tuple (D, I, O), where D is the description, I is
the issuer, and O is the owner (collectively called parties).

1This Chapter is based on [38].
2See the related source code at https://github.com/cryptolu/findel.
3We may refer to Findel contracts simply as contracts, when the distinction between them and

Ethereum smart contracts is clear from the context.

https://github.com/cryptolu/findel

102 Chapter 10. Findel: Secure derivative contracts for Ethereum

Definition 2 A description of a Findel contract is a tree with basic primitives as leaves
and composite primitives as internal nodes. The following BNF grammar defines primi-
tives:

〈basic〉 ::= Zero | One (〈currency〉)

〈scale〉 ::= Scale (〈number〉 , 〈primitive〉)

〈scaleObs〉 ::= ScaleObs (〈address〉 , 〈primitive〉)

〈give〉 ::= Give (〈primitive〉)

〈and〉 ::= And (〈primitive〉 , 〈primitive〉)

〈or〉 ::= Or (〈primitive〉 , 〈primitive〉)

〈if 〉 ::= If (〈address〉 , 〈primitive〉 , 〈primitive〉)

〈timebound〉 ::= Timebound (〈timestamp〉 , 〈timestamp〉 , 〈primitive〉)

〈composite〉 ::= 〈scale〉 | 〈scaleObs〉 | 〈give〉 | 〈and〉 | 〈or〉 | 〈if 〉 | 〈timebound〉

〈primitive〉 ::= 〈basic〉 | 〈composite〉

We distinguish between composite and basic primitives. Composite primitives
contain other primitives as sub-nodes, basic primitives do not. Currency, number,
address, and timestamp are implementation dependent data types. D and I cannot
be modified after contract creation.

A financial company typically has templates for standard contracts. Parties who
wish to sign an agreement write their names on a copy of a template and sign it, mak-
ing it unique and legally binding. In our model, Findel contracts represent signed
copies while their descriptions represent blank templates.

Traditional contracts usually contain clauses that regulate sub-ideal situations,
i.e., a breach of contract. Findel does not distinguish between “ideal” and “sub-
ideal” situations. All right and obligations are expressed uniformly. Section 10.3.1
discusses issues related to contract enforcement. Table 10.1 informally defines the
primitives’ execution semantics.

Table 10.2 illustrates the composability of Findel. INF is a symbol representing
infinite time, i.e., t0 < INF for every t0. δ is an implementation-dependent constant
intended for handling imperfect precision of time in distributed networks.

10.1.1 Execution model

Findel contracts have the following lifecycle:

1. The first party issues the contract by specifying D, becoming its issuer. This is
a mere declaration of the issuer’s desire to conclude an agreement and entails
no obligations.

2. The second party joins the contract, becoming its owner. As a result, both
parties accept certain rights and obligations.

3. The contract is executed immediately as follows:

(a) Let the root node of the contract’s description be the current node.

10.1. Findel contracts 103

TABLE 10.1: Findel contract primitives.

Primitive Informal semantics
Basic

Zero Do nothing.
One(currency) Transfer 1 unit of currency from the issuer to the owner.

Composite
Scale(k, c) Multiply all payments of c by a constant factor k.
ScaleObs(addr, c) Multiply all payments of c by a factor obtained from addr.
Give(c) Swap parties of c.
And(c1, c2) Execute c1 and then execute c2.
Or(c1, c2) Give the owner the right to execute c1 or c2 (not both).
If(addr, c1, c2) If b is true, execute c1, else execute c2, where b is a boolean

value obtained from addr.
Timebound(t0, t1, c) Execute c, if the current timestamp is within [t0, t1].

TABLE 10.2: Examples of custom Findel contracts.

Contract Definition
At(t, c) Timebound(t− δ, t + δ, c)
Before(t, c) Timebound(now, t, c)
After(t, c) Timebound(t, INF, c)
Sell(n, CURR, c) And(Give(Scale(n, One(CURR))), c)

(b) If the current node is either Or or Timebound with t0 > now, postpone
the execution: issue a new Findel contract with the same parties and the
current node as root. The owner can later demand its execution.

(c) Otherwise, execute all sub-nodes recursively.4

(d) Delete the contract.

The execution outcome is fully determined by description D, execution time t,
and external data S retrieved at time t.

10.1.2 Example

Suppose Alice sells to Bob a zero-coupon (i.e., making no periodic interest payments)
bond that pays $11 in one year for $10:

czcb = And(Give(Scale(10, One(USD))), At(now+1 years, Scale(11, One(USD))))

4In case of Or, execute exactly one of the sub-nodes, according to the owner-submitted value indi-
cating the choice; delete the other one. It is the only primitive that requires a user-supplied argument
for execution.

104 Chapter 10. Findel: Secure derivative contracts for Ethereum

We now show how czcb is executed step by step.

1. And executes; Bob temporarily owns two new contracts:

Alice’s contracts
Alice’s balance 100

Bob’s contracts
Give(Scale(10, One(USD)))
At(now + 1 years, Scale(11, One(USD)))

Bob’s balance 10

2. Give executes; Alice owns a new contract:

Alice’s contracts Scale(10, One(USD))
Alice’s balance 100
Bob’s contracts At(now + 1 years, Scale(11, One(USD)))
Bob’s balance 10

3. Scaled One transfers $10 go from Bob to Alice:

Alice’s contracts
Alice’s balance 110
Bob’s contracts At(now + 1 years, Scale(11, One(USD)))
Bob’s balance 0

4. In one year Bob claims $11 from Alice:

Alice’s contracts
Alice’s balance 99
Bob’s contracts
Bob’s balance 11

10.2 Implementation

We develop an Ethereum smart contract, called the marketplace, that keeps track of
users’ balances and lets them create, trade, and execute Findel contracts. The Findel
DSL is network-agnostic and can be implemented on top of any blockchain with
sufficient programming capabilities.

10.2.1 Users and balances

We implement the objects introduced in 10.1 with struct data types Description
and Fincontract. We also introduce the User type that contains the user’s Ethereum
address and balances in all supported currencies. Users, descriptions, and contracts
are stored in their respective mappings (a generic key-value storage type in Solidity)
in the marketplace’s storage.

The ultimate effect of every financial agreement is changing the parties’ balances.
Contract clauses specify when and under what conditions it should occur. Each
user is assigned an array of balances for each supported currency. Although easily
implementable, this approach introduces a single point of failure: the marketplace
holds users’ deposits.

The only primitive that transfers value is One. The enforcePayment function
implements its execution. It subtracts a given amount in a given currency from the
issuer’s balance and adds it to the owner’s balance. Our current implementation
does not enforce any constraints on users’ balances and does not prevent them from
building up debt.

10.2. Implementation 105

10.2.2 Ownership transfer

Besides issuer and owner (see Definition 1), a Fincontract contains an auxiliary
proposedOwner field. On contract creation, issuer, owner, and proposedOwner are
initialized to msg.sender. To transfer ownership, the owner sets proposedOwner ei-
ther to the address of the proposed new owner or to 0x0. Only the proposed owner
can (but does not have to) join the contract; 0x0 means anyone can do so.5

10.2.3 Data sources and gateways

Ethereum contracts are intentionally isolated from the broader Internet and cannot
pull data from external data feeds [185]. The issue can be solved with asynchronous
requests, which work as follows. A smart contract records an Ethereum event with
the request parameters properly encoded. A daemon process at an Ethereum node
listens for such events, parses the requests, and sends them to an external data
source. The responses are then sent to the requesting smart contract on behalf of
an Ethereum account affiliated with the daemon. The submitted data may be ac-
companied by a proof of authenticity (i.e., a digital signature on an approved public
key).6

Financial derivatives often use external data. To prevent a malicious or careless
user from creating a Findel contract using untrusted sources, we need to guarantee
data authenticity.

Definition 3 A gateway is a smart contract that conforms to the following API:

• int getValue() Get the latest observed value.7

• uint getTimestamp() Get the timestamp at which the latest value was observed.

• bytes getProof() Get the authenticity proof for the latest value.

• update() Update the value.

A gateway connects to an external data source and stores the latest value ob-
served along with observation time and, optionally, a cryptographic proof of au-
thenticity. We do not specify the form of proof a gateway provides. Possible options
include Provable [307], TLSNotary [378], and Realio [316].

The marketplace queries a gateway at execution time, if necessary. If the value is
fresh and the proof is valid, the execution proceeds, otherwise it is aborted, and all
changes are reverted. Since a Findel contract may use multiple gateways, the owner
is advised to update them all shortly before the execution.

A possible improvement would be for a gateway to store the latest observed
value and a sequence of historical data. Multiple data points would allow for more
straightforward modeling of certain derivatives, such as barrier options (execute

5Beware of front-runners: Bob can monitor the network and try to join a contract as soon as he sees
Alice’s attempt to do so. Depending on the network latency and miner’s behavior, either transaction
can be confirmed.

6BTCRelay is a prominent example: users submit Bitcoin block headers to a smart contract, which
implies their authenticity from the validity of easily verifiable proof-of-work. After a header is stored
on the Ethereum blockchain, users check with a Merkle proof that the Bitcoin block contains a given
transaction.

7For simplicity, we only consider 256-bit integers as observable values. Boolean values can be triv-
ially simulated via integers.

106 Chapter 10. Findel: Secure derivative contracts for Ethereum

either c1 or c2, depending on whether an observable value touches a pre-defined
threshold between acquisition and maturity).

We assume that the original data sources (e.g., feeds of reputable financial media)
are trustworthy. An extra safety catch would be to query multiple sources, exclude
outliers, and return an aggregated value. A secure connection (e.g., TLS) and the
existing public key infrastructure (PKI) guarantee the authenticity of data sources.8

Gateways without publicly available source code should not be trusted.

10.2.4 Execution

The executeRecursively function implements the execution logic (see Section 10.1.1)
and returns true if executed completely (without creating new contracts) and false
otherwise. The execution of an expired contract (t1 < now) returns true uncondi-
tionally and deletes the contract.9 Every step in the lifecycle of a Findel contract
issues a system-wide notification (Event), allowing users to keep track of contracts
they are interested in.

Our implementation deviates from the model (Section 10.1) in that the execution
of contracts is not guaranteed. Ethereum contracts cannot act independently: the
owner must issue a transaction to trigger contract execution. The owner may be
unable to do so due to either opportunistic behavior or technical problems, such as
loss of connectivity or lack of ether. Thus, we presume that Findel contracts are not
guaranteed to execute.10

We model unbounded Findel contracts (i.e., with INF as the upper time bound)
using a global expiration constant inside the marketplace contract. Every Findel
contract in the Ethereum implementation can only be executed within expiration
time units after creation (e.g., ten years).

10.3 Possible improvements

We now discuss the shortcomings of our model and ways to improve it.

10.3.1 Enforcement

As mentioned in Section 10.2.4, Findel contracts are not guaranteed to execute. At
first sight, it is a major problem, as a contract must impose obligations on parties.
In traditional finance, law enforcement is ultimately responsible for punishing vi-
olators. The closest we can arguably get to enforcement is a conditional penalty
implemented inside a Findel contract itself.

Assume Alice issues, and Bob joins the following contract:

C = Be f ore(t0, Or(Give(One(USD)), Give(One(EUR))))

8See [170] and [230] for a discussion on blockchain-based PKI architectures.
9By definition, an expired contract is equivalent to Zero. An expired contract should also be deleted

even if its owner is offline forever. Our current implementation does not handle the latter case, though
it may be considered an attack vector due to increasing storage usage. A possible approach is for a
marketplace to offer rewards for keeping track of expired contracts and triggering their deletion.

10Compare with [293]: “If you acquire (c1 or c2) you must immediately acquire either c1 or c2 (but
not both)”. We cannot force a user to make this decision.

10.3. Possible improvements 107

C obliges Bob to give Alice either $1 or 1e before time t0. If Bob fails to make
a choice on time, Alice does not get the money she was planning to receive.11 To
prevent it, Alice attaches a “penalty” clause:

P = A f ter(t0, If(cexecuted, Zero, Scale(2, One(USD))))

cexecuted is the address of a gateway indicating whether a Findel contract has been
executed. When Bob joins Cpenalty = And(C, Give(P)), Alice obtains the right to
claim $2 from Bob if he fails to fulfill his obligations.

Note that Cpenalty references Cexecuted, which in turn must be aware of Cpenalty.
Thus, the gateway should be either adjustable (with Alice tuning the gateway with
a special transaction) or generic (reports the state of a Findel contract taking its iden-
tifier as an argument).

10.3.2 Defaulting on debt

A concise financial DSL does not prevent borrowers from defaulting on their debt.
It is up to a marketplace to solve this problem.

Requiring a 100% guarantee deposit seems safe, but is questionable from an eco-
nomic standpoint. People and organizations borrow money to invest it. The no-
arbitrage principle states that no strategy guarantees a profit. The investor reward,
e.g., interest, is the premium for taking the inevitable risk of business failure.

A marketplace can also mimic the fractional reserve banking model by requir-
ing users to be always able to pay at least n% of their debt and punishing violators
(e.g., by withholding their guarantee deposit). It does not solve the problem of de-
faults, however. In legacy finance, users have a fixed government-issued identity,
allowing banks to maintain a shared credit history database. In a decentralized set-
ting, users can create a practically indefinite number of identities. A production-
ready marketplace should, therefore, take measures to combat Sybil attacks.

2020 update In the three years since the original paper’s publication [38], the mar-
ket has shown that fully collateralized (and overcollateralized) loans do have useful
applications. Ethereum-based stablecoin projects allow users to take loans in cryp-
tocurrencies promised to hold parity with US dollar [259]. A prominent example is a
stablecoin called DAI. To take out a loan of X DAI, users deposit at least 1.5X worth
of cryptocurrency, usually ether, into a smart contract. If the collaterization ratio falls
below the threshold, the position is liquidated: the collateral is forcibly sold. This sys-
tem is useful for hedging against price volatility of cryptocurrencies and leveraged
betting on their future price increase.

10.3.3 Modeling balances with Tokens

A more refined approach to modeling users’ balances implies using ERC20 tokens.
We assume that tokens can be freely exchanged to any currency the marketplace
operates with. Given the address T of the Ethereum token contract, any Ethereum
contract can query the balance of any user U, and transfer its tokens (if it has any)
to an arbitrary address. Suppose Alice and Bob are token holders. Alice calls a
standard API function approve to allow Bob to withdraw a certain amount of tokens

11In this case, an equivalent contract Give(Or(One(USD), One(EUR))) solves the issue. In more
complex cases, such measure may be insufficient.

108 Chapter 10. Findel: Secure derivative contracts for Ethereum

from her account. Bob later calls transferFrom to transfer the tokens. The transfer
succeeds if Alice has enough funds.

We suggest the following procedure. The issuer of a Findel contract approves
the marketplace with the number of tokens they are potentially liable with. The
marketplace implements enforcePayment by calling transferFrom, thus trying to
withdraw tokens from the issuer and send them to the owner. For the execution
to complete, the owner must either have enough tokens in the account or execute
another Findel contract to fill it up. Thus, we delegate the banking functionality
to the token smart contract and free the marketplace from holding and transferring
money [215].

10.3.4 Multi-party contracts

We might want to extend the Findel contracts model to support more than two par-
ties. An example of a three-party contract is buying a car with insurance. A user
can only buy a car while simultaneously signing an insurance contract. We can ex-
press the two contracts (buyer – car dealer, buyer – insurance company) in Findel
DSL, but executing them atomically is non-trivial. A possible way would be to use a
gateway that keeps track of the state of Findel contracts. If insuranceSigned indicates
whether a user joined the insurance contract, then buying with insurance looks like
this (assuming CAR is a token representing the ownership over a car):

If(insuranceSigned, And(Give(Scale(P, One(USD)), One(CAR))), Zero)

10.3.5 Local client

To communicate with a Findel marketplace, users need client-side software. Besides
communicating with the Ethereum network, it might also implement other func-
tions:

• create and store Findel contracts locally;

• calculate the current value and other properties of Findel contracts based on
assumptions about external data (e.g., the e / $ exchange rate is between 1.0
and 1.2) or valuation techniques such as the lattice binomial model [101];

• keep track of relevant Findel contracts and perform actions depending on their
state (e.g., if c1 gets executed, join c2);

• store a predefined list of addresses of trusted gateways, similar to a list of
trusted certificate authorities in web browsers.

10.4 Platform limitations

A Turing-complete programming language does not mean that all algorithms can
be implemented inside an Ethereum contract. Apart from gas costs, the Ethereum
network architecture imposes other limitations.

Lack of precise clock Almost all financial contracts contain temporal clauses. Clock
synchronization is a challenging problem in decentralized systems, even more so if

10.5. Gas costs 109

TABLE 10.3: Cost of setup and helper functions (gas units).

Operation Transaction cost Execution cost
Create a marketplace smart contract 2 221 599 1 681 095
Register a user 79 462 58 190
Check user’s balance 47 667 26 395
Get contract info 24 407 959
Get description info 24 706 1 258
Update a gateway 36 922 15 650

participants can profit from manipulating timestamps. Blocks in Ethereum are pro-
duced every 15 seconds on average. Block numbers provide causal ordering. So-
lidity contains keywords for time units, but miners ultimately control block times-
tamps.

Imperative paradigm The functional programming paradigm is well suited for de-
veloping embedded DSLs [180]. The original papers by Peyton Jones et al. and all
existing implementations of their DSL use functional languages (Haskell [293, 209,
363], OCaml [231], Scala [401, 83]). In contrast, Solidity is imperative. Functional
languages for Ethereum [171] are in an early stage of development.12

A limited type system The type system in Solidity is limited. Ethereum supports
neither decimal nor floating-point types,13 which often model amounts of money
and currency exchange rates, respectively. The only numeric data types in Solidity
are integers of various bit lengths. Moreover, Solidity lacks generic types, which
could be useful for Gateways (i.e., Gateway<int>).

10.5 Gas costs

Ethereum users pay for every computational step in units of gas. Despite the use of
expensive permanent storage operations, the cost of running our implementation is
not prohibitively high for a proof-of-concept.

We measure gas costs of managing common Findel contracts as assessed by
the Browser-solidity compiler [320]14 for a marketplace supporting two currencies
(called USD and EUR in this example). The difference between transaction and ex-
ecution cost is that the former includes the overhead of creating a transaction (i.e., a
call from a client) and the latter does not (i.e., a call from another contract) [322].

10.5.1 Setup and helper functions

Registering a user implies initializing the user’s balances to zero for all supported
currencies. For testing purposes, we implement a gateway that uses the current
timestamp as a data source and calculates a single keccak256 hash as a dummy
authenticity proof.

12In 2020, Solidity is the dominant high-level language in Ethereum. Functional contract languages
have seen virtually no progress.

13A likely rationale: rounding issues break consensus.
14Solidity version: 0.4.4+commit.4633f3de.Emscripten.clang.

110 Chapter 10. Findel: Secure derivative contracts for Ethereum

TABLE 10.4: Cost of handling derivatives in Findel (gas units).

Operation Create and issue Join and execute
Tx cost Exec cost Tx cost Exec cost

One 184 239 177 967 58 493 93 602
Currency exchange (fixed rate) 663 149 656 877 101 878 138 430
Currency exchange (market rate) 300 842 294 570 59 822 96 196
Zero-coupon bond 373 783 367 511 143 891 201 750
Bond with two coupons 939 566 933 294 346 871 477 100
European option 519 628 513 356 278 191 411 103
Binary option 402 359 396 087 59 826 96 204

10.5.2 Managing common derivatives

In our measurements, we omit cases where parties split the execution cost. We as-
sume that the issuer only pays for contract creation and issuance, whereas the owner
pays for the execution. For simple Findel contracts, two Ethereum transactions (one
from each party) represent the Findel contract’s whole life cycle. When a contract
executes in multiple steps, we sum up all costs that the owner bears to execute it.
We also do not account for gateway update costs.

As of January 2017, the gas cost 10−9 ether per unit [152]; the price of ether fluctu-
ated around 10 USD [408]. That brings the cost of a typical Findel contract operation
(105 – 106 gas units) to 1.8 – 18 US cents.

2020 update As of September 2020, the cost of execution in Ethereum increased
significantly. The average gas price is around 100 Gwei (10−7 ether) per unit of
gas [149]. The price of ether is around 360 USD. Assuming the same gas costs,
an operation with a Findel contract in 2020 would cost between 3.6 and 36 USD.

10.6 Conclusion

Smart contracts in public blockchain networks seem to be a perfect environment for
implementing financial agreements. The unique value proposition of blockchains is
trustless execution, which reduces counterparty risks. We have introduced Findel
– a declarative financial DSL built upon ideas from prior research in financial engi-
neering. Formalizing contract clauses using Findel makes them unambiguous and
machine-readable. We prove Ethereum to be a suitable platform for trading and
executing Findel contracts.

Nevertheless, the whole smart contract field is still in its infancy. Programmers
who wish to implement a usable smart contract for handling financial agreements
need to be aware of the future challenges: from fundamental limitations of the
blockchain network architecture to imperfect development environment.

10.7. Examples 111

10.7 Examples

• A fixed-rate currency exchange: the owner sells 10e for $11.

And(Give(Scale(10, One(EUR))), Scale(11, One(USD))

• A market-rate currency exchange: the owner sells 10e at market rate as re-
ported by the gateway at addr.

Scale(10, And(Give(One(EUR)), ScaleObs(addr, One(USD))))

• A zero-coupon bond: the owner receives $100 at t0.

Timebound(t0 − δ, t0 + δ, Scale(100, One(USD)))

• A bond with coupons: the owner receives $1 000 (face value) in three years
(maturity date) and two coupon payments of $50 at regular intervals before
the maturity date.

And(At(now + 3 years, c f ace), And(At(now + 1 years, ccpn), At(now + 1 years, ccpn)))

where

c f ace = Scale(1000, One(USD)), ccpn = Scale(50, One(USD))

• A future (a forward15): parties agree to execute the underlying contract c at t0.

Timebound(t0 − δ, t0 + δ, c)

• An option: the owner can choose at (European option) or before (American
option) time t0 whether to execute the underlying contract c.

Timebound(t0 − δ, t0 + δ, Or(c, Zero))

Timebound(now, t0 + δ, Or(c, Zero))

• A binary option: the owner receives $10 if a predefined event took place at t0
and nothing otherwise.

If(addr, Scale(10, One(USD)), Zero)

15In traditional finance, a future is a standardized contract while a forward is not. This distinction is
not relevant for our model.

113

Chapter 11

SmartCheck: Static analysis of
Ethereum smart contracts

In this Chapter, we study the security of smart contracts in Solidity.1 We provide a
comprehensive classification of code issues in Solidity and propose SmartCheck –
an extensible static analysis tool.2 SmartCheck translates Solidity source code into
an XML-based intermediate representation and checks it against XPath patterns. We
evaluate our tool on a big dataset of real-world contracts, and compare its output
with the results of a manual audit on three contracts. SmartCheck shows signifi-
cant improvements in false discovery rate (FDR) and false negative rate (FNR) over
existing alternatives. A static analyzer should be an essential part of the contract
developers’ toolbox. Automated detection of simple bugs lets developers allocate
more effort to complex issues.

11.1 Classification of issues in Solidity code

We classify Solidity code issues as follows (based on [192]):

• Security issues lead to exploits by a malicious user account or contract;

• Functional issues cause the violation of the intended functionality;3

• Operational issues lead to run-time problems, e.g., bad performance;

• Developmental issues make code difficult to understand and improve.

We differentiate between functional and security issues: the former pose problems
even without an adversary (though an external malicious actor can aggravate the
situation), while the latter do not. Our primary sources are [97, 356, 16, 117, 88, 285].
Table 11.1 presents a summary of all issues.

11.1.1 Security issues

11.1.1.1 Balance equality

Avoid checking for strict balance equality: an adversary can forcibly send ether to
any account by mining or via selfdestruct.

1This Chapter is based on [377]. The author of this thesis contributed to researching and formalizing
the types of vulnerabilities and writing the paper. The author thanks Evgeny Marchenko for the help
in adding “2020 updates” to reflect the changes in the applicability of the patterns since the original
publication.

2The source code is available at [353].
3Though without a specification we only assume what the intended functionality is.

