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Abstract

Committee voting has mostly been investigated from the perspective of the stan-
dard Baron-Ferejohn model of bargaining over the division of a pie, in which bargaining
ends as soon as the committee reaches an agreement. In standing committees, how-
ever, existing agreements can be amended. This paper studies an extension of the
Baron-Ferejohn framework to a model with an evolving default that re�ects this im-
portant feature of policymaking in standing committees: In each of an in�nite number
of periods, the ongoing default can be amended to a new policy (which is, in turn, the
default for the next period). The model provides a number of quite di�erent predic-
tions. (i) From a positive perspective, the key distinction turns on whether the quota
is less than unanimity. In that case, patient enough players waste substantial shares
of the pie each period and the size principle fails in some pure strategy Markov perfect
equilibria. By contrast, the unique Markov perfect equilibrium payo�s in a unanimity
committee coincide with those in the corresponding Baron-Ferejohn framework. (ii)
If players have heterogeneous discount factors then a large class of subgame perfect
equilibria (including all Markov perfect equilibria) are ine�cient.
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1 Introduction

Committee voting has mostly been investigated from the perspective of the standard Baron-

Ferejohn model of bargaining in an ad hoc committee over the division of a single pie:

players earn an exogenously �xed default payo� until the committee reaches an agreement,

when negotiations end. However, many committees (such as legislatures) are dynamic in

two senses: (i) their members reach a sequence of policy agreements (so the committee

is standing), and (ii) a new pie is divided according to the same proportions as the last

pie unless the last agreement is amended (so the default is endogenous). In this paper,

we follow a literature initiated by Baron (1996) and Kalandrakis (2004) by studying a

model which captures these dynamic aspects of policy making.1 Each period begins with

a default policy (i.e. a division of the pie among players) inherited from the previous

period; and a player is randomly drawn to make a proposal which is then voted up or

down by the committee; if voted up, the proposal is implemented and becomes the new

default; if voted down, the ongoing default is implemented and remains in place until the

next period. That is, the default payo� is endogenous, rather than exogenously �xed. A

pie is available for division each period; and this process continues ad in�nitum. This

model naturally represents Congressional legislation on social policy and entitlements: the

previously agreed law remains in place until Congress decides to amend it.2

In further contrast to Baron and Ferejohn (1989), we allow players to have di�erent

discount factors, and any concave utility functions; we consider any quota (including ma-

jority and unanimity rules); and we allow players to be selected to propose with di�erent

probabilities.3 Analysis of this model of a standing committee raises various interesting

(related) questions, such as: (1) When do stationary Markov perfect equilibria (SMPEs)

exist and, when they do, are equilibrium payo�s unique? (2) Must each pie be divided be-

tween a minimal winning majority � as predicted by the size principle � in every SMPE?

(3) Must each pie be fully divided (that is, is the division of the pie statically e�cient)

in every SMPE? (4) Are equilibria Pareto e�cient? (5) How does the endogeneity of the

evolving default a�ect SMPE outcomes? And (6) How do the answers to these questions

depend on the quota?

The literature on standing committees (with an endogenous default) has only posed

1We survey this literature in the next section.
2Similarly, majority Supreme Court opinions remain in force unless revisited.
3Similar extensions are allowed in Banks and Duggan (2000), Eraslan (2002) and Eraslan and McLennan

(2013): all bargaining models with a �xed default.
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the �rst two questions. Our contribution is to bypass technical issues which have stymied

progress, and thereby to say much more about each of the six questions. We provide the

following answers:

(1) Equilibrium existence and multiplicity of equilibria. We construct pure strat-

egy SMPEs for any game with a non-unanimity quota and patient enough players, and also

prove (again using constructive arguments) that unanimity games possess pure strategy

SMPEs, irrespective of patience. However, we have radically di�erent results on multiplic-

ity for games with and without a unanimity quota. We start with the latter case. Take

any point in the policy space at which at least a minimal winning majority have a positive

share of the pie. If players are su�ciently patient then we can construct a pure strategy

SMPE in which that policy is implemented in the �rst period and never amended (a prop-

erty which we call no-delay). By contrast, any game with a unanimity quota has unique

SMPE payo�s.

The previous literature (cf. Section 2) has focused on existence of SMPEs in bargaining

games with an evolving default. Our results demonstrate that if players are patient enough

or if there is a unanimity quota, then existence is not a problem. The multiplicity of

equilibria limits the predictive power of the model. Nevertheless, it is interesting that play

in some equilibria of standing committees with an endogenous default is consistent with

some important stylized facts:

(2) The size principle. The size principle predicts that only minimal winning coalitions

should receive a positive share of the pie. It has been central to the study of legislatures

since Riker (1962), even though majorities in legislatures are typically supraminimal. The

class of solutions which we construct for non-unanimity games contains SMPEs in which

the pie is shared amongst more than a minimal winning coalition.

(3) Waste. Our results on the division of the pie again di�er, depending on the quota.

We show that SMPE agreements in games without a unanimity quota may waste some of

the pie when all players are patient enough. Speci�cally, for every ε > 0, we can construct

an SMPE in which a policy which wastes a proportion 1 − ε of the pie is agreed to in

the �rst period and never amended. By contrast, none of the pie is wasted in an SMPE,

irrespective of players' patience, in games with a unanimity quota.

More strongly, players can waste any proportion of the pie in SMPEs of nonunanimity
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games which also fail the size principle. Our model is therefore consistent with features

which are common in pork barrel politics (cf. Evans (2004)).

(4) Pareto ine�ciency. If all players share the same discount factor then Pareto ef-

�ciency only turns on whether the entire pie is distributed in every period and (with

risk-averse players) on whether the policy sequence is deterministic. With heterogeneous

discount factors, however, temporal patterns also matter. For instance, our no-delay SM-

PEs (including those without waste) support policy sequences which can be Pareto im-

proved by operating transfers across periods. More generally, our analysis reveals that

Pareto ine�ciency is not limited to those SMPEs. If preferences are linear in share of the

current pie (as in Baron and Ferejohn (1989)) then, in the generic case where all players

have di�erent discount factors, a subgame perfect equilibrium (SPE) can be e�cient only

if it relies on more complex, player-speci�c punishments. Dynamic equilibria � i.e. those

SPEs in which behavior depends (at most) on the policies implemented in all previous

periods � are all Pareto ine�cient. Indeed, our characterization of Pareto e�cient policy

sequences reveals that some player must eventually earn the entire pie in any e�cient pol-

icy sequence; and no such policy sequence can be played in any dynamic equilibrium of a

nonunanimity committee. On the other hand, even if utilities are nonlinear, all dynamic

equilibria of a unanimity committee are Pareto ine�cient if two or more players have dif-

ferent discount factors. While Pareto e�cient policy sequences that allocate the entire pie

to the same player in every period can be supported by an SPE, irrespective of players'

patience, dynamic equilibria even fail the weaker criterion of ex post Pareto e�ciency (e.g.

Merlo and Wilson (1995)) � which only requires one of the realizations of the equilibrium

policy sequence to be Pareto e�cient.

(5) The e�ects of an endogenous default. These results stand in sharp contrast to

the properties of the Baron-Ferejohn model of an ad hoc committee, in which a single pie

is divided. Eraslan (2002) shows that, in a Baron-Ferejohn model with linear utilities,

heterogeneous discount factors and any quota, stationary equilibrium payo�s are unique,

only minimal winning coalitions form, and none of the pie is wasted.4 These properties

clearly carry over to a couple of dynamic variants with exogenous defaults: in one variant,

an ad hoc committee agrees once to the divisions of a sequence of pies; in another variant,

4Ex post e�ciency and the size principle hold when players have strictly concave preferences, but

uniqueness and ex ante e�ciency might fail (because of random proposers).
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a standing committee negotiates division of a new pie once it has agreed on division of the

existing pie, earning nothing each period till a winning coalition forms. Using those variants

as benchmarks, our results imply that default endogeneity has profound implications for

standing committees with a nonunanimity quota: Default endogeneity may cause static

ine�ciency (waste), allow supraminimal coalitions to form, and create a large multiplicity

of equilibrium payo�s. None of these properties can hold with a unanimity quota. More

strikingly, we show that there is a unique SMPE payo� vector, which coincides with the

unique stationary SPE payo� vector in the equivalent Baron-Ferejohn static model (and

in its standing committee variant sketched above).

As for Pareto ine�ciency, the same conclusion as in our model may also apply to the

standing committee model with an exogenous default sketched above. For instance, when

utility functions are linear, each player's expected utility is constant across periods in a sta-

tionary equilibrium (for the same reasons as in Baron and Ferejohn's (1989) static model);

so the equilibrium policy sequence must be ine�cient when players have heterogeneous

discount factors. By contrast, an ad hoc committee which negotiates over the sequence

of pie divisions must reach a Pareto e�cient agreement in any equilibrium (because any

proposer is a residual claimant). The main di�erence from our model is that such an ad

hoc committee e�ectively commits not to renegotiate an agreement. This suggests that

e�ciency may fail in our model because the committee cannot commit not to renegotiate

agreements.

(6) E�ect of the quota. Our positive results above reveal that default endogeneity

only matters if the quota is less than unanimity: With a unanimity quota, there is a

unique SMPE payo� and the statically e�cient policy reached by an ad hoc committee

is implemented immediately and never amended; with a lower quota and patient enough

players, there is a multiplicity of pure strategy no-delay SMPEs, some of which are statically

ine�cient. As for normative results, however, default endogeneity matters even with a

unanimity quota: if discount factors are heterogeneous then all dynamic equilibria are

Pareto ine�cient.

We relate our model and results to the literature in the next section. We present

our model in Section 3, and provide results on committees with a nonunanimity and a

unanimity quota respectively in Sections 4 and 5. We consider the implications of an

endogenous default in Section 6. Section 7 concludes. Most of the proofs appear in the
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Appendix.

2 Related Literature

Baron and Ferejohn (1989) has spawned an enormous literature; we refer readers to Eraslan

and McLennan (2013) for a recent list of contributions, including existence and uniqueness

results for any quota. The literature on bargaining in standing committees with an en-

dogenous default was initiated by Baron (1996),5 who established a dynamic median voter

theorem in an environment where the policy space is one-dimensional and utilities are

single-peaked. Kalandrakis (2004) was then the �rst to apply the endogenous-default ap-

proach to pie-division problems.6 Despite its relevance, this literature has remained small,

most likely for technical reasons: in equilibrium, the proposals which would be accepted

may vary discontinuously with the default policy because of expectations about future

play. The ensuing discontinuous transition probabilities preclude the use of conventional

�xed point arguments to establish existence of even mixed strategy equilibria.

Most of this literature has focused on majority rule games, for obvious reasons; but

unanimity rule games are also empirically important because they represent long-run con-

tractual relationships. Our model allows for any quota; and our positive results reveal

important di�erences between unanimity and nonunanimity committees.

Kalandrakis (2004) and Baron and Bowen (2013) study majority rule games with three

equally patient, risk neutral players, equiprobable proposers, and a statically e�cient ini-

tial default; Kalandrakis (2010) extends the model to games with �ve or more players

whose preferences are concave. Kalandrakis (2004) and (2010) show that, for any com-

mon discount factor, these games have an SMPE in which the default immediately reaches

an ergodic distribution where each proposer takes the entire pie, but players mix over

extra-equilibrium proposals;7 Baron and Bowen construct a no-delay SMPE in which the

proposer mixes over her (single) coalition partner.8 In the SMPEs which we construct, the

5Papers which we do not survey include Gomes and Jehiel (2005, Section III.A), Bernheim et al (2006),

Anesi (2010), Diermeier and Fong (2011, 2012), Zápal (2011a,b), Battaglini et al (2012), Bowen and Zahran

(2012), Diermeier et al (2013), Nunnari (2014), Anesi and Seidmann (2014), and Bowen et al (forthcoming).
6Banks and Duggan (2006) consider an intermediate model, with an arbitrary (possibly statically e�-

cient) status quo.
7In contrast, our existence results for nonunanimity committees only apply when players are su�ciently

patient.
8In Kalandrakis (2004) [resp. Baron and Bowen (2013)], indi�erent voters always accept [resp. re-
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default reaches a single policy (immediately), and no player mixes, on or o� the path.

Duggan and Kalandrakis (2012) use a �xed point argument to establish existence of

pure strategy SMPEs for games with any quota in which preferences and the default are

subject to stochastic shocks.9 By contrast, we prove existence in unperturbed games (by

and large) using constructive arguments.

Kalandrakis' (2004, 2010) equilibria violate the size principle, in the sense that a sub-

minimal winning coalition shares the pie. Field evidence (e.g. on appropriations bills in

Congress) and lab evidence both suggest that the size principle is more likely to be violated

by agreements which share the pie amongst a supraminimal winning coalition.10 These

agreements might, in principle, be explained by social preferences; but Battaglini and Pal-

frey (like Kalandrakis (2010)) suggest that concavity might be a better explanation. A

supramajority of players earn a positive share in (some of) our constructed equilibria, and

also in the equilibria constructed by Bowen and Zahran (2012) and Richter (2014):

Bowen and Zahran require preferences to be strictly concave and the initial default to

be statically e�cient, and show that the size principle is violated when discount factors take

intermediate values and the initial default is not too inequitable. We also allow for (but

do not require) strictly concave preferences; but the size principle fails in our construction

whenever all players are patient enough. Unlike Kalandrakis (2004, 2010) and Bowen and

Zahran (2012), we allow the committee to choose statically ine�cient policies. However,

all our results about existence of SMPEs and the size principle would carry over to the

case where the policy set coincides with the unit simplex. In particular, our construction of

SMPEs in nonunanimity games relies on the existence of a simple solution (see De�nition

1 in Subsection 4.1 below). It is readily checked that there exist simple solutions inside

the unit simplex, which violate the size principle. In addition, our constructions do not

depend on the initial default (which could also be in the simplex).

Richter (2014) constructs a no-delay SMPE in which the �rst proposer o�ers the egal-

itarian division in a model where o�ers may waste some of the pie.11 These o�ers are only

ject]. Indi�erent voters respond di�erently to amendments of policies on and o� the equilibrium paths we

construct.
9Their results apply to a class of stage games which includes pie division. Dziuda and Loeper (2010)

also consider a model with preference shocks to study e�ciency of SMPEs under unanimity rule. Focusing

on preference polarization in environments with a �nite policy space, their model does not accommodate

pie-division settings.
10In Battaglini and Palfrey (2012), 45% of agreed policies were close to the centroid of the simplex.
11Baron and Ferejohn (1989) also allow for waste in their model of an ad hoc committee.
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made in order to punish deviations from equilibrium play, and are therefore never observed

on the path. We also allow for statically ine�cient o�ers; but these o�ers are made on the

equilibrium path in (some of) our constructions.

Baron (1991) argues that Congress often both wastes resources and splits the remainder

among a supraminimal majority during distributive bargaining. He shows that closed and

open rule models based on Baron and Ferejohn (1989) can explain statically ine�cient

policies (aka pork), but can only explain these violations of the size principle by appealing

to a norm of universalism.12 By contrast, equilibria in our model exhibit both features.

Seidmann and Winter (1998) and Okada (2000), inter alia, study bargaining with an

endogenous default in superadditive characteristic function games.13 Hyndman and Ray

(2007) prove that all (including history-dependent) subgame perfect equilibria of games

with binding agreements and no externalities are absorbing, and that these equilibria are

asymptotically statically e�cient if there is a �nite number of feasible policies. They also

show by example that these results do not carry over to games with externalities. Hynd-

man and Ray's results are only applicable in our framework when the quota is unanimity.

We exploit their �rst result when proving that every dynamic equilibrium of a unanimity

game is no-delay; their second result also holds in our model (without requiring �niteness).

Furthermore, as in Hyndman and Ray's model with externalities, statically ine�cient equi-

libria exist in our model with a non-unanimity quota. However, Hyndman and Ray focus

on asymptotic static e�ciency, and assume a common discount factor; we consider Pareto

e�ciency and, crucially for associated results, allow discount factors to di�er.

We turn �nally to the no-delay property. Policy outcomes of our no-delay SMPEs can

be interpreted as a special case of Acemoglu et al's (2012) �dynamically stable states,� which

are de�ned as political states reached in a �nite number of periods (and never changed) in

pure strategy SMPEs of bargaining games with an endogenous default and patient players.

Hence, our results characterize and prove existence of a class of dynamically stable states

in voting situations where, in contrast to those studied in Acemoglu et al (2012), the set

of policies is in�nite and policy preferences are not acyclic. Baron and Bowen's (2013)

notion of a coalition Markov perfect equilibrium exhibits a similar no-delay property; the

equilibria they construct are in mixed strategies.

12The size principle holds in open rule games if there are enough players.
13Seidmann and Winter focus on equilibria in which the grand coalition forms after a number of steps.

While we cannot exclude delay with a non-unanimity quota, our constructions all involve no-delay equi-

libria.
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By de�nition, the default changes just once in a no-delay equilibrium: policy is per-

sistent. A related literature explains why statically ine�cient policies may be persistent

(so the policy sequence is ine�cient). However, the mechanisms in this literature rely on

privately incurred adjustment costs (Coate and Morris (1999)), incomplete information

(e.g. Mitchell and Moro (2006)) or the growing power of incumbent factions (Persico et

al (2011)). By contrast, no-delay equilibria are ine�cient in our model because relatively

impatient players cannot commit to decreasing shares of the pie.

3 Notation and De�nitions

3.1 The Standing Committee Game

In each of an in�nite number of discrete periods, indexed t = 1, 2, . . ., up to a unit of

a divisible resource � the �pie� � can be allocated among the members of a committee

N ≡ {1, . . . , n}, n ≥ 3. Thus, the set of feasible policies each period is

X ≡

{
(x1, . . . , xn) ∈ [0, 1]n :

n∑
i=1

xi ≤ 1

}
.

We denote the policy implemented in period t, and therefore the default at the begin-

ning of period t+1, by xt =
(
xt1, . . . , x

t
n

)
. At the start of each period t, player i is selected

with probability pi ∈ (0, 1) to propose a policy in X. We say that a player who proposes

the existing default passes. If the selected proposer passes then the default is implemented;

otherwise all players simultaneously vote to accept or to reject the chosen proposal. The

voting rule used in every period t is a quota q which satis�es n/2 < q ≤ n. Speci�cally, if

at least q players accept proposal y ∈ X then it is implemented as the committee decision

in period t and becomes the default next period (i.e. xt = y); and if y secures less than

q votes then the previous default, xt−1, is implemented again and becomes the default in

period t + 1 (i.e. xt = xt−1). The default in period 1 is x0 = (0, . . . , 0). We will refer to{
xt
}∞
t=1

such that every xt is feasible as a policy sequence.

Once policy xt has been implemented, every player i receives an instantaneous payo� of

(1− δi)ui
(
xti
)
, where ui is a strictly increasing, continuously di�erentiable concave utility

function with ui(0) = 0, and δi ∈ [0, 1) is i's discount factor. Thus, player i's payo� from

a policy sequence
{
xt
}∞
t=1

is (1− δi)
∑∞

t=1 δ
t−1
i ui

(
xti
)
. We say that discount factors are

heterogeneous if δi ̸= δj for some pair of players i and j; and that discount factors are

strictly heterogeneous if δi ̸= δj for every pair of players i and j.
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The assumptions above de�ne a dynamic game, which we will refer to as a standing

committee game. Our main purpose is to analyze the equilibria of this game.

