Parallel coupling strategy for multi-physics applications in eXtended Discrete Element Method

X. Besseron, A. Rousset, A. W. Mainassara Checkaraou and B. Peters

Luxembourg XDEM Research Centre http://luxdem.uni.lu/

HPC Knowledge Meeting '20 18 - 19 June 2020

Outline

Background

- What is XDEM?
- Multi-physics Coupling

CFD-DEM Parallel Coupling

- Co-located Partitioning Strategy
- Dual-grid Multiscale Approach

Results

- Results Validation
- Performance Evaluation

Conclusion

- Future Work
- Open Issues

What is XDEM?

What is XDEM?

eXtended Discrete Element Method

Particles Dynamics

- Force and torques
- Particle motion

Particles Conversion

- Heat and mass transfer
- Chemical reactions

Coupled with

- Computational Fluid Dynamics (CFD)
- Finite Element Method (FEM)

What is XDEM?

eXtended Discrete Element Method

OpenFOAM

Particles Dynamics

- Force and torques
- Particle motion

Particles Conversion

- Heat and mass transfer
- Chemical reactions

Coupled with

- Computational Fluid Dynamics (CFD)
- Finite Element Method (FEM)

FEM

Application Examples: XDEM without coupling

Brittle Failure

Application Examples: XDEM coupled with FEM

Deformation of a tire

Impact on an Elastic Membrane

Application Examples: XDEM coupled with CFD

Wood Conversion in a Biomass Furnace

Iron & Slag production in a Blast Furnace

Selective Laser Melting in Additive Manufacturing

Multi-Physics Coupling

surface vs. volume coupling

Multi-Physics Coupling

Numerical Methods

- Computation Fluid Dynamics (CFD)
- Finite Element Method (FEM)
- Discrete Element Method (DEM)
- ...

Different Software

Instead of a monolithic software

Different Mesh Topology

Numerical Method Constraints

- Time step size
- Convergence
- •

Technical Constraints

- Coupling API
- Communication / Data exchange
- Scalability
- ..

Physics Constraints

- Mass, energy conservation
- Value consistency

Complicated physics ⇒ Complex Software ⇒ Performance Nightmare

Surface Coupling, e.g. Fluid-Structure Interaction (FSI)

Surface Coupling, e.g. Fluid-Structure Interaction (FSI)

Volume Coupling, e.g. Fluid-Particles Interaction

Volume Coupling, e.g. Fluid-Particles Interaction

CFD-DEM Volume Coupling

CFD-(X)DEM Coupling

Moving particles interacting with liquid and gas

From CFD to DEM

- Lift force (buoyancy)
- Drag force

From DEM to CFD

- Porosity
- Particle source of momentum

CFD ←→ **XDEM**

- Heat transfer
- Mass transfer

Challenges in CFD-XDEM parallel coupling

- Combine different independent software
- Volume coupling ⇒ Large amount of data to exchange
- Different distribution of the computation and of the data
- DEM data distribution is dynamic
- Data interpolation between meshes

Classical Approaches

- Each software partitions its domain independently
- Data exchange in a peer-to-peer model

Classical Approach: the domains are partitioned independently

Classical Approach: the domains are partitioned independently

Complex pattern and large volume of communication

Co-located Partitioning Strategy

A co-located partitions strategy for parallel CFD-DEM couplings

G. Pozzetti, X. Besseron, A. Rousset and B. Peters Journal of Advanced Powder Technology, December 2018 https://doi.org/10.1016/j.apt.2018.08.025

Co-located Partitioning Strategy

Domain elements colocated in domain space are assigned to the same partition

With native implementation of each sotfware

Use direct intra-proces memory access if the two software are linked into one executable,

Can be non-existing if partitions are perfectly aligned

Dual-Grid Multiscale Approach

A multiscale DEM-VOF method for the simulation of three-phase flows

G. Pozzetti and B. Peters International Journal of Multiphase Flow, February 2018 https://doi.org/10.1016/j.ijmultiphaseflow.2017.10.008

Bulk coupling scale

Bulk coupling scale

Bulk coupling scale

Coarse Mesh

Averaging Fluid-Particle interaction

Bulk coupling scale Averaging Coarse Mesh Fluid-Particle interaction **Particle** Fluid Fields Solution Solving fluid fine-Fine Mesh scale

- Keeping advantages of volume-averaged CFD-DEM
- Restoring grid-convergence of the CFD solution