114 Chapter 11. SmartCheck: Static analysis of Ethereum smart contracts

TABLE 11.1: Code issues detected by SmartCheck.
Gray background – false positives possible.

Name Severity Description
Balance equal-
ity (11.1.1.1)

medium An adversary manipulates contract logic by forcibly
sending it ether. Use non-strict inequality on balances.

Unchecked external
call (11.1.1.2)

high The return value is not checked. Always check the re-
turn values of functions.

DoS by external con-
tract (11.1.1.3)

high Expect external calls to deliberately throw.

send instead of
transfer (11.1.1.4)

medium The return value of send should be checked.
Use transfer, which is equivalent to
if (!send()) throw;.

Re-
entrancy (11.1.1.5)

high External contracts should be called after all local state
updates.

Malicious li-
braries (11.1.1.6)

low Using external libraries may be dangerous. Avoid ex-
ternal code dependencies, audit the whole code of the
project.

Using
tx.origin (11.1.1.7)

medium A malicious contract can act on a user’s behalf. Use
msg.sender for authentication.

Transfer forwards all
gas (11.1.1.8)

high a.call.value()() forwards all gas, allowing the
callee to call back. Use a.transfer(): it only provides
the callee with 2300 gas (insufficient for a callback).

Integer divi-
sion (11.1.2.1)

low The quotient is rounded down. Account for it, espe-
cially for ether and token amounts.

Locked
money (11.1.2.2)

medium The contract receives ether, but there is no way to with-
draw it. Implement a function to withdraw or reject
payments.

Unchecked
math (11.1.2.3)

low Without extra checks, integer over- and underflow is
possible. Use SafeMath.

Timestamp depen-
dence (11.1.2.4)

medium Miners can alter timestamps. Make critical code inde-
pendent of the environment.

Unsafe type infer-
ence (11.1.2.5)

medium Type inference chooses the smallest integer type possi-
ble. Explicitly specify types.

Byte array (11.1.3.1) low byte[] requires more gas than bytes.
Costly loop (11.1.3.2) medium Expensive computation inside loops may exceed the

block gas limit. Avoid loops with a high or unknown
number of steps.

Token API viola-
tion (11.1.4.1)

low The contract throws where the ERC20 standard expects
a bool. Return false instead.

Compiler version
not fixed (11.1.4.2)

low Contract compiles with future compiler versions.
Specify the exact compiler version.

private modi-
fier (11.1.4.3)

low The private modifier does not hide the variable’s
value, only prevents external contracts from editing it.

Redundant fallback
function (11.1.4.4)

low The payment rejection fallback is redundant. Remove
the function to save space: payments are rejected auto-
matically.

Style guide viola-
tion (11.1.4.5)

low Unfamiliar capitalization style causes confusion. Start
function names with lowercase, events with upper-
case.

Implicit visibility
level (11.1.4.6)

low Functions are public by default. Avoid ambiguity: ex-
plicitly declare visibility level.

11.1. Classification of issues in Solidity code 115

if (this.balance == 42 ether) { /* ... */} // bad
if (this.balance >= 42 ether) { /* ... */} // good

The pattern detects comparison expressions with == that contain this.balance
as either left- or right-hand side.

11.1.1.2 Unchecked external call

Expect calls to external contract to fail. When sending ether, check for the return
value and handle errors. The recommended way of doing ether transfers is transfer
(see Section 11.1.1.4).

addr.send (42 ether); // bad
if (!addr.send (42 ether)) revert; // better
addr.transfer (42 ether); // good

The pattern detects an external function call (call, delegatecall, or send) that
is not inside an if-statement.

11.1.1.3 DoS by external contract

A conditional statement (if, for, while) should not depend on an external call: the
callee may permanently fail (throw or revert), preventing the caller from complet-
ing the execution.

In the following example, the caller expects the oracle to return an integer value
(badOracle.answer()). However, the actual oracle implementation may throw an
exception in some or all cases.

function dos(address oracleAddr) public {
badOracle = Oracle(oracleAddr);
if (badOracle.answer () < 42) { revert; }
// ...

}

This rule contains multiple patterns:

• an if-statement with an external function call in the condition and a throw or
a revert in the body;

• a for- or an if-statement with an external function call in the condition.

11.1.1.4 send instead of transfer

The recommended way to perform ether payments is addr.transfer(x), which au-
tomatically throws an exception if the transfer is unsuccessful, preventing the prob-
lem described in Section 11.1.1.2. The pattern detects the send keyword.

2020 update As of 2020, the best practice is that call is preferred to send and
transfer (see comment in 11.1.1.8).

11.1.1.5 Re-entrancy

Consider the following code:

pragma solidity 0.4.19;
contract Fund {

mapping(address => uint) balances;
function withdraw () public {

116 Chapter 11. SmartCheck: Static analysis of Ethereum smart contracts

if (msg.sender.call.value(balances[msg.sender])())
balances[msg.sender] = 0;

}
}

The contract at msg.sender can get multiple refunds and retrieve all Fund’s ether
by recursively calling withdraw before its share is set to 0. Besides, it can change
the state of some third contract that Fund depends on. Use the “checks – effects –
interactions” pattern: first check the invariants, then update the internal state, then
communicate with external entities (see also Section 11.1.1.4):

function withdraw () public {
uint balance = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(balance);
// state reverted , balance restored if transfer fails

}

The pattern detects an external function call followed by an internal function call.

11.1.1.6 Malicious libraries

Third-party libraries can be malicious. Avoid external dependencies or ensure that
third-party code implements only the intended functionality. The pattern detects the
library keyword (thus producing some false positives).

11.1.1.7 Using tx.origin

Contracts can call each other’s public functions. tx.origin is the first account in the
call chain (always an externally owned one, i.e., not a contract); msg.sender is the
immediate caller. For instance, in a call chain A → B → C, from the C’s viewpoint,
tx.origin is A, and msg.sender is B.

Use msg.sender instead of tx.origin for authentication. Consider a wallet:

pragma solidity 0.4.19;
contract TxWallet {

address private owner;
function TxWallet () { owner = msg.sender; }
function transferTo(address dest , uint amount) public {

require(tx.origin == owner); // authentication
dest.transfer(amount);

}
}

User sends ether to the address of the TxAttackerWallet, which forwards the
call to a vulnerable implementation of TxWallet and obtains all funds, acting as the
user (tx.origin):

pragma solidity 0.4.19;
interface TxWallet {

function transferTo(address dest , uint amount);
}
contract TxAttackerWallet {

address private owner;
function TxAttackerWallet () { owner = msg.sender; }
function () payable {

TxWallet(target).transferTo(owner , msg.sender.balance);
}

}

The pattern detects the environmental variable tx.origin.

11.1. Classification of issues in Solidity code 117

11.1.1.8 Transfer forwards all gas

Solidity provides many ways to transfer ether (see Section 11.1.1.4). The function
addr.call.value(x)() transfers x ether and forwards all gas to addr, potentially
leading to vulnerabilities like re-entrancy (see Section 11.1.1.5). The recommended
way to transfer ether is addr.transfer(x), which only provides the callee with a
“stipend” of 2 300 gas units. The pattern detects functions whose name is call.value
and whose argument list is empty.

2020 update In 2019, Ethereum underwent the Istanbul upgrade. Among other
modifications, gas prices for some operations were increased [134]. As a result, the
call subsidy of 2 300 gas units is often insufficient to handle the call. Therefore, it
is recommended to forward more than 2 300 gas (probably all available gas) when
calling external contracts. In the light of this pattern, transfer is no longer preferred
over send. Both these commands are considered undesirable. The preferred way to
interact with external contracts is call.

11.1.2 Functional issues

11.1.2.1 Integer division

Solidity supports neither floating-point nor decimal types. For integer division, the
quotient is rounded down. Account for it, especially when calculating ether or token
amounts. The pattern detects division (/) where the numerator and the denominator
are number literals.

11.1.2.2 Locked money

Contracts programmed to receive ether should implement a way to withdraw it,
i.e., call transfer, send, or call.value at least once. The pattern detects contracts
that contain a payable function but contain none of the withdraw functions.

2020 update In Solidity 0.5.0, the address type has been split into address and
address payable [357]. Ether can only be sent to address payable. A contract
developer is thus forced to consider where money can be sent from their contract.
However, the issue captured in this pattern persists on the receiving side. It is still
possible to write a contract that receives money but cannot send it elsewhere.

11.1.2.3 Unchecked math

Solidity is prone to integer over- and underflow.4 Overflow leads to unexpected
effects and can lead to loss of funds if exploited by a malicious account. Use the
SafeMath library5 that checks for overflows [286]. The pattern detects arithmetic
operations +, -, * that are not inside a conditional statement. This rule has been
muted for testing (Section 11.3) due to a high false positive rate.

4Referred to as overflow for brevity.
5See Section 11.1.1.6 for advice on library usage.

118 Chapter 11. SmartCheck: Static analysis of Ethereum smart contracts

11.1.2.4 Timestamp dependence

Miners can manipulate environmental variables and are likely to do so if they can
profit from it. Consider a lottery that distributes prizes depending on whether now
(alias for block.timestamp) is odd or even:

if (now % 2 == 0) winner = pl1; else winner = pl2;

A miner can tweak the timestamp and gain an unfair advantage. Use secure
sources of randomness, such as RANDAO [314]. The pattern detects the environ-
mental variable now.

11.1.2.5 Unsafe type inference

Solidity supports type inference: the type of i in var i = 42; is the smallest integer
type sufficient to store the right-hand side value (uint8). Consider a for-loop:

for (var i = 0; i < array.length; i++) { /*...*/ }

The type of i is inferred to uint8. If array.length is bigger than 256, an overflow
occurs. Explicitly define the type when declaring integer variables:

for (uint256 i = 0; i < array.length; i++) { /*...*/ }

The pattern detects assignments where the left-hand side is a var and the right-
hand side is an integer (matches ˆ[0-9]+$).

2020 update Implicit type inference from var was deprecated in Solidity 0.5.0 [357].
The pattern no longer applies.

11.1.3 Operational issues

11.1.3.1 Byte array

Use bytes instead of byte[] for lower gas consumption. The pattern detects the
construction byte[].

11.1.3.2 Costly loop

Ethereum is a resource-constrained environment. Prices per computational step
are orders of magnitude higher than with centralized cloud providers. Moreover,
Ethereum miners impose a limit on the total number of gas consumed in a block.
In the following example, if array.length is large enough, the function exceeds the
block gas limit, and transactions calling it will never be confirmed:

for (uint256 i = 0; i < array.length; i++) { costlyF (); }

This becomes a security issue, if an external actor influences array.length. E.g., if
array enumerates all registered addresses, and registration is open, an adversary
can register many addresses, causing denial of service. The rule includes two pat-
terns:

• a for-statement with a function call or an identifier inside the condition;

• a while-statement with a function call inside the condition.

11.1. Classification of issues in Solidity code 119

11.1.4 Developmental issues

11.1.4.1 Token API violation

ERC20 is the de-facto standard API for implementing tokens – transferable units
of value managed by a contract. Exchanges and other third-party services may
struggle to integrate a token that does not conform to it. Certain ERC20 functions
(approve, transfer, transferFrom) return a bool indicating whether the operation
succeeded. Throwing exceptions (revert, throw, require, assert) is not recom-
mended inside these functions. Note that library functions may also throw excep-
tions (see Section 11.1.1.6).

function transferFrom(address _spender , uint _value)
returns (bool success) {

require (_value < 20 wei);
// ...

}

The pattern detects a contract inherited from a contract with a name including
the word “token,” which may throw exceptions from one of the named functions.

11.1.4.2 Compiler version not fixed

Solidity source files specify the versions of the compiler they can be compiled with:

pragma solidity ^0.4.19; // bad: 0.4.19 and above
pragma solidity 0.4.19; // good: 0.4.19 only

It is recommended to follow the latter example, as future compiler versions may
handle certain language constructions in unforeseen ways. The pattern detects the
version operator ˆ in the pragma directive.

11.1.4.3 private modifier

Contrary to a popular misconception, the private modifier does not make a vari-
able invisible. Miners have access to all contracts’ code and data. Developers must
account for the lack of privacy in Ethereum. The pattern detects state variable dec-
larations with a private modifier.

11.1.4.4 Redundant fallback function

Contracts should reject unexpected payments (see Sections 11.1.1.1 and 11.1.2.2). Be-
fore Solidity 0.4.0, it was done manually:

function () payable { throw; }

Starting from Solidity 0.4.0, contracts without a fallback function automatically re-
vert payments, making the explicit throw redundant. The pattern detects the de-
scribed construction (only if the pragma directive indicates the compiler version
above or equal to 0.4.0).

11.1.4.5 Style guide violation

In Solidity, function names usually start with a lowercase letter6 and event names
start with an uppercase letter:

6Except for constructors: they must share the name with the contract and usually start with an
uppercase letter.

120 Chapter 11. SmartCheck: Static analysis of Ethereum smart contracts

function Foo(); // bad
event logFoo (); // bad
function foo(); // good
event LogFoo (); // good

Violating the style guide decreases readability and leads to confusion. The pattern
detects the described constructions.

11.1.4.6 Implicit visibility level

The default function visibility level in Solidity is public. Explicitly define function
visibility to prevent confusion.

function foo() { /*...*/ } // bad
function foo() public { /*...*/ } // good
function bar() private { /*...*/ } // good

The pattern detects function and variable definitions with no visibility modifier.

2020 update Since Solidity 0.5.0, a visibility modifier is mandatory for all func-
tions [357]. The pattern no longer applies.

11.2 SmartCheck architecture

The two major approaches to code analysis are dynamic analysis and static analy-
sis [233]. Dynamic analysis runs the program, while static analysis considers the
program code without running it. Static analysis usually includes three stages:

1. building an intermediate representation (IR), such as abstract syntax tree (AST)
or three-address code, for a deeper analysis, compared to analyzing text;

2. enriching the IR with more information [406] using algorithms such as control-
and dataflow analysis (synonym, constant, and type propagation [4]), taint
analysis [386], symbolic execution, abstract interpretation;

3. vulnerability detection w.r.t. a database of patterns that define vulnerability
criteria in IR terms.

This work does not consider formal verification methods, as they require a rarely
available formal specification of the contract’s intended functionality.

SmartCheck is a static analysis tool implemented in Java. It runs lexical and
syntactical analysis on the Solidity source code. It uses ANTLR [289] and a custom
Solidity grammar to generate an XML parse tree [4] as an intermediate represen-
tation (IR). The tool detects vulnerabilities by using XPath [234] queries on the IR.
Thus, SmartCheck provides full coverage: the analyzed code is fully translated to
the IR, and all its elements can be reached with XPath matching. Line numbers are
stored as XML attributes and help localize findings in the source code. IR attributes
can be enriched with more information, as new analysis methods are implemented.
The tool can be extended to support other smart contact languages by adding the
corresponding ANTLR grammar and a pattern database. The IR-level algorithms
remain unchanged.

As an example, consider the Balance equality issue (Section 11.1.1.1). We aim to
detect constructions that test the contract balance for equality, for instance:

if (this.balance == 42 ether){...}.

11.2. SmartCheck architecture 121

ifStatement

if ifCondition

expression

expression

envVarDef

this.balance

== expression

moneyExpr

primaryExpr

numberLiteral

42

ether

block

{ . . . }

FIGURE 11.1: Parse tree for the Balance equality code example.

The parse tree of this construction is shown in Figure 11.1, and the corresponding
XPath pattern is shown in Listing 11.1.

// expression[expression // envVarDef
[matches(text()[1],"^this.balance$")]]
[matches(text()[1],"^==|!=$")]

LISTING 11.1: XPath pattern for the Balance equality issue.

In this case, we do not expect false positives, as we can precisely describe the tar-
get construction in XPath.7 More complex rules cannot be precisely described with
XPath, which leads to false positives. Consider the Re-entrancy issue (Section 11.1.1.5).
SmartCheck reports violations of the Checks-Effects-Interactions (CEI) pattern, which
do not always lead to re-entrancy (Listing 11.2).

pragma solidity 0.4.19;
contract Foo {

bool inBar = false;
function bar(address someAddress) {

if (inBar) throw;
inBar = true;
someAddress.transfer (0);
inBar = false;

}
}

LISTING 11.2: Violation of CEI not leading to re-entrancy.

7Assuming that ANTLR builds the AST correctly based on the Solidity grammar.

122 Chapter 11. SmartCheck: Static analysis of Ethereum smart contracts

11.3 Experimental results

We evaluate SmartCheck in comparison to the results of manual audit (Section 11.3.2)
and the three freely available vulnerability detection tools – Oyente, Remix, and Se-
curify (Section 11.3.3).8

11.3.1 Definitions

We define a true finding as an issue (detected by a tool with manual verification or
manually) that is a bad practice and should be fixed from our viewpoint. It may or
may not be an exploitable vulnerability. All issues found by the tools are manually
labeled as either true positive (TP) or false positive (FP). A false negative (FN) for
each of the four tools (Oyente, Remix, Securify, and SmartCheck) is a true finding
that is not detected by this tool.

For each tool, the false discovery rate (FDR) is the number of FPs for this tool
divided by the number of all issues reported by this tool:

FDR = FP/(TP + FP)

False negative rate (FNR) is the number of FNs for this tool divided by the num-
ber of all true findings (found by any of the tools or manually):

FNR = FN/(TP + FN)

11.3.2 Case studies

We consider three contracts: Genesis (“the platform for the private trust manage-
ment market” [176], source code [177], analyzed at commit 1ecf99d), Hive (“the
first crypto currency [sic] invoice financing platform” [199], source code [200], an-
alyzed at commit 0d54699), and Populous (“an online platform that matchmakes
invoice sellers to invoice buyers hosted on the blockchain” [301], source code [302],
analyzed at commit 10de4ae). The FDR and FNR for each tool (in absolute numbers
and as percentages) are presented in Table 11.2.

Oyente and Securify show no TPs on these three contracts. Remix detects TPs
only in the Populous contract. Remix and SmartCheck show an overall FDR of 97%
and 69% and an overall FNR of 92% and 47%, respectively. Overall, SmartCheck
reports 87 issues in the three contracts.

Requirements for code analysis tools differ across platforms and domains. Due
to special security requirements in smart contract programming, a low FN rate is
crucial (a missed vulnerability can be disastrous), whereas a relatively high FP rate is
tolerable. Most contracts contain a few hundreds of lines of code (see Section 11.3.3)
and can be audited manually.

Though SmartCheck’s FDR of 69% may seem high, it is not a serious issue in
this domain. 47% is a reasonable level of FNR since many vulnerabilities in smart
contracts are related to business logic and cannot be detected automatically. Most of
SmartCheck’s FNs are found manually (not by other tools).

SmartCheck detects a critical issue in one of the contracts. An attacker can create
an unlimited number of internal entities and block the contract’s normal operation.
A public function (i.e., such that any Ethereum user can call it) adds an element to
an internal array (Listing 11.3). Several critical functions then iterate through this

8For Securify, we only consider partial results from the publicly available version of the tool.

11.3. Experimental results 123

TABLE 11.2: Testing results on three selected projects.

Project Oyente Remix Securify SmartCheck

Genesis Vision
TP 0 0 0 7
FP 6 40 19 22
FN 10 10 10 3
FDR (%) 100 100 100 75.86
FNR (%) 100 100 100 30.00

Hive
TP 0 0 0 6
FP 6 11 6 7
FN 22 22 22 16
FDR (%) 100 100 100 53.85
FNR (%) 100 100 100 72.73

Populous
TP 0 4 0 14
FP 7 60 45 31
FN 19 15 19 5
FDR (%) 100 93.75 100 68.89
FNR (%) 100 78.95 100 26.32

Overall
TP 0 4 0 27
FP 19 111 70 60
FN 51 47 51 24
FDR (%) 100 96.52 100 68.97
FNR (%) 100 92.16 100 47.06

array (e.g., Listing 11.4). An attacker can make those functions permanently fail, as
the function call would require more gas than the block gas limit.

function createGroup(string _name , uint _goal)
onlyOpenAuction
returns (uint8 err , uint groupIndex)

{
if(checkDeadline () == false && _goal >= fundingGoal && _goal <=

invoiceAmount) {
groupIndex = groups.length ++;
groups[groupIndex]. groupIndex = groupIndex;
groups[groupIndex].name = _name;
groups[groupIndex].goal = _goal;

EventGroupCreated(groupIndex , _name , _goal);

return (0, groupIndex);
} else {

return (1, 0);
}

}

LISTING 11.3: Adding an element to an internal array.

124 Chapter 11. SmartCheck: Static analysis of Ethereum smart contracts

0 100 200 300

100 000+

10 000-100 000

1 000-10 000

100-1 000

10-100

1-10

0-1

FIGURE 11.2: Distribution of non-zero contract balances (ether).

function findBidder(bytes32 bidderId) constant returns (uint8 err , uint
groupIndex , uint bidderIndex) {

for(groupIndex = 0; groupIndex < groups.length; groupIndex ++) {
for(bidderIndex = 0; bidderIndex < groups[groupIndex]. bidders.

length; bidderIndex ++) {
if (Utils.equal(groups[groupIndex]. bidders[bidderIndex].bidderId ,

bidderId) == true) {
return (0, groupIndex , bidderIndex);

}
}

}
return (1, 0, 0);

}

LISTING 11.4: Iterating through an internal array.

11.3.3 Testing on a massive sample

A blockchain explorer is a website that displays information about blockchain trans-
actions. Etherscan [150] is a popular Ethereum blockchain explorer. Among other
information, it offers contract verification as a service. A contract developer uploads
the source code to Etherscan, which checks whether the deployed bytecode corre-
sponds to the provided source code. We download the source code of 4 600 verified
contracts (1 537 954 lines of code) from Etherscan as of 4 October 2017 using a Java
library JSoup [210]. We then run SmartCheck on this dataset.

The contract balances differ significantly, with most contracts (3 984, or 86.6%)
having a zero balance (Figure 11.2). One contract holds over one million ether
(1 500 000, or 440 million USD at the time of testing), which accounts for 38.4% of
the total balance of all contracts. Contracts have from 1 to 2 525 lines of code, with
an average of 334 lines and a median of 221 lines.

SmartCheck analyzed the dataset in approximately 2 hours and 7 minutes.9 As
per SmartCheck, 99.9% of contracts have issues, 63.2% of contracts have critical vul-
nerabilities.10 The findings are presented in Table 11.3 and Figure 11.3 (colors de-
note severity levels: black – high, dark gray – medium, light gray – low). The most

97 644 seconds (437 lines per second) on Intel Core i5-4210M @ 2.60 GHz, 12 GB RAM, Windows 8.1
64 bit.

10The issues found by SmartCheck in the big dataset were not manually verified.

11.3. Experimental results 125

Byte array 7

Redundant fallback function 64

Locked money 530

Malicious libraries 1395

Token API violation 1410

private modifier 1223

Style guide violation 1626

Integer division 1727

Compiler version not fixed 3699

Balance equality 113

Using tx.origin 197

Unsafe type inference 638

Costly loop 2610

send instead of transfer 3370

Timestamp dependence 7692

DoS by external contract 7864

Transfer forwards all gas 275

Unchecked external call 986

Re-entrancy 4015

2000 4000 6000 8000

FIGURE 11.3: Findings on the big dataset
(excluding Implicit visibility level).

126 Chapter 11. SmartCheck: Static analysis of Ethereum smart contracts

TABLE 11.3: Code issues detected on the big dataset.

Severity Pattern Findings % of all

high
Re-entrancy 4 015 3.329
Unchecked external call 986 0.818
Transfer forwards all gas 275 0.228

medium

DoS by external contract 7 864 6.521
Timestamp dependence 7 692 6.378
send instead of transfer 3 370 2.794
Costly loop 2 610 2.164
Unsafe type inference 638 0.529
Using tx.origin 197 0.163
Balance equality 113 0.094

low

Implicit visibility level 81 160 67.296
Compiler version not fixed 3 699 3.067
Integer division 1 727 1.432
Style guide violation 1 626 1.348
private modifier 1 223 1.014
Token API violation 1 410 1.169
Malicious libraries 1 395 1.157
Locked money 530 0.439
Redundant fallback function 64 0.053
Byte array 7 0.006

prevalent issue, Implicit visibility level (detected 81 160 times, which accounts for
67.30% of all findings), is excluded from the figure for clarity.