3.2 Equilibrium and Absorbing Points

Equilibrium concept. We follow the standard approach of concentrating throughout on

stage-undominated subgame perfect equilibria (SPEs); i.e., SPEs in which, at any voting

stage, no player uses a weakly dominated strategy. This excludes strategy combinations in

which players with di�erent preferences all vote one way, and are indi�erent when q < n

because they are nonpivotal � put di�erently, players never vote against their (dynamic)

preferences. Henceforth, we leave it as understood that any reference to �equilibria� is to

equilibria that satisfy this property.

For our positive analysis, we will concentrate (like the previous literature) on the stricter

criterion of stationary Markov perfect equilibria (SMPEs), i.e., SPEs in which all players

use strategies which only depend on the current payo�-relevant state: in proposal stages,

players' choices (of probability distributions over X) only depend on the ongoing default;

in voting stages, players' choices (of probability distributions over {accept , reject}) only
depend on the current default and the proposal just made. We will be particularly in-

terested in pure strategy SMPEs, where every player's choice is deterministic after every

history.

Our normative results exploit a re�nement of SPE (�dynamic equilibrium�) which is

weaker than SMPEs. We follow Bernheim and Slavov (2009), Vartiainen (2011, 2014), and

Anesi and Seidmann (2014, Section 5.2), who consider dynamic voting frameworks in which

behavior in every period only depends on the list of policies implemented in all previous

periods. More speci�cally, a dynamic equilibrium (or DE ) is an SPE in which behavior in

any period t only depends on
(
x1, . . . , xt−1

)
, plus the current proposal in the voting stage.

We adopt this weaker criterion because our aim is to establish equilibrium ine�ciency �

which is too easy to prove of SMPEs because Markov perfection restricts the set of policy

sequences which can be supported. For instance, it precludes those sequences in which the

same policy is implemented in a �nite number of consecutive periods and then switches

to a di�erent policy. By contrast, we do not impose any restriction on the set of policy

sequences which can be supported by allowing behavior to depend on previous periods'

policies.
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Absorbing points and no-delay strategies. A complete history of length t describes

all that has transpired in each period τ ∈ {1, 2, . . . , t}: the selection of a proposer, her

proposal, the associated pattern of votes (if applicable), and the implementation of period-

τ policy xτ .14 Of particular interest are �implementation histories� (to use the language

of Hyndman and Ray (2007)), i.e. those which end just before the implementation of

a policy. More precisely, an implementation history of length t is a complete history of

length t − 1 (or the null history if t = 1) together with the selection of the proposer, her

proposal, and (if applicable) the associated pattern of votes (but not the implementation

of the policy) in period t. Hence, at such a history, players know the policy that will be

implemented in period t, but they have not yet received their payo�s from that policy. An

implementation history is an implementation history of �nite length. For each x ∈ X, the

set of implementation histories at which x is the policy about to be implemented is denoted

by Hx; that is, h ∈ Hx if there exists t ∈ N such that h is an implementation history of

length t and xt = x. Let H ≡
∪

x∈X Hx be the set of all possible implementation histories.

Every strategy pro�le σ (in conjunction with recognition probabilities) generates a tran-

sition function P σ on implementation histories, where P σ (h,H ′) is the probability (given

σ) that the next period's implementation history is in H ′, given that the implementation

history for the current period is h. Thus, for all i ∈ N , all x ∈ X and all h ∈ Hx, player

i's continuation value at h � i.e. the payo� that player i receives from h on � is given by

V σ
i (h) = (1− δi)ui (xi) + δi

∫
V σ
i

(
h′
)
P σ
(
h, dh′

)
.

We say that x ∈ X is an absorbing point of σ if and only if P σ (h,Hx) = 1 for all

h ∈ Hx, and denote by

A(σ) ≡ {x ∈ X : P σ (h,Hx) = 1 for all h ∈ Hx}

the set of absorbing points of σ.

We say that σ is no-delay if and only if: (i) A(σ) ̸= ∅; and (ii) for all h ∈ H, there is x ∈
A(σ) such that h ∈ Hx. In words, a strategy pro�le is no-delay if the committee implements

an absorbing point at every implementation history (including those o� the equilibrium

path). It is worth noting that this notion of no-delay di�ers from that conventionally used

in models of bargaining with �xed defaults, where it is often associated with e�ciency (e.g.

14The implementation stage can be inferred from previous stages and, therefore, may appear redundant.

For expositional clarity, however, it is convenient to include it in the de�nition of a complete history.
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Austen-Smith and Banks (2005), p. 211). In contrast, no-delay equilibria can be statically

ine�cient in this model.

In the case of stationary Markov strategies, we will indulge in a slight abuse of nota-

tion and replace implementation histories by policies in the de�nitions above. For instance,

P σ(x, Y ) will denote the probability (given stationary Markov strategy σ) that the com-

mittee chooses a policy in Y in the next period given that policy x is implemented in the

current period � so that A(σ) ≡ {x ∈ X : P σ (x, {x}) = 1}.

3.3 (In)e�ciency

Previous papers in the related literature have only explored the equilibrium correspondence.

Given this focus, the assumption that players share a common discount factor simpli�es

exposition. By contrast, we will also be interested in the welfare evaluation of equilibria;

and here the supposition of equal patience is problematic.

It is useful to distinguish between potential ine�ciencies which arise in models with

an exogenous default, and those which are peculiar to models with an endogenous default.

First, the pie might not be entirely distributed in some periods: A policy x ∈ X is statically

ine�cient if
∑

i∈N xi < 1 (and is statically e�cient otherwise). We will refer to 1−
∑

i∈N xi

as waste. (Recall that ui is strictly increasing in xi.) The uncertainty created by recognition

probabilities and (possibly) mixed strategies could also result in welfare losses if utility

functions are not linear. The dynamic structure of our model engenders another source

of ine�ciency: If players have di�erent discount factors then inter-temporal transfers may

facilitate Pareto improvements.

Our e�ciency criterion captures all of these features. Formally, a (possibly stochastic)

policy sequence
{
x̃t
}
is Pareto e�cient if there is no other (possibly stochastic) policy

sequence
{
ỹt
}
such that

E

[ ∞∑
t=1

δt−1
i ui

(
ỹti
)]

≥ E

[ ∞∑
t=1

δt−1
i ui

(
x̃ti
)]

for all i ∈ N , with at least one strict inequality for some i ∈ N . We will say that a

strategy pro�le is Pareto ine�cient if, from the initial default (0, . . . , 0), it generates a

policy sequence that is not Pareto e�cient.

Assuming linear utilities, we can establish the following result:

Lemma 1. Suppose that ui (xi) = xi for all i ∈ N . In every Pareto e�cient policy

sequence, the following is true for every i, j ∈ N such that δj < δi: If player i's expected
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share of the pie in some period t is positive then player j's expected shares in all periods

τ > t are zero.

Thus, if an e�cient policy sequence allocates a positive share of the pie to any player

i with a positive probability in some period t, then all players who are less patient than i

must receive a zero share (with probability 1) in all subsequent periods. This result will

be very useful when we come to establish Pareto ine�ciency of all dynamic equilibria in

nonunanimity games. To prove it (see the Appendix), we show that the linearity of the

ui's would otherwise permit mutually advantageous utility transfers across periods and,

therefore, contradict Pareto e�ciency. Observe that Lemma 1 implies that if the players

all have distinct discount factors then, from some period on, some player must receive the

entire pie with probability one in any Pareto e�cient policy sequence. Indeed, if the most

patient player receives a positive (expected) share of the pie in some period t, then all

other players receive a zero share from period t+1 on. If the most patient player receives a

positive share with probability zero, then we can apply the same argument to the next most

patient player and continue until the most patient player among those who ever receive

a positive share of the pie with positive probability. As the pie cannot be wasted in an

e�cient sequence, such a player exists and we obtain this implication of the lemma.

Lemma 1 relies on the supposition that all utility functions are linear. Despite its

relevance, characterization of the set of Pareto e�cient policy sequences remains, to the

best of our knowledge, an open and very delicate question.15 Indeed, when players have

heterogeneous discount factors, the set of payo� pro�les that can be obtained through time

averaging does not coincide with the set of feasible policies, even if utilities are linear.

Pareto e�ciency is an ex ante concept in the sense that it compares the payo�s of

the di�erent policy sequences prior to their realizations. We will also consider the weaker

notion of ex post Pareto e�ciency (e.g. Merlo and Wilson (1995)), in which the payo�s

of di�erent policy sequences are compared after the realizations of those sequences. More

precisely, we will say that a (possibly stochastic) policy sequence
{
x̃t
}
is ex post Pareto

e�cient if at least one of the realizations
{
xt
}
in its range is Pareto e�cient. We will say

that a strategy pro�le is ex post Pareto ine�cient if it generates a policy sequence that is

ex post Pareto ine�cient: that is, each of its possible realizations can be Pareto improved.

Though this de�nition of ex post Pareto e�ciency is very weak, we prove in Section 5 that

15It is readily checked that, whenever all marginal utilities satisfy u′
i ∈ [b,B] for some 0 < b < B <

∞, some players must receive zero shares in�nitely often. The proof is provided in the Supplementary

Appendix.
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all dynamic equilibria fail this criterion in the unanimity case.

4 Nonunanimity Committees

Let W be the collection of winning coalitions: W ≡ {C ⊆ N : |C| ≥ q}. Throughout this
section, we assume that q < n: agreement requires less than unanimous consent.

4.1 Simple Solutions

We will construct a class of pure strategy no-delay SMPEs, in which each player j ∈ N

is only o�ered two di�erent shares of the pie � a �high� o�er xj > 0 and a �low� o�er

yj < xj � after any history. In every period and for any ongoing default, each proposer

i (conditional on being recognized to make an o�er) implicitly selects a winning coalition

Ci ∋ i by making high o�ers to the members of Ci and low o�ers to the members of N \Ci.

If each player receives a low o�er from at least one proposer, then we refer to the set of

such proposals (one for each player) as a simple solution. Formally:

De�nition 1. Let C ≡ {Ci}i∈N ⊆ W be a class of coalitions such that, for each i ∈ N ,

i ∈ Ci and i /∈ Cj for some j ∈ N \ {i}. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two

vectors in [0, 1]n satisfying xi > yi and∑
j∈Ci

xj +
∑
j /∈Ci

yj ≤ 1 ,

for all i ∈ N . The simple solution induced by (C, x, y) is the set of policies S ≡
{
xCi
}
i∈N ,

where

xCi
j ≡

{
xj if j ∈ Ci ,

yj if j /∈ Ci ,
for all i, j ∈ N .

A set of policies S ⊆ X is a simple solution if there exists a triplet (C, x, y) (as de�ned

above) such that S is a simple solution induced by (C, x, y).

Before we turn our attention to the construction of equilibria themselves, a few remarks

are in order about simple solutions:

1. A simple solution exists if and only if q < n: if q < n then the main simple solution, in

which the pie is divided equally among every minimal winning coalition, is a notable

example of a simple solution (cf. Wilson (1971)); if q = n then each player must be

included in the unique winning coalition N and, therefore, there is no simple solution.
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2. If q < n then any policy which assigns a positive share to at least q players is part

of some simple solution. To see this, take an arbitrary policy z ∈ X such that

|{i : zi > 0}| ≥ q. For expositional convenience, we order the players in N in such a

way that zi ≥ zi+1 for each i = 1, . . . , n− 1 (thus ensuring that zi > 0 for all i ≤ q).

Consider the simple solution induced by (C, x, y), where

xi =

{
zi if i ≤ q

zi +
ε

n−q if i > q
, yi =

{
zi − ε if i ≤ q

zi if i > q
, ε > 0 arbitrarily small,

and Ci is the coalition that includes i and the next q − 1 players following the order

1, 2, . . . , n − 1, n, 1, 2, . . . , q − 1. It is readily checked that (C, x, y) satis�es all the

conditions of De�nition 1 (in particular yi ≥ 0 for all i ∈ N), and that xC1 = z.

3. Policies which assign a positive share to fewer than a minimal winning coalition

cannot be included in a simple solution. Such policies include the initial default and

the vertices of the simplex.

4. The de�nition of the class C of coalitions does not require all of them to be distinct;

but it is easy to con�rm that C must contain at least n/(n− q) distinct coalitions.

5. The policies in a simple solution may all assign a positive share to a supraminimal

coalition, and might all involve waste.

4.2 Preliminary Intuitions

If all players are myopic then there is a unique SPE outcome in which each proposer

successfully claims the entire pie. More generally, it is easy to show that there is no

absorbing SPE when players' discount factors are small. Indeed, owing to the emptiness of

the core, there is always a winning coalition which can make all its (short-sighted) members

strictly better o� by amending any potential absorbing point to another policy in X. For

future reference, we record this observation as:16

Observation 1. Let q < n. If δi = 0 for each i ∈ N then each period's proposer receives

the entire pie in every SPE. Furthermore, there exists δ̂ ∈ (0, 1) such that there is no

absorbing SPE whenever maxi∈N δi < δ̂.

16The proof of this observation is provided in the supplementary appendix.
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Nevertheless, we will show that it is possible to construct a no-delay (and therefore ab-

sorbing) SMPE when players' discount factors are su�ciently large. The following example

illustrates De�nition 1, and provides an intuitive presentation of some key mechanisms be-

hind our equilibrium construction.

Example 1. Let n = 3, q = 2, pi = 1/3, δi = δ and ui (xi) = xi for all i ∈ N .17 Take,

for example, the simple solution S = {(1/3, 1/3, 1/6), (1/6, 1/3, 1/3), (1/3, 1/6, 1/3)} �

that is, C1 = {1, 2}, C2 = {2, 3}, C3 = {1, 3} and xj = 1/3, yj = 1/6 for every player

j = 1, 2, 3. If δ ≥ 12/13 then the following strategy pro�le forms a pure strategy, no-delay

SMPE whose set of absorbing points is S:

• Player i always o�ers 1/3 to the players in Ci and 1/6 to the player outside Ci if the

ongoing default does not belong to S, and passes otherwise;

• Player i accepts proposal z when the ongoing default is w if and only if one of

the following conditions holds: (i) w ∈ S and wi = 1/6; (ii) w /∈ S, z ∈ S, and

zi ≥ (1− δ)wi + (5δ/18); or (iii) w, z /∈ S and zi ≥ wi.

A formal proof of this statement is obtained as a special case of Theorem 1. The intuition

is as follows. It is readily checked that this (pure) strategy pro�le is no-delay and that S is

the set of absorbing points: each policy xCi in S is proposed by player i with probability

1/3, accepted by the two members of majority coalition Ci, and never amended.

To see why this is an SMPE, observe �rst that each (patient) player i = 1, 2, 3 can only

end up in two possible states in the long-run: a �good state� in which she receives 1/3 in

all periods, and a �bad state� in which she receives 1/6 in all periods. Indeed, any ongoing

default w is either an absorbing point itself or will lead immediately to some absorbing point

xCj ∈ S, with x
Cj

i ∈ {1/6, 1/3}. In the former case, player i's expected payo� is wi = 1/3 if

i ∈ Cj , and wi = 1/6 otherwise. In the latter case (i.e. if the current period's proposer fails

to amend w), i receives wi in the current period and 2/3×1/3+1/3×1/6 = 5/18 in the next

period (i ∈ Cj with probability 2/3). Her expected payo� is therefore (1− δ)wi + (5δ/18),

which is less than 1/3 for all wi ∈ [0, 1] (recall that δ ≥ 12/13).

In every voting stage, players know that the next period's proposer i will successfully

o�er absorbing point xCi in S if the default is not already in S, and will pass otherwise.

17These are precisely the assumptions made by Kalandrakis (2004). In contrast to that paper, however,

we require the initial default to be (0, . . . , 0), and allow for policies which do not exhaust the pie. In

addition, our equilibrium construction does not allow for small discount factors.
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As xCi
j ∈ {1/3, 1/6} for all i, j ∈ N , every player j anticipates that her shares of the pie in

all future periods will either be equal to 1/3 or to 1/6. Hence, each player j's continuation

value is bounded from above by uj (1/3) = 1/3. This implies that it is optimal for farsighted

player j to reject [resp. accept] any proposal to amend default xCi whenever j ∈ Ci [resp.

j /∈ Ci]: changing xCi to another policy can only decrease [resp. increase] her long-run

payo�s � as δ is su�ciently close to 1, only long-run payo�s matter to her. As the Ci's

are winning coalitions, this ensures that it is impossible to amend the xCi 's once they have

been implemented. If the current default is not in S then, by the same logic, it is optimal

for each member of Ci to accept xCi and for any other player to reject it. These voting

strategies in turn imply that there is no pro�table deviation from proposal strategies. If

the current default is outside S then it is optimal for proposer i to o�er xCi : this proposal

will be accepted by all members of winning coalition Ci and guarantees her the highest

possible long-term payo� of 1/3. If the default is outside S then any attempt to amend it

is unsuccessful; so that passing is optimal. Thus, we obtain an SMPE.

�

This example illustrates why our results are radically di�erent from those obtained in

the standard Baron-Ferejohn model of an ad hoc committee. In particular, it explains why

shares of the pie can be perpetually wasted and/or shared amongst more than a minimal

winning coalition in equilibrium: Players can be locked into equilibria where any deviation

to proposing a Pareto-superior policy would be rejected. Interestingly, what prevents any

(minimal) winning coalition C from agreeing on a non-wasteful policy in such an equilib-

rium is its members' inability to commit not to revert to one of the statically ine�cient

absorbing points xCi with Ci ̸= C, where some members of C lose out. The nonunanimity

quota (q < n) ensures that such coalitions Ci always exist. In the example above, far-

sighted player 1 rejects (o� the equilibrium path) any proposal such as (1/2, 1/2, 0) ∈ X

when the default is absorbing point xC1 = (1/3, 1/3, 1/6). Indeed, she anticipates that if

such a proposal were successful in the current period then, with probability p2 > 0, player

2 would successfully propose xC2 = (1/6, 1/3, 1/3) in the next period � which would never

be amended. As δ is close to one, player 1 prefers to earn 1/3 with certainty in all future

periods. Evidently, this commitment problem would not arise in the Baron-Ferejohn model

where, once implemented, policies can never be amended.
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4.3 Positive Results

Our �rst result generalizes the argument above to any nonunanimity quota, any concave

utility functions, and any simple solution. We describe a pure strategy no-delay SMPE in

which each policy in a simple solution is proposed by some player, and no other policy is

proposed after any history as a simple equilibrium.

Theorem 1. Suppose that q < n, and let S be a simple solution. There exists δ̄ ∈ (0, 1)

such that the following is true whenever mini∈N δi ≥ δ̄: There exists a pure-strategy no-

delay SMPE whose set of absorbing points is S.

The proof of this theorem, like those of all other theorems in the paper, is provided in

the Appendix. Theorem 1 has several interesting implications:

Multiplicity of SMPE payo�s. We noted above that any policy (say, z) which assigns

a positive share to q or more players is part of a simple solution. Theorem 1 therefore

implies that z is an absorbing point of an SMPE of any game with q < n and patient

enough players. In that SMPE, player 1 proposes z which is accepted by all members of

coalition C1 = {1, . . . , q} ∈ W, and never amended.

This argument does not apply to policies which assign a positive share to fewer than q

players (including the initial default), and can therefore not be part of a simple solution.

Policies which assign a zero share to some winning coalition cannot be absorbing points of

an SMPE because every member of such a coalition could pro�tably deviate as a proposer.18

Minimal winning coalitions. The Baron-Ferejohn model predicts that only minimal

winning coalitions share the pie in any stationary SPE. Theorem 1 immediately implies

that this property, often referred to as the size principle, may fail in our model with an

evolving default: As mentioned earlier, policies in a simple solution may all assign a positive

share to a supraminimal coalition.

