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What is XDEM?
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eXtended
Discrete

Element
Method

What is XDEM?

Particles Dynamics
e Force and torques
e Particle motion
Particles Conversion
e Heat and mass transfer
e Chemical reactions

Coupled with

e Finite Element Method (FEM)
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Application Examples

Brittle Failure
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Application Examples: XDEM coupled with FEM

Deformation of a tire

Impact on an Elastic Membrane
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Application Examples: XDEM coupled with CFD

Selective Laser Melting
in Additive Manufacturing
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Multi-Physics Coupling

surface vs. volume coupling
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Multi-Physics Coupling

Numerical Methods

Computation Fluid Dynamics (CFD)
Finite Element Method (FEM)
Discrete Element Method (DEM)

Different Software
* |nstead of a monolithic software

Different Mesh Topology

Numerical Method Constraints

e Time step size
* Convergence

Technical Constraints

Coupling API

Communication / Data exchange
Scalability

Physics Constraints

* Mass, energy conservation
e Value consistency

Complicated physics = Complex Software = Performance Nightmare il
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Surface Coupling, e.g. Fluid-Structure Interaction (FSI)
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Surface Coupling, e.g. Fluid-Structure Interaction (FSI)

2,8e+01 %
25 £
t 0 &
k15 B
—10 0}
>
o
0,0e+00 .2
L
68601 =
G &
05 "qc')
~o4 2
03 ©
02 5
Deformable [ 3
0,0e+00 ko]
flap

Data Exchange on a 2D surface
I e CFD — FEM: surface forces
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Volume Coupling, e.g. Fluid-Particles Interaction
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Volume Coupling, e.g. Fluid-Particles Interaction
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CFD-DEM
Volume Coupling
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CFD-(X)DEM Coupling Moving particles interacting
with liquid and gas

Qlosw{a\lHHIS\Q‘AI(’HHIIIIl
L. Particles in DEM
From CFD to DEM From DEM to CFD
e Lift force (buoyancy) e Porosity
e Drag force e Particle source of momentum

12369 1.647e+04

CFD «— XDEM
e Heat transfer
e Mass transfer
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CFD-DEM Parallel Coupling: Challenges ~ ~~~© © -

——————————————————————

Challenges in CFD-XDEM parallel coupling “CEFD Domain
. . . . DEM Domain
e Combine different independent software @ @ .
e \olume coupling = Large amount of data to exchange
e Different distribution of the computation and of the data @OQOO
e DEM data distribution is dynamic L L
e Data interpolation between meshes

(TN
G

Classical Approaches /\—’/’\,\::/
/’_\\ f \I

e . @) N

e Each software partitions its domain independently \/@Tj:‘\’ ¥ 2
e Data exchange in a peer-to-peer model {\@_@?} ) %@
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CFD-DEM Parallel Coupling: Challenges

OpenFOAM XDEM
.
liew
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The domains overlap in space
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CFD-DEM Parallel Coupling: Challenges

~CFD Domain

DEM Domain
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CFD-DEM Parallel Coupling: Challenges

Classical Approach: the domains are partitioned independently

. 1
1' 3'
| 2
CFDDomain ~DEM-Domain—
| 3
2' 4'
| 4
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CFD-DEM Parallel Coupling: Challenges

Classical Approach: the domains are partitioned independently

1' 3' ¢ —
CFD Domain ~“DEMDomain—
2l 4I

Complex pattern and large volume of communication
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Co-located Partitioning Strategy

A co-located partitions strategy for parallel CFD—-DEM couplings
G. Pozzetti, X. Besseron, A. Rousset and B. Peters

Journal of Advanced Powder Technology, December 2018
https://doi.org/10.1016/j.apt.2018.08.025
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Co-located Partitioning Strategy
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Co-located Partitioning Strategy: communication