11.4 Conclusion

We have provided a comprehensive overview and classification of code issues in
Solidity – the primary high-level language for Ethereum smart contracts. We have
implemented SmartCheck – an efficient static analysis tool for Solidity, which offers
significant improvements over existing alternatives. We have tested our tool on a
massive set of real-world contracts and detected code issues in most of them. The
tool can be enhanced in multiple ways: improving the grammar,11 making patterns
more precise (e.g., the temporarily muted Unchecked math), adding new patterns,
implementing more sophisticated static analysis methods, adding support for other
languages.

Security is still an issue in blockchain development. We hope that SmartCheck
will help solve this major challenge by providing smart contract developers with fast
and relevant feedback on potentially problematic source code fragments.

11The currently used grammar failed to parse 0.16% of lines in our dataset.

127

Chapter 12

Privacy-preserving KYC on
Ethereum

In this Chapter, we describe the current approach to identity management and pro-
pose KYCE – a privacy-preserving KYC scheme for token whitelisting on Ethereum.1

12.1 Identity

Digital identity is the information used by a computer system to represent a user.
Access to services is controlled in two steps:

• authentication: a user proves that they are who they claim to be;

• authorization: the system ensures that the user has the right to perform the
requested action.

To comply with regulations, financial institutions verify the identities of their
customers. Modern finance depends on government-issued identities. Regulations
in most jurisdictions demand that banks obtain proof of identity from customers
before doing business with them – a procedure known as “know your customer,” or
KYC. “Anti money laundering” (AML) and “counter terrorist financing” (CTF) are
related regulations that require banks to stop and report suspicious transactions.

Modern KYC practices weaken users’ control over their personal information
and threaten their privacy. Financial institutions store sensitive information in pri-
vate databases, which become a target for corrupt employees or external hackers.
Independent KYC/AML implementations lead to high compliance cost and multi-
ply the risk of identity theft.

Open blockchains like Ethereum take a more decentralized approach to iden-
tity management. Users join these networks without any identification. Financial
service providers establish consortia to apply blockchain technologies in their ser-
vices [144, 203, 312]. To comply with regulation, they have to handle government-
issued identities in a blockchain setting. This non-trivial task becomes more chal-
lenging, considering users’ demands for stronger privacy protection. The European
privacy regulation (GDPR [153]) that came into force in May 2018 poses more chal-
lenges for organizations that handle personal data.

1This Chapter is based on [39], which, in turn, described a hackathon project. The team consist-
ing of Daniel Feher, Dmitry Khovratovich, Sergei Tikhomirov, Aleksei Udovenko, and Maciej Żurad
implemented a proof-of-concept implementation in May 2017 during the Luxblock hackathon in Lux-
embourg and won a joint first prize. Contributions of the author of this thesis include: implementing
parts of the hackathon project and writing the paper (except for Section 12.2.3).

128 Chapter 12. Privacy-preserving KYC on Ethereum

In this work, we first explore the centralized and decentralized approaches to
identity. We then propose KYCE – a privacy-preserving Ethereum-based KYC im-
plementation. KYCE allows banks to implement KYC checks using an external smart
contract – a KYC provider. Our scheme uses zero-knowledge proofs to check users’
eligibility without disclosing their private information to anyone except the KYC
provider. A smart contract stores the KYC whitelist in the form of a cryptographic ac-
cumulator. This construction allows users to be efficiently added to, removed from,
and checked against the list without storing any plaintext data on the blockchain.
We then discuss possible use cases and implementation challenges.

12.1.1 Centralized identity

In terms of asymmetric cryptography, identity I of user U is a public-private key
pair (pubU , privU). The public key pubU authenticates the user (or, equivalently,
links their current action to some past actions). Public identifiers like username or
address are derived from pubU . The private key privU allows U to sign messages on
behalf of I. For the system, U is whoever possesses privU .

In the centralized identity model, prevalent on the Internet today, users delegate
managing their private keys to a trusted party and use a password to access them
when necessary. This approach is sub-optimal in many regards. First, users do not
control their identities. The trusted party always has the technical ability to sign
messages without the user’s consent or to prevent the user from signing the mes-
sage they want. Moreover, users’ data is stored by a centralized entity, providing
incentives for an attack. Finally, users have to create a new identity for each website
they wish to register with. As a result, they adhere to a risky practice of reusing
passwords. Third-party login protocols such as OAuth and OpenID [124] partially
address this issue (“login with”). In this scheme, a website queries the service that
holds the user’s existing identity (e.g., Google) and asks for permission to access a
subset of the user’s data (e.g., name and email). This approach alleviates the pass-
word management problem but increases the impact of potential identity theft.

Though users can revoke access at any time, the “login with” scheme is still
privacy-violating. Imagine a user who reveals their birth date to prove to a web-
site that they are 18 years of age or older. If they later revoke the access, their date of
birth will never change. Thus, they grant the third-party website effectively unlim-
ited access to a piece of private information.

Maintaining correspondence between “real world” identities and public keys has
long been a challenge. Widely deployed centralized solutions like PKI suffer from
risks associated with centralization: a fraudulent authority can issue rogue certifi-
cates [7].

12.1.2 Decentralized identity and open blockchains

The PGP “web of trust” is a noteworthy attempt at creating a decentralized identity
system [162]. It has not gained significant traction due in part to usability chal-
lenges [334] and concerns about the security of the long-term key model [394].

Bitcoin [273] eliminates the problem of connecting public keys to identities in a
radical manner: a user may generate many public keys that are identities. Alterna-
tive blockchains such as Ethereum [70, 407] take a similar approach. The way open
blockchains handle identity may come at odds with financial regulation. We propose

12.2. KYCE: a decentralized KYC-compliant exchange 129

a design that will simultaneously leverage the power of blockchain-based smart con-
tracts, enable banks to implement KYC to comply with the law, and preserve users’
privacy.

12.1.3 Financial and privacy regulation in the EU

The current EU legislation “on information accompanying transfers of funds” came
into effect in 2015 [317]. In the wake of the rapid growth of cryptocurrencies, the EU
is tightening its anti-money laundering regulations, stating that “virtual currency
exchange platforms and custodian wallet providers will have to apply customer
due diligence controls, ending the anonymity associated with such exchanges” [265].
See [395] for the analysis of virtual currencies under the EU AML law.

In 2018, two pieces of legislation came into force in the EU.

• The Revised Payment Service Directive (PSD2) obligates banks to provide
access to their customers’ accounts through open APIs [191]. This measure
is meant to foster competition and give rise to third-party financial service
providers. For instance, a unified banking API would simplify connecting
banking infrastructure to open blockchains [138].

• The General Data Protection Regulation (GDPR) harmonizes data privacy
laws across the EU [153] and introduces stricter rules for handling data of EU
residents even for companies from outside the EU. We refer the reader to [31]
describes possible implications of blockchain adoption from the viewpoint of
the EU data protection regulation.

12.2 KYCE: a decentralized KYC-compliant exchange

KYC requirements differ depending on jurisdiction [310]. A typical KYC proce-
dure links users’ real-world identities to their accounts and checks users against a
whitelist or a blacklist. The details of the KYC procedure do not affect our design.

12.2.1 Definitions and security properties

Definition 4 A KYC procedure is a process that determines if a given user is eligible for a
given transaction.

Definition 5 A KYC provider is an entity that performs a KYC procedure.

Definition 6 A financial service is an information system that allows users to exchange
units of value.

Definition 7 A financial service is KYC-compliant w.r.t. the KYC procedure if and only
if all users are eligible for all transactions they perform.

Definition 8 A KYC-compliant financial service is privacy-preserving if and only if only
the KYC provider has access to the users’ private data.

130 Chapter 12. Privacy-preserving KYC on Ethereum

12.2.2 Tokens and exchanges

Our KYC solution can be applied for any service. For concreteness, consider a token
exchange as an example.

Definition 9 A token is a transferable fungible unit of value maintained by a smart con-
tract.

ERC20 [397] is the de-facto standard API for implementing token contracts in
Ethereum. A token contract keeps track of users’ token balances and allows them to
transfer tokens using the following functions:

• transfer sends a given amount of tokens to a given address;

• approve allows a given user to withdraw up to a given amount of tokens from
the account of the user calling the function;

• transferFrom sends a given amount of tokens from one given address to an-
other (the amount has to be approved beforehand).

Definition 10 An exchange is a service that allows users to exchange tokens.

Centralized exchanges, implemented as regular web services, are the most preva-
lent. We are mostly interested in decentralized, or on-chain exchanges, implemented
as smart contracts.

An exchange without KYC support may be used as follows.

1. Alice creates an order to sell X A-tokens for Y B-tokens;

2. Bob creates an order to sell Y B-tokens for X A-tokens;

3. The exchange matches the two orders and transfers (by calling transferFrom)
X A-tokens from Alice to Bob and Y B-tokens from Bob to Alice.

The transaction succeeds if Alice and Bob have approved the exchange with a
sufficient amount of A- and B-tokens, respectively, before transferFrom is called.
Users withdraw tokens from the exchange by calling approve(exchangeAddress,0).

12.2.3 Privacy-preserving KYC

We propose KYCE – a privacy-preserving KYC design for Ethereum-based financial
service providers. A KYC contract provides an API to other contracts so that exter-
nal services can determine if a given user is KYC-approved for using a given token.
A KYC provider (a governmental entity or company in charge of customer onboard-
ing) performs the necessary checks for a new customer and adds their address to the
whitelist.

A simple approach to implementing a KYC check with a separate contract would
be the following. The KYC contract stores the whitelist of approved addresses. On
every transfer, the token contract checks if the address belongs to the whitelist.
This design has a fundamental privacy flaw: the contract stores all whitelisted ad-
dresses on-chain in plaintext. Moreover, users must use the same addresses they
have registered with the KYC provider. Address reuse threatens privacy: an adver-
sary can link the user’s transactions using public blockchain data.

12.2. KYCE: a decentralized KYC-compliant exchange 131

Our approach We use cryptographic techniques to design a privacy-preserving
KYC solution. In KYCE, the KYC contract stores a cryptographic accumulator of
the whitelisted addresses.

A cryptographic accumulator A absorbs certain algebraic objects and provides an
interface to generate and verify zero-knowledge proofs that a given value has been
accumulated. In our construction, to generate a proof for value x ∈ A, one needs a
witness that depends on A and x. The accumulator owner provides the witness to
the user who submitted x. We suggest an accumulator based on bilinear maps [75].

The KYC workflow is as follows. The KYC provider publishes a smart con-
tract and initializes it with an empty accumulator. The User interacts with the KYC
provider physically or online and provides the credentials needed to pass the veri-
fication. The User also generates their own master secret m and during the authen-
ticated session, gives the provider a Pedersen commitment gm

1 · gr
2 to it. g1 and g2

are certain group generators,2 and r is random. If the User passes the procedure,
the provider updates the accumulator with user-dependent data and gives the User
a witness. In every subsequent Ethereum transaction to KYCE, the User provides a
proof that they have been registered in the accumulator, that this right has not been
revoked, and that the proof owner and the transaction sender are one person. KYCE
verifies the last statement. The KYC contract verifies the rest against the current
accumulator value. If the checks pass, KYCE executes the requested action.

Details on the accumulator construction We construct an accumulator based on a
pairing function e(·, ·) in some pairing setting.3 The accumulator contains the serial
numbers, possibly consecutive integers.4

The accumulator is constructed as follows. We assume a bilinear pairing e : G×
G → GT, where G, GT are groups of order q. The KYC provider selects a generator g

and a secret value γ
$← Zq. It also selects L as an upper bound of users enabled for

KYC and computes z = e(g, g)γL+1
. It initialized the accumulator value A by 1.

Let us denote gi = gγi
. The provider publishes A, {gi}1≤i≤L, L+2≤i≤2L, the set of

registered KYC indices V = ∅, and the parameters g, z needed for verification.
Every User who passes the KYC check is issued a new serial number i, the wit-

ness wi = ∏j∈V,j 6=i gL+1−j+i, where V is the set of all issued serial numbers, and
a signature σi of gi||i on the provider’s private signature key. The witness is used
to generate a proof of accumulating.5 The KYC provider updates the accumulator
with i by

AV∪{i} ← AV · gL+1−i

multiplying it by gL+1−i = gγL+1−i
, and i is published as a new valid serial number. To

prove that i has been committed to A and has not been revoked without disclosing
it, the holder of wi updates it6 so that the following equation holds:

e(gi, A)

e(g, wi)
= z.

2Here and in the further text all multiplications take place in the pre-selected group of prime order q,
typically an elliptic-curve group.

3The original paper [75] uses type-1 pairings, but type-3 pairings can be adopted as well.
4It is possible to store public keys, but it would be less efficient.
5We refer an interested reader to [75] for the details.
6We omit the details, but the update can be performed just before the presentation, not necessarily

after every accumulator update.

132 Chapter 12. Privacy-preserving KYC on Ethereum

Note that revocation is also efficient. The KYC contract owner simply multiplies
the accumulator value by the inverse of gL+1−i. The witness value cannot be updated
anymore.

Presentation When issuing a transaction to use the exchange (e.g., create an order),
the user submits a zero-knowledge proof of the following statement:

• I know the private key of the current user address (msg.sender), and

• I know a signature σi and a witness wi for some number i that has been accu-
mulated in the accumulator A in the KYC contract.

This compound statement must be atomic, i.e., the sub-statements cannot be ex-
tracted as separate valid proofs, as this would make the transaction malleable.

The atomicity (and non-malleability) are ensured as follows. Let us denote the
proof of knowledge for the witness and signature by PKw. Then the Prover submits

P = {PKw ∧ PKs},

where PKs is the proof of knowledge of the private key of the msg.sender’s ECDSA
public key, which can be taken from [82]. The technique to make a composite proof
of knowledge (PoK) is straightforward, as both PoKs are non-interactive, and is stan-
dard in complex PoK protocols:

1. The Prover collects a set C of commitments asserted in sub-proofs PKw and PKs.

2. The Prover makes necessary randomization of C to create t-values T .

3. The Prover computes c← H(C, T).

4. The Prover computes s-values S using C, T , and c.

5. The proof P is (C,S , c). To verify it one computes asserted t-values T̂ and
verifies

c ?
= H(C, T̂).

The resulting proof P is submitted as an Ethereum transaction argument. KYCE
retrieves the current accumulator value and verifies P against it and the message
sender’s public key, available in the transaction metadata. If the proof is correct, the
order is executed.

12.2.4 Use cases

Either the exchange contract or the token contract must be KYC-compliant – i.e., check
the eligibility of transacting parties using the introduced cryptographic scheme us-
ing the KYC contract.

KYC-compliant exchange If the exchange is KYC-compliant, the tokens do not
need to be aware of the KYC (Figure 12.1).

Consider an established exchange that trades dozens of tokens. It applies for
official approval in a jurisdiction that requires all customers to pass the KYC proce-
dure. The governmental body acts as a KYC provider, deploys a KYC contract, and
publishes its address. The exchange adds KYC checks to its codebase and continues
operation. Users who do not want to apply for KYC can withdraw their tokens from
the exchange.

12.2. KYCE: a decentralized KYC-compliant exchange 133

FIGURE 12.1: KYC-compliant exchange.

KYC-compliant token If the token is KYC-compliant, the exchange does not need
to be aware of the KYC (Figure 12.2).

FIGURE 12.2: KYC-compliant token.

Consider a government that issues its own tokens.7 KYC-approved users could
use government tokens for tax payments, fees, and fines. Such a solution leverages
smart contracts’ flexibility and auditability while only allowing approved entities to
use the token. The KYC-enabled government token can also be traded on exchanges,
which would allow citizens to hold currency portfolios of their choice and only pur-
chase government tokens to transact with the state.

Transaction-dependent checks Many jurisdictions impose restrictions that depend
on the value of the transaction. E.g., the EU regulation [317] states that “the obliga-
tion to check whether information on the payer or the payee is accurate should [. . .]
be imposed only in respect of individual transfers of funds that exceed 1 000e”.
EU member states impose further restrictions for large transactions, e.g., exceeding
10 000e in Belgium, 15 000e in Germany and in the Netherlands [310]. Either the
exchange contract or the token contract can perform such checks by storing the fol-
lowing mappings:

7Bank of England [110] and the Monetary Authority of Singapore [264] have already researched this
direction.

134 Chapter 12. Privacy-preserving KYC on Ethereum

• address => accumulated transaction volume in the current period (day, month,
year);

• address => timestamp of the latest transaction.

12.3 Implementation details

We have created an initial (not privacy-preserving) implementation of the proposed
design. Our project consists of two smart contracts written in Solidity: KycProvider
and KyceToken. KycProvider maintains a 2-dimensional boolean array that stores
the eligibility status across users and tokens. On initialization, the address that de-
ploys the contract is appointed as the owner, allowing it to add and remove users
from the whitelist. The ownership may be transferred (using the functionality inher-
ited from the standard Ownable contract).

The KycProvider exposes the following API:

• add(address _user, address _token) makes the user eligible for using the
token (callable only by the owner);

• remove(address _user, address _token) makes the user not eligible for us-
ing the token (callable only by the owner);

• isEligible(address _user, address _token) checks if the user is eligible
for using the token.

KyceToken adheres to the de-facto standard token API in Ethereum – ERC20.
To minimize the risk of security issues due to implementation subtleties, we in-
herit a widely used and tested ERC20 implementation by OpenZeppelin. We over-
ride the functions approve, transfer, and transferFrom to check if the given user
(msg.sender) is eligible for using this token. If isEligible returns false, the execu-
tion stops. If it returns true, the corresponding function of the superclass is invoked.

The implementation of the proposed scheme requires certain cryptographic prim-
itives. Some of them are partially available in Ethereum as pre-compiled contracts
(elliptic curve addition, scalar multiplication, and pairing checks). For the proposed
scheme to be fully implemented, pairing evaluation is also required.8

12.4 Related work

José Parra Moyano and Omri Ross use distributed ledgers to improve the KYC pro-
cess [270]. Their proposal can be summarized as follows:

• the regulator maintains a database with all users’ private data;

• the user signs a contract with their first bank (the home bank);

• the home bank stores hashes of the user’s documents in a smart contract in a
permissioned blockchain;

• when the user signs a contract with another bank it obtains the user’s docu-
ments from the database and looks up the hash to ensure that the user has been
KYC-approved;

8As of 2020, Ethereum does not support pairing evaluation.

12.5. Conclusion 135

• the identity of the home bank is not revealed;

• a cost-sharing mechanism for banks allows them to proportionally share the
cost of the initial KYC approval.

In this design, all banks store users’ private data – contrary to our solution, where it
is stored only with the KYC provider. The authors also propose a more decentralized
design but claim it to be of lesser practical relevance.

Clare Sullivan and Eric Burger investigate possible implications of further de-
velopment of the Estonian e-residency program using blockchain technology [364].
E-residency of Estonia is a governmental program that provides applicants with a
digital identity that can be used, e.g., to register a company and open a bank account.
Estonian e-residency disconnects a digital identity from citizenship or physical res-
idence. Within the e-residency program, Estonia collaborates with a blockchain
project Bitnation [51, 130]. Provable (previously known as Oraclize) offers a con-
nector that lets Ethereum contracts handle e-residency identities [307].

A project [282] similar to ours implements a KYC scheme using Ethereum, but
stores the KYC status on-chain in plaintext. Multiple projects aim at easing customer
onboarding for banks [74, 226, 355, 383]. Blockchain consortium R3 has developed
a proof-of-concept implementation of a shared KYC between ten banks based on
its blockchain platform Corda [6]. Multiple Ethereum-based identity projects have
been proposed [255, 359, 390].

12.5 Conclusion

We have proposed a modular design of an Ethereum-based financial service with an
external KYC check, which benefits all participants.

• Users obtain a unified identity that they can use with multiple financial ser-
vices. Users’ data is stored only with the KYC provider and can be easily up-
dated. Personal data is neither stored on the blockchain nor transmitted to
third parties.

• Financial services greatly simplify the KYC process: it boils down to a single
API call. Our design lets them cut KYC costs while at the same time diminish-
ing risks of handling sensitive data.

• Governments get an opportunity to stimulate innovation in the financial sec-
tor by providing a unified and simple KYC API, which is especially relevant in
rapidly growing fintech and blockchain industries.

Our design is agnostic to the nature of the entity behind the KYC contract. It does
not have to be a government body. The proposed solution can be used in any setting
where a smart contract based service wants to limit the set of its users. For instance,
many jurisdictions (e.g., the US [391]) only allow certain investments to be offered
to “accredited investors.” These are typically high-net-worth individuals and finan-
cial institutions. This logic can be replicated in a blockchain setting. Consider a
blockchain-based financial service that only accepts cryptocurrency users who pos-
sess more than 10 000 USD and have done their first transaction before 2017. The
“accrediting” functionality is delegated to a third party KYC provider. Proving net
worth and previous activity on the blockchain is straightforward. More checks can
be added. Once accredited, an investor can use multiple “restricted” services with-
out revealing any personal details to their developers.

137

Bibliography

[1] 1ML. Lightning Nodes - Top Channel Count. 2019. URL: https://1ml.com/
node?order=channelcount.

[2] 1ML. Litecoin Lightning Network. 2019. URL: https://1ml.com/litecoin/.

[3] 8BTCStaff. Chinese Bitcoin miners headed to Central Asia? 2020. URL: https:
//decrypt.co/20404/chinese-bitcoin-miners-headed-to-central-asia.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley series in computer science / World stu-
dent series edition. Addison-Wesley, 1986. ISBN: 0-201-10088-6. URL: https:
//www.worldcat.org/oclc/12285707.

[5] J. Ayo Akinyele. zkChannels for Bitcoin. 2020. URL: https://medium.com/
boltlabs/zkchannels-for-bitcoin-f1bbf6e3570e.

[6] Ian Allison. R3 develops proof-of-concept for shared KYC service with 10 global
banks. 2016. URL: https : / / www . ibtimes . co . uk / r3 - develops - proof -
concept-shared-kyc-service-10-global-banks-1590908.

[7] Johanna Amann et al. “Mission accomplished?: HTTPS security after digino-
tar”. In: Proceedings of the 2017 Internet Measurement Conference, IMC 2017, Lon-
don, United Kingdom, November 1-3, 2017. Ed. by Steve Uhlig and Olaf Maen-
nel. ACM, 2017, pp. 325–340. DOI: 10.1145/3131365.3131401.

[8] Enrique Amigó et al. “A comparison of extrinsic clustering evaluation met-
rics based on formal constraints”. In: Inf. Retr. 12.4 (2009), pp. 461–486. DOI:
10.1007/s10791-008-9066-8.

[9] Oleg Andreev. Proof That Proof-of-Work is the Only Solution to the Byzantine
Generals’ Problem. 2014. URL: https://nakamotoinstitute.org/mempool/
proof-that-proof-of-work-is-the-only-solution-to-the-byzantine-
generals-problem/ (visited on 2017-07-09).

[10] Android. Permissions overview. URL: https : / / developer . android . com /
guide/topics/permissions/overview.

[11] Elli Androulaki et al. “Evaluating User Privacy in Bitcoin”. In: Financial Cryp-
tography and Data Security - 17th International Conference, FC 2013, Okinawa,
Japan, April 1-5, 2013, Revised Selected Papers. Ed. by Ahmad-Reza Sadeghi.
Vol. 7859. Lecture Notes in Computer Science. Springer, 2013, pp. 34–51. DOI:
10.1007/978-3-642-39884-1_4.

[12] Andreas Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurrencies.
O’Reilly Media, 2014. URL: https://bitcoinbook.info/.

[13] Andreas Antonopoulos, Olaoluwa Osuntokun, and René Pickhardt. Master-
ing the Lightning Network. O’Reilly Media, 2020. URL: https://lnbook.info/.