Waste. Another important implication of Theorem 1 is that endogeneity of the de-

fault may create substantial (static) ine�ciencies in equilibrium. For any ε ∈ (0, 1),

let Xε be the set of policies such that the committee �wastes� more than 1 − ε: Xε ≡{
x ∈ X :

∑
i∈N xi < ε

}
. It is easy to �nd simple solutions that are subsets of Xε. For

instance, take the simple solution induced by (C, x, y) where, for each i ∈ N , xi = ε/2q,

18As Kalandrakis (2004, 2010) demonstrates, such policies could nevertheless be part of an ergodic set.
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yi = 0, and Ci is the coalition that includes i and the next q − 1 players following the

order 1, 2, . . . , n − 1, n, 1, 2, . . . , q − 1. Theorem 1 implies that any nonunanimity game

with patient enough players has a pure-strategy no-delay SMPE whose absorbing points

all belong to Xε: the committee wastes at least 1− ε in every period along the equilibrium

path. This again stands in sharp contrast to the stationary SPEs of the Baron-Ferejohn

model, in which waste never occurs.

Agreements may in fact be even worse relative to the initial default than our presen-

tation has hitherto suggested. Speci�cally, the proof of Theorem 1 does not rely on our

supposition that x0 = (0, . . . , 0); so we can construct simple equilibria in which every ab-

sorbing policy is strictly Pareto-dominated by the initial default (by appropriately selecting

x0).19

Theorem 1 also implies that there are SMPEs in which statically ine�cient policies are

retained inde�nitely. This property is empirically interesting: for example, Brainard and

Verdier (1997) describe persistent protection as �one of the central stylized facts in trade�

(p222). Theorem 1 therefore contributes to the literature on policy persistence, without

requiring (as in Coate and Morris (1999) and Acemoglu and Robinson (2008)) that players

can unilaterally invest in sustaining policies.

Pork barrel politics. We have noted that SMPE agreements may waste some of the

pie and that the size principle may fail. Theorem 1 says that both properties can hold in

the same equilibrium. According to Schattschneider (1935), this combination of properties

characterized US trade policy before 1934. Indeed, Baron (1991) claims that legislation

on distributive issues often exhibits this combination.20 He also argues that models of ad

hoc committees can explain pork, but not violations of the size principle. By contrast,

Theorem 1 implies that equilibrium agreements in a standing committee may satisfy both

properties without appealing to a norm of universalism.

We record the observations above as

Corollary 1. Suppose that q < n. For each of the following statements, there exists

δ̄ ∈ (0, 1) such that this statement is true whenever mini∈N δi ≥ δ̄:

19This property is stronger than a related result in Bernheim et al's (2006) and Anesi and Seidmann's

(2014) models of bargaining with an evolving default: that the equilibrium agreement is worse than x0 for

some winning coalition.
20Evans (2004) documents the failure of the size principle, and argues that Congress may often pass

ine�cient public good projects.
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(i) There exist multiple pure-strategy no-delay SMPEs;

(ii) Any policy which assigns a positive share to q or more players is an absorbing point

in some pure-strategy no-delay SMPE;

(iii) There are SMPEs which fail the size principle;

(iv) For every ε ∈ (0, 1), there is a pure-strategy SMPE σ such that P σ (x,Xε) = 1 for

all x ∈ X;

(v) There are no-delay SMPEs in which the agreement wastes some of the pie and fails

the size principle.

4.4 Pareto E�ciency

Corollary 1(ii) implies that some simple equilibria are statically e�cient. If players have a

common discount factor and are risk neutral then these equilibria are also Pareto e�cient;

but wasting some of the pie is not the only possible kind of ine�ciency in dynamic models

when discount factors are heterogeneous.

It is possible to construct Pareto e�cient SPEs. Indeed, we can construct SPEs in

which some player earns the entire pie every period (irrespective of the identity of the

proposer) if players are patient enough. However, these SPEs � which are trivially Pareto

e�cient � rely on player-speci�c punishments: any player who proposes another policy is

�punished� with an inde�nite zero allocation. Other players reject such proposals because

they then always share the pie. These punishments are excluded in a DE (cf. Section 3.2).

Our main result in this subsection also states that if all players have linear preferences

(ui (xi) = xi) and discount factors are strictly heterogeneous then all DEs are Pareto

ine�cient. (Players have linear preferences in Baron and Ferejohn (1989), and much of the

ensuing literature.)

Theorem 2. Let q < n.

(i) If ui (xi) = xi for all i ∈ N and δi ̸= δj for all i, j ∈ N then all DEs are Pareto

ine�cient.

(ii) There exists δ̃ ∈ (0, 1) such that the following is true whenever mini∈N δi > δ̃: Any

(Pareto e�cient) policy sequence that allocates the entire pie to the same player in every

period can be supported by an SPE.

Lemma 1 implies that, with linear utilities, any Pareto e�cient policy sequence must

eventually assign the pie to a single player with probability one. By de�nition, this is

impossible in a simple equilibrium: every player earns a positive share of the pie with
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positive probability. More generally, suppose that a DE σ prescribes that one player,

say i, always earns the entire pie for sure after some history h. The proof of Theorem

2 establishes that another player could pro�tably deviate if selected as proposer after h

by successfully proposing a more equitable division of the current pie. The nonunanimity

quota guarantees that this cannot be prevented by player i. Hence, a DE cannot be Pareto

e�cient.

A few remarks are in order concerning Theorem 2. First, it does not assert that every

DE is ex post Pareto ine�cient. Indeed, such a claim would be false: We can construct a DE

σ at which each period's realized proposer earns the entire pie when players are su�ciently

patient. (This construction relies on Corollary 1(iv): any deviation from the prescribed

path is punished by using a simple equilibrium in which every player's continuation value

is smaller than some small ε > 0 � details of the construction are provided in Section B

of the Supplementary Appendix.) There are realizations of the stochastic policy sequence

engendered by σ � i.e. those corresponding to cases where the same player is selected to

propose in every period � which allocate the entire pie to the same player in every period.

These realizations are Pareto e�cient and, therefore, σ is ex post Pareto e�cient.

Second, Theorem 2(i) relies on Lemma 1, whose premise requires that all utilities are

linear. If some player were risk averse then DEs which generate stochastic policy sequences

would obviously be Pareto ine�cient; but we can construct a no-delay, deterministic DE

in which the �rst proposer o�ers 1/n to every player, all of whom are risk averse and have

di�erent, but large enough discount factors.21 This equilibrium is ine�cient because no

player would earn 0 in�nitely often (see footnote 15). In sum, generalization of Theorem

2 to nonlinear utilities remains an open question.

Third, in contrast to Theorem 1, the premise of Theorem 2(i) does not require that

players be patient enough. It only requires strict heterogeneity. It is easy to con�rm that

the argument works as long as enough players have di�erent discount factors.

Fourth, our construction of the e�cient SPE extends Shaked's example (cf. Sutton

(1986)) to games with an endogenous default, a nonunanimity quota, and a random proto-

col. It depends on the initial default assigning no share to either all or all but one player,

else another player who starts with a positive share could pro�tably deviate by passing

when selected to propose at the null history. Extending the construction to arbitrary initial

defaults would require strategy pro�les to support Pareto e�cient policy sequences which

21The logic behind the construction is analogous to that described in the previous paragraph: play

reverts to a simple SMPE which wastes enough of the pie once the default is o� the equilibrium path.
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do not allocate the entire pie to the same player in every period. As we noted above, the

characterization of Pareto e�cient policy sequences in the in�nitely repeated pie division

problem is an open question.

5 Unanimity Committees

This section examines equilibria of standing committee games in which agreement requires

unanimous consent: that is, q = n.

5.1 Preliminary Example

As in the previous section, we begin with a simple example that will provide some intuition

for the general results that follow.

Example 1 Continued. Consider a variant on Example 1 (of Section 4.2) in which the

default can only be changed if all three players accept a proposal: that is, q = n = 3.

The other primitives of the example remain the same: pi = 1/3, δi = δ and ui(x) = xi

for all i ∈ N . We will construct a no-delay equilibrium σ in which, at any default x ∈ X,

the selected proposer (say i) successfully o�ers the committee a policy x + si(x) ∈ ∆n−1.

We can think of proposer i o�ering to share the amount of pie not distributed yet � i.e.

1− (x1 + x2 + x3) � with the other players, with sij(x) being the (extra) share o�ered by

proposer i to player j.22 In such a situation, proposer i's optimal o�er to player j, xj+sij(x),

must leave the latter indi�erent between accepting and rejecting. If j rejected i's o�er,

she would receive her payo� from the ongoing default in the current period, (1− δ)xj , and

would then receive o�er xj + skj (x) from each proposer k = 1, 2, 3 with probability 1/3 in

the next period. The following condition must therefore hold:

xj + sij(x) = (1− δ)xj + δ

[
xj +

s1j (x) + s2j (x) + s3j (x)

3

]

or, equivalently

sij(x) =
δ

3

[
s1j (x) + s2j (x) + s3j (x)

]
(1)

22Hence, all proposers pass when the ongoing default is already in the unit simplex: si(x) = (0, 0, 0) for

all i = 1, 2, 3 whenever x ∈ ∆2.
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for each i and j ̸= i. Given the shares of the pie o�ered to the other committee members,

proposer i receives the residual:

xi + sii(x) = 1−
∑
j ̸=i

[
xj + sij(x)

]
. (2)

Combining (1) and (2), we obtain the policy x+si(x) (absorbing point) successfully o�ered

by each player i at any default x ∈ X:

xi + sii(x) = xi +
3− 2δ

3

1−
3∑

j=1

xj

 ,

xj + sij(x) = xj +
δ

3

1−
3∑

j=1

xj

 , ∀j ̸= i .

In particular, each player expects to earn 1/3 in the game itself: V σ
i

(
x0
)
= 1/3.

�

Its simplicity notwithstanding, there are two noteworthy features of this example. First,

the set of absorbing points of the no-delay SMPE σ coincides with the unit simplex:

xj + sij(x) ∈ ∆2 for all x ∈ X and all i, j ∈ N . Second, the SMPE payo�s coincide with

those of the analogous Baron-Ferejohn model with a unanimity quota. As the rest of this

section will demonstrate, these properties do not rely on our parametric assumptions.

5.2 Positive Results

Our �rst result generalizes some properties of Example 1 above to all DEs. These properties

will be the key to proving the uniqueness of SMPE payo�s in Theorem 4(ii) and the

ine�ciency result of Theorem 5.

Theorem 3. If q = n then every DE σ is no-delay with A(σ) = ∆n−1.

Thus, under unanimity rule, a standing committee selects an absorbing point in the

simplex immediately at any ongoing default. In contrast to nonunanimity committees,

therefore, waste never occurs in a DE of unanimity committee games. In other words, the

unanimity game has and only has no-delay, statically e�cient DEs.

Unanimity voting implies that continuation values in a DE satisfy a �temporal-monotonicity�

property, which provides the key to understanding the intuition behind Theorem 3. Una-

nimity rule gives every player the power to prevent any amendment of the default. There-

fore, in equilibrium, any player's continuation value of implementing a new policy must be
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at least as great as her utility from the current default � otherwise she could pro�tably

deviate to a strategy that prevents any amendment of the default in all future periods.

This implies that, as bargaining goes on, all players' continuation values are nondecreasing.

This allows us to exploit Hyndman and Ray (2007) Proposition 1, which implies (in our

model) that the equilibrium default converges almost surely. The monotonicity of continu-

ation values thus implies the no-delay property: players will not wait for several periods to

get their limit payo�s. Moreover, if the limit allocation were not statistically e�cient, then

any proposer could pro�tably deviate by o�ering a policy that makes all players strictly

better o� � the monotonicity property of continuation values ensures that none of them

would lose out in the future. Hence, absorbing policies must be in the unit simplex. In

addition, all policies in the unit simplex must be absorbing: any amendment of a statically

e�cient default must make some players worse o� in the current period, and temporal

monotonicity of continuation values implies that the other players will never compensate

them for their current losses. Hence, it is impossible to amend a policy in ∆n−1.

Our next result asserts existence of a pure strategy no-delay SMPE in which resources

are never wasted. The premise of Theorem 4 di�ers from the premise of Theorem 1 (our

analogous result for q < n) in two important respects. First, we no longer require that

players be patient enough. Indeed, unlike nonunanimity games (recall Observation 1),

a no-delay equilibrium exists in unanimity games even when discount factors are small.

Second, Theorem 4 asserts that the policies reached from any default (including the initial

default) are statically e�cient. The latter property also holds in the standard Baron-

Ferejohn model with a unanimity quota (Banks and Duggan (2000, 2006)). The second

part of the theorem strengthens the analogy between equilibrium play in our game and in

Baron and Ferejohn (1989).

Theorem 4. If q = n then: (i) a pure strategy no-delay SMPE exists; and (ii) SMPE

payo�s are unique, and coincide with the stationary SPE payo�s of the Baron-Ferejohn

model.

We prove Theorem 4(i) using a construction which generalizes that employed in Ex-

ample 1 above: A �xed point argument is used to show that there are proposals for each

player which move the default into the simplex and make every respondent indi�erent be-

tween accepting and rejecting, given that defaults in the simplex would not be amended;

and that no player can pro�tably deviate from proposing such policies or accepting such

an o�er.
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The proof of Theorem 4(ii) stems from Theorem 3, which establishes the no-delay prop-

erty of DEs and, therefore, of SMPEs. This property implies that the strategic incentives

at work in SMPEs of the standing committee game resemble those in stationary SPEs of

the Baron-Ferejohn model, where the selected proposer makes a successful proposal (thus

ending the game) in every subgame. This allows us to show that, for every SMPE σ of

the standing committee game, one can construct a stationary SPE of the Baron-Ferejohn

model that generates the same payo�s as σ in the standing committee game. Uniqueness

of SMPE payo�s then follows from the following observation.23

Observation 2. If q = n then the Baron-Ferejohn model has a unique stationary SPE.

The uniqueness results of Merlo and Wilson (1995) and Eraslan (2002) could be applied

to our setting under additional restrictions on the utility functions; but Observation 2 only

relies on concavity and di�erentiability.

In the Introduction, we asked how play in standing and ad hoc committees di�ers.

Our results in the last section entail a signi�cant contrast across stationary equilibrium

outcomes in the two games when q < n. Theorem 4(ii) implies that this contrast does not

carry over to games with a unanimity quota.

5.3 Pareto e�ciency

If q < n and players are patient enough then there is a Pareto e�cient SPE in which the

same player earns the entire pie each period (cf. Section 4.4). If q = n then such an SPE

exists irrespective of players' patience. The construction again relies on player-speci�c

punishments; so we turn to DEs which preclude such punishments.

Theorem 2 states that every DE of a nonunanimity game with linear preferences is

Pareto ine�cient if discount factors are strictly heterogeneous. Pareto e�ciency then

requires that some player eventually gets the entire pie: which is impossible in equilibrium;

but a DE could be ex post Pareto e�cient. In addition, Corollary 1(ii) states that there

are no-delay, statically ine�cient equilibria. If q = n then waste is impossible in any DE

(by Theorem 3). However, we have an even stronger ine�ciency result:

Theorem 5. Suppose that q = n.

(i) If δi ̸= δj for some i, j ∈ N then every DE is ex post Pareto ine�cient.

23We are grateful to Sergiu Hart for suggesting the simple proof provided at the end of the Appendix.
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(ii) Any (Pareto e�cient) policy sequence that allocates the entire pie to the same player

in every period can be supported by an SPE.

Note that parts (i) and (ii) respectively refer to DEs and to SPEs.

In contrast to Theorem 2(i), the premise of Theorem 5(i) does not require linear pref-

erences, and weakens strict heterogeneity to heterogeneity. We obtain this stronger result

because the DEs of a unanimity game are no-delay (Theorem 3), which is not necessarily

the case in nonunanimity games. No-delay is useful for two reasons:

First, the no-delay property allows us to show that, on a DE path, all players receive

a positive share of the pie each period (see Lemma 5 in the proof of Theorem 5(i)). To

see why, suppose instead that on some DE path a player, say i, receives a zero share of

the pie in some period. By the no-delay property (and unanimity rule), this implies that

i accepts a zero share in the �rst period and, consequently, a total payo� of ui(0) (i.e.

her lowest possible payo�). If player i instead rejected that proposal, thus deviating from

the equilibrium path, then the period-2 default would still be x0 = (0, . . . , 0). Lemma 5

proves that this deviation is pro�table: conditional on being selected to propose in period 2,

player i could propose a policy allocating a positive share of the pie to all players (including

herself), which all players would prefer to accept rather than to have to wait until the next

period to obtain a positive share of the pie. Thus, xti ∈ (0, 1) for all i ∈ N and all t ∈ N;
so that transfers among players and across periods are always feasible from a given DE

policy sequence.

Second, the no-delay property allows us to prove ine�ciency by constructing a Pareto-

improving policy sequence. Consider a DE policy sequence and two players with di�erent

discount factors. By the no-delay property, their shares of the pie remain constant over

time. The feasibility of transfers implies that we can make the two players better o� (and

leave the others indi�erent) by operating a transfer from the more to the less patient player

in some period t, and a transfer in the opposite direction in period t+ 1.

Theorem 5(ii) extends Shaked's example (cf. Sutton (1986)) to games with an endoge-

nous default (and a random protocol). We prove it by constructing an SPE in which any

proposal to deviate from the policy sequence that allocates the entire pie to the same player

is unanimously rejected. If it is not then (o� the path) the equilibrium prescribes that play-

ers who rejected the proposal be �rewarded� with strictly positive future payo�s (i.e. one

of them is randomly selected to receive then entire pie in all future periods), and that

those who accepted it be �punished� with zero future payo�s. Therefore, independently
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of her discount factor, each player strictly prefers to reject a proposal to deviate from the

equilibrium path, even though she is not pivotal: this has no impact on her payo� in the

current period, but yields her a strictly larger future payo� than accepting. Rejecting is

thus a stage-undominated action.

The results in this subsection imply that Pareto e�ciency requires player-speci�c pun-

ishments. By contrast, Pareto ine�ciency requires player-speci�c punishments in conven-

tional models of an ad hoc committee: see, for example, Sutton (1986).

6 The E�ects of an Endogenous Default

The analysis in the previous sections has revealed important di�erences between our stand-

ing committee game and Baron and Ferejohn's (1989) static game with an ad hoc com-

mittee. The comparison is directly relevant to committees like the Supreme Court, whose

application of the stare decisis rule determines whether a decision can be amended. If the

rule is strictly applied then the �rst decision establishes a precedent: the Court can then

not revisit a case it has already decided (as in Baron-Ferejohn). By contrast, previous

decisions only govern lower court rulings until amended if stare decisis is inoperative.24

In this section, we compare equilibrium outcomes in our dynamic model with dynamic

variants of the Baron-Ferejohn model in which a committee decides on the policy imple-

mented in an in�nite sequence of periods. (We will return to the Supreme Court example

in the next section.) We focus on two such models:

• Ad hoc committee with commitment ability. In this variant, the game ends once the

committee has agreed to a single �policy�; but in contrast to the standard Baron-Ferejohn

model, a policy speci�es the way in which a sequence of pies will be divided.

• Standing committee with an exogenous default. In this variant, the committee negotiates

over division of a single pie each period. Once an agreement is reached, players earn utility

from their share of the pie, and the committee starts to negotiate division of another pie.

