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Abstract
Machine Learning (ML) is increasingly prominent in or-

ganizations. While those algorithms can provide near perfect
accuracy, their decision-making process remains opaque. In
a context of accelerating regulation in Artificial Intelligence
(AI) and deepening user awareness, explainability has become
a priority notably in critical healthcare and financial environ-
ments. The various frameworks developed often overlook
their integration into operational applications as discovered
with our industrial partner. In this paper, explainability in ML
and its relevance to our industrial partner is presented. We
then dis- cuss the main challenges to the integration of ex-
plainability frameworks in production we have faced. Finally,
we provide recommendations given those challenges.

1 Introduction
The increasing availability of data has made automated tech-
niques for extracting information especially relevant to busi-
nesses. Indeed, AI overall contribution to the economy has
been approximated to $15.7tr by 2030 [8]. State-of-the-art
frameworks have now outmatched human accuracy in com-
plex pattern recognition tasks [6]. However, many accurate
ML models are—in practice—black boxes as their reasoning
is not interpretable by users [1]. This trade-off between accu-
racy and explainability is certainly a great challenge [6] when
critical operations must be based on a justifiable reasoning.

Explainability is henceforth a clear requirement as regula-
tions scrutinises AI. In Europe, our industrial partner faces
GDPR, the General Data Protection Regulation, which in-
cludes the right to explanation, whereby an individual can
request explanations on the workings of an algorithmic de-
cision produced based on their data [5]. Additionally, user
distrust, from their lack of algorithmic understanding, can
cause a reluctance in applying complex ML techniques [1, 2].
Explainability can come at the cost of accuracy [10]. When
faced with a trade-off between explainability and accuracy, in-
dustrial operators may, because of regulation reasons, have to
resort to less accurate models for production systems. Finally,
without explanations, business experts produce by themselves

justifications for the model behaviour. This can lead to a plu-
rality of explanations as they devise contradicting insights [3].

Integrating explainability in production is a crucial but
difficult task. We have faced some challenges with our in-
dustrial partner. Theoretical frameworks are rarely tested on
operational data, overlooking those challenges during the de-
sign process. Overcoming them becomes even more complex
afterwards.

2 Explainability
Explainability is rather ill-defined in the literature. It is often
given discordant meaning [7] and its definition is dependent
on the task to be explained [4]. Nonetheless, we use explain-
ability interchangeably with interpretability [7] and define it
as aiming to respond to the opacity of the inner workings of
the model while maintaining the learning performance [6].

From this definition, explainability can be modelled in
different ways. First, interpretability can be either global or
local. Whereas the former explains the inner workings of the
model at the model level [4], the latter reaches interpretabil-
ity at the instance level. Furthermore, there is the distinction
between inherent and post-hoc interpretability. Inherent ex-
plainability refers to the model being explainable [1], while
post-hoc explainability entails that once trained, the model
has to further undergo a process which will make its reasoning
explainable [9, 10]. This results in four different types of ex-
plainability frameworks. The effectiveness of the frameworks
depends on the type chosen with respect to the task of the
model we want to explain.

Moreover, explainability is usually achieved through
visualization-based frameworks, which produce graphical rep-
resentations of predictions, or text explanation of the deci-
sion [1]. Effective visualizations or textual description with
a decision can be sufficient to reach explainability [3]. Still,
those supposedly-interpretable outputs are rarely validated
through user studies. In our case, the frameworks, which were
not validated in such a way, yielded models that have proven
to be just as non-interpretable as the original ML model for
our industrial partner.
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Various reasons for explainability were previously men-
tioned. Our industrial partner was further interested in explain-
ability for audit purposes as they must provide justifications
for the automated system decisions. Besides, they were con-
cerned with potential biases within training datasets. Some
features, such as gender, although perhaps appearing as ef-
fective discriminators in ML models, cannot be legally used
in business operations analytics [12]. Yet, other less explicit
attributes may be direct proxies to such restricted features,
eventually creating biases in the models. Adding explainabil-
ity to existing models can uncover existing biases arising from
proxies included in the model. This allows the operator to
change models when bias is identified.

3 Challenges to Explainability

3.1 Data Quality
Our industrial partner was implementing ML model on tab-
ular data. One of the first challenge identified was that most
frameworks are designed for Natural Language Processing
and Computer Vision tasks. Thus, there are fewer frameworks
focusing on tabular data. With this omission, complications re-
lating to tabular data quality are not properly addressed. This
resulted in limitations of the framework explainability. For
instance, visualizations designed for continuous features be-
came inefficient for categorical variables. Furthermore, frame-
works tested on tabular data often rely on datasets which are
optimal for visualization purposes. Our data was not optimal
as it contained missing values, and clusters between classes
were not clearly separated. For example, while the several
approaches we tested reported impressive results on a selec-
tion of domain, it is often impossible to know beforehand
whether or not it can be applied to a specific domain. Indeed,
they proved to be far less valuable when applied to the real
datasets of our partner. For one specific problem, we obtained
visualizations such as shown in Figure 1. In this case, the
display of the gradient projection of data points [10], which
relies on comparing the different classes according to pairs
of variables, was cluttered. There was no clear distinction
between the classes, hence the framework did not provide
interpretability.

Figure 1: Example of visualization-based interpretability
framework [10]

3.2 Task and Model Dependencies
Our industrial partner was implementing Random Forests.
However, some frameworks are designed for specific model
types, more particularly for Neural Networks and Support
Vector Machines. This has been addressed by model agnostic
approaches [9, 10] and surrogate models. Still, the latter loses
accuracy when approximating the unexplainable model, only
providing explanations when both models reach the same
predictions, but not when they differ. Moreover, explainability
is also task-dependent. Our industrial partner needed different
explanations for different audiences. Yet, we detected through
our experiments an emphasis on theoretical review of task
dependency rather than empirical research. This insufficiency
of practical consideration limits frameworks deployment in
production, as a lengthy experimental process is required to
inspect which explanations best fit the task.

3.3 Security
Another challenge from explainability in production is secu-
rity. This was a significant concern for our partner. Indeed, if
clients can have access to the reasoning of the model decision-
making, they could apply adversarial behaviours by incre-
mentally changing their behaviour to influence the decision-
making process of the model. Thus, explainability raises ro-
bustness concerns preventing its immediate deployment in
production. Furthermore, in a recent paper [11], it was shown
that under strong assumptions, an individual having access to
model explanations could recover part of the initial dataset
used for training the ML algorithm. Given the strict data
privacy regulations, this remains a case to investigate.

Implementing explainability frameworks in production can
therefore significantly slow and complicate the project.

4 Conclusion
Data is crucial to derive information on which to base oper-
ational decisions. However, complex models achieving high
accuracy are often opaque to the user. Explainable ML aims
to make those models interpretable to users. The lack of re-
search on operational data makes it challenging to integrate
explainability frameworks in production stages. Several chal-
lenges to explainability in production we have faced include
data quality, task-dependent modelling, and security. Given
those challenges we recommend industrials to (1) clearly de-
fine their needs to avoid obstacles defined are task and model
dependencies in this paper, (2) give more consideration to pos-
sible industrial applications when frameworks are designed,
(3) undertake systematic user validation of frameworks to
evaluate the explainability potential of those frameworks, (4)
regarding the security challenges, we suggest to simulate ad-
versarial behavior and observe the model behaviour to raise
any robustness issues, (5) industrials could also undertake
the exercise of recovering the entire training datasets given
explanations and a small part of the original data.
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