[14] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. “Hijacking Bitcoin:
Routing Attacks on Cryptocurrencies”. In: 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer So-
ciety, 2017, pp. 375–392. DOI: 10.1109/SP.2017.29.

https://1ml.com/node?order=channelcount
https://1ml.com/node?order=channelcount
https://1ml.com/litecoin/
https://decrypt.co/20404/chinese-bitcoin-miners-headed-to-central-asia
https://decrypt.co/20404/chinese-bitcoin-miners-headed-to-central-asia
https://www.worldcat.org/oclc/12285707
https://www.worldcat.org/oclc/12285707
https://medium.com/boltlabs/zkchannels-for-bitcoin-f1bbf6e3570e
https://medium.com/boltlabs/zkchannels-for-bitcoin-f1bbf6e3570e
https://www.ibtimes.co.uk/r3-develops-proof-concept-shared-kyc-service-10-global-banks-1590908
https://www.ibtimes.co.uk/r3-develops-proof-concept-shared-kyc-service-10-global-banks-1590908
https://doi.org/10.1145/3131365.3131401
https://doi.org/10.1007/s10791-008-9066-8
https://nakamotoinstitute.org/mempool/proof-that-proof-of-work-is-the-only-solution-to-the-byzantine-generals-problem/
https://nakamotoinstitute.org/mempool/proof-that-proof-of-work-is-the-only-solution-to-the-byzantine-generals-problem/
https://nakamotoinstitute.org/mempool/proof-that-proof-of-work-is-the-only-solution-to-the-byzantine-generals-problem/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://doi.org/10.1007/978-3-642-39884-1_4
https://bitcoinbook.info/
https://lnbook.info/
https://doi.org/10.1109/SP.2017.29

138 Bibliography

[15] Steven Arzt et al. “FlowDroid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps”. In: ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014. Ed. by Michael F. P. O’Boyle and Keshav
Pingali. ACM, 2014, pp. 259–269. DOI: 10.1145/2594291.2594299.

[16] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A Survey of Attacks
on Ethereum Smart Contracts (SoK)”. In: Principles of Security and Trust - 6th
International Conference, POST 2017, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings. Ed. by Matteo Maffei and Mark Ryan. Vol. 10204.
Lecture Notes in Computer Science. Springer, 2017, pp. 164–186. DOI: 10.
1007/978-3-662-54455-6_8.

[17] Augur. 2017. URL: https://augur.net/ (visited on 2017-09-25).

[18] Aztec Protocol. 2020. URL: https://www.aztecprotocol.com/.

[19] Adam Back. A partial hash collision based postage scheme. 1997. URL: http://
www.hashcash.org/papers/announce.txt.

[20] Vivek Kumar Bagaria, Joachim Neu, and David Tse. “Boomerang: Redun-
dancy Improves Latency and Throughput in Payment Networks”. In: CoRR
abs/1910.01834 (2019). URL: https://arxiv.org/abs/1910.01834.

[21] Marshall Ball et al. “Proofs of Useful Work”. In: IACR Cryptol. ePrint Arch.
2017 (2017), p. 203. URL: https://eprint.iacr.org/2017/203.

[22] Shehar Bano et al. “SoK: Consensus in the Age of Blockchains”. In: Proceed-
ings of the 1st ACM Conference on Advances in Financial Technologies, AFT 2019,
Zurich, Switzerland, October 21-23, 2019. ACM, 2019, pp. 183–198. DOI: 10.
1145/3318041.3355458.

[23] Massimo Bartoletti and Livio Pompianu. “An Analysis of Bitcoin OP_RETURN
Metadata”. In: Financial Cryptography and Data Security - FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,
2017, Revised Selected Papers. Ed. by Michael Brenner et al. Vol. 10323. Lecture
Notes in Computer Science. Springer, 2017, pp. 218–230. DOI: 10.1007/978-
3-319-70278-0_14.

[24] Massimo Bartoletti and Livio Pompianu. “An Empirical Analysis of Smart
Contracts: Platforms, Applications, and Design Patterns”. In: Financial Cryp-
tography and Data Security - FC 2017 International Workshops, WAHC, BITCOIN,
VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers.
Ed. by Michael Brenner et al. Vol. 10323. Lecture Notes in Computer Science.
Springer, 2017, pp. 494–509. DOI: 10.1007/978-3-319-70278-0_31.

[25] BEAM. 2020. URL: https://beam.mw/.

[26] Adam L. Beberg et al. “Folding@home: Lessons from eight years of volunteer
distributed computing”. In: 23rd IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009. IEEE, 2009,
pp. 1–8. DOI: 10.1109/IPDPS.2009.5160922.

[27] Eli Ben-Sasson et al. “Succinct Non-Interactive Zero Knowledge for a von
Neumann Architecture”. In: Proceedings of the 23rd USENIX Security Sympo-
sium, San Diego, CA, USA, August 20-22, 2014. Ed. by Kevin Fu and Jaeyeon
Jung. USENIX Association, 2014, pp. 781–796. URL: https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/
ben-sasson.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://augur.net/
https://www.aztecprotocol.com/
http://www.hashcash.org/papers/announce.txt
http://www.hashcash.org/papers/announce.txt
https://arxiv.org/abs/1910.01834
https://eprint.iacr.org/2017/203
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1007/978-3-319-70278-0_14
https://doi.org/10.1007/978-3-319-70278-0_14
https://doi.org/10.1007/978-3-319-70278-0_31
https://beam.mw/
https://doi.org/10.1109/IPDPS.2009.5160922
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson

Bibliography 139

[28] Eli Ben-Sasson et al. “Zerocash: Decentralized Anonymous Payments from
Bitcoin”. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014. IEEE Computer Society, 2014, pp. 459–474. DOI:
10.1109/SP.2014.36.

[29] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. “Cryptocurrencies Without
Proof of Work”. In: Financial Cryptography and Data Security - FC 2016 Inter-
national Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados,
February 26, 2016, Revised Selected Papers. Ed. by Jeremy Clark et al. Vol. 9604.
Lecture Notes in Computer Science. Springer, 2016, pp. 142–157. DOI: 10.
1007/978-3-662-53357-4_10.

[30] Iddo Bentov, Rafael Pass, and Elaine Shi. “Snow White: Provably Secure Proofs
of Stake”. In: IACR Cryptology ePrint Archive 2016 (2016), p. 919. URL: https:
//eprint.iacr.org/2016/919.

[31] M. Berberich and M. Steiner. “Practitioner’s Corner. Blockchain Technology
and the GDPR - How to Reconcile Privacy and Distributed Ledgers?” In: 2
(2016), pp. 422–426. ISSN: 2364-2831. DOI: 10.21552/edpl/2016/3/21.

[32] Ferenc Béres, István András Seres, and András A. Benczúr. “A Cryptoeco-
nomic Traffic Analysis of Bitcoins Lightning Network”. In: CoRR abs/1911.09432
(2019). arXiv: 1911.09432. URL: https://arxiv.org/abs/1911.09432.

[33] Karthikeyan Bhargavan et al. “Formal Verification of Smart Contracts: Short
Paper”. In: Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, PLAS@CCS 2016, Vienna, Austria, October 24, 2016.
Ed. by Toby C. Murray and Deian Stefan. ACM, 2016, pp. 91–96. DOI: 10.
1145/2993600.2993611.

[34] Alex Biryukov and Daniel Feher. “Portrait of a Miner in a Landscape”. In:
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Work-
shops, INFOCOM Workshops 2019, Paris, France, April 29 - May 2, 2019. IEEE,
2019, pp. 638–643. DOI: 10.1109/INFCOMW.2019.8845201.

[35] Alex Biryukov and Daniel Feher. “Privacy and Linkability of Mining in Zcash”.
In: 7th IEEE Conference on Communications and Network Security, CNS 2019,
Washington, DC, USA, June 10-12, 2019. IEEE, 2019, pp. 118–123. DOI: 10 .
1109/CNS.2019.8802711.

[36] Alex Biryukov, Daniel Feher, and Giuseppe Vitto. “Privacy Aspects and Sub-
liminal Channels in Zcash”. In: Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2019, London, UK, Novem-
ber 11-15, 2019. Ed. by Lorenzo Cavallaro et al. ACM, 2019, pp. 1795–1811.
DOI: 10.1145/3319535.3345663.

[37] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. “Deanonymi-
sation of Clients in Bitcoin P2P Network”. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li.
ACM, 2014, pp. 15–29. DOI: 10.1145/2660267.2660379.

[38] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. “Findel: Se-
cure Derivative Contracts for Ethereum”. In: Financial Cryptography and Data
Security - FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC,
and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers. Ed. by Michael
Brenner et al. Vol. 10323. Lecture Notes in Computer Science. Springer, 2017,

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
https://eprint.iacr.org/2016/919
https://eprint.iacr.org/2016/919
https://doi.org/10.21552/edpl/2016/3/21
http://arxiv.org/abs/1911.09432
https://arxiv.org/abs/1911.09432
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1109/INFCOMW.2019.8845201
https://doi.org/10.1109/CNS.2019.8802711
https://doi.org/10.1109/CNS.2019.8802711
https://doi.org/10.1145/3319535.3345663
https://doi.org/10.1145/2660267.2660379

140 Bibliography

pp. 453–467. DOI: 10.1007/978-3-319-70278-0_28. URL: https://hdl.
handle.net/10993/30975.

[39] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. “Privacy-preserving
KYC on Ethereum”. In: Proceedings of 1st ERCIM Blockchain Workshop 2018.
European Society for Socially Embedded Technologies (EUSSET), 2018. DOI:
10.18420/blockchain2018_09. URL: https://hdl.handle.net/10993/
35915.

[40] Alex Biryukov and Ivan Pustogarov. “Bitcoin over Tor isn’t a Good Idea”. In:
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015. IEEE Computer Society, 2015, pp. 122–134. DOI: 10.1109/SP.
2015.15.

[41] Alex Biryukov and Sergei Tikhomirov. “Deanonymization and Linkability of
Cryptocurrency Transactions Based on Network Analysis”. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-
19, 2019. IEEE, 2019, pp. 172–184. DOI: 10.1109/EuroSP.2019.00022. URL:
https://hdl.handle.net/10993/39724.

[42] Alex Biryukov and Sergei Tikhomirov. “Security and privacy of mobile wal-
let users in Bitcoin, Dash, Monero, and Zcash”. In: Pervasive Mob. Comput. 59
(2019). DOI: 10.1016/j.pmcj.2019.101030. URL: https://hdl.handle.net/
10993/39729.

[43] Alex Biryukov and Sergei Tikhomirov. “Transaction Clustering Using Net-
work Traffic Analysis for Bitcoin and Derived Blockchains”. In: IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications Workshops, INFO-
COM Workshops 2019, Paris, France, April 29 - May 2, 2019. IEEE, 2019, pp. 204–
209. DOI: 10.1109/INFCOMW.2019.8845213. URL: https://hdl.handle.net/
10993/39728.

[44] Bitcoin Wallet. URL: https://bitcoin.org/en/wallets/mobile/android/
bitcoinwallet/.

[45] Bitcoin wallet privacy policy. 2018. URL: https : / / github . com / bitcoin -
wallet/bitcoin-wallet/wiki/PrivacyPolicy (visited on 2018-08-26).

[46] BitcoinCore. Max standard tx weight. 2017. URL: https://github.com/bitcoin/
bitcoin/blob/c536dfbcb00fb15963bf5d507b7017c241718bf6/src/policy/
policy.h.

[47] BitcoinJ documentaion. Working with micropayment channels. URL: https : / /
bitcoinj.github.io/working-with-micropayments.

[48] BitcoinWiki. Bitcoin protocol documentation. URL: https://en.bitcoin.it/
wiki/Protocol_documentation.

[49] Bither wallet privacy policy. 2018. URL: https://github.com/bither/bither-
android/wiki/PrivacyPolicy (visited on 2018-08-26).

[50] BitMEX. Lightning Network (Part 3) – Where Is The Justice? URL: https://blog.
bitmex.com/lightning-network-justice/.

[51] Bitnation. Estonia e-residency program & Bitnation DAO public notary partner-
ship. 2015. URL: ttps : / / bitnation . co / blog / pressrelease - estonia -
bitnation-public-notary-partnership/.

[52] Bitnodes. Global Bitcoin nodes distribution. URL: https://bitnodes.earn.
com/.

https://doi.org/10.1007/978-3-319-70278-0_28
https://hdl.handle.net/10993/30975
https://hdl.handle.net/10993/30975
https://doi.org/10.18420/blockchain2018_09
https://hdl.handle.net/10993/35915
https://hdl.handle.net/10993/35915
https://doi.org/10.1109/SP.2015.15
https://doi.org/10.1109/SP.2015.15
https://doi.org/10.1109/EuroSP.2019.00022
https://hdl.handle.net/10993/39724
https://doi.org/10.1016/j.pmcj.2019.101030
https://hdl.handle.net/10993/39729
https://hdl.handle.net/10993/39729
https://doi.org/10.1109/INFCOMW.2019.8845213
https://hdl.handle.net/10993/39728
https://hdl.handle.net/10993/39728
https://bitcoin.org/en/wallets/mobile/android/bitcoinwallet/
https://bitcoin.org/en/wallets/mobile/android/bitcoinwallet/
https://github.com/bitcoin-wallet/bitcoin-wallet/wiki/PrivacyPolicy
https://github.com/bitcoin-wallet/bitcoin-wallet/wiki/PrivacyPolicy
https://github.com/bitcoin/bitcoin/blob/c536dfbcb00fb15963bf5d507b7017c241718bf6/src/policy/policy.h
https://github.com/bitcoin/bitcoin/blob/c536dfbcb00fb15963bf5d507b7017c241718bf6/src/policy/policy.h
https://github.com/bitcoin/bitcoin/blob/c536dfbcb00fb15963bf5d507b7017c241718bf6/src/policy/policy.h
https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://github.com/bither/bither-android/wiki/PrivacyPolicy
https://github.com/bither/bither-android/wiki/PrivacyPolicy
https://blog.bitmex.com/lightning-network-justice/
https://blog.bitmex.com/lightning-network-justice/
ttps://bitnation.co/blog/pressrelease-estonia-bitnation-public-notary-partnership/
ttps://bitnation.co/blog/pressrelease-estonia-bitnation-public-notary-partnership/
https://bitnodes.earn.com/
https://bitnodes.earn.com/

Bibliography 141

[53] The Block. Person behind 40% of LN’s capacity: "I have no doubt in Bitcoin and the
Lightning Network". 2019. URL: https://bit.ly/39dDpbF.

[54] Karl Bode. The Rise of Netflix Competitors Has Pushed Consumers Back Toward
Piracy. Vice. Oct. 2018. URL: https : / / www . vice . com / en _ us / article /
d3q45v/bittorrent-usage-increases-netflix-streaming-sites.

[55] Ivan Bogatyy. Linking 96% of Grin transactions. 2019. URL: https://github.
com/bogatyy/grin-linkability.

[56] BOLT. BOLT 2: Peer Protocol for Channel Management. 2019. URL: https://
github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-
protocol.md.

[57] BOLT. BOLT 3: : Bitcoin Transaction and Script Formats. Trimmed outputs. 2020.
URL: https : / / github . com / lightningnetwork / lightning - rfc / blob /
dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.md.

[58] BOLT. BOLT 4: Onion Routing Protocol. 2019. URL: https://github.com/
lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md.

[59] BOLT. Lightning Network Specifications. 2019. URL: https : / / github . com /
lightningnetwork/lightning-rfc.

[60] Joseph Bonneau et al. “Coda: Decentralized Cryptocurrency at Scale”. In:
IACR Cryptology ePrint Archive 2020 (2020), p. 352. URL: https://eprint.
iacr.org/2020/352.

[61] Joseph Bonneau et al. “Mixcoin: Anonymity for Bitcoin with Accountable
Mixes”. In: Financial Cryptography and Data Security - 18th International Confer-
ence, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers.
Ed. by Nicolas Christin and Reihaneh Safavi-Naini. Vol. 8437. Lecture Notes
in Computer Science. Springer, 2014, pp. 486–504. DOI: 10.1007/978-3-662-
45472-5_31.

[62] Joseph Bonneau et al. “SoK: Research Perspectives and Challenges for Bit-
coin and Cryptocurrencies”. In: 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 2015,
pp. 104–121. DOI: 10.1109/SP.2015.14.

[63] BRD privacy policy. 2018. URL: https://brd.com/privacy (visited on 2018-
08-26).

[64] Jerry Brito. The Case for Electronic Cash. 2019. URL: https://coincenter.org/
entry/the-case-for-electronic-cash.

[65] Jonah Brown-Cohen et al. “Formal Barriers to Longest-Chain Proof-of-Stake
Protocols”. In: Proceedings of the 2019 ACM Conference on Economics and Com-
putation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019. Ed. by Anna Karlin,
Nicole Immorlica, and Ramesh Johari. ACM, 2019, pp. 459–473. DOI: 10 .
1145/3328526.3329567.

[66] Eric Lombrozo BtcDrak Mark Friedenbach. BIP-112. CHECKSEQUENCEV-
ERIFY. 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-
0065.mediawiki.

[67] Ethan Buchman. Understanding the Ethereum trie. 2014. URL: https://easythereentropy.
wordpress.com/2014/06/04/understanding-the-ethereum-trie/.

https://bit.ly/39dDpbF
https://www.vice.com/en_us/article/d3q45v/bittorrent-usage-increases-netflix-streaming-sites
https://www.vice.com/en_us/article/d3q45v/bittorrent-usage-increases-netflix-streaming-sites
https://github.com/bogatyy/grin-linkability
https://github.com/bogatyy/grin-linkability
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1109/SP.2015.14
https://brd.com/privacy
https://coincenter.org/entry/the-case-for-electronic-cash
https://coincenter.org/entry/the-case-for-electronic-cash
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.1145/3328526.3329567
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/

142 Bibliography

[68] Benedikt Bünz et al. “Bulletproofs: Short Proofs for Confidential Transactions
and More”. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceed-
ings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer Society,
2018, pp. 315–334. DOI: 10.1109/SP.2018.00020.

[69] Conrad Burchert, Christian Decker, and Roger Wattenhofer. “Scalable Fund-
ing of Bitcoin Micropayment Channel Networks - Regular Submission”. In:
Stabilization, Safety, and Security of Distributed Systems - 19th International Sym-
posium, SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings. Ed. by
Paul G. Spirakis and Philippas Tsigas. Vol. 10616. Lecture Notes in Computer
Science. Springer, 2017, pp. 361–377. DOI: 10.1007/978-3-319-69084-1_26.

[70] Vitalik Buterin. A Next-Generation Smart Contract and Decentralized Application
Platform. 2014. URL: https://github.com/ethereum/wiki/wiki/White-
Paper.

[71] Vitalik Buterin. Design Rationale. 2017. URL: https://github.com/ethereum/
wiki/wiki/Design-Rationale.

[72] Vitalik Buterin. New experimental programming language. 2017. URL: https :
//github.com/ethereum/viper (visited on 2017-07-06).

[73] c-lightning. URL: https://github.com/ElementsProject/lightning.

[74] Cambridge Blockchain. URL: https://cambridge-blockchain.com/.

[75] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. “An Accumulator
Based on Bilinear Maps and Efficient Revocation for Anonymous Creden-
tials”. In: Public Key Cryptography - PKC 2009, 12th International Conference on
Practice and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20,
2009. Proceedings. Ed. by Stanislaw Jarecki and Gene Tsudik. Vol. 5443. Lec-
ture Notes in Computer Science. Springer, 2009, pp. 481–500. DOI: 10.1007/
978-3-642-00468-1_27.

[76] James Cameron. What privacy issues did Monero have and still has? Sept. 2016.
URL: https://monero.stackexchange.com/q/1495/4089.

[77] Nic Carter. The Last Word on Bitcoin’s Energy Consumption. 2020. URL: https:
//www.coindesk.com/the-last-word-on-bitcoins-energy-consumption.

[78] Michael del Castillo. JP Morgan, Credit Suisse Among 8 in Latest Bank Blockchain
Test. Oct. 2016. URL: https : / / www . coindesk . com / jp - morgan - credit -
suisse-among-8-in-latest-bank-blockchain-test/.

[79] Miguel Castro and Barbara Liskov. “Practical byzantine fault tolerance and
proactive recovery”. In: ACM Trans. Comput. Syst. 20.4 (2002), pp. 398–461.
DOI: 10.1145/571637.571640.

[80] Chainlink. 2020. URL: https://chain.link/.

[81] Brad Chase and Ethan MacBrough. “Analysis of the XRP Ledger Consensus
Protocol”. In: CoRR abs/1802.07242 (2018). URL: http://arxiv.org/abs/
1802.07242.

[82] Melissa Chase, Chaya Ganesh, and Payman Mohassel. “Efficient Zero-Knowledge
Proof of Algebraic and Non-Algebraic Statements with Applications to Pri-
vacy Preserving Credentials”. In: Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2016, Proceedings, Part III. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9816. Lecture Notes in Computer Science. Springer, 2016, pp. 499–530.
DOI: 10.1007/978-3-662-53015-3_18.

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-319-69084-1_26
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://github.com/ethereum/viper
https://github.com/ethereum/viper
https://github.com/ElementsProject/lightning
https://cambridge-blockchain.com/
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://monero.stackexchange.com/q/1495/4089
https://www.coindesk.com/the-last-word-on-bitcoins-energy-consumption
https://www.coindesk.com/the-last-word-on-bitcoins-energy-consumption
https://www.coindesk.com/jp-morgan-credit-suisse-among-8-in-latest-bank-blockchain-test/
https://www.coindesk.com/jp-morgan-credit-suisse-among-8-in-latest-bank-blockchain-test/
https://doi.org/10.1145/571637.571640
https://chain.link/
http://arxiv.org/abs/1802.07242
http://arxiv.org/abs/1802.07242
https://doi.org/10.1007/978-3-662-53015-3_18

Bibliography 143

[83] Shahbaz Chaudhary. Adventures in financial and software engineering. 2015. URL:
https://falconair.github.io/2015/01/30/composingcontracts.html.

[84] David Chaum. “Blind Signatures for Untraceable Payments”. In: Advances in
Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA, August
23-25, 1982. Ed. by David Chaum, Ronald L. Rivest, and Alan T. Sherman.
Plenum Press, New York, 1982, pp. 199–203. DOI: 10.1007/978- 1- 4757-
0602-4_18.

[85] David Chaum. Epicenter podcast, episode 304. The Forefather of Cryptocurrencies
and the Cypherpunk Movement. 2019. URL: https://epicenter.tv/episodes/
304/.

[86] David Chaum, Amos Fiat, and Moni Naor. “Untraceable Electronic Cash”.
In: Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceedings. Ed.
by Shafi Goldwasser. Vol. 403. Lecture Notes in Computer Science. Springer,
1988, pp. 319–327. DOI: 10.1007/0-387-34799-2_25.

[87] Jing Chen and Silvio Micali. “Algorand: A secure and efficient distributed
ledger”. In: Theor. Comput. Sci. 777 (2019), pp. 155–183. DOI: 10.1016/j.tcs.
2019.02.001.

[88] Ting Chen et al. “Under-optimized smart contracts devour your money”. In:
IEEE 24th International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017. Ed. by Martin
Pinzger, Gabriele Bavota, and Andrian Marcus. IEEE Computer Society, 2017,
pp. 442–446. DOI: 10.1109/SANER.2017.7884650.

[89] Tarun Chitra. “Competitive equilibria between staking and on-chain lend-
ing”. In: CoRR abs/2001.00919 (2020). URL: https://arxiv.org/abs/2001.
00919.

[90] Christopher D. Clack, Vikram A. Bakshi, and Lee Braine. “Smart Contract
Templates: foundations, design landscape and research directions”. In: CoRR
abs/1608.00771 (2016). URL: https://arxiv.org/abs/1608.00771.

[91] Jeremy Clark, Didem Demirag, and Seyedehmahsa Moosavi. “Demystifying
Stablecoins”. In: ACM Queue 18.1 (2020), pp. 39–60. DOI: 10.1145/3387945.
3388781.

[92] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. “Finding com-
munity structure in very large networks”. In: Physical review E 70.6 (2004),
p. 066111. URL: https://arxiv.org/abs/cond-mat/0408187.

[93] clightning Plugins. 2020. URL: https://github.com/ElementsProject/lightning/
blob/master/doc/PLUGINS.md (visited on 2020-03-05).

[94] Coindesk. ICO Tracker. 2017. URL: https://www.coindesk.com/ico-tracker/
(visited on 2017-09-18).