The initial default for the new negotiations is exogenously �xed as the n-vector (0, ..., 0).

24The two models naturally capture other aspects of the Court: justices bargain before voting on each

case. Furthermore, life tenure stabilizes membership of the Court, with the (arguable) consequence that

justices are relatively patient.
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Stationary equilibria of both models clearly share a couple of properties with Baron and

Ferejohn's (1989) static model: Each pie is shared by a minimal winning coalition of players;

and each pie is fully shared � there is no waste. The argument for standing committees

with an exogenous default corresponds to that used to derive equilibria in the conventional

Baron-Ferejohn model: for stationarity precludes conditioning the current division on the

history up to the current period.25 Conventional arguments also entail these properties

for an ad hoc committee with commitment ability, where the same coalition shares the

pie in every period. However, the sequence of policies agreed by the two committees

in equilibrium di�er when discount factors are heterogeneous. In particular, an ad hoc

committee with commitment ability must agree to a Pareto-e�cient sequence of policies,

as any proposer is a residual claimant of every pie.

These observations can serve as benchmarks with which to compare the results of the

previous sections. Some notable di�erences can be observed:

(i) Substantial shares of the pie can be inde�nitely wasted and the size principle may

fail in nonunanimity standing committees with an endogenous default, whereas waste

never occurs and only minimal winning coalitions form in both dynamic variants on the

Baron-Ferejohn model. Thus, while these models cannot explain either statically ine�cient

policies or violations of the size principle, agreements in a standing committee with an

endogenous default may possess both properties. Interestingly, default endogeneity does

not generate waste when the quota is unanimity.

(ii) Equilibrium play in the standing committee game is Pareto ine�cient when dis-

count factors are strictly heterogeneous and preferences are linear. Theorem 2 also applies

to standing committees with an exogenous default, as stationarity requires repetition of

the same expected payo�. As mentioned above, however, ad hoc committees with com-

mitment ability reach Pareto-e�cient agreements in every equilibrium. The key di�erence

from our model is that an ad hoc committee with commitment ability cannot renegotiate

an agreement. Viewed in this light, our model demonstrates that equilibrium play in a

standing committee with an endogenous default is ine�cient with generic discount factors

because players cannot commit not to renegotiate the existing agreement.

25Indeed, all stationary SPEs are no-delay and payo�s are unique.
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7 Concluding Remarks

This paper has identi�ed a class of pure strategy (stationary Markov perfect) equilibria

for pie-division bargaining games with an endogenous default, nonunanimity committees

and patient enough players, which supplements existing constructions. This has allowed

us to provide a number of predictions about decision making in standing committees, and

to identify important implications of an endogenous default. The identi�ed equilibria of

the standing committee game have a no-delay property: the �rst policy proposal is ac-

cepted and remains in place in all future periods. In addition, our analysis has revealed

that, unless committee members use history-dependent strategies based on player-speci�c

punishments, heterogeneous discount factors cause Pareto ine�cient policymaking. Dif-

ferences in committee members' inherent time preferences may not be the only source of

such heterogeneity. For example, if members of the committee are district representatives

(like Senators) then their time preferences may be a�ected by institutional features (like

the probability of re-election), which vary across districts.

Banks and Duggan (2000, 2006) have generalized the standard model of bargaining in

ad hoc committees to include any convex set of policies as well as purely distributional

policies, and established existence of a (mixed-strategy) stationary SPE. Before concluding,

we discuss a similar extension of our model of bargaining in standing committees to more

general policy spaces.

Our positive results for nonunanimity games relied on the existence of simple solutions.

Though the de�nition of a simple solution needs to be extended to this more general

setting, the logic behind this extension remains the same as for De�nition 1. Each player

i can be in two possible states: a �good state,� in which she has a high utility ui, or a �bad

state,� in which she has a low utility vi. Each proposer i selects a policy xCi which gives

all members of winning coalition Ci their high utility, and gives the other players their low

utility. Put di�erently, each proposer i selects the coalition Ci of players who will be in a

good state.

Figure 1 provides an example in the standard spatial model: n = 3; q = 2; X is a

nonempty, compact and convex subset of R2; and ui(x) = −∥x− x̂i∥ for all x ∈ X and

all i ∈ N , where x̂i ∈ X stands for the ideal policy of player i. Baron and Herron (2003)

use computational methods to study this setting in a �nite-horizon version of our standing

committee game. Given their results, Baron and Herron conjecture that proposals are

always statically e�cient in the in�nite horizon case; and that proposals are closer to the
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Figure 1: Simple Solution in the Spatial Model

centroid of the shaded triangle in Figure 1, the more patient are players, and the longer

is the horizon. The example in Figure 1 disproves their conjecture: The set of policies

S =
{
xC1 , xC2 , xC3

}
in Figure 1 constitutes a simple solution and, therefore, the set of

absorbing points of some pure-strategy no-delay SMPE whenever players are su�ciently

patient. (The arguments used to prove Theorem 1 still apply.) This equilibrium is both

statically and Pareto ine�cient: all the policies in S lie outside the static Pareto set (the

grey triangle in Figure 1) and all players would be strictly better o� if the expected policy∑
i pix

Ci were agreed immediately and never amended. This is in accord with our �ndings

for the distributive setting.

These remarks suggest that our results may be applicable to committees like the

Supreme Court, whose policy space is (arguably) more naturally thought of as spatial

than as divisions of a pie. The literature on precedent in constitutional law has considered

how stare decisis a�ects the trade-o� between predictability of the law and the risk of

error:26 stare decisis forces predictability; and the literature supposes that a divided Court

would otherwise regularly overturn precedent.27 We have argued above that a Court which

26Relevant papers include Schauer (1987), Stone (1988), Waldron (2012) and Kozel (forthcoming).
27The literature has typically treated the Court as a unitary body. However, Barrett (2013) considers how
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operates according to strict stare decisis is equivalent to a Baron-Ferejohn ad hoc commit-

tee, whereas our model represents a Court which does not recognize precedent; and have

suggested that the justices are typically patient. Our results then provide two contribu-

tions to the literature. First, our construction of no-delay SMPEs when players are patient

suggests that the law may well be stable, even if precedent is not recognized.28 Second,

our comparison of Baron-Ferejohn with our model suggests that stare decisis may prevent

the Court from reaching (statically) ine�cient decisions.

Having discussed how simple solutions may exist with di�erent policy spaces, we should

also note that simple solutions need not exist (and indeed cannot exist in unanimity-rule

committees). Pie-splitting problems possess a main simple solution; but this is only known

to exist for strong simple symmetric games in characteristic function form with transferable

utility, and remains an open question for more general simple games.29 Indeed, no simple

solution can exist when X is a compact interval on the real line, as the median voter cannot

be excluded from any winning coalition. If players are patient enough then both ad hoc

and standing committees reach policies close to the median voter's ideal policy in no-delay

equilibria (cf. Baron (1996) and Banks and Duggan (2006)).

We now turn to unanimity games. We showed in Section 5 that, in distributive set-

tings, the same equilibrium payo�s can be obtained in our model as in models of standing

committees with an exogenous default. The proof of this result (i.e. Theorem 4(ii)) pro-

ceeds in two steps: the �rst step shows that any SMPE payo� of the endogenous-default

model is a stationary SPE payo� of the �xed-default model; the second uses the unique-

ness result of Observation 2 to show that these payo�s must coincide. Inspection of the

�rst step reveals that it does not rely on the restriction to pie-division problems. Hence,

when q = n, the equilibrium payo�s of the extended standing committee game are also

stationary SPE payo�s of the related ad hoc committee game. However, we do not know

whether the two sets of payo�s coincide. In particular, Observation 2 relies on pie division

and can therefore not be directly applied to spatial settings.

stare decisis a�ects play by individual justices with di�erent constitutional viewpoints (or, equivalently,

preferences). She focuses on bargaining once a precedent has been set; whereas we consider how stare

decisis determines which precedent would be set.
28This prediction is surely plausible: the Court rarely overturns precedent in areas (like constitutional

law) where stare decisis has less force. See Gerhardt (2008) Ch. 1 for a discussion of the evidence.
29We refer the reader to Ordeshook (1986, Chapter 9) for an in-depth discussion.
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Appendix: Proofs of the Main Results

Lemma 1. Suppose that ui (xi) = xi for all i ∈ N . In any Pareto e�cient policy

sequence, the following is true for any i, j ∈ N such that δj < δi: If player i's expected

share of the pie in some period t is positive then player j's expected shares in all periods

τ > t are zero.

Proof: Take any Pareto e�cient policy sequence and let ut
l denote player l's expected

period-t utility in this sequence.

Take any two players i, j ∈ N with δj < δi. Suppose that, contrary to the statement

of the lemma, ut
i > 0 and that uτ

j > 0 for some τ > t. This implies that there is a feasible

marginal utility transfer dut
j > 0 from player i to player j in period t, and a feasible

marginal utility transfer duτ
j > 0 from player j to player i in period τ . In particular,

consider transfers that would leave player j indi�erent; that is: dut
j − δτ−t

j duτ
j = 0. The

resulting change in player i's payo� would therefore be equal to

−dut
j + δτ−t

i duτ
j = −δτ−t

j duτ
j + δτ−t

i duτ
j =

(
δτ−t
i − δτ−t

j

)
duτ

j > 0

(where the inequality follows from δi > δj and duτ
j > 0). Thus, our initial supposition

that ut
i > 0 and that uτ

j > 0 for some j < i and some τ > t implies that the vector

of payo�s generated by the policy sequence is Pareto dominated (one can make player i

strictly better-o� without making the other players worse o�). This is impossible since the

policy sequence is by supposition Pareto e�cient.

�

Theorem 1. Suppose that q < n, and let S be a simple solution. There exists δ̄ ∈ (0, 1)

such that the following is true whenever mini∈N δi ≥ δ̄: There exists a pure-strategy no-

delay SMPE whose set of absorbing points is S.

Proof: Let {C1, . . . , Cn} ⊆ W and (x1, . . . , xn) , (y1, . . . , yn) ∈ [0, 1]n satisfy the condi-

tions in De�nition 1, and let S ≡
{
xCi
}
be the simple solution induced by

(
{Ci}i∈N , x, y

)
.

To establish Theorem 1, we proceed in three steps: �rst, we de�ne threshold δ̄ ∈ (0, 1);

second, we construct a stationary Markov pure-strategy pro�le σ; and third, we prove that

σ is a no-delay, stage-undominated SPE such that A(σ) = S. In this last step, Claims

1 and 2 determine the continuation-value functions induced by σ (the V σ
i 's), and show
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that σ is a no-delay strategy pro�le with absorbing set S. Using the continuation-value

functions, Claim 3 shows that, in every voting stage, no player uses a weakly dominated

strategy. Finally, Claim 4 proves that there is no pro�table one-shot deviation from σ in

the proposal stage of any period. By the one-shot deviation principle, Claims 3 and 4

establish that σ is a stage-undominated SPE, thus completing the proof of the theorem.

Step 1: De�nition of δ̄. Let pmin be the minimal probability of recognition among the

members of the committee: pmin ≡ mini∈N pi. For each player i ∈ N , de�ne the threshold

δ̄i as

δ̄i ≡ max

{
ui(1)− ui (xi)

ui(1)− pminui (yi)− (1− pmin)ui (xi)
,

ui (yi)− ui(0)

pminui (xi) + (1− pmin)ui (yi)− ui(0)

}
∈ (0, 1) .

The threshold δ̄ is de�ned as δ̄ ≡ maxi∈N δ̄i.

We henceforth assume that mini∈N δi ≥ δ̄.

Step 2: Construction of stationary Markov strategy pro�le σ = (σ1, . . . , σn). For

each i ∈ N , de�ne the function ϕi : X → S as follows: (1) if w ∈ S then ϕi(w) = w; (2) if

w /∈ S then ϕi(w) ≡
(
ϕi
1(w), . . . , ϕ

i
n(w)

)
where ϕi

j(w) = xCi
j for all j ∈ N .

Equipped with functions
(
ϕi
)
i∈N , we are now in a position to de�ne σ. For each i ∈ N ,

σi prescribes the following behavior to player i:

(a) In the proposal stage of any period t with ongoing default w, i's proposal (condi-

tional on i being selected to make a proposal) is ϕi(w);30

(b) In the voting stage of any period t with ongoing default w, player i accepts proposal

z ∈ X \ {w} if and only if: either (a) w ∈ S and wi = yi; or (b) w /∈ S and

(1− δi)ui (zi) + δi
∑
j∈N

pjui

(
ϕj
i (z)

)
≥ (1− δi)ui (wi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
.

Observe that σ is a pure strategy stationary Markov strategy pro�le.

Step 3: Proof that σ is a no-delay, stage-undominated SPE such that A(σ) = S.

We proceed in a number of steps:

Claim 1: The collection of functions
(
ϕi
)
i∈N satis�es the following inequality for all

i ∈ N and w /∈ S:

(1− δi)ui (wi) + δi
∑
j∈N

pjui

(
ϕj
i (w)

)
≤ ui (xi) .

30Recall that proposing the default w is interpreted as passing.
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Proof: Consider any player i ∈ N and any policy w /∈ S. By de�nition of the ϕj 's, we

have

(1− δi)ui (wi) + δi
∑
j∈N

pjui

(
ϕj
i (w)

)
= (1− δi)ui (wi) + δi

ui (xi) ∑
j:i∈Cj

pj + ui (yi)
∑

j:i/∈Cj

pj


≤ (1− δi)ui(1) + δi

[(
1− pmin

)
ui (xi) + pminui (yi)

]
≤ ui (xi)

where the last inequality follows from δi ≥ δ̄ ≥ δ̄i.

Claim 2: (a) According to σ, in every period that starts with default w /∈ S, each

proposer j (if selected to make a proposal) successfully o�ers ϕj(w) ∈ S, which is never

amended; σ is no-delay with A(σ) = S.

(b) For all w ∈ X and i ∈ N ,

V σ
i (w) = (1− δi)ui (wi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
. (3)

Proof: (a) Consider a period that starts with default w /∈ S. Each player j ∈ N is

selected to make a proposal with probability pj . From the de�nition of proposal strategies,

she proposes z = ϕj(w). As the range of ϕj is equal to S, this implies that z ∈ S. From

part (1) in the de�nition of ϕi, we thus have ϕi(z) = z for all i ∈ N : proposal strategies

prescribe all proposers to pass when the default is z. Hence, proposer j's o�er, z, would

be implemented in all future periods if it were voted up. Given that the default w does

not belong to S, proposal z is voted up if there is a winning coalition of players i for which

(1− δi)ui (zi) + δi
∑
j∈N

pjui

(
ϕj
i (z)

)
≥ (1− δi)ui (wi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
(see part (b) in the de�nition of voting strategies). To see that this is the case, consider the

winning coalition Cj : By de�nition of ϕj and xCj , we have ϕj
i (z) = zi = ϕj

i (w) = x
Cj

i = xi

for each i ∈ Cj (where the �rst equality follows from z ∈ S and the third from w /∈ S).

We therefore have ui (zi) = ui

(
ϕj
i (z)

)
= ui (xi); so that

(1− δi)ui (zi) + δi
∑
j∈N

pjui

(
ϕj
i (z)

)
= (1− δi)ui (xi) + δi

∑
j∈N

pjui (xi)

= ui (xi) ≥ (1− δi)ui (wi) + δi
∑
j∈N

pjui

(
ϕj
i (w)

)
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(where the inequality is obtained from Claim 1). Thus, each player i in Cj ∈ W votes to

accept z, which is then implemented (and never amended since z ∈ S).

This also shows that P σ(w,S) = 1 for all w /∈ S. As σ prescribes all proposers to pass

at a default w in S, we also have P σ(w, S) = 1 for all w ∈ S. This proves part (a) of the

claim.

(b) First suppose that w /∈ S is implemented in the current period. Every player

i ∈ N receives (1− δi)ui (wi) in the current period and, from the discussion above, her

continuation value from the next period on will be
∑

j∈N pjui

(
ϕj
i (w)

)
. This proves that

equality (3) holds when w /∈ S.

Now suppose that w ∈ S is implemented. From the de�nition of proposal strategies,

all proposers pass in future periods � i.e. wi = ϕj
i (w) for all i, j ∈ N � so that i's

continuation value is ui (wi). This implies that

V σ
i (w) = ui (wi) = (1− δi)ui (wi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
,

ful�lling (3).

Claim 3: Given default w and proposal z, each voter i ∈ N accepts only if V σ
i (z) ≥

V σ
i (w), and rejects only if V σ

i (w) ≥ V σ
i (z).

Proof: If w /∈ S then this claim is an immediate consequence of Claim 2 and the

de�nition of voting strategies (part (b)).

Suppose that w ∈ S � so V σ
i (w) = ui (wi). We must prove that part (a) in the

de�nition of voting strategies prescribes i to accept only if V σ
i (z) ≥ V σ

i (w), and to reject

only if V σ
i (w) ≥ V σ

i (z). To do so, we distinguish between two di�erent cases:

• Case 1: z ∈ S. In this case, V σ
i (z) = ui (zi) ∈ {ui (xi) , ui (yi)}. According to σ, if i

accepts then wi = yi. Hence, V
σ
i (w) = ui (yi) = min {ui (xi) , ui (yi)} ≤ V σ

i (z). If i rejects

then wi = xi and V σ
i (w) = ui (xi) = max {ui (xi) , ui (yi)} ≥ V σ

i (z).

• Case 2: z /∈ S. According to σ, if i accepts then wi = yi. As δi ≥ δ̄ ≥ δ̄i,

V σ
i (w) = ui (yi) ≤ (1− δi)ui(0) + δi

[
pminui (xi) +

(
1− pmin

)
ui (yi)

]
≤ (1− δi)ui (zi) + δi

∑
j∈N

pjui

(
ϕj
i (w)

)
= V σ

i (z) .

If i rejects then wi = xi (see part (a) in the de�nition of voting strategies); so that

V σ
i (w) = ui (wi) = ui (xi). Moreover, Claim 2 implies that

V σ
i (z) = (1− δi)ui (zi) + δi

∑
j∈N

pjui

(
ϕj
i (z)

)
.
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As z /∈ S, Claim 1 then implies that

V σ
i (w) = ui (xi) ≥ (1− δi)ui (zi) + δi

∑
j∈N

pjui

(
ϕj
i (z)

)
= V σ

i (z) ,

thus completing the proof of Claim 3.

Claim 4: There is no pro�table one-shot deviation from σ in the proposal stage of any

period.

Proof: Suppose, �rst, that the current default w is an element of S. Passing is evidently

an optimal action for the selected proposer, for part (a) in the de�nition of voting strategies

implies that members of some winning coalition � i.e. those voters j who receive wj = xj

� would reject any proposal in X.

Now suppose that w /∈ S. If proposer i followed the prescription of σi then her proposal

ϕi(w) would be accepted (Claim 2) and her payo� would be ui (xi) (which is the highest

payo� she can obtain by making a successful proposal in S). Therefore, if she is to pro�tably

deviate, then she must either make an unsuccessful proposal � thus obtaining payo� V σ
i (w)

� or successfully propose some z /∈ S � thus obtaining V σ
i (z). As w and z do not belong to

S, Claims 1 and 2 imply that max {V σ
i (w), V σ

i (z)} ≤ ui(x). This proves that no proposer

has a pro�table one-shot deviation from σ.

Combining Claims 1-4, we obtain Theorem 1.

�

Theorem 2. Let q < n.