Process 1 Intra-physics Data Exchange
runnlng 1 g 1 T S AT NS i P Kl S5 N ARG A, OSSN SN 500501 PSR i S G St e st i s et s b A
on Node 1 ¥ v | Inter-partition intra-physics Data Exchange
<€ using MPI communication layer
e with native implementation in OpenFOAM and XDEM
Process 2 . 4 B s s s S0 S S A A S A5 5 S R S K S 0 G £ S A ENIE £ € e 544 S 8 B
running 2 € 2
on Node 2 ¥ v

Inter-partition inter-physics Data Exchange

\

>
<>
y 9

— b A ;4 » using MPI communication layer
running 3 : : 3 : reduced to minimum or non-existing due to partition co-location
on Node 3 v
. 4 o . ]
Intra-partition inter-physics Data Exchange
(| A A A using direct library function calls
Process & fast because it is a direct intra-process memaory access
[HNAIng 4 N |
on Node 4
N J
OpenFOAM XDEM
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Co-located Partitioning Strategy: communication

Intra-physics Data Exchange

Inter-partition intra-physics Data Exchange
using MPI communication layer
with native implementation in OpenFOAM and XDEM

\

) 4
Process 1
running 1 = - - P 1 G e e s
on Node 1 3 9 :
N E
Process 2 , 4 &u ______________
running 2 - - 2
on Node 2 1
1 ¢ / ............
=
Process 3 1 < "
running 3 - I 3
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~ < - )
Process 4 L 4
running 4 M a N\
on Node 4
J
. OpenFOAM ) \ XDEM y

With native implementation of each sotfware

Inter-partition inter-physics Data Exchange
using MPI communication layer
reduced to minimum or non-existing due to partition co-location

Intra-partition inter-physics Data Exchange
using direct library function calls
fast because it is a direct intra-process memaory access
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Co-located Partitioning Strategy: communication

Process 1
running
on Node 1

Process 2
running
on Node 2

Process 3
running
on Node 3

Process 4
running
on Node 4

Intra-physics Data Exchange

Inter-partition intra-physics Data Exchange

- <€ using MPI communication layer

with native implementation in OpenFOAM and XDEM

Inter-partition inter-physics Data Exchange

. 4 » using MPI communication layer
: reduced to minimum or non-existing due to partition co-location
j e Intra-partition inter-physics Data Exchange

using direct library function calls
fast because it is a direct intra-process memaory access

Use direct intra-proces memory access
if the two software are linked into one executable,
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Co-located Partitioning Strategy: communication

Process 1 X ) _ 1 Intra-physics Data Exchange
I’Uﬂnlng \g&a L T N S sl A i S0 M W R R S et s e e s s i s v i i sk
on Node 1 ¥ v : Inter-partition intra-physics Data Exchange
<€ using MPI communication layer
e with native implementation in OpenFOAM and XDEM
Process 2 . A By e g s e S S U B O A O T W S S S (S e G G S 548 S A
running 2 <« - = > 2
on Node 2 \ v o Inter-physics Data Exchange
. 1 ¢ = Inter-partition inter-physics Data Exchange
Procass 4 A 4 < » using MPI communication layer
running 3 < — — 5> 3 : reduced to minimum or non-existing due to partition co-location :
on Node 3 ¥ v - ~
. J : o _ -
. ~Intra-partition inter-physics Data Exchange
i n N ) “© 777 using direct library function calls
Prrgr?ﬁisnsgdf A — — h fast because it is a direct intra-process memory access
<« ==
onNode 4 T . oo s
. J
OpenFOAM XDEM

Can be non-existing
if partitions are perfectly aligned
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Dual-Grid Multiscale Approach

A multiscale DEM-VOF method for the simulation of three-phase flows
G. Pozzetti and B. Peters

International Journal of Multiphase Flow, February 2018
https://doi.org/10.1016/j.ijmultiphaseflow.2017.10.008
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Advantages of the dual-grid multiscale

Bulk coupling scale
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Advantages of the dual-grid multiscale