[95] Justin Connell. How Much Does it Cost to Run a Full Bitcoin Node? 2017. URL:
https://news.bitcoin.com/cost-full-bitcoin-node/.

[96] Marco Conoscenti, Antonio Vetrò, and Juan Carlos De Martin. “Hubs, Rebal-
ancing and Service Providers in the Lightning Network”. In: IEEE Access 7
(2019), pp. 132828–132840. DOI: 10.1109/ACCESS.2019.2941448.

[97] Consensys. Ethereum Contract Security Techniques and Tips. 2016. URL: https:
//github.com/ConsenSys/smart-contract-best-practices.

https://falconair.github.io/2015/01/30/composingcontracts.html
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://epicenter.tv/episodes/304/
https://epicenter.tv/episodes/304/
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1109/SANER.2017.7884650
https://arxiv.org/abs/2001.00919
https://arxiv.org/abs/2001.00919
https://arxiv.org/abs/1608.00771
https://doi.org/10.1145/3387945.3388781
https://doi.org/10.1145/3387945.3388781
https://arxiv.org/abs/cond-mat/0408187
https://github.com/ElementsProject/lightning/blob/master/doc/PLUGINS.md
https://github.com/ElementsProject/lightning/blob/master/doc/PLUGINS.md
https://www.coindesk.com/ico-tracker/
https://news.bitcoin.com/cost-full-bitcoin-node/
https://doi.org/10.1109/ACCESS.2019.2941448
https://github.com/ConsenSys/smart-contract-best-practices
https://github.com/ConsenSys/smart-contract-best-practices

144 Bibliography

[98] Bitcoin Core. Bitcoin Core version 0.10.0 released. Feb. 2015. URL: https : / /
bitcoin.org/en/release/v0.10.0.

[99] Bitcoin Core. Compact Blocks FAQ. June 2016. URL: https://bitcoincore.
org/en/2016/06/07/compact-blocks-faq/.

[100] Counterparty Protocol Specification. 2019. URL: https://counterparty.io/
docs/protocol_specification/.

[101] John C. Cox, Stephen A. Ross, and Mark Rubinstein. “Option pricing: A sim-
plified approach”. In: Journal of Financial Economics 7 (3 1979), pp. 229–263.
ISSN: 0304-405X. DOI: 10.1016/0304-405x(79)90015-1.

[102] Kyle Croman et al. “On Scaling Decentralized Blockchains - (A Position Pa-
per)”. In: Financial Cryptography and Data Security - FC 2016 International Work-
shops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers. Ed. by Jeremy Clark et al. Vol. 9604. Lecture
Notes in Computer Science. Springer, 2016, pp. 106–125. DOI: 10.1007/978-
3-662-53357-4_8.

[103] Suhas Daftuar. Bitcoin Core. Commit 5add7a74. Track transaction packages in
CTxMemPoolEntry. 2015. URL: https : / / github . com / bitcoin / bitcoin /
commit/5add7a74.

[104] Suhas Daftuar. p2p: Add 2 outbound block-relay-only connections. 2019. URL:
https://github.com/bitcoin/bitcoin/pull/15759.

[105] Wei Dai. B-money. 1998. URL: http://www.weidai.com/bmoney.txt.

[106] Philip Daian et al. “Flash Boys 2.0: Frontrunning, Transaction Reordering,
and Consensus Instability in Decentralized Exchanges”. In: CoRR abs/1904.05234
(2019). URL: https://arxiv.org/abs/1904.05234.

[107] Gijs van Dam et al. “Improvements of the Balance Discovery Attack on Light-
ning Network Payment Channels”. In: IACR Cryptology ePrint Archive 2019
(2019), p. 1385. URL: https://eprint.iacr.org/2019/1385.

[108] Coin Dance. Bitcoin Nodes Summary. 2019. URL: https://coin.dance/nodes.

[109] Pranav Dandekar et al. “Liquidity in credit networks: a little trust goes a long
way”. In: Proceedings 12th ACM Conference on Electronic Commerce (EC-2011),
San Jose, CA, USA, June 5-9, 2011. Ed. by Yoav Shoham, Yan Chen, and Tim
Roughgarden. ACM, 2011, pp. 147–156. DOI: 10.1145/1993574.1993597.

[110] George Danezis and Sarah Meiklejohn. “Centrally Banked Cryptocurrencies”.
In: 23rd Annual Network and Distributed System Security Symposium, NDSS
2016, San Diego, California, USA, February 21-24, 2016. The Internet Society,
2016. URL: https://eprint.iacr.org/2015/502.

[111] Dash. Dash website. URL: https://www.dash.org/.

[112] Dash wallet privacy policy. 2018. URL: https://github.com/HashEngineering/
dash-wallet/wiki/PrivacyPolicy (visited on 2018-08-26).

[113] dEBRUYNE and ErCiccione. Monero. Network upgrade and release 0.15. 2019.
URL: https://web.getmonero.org/2019/10/01/announcement-release-0-
15.html.

[114] Christian Decker. BIP-118. SIGHASH_NOINPUT. 2017. URL: https://github.
com/bitcoin/bips/blob/master/bip-0118.mediawiki.

[115] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. eltoo: A simple
layer2 protocol for bitcoin. URL: https://blockstream.com/eltoo.pdf.

https://bitcoin.org/en/release/v0.10.0
https://bitcoin.org/en/release/v0.10.0
https://bitcoincore.org/en/2016/06/07/compact-blocks-faq/
https://bitcoincore.org/en/2016/06/07/compact-blocks-faq/
https://counterparty.io/docs/protocol_specification/
https://counterparty.io/docs/protocol_specification/
https://doi.org/10.1016/0304-405x(79)90015-1
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://github.com/bitcoin/bitcoin/commit/5add7a74
https://github.com/bitcoin/bitcoin/commit/5add7a74
https://github.com/bitcoin/bitcoin/pull/15759
http://www.weidai.com/bmoney.txt
https://arxiv.org/abs/1904.05234
https://eprint.iacr.org/2019/1385
https://coin.dance/nodes
https://doi.org/10.1145/1993574.1993597
https://eprint.iacr.org/2015/502
https://www.dash.org/
https://github.com/HashEngineering/dash-wallet/wiki/PrivacyPolicy
https://github.com/HashEngineering/dash-wallet/wiki/PrivacyPolicy
https://web.getmonero.org/2019/10/01/announcement-release-0-15.html
https://web.getmonero.org/2019/10/01/announcement-release-0-15.html
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
https://blockstream.com/eltoo.pdf

Bibliography 145

[116] Christian Decker and Roger Wattenhofer. “A Fast and Scalable Payment Net-
work with Bitcoin Duplex Micropayment Channels”. In: Stabilization, Safety,
and Security of Distributed Systems - 17th International Symposium, SSS 2015, Ed-
monton, AB, Canada, August 18-21, 2015, Proceedings. Ed. by Andrzej Pelc and
Alexander A. Schwarzmann. Vol. 9212. Lecture Notes in Computer Science.
Springer, 2015, pp. 3–18. DOI: 10.1007/978-3-319-21741-3_1.

[117] Kevin Delmolino et al. “Step by Step Towards Creating a Safe Smart Contract:
Lessons and Insights from a Cryptocurrency Lab”. In: Financial Cryptography
and Data Security - FC 2016 International Workshops, BITCOIN, VOTING, and
WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers. Ed.
by Jeremy Clark et al. Vol. 9604. Lecture Notes in Computer Science. Springer,
2016, pp. 79–94. DOI: 10.1007/978-3-662-53357-4_6.

[118] Tuur Demeester. The Bitcoin Reformation. 2019. URL: https://docsend.com/
view/ijd8qrs.

[119] Inderjit S. Dhillon. “Co-clustering documents and words using bipartite spec-
tral graph partitioning”. In: Proceedings of the seventh ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, San Francisco, CA,
USA, August 26-29, 2001. Ed. by Doheon Lee et al. ACM, 2001, pp. 269–274.
URL: https://portal.acm.org/citation.cfm?id=502512.502550.

[120] Claudia Díaz et al. “Towards Measuring Anonymity”. In: Privacy Enhancing
Technologies, Second International Workshop, PET 2002, San Francisco, CA, USA,
April 14-15, 2002, Revised Papers. Ed. by Roger Dingledine and Paul F. Syver-
son. Vol. 2482. Lecture Notes in Computer Science. Springer, 2002, pp. 54–68.
DOI: 10.1007/3-540-36467-6_5.

[121] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”.
In: IEEE Trans. Inf. Theory 22.6 (1976), pp. 644–654. DOI: 10.1109/TIT.1976.
1055638.

[122] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor: The Second-
Generation Onion Router”. In: Proceedings of the 13th USENIX Security Sym-
posium, August 9-13, 2004, San Diego, CA, USA. Ed. by Matt Blaze. USENIX,
2004, pp. 303–320. URL: https://www.usenix.org/publications/library/
proceedings/sec04/tech/dingledine.html.

[123] Ethereum documentation. Mining. 2017. URL: https://ethdocs.org/en/
latest/mining.html.

[124] Kavindu Dodanduwa and Ishara Kaluthanthri. “Role of Trust in OAuth 2.0
and OpenID Connect”. In: CoRR abs/1808.10624 (2018). URL: https://arxiv.
org/abs/1808.10624.

[125] Maya Dotan et al. “Survey on Cryptocurrency Networking: Context, State-of-
the-Art, Challenges”. In: CoRR abs/2008.08412 (2020). URL: https://arxiv.
org/abs/2008.08412.

[126] dpzz. What’s the difference between “balance” and “unlocked balance”? Jan. 2017.
URL: https://monero.stackexchange.com/q/3262/4089.

[127] Thaddeus Dryja. Discreet Log Contracts. URL: https://adiabat.github.io/
dlc.pdf.

https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-662-53357-4_6
https://docsend.com/view/ijd8qrs
https://docsend.com/view/ijd8qrs
https://portal.acm.org/citation.cfm?id=502512.502550
https://doi.org/10.1007/3-540-36467-6_5
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://ethdocs.org/en/latest/mining.html
https://ethdocs.org/en/latest/mining.html
https://arxiv.org/abs/1808.10624
https://arxiv.org/abs/1808.10624
https://arxiv.org/abs/2008.08412
https://arxiv.org/abs/2008.08412
https://monero.stackexchange.com/q/3262/4089
https://adiabat.github.io/dlc.pdf
https://adiabat.github.io/dlc.pdf

146 Bibliography

[128] Cynthia Dwork and Moni Naor. “Pricing via Processing or Combatting Junk
Mail”. In: Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceed-
ings. Ed. by Ernest F. Brickell. Vol. 740. Lecture Notes in Computer Science.
Springer, 1992, pp. 139–147. DOI: 10.1007/3-540-48071-4_10.

[129] Stefan Dziembowski et al. “PERUN: Virtual Payment Channels over Cryp-
tographic Currencies”. In: IACR Cryptology ePrint Archive 2017 (2017), p. 635.
URL: https://eprint.iacr.org/2017/635.

[130] e-Estonia. New Possibilities for e-residents. 2015. URL: https://e- estonia.
com/new-possibilities-for-e-residents/.

[131] Echidna: A Fast Smart Contract Fuzzer. URL: https://github.com/crytic/
echidna.

[132] Eclair. URL: https://github.com/ACINQ/eclair.

[133] Benjamin Egelund-Müller et al. “Automated Execution of Financial Contracts
on Blockchains”. In: Bus. Inf. Syst. Eng. 59.6 (2017), pp. 457–467. DOI: 10.1007/
s12599-017-0507-z.

[134] EIP 1884: Repricing for trie-size-dependent opcodes. 2019. URL: https://eips.
ethereum.org/EIPS/eip-1884.

[135] Electrum. URL: https://electrum.org/.

[136] Electrum. The next release of Electrum will support Lightning payments. 2019.
URL: https://twitter.com/ElectrumWallet/status/1183706431473815552.

[137] Electrum privacy policy. 2018. URL: https://electrum.org/\#privacy (visited
on 2018-08-26).

[138] Meghan Elison. Christopher Kong: PSD2 Means Opportunity. 2016. URL: https:
//ripple.com/insights/christopher-kong-psd2/.

[139] Elliptic. 2020. URL: https://www.elliptic.co/.

[140] Daniel Ellison. An Introduction to LLL for Ethereum Smart Contract Development.
2017. URL: https://media.consensys.net/an-introduction-to-lll-for-
ethereum-smart-contract-development-e26e38ea6c23.

[141] EmelyanenkoK. Payment channel congestion via spam-attack. 2017. URL: https:
//github.com/lightningnetwork/lightning-rfc/issues/182.

[142] Felix Engelmann et al. “Towards an economic analysis of routing in pay-
ment channel networks”. In: Proceedings of the 1st Workshop on Scalable and
Resilient Infrastructures for Distributed Ledgers, SERIAL@Middleware 2017, Las
Vegas, NV, USA, December 11-15, 2017. ACM, 2017, 2:1–2:6. DOI: 10.1145/
3152824.3152826.

[143] ENS. 2017. URL: https://ens.domains/ (visited on 2017-09-25).

[144] Enterprise Ethereum Alliance. 2017. URL: https://entethalliance.org/.

[145] ErCiccione. Another privacy-enhancing technology added to Monero: Dandelion++.
2020. URL: https://web.getmonero.org/2020/04/18/dandelion-implemented.
html.

[146] Ethash. 2017. URL: https://github.com/ethereum/wiki/wiki/Ethash (vis-
ited on 2017-07-05).

[147] Ethereum Classic. URL: https://ethereumclassic.org/.

https://doi.org/10.1007/3-540-48071-4_10
https://eprint.iacr.org/2017/635
https://e-estonia.com/new-possibilities-for-e-residents/
https://e-estonia.com/new-possibilities-for-e-residents/
https://github.com/crytic/echidna
https://github.com/crytic/echidna
https://github.com/ACINQ/eclair
https://doi.org/10.1007/s12599-017-0507-z
https://doi.org/10.1007/s12599-017-0507-z
https://eips.ethereum.org/EIPS/eip-1884
https://eips.ethereum.org/EIPS/eip-1884
https://electrum.org/
https://twitter.com/ElectrumWallet/status/1183706431473815552
https://electrum.org/\#privacy
https://ripple.com/insights/christopher-kong-psd2/
https://ripple.com/insights/christopher-kong-psd2/
https://www.elliptic.co/
https://media.consensys.net/an-introduction-to-lll-for-ethereum-smart-contract-development-e26e38ea6c23
https://media.consensys.net/an-introduction-to-lll-for-ethereum-smart-contract-development-e26e38ea6c23
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://doi.org/10.1145/3152824.3152826
https://doi.org/10.1145/3152824.3152826
https://ens.domains/
https://entethalliance.org/
https://web.getmonero.org/2020/04/18/dandelion-implemented.html
https://web.getmonero.org/2020/04/18/dandelion-implemented.html
https://github.com/ethereum/wiki/wiki/Ethash
https://ethereumclassic.org/

Bibliography 147

[148] Ethereum Contract Security Techniques and Tips. 2016. URL: https://github.
com/ConsenSys/smart-contract-best-practices (visited on 2017-07-06).

[149] Ethereus Gas Station. 2020. URL: https://ethgasstation.info/.

[150] Etherscan. Contracts With Verified Source Codes Only. URL: https://etherscan.
io/contractsVerified.

[151] Ethhub. Monetary Policy. 2020. URL: https://docs.ethhub.io/ethereum-
basics/monetary-policy/.

[152] Ethstats. Ethstats. URL: https://ethstats.net/.

[153] EUGDPR. EU General Data Protection Regulation. 2016. URL: https://www.
eugdpr.org/.

[154] expez. In what ways can a wallet connected to a malicious remote node be abused?
Sept. 2016. URL: https://monero.stackexchange.com/q/2962/4089.

[155] Ittay Eyal and Emin Gün Sirer. “Majority is not enough: bitcoin mining is vul-
nerable”. In: Commun. ACM 61.7 (2018), pp. 95–102. DOI: 10.1145/3212998.

[156] F-Droid. URL: https://f-droid.org/en/.

[157] FALCON. The Falcon Project. URL: https://www.falcon-net.org/.

[158] Giulia C. Fanti and Pramod Viswanath. “Anonymity Properties of the Bitcoin
P2P Network”. In: CoRR abs/1703.08761 (2017). URL: https://arxiv.org/
abs/1703.08761.

[159] Giulia C. Fanti et al. “Compounding of Wealth in Proof-of-Stake Cryptocur-
rencies”. In: Financial Cryptography and Data Security - 23rd International Con-
ference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers. Ed. by Ian Goldberg and Tyler Moore. Vol. 11598. Lecture
Notes in Computer Science. Springer, 2019, pp. 42–61. DOI: 10.1007/978-
3-030-32101-7_3.

[160] Giulia C. Fanti et al. “Dandelion++: Lightweight Cryptocurrency Network-
ing with Formal Anonymity Guarantees”. In: Abstracts of the 2018 ACM In-
ternational Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS 2018, Irvine, CA, USA, June 18-22, 2018. Ed. by Konstantinos Psou-
nis, Aditya Akella, and Adam Wierman. ACM, 2018, pp. 5–7. DOI: 10.1145/
3219617.3219620.

[161] Daniel Feher. Empirical analysis of the Zcash blockchain. A grant proposal. 2017.
URL: https://github.com/ZcashFoundation/GrantProposals- 2017Q4/
issues/24.

[162] Patrick Feisthammel. Explanation of the web of trust of PGP. 2017. URL: https:
//www.rubin.ch/pgp/weboftrust.en.html.

[163] fiatjaf. lnchannels. history of the open network. 2020. URL: https://ln.bigsun.
xyz/.

[164] FIBRE. The Fast Internet Bitcoin Relay Engine. URL: https://bitcoinfibre.
org/.

[165] Karl Floersch. Ethereum Smart Contracts in L2: Optimistic Rollup. 2019. URL:
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-
optimistic-rollup-2c1cef2ec537.

[166] FlowDroid. FlowDroid Static Data Flow Tracker (source code). URL: https://
github.com/secure-software-engineering/FlowDroid/.

https://github.com/ConsenSys/smart-contract-best-practices
https://github.com/ConsenSys/smart-contract-best-practices
https://ethgasstation.info/
https://etherscan.io/contractsVerified
https://etherscan.io/contractsVerified
https://docs.ethhub.io/ethereum-basics/monetary-policy/
https://docs.ethhub.io/ethereum-basics/monetary-policy/
https://ethstats.net/
https://www.eugdpr.org/
https://www.eugdpr.org/
https://monero.stackexchange.com/q/2962/4089
https://doi.org/10.1145/3212998
https://f-droid.org/en/
https://www.falcon-net.org/
https://arxiv.org/abs/1703.08761
https://arxiv.org/abs/1703.08761
https://doi.org/10.1007/978-3-030-32101-7_3
https://doi.org/10.1007/978-3-030-32101-7_3
https://doi.org/10.1145/3219617.3219620
https://doi.org/10.1145/3219617.3219620
https://github.com/ZcashFoundation/GrantProposals-2017Q4/issues/24
https://github.com/ZcashFoundation/GrantProposals-2017Q4/issues/24
https://www.rubin.ch/pgp/weboftrust.en.html
https://www.rubin.ch/pgp/weboftrust.en.html
https://ln.bigsun.xyz/
https://ln.bigsun.xyz/
https://bitcoinfibre.org/
https://bitcoinfibre.org/
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537
https://github.com/secure-software-engineering/FlowDroid/
https://github.com/secure-software-engineering/FlowDroid/

148 Bibliography

[167] David Floyd. Bitmain’s Latest Crypto ASIC Can Mine Zcash. 2018. URL: https:
//www.coindesk.com/bitmains-latest-crypto-asic-can-mine-zcash.

[168] Michael Folkson. How is a "standard" Bitcoin transaction defined? 2017. URL:
https://bitcoin.stackexchange.com/q/52528/31712.

[169] Simon Frankau et al. “Commercial uses: Going functional on exotic trades”.
In: Journal of Functional Programming 19.1 (2009), pp. 27–45. URL: http://
arbitrary.name/papers/fpf.pdf.

[170] Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. “A Decentral-
ized Public Key Infrastructure with Identity Retention”. In: IACR Cryptology
ePrint Archive 2014 (2014), p. 803. URL: https://eprint.iacr.org/2014/803.

[171] Functional Programming for Ethereum. 2017. URL: https://github.com/evm-
lang-design/evm-lang-design.

[172] Dipl-Inf Jean-Marie Gaillourdet. “A software language approach to deriva-
tive contracts in finance”. In: CEUR Workshop Proceedings. Vol. 750. 2011, pp. 39–
43. URL: https : / / softech . cs . uni - kl . de / homepage / publications /
Gaillourdet11software.pdf.

[173] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Back-
bone Protocol: Analysis and Applications”. In: Advances in Cryptology - EU-
ROCRYPT 2015 - 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture
Notes in Computer Science. Springer, 2015, pp. 281–310. DOI: 10.1007/978-
3-662-46803-6_10.

[174] Peter Gazi, Aggelos Kiayias, and Alexander Russell. “Stake-Bleeding Attacks
on Proof-of-Stake Blockchains”. In: Crypto Valley Conference on Blockchain Tech-
nology, CVCBT 2018, Zug, Switzerland, June 20-22, 2018. IEEE, 2018, pp. 85–92.
DOI: 10.1109/CVCBT.2018.00015.

[175] Adem Efe Gencer, Robbert van Renesse, and Emin Gün Sirer. “Service-Oriented
Sharding with Aspen”. In: CoRR abs/1611.06816 (2016). URL: https://arxiv.
org/abs/1611.06816.

[176] Genesis. URL: https://genesis.vision/.

[177] Genesis Github repository. URL: https://github.com/GenesisVision/ico-
contracts/.

[178] Ryan Gentry and Matt Shapiro. Privacy Is a Feature, Not a Product. 2019. URL:
https://multicoin.capital/2019/09/24/privacy-is-a-feature/.

[179] Arthur Gervais et al. “On the privacy provisions of Bloom filters in lightweight
bitcoin clients”. In: Proceedings of the 30th Annual Computer Security Applica-
tions Conference, ACSAC 2014, New Orleans, LA, USA, December 8-12, 2014. Ed.
by Charles N. Payne Jr. et al. ACM, 2014, pp. 326–335. DOI: 10.1145/2664243.
2664267.

[180] Jeremy Gibbons. Functional Programming for Domain-Specific Languages. 2015.
DOI: 10.1007/978-3-319-15940-9_1.

[181] Alex Gluchowski. Optimistic vs. ZK Rollup: Deep Dive. 2019. URL: https://
medium . com / matter - labs / optimistic - vs - zk - rollup - deep - dive -
ea141e71e075.

[182] Gnosis. 2017. URL: https://gnosis.pm/ (visited on 2017-09-25).

https://www.coindesk.com/bitmains-latest-crypto-asic-can-mine-zcash
https://www.coindesk.com/bitmains-latest-crypto-asic-can-mine-zcash
https://bitcoin.stackexchange.com/q/52528/31712
http://arbitrary.name/papers/fpf.pdf
http://arbitrary.name/papers/fpf.pdf
https://eprint.iacr.org/2014/803
https://github.com/evm-lang-design/evm-lang-design
https://github.com/evm-lang-design/evm-lang-design
https://softech.cs.uni-kl.de/homepage/publications/Gaillourdet11software.pdf
https://softech.cs.uni-kl.de/homepage/publications/Gaillourdet11software.pdf
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1109/CVCBT.2018.00015
https://arxiv.org/abs/1611.06816
https://arxiv.org/abs/1611.06816
https://genesis.vision/
https://github.com/GenesisVision/ico-contracts/
https://github.com/GenesisVision/ico-contracts/
https://multicoin.capital/2019/09/24/privacy-is-a-feature/
https://doi.org/10.1145/2664243.2664267
https://doi.org/10.1145/2664243.2664267
https://doi.org/10.1007/978-3-319-15940-9_1
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://gnosis.pm/

Bibliography 149

[183] Golem. 2017. URL: https://golem.network/ (visited on 2017-09-25).