(i) If ui (xi) = xi for all i ∈ N and δi ̸= δj for all i, j ∈ N then all DEs are Pareto

ine�cient.

(ii) There exists δ̃ ∈ (0, 1) such that the following is true whenever mini∈N δi > δ̃: Any

(Pareto e�cient) policy sequence that allocates the entire pie to the same player in every

period can be supported by an SPE.

Proof:

(i) Pareto ine�ciency of DEs in the linear-utility case

We assume without loss of generality that δi < δi+1 for each i = 1, . . . , n − 1. Now

suppose, contrary to the statement of Theorem 2(i), that a Pareto e�cient DE σ exists.
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Let ut
i denote player i's expected period-t payo� in this equilibrium. To obtain the desired

contradiction, we �rst need to establish the following result:

Claim : For every i ∈ N and every t ∈ N, there exists τ > t such that uτ
i < 1.

Proof. Suppose that, contrary to the claim, there exist i ∈ N and t ∈ N such that uτ
i = 1 for

all τ > t � so that uτ
l = 0 for all l ̸= i and all τ > t. Now consider a potential deviation by

player j ̸= i in some period τ following some �policy history�
(
x1, . . . , xτ−1

)
: She proposes

(1/n, . . . , 1/n) whenever selected as proposer. This proposal must be rejected by at least

one member of N \{i} � say k � and, following the new policy history
(
x1, . . . , xτ−1, xτ

)
=(

x1, . . . , xτ−1, xτ−1
)
, player j must receive 0 in all future periods; otherwise the deviation

would be pro�table and, consequently, σ would not be an SPE. As player k never uses

a weakly dominated strategy (recall from Section 3.2 that equilibria are required to be

stage-undominated), she behaves as if pivotal in voting stages. Hence, her payo� from

rejecting j's proposal (and inducing policy history
(
x1, . . . , xτ−1, xτ−1

)
) must be at least

as great as her payo� from accepting it. As the latter payo� is greater than or equal to

(1− δk) /n > 0, player k's expected payo� following policy history
(
x1, . . . , xτ−1, xτ−1

)
must be strictly positive. But this in turn implies that if k is recognized to make a

proposal at policy history
(
x1, . . . , xτ−1

)
(which occurs with probability pk > 0), then she

can pro�tably deviate from σ by passing (or, equivalently, proposing the current default

xτ−1). This would indeed yield policy history
(
x1, . . . , xτ−1, xτ−1

)
and, from the previous

discussion, yield her a positive payo� (recall that k ̸= i). This contradicts σ being a

DE.

By supposition, σ generates a Pareto e�cient policy sequence. From Lemma 1, this

implies that if ut
n > 0 in some period t then uτ

j = 0 for all j ̸= n and all τ > t. As

ui (xi) = xi for each i ∈ N by assumption, this in turn implies that uτ
n = 1 for all τ > t

which, from the claim above, is impossible. Consequently, ut
n = 0 for every period t. We

can now proceed inductively by applying the same argument to each player i < n until we

reach the conclusion that ut
i = 0 for all i and all t � which is evidently impossible in a

DE.
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(ii) Construction of a Pareto e�cient DE

Let x∗ ≡ (1, 0, . . . , 0) and, for each i ∈ N , let x−i ∈ X be the policy de�ned as

x−i
j ≡

{
0 if j = i ,

1/(n− 1) if j ̸= i .

To prove the result we construct a strategy pro�le σ that prescribes proposers to success-

fully o�er policies in {x∗}∪
{
x−i : i ∈ N

}
, which are then never amended. On the path, σ

induces the constant policy sequence {x∗} which is Pareto e�cient, irrespective of players'

payo� functions and discount factors. (An analogous construction can be used to support

any policy sequence in which the same player receives the entire pie each period.)

Before proceeding, we begin with an informal description of the construction. On the

path, σ prescribes all proposers to successfully o�er x∗ in the �rst period, and then to pass

in all future periods. Any proposal to deviate from this path would be unsuccessful and

the proposer � say i � would be �punished� with the perpetual implementation of x−i. If

a winning coalition C accepted such a proposal, then one of its members � say j � would

be �punished� with the perpetual implementation of x−j . Coalitions that fail to implement

the prescribed punishments face similar punishments. For instance, farsighted player 2

does not o�er players l > 1 to deviate from policy sequence {x∗}, because she anticipates
that those players would coalesce with 1 to implement policy x−2 inde�nitely. By the same

logic, farsighted players l > 1 �nd it optimal to coalesce with player 1, because if they do

not then they will face themselves similar punishments with positive probability.

The formal construction below proceeds in four steps. In Step (a), we de�ne threshold δ̃.

Step (b) partitions the set of histories of the game into subsets H̃(C), where �h̃ ∈ H̃(C)� is

interpreted as �some member j of coalition C must be `punished' (with the implementation

of x−j) at history h̃.� Step (c) provides a formal de�nition of σ. In step (d), we check

that, when mini∈N δi > δ̃, there is no history at which a player has a pro�table one-shot

deviation and no player uses weakly dominated voting strategies. By the one-shot deviation

principle, this proves that σ is an undominated SPE.

(a) De�nition of δ̃. Let pmin ≡ mini∈N pi. For each j ∈ N , de�ne

W 1
j (δj) ≡ max

{(
1− pmin

)
uj

(
1

1− n

)
,
pj (1− δj)uj(1)

1− pjδj

}

W 2
j (δj) ≡ min

i∈N

(1− pi)uj

(
1

n−1

)
1− piδj

.
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Observe that W 1
j (δj) →

(
1− pmin

)
uj

(
1

1−n

)
as δj → 1, and that W 2

j (δj) → uj

(
1

1−n

)
as

δj → 1. As 1− pmin < 1, there exists δ̃j ∈ (0, 1) such that

(1− δj)uj(1) + δjW
1
j (δj) < δjW

2
j (δj) (4)

whenever δj > δ̃j .

De�ne δ̃ ≡ maxj∈N δ̃j , and assume henceforth that minj∈N δj > δ̃; so that inequality

(4) holds for all j ∈ N .

(b) Histories. In our construction, we only need to refer to histories at which a proposer

is about to be selected. Accordingly, we will abuse terminology by referring to such paths

as �histories.� A typical period-t history is denoted by h̃t,31 and we use h̃t =
(
h̃t−1, h̃1

)
to

denote the concatenation of a period-(t− 1) history with a one-period history h̃1 � more

precisely, h̃1 describes everything that happened in period t (proposer selection, proposal,

pattern of votes, and implementation of a policy).

As explained above, we want to identify every history with the coalition of players

to punish � or, equivalently, with the policies in
{
x−i : i ∈ N

}
to implement inde�nitely

� at that history. To this end, we will partition the set of histories into a collection{
H̃(C) : C ⊆ N

}
where, for each C ⊆ N , H̃(C) can be thought of as the set of histories

at which a member of C should be �punished� � in the sense that a policy in X(C) ≡{
x−i : i ∈ C

}
should be inde�nitely implemented. We de�ne the elements of the partition

as follows. Let X(∅) ≡ {x∗}.

(i) H̃ (∅) contains the null history, and all histories at which x∗ has been proposed and (if

there was a vote) unanimously accepted in all previous periods;

(ii) And for any other history h̃t =
(
h̃t−1, h̃1

)
with h̃t−1 ∈ H̃(C) for some C ⊆ N :

(iia) If some y = x−i ∈ X(C), with C ̸= ∅, is proposed and (if there is a vote)

unanimously accepted in h̃1 then h̃t ∈ H̃ ({i});

(iib) If some y ∈ X(C) is proposed and rejected by the members of some (nonempty)

C ′ ⊆ N in h̃1 then h̃t ∈ H̃ (C ′);

(iic) If player k proposes some y /∈ X(C) which (if a vote takes place) is unanimously

rejected in h̃1 then h̃t ∈ H̃ ({k});
31We use a tilde to distinguish these histories from the implementation histories used in the rest of the

paper.
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(iid) If player k proposes some y /∈ X(C) which is accepted by the members of some

(nonempty) C ′ ⊆ N in h̃1 then h̃t ∈ H̃ (C ′).

These conditions can be informally interpreted as follows: (i) At the start of the game

and until policy x∗ is amended, nobody should be punished; (iia) If, in the previous period,

a member of C was supposed to be punished, the proposer o�ered to punish some i ∈ C

and the o�er was unanimously accepted, then player i should be punished at the new

history; (iib) If, in the previous period, a member of C was supposed to be punished, the

proposer o�ered to punish some i ∈ C and the o�er was rejected by the members of some

coalition C ′, then some member of C ′ should be punished at the new history; (iic) If, in the

previous period, a member of C was supposed to be punished, proposer k did not o�er to

punish any i ∈ C and her o�er was unanimously rejected, then player k should be punished

at the new history; and (iid) If, in the previous period, a member of C was supposed to

be punished, the proposer did not o�er to punish any i ∈ C and the o�er was accepted

by the members of some coalition C ′, then some member of C ′ should be punished at the

new history. Thus, any possible history belongs to an element of
{
H̃(C) : C ⊆ N

}
.

(c) De�nition of σ. For each i ∈ N , we de�ne the linear orders ◃1, . . . ,◃n on {x∗} ∪
X(N) as:

• x∗ ◃1 x
−n ◃1 x

−(n−1) ◃1 . . .◃1 x
−1;

• x∗ ◃i x
−(i−1) ◃i . . .◃i x

−1 ◃i x
−n ◃i . . .◃i x

−i for all 1 < i < n; and

• x∗ ◃n x−(n−1) ◃n . . .◃n x1 ◃n x−n.

Suppose that a history in H̃(C) � where C ⊆ N may be empty � has occurred, and

let d ∈ X be the current default. σ prescribes the following behavior to each player j ∈ N

after such a history:

In proposal stages: If C ̸= {j} or dj = 0 then player j proposes the ◃j-maximum in

X(C); otherwise, she passes.

In a voting stage with proposal y (irrespective of the proposer): If y ∈ X(C) then player

j accepts y; if y /∈ X(C) then player j rejects y.

According to σ, the following happens on the path. The null history belongs to H̃ (∅)
and X(∅) = {x∗}. As the default is d = (0, . . . , 0), σ prescribes all proposers to o�er x∗

which is unanimously accepted. From (i) in the de�nition of proposer histories, therefore,

the following happens in every period t > 1: the ongoing default is x∗ and X(C) = {x∗},
so that σ prescribes all proposers to o�er x∗ (i.e. pass). Hence, σ sustains the Pareto
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e�cient policy sequence in which x∗ is implemented in every period.

Before we proceed to show that σ is an SPE in which no player uses weakly dominated

strategies in voting stages, we establish two useful claims.

Claim 1: Let C ⊆ N . At any history h̃ ∈ H̃(C) ending with default d ∈ X, player j's

continuation value Ṽ C
j (d) (engendered by σ) is as follows:

(i) If C = ∅ then: Ṽ C
j (d) = uj(1) for j = 1, and Ṽ C

j (d) = 0 for j ̸= 1;

(ii) If C = {i} and di = 0 for some i ∈ N then: Ṽ C
j (d) = 0 for j = i, and Ṽ C

j (d) =

uj (1/(n− 1)) for j ̸= i;

(iii) If C = {i} and di > 0 for some i ∈ N then:

Ṽ C
j (d) =


pi(1−δi)ui(di)

1−piδi
if j = i ,

pi(1−δj)uj(dj)+(1−pi)uj( 1
n−1)

1−piδj
otherwise;

(iv) If ∅ ̸= C ̸= {i} for all i ∈ N then:

Ṽ C
j (d) =

(
1− p−j

)
uj

(
1

n− 1

)
,

where p−j ≡
∑

l∈Nj pl and N j ≡
{
l ∈ N : x−j ◃l x

−i for all i ∈ C
}
.

Proof: (i) At the null history (which belongs to H̃(∅)), σ prescribes all proposers

to successfully o�er x∗. In addition, if x∗ was implemented in the �rst period and all

selected proposers passed in subsequent periods then, from the de�nition of σ and (i)

in the de�nition of histories, all future proposers will also pass. Thus, from any history

in H̃(∅), policy x∗ is inde�nitely implemented; so that continuation values are given by

Ṽ ∅
j (d) = uj(1) if j = 1, and Ṽ ∅

j (d) = uj(0) = 0 for j ̸= 1.

(ii) Suppose that C = {i} and di = 0 for some i ∈ N . In this case, σ prescribes all

proposers (including player i) to o�er x−i, which is unanimously accepted. From (iia) in

the de�nition of histories, the next period's history will also belong to H̃({i}), ending with
default x−i. As x−i

i = 0, σ prescribes all proposers to o�er x−i (i.e. to pass) at that history.

Applying the same argument to all future period, we obtain that policy x−i is inde�nitely

implemented; so that continuation values are given by Ṽ C
j (d) = uj

(
x−i
i

)
= uj(0) = 0 if

j = i, and Ṽ C
j (d) = uj

(
x−i
j

)
= uj (1/(n− 1)) if j ̸= i.

(iii) Suppose that C = {i} and di > 0 for some i ∈ N . If any player l ̸= i is selected to

propose at h̃ (which happens with probability (1− pi)) then she proposes x−i, which (from
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σ and (iia) in the de�nition of histories) is unanimously accepted and never amended. If

player i is selected to propose at h̃ (which happens with probability pi) then she passes.

From σ and (iic) in the de�nition of histories, the next period's history h̃′ is still in H̃({i})
and the default remains d (with di > 0). Hence, σ prescribes the same behavior at h̃ and

h̃′. This implies that players' continuation values from inducing histories h̃ and h̃′ are the

same. Therefore, player i's continuation value Ṽ
{i}
i (d) satis�es

Ṽ
{i}
i (d) = (1− pi)ui

(
x−i
i

)
+ pi

[
(1− δi)ui (di) + δiṼ

{i}
i (d)

]
or, equivalently,

Ṽ
{i}
i (d) =

pi (1− δi)ui (di)

1− piδi

(recall that ui
(
x−i
i

)
= ui(0) = 0). Similarly, if j ̸= i then player j's continuation value

Ṽ
{i}
j (d) satis�es

Ṽ
{i}
j (d) = (1− pi)ui

(
x−i
j

)
+ pi

[
(1− δj)uj (dj) + δj Ṽ

{i}
j (d)

]
or, equivalently,

Ṽ
{i}
j (d) =

pi (1− δj)uj (dj) + (1− pi)uj

(
1

n−1

)
1− piδj

(recall that uj

(
x−i
j

)
= uj (1/(n− 1))).

(iv) If C includes more than one player then σ prescribes each proposer l ∈ N to o�er

the ◃l-maximum in X(C). Thus, all proposers in N j ≡
{
l ∈ N : x−j ◃l x

−i for all i ∈ C
}

o�er x−j , which (from σ and (iia) in the de�nition of histories) is unanimously accepted

and never amended. Player j's payo� is then uj

(
x−j
j

)
= uj(0) = 0 with probability

p−j . With probability
(
1− p−j

)
, the selected proposer successfully o�ers a policy x−i

with i ̸= j (which by the same logic as above is never amended). Player j then receives

uj

(
x−i
j

)
= uj (1/(n− 1)); and her continuation value at history h̃ is

Ṽ C
j (d) =

(
1− p−j

)
uj

(
1

n− 1

)
.

♢

Claim 2: For every player j ∈ N and every coalition C ∋ j, we have

(1− δj)uj(1) + δj max
d∈X

Ṽ C
j (d) < δj min

d∈X
Ṽ

{i}
j (d) ≤ uj

(
1

n− 1

)
, for all i ̸= j .
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Proof: Fix j ∈ N and C ∋ j, and take an arbitrary player i ̸= j. From Claim 1(ii)-(iv),

max
d∈X

Ṽ C
j (d) =


0 if C = {j} & dj = 0 ,
pj(1−δj)uj(1)

1−pjδj
if C = {j} & dj > 0 ,(

1− p−j

)
uj

(
1

n−1

)
if C ̸= {j} ,

and

min
d∈X

Ṽ
{i}
j (d) =

 uj

(
1

n−1

)
if di = 0 ,

pi(1−δj)uj(0)+(1−pi)uj( 1
n−1)

1−piδj
=

(1−pi)uj( 1
n−1)

1−piδj
if di > 0 .

By construction, there is at least one proposer k ∈ N such that x−j is the ◃k-maximum

in X(C). Hence, p−j ≥ pk ≥ pmin or, equivalently, 1− p−j ≤ 1− pmin. This implies that

(1− δj)uj(1) + δj max
d∈X

Ṽ C
j (d) ≤ (1− δj)uj(1) + δjW

1
j (δj)

< δjW
2
j (δj) ≤ δj

(1− pi)uj

(
1

n−1

)
1− piδj

≤ δj min
d∈X

Ṽ
{i}
j (d) ≤ uj

(
1

n− 1

)
,

where the second inequality follows from δj ≥ mini∈N δi > δ̃ (recall inequality (4)), and

the last two inequalities from 1− pi < 1− piδj .

♢

(d) σ is an SPE:

(i) Voting strategies. Suppose that a history in H̃(C), C ⊆ N , with current default d

has occurred and that the selected proposer � say k � has o�ered y ̸= d. Consider player

j's voting behavior in such a situation.

• Case 1: C is empty and y = x∗. Observe �rst that, by construction, the default is

d = (0, . . . , 0) � if C = ∅ and d = x∗ then y = x∗ implies that the proposer passes: there is

no vote. From Claim 1(i), player j's payo� if she does not deviate from σ is Ṽ ∅
j (d) = uj(1)

if j = 1, and Ṽ ∅
j (d) = 0 if j ̸= 1. Now consider a deviation by player 1. If she rejects

x∗ then the next period's history will be in H̃ ({1}) (see case (iib) in the de�nition of

histories). As all the other players vote to accept x∗ and q < n, her payo� from deviating

is therefore

(1− δ1)u1(1) + δ1Ṽ
{1}
1 (x∗) = (1− δ1)u1(1) < u1(1) ,
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where the equality follows from Claim 1(ii) (and d1 = 0). This proves that the deviation

is not pro�table for player 1. In addition, as the inequality above is strict, she is strictly

better o� accepting x∗ when all the other players also accept it. This proves that accepting

x∗ is not weakly dominated in this voting stage.

Now consider a deviation by player j ̸= 1. By rejecting x∗ (while all the other players

accept it), she induces a history in H̃ ({j}) (see (iib) in the de�nition of histories). As

dj = 0, her payo� from deviation is therefore uj(0) (Claim 1(ii)). This proves that the

deviation is not pro�table. To see that accepting x∗ is not a weakly dominated strategy

in this voting game, consider an action pro�le (in this stage) in which player 1 [resp. each

player i /∈ {1, j}] rejects [resp. accepts] x∗. If j votes to accept x∗ then the next history

will be in H̃ ({1}) (see (iib) in the de�nition of histories); if she votes to reject x∗ then

the next history will be in H̃ ({1, j}). In the former case, whether she is pivotal or not,

her payo� is

(1− δj)uj(0) + δj Ṽ
{1}
j (x∗) = δj min

d′∈X
Ṽ

{1}
j

(
d′
)

(Claim 1(iii)); in the latter case, whether she is pivotal or not, her payo� is lower than

(1− δj)uj(1) + δj maxd′∈X Ṽ
{1,j}
j (d′) (Claim 1(iv)). It follows from Claim 2 that she is

strictly better o� accepting x∗. This proves that accepting x∗ is not weakly dominated in

this voting stage.

• Case 2: C is nonempty and y ∈ X(C). Let i be the player in C such that y = x−i.