Fluid fine scale

Co-located Partitioning Strategy +

Dual-Grid Multiscale Approach

A parallel dual-grid multiscale approach to CFD-DEM couplings

G. Pozzetti, H. Jasak, X. Besseron, A. Rousset and B. Peters Journal of Computational Physics, February 2019 https://doi.org/10.1016/j.jcp.2018.11.030

Dual grid and co-located partitioning

Dual grid and co-located partitioning

No constraint on the partitioning of the fine mesh ⇒ better load-balancing for CFD

Dual grid and co-located partitioning

- No constraint on the partitioning of the fine mesh ⇒ better load-balancing for CFD
- Coarse mesh can be perfectly aligned with XDEM ⇒ no inter-partition inter-physics communication

Validation of the Results

One particle crossing process boundaries

Setup

- one particle
- accelerated by the fluid
- moving from one process to another

One particle crossing process boundaries

Results

- drag force & particle velocity are continuous
- Identical between sequential and parallel execution

Liquid Front in a Dam Break

Setup

- column of water
- falling with particles

Results

- position of the liquid front
- identical between sequential and parallel
- identical with experimental data

Liquid Front in a Dam Break

- position of the liquid front
- identical between sequential and parallel
- identical with experimental data

Performance Evaluation

Scalability results (co-located only)

Setup

- 10 million particles
- 1 million CFD cells
- CFD mesh and DEM grid are aligned
- Uniform distribution
- From 1 to 10 nodes

Computation Load

- ~92% in XDEM
- ~8% in OpenFOAM
- ~0.1% for inter-physics exchange

Scalability results (co-located only)

- OpenFOAM is underloaded (< 3600 CFD cells per process)
- Coupled execution follows the behavior of the dominant part

Weak Scalability / Communication Overhead

On 40 nodes

Setup

- ~4464 particles per process
- ~4464 CFD cells per process
- Co-located partitions + Dual Grid
- Uniform distribution
- 10, 20 and 40 nodes

Weak Scalability / Communication Overhead

#nodes	#cores #processes	Total #particles	Total #CFD cells	Average Timestep	Overhead	Inter-Physics Exchange
10	280	2.5M	2.5M	1.612 s	-	0.7 ms
20	560	5M	5M	1.618 s	+1%	0.6 ms
40	1120	10M	10M	1.650 s	+2.3%	0.6 ms

Other CFD-DEM solutions from literature (on similar configurations)

- MFIX: +160% overhead from 64 to 256 processes [Gopalakrishnan2013]
- SediFoam: +50% overhead from 128 to 512 processes [Sun2016]
- → due to large increase of process-to-process communication

Realistic Testcase: Dam Break

Setup

- 2.35M particles
- 10M CFD cells in the fine grid
- 500k CFD cells in the coarse grid
- Co-located partitions + Dual Grid
- Non-uniform distribution

Running scalability test from 4 to 78 nodes

Dam Break scalability

Realistic Testcase: Dam Break

OpenFOAM

• 10M CFD cells

XDEM

- 1.18M light particles
- 1.18M heavy particles

Conclusion

Summary: Parallel Coupling of CFD-DEM Simulations

Leveraging 2 ideas

- Co-located partitioning
 - Reduce the volume of communication
 - Impose constraints on the partitioning
- Dual grid multiscale
 - Better convergence of the solution & simplify averaging of the CFD-DEM coupling
 - Relax some constraints on the partitioning

Next step in XDEM

- Support for heat and mass transfer in dual-grid / colocated strategy
 - Energy and mass conservation

Open issues

- Multiphysics-aware partitioner
 - Unequal load distribution between software
 - Data distribution
 - Dynamics load distribution
- Dynamics load-balancing / re-partitioning
 - To be supported by each physics module
- Resolve constraints on the mesh
 - Interpolation for arbitrary meshes
 - Inter-partitions inter-physics communication
 - Moving mesh
 - Use a generic coupling framework?eg preCICE, OpenPALM/CWIPI

Thank you for your attention!

Luxembourg XDEM Research Centre
http://luxdem.uni.lu/
University of Luxembourg

A parallel dual-grid multiscale approach to CFD–DEM couplings G. Pozzetti, H. Jasak, X. Besseron, A. Rousset and B. Peters Journal of Computational Physics, February 2019 https://doi.org/10.1016/j.jcp.2018.11.030

This research is in the framework of the project DigitalTwin, supported by the programme Investissement pour la compétitivité et emploi - European Regional Development Fund under grant agreement 2016-01-002-06.