[184] Matthew Green and Ian Miers. “Bolt: Anonymous Payment Channels for De-
centralized Currencies”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017. Ed. by Bhavani M. Thuraisingham et al. ACM, 2017,
pp. 473–489. DOI: 10.1145/3133956.3134093.

[185] Gideon Greenspan. Why Many Smart Contract Use Cases Are Simply Impos-
sible. 2016. URL: https://www.coindesk.com/three- smart- contract-
misconceptions.

[186] Grin. 2020. URL: https://grin.mw/.

[187] Cyril Grunspan and Ricardo Pérez-Marco. “Ant routing algorithm for the
Lightning Network”. In: CoRR abs/1807.00151 (2018). URL: https://arxiv.
org/abs/1807.00151.

[188] Lewis Gudgeon et al. “SoK: Off The Chain Transactions”. In: IACR Cryptology
ePrint Archive 2019 (2019), p. 360. URL: https://eprint.iacr.org/2019/360.

[189] David A. Harding. Are Micropayment channels still subject to malleability after
BIP65? 2016. URL: https://bitcoin.stackexchange.com/a/48546/31712.

[190] Mike Hearn. Anti DoS for tx replacement. 2013. URL: https://lists.linuxfoundation.
org/pipermail/bitcoin-dev/2013-April/002417.html.

[191] Viola Hellström. PSD2 – the directive that will change banking as we know it. 2017.
URL: https://www.evry.com/en/news/articles/psd2-the-directive-
that-will-change-banking-as-we-know-it/.

[192] Kevlin Henney. “Inside requirements”. In: Application development advisor (May
2003). URL: https://www.slideshare.net/Kevlin/inside-requirements.

[193] Sebastian A. Henningsen et al. “Eclipsing Ethereum Peers with False Friends”.
In: 2019 IEEE European Symposium on Security and Privacy Workshops, EuroS&P
Workshops 2019, Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp. 300–309.
DOI: 10.1109/EuroSPW.2019.00040.

[194] Jordi Herrera-Joancomartí et al. “On the Difficulty of Hiding the Balance of
Lightning Network Channels”. In: Proceedings of the 2019 ACM Asia Confer-
ence on Computer and Communications Security, AsiaCCS 2019, Auckland, New
Zealand, July 09-12, 2019. Ed. by Steven D. Galbraith et al. ACM, 2019, pp. 602–
612. DOI: 10.1145/3321705.3329812.

[195] Alyssa Hertig. Bitcoin’s Future: Exactly How a Coming Upgrade Could Improve
Privacy and Scaling. 2020. URL: https : / / www . coindesk . com / bitcoins -
future-exactly-how-a-coming-upgrade-could-improve-privacy-and-
scaling.

[196] Everett Hildenbrandt et al. “KEVM: A Complete Formal Semantics of the
Ethereum Virtual Machine”. In: 31st IEEE Computer Security Foundations Sym-
posium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018. IEEE Computer
Society, 2018, pp. 204–217. DOI: 10.1109/CSF.2018.00022.

[197] Yoichi Hirai. Bamboo: a morphing smart contract language. 2017. URL: https:
//github.com/pirapira/bamboo (visited on 2017-07-06).

[198] Yoichi Hirai. Formal Verification of Ethereum Contracts. 2017. URL: https://
github.com/pirapira/ethereum-formal-verification-overview.

[199] Hive. URL: https://bitcointalk.org/index.php?topic=1959159.0.

https://golem.network/
https://doi.org/10.1145/3133956.3134093
https://www.coindesk.com/three-smart-contract-misconceptions
https://www.coindesk.com/three-smart-contract-misconceptions
https://grin.mw/
https://arxiv.org/abs/1807.00151
https://arxiv.org/abs/1807.00151
https://eprint.iacr.org/2019/360
https://bitcoin.stackexchange.com/a/48546/31712
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html
https://www.evry.com/en/news/articles/psd2-the-directive-that-will-change-banking-as-we-know-it/
https://www.evry.com/en/news/articles/psd2-the-directive-that-will-change-banking-as-we-know-it/
https://www.slideshare.net/Kevlin/inside-requirements
https://doi.org/10.1109/EuroSPW.2019.00040
https://doi.org/10.1145/3321705.3329812
https://www.coindesk.com/bitcoins-future-exactly-how-a-coming-upgrade-could-improve-privacy-and-scaling
https://www.coindesk.com/bitcoins-future-exactly-how-a-coming-upgrade-could-improve-privacy-and-scaling
https://www.coindesk.com/bitcoins-future-exactly-how-a-coming-upgrade-could-improve-privacy-and-scaling
https://doi.org/10.1109/CSF.2018.00022
https://github.com/pirapira/bamboo
https://github.com/pirapira/bamboo
https://github.com/pirapira/ethereum-formal-verification-overview
https://github.com/pirapira/ethereum-formal-verification-overview
https://bitcointalk.org/index.php?topic=1959159.0

150 Bibliography

[200] Hive Github repository. URL: https://github.com/HiveProjectLtd/HVNTokenBasic/.

[201] Diara Hopwood et al. Zcash protocol specification. Mar. 2020. URL: https://
github.com/zcash/zips/blob/master/protocol/protocol.pdf.

[202] Tom Hvitved. “A survey of formal languages for contracts”. In: Formal Lan-
guages and Analysis of Contract-Oriented Software (2010), pp. 29–32. URL: https:
//curis.ku.dk/ws/files/172435414/Hvitved_2010_A_survey_of_formal.
pdf.

[203] Hyperledger. Hyperledger Business Blockchain Technologies. URL: https://www.
hyperledger.org/.

[204] Eric Jackson and Christopher Grey. Cryptocurrency is accomplishing PayPal’s
original mission. 2017. URL: https://venturebeat.com/2017/12/02/cryptocurrency-
is-accomplishing-paypals-original-mission/.

[205] Joost Jager. Circuit Breaker. 2020. URL: https://github.com/lightningequipment/
circuitbreaker.

[206] Tom Elvis Jedusor. MimbleWimble. 2016. URL: https://scalingbitcoin.org/
papers/mimblewimble.txt.

[207] Bo Jiang, Ye Liu, and W. K. Chan. “ContractFuzzer: fuzzing smart contracts
for vulnerability detection”. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018. Ed. by Marianne Huchard, Christian Kästner, and Gor-
don Fraser. ACM, 2018, pp. 259–269. DOI: 10.1145/3238147.3238177.

[208] jnnk. What is Gas Limit in Ethereum? 2015. URL: https://bitcoin.stackexchange.
com/a/39197.

[209] Simon L. Peyton Jones and Jean-Marc Eber. How to write a financial contract.
2003.

[210] jsoup. Java HTML Parser. URL: https://jsoup.org/.

[211] Harry A. Kalodner et al. “Arbitrum: Scalable, private smart contracts”. In:
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018. Ed. by William Enck and Adrienne Porter Felt. USENIX
Association, 2018, pp. 1353–1370. URL: https://www.usenix.org/conference/
usenixsecurity18/presentation/kalodner.

[212] Harry A. Kalodner et al. “BlockSci: Design and applications of a blockchain
analysis platform”. In: CoRR abs/1709.02489 (2017). URL: https://arxiv.
org/abs/1709.02489.

[213] George Kappos et al. “An Empirical Analysis of Anonymity in Zcash”. In:
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018. Ed. by William Enck and Adrienne Porter Felt. USENIX
Association, 2018, pp. 463–477. URL: https://www.usenix.org/conference/
usenixsecurity18/presentation/kappos.

[214] George Kappos et al. “An Empirical Analysis of Privacy in the Lightning
Network”. In: CoRR abs/2003.12470 (2020). URL: https://arxiv.org/abs/
2003.12470.

[215] Dmitry Khovratovich. debt.sol. 2016. URL: https://gist.github.com/khovratovich/
45f68082b556b45eb64e8e1c3eb82892.

[216] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. “A Composable Secu-
rity Treatment of the Lightning Network”. In: IACR Cryptology ePrint Archive
2019 (2019), p. 778. URL: https://eprint.iacr.org/2019/778.

https://github.com/HiveProjectLtd/HVNTokenBasic/
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://curis.ku.dk/ws/files/172435414/Hvitved_2010_A_survey_of_formal.pdf
https://curis.ku.dk/ws/files/172435414/Hvitved_2010_A_survey_of_formal.pdf
https://curis.ku.dk/ws/files/172435414/Hvitved_2010_A_survey_of_formal.pdf
https://www.hyperledger.org/
https://www.hyperledger.org/
https://venturebeat.com/2017/12/02/cryptocurrency-is-accomplishing-paypals-original-mission/
https://venturebeat.com/2017/12/02/cryptocurrency-is-accomplishing-paypals-original-mission/
https://github.com/lightningequipment/circuitbreaker
https://github.com/lightningequipment/circuitbreaker
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://doi.org/10.1145/3238147.3238177
https://bitcoin.stackexchange.com/a/39197
https://bitcoin.stackexchange.com/a/39197
https://jsoup.org/
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://arxiv.org/abs/1709.02489
https://arxiv.org/abs/1709.02489
https://www.usenix.org/conference/usenixsecurity18/presentation/kappos
https://www.usenix.org/conference/usenixsecurity18/presentation/kappos
https://arxiv.org/abs/2003.12470
https://arxiv.org/abs/2003.12470
https://gist.github.com/khovratovich/45f68082b556b45eb64e8e1c3eb82892
https://gist.github.com/khovratovich/45f68082b556b45eb64e8e1c3eb82892
https://eprint.iacr.org/2019/778

Bibliography 151

[217] Aggelos Kiayias et al. “Ouroboros: A Provably Secure Proof-of-Stake Blockchain
Protocol”. In: Advances in Cryptology - CRYPTO 2017 - 37th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part I. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10401. Lecture
Notes in Computer Science. Springer, 2017, pp. 357–388. DOI: 10.1007/978-
3-319-63688-7_12.

[218] Christine Kim. Inside Monero’s ’Last Ditch Effort’ to Block Crypto Mining ASICs.
2019. URL: https://www.coindesk.com/inside- moneros- last- ditch-
effort-to-block-crypto-mining-asics.

[219] Christine Kim. The Rise of ASICs: A Step-by-Step History of Bitcoin Mining. 2020.
URL: https : / / www . coindesk . com / rise - of - asics - bitcoin - mining -
history.

[220] Ariah Klages-Mundt et al. “Stablecoins 2.0: Economic Foundations and Risk-
based Models”. In: CoRR abs/2006.12388 (2020). URL: https://arxiv.org/
abs/2006.12388.

[221] Nadav Kohen. Payment Points Part 1: Replacing HTLCs. 2019. URL: https :
//suredbits.com/payment-points-part-1/.

[222] Philip Koshy, Diana Koshy, and Patrick D. McDaniel. “An Analysis of Anonymity
in Bitcoin Using P2P Network Traffic”. In: Financial Cryptography and Data Se-
curity - 18th International Conference, FC 2014, Christ Church, Barbados, March
3-7, 2014, Revised Selected Papers. Ed. by Nicolas Christin and Reihaneh Safavi-
Naini. Vol. 8437. Lecture Notes in Computer Science. Springer, 2014, pp. 469–
485. DOI: 10.1007/978-3-662-45472-5_30.

[223] Kovri. The Kovri Project. URL: https://gitlab.com/kovri-project/kovri.

[224] Joshua Kroll, Ian Davey, and Edward Felten. “The Economics of Bitcoin Min-
ing, or Bitcoin in the Presence of Adversaries”. In: Proceedings of WEIS. 2013.
URL: https://www.econinfosec.org/archive/weis2013/papers/KrollDaveyFeltenWEIS2013.
pdf.

[225] Yujin Kwon et al. “Bitcoin vs. Bitcoin Cash: Coexistence or Downfall of Bit-
coin Cash?” In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 935–951. DOI: 10.1109/
SP.2019.00075.

[226] KYC-Chain. URL: https://kyc-chain.com/.

[227] scikit learn. Biclustering. 2018. URL: https://scikit-learn.org/stable/
modules/biclustering.html (visited on 2018-07-19).

[228] Ari Levy and Lorie Konish. The five biggest tech companies now make up 17.5%
of the S&P 500. 2020. URL: https://www.cnbc.com/2020/01/28/sp-500-
dominated-by-apple-microsoft-alphabet-amazon-facebook.html.

[229] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. “Inclusive Block
Chain Protocols”. In: Financial Cryptography and Data Security - 19th Interna-
tional Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Se-
lected Papers. Ed. by Rainer Böhme and Tatsuaki Okamoto. Vol. 8975. Lecture
Notes in Computer Science. Springer, 2015, pp. 528–547. DOI: 10.1007/978-
3-662-47854-7_33.

[230] Karen Lewison and Francisco Corella. Backing rich credentials with a blockchain
PKI. 2016. URL: https://pomcor.com/techreports/BlockchainPKI.pdf.

[231] LexiFi. Frequently asked questions. URL: https://www.lexifi.com/faq/.

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://www.coindesk.com/inside-moneros-last-ditch-effort-to-block-crypto-mining-asics
https://www.coindesk.com/inside-moneros-last-ditch-effort-to-block-crypto-mining-asics
https://www.coindesk.com/rise-of-asics-bitcoin-mining-history
https://www.coindesk.com/rise-of-asics-bitcoin-mining-history
https://arxiv.org/abs/2006.12388
https://arxiv.org/abs/2006.12388
https://suredbits.com/payment-points-part-1/
https://suredbits.com/payment-points-part-1/
https://doi.org/10.1007/978-3-662-45472-5_30
https://gitlab.com/kovri-project/kovri
https://www.econinfosec.org/archive/weis2013/papers/KrollDaveyFeltenWEIS2013.pdf
https://www.econinfosec.org/archive/weis2013/papers/KrollDaveyFeltenWEIS2013.pdf
https://doi.org/10.1109/SP.2019.00075
https://doi.org/10.1109/SP.2019.00075
https://kyc-chain.com/
https://scikit-learn.org/stable/modules/biclustering.html
https://scikit-learn.org/stable/modules/biclustering.html
https://www.cnbc.com/2020/01/28/sp-500-dominated-by-apple-microsoft-alphabet-amazon-facebook.html
https://www.cnbc.com/2020/01/28/sp-500-dominated-by-apple-microsoft-alphabet-amazon-facebook.html
https://doi.org/10.1007/978-3-662-47854-7_33
https://doi.org/10.1007/978-3-662-47854-7_33
https://pomcor.com/techreports/BlockchainPKI.pdf
https://www.lexifi.com/faq/

152 Bibliography

[232] lit. URL: https://github.com/mit-dci/lit.

[233] Bingchang Liu et al. “Software vulnerability discovery techniques: A sur-
vey”. In: 2012 fourth international conference on multimedia information network-
ing and security. IEEE. 2012, pp. 152–156.

[234] “W3C XML Path Language”. In: Encyclopedia of Database Systems. Ed. by Ling
Liu and M. Tamer Özsu. Springer US, 2009, p. 3441. DOI: 10.1007/978-0-
387-39940-9_3982.

[235] LND. URL: https://github.com/lightningnetwork/lnd.

[236] LND documentation. INSTALL. 2020. URL: https://github.com/lightningnetwork/
lnd/blob/97da7b344498d3f5ec8b4760018d2d2eaf3f634b/docs/INSTALL.
md.

[237] lpd. Lightning Peach Node in rust. URL: https://github.com/LightningPeach/
lpd.

[238] Loi Luu et al. “A Secure Sharding Protocol For Open Blockchains”. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar R. Weippl et al.
ACM, 2016, pp. 17–30. DOI: 10.1145/2976749.2978389.

[239] Loi Luu et al. “Making Smart Contracts Smarter”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. Ed. by Edgar R. Weippl et al. ACM, 2016, pp. 254–
269. DOI: 10.1145/2976749.2978309.

[240] Giulio Malavolta et al. “Anonymous Multi-Hop Locks for Blockchain Scala-
bility and Interoperability”. In: 26th Annual Network and Distributed System Se-
curity Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019. URL: https://www.ndss-symposium.org/ndss-
paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-
interoperability/.

[241] Giulio Malavolta et al. “Concurrency and Privacy with Payment-Channel
Networks”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - Novem-
ber 03, 2017. Ed. by Bhavani M. Thuraisingham et al. ACM, 2017, pp. 455–471.
DOI: 10.1145/3133956.3134096.

[242] Giulio Malavolta et al. “SilentWhispers: Enforcing Security and Privacy in
Decentralized Credit Networks”. In: 24th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2017, San Diego, California, USA, February 26 -
March 1, 2017. The Internet Society, 2017. URL: https://www.ndss-symposium.
org/ndss2017/ndss-2017-programme/silentwhispers-enforcing-security-
and-privacy-decentralized-credit-networks/.

[243] manontheinside. Does Monero protect against timing analysis? Nov. 2016. URL:
https://monero.stackexchange.com/q/2765/4089.

[244] Manticore. URL: https://github.com/trailofbits/manticore.

[245] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. “Low-Resource Eclipse
Attacks on Ethereum’s Peer-to-Peer Network”. In: IACR Cryptology ePrint
Archive 2018 (2018), p. 236. URL: https://eprint.iacr.org/2018/236.

[246] Stefano Martinazzi. “The evolution of Lightning Network’s Topology during
its first year and the influence over its core values”. In: CoRR abs/1902.07307
(2019). URL: https://arxiv.org/abs/1902.07307.

https://github.com/mit-dci/lit
https://doi.org/10.1007/978-0-387-39940-9_3982
https://doi.org/10.1007/978-0-387-39940-9_3982
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd/blob/97da7b344498d3f5ec8b4760018d2d2eaf3f634b/docs/INSTALL.md
https://github.com/lightningnetwork/lnd/blob/97da7b344498d3f5ec8b4760018d2d2eaf3f634b/docs/INSTALL.md
https://github.com/lightningnetwork/lnd/blob/97da7b344498d3f5ec8b4760018d2d2eaf3f634b/docs/INSTALL.md
https://github.com/LightningPeach/lpd
https://github.com/LightningPeach/lpd
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978309
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://doi.org/10.1145/3133956.3134096
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/silentwhispers-enforcing-security-and-privacy-decentralized-credit-networks/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/silentwhispers-enforcing-security-and-privacy-decentralized-credit-networks/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/silentwhispers-enforcing-security-and-privacy-decentralized-credit-networks/
https://monero.stackexchange.com/q/2765/4089
https://github.com/trailofbits/manticore
https://eprint.iacr.org/2018/236
https://arxiv.org/abs/1902.07307

Bibliography 153

[247] Gregory Maxwell. Bitcoin Core. Commit f692fce8. Make RelayWalletTransaction
attempt to AcceptToMemoryPool. 2016. URL: https://github.com/bitcoin/
bitcoin/pull/9290/commits/f692fce8.

[248] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. 2013. URL: https:
//bitcointalk.org/index.php?topic=279249.

[249] Petar Maymounkov and David Mazières. “Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric”. In: Peer-to-Peer Systems, First Inter-
national Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised
Papers. Ed. by Peter Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron.
Vol. 2429. Lecture Notes in Computer Science. Springer, 2002, pp. 53–65. DOI:
10.1007/3-540-45748-8_5.

[250] David Mazières. The Stellar Consensus Protocol: A Federated Model for Internet-
level Consensus. 2014. URL: https://www.stellar.org/papers/stellar-
consensus-protocol.pdf (visited on 2017-07-06).

[251] Darryl McAdams. An Ontology for Smart Contracts. 2017. URL: https://iohk.
io/en/research/library/papers/an-ontology-for-smart-contracts/.

[252] Patrick McCorry et al. “Pisa: Arbitration Outsourcing for State Channels”.
In: Proceedings of the 1st ACM Conference on Advances in Financial Technologies,
AFT 2019, Zurich, Switzerland, October 21-23, 2019. ACM, 2019, pp. 16–30. DOI:
10.1145/3318041.3355461.

[253] Patrick McCorry et al. “Towards Bitcoin Payment Networks”. In: Information
Security and Privacy - 21st Australasian Conference, ACISP 2016, Melbourne, VIC,
Australia, July 4-6, 2016, Proceedings, Part I. Ed. by Joseph K. Liu and Ron Ste-
infeld. Vol. 9722. Lecture Notes in Computer Science. Springer, 2016, pp. 57–
76. DOI: 10.1007/978-3-319-40253-6_4.

[254] Sarah Meiklejohn et al. “A Fistful of Bitcoins: Characterizing Payments Among
Men with No Names”. In: login Usenix Mag. 38.6 (2013). URL: https://www.
usenix.org/publications/login/december- 2013- volume- 38- number-
6/fistful-bitcoins-characterizing-payments-among.

[255] Elena Mesropyan. 21 Companies Leveraging Blockchain for Identity Management
and Authentication. 2017. URL: https://letstalkpayments.com/22-companies-
leveraging-blockchain-for-identity-management-and-authentication/.

[256] Ian Miers et al. “Zerocoin: Anonymous Distributed E-Cash from Bitcoin”. In:
2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013. IEEE Computer Society, 2013, pp. 397–411. DOI: 10.1109/SP.
2013.34.

[257] Andrew Miller et al. Discovering Bitcoin’s public topology and influential nodes.
2015. URL: https://www.cs.umd.edu/projects/coinscope/coinscope.pdf.

[258] Andrew Miller et al. “Sprites and State Channels: Payment Networks that Go
Faster Than Lightning”. In: Financial Cryptography and Data Security - 23rd In-
ternational Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22,
2019, Revised Selected Papers. Ed. by Ian Goldberg and Tyler Moore. Vol. 11598.
Lecture Notes in Computer Science. Springer, 2019, pp. 508–526. DOI: 10.
1007/978-3-030-32101-7_30.

[259] Makiko Mita et al. “What is Stablecoin?: A Survey on Price Stabilization
Mechanisms for Decentralized Payment Systems”. In: 8th International Congress
on Advanced Applied Informatics, IIAI-AAI 2019, Toyama, Japan, July 7-11, 2019.
IEEE, 2019, pp. 60–66. DOI: 10.1109/IIAI-AAI.2019.00023.

https://github.com/bitcoin/bitcoin/pull/9290/commits/f692fce8
https://github.com/bitcoin/bitcoin/pull/9290/commits/f692fce8
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249
https://doi.org/10.1007/3-540-45748-8_5
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://iohk.io/en/research/library/papers/an-ontology-for-smart-contracts/
https://iohk.io/en/research/library/papers/an-ontology-for-smart-contracts/
https://doi.org/10.1145/3318041.3355461
https://doi.org/10.1007/978-3-319-40253-6_4
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://letstalkpayments.com/22-companies-leveraging-blockchain-for-identity-management-and-authentication/
https://letstalkpayments.com/22-companies-leveraging-blockchain-for-identity-management-and-authentication/
https://doi.org/10.1109/SP.2013.34
https://doi.org/10.1109/SP.2013.34
https://www.cs.umd.edu/projects/coinscope/coinscope.pdf
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1109/IIAI-AAI.2019.00023

154 Bibliography

[260] Ayelet Mizrahi and Aviv Zohar. “Congestion Attacks in Payment Channel
Networks”. In: CoRR abs/2002.06564 (2020). URL: https://arxiv.org/abs/
2002.06564.

[261] Monero. Monero website. URL: https://web.getmonero.org/.

[262] MoneroHash. Monero Active Nodes Distribution. URL: https://monerohash.
com/nodes-distribution.html.

[263] Monerujo privacy policy. 2018. URL: https://www.monerujo.io/privacy-
policy.html (visited on 2018-08-26).

[264] Monetary authority of Singapore. The future is here. Project Ubin: SGD on Dis-
tributed Ledger. 2017. URL: https://www.mas.gov.sg/Singapore-Financial-
Centre/Smart-Financial-Centre/Project-Ubin.aspx.

[265] Money laundering and terrorist financing: Council agrees its negotiating stance.
2016. URL: https://www.consilium.europa.eu/en/press/press-releases/
2016/12/20-money-laundering-and-terrorist-financing/.

[266] Alex Morcos. Bitcoin Core. Commit 971a4e6b. Lower default policy limits. 2015.
URL: https://github.com/bitcoin/bitcoin/commit/971a4e6b.