In this case, σ prescribes all players to accept proposal x−i. Therefore, the next period's

history will be in H̃ ({i}) (see case (iia)) in the de�nition of histories). From Claim 1(ii),

player j′s payo� is then

(1− δj)uj

(
x−i
j

)
+ δj Ṽ

{i}
j

(
x−i
)
= uj

(
1

n− 1

)
if j ̸= i and

(1− δi)ui
(
x−i
i

)
+ δiṼ

{i}
i

(
x−i
)
= ui(0)

if j = i. Now suppose that player j ̸= i deviates by rejecting proposal x−i. As q < n,

policy x−i is still implemented in the current period. Moreover, the next period's history

will be in H̃ ({j}) (see case (iib) in the de�nition of histories). From Claim 1(iii), her

payo� from deviating is

(1− δj)uj

(
x−i
j

)
+ δj Ṽ

{j}
j

(
x−i
)
< (1− δj)uj(1) + δj max

d′∈X
Ṽ

{j}
j

(
d′
)
< uj

(
1

n− 1

)
,
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where the second inequality follows from Claim 2. Hence, she is strict better o� accepting

x−i when all the other players also accept it. This proves that i cannot pro�tably deviate

from accepting x−i, which is not a weakly dominated strategy in this voting stage.

Now consider a deviation by player i: If she rejects x−i, then x−i is still implemented in

the current period (she is not pivotal) and the next period's history will still be in H̃ ({i})
(see case (iib) in the de�nition of histories). Therefore, her payo� remains the same and the

deviation is not pro�table. To see that accepting x−i is not a weakly dominated strategy

in the stage game, consider an action pro�le (in the voting stage) in which all the other

players but one � say l ̸= i � vote to accept x−i. If player i votes to accept x−i then it

is implemented (q < n) and the next period's history will be in H̃ ({l}) (see case (iib)).

From Claim 1(iii), her payo� is then

(1− δi)ui
(
x−i
i

)
+ δiṼ

{l}
i

(
x−i
)
= δiṼ

{l}
i

(
x−i
)
= δi min

d′∈X
Ṽ

{l}
i

(
d′
)
.

If she votes to reject x−i then, from case (iib) in the de�nition of histories, the next

period's history will be in H̃ ({i, l}). As max {ui(0), ui (di)} ≤ ui(1), it follows from Claim

1(iv) that (whether she is pivotal or not) her payo� must be lower than

(1− δi)ui(1) + δimax
d′∈X

Ṽ
{i,l}
i

(
d′
)
< δi min

d′∈X
Ṽ

{l}
i

(
d′
)
,

where the inequality follows from Claim 2. This proves that she is strictly better o�

accepting x−i which, therefore, is not weakly dominated in this voting stage.

• Case 3: y is not in X(C). Recall that the proposer is player k. In this case, σ

prescribes all players to reject y. From case (iic) in the de�nition of histories, the next

period's history will be in H̃ ({k}). Hence, player j's payo� is given by

(1− δj)uj (dj) + δj Ṽ
{k}
j (d)

(Claim 1(ii)-(iii)). If player j ̸= k deviates by accepting y, then default d is still imple-

mented in the current period and the next period's history will be in H̃ ({j}) (see (iid) in
the de�nition of histories). Her payo� is then equal to

(1− δj)uj (dj) + δj Ṽ
{j}
j (d) ≤ (1− δj)uj(1) + δj max

d′∈X
Ṽ

{j}
j

(
d′
)

< δj min
d′∈X

Ṽ
{k}
j

(
d′
)

≤ (1− δj)uj (dj) + δj Ṽ
{k}
j (d) ,

45



where the second inequality follows from Claim 2 (recall that uj(0) = 0 ≤ uj (dj) for all

d ∈ X). Player j is thus strictly better o� rejecting y which, consequently, is not a weakly

dominated action in this voting stage.

Now consider a deviation by player k. She earns the same payo� after either accepting

or rejecting her own proposal y because she is not pivotal in the current period, and the

next period's history is still in H̃ ({k}) (see (iid) in the de�nition of histories). This proves

that she cannot pro�tably deviate from rejecting y. To see that rejecting y is not weakly

dominated in the stage game, consider an extra-equilibrium action pro�le in which all the

other players but one � say l ̸= k � reject y. If player k rejects y then default d is

implemented (as q < n) and the next period's history will be in H̃ ({l}) (see (iid) in the

de�nition of histories). Her payo� is therefore equal to

(1− δk)uk (dk) + δkṼ
{l}
k (d) ≥ δk min

d′∈X
Ṽ

{l}
k

(
d′
)
.

If she accepts y then the next period's history will be in H̃ ({k, l}) (see case (iid)). As

max {uk (yk) , uk (dk)} ≤ uk(1), it follows from Claim 1(iv) that (whether she is pivotal or

not) her payo� cannot exceed

(1− δk)uk(1) + δk max
d′∈X

Ṽ
{k,l}
k

(
d′
)
< δk min

d′∈X
Ṽ

{l}
k

(
d′
)

(where the inequality follows from Claim 2). This implies that player k is strictly better

o� rejecting y, which is therefore not weakly dominated.

(ii) Proposal strategies. Take an arbitrary history in H̃(C), C ⊆ N , and let d ∈ X

be the current default. Let the selected proposer be player k ∈ N . If she proposes some

policy y ∈ X(C) then, from the de�nition of σ, y is unanimously accepted and never

amended. Her payo� is therefore uk (yk). If she proposes a policy outside X(C) then,

by de�nition of σ, her proposal is unanimously rejected. Default d is implemented in the

current period and, from (iic) in the de�nition of histories, the next period's history will

belong to H̃({k}). (The same applies if she passes when default d is not in X(C).) Her

payo� is therefore

ṽk(d) ≡ (1− δk)uk (dk) + δkṼ
{k}
k (d) .

We now prove that σ prescribes optimal behavior at any such history. To this end,

suppose �rst that C = ∅; so that the default d is either (0, . . . , 0) (at the null history)

or x∗. According to σ, proposer k should o�er the only element in X(C), x∗, which by
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de�nition of σ would then be accepted and never amended.32 If k = 1 then there is

evidently no pro�table deviation from σk at this history: she obtains her maximal payo�

of u1(1). If k ̸= 1 then a pro�table deviation must yield a payo� that strictly exceeds

uk (x
∗
k) = uk(0) = 0. As explained above, any proposal that di�ers from x∗ would be

unanimously rejected, and player k's payo� would be

ṽk(d) = (1− δk)uk(0) + δkṼ
{k}
k (d) = 0

(since dk = 0), making the deviation unpro�table.

Now suppose that C is nonempty and that C ̸= {k}. According to σ, proposer k

should o�er the ◃k-maximum element y in X(C), which would then be accepted and

never amended. As C ̸= {k}, yk = 1/(n − 1) and she obtains a payo� of uk (1/(n− 1)).

By construction, she could not earn a larger payo� by proposing another policy in X(C)

(which would also be unanimously accepted). If she deviated by proposing a policy outside

X(C) then she would receive a payo� of

ṽk(d) ≤ (1− δk)uk(1) + δk max
d′∈X

Ṽ
{k}
k

(
d′
)
< uk

(
1

n− 1

)
(where the second inequality follows from Claim 2). Hence, the deviation would not be

pro�table.

Next, suppose that C = {k} and dk = 0. According to σ, proposer k should (success-

fully) o�er y = x−k � i.e. the ◃k-maximum in X(C) =
{
x−k

}
� thus obtaining a payo�

of uk (yk) = uk(0) = 0. If she deviates from σ by passing or (unsuccessfully) proposing

another policy then, from Claim 1(ii), her payo� will be

ṽk(d) = (1− δk)uk(0) + δkṼ
{k}
k (d) = 0 .

This proves that she cannot pro�tably deviate.

Finally, suppose that C = {k} and dk > 0 � so that d /∈ X(C). In this case, σ

prescribes proposer k to pass, thereby obtaining ṽk(d) > ui(0) = 0. From the discussion

above, proposing any other policy outside X(C) would yield the same payo� ṽk(d). If she

deviates by proposing policy x−k � i.e. the only policy in X(C) � then, by de�nition of

σ, her o�er will be accepted and never be amended. Hence, she gets ui

(
x−k
k

)
= uk(0) =

0 < ṽk(d). As a result, k does not have a pro�table deviation.

By the one-shot deviation principle, σ is an SPE.

�
32Observe that, when d = x∗, the proposer passes, precluding a vote.
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Theorem 3. If q = n then every DE σ is no-delay with A(σ) = ∆n−1.

Proof: We prove Theorem 3 in four steps. The �rst step provides three preliminary

lemmata: Lemmata 2 and 4 state useful results on continuation values and their relations

to instantaneous utilities, and Lemma 3 shows that the set of absorbing points of any DE

is nonempty and contained in the unit simplex. Using these results, Step 2 shows that, in

every DE, the committee implements a policy in the unit simplex in every period, and Step

3 that the set of absorbing points of any DE coincides with the simplex. Step 4 concludes:

the previous three steps jointly prove the theorem.

Step 1: Preliminary results. Recall that we use ht to denote a typical �implementation

history� � i.e. those just before the implementation of a new policy � and V σ
i

(
ht
)
to

denote player i's continuation value at this history. For each x ∈ X, let Hx be the set of

implementation histories just prior to the implementation of x. The proof of Theorem 3

hinges on the following lemmata. (Two of these lemmata not only apply to DEs, but to

SPEs more generally.)

Lemma 2. Suppose that q = n, and let σ be an SPE. For every i ∈ N and every history

ht ∈ Hx, we have

(i) V σ
i

(
ht+1

)
≥ ui (xi) for every equilibrium realization of ht+1 conditional on ht;

(ii) V σ
i

(
ht
)
≥ ui (xi); and

(iii) E
[
V σ
i

(
ht+1

)
|ht
]
≥ V σ

i

(
ht
)
.

Proof: (i) This is an immediate consequence of the unanimity rule. If V σ
i

(
ht+1

)
<

ui (xi) for some realization of ht+1, then player i could pro�tably deviate from σ by rejecting

(and therefore preventing) any amendment of x leading to ht+1.

(ii) Part (i) implies that V σ
i

(
ht+1

)
≥ ui (xi) for P σ

(
ht, ·

)
-almost all ht+1. Hence

V σ
i

(
ht
)
, which is a time average, must also exceed ui (xi): By monotonicity of integrals,

we have

V σ
i

(
ht
)
= (1− δi)ui (xi) + δi

∫
V σ
i

(
ht+1

)
P σ
(
ht, dht+1

)
≥ (1− δi)ui (xi) + δi

∫
ui (xi)P

σ
(
ht, dht+1

)
= ui (xi) .

(iii) Suppose that E
[
V σ
i

(
ht+1

)
|ht
]
< V σ

i

(
ht
)
. From part (ii), this implies that

V σ
i

(
ht
)
= (1− δi)ui (xi) + δiE

[
V σ
i

(
ht+1

)
|ht
]
< V σ

i

(
ht
)
,

which is obviously impossible.
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♢

Lemma 3. Suppose that q = n. If σ is a DE then ∅ ̸= A(σ) ⊆ ∆n−1.

Proof: It is easy to see that A(σ) ̸= ∅ (for instance, take policy (1, 0, . . . , 0) ∈ ∆n−1).

Let σ be a DE and suppose, contrary to the statement of the result, that there exists

x ∈ A(σ) \ ∆n−1. As x /∈ ∆n−1, there is y ∈ ∆n−1 such that ui (yi) > ui (xi) for each

i ∈ N . By de�nition of A(σ), there must be a sequence of (consecutive) implementation

histories {hm} such that, for all m, hm ∈ Hx and hm+1 is induced from hm by σ. (In

words, x is inde�nitely implemented from h1 on according to σ.) Thus, the following is

true for each i ∈ N and each hm:

V σ
i (hm) = ui (xi) < ui (yi) ≤ V σ

i

(
h′
)
, (5)

for any history h′ ∈ Hy � the second inequality follows from Lemma 2(ii).

Let the �rst element of {hm}, h1, be a period-(τ − 1) implementation history for

some τ ∈ N. Consider the period-τ proposal stage that follows history h1, and let the

sequence of policies implemented prior to this stage be denoted by
(
x1, x2, . . . , xτ−1

)
(so

that xτ−1 = x). Now x is absorbing at h1. Consequently, if proposal y ̸= x were made at

this stage of period τ , then it would be rejected by at least one player j � otherwise any

proposer i could pro�tably deviate from σ by inducing a history h′ ∈ Hy (inequality (5)

above). As player j never uses a weakly dominated strategy (recall from Section 3.2 that

equilibria are required to be stage-undominated), she behaves as if pivotal in voting stages.

Hence, her payo� from rejecting proposal y (and inducing policy history
(
x1, . . . , xτ−1, x

)
)

must be at least as great as her payo� from accepting it. As σ is a DE (so that behavior

only depends on policy histories rather than entire histories), her payo� from rejecting y is

equal to V σ
j

(
h2
)
; her payo� from accepting it is equal to V σ

i (h′) for some h′ ∈ Hy. Hence,

we have V σ
j

(
h2
)
≥ V σ

j (h′), which contradicts (5).

♢

At this point, we need some notation. Any strategy pro�le σ = (σi)i∈N induces a

stochastic process
{
x̃t
}
on the policy space, where the random variable x̃t stands for the

policy implemented in period t. For any period-t implementation history ht and anym ∈ N,
we can de�ne a random variable x̃m(ht), which describes the policy implemented in period

t + m conditional on ht. Thus, E
[
x̃mi (ht)

]
= E

[
x̃t+m
i |ht

]
, where E [·] is the expectation

operator with respect to the stochastic process engendered by σ.
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Lemma 4. If σ is an SPE then the following statements are true for all x ∈ X and all

ht ∈ Hx:

(i)
(
x̃m
(
ht
))

converges almost surely to a limit x̃
(
ht
)
;

(ii) For every i ∈ N , we have

ui (xi) ≤ E
[
V σ
i

(
ht+1

)
|ht
]
≤ E

[
ui
(
x̃i
(
ht
))]

. (6)

Proof: Take an arbitrary x ∈ X and an arbitrary ht ∈ Hx.

(i) By Proposition 1 in Hyndman and Ray (2007), the stochastic sequence
(
ui
(
x̃mi (ht)

))
i∈N

converges almost surely to a limit.33 As the ui's are strictly increasing functions, the

stochastic sequence of policies
(
x̃m(ht)

)
converges along any sample path for which

(
ui
(
x̃mi (ht)

))
i∈N

converges. Hence,
(
x̃m(ht)

)
converges almost surely to a limit x̃(ht).

(ii) The �rst inequality in (6) is an immediate implication of Lemma 2(ii)-(iii).

To complete the proof of the lemma, therefore, it remains to establish that

E
[
V σ
i

(
ht+1

)
|ht
]
≤ E

[
ui
(
x̃i
(
ht
))]

for all all i ∈ N . To do so, observe �rst that Lemma 2(iii) (applied recursively) im-

plies that E
[
V σ
i

(
ht+m

)
|ht
]
≤ E

[
V σ
i

(
ht+m+1

)
|ht
]
and, therefore, that E

[
V σ
i

(
ht+1

)
|ht
]
≤

E
[
V σ
i

(
ht+m

)
|ht
]
for allm ∈ N. Now suppose that, contrary to our assertion, E

[
V σ
i

(
ht+1

)
|ht
]
−

E
[
ui
(
x̃i
(
ht
))]

= ε > 0. By de�nition,

E
[
V σ
i

(
ht+m

)
|ht
]
= (1− δi)E

[ ∞∑
τ=0

δτi ui
(
x̃m+τ (ht)

)]
= (1− δi)

∞∑
τ=0

δτi E
[
ui
(
x̃m+τ (ht)

)]
.

As
(
x̃m
(
ht
))

converges almost surely to a limit x̃(ht), Lebesgue's Dominated Convergence

Theorem implies that E
[
ui
(
x̃mi (ht)

)]
→ E

[
ui
(
x̃i(h

t)
)]
. This in turn implies that there

exists M ≥ 1 such that E
[
ui
(
x̃mi (ht)

)]
≤ E

[
ui
(
x̃i(h

t)
)]

+ ε
2 and, consequently,

E
[
V σ
i

(
ht+m

)
|ht
]
≤ E

[
ui
(
x̃i(h

t)
)]

+
ε

2
< E

[
V σ
i

(
ht+1

)
|ht
]

(7)

for allm > M . This contradicts our initial observation that E
[
V σ
i

(
ht+1

)
|ht
]
≤ E

[
V σ
i

(
ht+m

)
|ht
]

for all m ∈ N.

♢
33Note that Hyndman and Ray's result applies to a more general class of coalitional games � in which

unanimous voting is only a special case.
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Step 2: If σ is a DE then, in every period, the committee implements a policy

in ∆n−1 according to σ. For any w ∈ X and any h ∈ Hw, de�ne policy y(h) as

y(h) ≡ E [x̃(h)]. As the ui's are concave, Jensen's inequality implies that

E [ui (x̃i(h))] ≤ ui (yi(h)) (8)

for all i ∈ N .

Now suppose, contrary to the statement of the lemma, that there is some implementa-

tion history ht such that the committee implements x /∈ ∆n−1 � so that ht ∈ Hx. Using

(8) and Lemma 4(ii), we obtain

ui (xi) ≤ E
[
V σ
i

(
ht+1

)
|ht
]
≤ E

[
ui
(
x̃i(h

t)
)]

≤ ui
(
yi(h

t)
)
, (9)

which implies that yi(h
t) ≥ xi for all i ∈ N . Consequently, there must be some y ∈ ∆n−1

such that yi ≥ yi(h
t) and yi > xi for all i ∈ N . We therefore have

V σ
i

(
ht
)
= (1− δi)ui (xi) + δiE

[
V σ
i

(
ht+1

)
|ht
]
< ui (yi) ≤ V σ

i

(
h′
)

(10)

for all i ∈ N and all h′ ∈ Hy (where the last inequality follows from Lemma 2(ii)). This

in turn implies that any proposer whose proposal induces implementation history ht (and

therefore policy history
(
x1, . . . , xt−1, x

)
) can pro�tably deviate by inducing h′ ∈ Hy (and

therefore policy history
(
x1, . . . , xt−1, y

)
) instead. Proposal y is unanimously accepted for

the following reason. Once y has been o�ered, voters implicitly have to choose between

policy sequences
(
x1, . . . , xt−1, y

)
and

(
x1, . . . , xt−1, xt−1

)
� as σ is a DE, each player's

continuation value V σ
i (h) at any history h only depends on the history of policies in h. If

xt−1 = x (so that x is the default at the start of period t), then
(
x1, . . . , xt−1, xt−1

)
is the

policy sequence in ht and (10) ensures that all players are strictly better o� accepting y.

If xt−1 ̸= x, then x is in the acceptance set after policy sequence
(
x1, . . . , xt−1

)
and, by

(10), so is y. We therefore have a contradiction with σ being a DE.

Step 3: If σ is a DE then A(σ) = ∆n−1. We already know from Lemma 3 that

A(σ) ⊆ ∆n−1. To complete the proof of this step, we must show that every point in the

unit simplex is absorbing.