Bulk coupling scale

Fluid fine scale
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Advantages of the dual-grid multiscale

Bulk coupling scale

Averaging
Coarse Mesh Fluid-Particle
interaction

UNIVERSITE DU
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Fluid fine scale
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Advantages of the dual-grid multiscale

Bulk coupling scale

Coarse Mesh

Averaging
Fluid-Particle
interaction

Fine Mesh

Fluid fine scale

Solving fluid fine-
scale
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Advantages of the dual-grid multiscale

Bulk coupling scale

Fluid fine scale

Coarse Mesh

<

Particle Fluid
Fields Solution
} N

Fine Mesh
J

Averaging
Fluid-Particle
interaction

Solving fluid fine-
scale
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Advantages of the dual-grid multiscale

Bulk coupling scale

Coarse Mesh

<

Particle Fluid
Iﬁ;lds Solution
N
Fine Mesh
J

Averaging
Fluid-Particle
interaction

Solving fluid fine-
scale

Fluid fine scale

e Keeping advantages of volume-averaged CFD-DEM
e Restoring grid-convergence of the CFD solution

Parallel coupling strategy for multi-physics applications in XDEM

HPCKP'20

34




Co-located Partitioning Strategy
+

Dual-Grid Multiscale Approach

A parallel dual-grid multiscale approach to CFD-DEM couplings
G. Pozzetti, H. Jasak, X. Besseron, A. Rousset and B. Peters
Journal of Computational Physics, February 2019
https://doi.org/10.1016/j.jcp.2018.11.030

. I

UNIVERSITE DU

Parallel coupling strategy for multi-physics applications in XDEM HPCKP'20



https://doi.org/10.1016/j.jcp.2018.11.030

-~

DEM Domain
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Dual grid and co-located partitioning

Independent Discretizalion

CFD Grid (Fluid Fine Scale)
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Dual grid and co-located partitioning

HL Dual Grid Multiscale within CFD
Aligned Paptitions Independent Discretizalion
DEM Domain Coupling Grid (Bulk Scale) CFD Grid (Fluid Fine Scale)
o | |
O - — Process i
O S o N
Processi> C2 | Process i & | l/ \
o Z. Z.
O @) Process ]
k o ] — K <
O 2
(O Process k O Process k Process k
e No constraint on the partitioning of the fine mesh = better load-balancing for CFD
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Dual grid and co-located partitioning

DEM Domain

Aligned Partitions

O
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O 5
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g Lo
O D)
(O Process k
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Coupling Grid (Bulk Scale)j

Co-located partitioning with the coarse grid

—

Process i

[ sson01]

Proc

€88

Independent Discretizalion

CFD Grid (Fluid Fine Scale)

\

Process i

N
v

Process j

K

e No constraint on the partitioning of the fine mesh = better load-balancing for CFD

e Coarse mesh can be perfectly aligned with XDEM = no inter-partition inter-physics communication
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Validation of the Results
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One particle crossing process boundaries

U Magnitude Setu p
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one particle
accelerated by the fluid
moving from one process to another

il

UNIVERSITE DU
LUXEMBOURG

Parallel coupling strategy for multi-physics applications in XDEM

HPCKP'20

40



One particle crossing process boundaries

Normalized particle velocity and acceleration as a function of time
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Liquid Frontin a Dam Break ~ omm oo

Setup

e colunm of water
e falling with particles

Column
of water

Results

e position of the liquid front '
e identical between sequential and parallel Liquig —
n

e dentical with experimental data

i
ﬁ'\ Bed of

Particles
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Liquid Front in a Dam Break

Liquid front position as a function of Time

Nondimensional time

4
3.5 | Exari
periments (Sunetal) ©
Sequential Multiscale DEM-VOF
3 | Parallel Multiscale DEM-VOF
=
o
g 25
"N
2 L
1.5 Column
of water
16 : ‘ : : : : ‘
0 0.5 1 1.5 2 2.5 3 3.5 4

e position of the liquid front
e dentical between sequential and parallel
e dentical with experimental data
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Performance Evaluation
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Scalability results (co-located only)