[267] Pedro Moreno-Sanchez et al. “Mind Your Credit: Assessing the Health of the
Ripple Credit Network”. In: Proceedings of the 2018 World Wide Web Conference
on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018. Ed. by Pierre-
Antoine Champin et al. ACM, 2018, pp. 329–338. DOI: 10.1145/3178876.
3186099.

[268] Simon Morris. If you’re not Breaking Rules you’re Doing it Wrong — Bittorrent
Lessons for Crypto (2 of 4). 2018. URL: https://medium.com/@simonhmorris/
if-youre-not-breaking-rules-you-re-doing-it-wrong-bittorrent-
lessons-for-crypto-2-of-4-72c68227fe69.

[269] Malte Möser et al. “An Empirical Analysis of Traceability in the Monero
Blockchain”. In: PoPETs 2018.3 (2018), pp. 143–163.

[270] José Parra Moyano and Omri Ross. “KYC Optimization Using Distributed
Ledger Technology”. In: Bus. Inf. Syst. Eng. 59.6 (2017), pp. 411–423. DOI: 10.
1007/s12599-017-0504-2.

[271] Mythril. URL: https://github.com/ConsenSys/mythril.

[272] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech. rep. 2008.
URL: \href{https://bitcoin.org/bitcoin.pdf}.

[273] Satoshi Nakamoto. Governments are good at cutting off the heads of a centrally
controlled networks like Napster... The Cryptography Mailing List. 2008. URL:
https://www.metzdowd.com/pipermail/cryptography/2008-November/
014823.html.

[274] Arvind Narayanan and Jeremy Clark. “Bitcoin’s academic pedigree”. In: Com-
mun. ACM 60.12 (2017), pp. 36–45. DOI: 10.1145/3132259.

[275] Arvind Narayanan et al. Bitcoin and Cryptocurrency Technologies - A Compre-
hensive Introduction. Princeton University Press, 2016. ISBN: 978-0-691-17169-
2. URL: https://press.princeton.edu/titles/10908.html.

[276] Gleb Naumenko. p2p: supplying and using asmap to improve IP bucketing in ad-
drman. 2019. URL: https://github.com/bitcoin/bitcoin/pull/16702.

https://arxiv.org/abs/2002.06564
https://arxiv.org/abs/2002.06564
https://web.getmonero.org/
https://monerohash.com/nodes-distribution.html
https://monerohash.com/nodes-distribution.html
https://www.monerujo.io/privacy-policy.html
https://www.monerujo.io/privacy-policy.html
https://www.mas.gov.sg/Singapore-Financial-Centre/Smart-Financial-Centre/Project-Ubin.aspx
https://www.mas.gov.sg/Singapore-Financial-Centre/Smart-Financial-Centre/Project-Ubin.aspx
https://www.consilium.europa.eu/en/press/press-releases/2016/12/20-money-laundering-and-terrorist-financing/
https://www.consilium.europa.eu/en/press/press-releases/2016/12/20-money-laundering-and-terrorist-financing/
https://github.com/bitcoin/bitcoin/commit/971a4e6b
https://doi.org/10.1145/3178876.3186099
https://doi.org/10.1145/3178876.3186099
https://medium.com/@simonhmorris/if-youre-not-breaking-rules-you-re-doing-it-wrong-bittorrent-lessons-for-crypto-2-of-4-72c68227fe69
https://medium.com/@simonhmorris/if-youre-not-breaking-rules-you-re-doing-it-wrong-bittorrent-lessons-for-crypto-2-of-4-72c68227fe69
https://medium.com/@simonhmorris/if-youre-not-breaking-rules-you-re-doing-it-wrong-bittorrent-lessons-for-crypto-2-of-4-72c68227fe69
https://doi.org/10.1007/s12599-017-0504-2
https://doi.org/10.1007/s12599-017-0504-2
https://github.com/ConsenSys/mythril
\href{https://bitcoin.org/bitcoin.pdf}
https://www.metzdowd.com/pipermail/cryptography/2008-November/014823.html
https://www.metzdowd.com/pipermail/cryptography/2008-November/014823.html
https://doi.org/10.1145/3132259
https://press.princeton.edu/titles/10908.html
https://github.com/bitcoin/bitcoin/pull/16702

Bibliography 155

[277] Gleb Naumenko et al. “Erlay: Efficient Transaction Relay for Bitcoin”. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019. Ed. by Lorenzo Caval-
laro et al. ACM, 2019, pp. 817–831. DOI: 10.1145/3319535.3354237.

[278] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. “Timing Anal-
ysis for Inferring the Topology of the Bitcoin Peer-to-Peer Network”. In: 2016
Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CB-
DCom/IoP/SmartWorld), Toulouse, France, July 18-21, 2016. IEEE Computer So-
ciety, 2016, pp. 358–367. DOI: 10.1109/UIC- ATC- ScalCom- CBDCom- IoP-
SmartWorld.2016.0070.

[279] Till Neudecker and Hannes Hartenstein. “Could Network Information Facil-
itate Address Clustering in Bitcoin?” In: Financial Cryptography and Data Se-
curity - FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC,
and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers. Ed. by Michael
Brenner et al. Vol. 10323. Lecture Notes in Computer Science. Springer, 2017,
pp. 155–169. DOI: 10.1007/978-3-319-70278-0_9.

[280] Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. “Structure and Anonymity
of the Bitcoin Transaction Graph”. In: Future Internet 5.2 (2013), pp. 237–250.
DOI: 10.3390/fi5020237.

[281] Russell O’Connor. “Simplicity: A New Language for Blockchains”. In: Pro-
ceedings of the 2017 Workshop on Programming Languages and Analysis for Secu-
rity, PLAS@CCS 2017, Dallas, TX, USA, October 30, 2017. ACM, 2017, pp. 107–
120. DOI: 10.1145/3139337.3139340.

[282] Mikko Ohtamaa. Know Your Customer partner integration. 2016. URL: ttps:
//github.com/TokenMarketNet/ethereum-tokens/blob/master/KYC.rst.

[283] Rachel Rose O’Leary. Ethereum ASICs Are Here: What the New Miners Mean
and What’s Next. 2018. URL: https://www.coindesk.com/ethereum-asics-
means-whats-next.

[284] Rachel Rose O’Leary. Ethereum Developers Give ’Tentative’ Greenlight to ASIC-
Blocking Code. 2019. URL: https://www.coindesk.com/ethereum-developers-
give-tentative-greenlight-to-asic-blocking-code.

[285] OpenZeppelin. Blog posts tagged "security". 2017. URL: https://blog.zeppelin.
solutions/tagged/security.

[286] OpenZeppelin. SafeMath. 2017. URL: https://github.com/OpenZeppelin/
zeppelin-solidity/blob/master/contracts/math/SafeMath.sol.

[287] Olaoluwa Osuntokun. AMP: Atomic Multi-Path Payments over Lightning. 2018.
URL: https://lists.linuxfoundation.org/pipermail/lightning-dev/
2018-February/000993.html.

[288] Santiago Palladino. The Parity Wallet Hack Reloaded. 2017. URL: https://blog.
openzeppelin.com/parity-wallet-hack-reloaded/.

[289] Terence Parr. ANTLR. URL: https://www.antlr.org/.

[290] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1007/978-3-319-70278-0_9
https://doi.org/10.3390/fi5020237
https://doi.org/10.1145/3139337.3139340
ttps://github.com/TokenMarketNet/ethereum-tokens/blob/master/KYC.rst
ttps://github.com/TokenMarketNet/ethereum-tokens/blob/master/KYC.rst
https://www.coindesk.com/ethereum-asics-means-whats-next
https://www.coindesk.com/ethereum-asics-means-whats-next
https://www.coindesk.com/ethereum-developers-give-tentative-greenlight-to-asic-blocking-code
https://www.coindesk.com/ethereum-developers-give-tentative-greenlight-to-asic-blocking-code
https://blog.zeppelin.solutions/tagged/security
https://blog.zeppelin.solutions/tagged/security
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://blog.openzeppelin.com/parity-wallet-hack-reloaded/
https://blog.openzeppelin.com/parity-wallet-hack-reloaded/
https://www.antlr.org/

156 Bibliography

[291] Cristina Pérez-Solà et al. “LockDown: Balance Availability Attack against
Lightning Network Channels”. In: IACR Cryptology ePrint Archive 2019 (2019),
p. 1149. URL: https://eprint.iacr.org/2019/1149.

[292] Jack Pettersson and Robert Edström. “Safer smart contracts through type-
driven development”. MA thesis. 2016. URL: https://hdl.handle.net/20.
500.12380/234939.

[293] Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. “Composing con-
tracts: an adventure in financial engineering, functional pearl”. In: Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00), Montreal, Canada, September 18-21, 2000. Ed. by Martin Odersky
and Philip Wadler. ACM, 2000, pp. 280–292. DOI: 10.1145/351240.351267.

[294] Dmytro Piatkivskyi and Mariusz Nowostawski. “Split Payments in Payment
Networks”. In: Data Privacy Management, Cryptocurrencies and Blockchain Tech-
nology - ESORICS 2018 International Workshops, DPM 2018 and CBT 2018, Barcelona,
Spain, September 6-7, 2018, Proceedings. Ed. by Joaquín García-Alfaro et al.
Vol. 11025. Lecture Notes in Computer Science. Springer, 2018, pp. 67–75.
DOI: 10.1007/978-3-030-00305-0_5.

[295] René Pickhardt. Just in Time Routing (JIT-Routing) and a channel rebalancing
heuristic as an add on for improved routing success in BOLT 1.0. 2019. URL: https:
//lists.linuxfoundation.org/pipermail/lightning-dev/2019-March/
001891.html.

[296] René Pickhardt. random short channel id for private channels. 2020. URL: https:
//github.com/lightningnetwork/lightning-rfc/issues/675.

[297] René Pickhardt and Mariusz Nowostawski. “Imbalance measure and proac-
tive channel rebalancing algorithm for the Lightning Network”. In: CoRR
abs/1912.09555 (2019). URL: https://arxiv.org/abs/1912.09555.

[298] Andrew Poelstra. On stake and consensus. 2015. URL: https://nakamotoinstitute.
org/static/docs/on-stake-and-consensus.pdf.

[299] Joseph Poon and Vitalik Buterin. Plasma: Scalable Autonomous Smart Contracts.
2017. URL: https://plasma.io/plasma.pdf.

[300] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments. Tech. rep. 2016. URL: https://lightning.network/
lightning-network-paper.pdf.

[301] Populous. URL: https://populous.world/.

[302] Populous Github repository. URL: https://github.com/bitpopulous/populous-
smartcontracts.

[303] Simone Porru et al. “Blockchain-oriented software engineering: challenges
and new directions”. In: Proceedings of the 39th International Conference on Soft-
ware Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 - Com-
panion Volume. Ed. by Sebastián Uchitel, Alessandro Orso, and Martin P. Ro-
billard. IEEE Computer Society, 2017, pp. 169–171. DOI: 10.1109/ICSE-C.
2017.142.

[304] Johan A. Pouwelse et al. “The Bittorrent P2P File-Sharing System: Measure-
ments and Analysis”. In: Peer-to-Peer Systems IV, 4th International Workshop,
IPTPS 2005, Ithaca, NY, USA, February 24-25, 2005, Revised Selected Papers. Ed.
by Miguel Castro and Robbert van Renesse. Vol. 3640. Lecture Notes in Com-
puter Science. Springer, 2005, pp. 205–216. DOI: 10.1007/11558989_19.

https://eprint.iacr.org/2019/1149
https://hdl.handle.net/20.500.12380/234939
https://hdl.handle.net/20.500.12380/234939
https://doi.org/10.1145/351240.351267
https://doi.org/10.1007/978-3-030-00305-0_5
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-March/001891.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-March/001891.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-March/001891.html
https://github.com/lightningnetwork/lightning-rfc/issues/675
https://github.com/lightningnetwork/lightning-rfc/issues/675
https://arxiv.org/abs/1912.09555
https://nakamotoinstitute.org/static/docs/on-stake-and-consensus.pdf
https://nakamotoinstitute.org/static/docs/on-stake-and-consensus.pdf
https://plasma.io/plasma.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://populous.world/
https://github.com/bitpopulous/populous-smartcontracts
https://github.com/bitpopulous/populous-smartcontracts
https://doi.org/10.1109/ICSE-C.2017.142
https://doi.org/10.1109/ICSE-C.2017.142
https://doi.org/10.1007/11558989_19

Bibliography 157

[305] Pavel Prihodko et al. Flare: An approach to routing in lightning network. 2016.
URL: https://bitfury.com/content/downloads/whitepaper_flare_an_
approach_to_routing_in_lightning_network_7_7_2016.pdf.

[306] Protecting the integrity of digital assets. 2020. URL: https://www.chainalysis.
com/.

[307] Provable. The Provable blockchain oracle for modern DApps. URL: https : / /
provable.xyz/.

[308] Ptarmigan. URL: https://github.com/nayutaco/ptarmigan.

[309] Ivan Pustogarov. Bitcoin Network Probing Tool. 2017. URL: https://github.
com/ivanpustogarov/bcclient (visited on 2018-01-31).

[310] PWC. Know your customer: quick reference guide. 2015. URL: https://www.pwc.
lu/en/anti- money- laundering/docs/pwc- aml- know- your- customer-
2015.pdf.

[311] Jeffrey Quesnelle. “On the linkability of Zcash transactions”. In: CoRR abs/1712.01210
(2017). URL: https://arxiv.org/abs/1712.01210.

[312] R3. URL: https://www.r3.com/.

[313] Raiden. Raiden network: high speed asset transfers for Ethereum. 2017. URL: https:
//raiden.network/.

[314] RANDAO. A DAO working as RNG of Ethereum. 2017. URL: https://github.
com/randao/randao.

[315] Michel Rauchs, Apolline Blandin, and Anton Dek. Cambridge Bitcoin Electric-
ity Consumption Index. 2020. URL: https://www.cbeci.org/.

[316] Realitio. Crowd-sourced verification for smart contracts. URL: https://realit.
io/.

[317] Regulation (EU) 2015/847 of the European Parliament and of the Council of 20 May
2015 on information accompanying transfers of funds and repealing Regulation (EC)
No 1781/2006 (Text with EEA relevance). 2015. URL: https://eur-lex.europa.
eu/legal-content/EN/ALL/?uri=celex:32015R0847.

[318] Alf Rehn. “The politics of contraband: The honor economies of the warez
scene”. In: The journal of socio-economics 33.3 (2004), pp. 359–374.

[319] Fergal Reid and Martin Harrigan. “An Analysis of Anonymity in the Bitcoin
System”. In: PASSAT/SocialCom 2011, Privacy, Security, Risk and Trust (PAS-
SAT), 2011 IEEE Third International Conference on and 2011 IEEE Third Interna-
tional Conference on Social Computing (SocialCom), Boston, MA, USA, 9-11 Oct.,
2011. IEEE Computer Society, 2011, pp. 1318–1326. DOI: 10.1109/PASSAT/
SocialCom.2011.79.

[320] Remix: online Solidity compiler. https://remix.ethereum.org/.

[321] BitMEX Research. Lightning Network (Part 7) – Proportion Of Public vs Private
Channels. 2020. URL: https://blog.bitmex.com/lightning-network-part-
7-proportion-of-public-vs-private-channels/.

[322] Raine Rupert Revere. What is the difference between transaction cost and execution
cost in browser solidity? 2016. URL: https://ethereum.stackexchange.com/
q/5812/5113.

[323] Antoine Riard and Gleb Naumenko. “Time-Dilation Attacks on the Lightning
Network”. In: CoRR abs/2006.01418 (2020). URL: https://arxiv.org/abs/
2006.01418.

https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://www.chainalysis.com/
https://www.chainalysis.com/
https://provable.xyz/
https://provable.xyz/
https://github.com/nayutaco/ptarmigan
https://github.com/ivanpustogarov/bcclient
https://github.com/ivanpustogarov/bcclient
https://www.pwc.lu/en/anti-money-laundering/docs/pwc-aml-know-your-customer-2015.pdf
https://www.pwc.lu/en/anti-money-laundering/docs/pwc-aml-know-your-customer-2015.pdf
https://www.pwc.lu/en/anti-money-laundering/docs/pwc-aml-know-your-customer-2015.pdf
https://arxiv.org/abs/1712.01210
https://www.r3.com/
https://raiden.network/
https://raiden.network/
https://github.com/randao/randao
https://github.com/randao/randao
https://www.cbeci.org/
https://realit.io/
https://realit.io/
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32015R0847
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32015R0847
https://doi.org/10.1109/PASSAT/SocialCom.2011.79
https://doi.org/10.1109/PASSAT/SocialCom.2011.79
https://remix.ethereum.org/
https://blog.bitmex.com/lightning-network-part-7-proportion-of-public-vs-private-channels/
https://blog.bitmex.com/lightning-network-part-7-proportion-of-public-vs-private-channels/
https://ethereum.stackexchange.com/q/5812/5113
https://ethereum.stackexchange.com/q/5812/5113
https://arxiv.org/abs/2006.01418
https://arxiv.org/abs/2006.01418

158 Bibliography

[324] Dan Robinson. HTLCs considered harmful. Transcript by Bryan Bishop. 2019.
URL: https : / / diyhpl . us / wiki / transcripts / stanford - blockchain -
conference/2019/htlcs-considered-harmful/.

[325] Dan Robinson and Georgios Konstantopoulos. Ethereum is a Dark Forest. 2020.
URL: https://medium.com/@danrobinson/ethereum-is-a-dark-forest-
ecc5f0505dff.

[326] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. “Discharged Payment
Channels: Quantifying the Lightning Network’s Resilience to Topology-Based
Attacks”. In: 2019 IEEE European Symposium on Security and Privacy Work-
shops, EuroS&P Workshops 2019, Stockholm, Sweden, June 17-19, 2019. IEEE,
2019, pp. 347–356. DOI: 10.1109/EuroSPW.2019.00045.

[327] Elias Rohrer and Florian Tschorsch. “Counting Down Thunder: Timing At-
tacks on Privacy in Payment Channel Networks”. In: CoRR abs/2006.12143
(2020). URL: https://arxiv.org/abs/2006.12143.

[328] Dorit Ron and Adi Shamir. “Quantitative Analysis of the Full Bitcoin Trans-
action Graph”. In: Financial Cryptography and Data Security - 17th International
Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers.
Ed. by Ahmad-Reza Sadeghi. Vol. 7859. Lecture Notes in Computer Science.
Springer, 2013, pp. 6–24. DOI: 10.1007/978-3-642-39884-1_2.

[329] Stefanie Roos et al. “Settling Payments Fast and Private: Efficient Decentral-
ized Routing for Path-Based Transactions”. In: 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018. URL: https://arxiv.org/
abs/1709.05748.

[330] Meni Rosenfeld. Overview of colored coins. 2012. URL: https://bitcoil.co.
il/BitcoinX.pdf.

[331] Jeremy Rubin. CHECKTEMPLATEVERIFY. 2020. URL: https://github.com/
bitcoin/bips/blob/master/bip-0119.mediawiki.

[332] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “CoinShuffle: Practi-
cal Decentralized Coin Mixing for Bitcoin”. In: Computer Security - ESORICS
2014 - 19th European Symposium on Research in Computer Security, Wroclaw,
Poland, September 7-11, 2014. Proceedings, Part II. Ed. by Miroslaw Kutylowski
and Jaideep Vaidya. Vol. 8713. Lecture Notes in Computer Science. Springer,
2014, pp. 345–364. DOI: 10.1007/978-3-319-11212-1_20.

[333] Rubén Cuevas Rumín et al. “Is content publishing in BitTorrent altruistic or
profit-driven?” In: Proceedings of the 2010 ACM Conference on Emerging Net-
working Experiments and Technology, CoNEXT 2010, Philadelphia, PA, USA, Novem-
ber 30 - December 03, 2010. Ed. by Jaudelice Cavalcante de Oliveira et al. ACM,
2010, p. 11. DOI: 10.1145/1921168.1921183.

[334] Scott Ruoti et al. “Why Johnny Still, Still Can’t Encrypt: Evaluating the Us-
ability of a Modern PGP Client”. In: CoRR abs/1510.08555 (2015). URL: https:
//arxiv.org/abs/1510.08555.

[335] Rust-Lightning. URL: https://github.com/rust-bitcoin/rust-lightning.

[336] Nicolas Van Saberhagen. CryptoNote v 2.0. 2013. URL: https://cryptonote.
org/whitepaper.pdf.

https://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/2019/htlcs-considered-harmful/
https://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/2019/htlcs-considered-harmful/
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://doi.org/10.1109/EuroSPW.2019.00045
https://arxiv.org/abs/2006.12143
https://doi.org/10.1007/978-3-642-39884-1_2
https://arxiv.org/abs/1709.05748
https://arxiv.org/abs/1709.05748
https://bitcoil.co.il/BitcoinX.pdf
https://bitcoil.co.il/BitcoinX.pdf
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1145/1921168.1921183
https://arxiv.org/abs/1510.08555
https://arxiv.org/abs/1510.08555
https://github.com/rust-bitcoin/rust-lightning
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

Bibliography 159

[337] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. “Measuring and
analyzing the characteristics of Napster and Gnutella hosts”. In: Multimedia
Syst. 9.2 (2003), pp. 170–184. DOI: 10.1007/s00530-003-0088-1.

[338] Todd Schiller. Financial DSL Listing. 2013. URL: https://www.dslfin.org/
resources.html.

[339] Holger Schinzel and UdjinM6. Dash 0.12.0 Release notes. 2015. URL: https:
//github.com/dashpay/dash/blob/master/doc/release-notes/dash/
release-notes-0.12.0.md.

[340] Bruce Schneier. Debating Full Disclosure. 2007. URL: https://www.schneier.
com/blog/archives/2007/01/debating_full_d.html.

[341] Claus P. Schnorr. Method for identifying subscribers and for generating and verify-
ing electronic signatures in a data exchange system. US Patent US4995082A. 1989.
URL: https://patents.google.com/patent/US4995082.

[342] Steffen Schuldenzucker. An Axiomatic Framework for No-Arbitrage Relationships
in Financial Derivatives Markets. 2016. URL: https://www.ifi.uzh.ch/ce/
publications/LPT.pdf.

[343] Steffen Schuldenzucker. “Decomposing contracts”. MA thesis. University of
Bonn, 2014. URL: https://www.ifi.uzh.ch/ce/people/schuldenzucker/
decomposingcontracts.pdf.

[344] Pablo Lamela Seijas, Simon J. Thompson, and Darryl McAdams. “Scripting
smart contracts for distributed ledger technology”. In: IACR Cryptology ePrint
Archive 2016 (2016), p. 1156. URL: https://eprint.iacr.org/2016/1156.

[345] István András Seres et al. “Topological Analysis of Bitcoin’s Lightning Net-
work”. In: CoRR abs/1901.04972 (2019). URL: https://arxiv.org/abs/1901.
04972.

[346] Ilya Sergey and Aquinas Hobor. “A Concurrent Perspective on Smart Con-
tracts”. In: Financial Cryptography and Data Security - FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,
2017, Revised Selected Papers. Ed. by Michael Brenner et al. Vol. 10323. Lecture
Notes in Computer Science. Springer, 2017, pp. 478–493. DOI: 10.1007/978-
3-319-70278-0_30.

[347] Serpent. 2017. URL: https://github.com/ethereum/wiki/wiki/Serpent.

[348] Sharding FAQ. 2016. URL: https : / / github . com / ethereum / wiki / wiki /
Sharding-FAQ (visited on 2017-07-05).

[349] Simple Bitcoin. 2018. URL: https://github.com/btcontract/wallet (visited
on 2018-08-20).

[350] Emin Gün Sirer. Thoughts on The DAO Hack. 2016. URL: https://hackingdistributed.
com/2016/06/17/thoughts-on-the-dao-hack/.

[351] Vibhaalakshmi Sivaraman et al. “Routing Cryptocurrency with the Spider
Network”. In: Proceedings of the 17th ACM Workshop on Hot Topics in Networks,
HotNets 2018, Redmond, WA, USA, November 15-16, 2018. ACM, 2018, pp. 29–
35. DOI: 10.1145/3286062.3286067.

[352] Slither, the Solidity source analyzer. URL: https://github.com/crytic/slither.

[353] SmartCheck source code. URL: https://github.com/smartdec/smartcheck.