Let x′ ∈ ∆n−1 and suppose, contrary to the statement above, that there is a history

at which x′ is amended to some x ̸= x′ with positive probability. From Step 2, we have

x ∈ ∆n−1. By (9), we have ui (xi) ≤ ui
(
yi(h

t)
)
for all i ∈ N and all ht ∈ Hx. But, as

x ∈ ∆n−1, this implies that x = y
(
ht
)
, and therefore, that ui (xi) = ui

(
yi(h

t)
)
for all
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i ∈ N and all ht ∈ Hx. Using (9) again, this implies that ui (xi) = E
[
V σ
i

(
ht+1

)
|ht
]
for

every i ∈ N and all ht ∈ Hx. Hence, at implementation history ht ∈ Hx where the current

default x′ is about to be amended to x,

ui (xi) = (1− δi)ui (xi) + δiE
[
V σ
i

(
ht+1

)
|ht
]
= V σ

i

(
ht
)
≥ ui

(
x′i
)

for all i ∈ N (where the inequality follows from Lemma 2(i)). As x′ is by assumption an

element of the simplex, the inequality above implies that x = x′, thus yielding the desired

contradiction.

Step 4: Every DE σ is a no-delay DE with A(σ) = ∆n−1. Combining Steps 2 and

3, we obtain that every DE is no-delay and that its absorbing set coincides with the unit

simplex.

�

For future reference (proof of Theorem 4(ii)), observe that before a policy in ∆n−1 is

implemented no proposer randomizes over proposals. Indeed, the no-delay property implies

that, at any default outside ∆n−1, each proposer makes an o�er that is accepted by all

players. By sequential rationality, the proposer must give the other players the minimum

shares that they are willing to accept.

Theorem 4. If q = n then: (i) a pure strategy no-delay SMPE exists; and (ii) SMPE

payo�s are unique and coincide with the stationary SPE payo�s of the Baron-Ferejohn

model.

Part (i)

To prove Theorem 4(i), we will construct an equilibrium σ in which, at any default x ∈ X,

the selected proposer � say i � o�ers the committee a policy x + si(x) ∈ ∆n−1, which

is accepted by all players and then never amended. We can think of proposer i o�ering

to share the amount of money not distributed yet � i.e. 1 −
∑

j∈N xj � with the other

players, with sij(x) being the share o�ered by proposer i to player j. The �rst step of

the proof is to de�ne these transfers and to use them to construct the stationary Markov

pure-strategy pro�le σ. Step 2 then establishes that σ is a no-delay stage-undominated

SMPE. To do so, we �rst establish that the set of absorbing points of σ coincides with the
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simplex, and determine the continuation-value function induced by σ (Claim 1). Using

these results, we then show that players never use weakly dominated strategies in voting

stages (Claim 2), and that there are no pro�table one-shot deviations from σ in proposal

stages (Claim 3). By the one-shot deviation principle, this establishes Theorem 4(i).

Step 1: Construction of stationary Markov pure-strategy pro�le σ. For each

x ∈ X, let

Tx ≡

s ∈ [0, 1]n :
∑
j∈N

xj + sj = 1

 .

Thus, any element of the n-fold product of Tx, T
n
x , can be thought of as a vector of shares of

the budgetary surplus s =
(
si
)
i∈N , where s

i ∈ Tx stands for the shares o�ered by proposer

i. Next, let ϕ(x)(·) =
(
ϕ1(x)(·), . . . , ϕn(x)(·)

)
be a self-map on Tn

x de�ned as follows: for

all i ∈ N and all s =
(
sk
)
k∈N ∈ Tn

x ,

ϕi
j(x)(s) ≡ u−1

j

(
(1− δj)uj (xj) + δj

∑
k∈N

pkuj

(
xj + skj

))
− xj , ∀j ̸= i ,

ϕi
i(x)(s) ≡ 1− xi −

∑
j ̸=i

[
xj + ϕi

j(x)(s)
]
.

As all the ui's are by assumption continuous, ϕ(x)(·) is a continuous function from Tn
x

(which is convex and compact in Rn2
) into itself. Brouwer's Fixed Point Theorem then

implies that there is s(x) =
(
sij(x)

)
i,j∈N

∈ Tn
x such that ϕ(x)(s(x)) = s(x); that is

uj
(
xj + sij(x)

)
= (1− δj)uj (xj) + δj

∑
k∈N

pkuj

(
xj + skj (x)

)
, ∀j ̸= i , (11)

xi + sii(x) = 1−
∑
j ̸=i

[
xj + sij(x)

]
, (12)

for all i ∈ N . Observe that, by construction, x+ si(x) ∈ ∆n−1 for all i ∈ N and all x ∈ X.

Moreover, if x ∈ ∆n−1 then Tx = {(0, . . . , 0)} and, therefore, si(x) = (0, . . . , 0) for every

i ∈ N .

We are now in a position to de�ne the strategy pro�le σ = (σ1, . . . , σn):

• In the proposal stage of any period t with ongoing default xt−1 = x, i's proposal

(conditional on i being selected as proposer) is x+ si(x);

• In the voting stage of any period t with ongoing default xt−1 = x, following any

proposal y ∈ X \ {x}, player i accepts if and only if

(1− δi)ui (yi) + δi
∑
j∈N

pjui

(
yi + sji (y)

)
≥ (1− δi)ui (xi) + δi

∑
j∈N

pjui

(
xi + sji (x)

)
.
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Observe that σ is a pure strategy stationary Markov strategy combination. To com-

plete the proof of Theorem 4(i), it therefore remains to show that σ is a no-delay, stage-

undominated SPE.

Step 2: Proof that σ is a no-delay, stage-undominated SPE. We proceed in

several steps.

Claim 1: σ is no-delay with A(σ) = ∆n−1 and, for all i ∈ N and all x ∈ X:

V σ
i (x) = (1− δi)ui (xi) + δi

∑
j∈N

pjui

(
xi + sji (x)

)
.

Proof: If x ∈ ∆n−1 then σ prescribes all proposers to pass in all periods. This implies

that x ∈ A(σ) � thus establishing that ∆n−1 ⊆ A(σ) � and, for each i ∈ N ,

V σ
i (x) = ui (xi) = (1− δi)ui (xi) + δi

∑
j∈N

pjui

(
xi + sji (x)

)
(since x ∈ ∆n−1 implies that sji (x) = 0 for all i, j ∈ N).

If x /∈ ∆n−1 then, in the next period, σ prescribes each proposer j to propose policy

x+ sj(x). As x+ sj(x) ∈ ∆n−1, we have ski
(
x+ sj(x)

)
= 0 for all i, k ∈ N , so that

(1− δi)ui

(
xi + sji (x)

)
+ δi

∑
k∈N

pkui

(
xi + sji (x) + ski

(
x+ sj(x)

))
= ui

(
xi + sji (x)

)
,

(13)

for all i ∈ N . From the de�nition of voting strategies, therefore, player i accepts if and

only if

ui

(
xi + sji (x)

)
≥ (1− δi)ui (xi) + δi

∑
k∈N

pkui

(
xi + ski (x)

)
,

which by equation (11) holds for all i ̸= j. To prove that j's proposal is voted up, we

therefore need to con�rm that she accepts her own proposal. By concavity of the ui's,

equation (11) implies that

ui

(
xi + sji (x)

)
= (1− δi)ui (xi) + δi

∑
k∈N

pkui

(
xi + ski (x)

)
≤ ui

(
(1− δi)xi + δi

∑
k∈N

pk

(
xi + ski (x)

))
= ui

(
xi + δi

∑
k∈N

pks
k
i (x)

)
,
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for all i ̸= j, which in turn implies that sji (x) ≤
∑

k∈N pks
k
i (x) for all i ̸= j (recall that

δi ∈ (0, 1)). Using this inequality and the concavity of uj , we obtain

(1− δj)uj (xj) + δj
∑
k∈N

pkuj

(
xj + skj (x)

)
≤ uj

(
xj + δj

∑
k∈N

pks
k
j (x)

)

=uj

xj + δj
∑
k∈N

pk

1−∑
l∈N

xl −
∑
l ̸=j

skl (x)

 = uj

xj + δj

∑
i∈N

sji (x)−
∑
i̸=j

∑
k∈N

pks
k
i (x)


≤uj

xj + δj

∑
i∈N

sji (x)−
∑
i̸=j

sji (x)

 = uj

(
xj + δjs

j
j(x)

)
≤ uj

(
xj + sjj(x)

)
=(1− δj)uj

(
xj + sjj(x)

)
+ δj

∑
k∈N

pkuj

(
xj + sjj(x) + skj

(
x+ sj(x)

))
, (14)

where the last equality follows from (13). Thus, σj prescribes player j to accept as well,

and xj+sj(x) is therefore voted up. This proves that policies outside the simplex cannot be

absorbing points of σ � i.e. (X \∆n−1)∩A(σ) = ∅ � and, therefore, that A(σ) = ∆n−1.

This also proves that P σ (x,A(σ)) = P σ (x,∆n−1) = 1 for all x ∈ X; that is, σ is no-delay.

Moreover, as xj+sj(x) ∈ ∆n−1, σ prescribes all proposers to pass in all future periods.

This implies that, for all i ∈ N and x /∈ X,

V σ
i (x) = (1− δi)ui (xi) + δi

∑
j∈N

pjui

(
xi + sji (x)

)
,

thus completing the proof of the claim.

For future reference (see Claim 3 below), observe that (14) implies that V σ
i

(
x+ si(x)

)
≥

V σ
i (x) for any player i ∈ N .

Claim 2: Given default x and proposal y, each voter i ∈ N accepts if and only if

V σ
i (y) ≥ V σ

i (x), and rejects only if V σ
i (x) ≥ V σ

i (y).

Proof: This is an immediate consequence of Claim 1 and the de�nition of voting strate-

gies.

Claim 3: There is no pro�table one-shot deviation from σ in the proposal stage of any

period.

Proof: Let xt−1 = x, and suppose that player i is recognized to make a proposal in

period t. If she plays according to σi then she proposes x+ si(x) (or, equivalently, passes

when x ∈ ∆n−1). As σ is no-delay (Claim 1), this o�er is accepted and player i's payo� is

ui
(
xi + sii(x)

)
.
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In the proof of Claim 1, we showed that V σ
i (x) ≤ V σ

i

(
x+ si(x)

)
. Hence, player i

cannot pro�tably deviate by passing or by making a proposal that is voted down.

Now consider a deviation to a proposal y ̸= x+ si(x), which is accepted. According to

the de�nition of voting strategies, y must satisfy

(1− δj)uj (yj) + δj
∑
k∈N

pkuj

(
yj + skj (y)

)
≥ (1− δj)uj (xj) + δj

∑
k∈N

pkuj

(
xj + skj (x)

)
(15)

for all j ∈ N . We distinguish between two di�erent cases:

• Case 1: y ∈ ∆n−1. In this case, inequality (15) becomes

uj (yj) ≥ (1− δj)uj (xj) + δj
∑
k∈N

pkuj

(
xj + skj (x)

)
= uj

(
xj + sij(x)

)
for all j ̸= i (the equality is obtained from (11)). As uj is increasing, this implies that

yj ≥ xj + sij(x) for all j ̸= i and, consequently,

xi + sii(x) = 1−
∑
j ̸=i

(
xj + sij(x)

)
≥ 1−

∑
j ̸=i

yj = yi .

This in turn implies that V σ
i

(
xi + sii(x)

)
= ui

(
xi + sii(x)

)
≥ ui (yi) = V σ

i (y). Hence,

proposing y ∈ ∆n−1 is not a pro�table (one-shot) deviation for player i.

• Case 2: y /∈ ∆n−1. In this case, equations (11) and (15) (as well as the concavity of

the uj 's) imply that

uj

(
yj + δj

∑
k∈N

pks
k
j (y)

)
≥ (1− δj)uj (yj) + δj

∑
k∈N

pkuj

(
yj + skj (y)

)
≥ (1− δj)uj (xj) + δj

∑
k∈N

pkuj

(
xj + skj (x)

)
= uj

(
xj + sij(x)

)
,

so that yj +
∑

k∈N pks
k
j (y) ≥ xj + sij(x) for all j ̸= i (recall that δj ∈ (0, 1) and skj (y) ≥ 0

for all j, k ∈ N). Consequently,

xi + sii(x) = 1−
∑
j ̸=i

[
xj + sij(x)

]

≥ 1−
∑
j ̸=i

[
yj +

∑
k∈N

pks
k
j (y)

]
= 1−

∑
j ̸=i

yj −
∑
k∈N

pk∑
j ̸=i

skj (y)

 . (16)
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Moreover, by equation (12), ∑
j ̸=i

skj (y) = 1−
∑
l∈N

yl − ski (y) . (17)

Combining (16) and (17), we obtain

xi + sii(x) ≥ 1−
∑
j ̸=i

yj −
∑
k∈N

[
pk

(
1−

∑
l∈N

yl − ski (y)

)]
= yi +

∑
k∈N

pks
k
i (y) .

Hence:

V σ
i

(
xi + sii(x)

)
= ui

(
xi + sii(x)

)
≥ ui

(
yi +

∑
k∈N

pks
k
i (y)

)
≥ ui

(
(1− δi) yi + δi

∑
k∈N

pk

[
yi + ski (x)

])
≥ (1− δi)ui (yi) + δi

∑
k∈N

pkui

(
yi + ski (x)

)
= V σ

i (y) .

This shows that proposing y /∈ ∆n−1 is not a pro�table deviation for player i, and completes

the proof of Claim 3.

Combining Claims 1-3, we obtain Theorem 4(i).

Part (ii)

Denote our game with an evolving default by Γe, and the game with a constant default

of x0 = (0, . . . , 0) by Γc. To prove the second part of the theorem, we �rst show that, for

every SMPE σ of Γe, we can construct a stationary strategy pro�le σc in Γc that generates

the same payo�s as σ in Γe. We then show that σc is a stationary SPE of Γc. Uniqueness

of SMPE payo�s in Γe then follows from uniqueness of stationary SPE in Γc (Observation

2).

Let σ = (σi)i∈N be an SMPE of Γe, and let πi(x) ∈ X be the proposal made by player i

when the ongoing default is some x outside ∆n−1. (Recall that proposers do not randomize

at such a default: cf. the paragraph immediately after the proof of Theorem 3.) Hence,

player i's expected payo� as evaluated after rejection of a proposal in the �rst period is

given by:

V σ
i

(
x0
)
= (1− δi)ui

(
x0
)
+ δi

∑
j∈N

pjui

(
πj
i

(
x0
))

(recall that, by Theorem 3, σ must be no-delay).

Now de�ne the stationary strategy pro�le σc = (σc
i )i∈N in game Γc as follows. At

the proposal stage of every period t, each player i ∈ N makes proposal πi
(
x0
)
. At the
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voting stage of each period, player i accepts the proposal just made, say y, if and only if

ui(y) ≥ V σ
i

(
x0
)
.

As σ is no-delay, proposal πi
(
x0
)
, i ∈ N , must be accepted with probability 1 at default

x0 in Γe. By sequential rationality and unanimity rule, this implies that V σ
j

(
πi
(
x0
))

=

uj

(
πi
j

(
x0
))

≥ V σ
j

(
x0
)
for all j ∈ N , which in turn implies that proposal πi

(
x0
)
is

also accepted with probability 1 in any period of Γc. Two immediate consequences of this

observation are that: (i) player i's expected payo� as evaluated after rejection of a proposal

in the �rst period of Γc is V σ
i

(
x0
)
; and (ii) player i ∈ N has no pro�table deviation from

the voting behavior prescribed by σc
i .

To complete the proof of the result, therefore, it remains to show that no player i ∈ N

can pro�tably deviate from σc in a proposal stage of Γc. Consider the proposal of an

arbitrary player i when the default is x0. As σ is an SMPE of Γe, player i cannot pro�tably

deviate by (successfully) proposing a policy y ∈ X\
{
πi
(
x0
)}

or by making an unsuccessful

proposal at default x0. Hence,

V σ
i

(
πi
(
x0
))

= ui
(
πi
(
x0
))

≥ max

V σ
i

(
x0
)
, (1− δi)ui(y) + δi

∑
j∈N

pjui

(
πj
i (y)

) ≥ ui(y)

where the second inequality follows from Lemma 2(ii). Now consider a deviation from

πi
(
x0
)
in Γc. If i proposed some policy y then her expected payo� would be ui(y) if her

proposal were successful, and V σ
i

(
x0
)
otherwise. Hence, the inequality above implies that

i cannot improve upon proposing πi
(
x0
)
and, therefore, cannot pro�tably deviate from σc

i

in proposal stages.

The theorem then follows from Observation 2, which says that Baron and Ferejohn's

(1989) model has unique stationary SPE payo�s when q = n.

�

Theorem 5. Suppose that q = n.

(i) If δi ̸= δj, for some i, j ∈ N , then every DE is ex post Pareto ine�cient.

(ii) Any (Pareto e�cient) policy sequence that allocates the entire pie to the same player

in every period can be supported by an SPE.

Proof:
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(i) Ex post Pareto ine�ciency of DEs

We begin with a lemma which shows that, in a DE, the pie is never entirely allocated to

a single player; so that transfers among players are always feasible. This will then allow

us to prove that any realization of a DE policy sequence can be Pareto-improved using

transfers across periods.

Lemma 5. Let q = n. If
{
x̃t
}
is the stochastic sequence of policies on some DE path then,

for every realization
{
xt
}
of
{
x̃t
}
, we have xti ∈ (0, 1) for all i ∈ N and all t ∈ N.

Proof: Let
{
xt
}
be an arbitrary realization of the sequence

{
x̃t
}
engendered by some

DE σ. Suppose that, contrary to the statement above, xτj = 0 for some j ∈ N and some

τ ∈ N. Theorem 3 then implies that, in the �rst period, player j accepted a proposal x

such that xj = xtj = 0 for all t ∈ N. Player j's payo� under σ is therefore uj(0) = 0.

To prove the lemma, we will now show that j could pro�tably deviate � i.e. obtain a

payo� strictly greater than uj(0) � by rejecting x. To this end, suppose that x is rejected

in period 1 and that j is selected to propose at the start of period 2. De�ne h0 ∈ Hx0 as

the implementation history that would be induced by a rejection of j's proposal. We know

from Theorem 3 that, for each i ∈ N ,

V σ
i (h0) = (1− δi)ui(0) + δi

∑
l∈N

plui

(
xli

)
,

where xl denotes player l's successful proposal in period 3. As xl ∈ ∆n−1 for all l ∈ N ,

W ≡
{
i ∈ N : ui(0) <

∑
l∈N plui

(
xli
)}

is nonempty; so that, for each i ∈ W ,

V σ
i (h0) <

∑
l∈N

plui

(
xli

)
≤ ui

(∑
l∈N

plx
l
i

)
,

where the second inequality follows from Jensen's inequality. By continuity of the ui's,

therefore, there exists a su�ciently small ε > 0 such that

V σ
i (h0) < ui

(∑
l∈N

plx
l
i − ε

)
, ∀i ∈ W .

By de�nition of W , Vi (h0) = ui(0) for every i ∈ N \W .

Now de�ne policy y = (yi)i∈N ∈ X as follows:

yi ≡
∑
l∈N

plx
l
i − ε , for all i ∈ W , and yi ≡

|W |
n− |W |

ε > 0 for all i ∈ N \W .
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It is readily checked that ui (yi) > V σ
i (h0) and then, by Lemma 2(ii),

V σ
i (h0) = (1− δi)ui(0) + δi

∑
l∈N

plui

(
xli

)
< ui (yi) ≤ V σ

i (h)

for all h ∈ Hy and all i ∈ N . By the same argument as in Step 2 in the proof of Theorem

3, this inequality implies that j could successfully propose y in period 2 and thus get a

payo� of V σ
j (h) > V σ

j (h0) ≥ uj(0). This in turn implies that her equilibrium proposal

under σ (conditional on being recognized to make a proposal in period 2) must yield a

payo� at least as great as V σ
j (h) > uj(0). As pj > 0 and q = n (and uj(0) is obviously

the minimum payo� she can get), she must therefore reject any period-1 proposal x such

that xj = 0 in equilibrium.

