

Parallel coupling strategy for multi-physics applications in eXtended Discrete Element Method

X. Besseron, A. Rousset, A. W. Mainassara Checkaraou and B. Peters

Luxembourg XDEM Research Centre

<http://luxdem.uni.lu/>

HPC Knowledge Meeting '20
18 - 19 June 2020

Outline

Background

- What is XDEM?
- Multi-physics Coupling

Results

- Results Validation
- Performance Evaluation

CFD-DEM Parallel Coupling

- Co-located Partitioning Strategy
- Dual-grid Multiscale Approach

Conclusion

- Future Work
- Open Issues

What is XDEM?

What is XDEM?

eXtended Discrete Element Method

Particles Dynamics

- Force and torques
- Particle motion

Particles Conversion

- Heat and mass transfer
- Chemical reactions

Coupled with

- Computational Fluid Dynamics (CFD)
- Finite Element Method (FEM)

What is XDEM?

eXtended Discrete Element Method

Particles Dynamics

- Force and torques
- Particle motion

Particles Conversion

- Heat and mass transfer
- Chemical reactions

Coupled with

- Computational Fluid Dynamics (CFD)
- Finite Element Method (FEM)

Application Examples: XDEM without coupling

Brittle Failure

Hopper charge and discharge

Application Examples: XDEM coupled with FEM

Deformation of a tire

Impact on an Elastic Membrane

Application Examples: XDEM coupled with CFD

Iron & Slag production in a Blast Furnace

Wood Conversion in a Biomass Furnace

Selective Laser Melting in Additive Manufacturing

Multi-Physics Coupling

surface vs. volume coupling

Multi-Physics Coupling

Numerical Methods

- Computation Fluid Dynamics (CFD)
- Finite Element Method (FEM)
- Discrete Element Method (DEM)
- ...

Different Software

- Instead of a monolithic software

Different Mesh Topology

Numerical Method Constraints

- Time step size
- Convergence
- ...

Technical Constraints

- Coupling API
- Communication / Data exchange
- Scalability
- ...

Physics Constraints

- Mass, energy conservation
- Value consistency

Complicated physics \Rightarrow Complex Software \Rightarrow Performance Nightmare

Surface Coupling, e.g. Fluid-Structure Interaction (FSI)

Surface Coupling, e.g. Fluid-Structure Interaction (FSI)

Data Exchange on a **2D surface**

- CFD → FEM: **surface forces**
- FEM → CFD: **flap displacement**

Volume Coupling, e.g. Fluid-Particles Interaction

Volume Coupling, e.g. Fluid-Particles Interaction

Data Exchange on a **3D volume**

- CFD → DEM: **drag force, buoyancy**
- DEM → CFD: **porosity, particle momentum**

CFD-DEM Volume Coupling

CFD-(X)DEM Coupling

Moving particles interacting with liquid and gas

Particles in DEM

Liquid and gas in CFD

From CFD to DEM

- Lift force (buoyancy)
- Drag force

From DEM to CFD

- Porosity
- Particle source of momentum

CFD \longleftrightarrow XDEM

- Heat transfer
- Mass transfer

CFD-DEM Parallel Coupling: Challenges

Challenges in CFD-XDEM parallel coupling

- Combine different independent software
- Volume coupling \Rightarrow Large amount of data to exchange
- Different distribution of the computation and of the data
- DEM data distribution is dynamic
- Data interpolation between meshes

Classical Approaches

- Each software partitions its domain independently
- Data exchange in a peer-to-peer model

SediFoam [Sun2016]

CFD-DEM Parallel Coupling: Challenges

The domains overlap in space

CFD-DEM Parallel Coupling: Challenges

CFD-DEM Parallel Coupling: Challenges

Classical Approach: the domains are partitioned independently

CFD-DEM Parallel Coupling: Challenges

Classical Approach: the domains are partitioned independently

Complex pattern and large volume of communication

Co-located Partitioning Strategy

A co-located partitions strategy for parallel CFD-DEM couplings

G. Pozzetti, X. Besseron, A. Rousset and B. Peters

Journal of Advanced Powder Technology, December 2018

<https://doi.org/10.1016/j.japt.2018.08.025>

Co-located Partitioning Strategy

Domain elements co-located in domain space are assigned to the same partition

Co-located Partitioning Strategy: communication

Intra-physics Data Exchange

Inter-partition intra-physics Data Exchange using MPI communication layer
with native implementation in OpenFOAM and XDEM

Inter-physics Data Exchange

Inter-partition inter-physics Data Exchange using MPI communication layer
reduced to minimum or non-existing due to partition co-location

Intra-partition inter-physics Data Exchange using direct library function calls
fast because it is a direct intra-process memory access

Co-located Partitioning Strategy: communication

With native implementation of each software

Co-located Partitioning Strategy: communication

Use direct intra-process memory access
if the two software are linked into one executable,

Co-located Partitioning Strategy: communication

Intra-physics Data Exchange

Inter-partition intra-physics Data Exchange using MPI communication layer with native implementation in OpenFOAM and XDEM

Inter-physics Data Exchange

Inter-partition inter-physics Data Exchange using MPI communication layer reduced to minimum or non-existing due to partition co-location

Intra-partition inter-physics Data Exchange using direct library function calls fast because it is a direct intra-process memory access