[354] SmartDec. SmartDec Scanner. 2018. URL: https://smartdecscanner.com/.

https://doi.org/10.1007/s00530-003-0088-1
https://www.dslfin.org/resources.html
https://www.dslfin.org/resources.html
https://github.com/dashpay/dash/blob/master/doc/release-notes/dash/release-notes-0.12.0.md
https://github.com/dashpay/dash/blob/master/doc/release-notes/dash/release-notes-0.12.0.md
https://github.com/dashpay/dash/blob/master/doc/release-notes/dash/release-notes-0.12.0.md
https://www.schneier.com/blog/archives/2007/01/debating_full_d.html
https://www.schneier.com/blog/archives/2007/01/debating_full_d.html
https://patents.google.com/patent/US4995082
https://www.ifi.uzh.ch/ce/publications/LPT.pdf
https://www.ifi.uzh.ch/ce/publications/LPT.pdf
https://www.ifi.uzh.ch/ce/people/schuldenzucker/decomposingcontracts.pdf
https://www.ifi.uzh.ch/ce/people/schuldenzucker/decomposingcontracts.pdf
https://eprint.iacr.org/2016/1156
https://arxiv.org/abs/1901.04972
https://arxiv.org/abs/1901.04972
https://doi.org/10.1007/978-3-319-70278-0_30
https://doi.org/10.1007/978-3-319-70278-0_30
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/btcontract/wallet
https://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
https://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
https://doi.org/10.1145/3286062.3286067
https://github.com/crytic/slither
https://github.com/smartdec/smartcheck
https://smartdecscanner.com/

160 Bibliography

[355] SnapSwap. URL: https://snapswap.eu/.

[356] Solidity official documentation. URL: https://solidity.readthedocs.io/.

[357] Solidity v0.5.0 Breaking Changes. 2018. URL: https://solidity.readthedocs.
io/en/v0.5.0/050-breaking-changes.html.

[358] Yonatan Sompolinsky and Aviv Zohar. “Accelerating Bitcoin’s Transaction
Processing. Fast Money Grows on Trees, Not Chains”. In: IACR Cryptology
ePrint Archive 2013 (2013), p. 881. URL: https://eprint.iacr.org/2013/881.

[359] Sovrin. URL: https://www.sovrin.org/.

[360] Jeremy Spillman. Anti DoS for tx replacement. 2013. URL: https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html.

[361] Chris Stewart. What is the tradeoff between privacy and implementation complexity
of Dandelion (BIP156). 2018. URL: https://bitcoin.stackexchange.com/q/
81503/31712.

[362] Storj. 2017. URL: https://storj.io/ (visited on 2017-09-25).

[363] Anton van Straaten. Composing Contracts. 2007. URL: https://web.archive.
org/web/20130814194431/http://contracts.scheming.org.

[364] Clare Sullivan and Eric Burger. “E-residency and blockchain”. In: Computer
Law and Security Review 33.4 (2017), pp. 470–481. ISSN: 0267-3649. DOI: 10.
1016/j.clsr.2017.03.016.

[365] Alex Sunnarborg. ICO Investments Pass VC Funding in Blockchain Market First.
2017. URL: https : / / www . coindesk . com / ico - investments - pass - vc -
funding-in-blockchain-market-first/.

[366] Nick Szabo. A Formal Language for Analyzing Contracts. 2002. URL: https://
nakamotoinstitute.org/contract-language/.

[367] Nick Szabo. Bit gold. 2005. URL: https://unenumerated.blogspot.com/
2005/12/bit-gold.html.

[368] Nick Szabo. “Formalizing and Securing Relationships on Public Networks”.
In: First Monday 2.9 (1997). URL: https://firstmonday.org/ojs/index.php/
fm/article/view/548.

[369] Paul Sztorc. Nothing is Cheaper than Proof of Work. 2015. URL: https://www.
truthcoin.info/blog/pow-cheapest/ (visited on 2017-07-09).

[370] Weizhao Tang et al. “Privacy-Utility Tradeoffs in Routing Cryptocurrency
over Payment Channel Networks”. In: CoRR abs/1909.02717 (2019). URL: https:
//arxiv.org/abs/1909.02717.

[371] Weizhao Tang et al. “Privacy-Utility Tradeoffs in Routing Cryptocurrency
over Payment Channel Networks”. In: Abstracts of the 2020 SIGMETRICS/Per-
formance Joint International Conference on Measurement and Modeling of Com-
puter Systems, Boston, MA, USA, June, 8-12, 2020. Ed. by Edmund Yeh, Athina
Markopoulou, and Y. C. Tay. ACM, 2020, pp. 81–82. DOI: 10.1145/3393691.
3394213.

[372] Jason Teutsch and Christian Reitwiessner. A scalable verification solution for
blockchains. 2017. URL: https : / / people . cs . uchicago . edu / ~teutsch /
papers/truebit.pdf.

[373] Sergei Tikhomirov. Assessing the Security and Anonymity of the Lightning Net-
work - accompanying website. 2019. URL: https://sites.google.com/view/
lightning-privacy.

https://snapswap.eu/
https://solidity.readthedocs.io/
https://solidity.readthedocs.io/en/v0.5.0/050-breaking-changes.html
https://solidity.readthedocs.io/en/v0.5.0/050-breaking-changes.html
https://eprint.iacr.org/2013/881
https://www.sovrin.org/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://bitcoin.stackexchange.com/q/81503/31712
https://bitcoin.stackexchange.com/q/81503/31712
https://storj.io/
https://web.archive.org/web/20130814194431/http://contracts.scheming.org
https://web.archive.org/web/20130814194431/http://contracts.scheming.org
https://doi.org/10.1016/j.clsr.2017.03.016
https://doi.org/10.1016/j.clsr.2017.03.016
https://www.coindesk.com/ico-investments-pass-vc-funding-in-blockchain-market-first/
https://www.coindesk.com/ico-investments-pass-vc-funding-in-blockchain-market-first/
https://nakamotoinstitute.org/contract-language/
https://nakamotoinstitute.org/contract-language/
https://unenumerated.blogspot.com/2005/12/bit-gold.html
https://unenumerated.blogspot.com/2005/12/bit-gold.html
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://www.truthcoin.info/blog/pow-cheapest/
https://www.truthcoin.info/blog/pow-cheapest/
https://arxiv.org/abs/1909.02717
https://arxiv.org/abs/1909.02717
https://doi.org/10.1145/3393691.3394213
https://doi.org/10.1145/3393691.3394213
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://sites.google.com/view/lightning-privacy
https://sites.google.com/view/lightning-privacy

Bibliography 161

[374] Sergei Tikhomirov. “Ethereum: State of Knowledge and Research Perspec-
tives”. In: Foundations and Practice of Security - 10th International Symposium,
FPS 2017, Nancy, France, October 23-25, 2017, Revised Selected Papers. Ed. by
Abdessamad Imine et al. Vol. 10723. Lecture Notes in Computer Science.
Springer, 2017, pp. 206–221. DOI: 10.1007/978-3-319-75650-9_14. URL:
https://hdl.handle.net/10993/32468.

[375] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maffei. “A Quantita-
tive Analysis of Security, Anonymity and Scalability for the Lightning Net-
work”. In: 2020 IEEE European Symposium on Security and Privacy Workshops,
EuroS&P Workshops 2020, September 7-11, 2020. IEEE, 2020. URL: https://
eprint.iacr.org/2020/303.

[376] Sergei Tikhomirov et al. “Probing Channel Balances in the Lightning Net-
work”. In: CoRR abs/2004.00333 (2020). URL: https://arxiv.org/abs/2004.
00333.

[377] Sergei Tikhomirov et al. “SmartCheck: Static Analysis of Ethereum Smart
Contracts”. In: 1st IEEE/ACM International Workshop on Emerging Trends in
Software Engineering for Blockchain, WETSEB@ICSE 2018, Gothenburg, Sweden,
May 27 - June 3, 2018. ACM, 2018, pp. 9–16. URL: https://hdl.handle.net/
10993/35862.

[378] TLSNotary. A new kind of auditing - cryptographic proof of online accounts. URL:
https://tlsnotary.org/.

[379] Saar Tochner, Stefan Schmid, and Aviv Zohar. “Hijacking Routes in Payment
Channel Networks: A Predictability Tradeoff”. In: CoRR abs/1909.06890 (2019).
URL: https://arxiv.org/abs/1909.06890.

[380] Peter Todd. BIP-65. OP_CHECKLOCKTIMEVERIFY. 2014. URL: https : / /
github.com/bitcoin/bips/blob/master/bip-0065.mediawiki.

[381] Tor. Tor website. URL: https://www.torproject.org/.

[382] Tornado Cash. 2020. URL: https://tornado.cash/.

[383] Tradle. URL: https://tradle.io/.

[384] Florian Tramèr, Dan Boneh, and Kenneth G. Paterson. “Remote Side-Channel
Attacks on Anonymous Transactions”. In: IACR Cryptol. ePrint Arch. 2020
(2020), p. 220. URL: https://eprint.iacr.org/2020/220.

[385] Lawrence J. Trautman. “Virtual Currencies: Bitcoin and What Now after Lib-
erty Reserve and Silk Road?” In: Richmond Journal of Law and Technology 20 (4
2014). ISSN: 1556-5068. DOI: 10.2139/ssrn.2393537.

[386] Omer Tripp et al. “TAJ: effective taint analysis of web applications”. In: Pro-
ceedings of the 2009 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. Ed. by
Michael Hind and Amer Diwan. ACM, 2009, pp. 87–97. DOI: 10.1145/1542476.
1542486.

[387] Petar Tsankov et al. “Securify: Practical Security Analysis of Smart Contracts”.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. Ed. by
David Lie et al. ACM, 2018, pp. 67–82. DOI: 10.1145/3243734.3243780.

[388] Florian Tschorsch and Björn Scheuermann. “Bitcoin and Beyond: A Technical
Survey on Decentralized Digital Currencies”. In: IEEE Commun. Surv. Tutori-
als 18.3 (2016), pp. 2084–2123. DOI: 10.1109/COMST.2016.2535718.

https://doi.org/10.1007/978-3-319-75650-9_14
https://hdl.handle.net/10993/32468
https://eprint.iacr.org/2020/303
https://eprint.iacr.org/2020/303
https://arxiv.org/abs/2004.00333
https://arxiv.org/abs/2004.00333
https://hdl.handle.net/10993/35862
https://hdl.handle.net/10993/35862
https://tlsnotary.org/
https://arxiv.org/abs/1909.06890
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://www.torproject.org/
https://tornado.cash/
https://tradle.io/
https://eprint.iacr.org/2020/220
https://doi.org/10.2139/ssrn.2393537
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1109/COMST.2016.2535718

162 Bibliography

[389] tyzbit. Samourai Wallet needs access to your node’s JSON-RPC port if you’re using
a Trusted Node... why? - Reddit. 2017. URL: https://www.reddit.com/r/
Bitcoin/comments/7qalbo/ (visited on 2018-12-05).

[390] Uport. URL: https://www.uport.me/.

[391] US securities and exchange comission. Accredited Investors. URL: https://www.
sec.gov/fast-answers/answers-accredhtm.html.

[392] user3643. Is Monero in I2P secure now, and how do I do it? Oct. 2017. URL: https:
//monero.stackexchange.com/q/6264/4089.

[393] Luke Valenta and Brendan Rowan. “Blindcoin: Blinded, Accountable Mixes
for Bitcoin”. In: Financial Cryptography and Data Security - FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30,
2015, Revised Selected Papers. Ed. by Michael Brenner et al. Vol. 8976. Lecture
Notes in Computer Science. Springer, 2015, pp. 112–126. DOI: 10.1007/978-
3-662-48051-9_9.

[394] Filippo Valsorda. I’m giving up on PGP. 2016. URL: https://blog.filippo.
io/giving-up-on-long-term-pgp/.

[395] Niels Vandezande. “Virtual currencies under EU anti-money laundering law”.
In: 33 (2017), pp. 341–353. ISSN: 0267-3649. DOI: 10.1016/j.clsr.2017.03.
011.

[396] Shaileshh Bojja Venkatakrishnan, Giulia C. Fanti, and Pramod Viswanath.
“Dandelion: Redesigning the Bitcoin Network for Anonymity”. In: Proceed-
ings of the 2017 ACM SIGMETRICS / International Conference on Measurement
and Modeling of Computer Systems, Urbana-Champaign, IL, USA, June 05 - 09,
2017. Ed. by Bruce E. Hajek et al. ACM, 2017, p. 57. DOI: 10.1145/3078505.
3078528.

[397] Friedhelm Victor and Bianca Katharina Lüders. “Measuring Ethereum-Based
ERC20 Token Networks”. In: Financial Cryptography and Data Security - 23rd
International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-
22, 2019, Revised Selected Papers. Ed. by Ian Goldberg and Tyler Moore. Vol. 11598.
Lecture Notes in Computer Science. Springer, 2019, pp. 113–129. DOI: 10.
1007/978-3-030-32101-7_8.

[398] Fabian Vogelsteller et al. Merkle Patricia Trie Specification. 2017. URL: https:
//github.com/ethereum/wiki/wiki/Patricia-Tree.

[399] Vyper. 2020. URL: https://vyper.readthedocs.io/en/latest/.

[400] Walletexplorer. Bitcoin block explorer with address grouping and wallet labeling.
URL: https://www.walletexplorer.com/.

[401] Channing Walton. Scala Contracts Project. 2012. URL: https://github.com/
channingwalton/scala-contracts/wiki.

[402] Haiyang Wang et al. “Enhancing Traffic Locality in BitTorrent via Shared
Trackers”. In: NETWORKING 2012 - 11th International IFIP TC 6 Networking
Conference, Prague, Czech Republic, May 21-25, 2012, Proceedings, Part II. Ed. by
Robert Bestak et al. Vol. 7290. Lecture Notes in Computer Science. Springer,
2012, pp. 59–70. DOI: 10.1007/978-3-642-30054-7_5.

[403] Liang Wang and Ivan Pustogarov. “Towards Better Understanding of Bitcoin
Unreachable Peers”. In: CoRR abs/1709.06837 (2017). URL: https://arxiv.
org/abs/1709.06837.

https://www.reddit.com/r/Bitcoin/comments/7qalbo/
https://www.reddit.com/r/Bitcoin/comments/7qalbo/
https://www.uport.me/
https://www.sec.gov/fast-answers/answers-accredhtm.html
https://www.sec.gov/fast-answers/answers-accredhtm.html
https://monero.stackexchange.com/q/6264/4089
https://monero.stackexchange.com/q/6264/4089
https://doi.org/10.1007/978-3-662-48051-9_9
https://doi.org/10.1007/978-3-662-48051-9_9
https://blog.filippo.io/giving-up-on-long-term-pgp/
https://blog.filippo.io/giving-up-on-long-term-pgp/
https://doi.org/10.1016/j.clsr.2017.03.011
https://doi.org/10.1016/j.clsr.2017.03.011
https://doi.org/10.1145/3078505.3078528
https://doi.org/10.1145/3078505.3078528
https://doi.org/10.1007/978-3-030-32101-7_8
https://doi.org/10.1007/978-3-030-32101-7_8
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://vyper.readthedocs.io/en/latest/
https://www.walletexplorer.com/
https://github.com/channingwalton/scala-contracts/wiki
https://github.com/channingwalton/scala-contracts/wiki
https://doi.org/10.1007/978-3-642-30054-7_5
https://arxiv.org/abs/1709.06837
https://arxiv.org/abs/1709.06837

Bibliography 163

[404] Lawrence H. White. “The Troubling Suppression of Competition from Alter-
native Monies: The Cases of the Liberty Dollar and E-Gold”. In: GMU Work-
ing Paper in Economics (14-06 2014). ISSN: 1556-5068. DOI: 10.2139/ssrn.
2406983.

[405] JR Willett et al. Omni Protocol Specification (formerly Mastercoin). 2016. URL:
https://github.com/OmniLayer/spec.

[406] Wolfgang Wögerer. A survey of static program analysis techniques. Tech. rep.
Technische Universität Wien, 2005. URL: https://www.ics.uci.edu/~lopes/
teaching/inf212W12/readings/Woegerer-progr-analysis.pdf.

[407] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. 2014.
URL: https://ethereum.github.io/yellowpaper/paper.pdf.

[408] WorldCoinIndex. WorldCoinIndex. URL: https://www.worldcoinindex.com/
coin/ethereum.

[409] Pieter Wuille. Replace global trickle node with random delays. Nov. 2015. URL:
https://github.com/bitcoin/bitcoin/pull/7125.

[410] Pieter Wuille, Jonas Nick, and Anthony Towns. BIP-341. Taproot: SegWit ver-
sion 1 spending rules. 2020. URL: https://github.com/bitcoin/bips/blob/
master/bip-0341.mediawiki.

[411] Pieter Wuille, Andrew Poelstra, and Sanket Kanjalkar. Miniscript. 2019. URL:
http://bitcoin.sipa.be/miniscript/.

[412] Xazax310. Time to discuss the elephant in the room. Nicehash 51% Attacks. 2019.
URL: https://www.reddit.com/r/gpumining/comments/ael09k/time_to_
discuss_the_elephant_in_the_room_nicehash/.

[413] ydtm. The bug which the DAO hacker exploited was not merely in the DAO itself.
2016. URL: https://redd.it/4opjov.

[414] Masahiro Yoshida and Akihiro Nakao. “BPEX: Localizing BitTorrent Traffic
via Biased Peer Exchange”. In: 2012 Seventh International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2012, Victoria, BC, Canada,
November 12-14, 2012. Ed. by Fatos Xhafa, Leonard Barolli, and Kin Fun Li.
IEEE, 2012, pp. 41–48. DOI: 10.1109/3PGCIC.2012.15.

[415] Zcash. Zcash official website. URL: https://z.cash/.

[416] Roman Zeyde. Bitcoin Full Node on AWS Free Tier. 2018. URL: https://gist.
github.com/romanz/17ff716f13a34df49ff4.

[417] Fan Zhang et al. “Town Crier: An Authenticated Data Feed for Smart Con-
tracts”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar R.
Weippl et al. ACM, 2016, pp. 270–282. DOI: 10.1145/2976749.2978326.

[418] ZmnSCPxj. Improving Lightning Network Pathfinding Latency by Path Splicing
and Other Real-Time Strategy Game Techniques. 2019. URL: https://lists.
linuxfoundation.org/pipermail/lightning-dev/2019-August/002095.
html.

[419] ZmnSCPxj. Outsourcing route computation with trampoline payments. 2019. URL:
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-
April/001950.html.

[420] ZmnSCPxj. Proposal: routetricks plugin. 2019. URL: https : / / github . com /
ElementsProject/lightning/issues/3001 (visited on 2019-10-31).

https://doi.org/10.2139/ssrn.2406983
https://doi.org/10.2139/ssrn.2406983
https://github.com/OmniLayer/spec
https://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/Woegerer-progr-analysis.pdf
https://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/Woegerer-progr-analysis.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.worldcoinindex.com/coin/ethereum
https://www.worldcoinindex.com/coin/ethereum
https://github.com/bitcoin/bitcoin/pull/7125
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
http://bitcoin.sipa.be/miniscript/
https://www.reddit.com/r/gpumining/comments/ael09k/time_to_discuss_the_elephant_in_the_room_nicehash/
https://www.reddit.com/r/gpumining/comments/ael09k/time_to_discuss_the_elephant_in_the_room_nicehash/
https://redd.it/4opjov
https://doi.org/10.1109/3PGCIC.2012.15
https://z.cash/
https://gist.github.com/romanz/17ff716f13a34df49ff4
https://gist.github.com/romanz/17ff716f13a34df49ff4
https://doi.org/10.1145/2976749.2978326
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-August/002095.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-August/002095.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-August/002095.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-April/001950.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-April/001950.html
https://github.com/ElementsProject/lightning/issues/3001
https://github.com/ElementsProject/lightning/issues/3001

165

List of Publications

1. Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. “Findel: Secure
Derivative Contracts for Ethereum”. In: Financial Cryptography and Data Secu-
rity - FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and
TA, Sliema, Malta, April 7, 2017, Revised Selected Papers. Ed. by Michael Brenner
et al. Vol. 10323. Lecture Notes in Computer Science. Springer, 2017, pp. 453–
467. DOI: 10.1007/978-3-319-70278-0_28. URL: https://hdl.handle.net/
10993/30975 ([38])

2. Sergei Tikhomirov. “Ethereum: State of Knowledge and Research Perspec-
tives”. In: Foundations and Practice of Security - 10th International Symposium,
FPS 2017, Nancy, France, October 23-25, 2017, Revised Selected Papers. Ed. by Ab-
dessamad Imine et al. Vol. 10723. Lecture Notes in Computer Science. Springer,
2017, pp. 206–221. DOI: 10.1007/978- 3- 319- 75650- 9_14. URL: https:
//hdl.handle.net/10993/32468 ([374])

3. Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. “Privacy-preserving
KYC on Ethereum”. In: Proceedings of 1st ERCIM Blockchain Workshop 2018.
European Society for Socially Embedded Technologies (EUSSET), 2018. DOI:
10.18420/blockchain2018_09. URL: https://hdl.handle.net/10993/35915
([39])

4. Sergei Tikhomirov et al. “SmartCheck: Static Analysis of Ethereum Smart Con-
tracts”. In: 1st IEEE/ACM International Workshop on Emerging Trends in Software
Engineering for Blockchain, WETSEB@ICSE 2018, Gothenburg, Sweden, May 27 -
June 3, 2018. ACM, 2018, pp. 9–16. URL: https://hdl.handle.net/10993/
35862 ([377])

5. Alex Biryukov and Sergei Tikhomirov. “Transaction Clustering Using Net-
work Traffic Analysis for Bitcoin and Derived Blockchains”. In: IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications Workshops, INFO-
COM Workshops 2019, Paris, France, April 29 - May 2, 2019. IEEE, 2019, pp. 204–
209. DOI: 10.1109/INFCOMW.2019.8845213. URL: https://hdl.handle.net/
10993/39728 ([43])

6. Alex Biryukov and Sergei Tikhomirov. “Deanonymization and Linkability of
Cryptocurrency Transactions Based on Network Analysis”. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-
19, 2019. IEEE, 2019, pp. 172–184. DOI: 10.1109/EuroSP.2019.00022. URL:
https://hdl.handle.net/10993/39724 ([41])

7. Alex Biryukov and Sergei Tikhomirov. “Security and privacy of mobile wallet
users in Bitcoin, Dash, Monero, and Zcash”. In: Pervasive Mob. Comput. 59
(2019). DOI: 10.1016/j.pmcj.2019.101030. URL: https://hdl.handle.net/
10993/39729 ([42])

https://doi.org/10.1007/978-3-319-70278-0_28
https://hdl.handle.net/10993/30975
https://hdl.handle.net/10993/30975
https://doi.org/10.1007/978-3-319-75650-9_14
https://hdl.handle.net/10993/32468
https://hdl.handle.net/10993/32468
https://doi.org/10.18420/blockchain2018_09
https://hdl.handle.net/10993/35915
https://hdl.handle.net/10993/35862
https://hdl.handle.net/10993/35862
https://doi.org/10.1109/INFCOMW.2019.8845213
https://hdl.handle.net/10993/39728
https://hdl.handle.net/10993/39728
https://doi.org/10.1109/EuroSP.2019.00022
https://hdl.handle.net/10993/39724
https://doi.org/10.1016/j.pmcj.2019.101030
https://hdl.handle.net/10993/39729
https://hdl.handle.net/10993/39729

166 Bibliography

8. Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maffei. “A Quanti-
tative Analysis of Security, Anonymity and Scalability for the Lightning Net-
work”. In: 2020 IEEE European Symposium on Security and Privacy Workshops,
EuroS&P Workshops 2020, September 7-11, 2020. IEEE, 2020. URL: https://
eprint.iacr.org/2020/303 ([375])

9. Sergei Tikhomirov et al. “Probing Channel Balances in the Lightning Network”.
In: CoRR abs/2004.00333 (2020). URL: https://arxiv.org/abs/2004.00333
([376])

https://eprint.iacr.org/2020/303
https://eprint.iacr.org/2020/303
https://arxiv.org/abs/2004.00333