♢

Suppose that there are i, j ∈ N such that δi > δj . Now suppose that, contrary to the

Theorem, there exists an ex post Pareto e�cient DE σ. This implies that some realization

of the policy sequence engendered by σ is Pareto e�cient. Take one of these realizations,

say
{
xt
}
. From Theorem 3, there exists a policy x̄ ∈ ∆n−1 such that xt = x̄ for all

t ∈ N. To obtain the desired contradiction, therefore, it su�ces to show that the inde�nite

implementation of x̄ can be Pareto improved.

Lemma 5 implies that x̄i and x̄j are both in (0, 1). Consequently, there is a feasible

marginal transfer dx1j from player i to player j in period 1, and a marginal transfer dx2j

from j to i in period 2, such that player 1's discounted payo� remains unchanged. If we

suppose by contradiction that the repeated implementation of policy x̄ is Pareto e�cient

then the changes in players i and j's payo�s must satisfy:

−u′i (x̄i) dx
1
j + δiu

′
i (x̄i) dx

2
j = 0 , and u′j (x̄j) dx

1
j − δju

′
j (x̄j) dx

2
j ≤ 0 ,

where u′i (x̄i) > 0 and u′j (x̄j) > 0 � recall that by assumption all players' (instantaneous)

payo� functions are strictly increasing. Combining these two conditions, we obtain δi =

dx1j/dx
2
j ≤ δj , which contradicts our initial assumption that δi > δj .

(ii) Construction of a Pareto e�cient SPE

For every d = (d1, . . . , dn) ∈ X and i ∈ N , let xi(d) be the policy in X that allocates dj

to each player j ̸= i and the residual to player i; that is, for each j ∈ N :

xij(d) ≡

{
1− d−i if j = i ,

dj if j ̸= i ,
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where d−i ≡ 1−
∑

j ̸=i dj .

To prove the result, we construct a strategy pro�le σ that has the following absorbing

policies: xi(d) for all d ∈ X and all i ∈ N . On the path, σ induces the constant pol-

icy sequence
{
x1
(
x0
)}

= {(1, 0, . . . , 0)} which is Pareto e�cient, irrespective of players'

payo� functions and discount factors. (An analogous construction can be used to support

any constant policy sequence of the form
{
xi
(
x0
)}

for some i ∈ N .) The construction

below proceeds in three steps. Step (a) partitions the set of histories of the game into

subsets H̃(C), where �h̃ ∈ H̃(C)� is interpreted as �some member i of coalition C must be

`rewarded' (with the implementation of xi(d)) at history h̃.� Step (b) provides a formal

de�nition of σ. In step (c), we check that there is no history at which a player has a prof-

itable one-shot deviation, and that none of the players use a dominated voting strategy.

By the one-shot deviation principle, this proves that σ is a (stage-undominated) SPE.

(a) Histories. In our construction, we only need to refer to histories at which a proposer

is about to be selected. Accordingly, we will abuse terminology by referring to such paths

as �histories.� A typical period-t history is denoted by h̃t,34 and we use h̃t =
(
h̃t−1, h̃1

)
to

denote the concatenation of a period-(t− 1) history with a one-period history h̃1 � more

precisely, h̃1 describes everything that happened in period t (proposer selection, proposal,

pattern of votes, and implementation of a policy).

As explained above, we want to identify every history with the players to reward at that

history. To this end, we will partition the set of histories into a collection
{
H̃(C) : ∅ ̸= C ⊆ N

}
where, for each nonempty coalition C ⊆ N , H̃(C) can be thought of as the set of histories

at which a member of C should be �rewarded� � in the sense that a policy xi(d), for some

i ∈ C, should be inde�nitely implemented when the current default is d. We de�ne the

elements of the partition as follows.

(i) The null history and all the histories at which (1, 0, . . . , 0) has been proposed and

(if there was a vote) unanimously accepted in all previous periods are contained in

H̃({1});

(ii) And for any other history h̃t =
(
h̃t−1, h̃1

)
where h̃t−1 belongs to H̃(C), for some

nonempty C ⊆ N , and ends with the implementation of some d ∈ X:

(iia) If some xi(d), where i ∈ C, is proposed and (if there is a vote) unanimously

accepted in h̃1, then h̃t ∈ H̃ ({i});
34As in the proof of Theorem 2, we use a tilde to distinguish these histories from implementation histories.
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(iib) If some xi(d), where i ∈ C, is proposed and rejected in h̃1, then h̃t ∈ H̃ ({i});

(iic) If player k proposes some y ̸= xi(d) for all i ∈ C, which (if a vote takes place)

is unanimously accepted in h̃1 then h̃t ∈ H̃ ({k});

(iid) If player k proposes some y ̸= xi(d) for all i ∈ C, which is rejected by the

members of some (nonempty) C ′ ̸= {k} in h̃1 then h̃t ∈ H̃ (C ′ \ {k});

(iie) If player k proposes some y ̸= xi(d) for all i ∈ C, which is rejected by player k

alone in h̃1 then h̃t ∈ H̃ ({k}).

These conditions can be informally interpreted as follows: (i) At the start of the game

and until some player attempts to amend policy (1, 0, . . . , 0), player 1 should be rewarded;

(iia) If a member of C was supposed to be rewarded in the last period, the proposer o�ered

to reward some i ∈ C, and the o�er was unanimously accepted, then player i should be

rewarded at the new history; (iib) If a member of C was supposed to be rewarded in the

last period, the proposer o�ered to reward some i ∈ C and the o�er was rejected, then

player i should be rewarded at the new history; (iic) If a member of C was supposed to be

rewarded in the last period, the proposer k did not o�er to reward any i ∈ C and her o�er

was unanimously accepted, then player k should be rewarded at the new history; (iid) If a

member of C was supposed to be rewarded in the last period, the proposer k did not o�er

to reward any i ∈ C and the o�er was rejected by the members of some coalition C ′ ̸= {k}
(which may include player k) then some member of C ′ \ {k} should be rewarded at the

new history; and (iie) If a member of C was supposed to be rewarded in the last period,

the proposer k did not o�er to reward any i ∈ C and the o�er was rejected by player k

alone, then player k should be rewarded at the new history.

(b) De�nition of σ. For each i ∈ N , we de�ne the linear order ◃i on N as:

• 1◃1 2◃1 . . .◃1 n;

• i◃i i+ 1◃i . . .◃i n◃i 1◃i . . .◃i i− 1 for all 1 < i < n; and

• n◃n 1◃n 2◃n . . .◃ n− 1.

Suppose that a history in H̃(C), ∅ ̸= C ⊆ N , ending with default d ∈ X has occurred.

Strategy pro�le σ prescribes the following behavior after such a history:

In proposal stages: Player j proposes xi(d) where i is the ◃j-maximum in C.

In a voting stage with proposal y by player k: If y ∈
{
xi(d) : i ∈ C

}
then σ prescribes

every player j to accept y; if y /∈
{
xi(d) : i ∈ C

}
then:
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• when d /∈ ∆n−1, σ prescribes player j ̸= k to reject y, and player k to accept it if and

only if

(1− δk)uk (yk) + δkuk (1− y−k) > (1− δk)uk (dk) + δkuk (1− d−k) ;

• when d ∈ ∆n−1, σ prescribes every player j ̸= k to accept y if and only if uj (yj) >

uj (dj), and player k to accept it if and only if

(1− δk)uk (yk) + δkuk (1− y−k) > uk (dk) .

According to σ, the following happens on the path. The null history belongs to H̃({1}).
Therefore, in period 1, all proposers o�er (1, 0, . . . , 0) which is unanimously accepted.

From (i) in the de�nition of proposer histories, therefore, we have d = (1, 0, . . . , 0) and

h̃t ∈ H̃({1}) in every period t ≥ 1. This in turn implies that all proposers o�er (1, 0, . . . , 0)

(i.e. pass) in every period t > 1. Hence, σ sustains the e�cient policy sequence in which

(1, 0, . . . , 0) is implemented in every period.

(c) σ an SPE: (i) Voting strategies. Suppose that a history in H̃(C), ∅ ̸= C ⊆ N ,

ending with default d ∈ X has occurred and that the selected proposer � say k � has o�ered

y ̸= d. Consider player j's voting behavior in such a situation.

• Case 1: y = xi(d) for some i ∈ C. If player j plays in accordance with σj , then she

accepts proposal xi(d). As the other players do the same according to σ, policy xi(d) will

be implemented and never be amended. Player j's payo� is therefore

uj
(
xij(d)

)
=

{
uj (dj) if j ̸= i ,

uj (1− d−j) if j = i .

Now suppose that player j deviated from σ by rejecting proposal xi(d) in the current

period. The current default d would be implemented in the period and then, from (iib) in

the de�nition of histories and the de�nition of σ, xi(d) would be successfully proposed in

the next period and never amended. As dj ≤ 1 − d−j , this implies that uj

(
xij(d)

)
is the

maximum payo� that player j can earn at such a history. This shows that, irrespective of

the other players' actions in this voting stage, player j cannot pro�tably deviate from σj ,

which is therefore not weakly dominated.

• Case 2: d /∈ ∆n−1 and y ̸= xi(d) for all i ∈ C. Suppose �rst that j ̸= k � i.e. player

j is not the proposer. Strategy σ prescribes j and all l ̸= k to reject y. If j plays according
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to σ then y will be rejected and she will receive (1− δj)uj (dj) in the current period. From

(iid) in the de�nition of histories, this history at the start of the next period will then

be in H̃ (N \ {k}); so that, by de�nition of σ, a nonempty set of proposers (including

herself) will successfully o�er xj(d) while the others will successfully propose policies in{
xl(d) : l ∈ N \ {j, k}

}
. In the former case she will receive uj (1− d−j) > uj (dj) (recall

that d /∈ ∆n−1) in all future periods; in the latter she will receive uj (dj) in all future

periods.

If she deviated from σ, then the default d would still be implemented in the current

period (players l ̸= k would still reject y) and some policy in
{
xl(d) : l ∈ N \ {i, k}

}
would

be implemented in all future periods. Hence, player j's payo� would be uj (dj), which is

strictly less than her payo� from rejecting y (because j proposes, and therefore obtains

uj (1− d−j) > uj (dj), with positive probability next period). This proves that player j

cannot pro�tably deviate from rejecting y and that this is not a weakly dominated strategy

in the stage game.

Now suppose that j = k � i.e. player j is the proposer. As the other players reject her

proposal (according to σ), she receives (1− δk)uj (dk) in the current period. From (iid) in

the de�nition of histories, the next period's history belongs to H̃ (C) with C not including

k; so that, irrespective of k's move, a policy xl(d) with l ̸= k will be implemented in the next

period and never amended. This implies that player k's discounted sum of payo�s from

the next period on is uk (dk) irrespective of her choice in the voting stage. Hence, under σ,

player j = k cannot pro�tably deviate from σ because her payo� will be uk (dk) whether

she accepts the proposal or not. This is true as long as at least one of the other players

rejects y. To prove that σk is a weakly undominated strategy in the stage-game, it therefore

remains to show that she could not improve on the choice prescribed by σk if all the other

players accepted y. In this case, accepting y would lead to a history in H̃ ({k}) ((iic) in
the de�nition of histories): in the next period, xk(d) would be implemented (and never

amended) with probability 1. Her payo� would then be (1− δk)uk (yk) + δkuk (1− y−k).

Rejecting y would also induce a history in H̃ ({k}) ((iie) in the de�nition of histories), so

that xk(d) would be implemented with probability 1 in the next period. Her total payo�

would therefore be (1− δk)uk (dk) + δkuk (1− d−k). From the de�nition of the proposer's

voting strategy, this implies that her voting behavior is weakly undominated in the stage-

game.

• Case 3: d ∈ ∆n−1 and y ̸= xi(d) for all i ∈ C. As d is in the simplex, xij(d) = dj for
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all i, j ∈ N . From the de�nition of σ, any policy in the simplex is absorbing. Therefore,

rejection of y leads to the inde�nite implementation of d, yielding a payo� of uj (dj) for

player j irrespective of who voted y down. This implies that, whenever any other player

rejects y, player j is indi�erent between accepting and rejecting; so that her strategy is a

best response.

Therefore, to show that j cannot pro�tably deviate from σ and that σ prescribes her

a weakly undominated action in this voting stage, it su�ces to show that she cannot

improve on playing according to σ when all the other players accept y. In this case, if

j accepts y then she receives (1− δj)uj (yj) in the current period. From (iic) in the

de�nition of histories, the next period's history is in H̃ ({k}), so that player j will receive

uj

(
xkj (y)

)
= uj (yj) in all future periods if j ̸= k, and uj

(
xkk (y)

)
= uj (1− y−k) in all

future periods if j = k. Her total payo� from accepting y is therefore uj (yj) if j ̸= k,

and (1− δj)uj (yj) + δjuj (1− y−j) if j = k. As explained in the previous paragraph, her

payo� will be uj (dj) if, instead, she rejects y. By de�nition of σ, therefore, j's choice (as

prescribed by σ) is a best response and weakly undominated in the stage-game.

(ii) Proposal strategies. Take an arbitrary history in H̃(C), ∅ ̸= C ⊆ N , and let

d ∈ X be the current default. If proposer k o�ers some xi(d) with i ∈ C (as prescribed by

σ), then from the de�nition of voting strategies, xi(d) is unanimously accepted (and never

amended). Her payo� is therefore

uk
(
xik(d)

)
=

{
uk (1− d−k) if k = i ,

uk (dk) if k ̸= i .

Suppose �rst that d /∈ ∆n−1. If k deviated from σ by proposing some y ̸= xi(d) for

all i ∈ C, then her proposal would be rejected by all other players (so that d would be

implemented in the current period). From (iid) in the de�nition of histories, the next

period's history would be in H̃ (N \ {k}). By de�nition of σ, this implies that some policy

xl(d), with l ̸= k, would be implemented inde�nitely. As xlk(d) = dk, this implies that her

total payo� from deviating would be ui (dk) < uk (1− d−k) ≤ uk
(
xik(d)

)
: the deviation

would not be pro�table.

Now suppose that d ∈ ∆n−1 � so that xik(d) = dk for all i ∈ N . If player k makes a

proposal that is rejected by at least one of the other players, then the same argument as in

the previous paragraph shows that such a deviation cannot be pro�table. If player k makes

a proposal that only she rejects, then she receives (1− δk)uk (dk) in the current period.
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As the next period's history will be in H̃({k}) ((iie) in the de�nition of histories), she will

then receive uk
(
xkk(d)

)
= uk (dk). Hence, her payo� from the deviation is the same as that

from not deviating; i.e. uk (dk). Finally, by de�nition of voting strategies when d ∈ ∆n−1,

player k would have to o�er yj > dj to each j ̸= k to make a successful proposal. As d is

in the simplex, this implies that yk ≤ 1 − y−k < 1 − d−k = dk. Hence, player k's payo�

from making a successful proposal (1− δk)uk (yk) + δkuk (1− y−k) would be strictly less

than ui (dk) = uk
(
xik(d)

)
. As a result, i does not have a pro�table deviation.

By the one-shot deviation principle, σ is an SPE.

�

Observation 2. If q = n then the Baron-Ferejohn model has a unique stationary SPE.

Proof: We prove Observation 2 in two steps. Step 1 derives several properties of

stationary SPE behavior, which we will use in Step 2 to establish the uniqueness of a

stationary SPE.

Step 1: Properties of stationary SPEs.

Let σ be any stationary SPE and, for each i ∈ N , let W σ
i be player i's continuation

value from moving to period t + 1 conditional on σ and on any period-t proposal being

rejected. Because σ is a stationary SPE, the very �rst proposer makes a successful proposal.

Let xi =
(
xi1, . . . , x

i
n

)
∈ X be player i's proposal when she is selected to propose. As W σ

j is

the most that player j can expect to receive from continuing the bargaining process beyond

the current period, routine arguments imply that j votes to accept proposal xi if and only

if uj

(
xij

)
≥ δjW

σ
j (recall that uj(0) = 0). Since ui is strictly increasing in xii, this in turn

implies that uj

(
xij

)
= δjW

σ
j for all j ̸= i. Therefore, each player j ∈ N receives the same

share of the pie x̄σj ≡ u−1
j

(
δjW

σ
j

)
from all proposers i ̸= j. (Players do not randomize

in equilibrium: each proposer allocates just enough to the other players to induce them to

accept the proposal and allocates the residual to herself.)

By de�nition of W σ
j , we can rewrite uj

(
x̄σj

)
= δjW

σ
j as

uj
(
x̄σj
)
= δj

[
pjuj

(
xjj

)
+ (1− pj)uj

(
x̄σj
)]

or, equivalently, as

uj
(
x̄σj
)
=

δjpj
1− δj (1− pj)

uj

(
xjj

)
≡ λjuj

(
xjj

)
. (18)
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As λj ∈ (0, 1), we have x̄σj < xjj for all j ∈ N . This implies that

Dσ ≡ 1−
∑
i∈N

x̄σi = 1−
∑
i̸=j

x̄σi − x̄σj = xjj − x̄σj > 0 .

Substituting into (18), we obtain

uj
(
x̄σj
)
= λjuj

(
Dσ + x̄σj

)
. (19)

Now take an arbitrary i ∈ N and de�ne Hi : [0, 1]
2 → R as

Hi(s, f) ≡ ui(f)− λiui(s+ f) , for all s, f ∈ [0, 1] .

It is readily checked that Hi(0, 0) = 0 and that, for all (s, f) ̸= (0, 0), Hi is strictly

decreasing in s, strictly increasing in f and continuous in its arguments. Let Si ≡
max {s ∈ [0, 1] : Hi(s, 1) ≥ 0}. The properties of Hi ensure that we can (explicitly) de-

�ne fi : [0, Si] → [0, 1] as the unique solution to Hi (s, fi(s)) ≡ 0 for all s ∈ [0, Si]. By the

implicit function theorem, the derivative of fi satis�es

f ′
i(s) =

λiu
′
i (s+ fi(s))

u′i (fi(s))− λiu′i (s+ fi(s))
> 0

for all s (where the inequality follows from λi ∈ (0, 1), u′i > 0 and concavity of the ui's).

By de�nition of the Hi's and fi's, we know from (19) that x̄σi and Dσ must satisfy

x̄σi = fi (D
σ) for all i ∈ N , (20)

in any stationary SPE σ.

Step 2: Uniqueness of stationary SPE.

To complete the proof of the Observation, it su�ces to show that for any two stationary

SPEs of the Baron-Ferejohn model, σ1 and σ2, we have x̄σ1
j = x̄σ2

j for all j ∈ N � so that

σ1 = σ2. Suppose instead that x̄σ1
i < x̄σ2

i for some i ∈ N . As fi is strictly increasing,

(20) implies that Dσ1 < Dσ2 . This in turn implies that x̄σ1
j < x̄σ2

j for all j ∈ N and,

consequently, that
∑

j∈N x̄σ1
j <

∑
j∈N x̄σ2

j . We then have

Dσ1 ≡ 1−
∑
j∈N

x̄σ1
j > 1−

∑
j∈N

x̄σ2
j ≡ Dσ2 :

a contradiction.
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