Can be non-existing
if partitions are perfectly aligned

Dual-Grid Multiscale Approach

A multiscale DEM-VOF method for the simulation of three-phase flows

G. Pozzetti and B. Peters

International Journal of Multiphase Flow, February 2018

<https://doi.org/10.1016/j.ijmultiphaseflow.2017.10.008>

Advantages of the dual-grid multiscale

Bulk coupling scale

Advantages of the dual-grid multiscale

Bulk coupling scale

Fluid fine scale

Advantages of the dual-grid multiscale

Bulk coupling scale

Coarse Mesh

Averaging
Fluid-Particle
interaction

Fluid fine scale

Advantages of the dual-grid multiscale

Bulk coupling scale

Coarse Mesh

Averaging
Fluid-Particle
interaction

Fine Mesh

Solving fluid fine-
scale

Advantages of the dual-grid multiscale

Bulk coupling scale

Coarse Mesh

Particle
Fields

Fluid
Solution

Fine Mesh

Averaging
Fluid-Particle
interaction

Solving fluid fine-
scale

Advantages of the dual-grid multiscale

Co-located Partitioning Strategy

+

Dual-Grid Multiscale Approach

A parallel dual-grid multiscale approach to CFD–DEM couplings

G. Pozzetti, H. Jasak, X. Besserer, A. Rousset and B. Peters

Journal of Computational Physics, February 2019

<https://doi.org/10.1016/j.jcp.2018.11.030>

Dual grid and co-located partitioning

Independent Discretization
CFD Grid (Fluid Fine Scale)

Dual grid and co-located partitioning

- No constraint on the partitioning of the fine mesh \Rightarrow better load-balancing for CFD

Dual grid and co-located partitioning

Co-located partitioning with the coarse grid

Aligned Partitions

DEM Domain

Coupling Grid (Bulk Scale)

Independent Discretization

CFD Grid (Fluid Fine Scale)

- No constraint on the partitioning of the fine mesh \Rightarrow better load-balancing for CFD
- Coarse mesh can be perfectly aligned with XDEM \Rightarrow no inter-partition inter-physics communication

Validation of the Results

One particle crossing process boundaries

Setup

- one particle
- accelerated by the fluid
- moving from one process to another

One particle crossing process boundaries

Results

- drag force & particle velocity are continuous
- Identical between sequential and parallel execution

Liquid Front in a Dam Break

Setup

- column of water
- falling with particles

Results

- position of the liquid front
- identical between sequential and parallel
- identical with experimental data

Liquid Front in a Dam Break

- position of the liquid front
- identical between sequential and parallel
- identical with experimental data

Performance Evaluation

Scalability results (co-located only)

Setup

- 10 million particles
- 1 million CFD cells
- CFD mesh and DEM grid are aligned
- Uniform distribution
- From 1 to 10 nodes

Computation Load

- ~92% in XDEM
- ~8% in OpenFOAM
- ~0.1% for inter-physics exchange

Scalability results (co-located only)

- OpenFOAM is underloaded (< 3600 CFD cells per process)
- Coupled execution follows the behavior of the dominant part

Weak Scalability / Communication Overhead

Setup

- ~4464 particles per process
- ~4464 CFD cells per process
- Co-located partitions + Dual Grid
- Uniform distribution
- 10, 20 and 40 nodes

On 40 nodes

On 20 nodes

On 10 nodes

Weak Scalability / Communication Overhead

#nodes	#cores #processes	Total #particles	Total #CFD cells	Average Timestep	Overhead	Inter-Physics Exchange
10	280	2.5M	2.5M	1.612 s	-	0.7 ms
20	560	5M	5M	1.618 s	+1%	0.6 ms
40	1120	10M	10M	1.650 s	+2.3%	0.6 ms

Other CFD-DEM solutions from literature (on similar configurations)

- **MFIX:** **+160%** overhead from 64 to 256 processes [Gopalakrishnan2013]
- **SediFoam:** **+50%** overhead from 128 to 512 processes [Sun2016]

→ due to large increase of process-to-process communication

Realistic Testcase: Dam Break

Setup

- 2.35M particles
- 10M CFD cells in the fine grid
- 500k CFD cells in the coarse grid
- Co-located partitions + Dual Grid
- Non-uniform distribution

Running scalability test from 4 to 78 nodes

Dam Break scalability

Realistic Testcase: Dam Break

OpenFOAM

- 10M CFD cells

XDEM

- 1.18M light particles
- 1.18M heavy particles

Conclusion

Summary: Parallel Coupling of CFD-DEM Simulations

Leveraging 2 ideas

- Co-located partitioning
 - Reduce the volume of communication
 - Impose constraints on the partitioning
- Dual grid multiscale
 - Better convergence of the solution & simplify averaging of the CFD-DEM coupling
 - Relax some constraints on the partitioning

Next step in XDEM

- Support for heat and mass transfer in dual-grid / colocated strategy
 - Energy and mass conservation

Open issues

- Multiphysics-aware partitioner
 - Unequal load distribution between software
 - Data distribution
 - Dynamics load distribution
- Dynamics load-balancing / re-partitioning
 - To be supported by each physics module
- Resolve constraints on the mesh
 - Interpolation for arbitrary meshes
 - Inter-partitions inter-physics communication
 - Moving mesh
 - Use a generic coupling framework?
eg preCICE, OpenPALM/CWIPI

Thank you for your attention!

Luxembourg XDEM Research Centre
<http://ludem.uni.lu/>
University of Luxembourg

A parallel dual-grid multiscale approach to CFD-DEM couplings

G. Pozzetti, H. Jasak, X. Besson, A. Rousset and B. Peters

Journal of Computational Physics, February 2019

<https://doi.org/10.1016/j.jcp.2018.11.030>

The experiments presented in this work were carried out using the HPC facilities of the University of Luxembourg.
<https://hpc.uni.lu>

This research is in the framework of the project DigitalTwin, supported by the programme Investissement pour la compétitivité et emploi - European Regional Development Fund under grant agreement 2016-01-002-06.