Setup

10 million particles

1 million CFD cells

CFD mesh and DEM grid are aligned
Uniform distribution

From 1 to 10 nodes

Computation Load

e ~92% in XDEM
o ~8% in OpenFOAM
e ~0.1% for inter-physics exchange

UNIVERSITE DU
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Scalability results (co-located only)

280
Computational Load
~o— |deal e ~92% in XDEM
. ) o ~8% in OpenFOAM
4 OpenFOAM using Uniform e ~0.1% for inter-physics exchange
. -m- XDEM using Uniform
a —— OpenFOAM-XDEM coupled
S
0]
(]
o
@)
112
28
28 56 84 112 140 168 196 224
Number of cores
e OpenFOAM is underloaded (< 3600 CFD cells per process)
e Coupled execution follows the behavior of the dominant part
Parallel coupling strategy for multi-physics applications in XDEM HPCKP'20
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Weak Scalability / Communication Overhead

Setup

~4464 particles per process On 10 nodes -

~4464 CFD cells per process , \
Co-located partitions + Dual Grid
Uniform distribution

On 20 nodes
/o W S |

NP € — € — € — & —
ry N v\
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Weak Scalability / Communication Overhead \\

#cores Total Total Average Inter-Physics
HILUDEEE #processes #particles #CFD cells Timestep QiR Exchange
10 280 2.5M 2.5M 1.612 s - 0.7 ms
20 560 5M SM 1.618 s +1% 0.6 ms
40 1120 10M 10M 1.650 s +2.3% 0.6 ms
Other CFD-DEM solutions from literature (on similar configurations)
e MFIX: +160% overhead from 64 to 256 processes [Gopalakrishnan2013]
e SediFoam: +50% overhead from 128 to 512 processes [Sun2016]
— due to large increase of process-to-process communication ““l-"l
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Realistic Testcase: Dam Break

Setup

2.35M particles

10M CFD cells in the fine grid
500k CFD cells in the coarse grid
Co-located partitions + Dual Grid
Non-uniform distribution

Running scalability test from 4 to 78 nodes
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Dam Break scalability

2000
Coupled OpenFOAM + XDEM
1500
o 63%
§ efficiency
8_ 1000
w
500
0
0 500 1000 1500 2000 I
Number of Cores -

| LUXEMBOURG
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Realistic Testcase: Dam Break

OpenFOAM
e 10M CFD cells

XDEM
e 1.18M light particles
e 1.18M heavy particles

. I
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Conclusion
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Summary: Parallel Coupling of CFD-DEM Simulations

Leveraging 2 ideas

e (Co-located partitioning
o Reduce the volume of communication
o Impose constraints on the partitioning

e Dual grid multiscale
o Better convergence of the solution & simplify
averaging of the CFD-DEM coupling
o Relax some constraints on the partitioning

Next step in XDEM
e Support for heat and mass transfer
in dual-grid / colocated strategy

o Energy and mass conservation

Open issues

e Multiphysics-aware partitioner

o Unequal load distribution between software
o Data distribution
o Dynamics load distribution

e Dynamics load-balancing / re-partitioning
o To be supported by each physics module
e Resolve constraints on the mesh

Interpolation for arbitrary meshes
Inter-partitions inter-physics communication
Moving mesh

Use a generic coupling framework?

eg preCICE, OpenPALM/CWIPI

UNIVERSITE DU
LUXEMBOURG
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Thank you for your attention!

Luxembourg XDEM Research Centre
http://luxdem.uni.lu/
University of Luxembourg

A parallel dual-grid multiscale approach to CFD-DEM couplings
G. Pozzetti, H. Jasak, X. Besseron, A. Rousset and B. Peters
Journal of Computational Physics, February 2019
https://doi.org/10.1016/j.jcp.2018.11.030
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